Calculation of electrostatic fields in ionic crystals by a Bertaut method
Weenk, J.W.; Harwig, H.A.
1975-01-01
A method to calculate the electrostatic field strength in ionic crystals is evaluated according to a model by Bertaut. Formulae for the self potential and the field strength at an ion site are derived. The practical use is demonstrated by calculations of field vectors in TiO2 (rutile, anatase, brook
Molecular Field Calculation of Magnetization on NdRh2Ge2 Single Crystal
Directory of Open Access Journals (Sweden)
A. Himori
2008-01-01
Full Text Available Calculation of magnetization of the ternary single crystal compound NdRh2Ge2 has been carried out by using the wave-like molecular field model to explain the complex magnetic behavior. The field-induced magnetic structures having the propagation vectors, 2=(0,0,39/40, 3=(0,0,35/40, 4=(0,0,31/40, and 5=(0,0,0/40 (= the field-induced ferromagnetic phase were proposed. Calculation on the basis of these structures and the antiferromagnetic phase with 1=(0,0,1 well reproduces the experimental magnetization processes and - magnetic phase diagram.
Calculation of crystal-field parameters for rare-earth noble metal alloys
Energy Technology Data Exchange (ETDEWEB)
Steinbeck, L. [MPG Research Group `Electron Systems`, Department of Physics, University of Technology, Mommsenstr. 13, D-01062, Dresden (Germany); Richter, M. [MPG Research Group `Electron Systems`, Department of Physics, University of Technology, Mommsenstr. 13, D-01062, Dresden (Germany); Eschrig, H. [MPG Research Group `Electron Systems`, Department of Physics, University of Technology, Mommsenstr. 13, D-01062, Dresden (Germany); Nitzsche, U. [MPG Research Group `Electron Systems`, Department of Physics, University of Technology, Mommsenstr. 13, D-01062, Dresden (Germany)
1995-02-09
The crystal-field (CF) parameters for 4f electrons of a series of rare-earth impurities in Ag and Au have been evaluated from first-principles density functional calculations of the charge distribution which are based on an optimized LCAO scheme. The localized 4f states are treated as `open core shell`. By including the self-interaction correction for the 4f states, artificial constraints on the 4f charge density employed in earlier density functional CF calculations are avoided. The calculated parameters are compared with recent neutron scattering data. ((orig.)).
Calculation of crystal-field parameters for rare-earth noble metal alloys
Steinbeck, L.; Richter, M.; Eschrig, H.; Nitzsche, U.
1995-02-01
The crystal-field (CF) parameters for 4f electrons of a series of rare earth impurities in Ag and Au have been evaluated from first-principles density functional calculations of the charge distribution which are based on an optimized LCAO scheme. The localized 4f states are treated as 'open core shell'. By including the self-interaction correction for the 4f states, artificial constraints on the 4f charge density employed in earlier density functional CF calculations are avoided. The calculated parameters are compared with recent neutron scattering data.
Zhou, Fei; Ozoliņš, Vidvuds
2012-02-01
Using a recently developed method combining a nonspherical self-interaction corrected LDA + U scheme and an on-site multibody Hamiltonian [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.085106 83, 085106 (2011)], we calculate the crystal field parameters and crystal field (CF) excitation levels of f-element dioxides in the fluorite structure with fn electronic configurations, including n=1 (PaO2, PrO2), n=2 (UO2), n=3 (NpO2), and n=4 (PuO2). It is shown that good agreement with experimental data (within approximately 10-20 meV) can be obtained in all cases. The properties of the multielectron CF ground states are analyzed.
Calculated crystal-field parameters for rare-earth impurities in noble metals
Steinbeck, Lutz; Richter, Manuel; Eschrig, Helmut; Nitzsche, Ulrike
1994-06-01
From first-principles density-functional calculations of the charge distribution the crystal-field (CF) parameters for 4f states of Er and Dy impurities in Ag and Au have been evaluated. The calculations are based on an optimized linear combination of atomic orbitals scheme, where the local-density approximation (LDA) is used for the conduction-electron states, while the localized rare-earth 4f states are treated as ``open core shell.'' As the 4f localization cannot be properly described within LDA, a self-interaction correction for the 4f states is included. In this way, any artificial constraints on the 4f charge density employed in earlier first-principles CF calculations are avoided. The calculated CF parameters agree well with recent neutron scattering data.
Kuz'Min, Michael D.; Steinbeck, Lutz; Richter, Manuel
2002-02-01
A technique of determining the exchange field Bex on the 4f shell of Sm atoms in Sm-based magnets is proposed. It makes use of the 4f intermultiplet transition in Sm, observed in inelastic neutron scattering (INS) experiments. The method is used to analyze previously published data for a number of Sm-Fe and Sm-Co intermetallics, for all of which Bex is determined. Additional information on intramultiplet transitions in SmCo5 and Sm2Co17 makes it possible to obtain more accurate Bex values as well as to estimate the leading crystal field parameter (CFP) A02 for these compounds. For the same systems an independent determination of A02 is carried out using published magnetization curves and the Bex values found from the INS spectra. The two ``experimental'' values of A02 (INS and magnetization) agree well. For comparison, theoretical Sm-Co exchange fields and CFP for SmCo5 and Sm2Co17 are obtained from full-potential density-functional calculations. The theoretical A02 are shifted toward more negative values with respect to their experimental counterparts by a few millielectronvolts. The calculated Sm-Co exchange fields are in fair agreement with the experimentally determined values of the total exchange field on Sm, Bex, the weak Sm-Sm exchange interaction being accountable for the remaining small discrepancies.
Tight Binding Calculation of Electric Field Gradients in Arsenic Chalcogenide Crystals and Glasses
Nelson, Chris B.; Taylor, P. Craig; Harrison, Walter A.
2000-03-01
We apply a tight binding approach to calculate the electric field gradient at As atoms due to three nearest neighbor chalcogen atoms in the two inequivalent As sites of crystalline As_2S_3, As_2Se_3, orthorhombic As (Or-As), and rhombohedral As (Rh-As). We first orthogonalize the 4s and 4p valence states on an As atom with respect to sp hybride states constructed on the three nearest neighbor chalcogen atoms. The orthogonalized As valence states are then othogonalized with respect to the As 2p and 3p core states using the Gramm-Schmidt procedure. The resulting state is used aa a first approximation to calculate the electric field gradient at the As nuclear site. Using Harrison's tight binding parameters,[1] which were constructed for tetrahedrally-coordinated semiconductors, we obtain excellent agreement with experiment for Rh-As and are within a factor of 2 ~ 4 for the Or-As, As_2S_3, As_2Se_3, crystal structures. Because the calculation depends only on the number of nearest neighbors it may be extendable to disordered systems, such as a glass. 1. S.Froyen and W.A. Harrison, Phys. Rev. B, 20, 2420 (1979).
Hasan, Z.; Qiu, Z.; Johnson, Jackie; Homerick, Uwe
2009-02-01
The potential of three erbium based solids hosts has been investigated for laser cooling. Absorption and emission spectra have been studied for the low lying IR transitions of erbium that are relevant to recent reports of cooling using the 4I15/2-4I9/2 and4I15/2 -4I13/2 transitions. Experimental studies have been performed for erbium in three hosts; ZBLAN glass and KPb2Cl5 and Cs2NaYCl6 crystals. In order to estimate the efficiencies of cooling, theoretical calculations have been performed for the cubic Elpasolite (Cs2NaYCl6 ) crystal. These calculations also provide a first principle insight into the cooling efficiency for non-cubic and glassy hosts where such calculations are not possible.
Crystal Field and First Principle Calculation of Optical and Electronic Properties of ZnCr2O4 Spinel
Avram, N. M.; Brik, M. G.; Avram, C. N.; Gruia, A. S.
2011-10-01
In the present work we report on combined methods for calculation of optical energy levels scheme and electronic properties of antiferromagnetic spinel ZnCr2O4. The exchange charge model (ECM) was used to calculate the crystal field parameters (CFP) with taking into account the effects of the covalent bond formation between the Cr3+ and O2- ions. The calculated CFP values were used for diagonalization of the Cr3+ Hamiltonian in a complete basis set spanned by all wave functions of the LS terms of 3d3 electron configuration. Ab initio calculations (with the CRYSTAL09 computer program) of the density of states allowed evaluating contribution of each ion into the calculated bands. In addition, the spin-polarized calculations allowed for finding difference between densities of the spin-up and spin-down states of 6-fold coordinated Cr3+ ion. The obtained results are discussed and compared with experimental data.
Energy Technology Data Exchange (ETDEWEB)
Tanaka, S; Moriya, H; Tsuchiura, H; Sakuma, A [Department of Applied Physics, Tohoku University, Sendai 980-8579 (Japan); Divis, M [Department of Condensed Matter, Charles University, FMF, Prague (Czech Republic); Novak, P, E-mail: tanaka@olive.apph.tohoku.ac.jp [Institute of Physics of ASCR, Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic)
2011-01-01
We study the electronic structures of crystalline Nd{sub 2}Fe{sub 14}B, Dy{sub 2}Fe{sub 14}B and Dy-doped Nd-Fe-B, and estimate the crystal field parameter A{sup 0}{sub 2}(r{sup 2}) of the rare earth ions of these systems based on the first principles calculations. We find that the crystal field of the Dy ions is appreciably insensitive to its crystallographic location than that of Nd ions.
Energy Technology Data Exchange (ETDEWEB)
Wen, Jun, E-mail: wenjunkd@mail.ustc.edu.cn [School of Physics and Electric Engineering, Anqing Normal University, Anqing 246011 (China); Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Reid, Michael F. [Department of Physics and Astronomy and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, PB4800 Christchurch (New Zealand); Ning, Lixin [Department of Physics, Anhui Normal University, Wuhu 241000 (China); Zhang, Jie [School of Physics and Electric Engineering, Anqing Normal University, Anqing 246011 (China); Zhang, Yongfan [Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350002 (China); Duan, Chang-Kui; Yin, Min [Department of Physics, University of Science and Technology of China, Hefei 230026 (China)
2014-08-01
Wavefunction-based ab-initio calculations of the electric-dipole moments of 4f{sup N}–4f{sup N} transitions of lanthanide ions are performed to extract the A{sub tp}{sup λ} intensity parameters. The extraction method is an extension of our earlier calculations of crystal-field (CF) parameters for lanthanide ions in crystals. The CASSCF/RASSI-SO (Complete-Active-Space Self-Consistent-Field/Restricted-Active-Space State-Interaction Spin-Orbit) calculations have been carried out on the chosen model system of CaF{sub 2}: Ce{sup 3+} with an interstitial fluoride ion (F{sub i}{sup −}) on z-axis (Ce{sup 3+} ion occupying the C{sub 4v} symmetry site). In consideration of the site symmetry and the coordination situation of Ce{sup 3+} ion at C{sub 4v} site in CaF{sub 2} as well as the superposition model (SM), the calculated intensity parameters for Ce{sup 3+} ion can be classified into three categories, and detailed discussions are then given. - Highlights: • Extraction of transition intensity parameters from ab-initio calculations. • CASSCF/RASSI-SO calculations are performed for Ce{sup 3+}-doped CaF{sub 2} crystal (C{sub 4v} case). • Extracted parameters are analyzed and compared with experiment and other calculation.
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...
Institute of Scientific and Technical Information of China (English)
Uygun V.Valiev; John B.Gruber; Anvar K.Mukhammadiev; Vasiliy O.Pelenovich; FU Dejun; Gary W.Burdick
2013-01-01
Spectra of absorption, luminescence, magnetic circular dichroism (MCD), and magnetic circular polarization of lumines-cence (MCPL) in Gd3Ga5O12:Eu3+and Eu3Ga5O12 garnets were studied within the visible spectral range at 300 K. Analysis of the spectral and temperature dependences of the magnetooptical and optical spectra made it possible to identify the magneto-dipole (MD) and electro-dipole (ED) 4f→4f transitions occurring between Stark sublevels of the 7FJ (J=1, 2) and 5D0 multiplets in Eu3+-containing garnet structures. Quantum mechanical “mixing” had significant influence on quasi-degenerate states of the non-Kramers rare-earth Eu3+ion for Eu3Ga5O12 in MCD due to forbidden MD transition 7F1→5D0 and for Gd3Ga5O12:Eu3+in MCPL due to MD 4f→4f transition 5D0→7F1 and forced ED-transition 5D0→7F2. A parameterized Hamiltonian defined to operate within the entire 4f(6) ground electronic configuration of Eu3+ion was used to model the experimental Stark levels, including their irreducible rep-resentations and wavefunctions. The crystal-field parameters were determined through a Monte-Carlo method in which nine in-dependent crystal-field parameters, Bkq , were given random starting values and optimized using standard least-squares fitting between calculated and experimental levels. The final fitting standard deviation between 57 calculated-to-experimental levels was 0.73 meV.
Calculating charged defects using CRYSTAL
Bailey, Christine L.; Liborio, Leandro; Mallia, Giuseppe; Tomić, Stanko; Harrison, Nicholas M.
2010-07-01
The methodology for the calculation of charged defects using the CRYSTAL program is discussed. Two example calculations are used to illustrate the methodology: He+ ions in a vacuum and two intrinsic charged defects, Cu vacancies and Ga substitution for Cu, in the chalcopyrite CuGaS2.
Magnetic Field Grid Calculator
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...
Energy Technology Data Exchange (ETDEWEB)
Richter, M.; Forstreuter, J.; Koepernik, K.; Eschrig, H. [Univ. of Technol., Dresden (Germany). MPG Res. Group Electron Systems; Divis, M. [Univ. of Technol., Dresden (Germany). MPG Res. Group Electron Systems]|[Karlova Univ., Prague (Czechoslovakia). Dept. of Metal Physics; Steinbeck, L. [Univ. of Technol., Dresden (Germany). MPG Res. Group Electron Systems]|[York Univ. (United Kingdom). Dept. of Physics
1997-02-01
In the framework of the self-interaction corrected local density approximation, ab initio calculations have been carried out to obtain crystal field parameters for the paramagnetic state of UGa{sub 2} and UPd{sub 2}Al{sub 3}. In two sets of calculations localized 5f states with occupation two and three, respectively, have been assumed. Using these parameters and adjusted anisotropic molecular field constants, the paramagnetic susceptibility for both compounds and the Schottky contribution to the specific heat in UPd{sub 2}Al{sub 3} have been obtained by crystal field model calculations. Very good agreement between theoretical and experimental data is found for 5f{sup 2} occupation in UGa{sub 2}. For UPd{sub 2}Al{sub 3}, the 5f{sup 2} assumption yields qualitatively reasonable results as well, but it does not explain the T = 50 K maximum in the experimental data. (orig.).
Richter, Manuel; Diviš, Martin; Forstreuter, Jörg; Koepernik, Klaus; Steinbeck, Lutz; Eschrig, Helmut
1997-02-01
In the framework of the self-interaction corrected local density approximation, ab initio calculations have been carried out to obtain crystal field parameters for the paramagnetic state of UGa 2 and UPd 2Al 3. In two sets of calculations localized 5f states with occupation two and three, respectively, have been assumed. Using these parameters and adjusted anisotropic molecular field constants, the paramagnetic susceptibility for both compounds and the Schottky contribution to the specific heat in UPd 2Al 3 have been obtained by crystal field model calculations. Very good agreement between theoretical and experimental data is found for 5f 2 occupation in UGa 2. For UPd 2Al 3, the 5f 2 assumption yields qualitatively reasonable results as well, but it does not explain the T = 50 K maximum in the experimental data.
Structural analysis and crystal-field calculations of Nd3+ in GdxLu1-xTaO4 (x=0.85) polycrytalline
Institute of Scientific and Technical Information of China (English)
Gao Jin-Yun; Zhang Qing-Li; Yang Hua-Jun; Zhou Peng-Yu; Sun Dun-Lu; Yin Shao-Tang; He Ye
2012-01-01
The crystal structural parameters of Nd3+-doped rare earth orthotantalate GdxLul-xTaO4 (x =0.85) are determined by applying the Rietveld refinement to its X-ray diffraction,and its emission and excitation spectra at 77 K are analysed.The relativistic model of ab initio self-consistent DV-Xα method,which is applied to the cluster NdOs in GdxLu1-xTaO4,and the effective Hamiltonian model are used to investigate its spin-orbit and crystal-field parameters.The free-ions and crystal-field parameters are fitted to the experimental energy levels at 77 K with a root-mean-square deviation of 14.92 cm-1.According to the crystal-field calculations,96 levels of Nd3+ are assigned.Finally,the fitting results of free-ions and crystal-field parameters are compared with those already reported for Nd3+:YA1O3.The results indicate that the free-ion parameters are similar to those of the Nd3+ in GdxLu1-xTaO4 and YA1O3 hosts,and the crystal-field interaction of Nd3+ in GdxLu1-xTaO4 is stronger than that in YAlO3.
Gao, Jin-Yun; Zhang, Qing-Li; Yang, Hua-Jun; Zhou, Peng-Yu; Sun, Dun-Lu; Yin, Shao-Tang; He, Ye
2012-10-01
The crystal structural parameters of Nd3+-doped rare earth orthotantalate GdxLu1-xTaO4 (x = 0.85) are determined by applying the Rietveld refinement to its X-ray diffraction, and its emission and excitation spectra at 77 K are analysed. The relativistic model of ab initio self-consistent DV-Xα method, which is applied to the cluster NdO8 in GdxLu1-xTaO4, and the effective Hamiltonian model are used to investigate its spin—orbit and crystal-field parameters. The free-ions and crystal-field parameters are fitted to the experimental energy levels at 77 K with a root-mean-square deviation of 14.92 cm-1. According to the crystal-field calculations, 96 levels of Nd3+ are assigned. Finally, the fitting results of free-ions and crystal-field parameters are compared with those already reported for Nd3+:YAlO3. The results indicate that the free-ion parameters are similar to those of the Nd3+ in GdxLu1-xTaO4 and YAlO3 hosts, and the crystal-field interaction of Nd3+ in GdxLu1-xTaO4 is stronger than that in YAlO3.
Brik, M. G.; Ogasawara, K.
2007-11-01
Systematic analysis of the energy level scheme and ground state absorption of the Cr4+ ion in Li2CaSiO4 crystal was performed using the exchange charge model of the crystal field [B.Z. Malkin, in: A.A. Kaplyanskii, B.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare-earth Ions, North-Holland, Amsterdam, 1987, pp. 33-50] and recently developed first-principles approach to the analysis of the absorption spectra of impurity ions in crystals based on the discrete variational multielectron (DVME) method [K. Ogasawara, T. Iwata, Y. Koyama, T. Ishii, I. Tanaka, H. Adachi, Phys. Rev. B 64 (2001) 115413]. Using the former method, the values of parameters of crystal field acting on the Cr4+ ion valence electrons were calculated using the Li2CaSiO4 crystal structure data. Energy levels of the Cr4+ ion obtained after diagonalizing the crystal field Hamiltonian are in good agreement with those obtained from the experimental spectra. The latter method is based on the numerical solution of the Dirac equation; therefore, all relativistic effects are automatically considered. As a result, energy level scheme of Cr4+ and its absorption spectra in both polarizations were calculated, assigned and compared with experimental data; energy of the lowest charge transfer transition was evaluated and compared with theoretical predictions for the CrO44- complex available in the literature. The main features of the experimental spectra shape are reproduced well by the calculations. By performing analysis of the molecular orbitals (MO) population, it was shown that the covalent effects play an important role in formation of the spectral properties of Cr4+ ion in the considered crystal.
Directory of Open Access Journals (Sweden)
M. Krawczyk
2012-01-01
Full Text Available The calculation of the magnonic spectra using the plane-wave method has limitations, the origin of which lies in the formulation of the effective magnetic field term in the equation of motion (the Landau-Lifshitz equation for composite media. According to ideas of the plane-wave method the system dynamics is described in terms of plane waves (a superposition of a number of plane waves, which are continuous functions and propagate throughout the medium. Since in magnonic crystals the sought-for superposition of plane waves represents the dynamic magnetization, the magnetic boundary conditions on the interfaces between constituent materials should be inherent in the Landau-Lifshitz equations. In this paper we present the derivation of the two expressions for the exchange field known from the literature. We start from the Heisenberg model and use a linear approximation and take into account the spacial dependence of saturation magnetization and exchange constant present in magnetic composites. We discuss the magnetic boundary conditions included in the presented formulations of the exchange field and elucidate their effect on spin-wave modes and their spectra in one- and two-dimensional planar magnonic crystals from plane-wave calculations.
Crystal fields of porphyrins and phthalocyanines
Johnson, P. S.; Boukahil, I.; Himpsel, F. J.; Kennedy, C.; Jersett, N.; Cook, P. L.; Garcia-Lastra, J. M.
2014-03-01
Polarization-dependent X-ray absorption spectroscopy at the N 1s and metal 2p edges is combined with density functional and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal (Mn, Fe, Co, Ni) phthalocyanines and octaethylporphyrins. Octaethyl porphyrins are observed to lie flat on Si with native oxide, while phthalocyanines lie on edge. Strong polarization dependence is found at all edges, which facilitates a unique determination of the crystal field parameters. Crystal field values from PBE density functional calculations provide helpful starting values, which are refined by fitting atomic multiplet calculations to the data. Since the crystal field affects electron-hole separation in solar cells, the systematic set of crystal field parameters obtained here can be useful for optimizing dyes for solar cells.
Coulomb crystals in the magnetic field
Baiko, D A
2009-01-01
The body-centered cubic Coulomb crystal of ions in the presence of a uniform magnetic field is studied using the rigid electron background approximation. The phonon mode spectra are calculated for a wide range of magnetic field strengths and for several orientations of the field in the crystal. The phonon spectra are used to calculate the phonon contribution to the crystal energy, entropy, specific heat, Debye-Waller factor of ions, and the rms ion displacements from the lattice nodes for a broad range of densities, temperatures, chemical compositions, and magnetic fields. Strong magnetic field dramatically alters the properties of quantum crystals. The phonon specific heat increases by many orders of magnitude. The ion displacements from their equilibrium positions become strongly anisotropic. The results can be relevant for dusty plasmas, ion plasmas in Penning traps, and especially for the crust of magnetars (neutron stars with superstrong magnetic fields $B \\gtrsim 10^{14}$ G). The effect of the magnetic ...
Popova, M. N.; Chukalina, E. P.; Boldyrev, K. N.; Stanislavchuk, T. N.; Malkin, B. Z.; Gudim, I. A.
2017-03-01
We present the results of temperature- and polarization-dependent high-resolution optical spectroscopy studies of DyF e3(BO3) 4 performed in spectral ranges 40 -300 c m-1 and 3000 -23 000 c m-1 . The crystal-field (CF) parameters for the D y3 + ions in the P 3121 (P 3221 ) phase of DyF e3(BO3) 4 are obtained from calculations based on the analysis of the measured f-f transitions. Recently, quadrupole helix chirality and its domain structure was observed in resonant x-ray diffraction experiments on DyF e3(BO3) 4 using circularly polarized x rays [T. Usui, Y. Tanaka, H. Nakajima, M. Taguchi, A. Chainani, M. Oura, S. Shin, N. Katayama, H. Sawa, Y. Wakabayashi, and T. Kimura, Nat. Mater. 13, 611 (2014), 10.1038/nmat3942]. Using the obtained set of the CF parameters, we calculate temperature dependencies of the electronic quadrupole moments of the D y3 + ions induced by the low-symmetry (C2) CF component and show that the quadrupole helix chirality can be explained quantitatively. We also consider the temperature dependencies of the bulk magnetic dc-susceptibility and the helix chirality of the single-site magnetic susceptibility tensors of the D y3 + ions in the paramagnetic P 3121 (P 3221 ) phase and suggest the neutron and resonant x-ray diffraction experiments in a magnetic field to reveal the helix chirality of field-induced magnetic moments.
High Field Magnetization of Tb Single Crystals
DEFF Research Database (Denmark)
Roeland, L. W.; Cock, G. J.; Lindgård, Per-Anker
1975-01-01
The magnetization of Tb single crystals was measured in magnetic fields to 34T along the hard direction at temperature of 1.8, 4.2, 65.5 and 77K, and along with easy direction at 4.2 and 77K. The data are compared with the results of a self-consistent spin wave calculation using a phenomenological...
Flow Field Calculations for Afterburner
Institute of Scientific and Technical Information of China (English)
ZhaoJianxing; LiuQuanzhong; 等
1995-01-01
In this paper a calculation procedure for simulating the coimbustion flow in the afterburner with the heat shield,flame stabilizer and the contracting nozzle is described and evaluated by comparison with experimental data.The modified two-equation κ-ε model is employed to consider the turbulence effects,and the κ-ε-g turbulent combustion model is used to determine the reaction rate.To take into accunt the influence of heat radiation on gas temperature distribution,heat flux model is applied to predictions of heat flux distributions,The solution domain spanned the entire region between centerline and afterburner wall ,with the heat shield represented as a blockage to the mesh.The enthalpy equation and wall boundary of the heat shield require special handling for two passages in the afterburner,In order to make the computer program suitable to engineering applications,a subregional scheme is developed for calculating flow fields of complex geometries.The computational grids employed are 100×100 and 333×100(non-uniformly distributed).The numerical results are compared with experimental data,Agreement between predictions and measurements shows that the numerical method and the computational program used in the study are fairly reasonable and appopriate for primary design of the afterburner.
The effective crystal field potential
Mulak, J
2000-01-01
As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...
Molecular modeling study of chiral drug crystals: lattice energy calculations.
Li, Z J; Ojala, W H; Grant, D J
2001-10-01
The lattice energies of a number of chiral drugs with known crystal structures were calculated using Dreiding II force field. The lattice energies, including van der Waals, Coulombic, and hydrogen-bonding energies, of homochiral and racemic crystals of some ephedrine derivatives and of several other chiral drugs, are compared. The calculated energies are correlated with experimental data to probe the underlying intermolecular forces responsible for the formation of racemic species, racemic conglomerates, or racemic compounds, termed chiral discrimination. Comparison of the calculated energies among ephedrine derivatives reveals that a greater Coulombic energy corresponds to a higher melting temperature, while a greater van der Waals energy corresponds to a larger enthalpy of fusion. For seven pairs of homochiral and racemic compounds, correlation of the differences between the two forms in the calculated energies and experimental enthalpy of fusion suggests that the van der Waals interactions play a key role in the chiral discrimination in the crystalline state. For salts of the chiral drugs, the counter ions diminish chiral discrimination by increasing the Coulombic interactions. This result may explain why salt forms favor the formation of racemic conglomerates, thereby facilitating the resolution of racemates.
Chemical Bond Calculations of Crystal Growth of KDP and ADP
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A novel method was proposed to calculate the crystal morphology (or growth habit) on the basis of chemical bond analysis. All constituent chemical bonds were distinguished as relevant and independent bonds according to their variations during the crystallization process. By employing the current method, the influence of specific growth conditions on the crystal morphology can be considered in the structure analysis process. The ideal morphologies of both KDP (KH2PO4) and ADP (NH4H2PO4) crystals were calculated and compared with our obtained crystallites at room temperature, which validates the present calculation method very well.
Calculating Electromagnetic Fields Of A Loop Antenna
Schieffer, Mitchell B.
1987-01-01
Approximate field values computed rapidly. MODEL computer program developed to calculate electromagnetic field values of large loop antenna at all distances to observation point. Antenna assumed to be in x-y plane with center at origin of coordinate system. Calculates field values in both rectangular and spherical components. Also solves for wave impedance. Written in MicroSoft FORTRAN 77.
Pankrats, A I; Demidov, A A; Ritter, C; Velikanov, D A; Semenov, S V; Tugarinov, V I; Temerov, V L; Gudim, I A
2016-10-05
The magnetic structure of the mixed rare-earth system Pr x Y1-x Fe3(BO3)4 (x = 0.75, 0.67, 0.55, 0.45, 0.25) was studied via magnetic and resonance measurements. These data evidence the successive spin reorientation from the easy-axis antiferromagnetic structure formed in PrFe3(BO3)4 to the easy-plane one of YFe3(BO3)4 associated with the weakening of the magnetic anisotropy of the Pr subsystem due to its diamagnetic dilution by nonmagnetic Y. This reorientation occurs through the formation of an inclined magnetic structure, as was confirmed by our previous neutron research in the range of x = 0.67 ÷ 0.45. In the compounds with x = 0.75 and 0.67 whose magnetic structure is close to the easy-axis one, a two-step spin reorientation takes place in the magnetic field H||c. Such a peculiarity is explained by the formation of an interjacent inclined magnetic structure with magnetic moments of Fe ions located closer to the basal plane than in the initial state, with these intermediate states remaining stable in some ranges of the magnetic field. An approach based on a crystal field model for the Pr(3+) ion and the molecular-field approximation is used to describe the magnetic characteristics of the system Pr x Y1-x Fe3(BO3)4. With the parameters of the d-d and f-d exchange interactions, of the magnetic anisotropy of the iron subsystem and of the crystal field parameters of praseodymium thus determined, it is possible to achieve a good agreement between the experimental and calculated temperature and field dependences of the magnetization curves (up to 90 kOe) and magnetic susceptibilities (2-300 K).
Magnetic Field in Superlattices Semiconductors of Crystals
Directory of Open Access Journals (Sweden)
Luciano Nascimento
2015-05-01
Full Text Available In this work we present a study on the super-semiconductor networks, using the Kronig-Penney model for the effective mass approximation, and then the calculations for the application of the magnetic field perpendicular and parallel to the layers of super lattices crystals. The magnetic field applied parallel to the layers, was used to adjust the resonance of a higher energy subband of a well by thermal excitation with a lower energy subband of the adjacent well, increasing energy levels in its tunneling rate. We use the formalism of Schrödinger equation of quantum mechanics. Introducing the calculations in a systematic way in superlattices for each semiconductor quantum well to assess their energy spectrum systematically studied.
Oxidation and crystal field effects in uranium
Energy Technology Data Exchange (ETDEWEB)
Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); van der Laan, G. [Diamond Light Source, Didcot (United Kingdom); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Weng, T. -C. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Yu, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bagus, P. S. [Univ. of North Texas, Denton, TX (United States); Tyliszczak, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordlund, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States)
2015-07-06
An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO_{2}), uranium trioxide (UO_{3}), and uranium tetrafluoride (UF_{4}). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.
Avram, C. N.; Gruia, A. S.; Brik, M. G.; Barb, A. M.
2015-12-01
Calculations of the Cr3+ energy levels, spin-Hamiltonian parameters and vibrational spectra for the layered CrCl3 crystals are reported for the first time. The crystal field parameters and the energy level scheme were calculated in the framework of the Exchange Charge Model of crystal field. The spin-Hamiltonian parameters (zero-field splitting parameter D and g-factors) for Cr3+ ion in CrCl3 crystals were obtained using two independent techniques: i) semi-empirical crystal field theory and ii) density functional theory (DFT)-based model. In the first approach, the spin-Hamiltonian parameters were calculated from the perturbation theory method and the complete diagonalization (of energy matrix) method. The infrared (IR) and Raman frequencies were calculated for both experimental and fully optimized geometry of the crystal structure, using CRYSTAL09 software. The obtained results are discussed and compared with the experimental available data.
Crystal field effects in TmCu2 compound
Zajac, Š.; Šíma, V.; Smetana, Z.
1987-01-01
The splitting of the3H6 multiplet has been estimated for the Tm3+ ion in the crystal electric field of the orthorhombic TmCu2 compound. Using the energy levels and appropriate eigenfunctions the crystal field only susceptibility has been calculated along the principal orthorhombic axes at temperatures 10 to 300 K. The obtained results are compared with our measurements of specific heat and paramagnetic susceptibility on polycrystalline sample.
A novel lattice energy calculation technique for simple inorganic crystals
Energy Technology Data Exchange (ETDEWEB)
Kaya, Cemal [Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Kaya, Savaş, E-mail: savaskaya@cumhuriyet.edu.tr [Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas (Turkey); Banerjee, Priyabrata [Surface Engineering and Tribology Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209 (India)
2017-01-01
In this pure theoretical study, a hitherto unexplored equation based on Shannon radii of the ions forming that crystal and chemical hardness of any crystal to calculate the lattice energies of simple inorganic ionic crystals has been presented. To prove the credibility of this equation, the results of the equation have been compared with experimental outcome obtained from Born-Fajans-Haber- cycle which is fundamentally enthalpy-based thermochemical cycle and prevalent theoretical approaches proposed for the calculation of lattice energies of ionic compounds. The results obtained and the comparisons made have demonstrated that the new equation is more useful compared to other theoretical approaches and allows to exceptionally accurate calculation of lattice energies of inorganic ionic crystals without doing any complex calculations.
A novel lattice energy calculation technique for simple inorganic crystals
Kaya, Cemal; Kaya, Savaş; Banerjee, Priyabrata
2017-01-01
In this pure theoretical study, a hitherto unexplored equation based on Shannon radii of the ions forming that crystal and chemical hardness of any crystal to calculate the lattice energies of simple inorganic ionic crystals has been presented. To prove the credibility of this equation, the results of the equation have been compared with experimental outcome obtained from Born-Fajans-Haber- cycle which is fundamentally enthalpy-based thermochemical cycle and prevalent theoretical approaches proposed for the calculation of lattice energies of ionic compounds. The results obtained and the comparisons made have demonstrated that the new equation is more useful compared to other theoretical approaches and allows to exceptionally accurate calculation of lattice energies of inorganic ionic crystals without doing any complex calculations.
Density functional theory of the crystal field in dioxides
Diviš, M.; Kuriplach, J.; Richter, M.; Steinbeck, L.
1996-04-01
Presented are the results of ab-initio density functional calculations for PrO2 and UO2 using the general potential LAPW and optimized LCAO method in the local density approximation. The crystal field splitting of ionic Pr4+ and U4+ ground states was calculated and compared with predictions of a superposition model.
Optical properties of 3d-ions in crystals spectroscopy and crystal field analysis
Brik, Mikhail
2013-01-01
"Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis" discusses spectral, vibronic and magnetic properties of 3d-ions in a wide range of crystals, used as active media for solid state lasers and potential candidates for this role. Crystal field calculations (including first-principles calculations of energy levels and absorption spectra) and their comparison with experimental spectra, the Jahn-Teller effect, analysis of vibronic spectra, materials science applications are systematically presented. The book is intended for researchers and graduate students in crystal spectroscopy, materials science and optical applications. Dr. N.M. Avram is an Emeritus Professor at the Physics Department, West University of Timisoara, Romania; Dr. M.G. Brik is a Professor at the Institute of Physics, University of Tartu, Estonia.
Crystal fields and conduction electrons in praseodymium
DEFF Research Database (Denmark)
Clausen, K.N.; Aagaard Sørensen, S.; McEwen, K.A.
1995-01-01
The interactions between the crystal-field excitations, the phonons and the conduction electrons in Pr have been studied further. The low-energy satellites to the crystal-field excitations, which are believed to be associated with propagating paramagnon modes in the conduction-electron gas, appear...
Crystal-field effects in fluoride crystals for optical refrigeration
Energy Technology Data Exchange (ETDEWEB)
Hehlen, Markus P [Los Alamos National Laboratory
2010-01-01
The field of optical refrigeration of rare-earth-doped solids has recently seen an important breakthrough. The cooling of a YLiF{sub 4} (YLF) crystal doped with 5 mol% Yb3+ to 155 K by Seletskiy et al [NPhot] has surpassed the lowest temperatures ({approx}170 K for {approx}100 mW cooling capacity) that are practical with commercial multi-stage thermoelectric coolers (TEC) [Glaister]. This record performance has advanced laser cooling into an application relevant regime and has put first practical optical cryocoolers within reach. The result is also relevant from a material perspective since for the first time, an Yb3+-doped crystal has outperformed an Yb3+-doped glass. The record temperature of 208 K was held by the Yb3+-doped fluorozirconate glass ZBLAN. Advanced purification and glass fabrication methods currently under development are expected to also advance ZBLAN:Yb3+ to sub-TEC temperatures. However, recent achievements with YLF:Yb3+ illustrate that crystalline materials may have two potentially game-changing advantajes over glassy materials. First, the crystalline environment reduces the inhomogeneous broadening of the Yb3+ electronic transitions as compared to a glassy matrix. The respective sharpening of the crystal-field transitions increases the peak absorption cross section at the laser excitation wavelength and allows for more efficient pumping of the Yb3+ ions, particularly at low temperatures. Second, many detrimental impurities present in the starting materials tend to be excluded from the crystal during its slow growth process, in contrast to a glass where all impurities present in the starting materials are included in the glass when it is formed by temperature quenching a melt. The ultra high purity required for laser cooling materials [PRB] therefore may be easier to realize in crystals than in glasses. Laser cooling occurs by laser excitation of a rare-earth ion followed by anti-Stokes luminescence. Each such laser-cooling cycle extracts
Mapping individual electromagnetic field components inside a photonic crystal
Denis, T; Lee, J H H; van der Slot, P J M; Vos, W L; Boller, K -J
2012-01-01
We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing waves and a subwavelength spherical scatterer is scanned inside the resulting resonator. The resonant Bloch frequencies shift depending on the electric field at the position of the scatterer. To map the electric field component Ez we measure the frequency shift in the reflection and transmission spectrum of the slab versus the scatterer position. Very good agreement is found between measurements and calculations without any adjustable parameters.
Steinbeck, Lutz; Richter, Manuel; Nitzsche, Ulrike; Eschrig, Helmut
1996-03-01
In a comparative study we calculated the spin and orbital moments, spin and charge densities, and 4f crystal field (CF) parameters of the rare-earth transition-metal intermetallics Sm2Fe17, Sm2Fe17Z3 (Z=C,N), and Sm2Co17 using a relativistic optimized linear combination of atomic orbitals method. The itinerant valence electron states were treated in the local-spin-density approximation (LSDA), whereas the localized 4f states were described as open core states within the self-interaction-corrected LSDA. The calculations yield magnetic moments in good agreement with experiment. While all local moments of Sm2Fe17 increase upon lattice expansion, the moments of atoms neighboring the interstitial sites decrease and those of more distant Fe atoms increase upon insertion of interstitial N or C. In N interstitial atoms all 2pα orbitals are polarized antiparallel to their respective Fe and Sm neighbor atoms in the bond direction, whereas in C all 2pα orbitals are polarized antiparallel to the Fe atoms neighboring the interstitial site. The second-order CF parameters A02 dominating the rare-earth magnetocrystalline anisotropy are found to have the same sign and order of magnitude as those derived from magnetization data. In accordance with experiment the calculated negative A02 is larger for the Co compound than for the Fe parent compound and is strongly increased upon insertion of interstitial N or C. The agreement between theory and experiment is improved by taking into account the CF contribution arising from the asphericity of the exchange-correlation potential of the non-4f states.
Crystal Field Splittings of NdN
DEFF Research Database (Denmark)
Warming, E.; Bak, Poul Erik
1975-01-01
The crystal field levels of the Nd (J=9/2) ion in NdN have been determined by inelastic neutron scattering. The crystal field parameters obtained by a least-squares fit to the spectra at 80K are: B4=-0.042+or-0.002K and B6=-0.00042+or-0.00002K. This result contrasts with the point charge model used...
Crystal orientation effects on wurtzite quantum well electromechanical fields
DEFF Research Database (Denmark)
Duggen, Lars; Willatzen, Morten
2010-01-01
A one-dimensional continuum model for calculating strain and electric field in wurtzite semiconductor heterostructures with arbitrary crystal orientation is presented and applied to GaN/AlGaN and ZnO/MgZnO heterostructure combinations. The model is self-consistent involving feedback couplings of ...
Theory of electrolyte crystallization in magnetic field
DEFF Research Database (Denmark)
Madsen, Hans Erik Lundager
2007-01-01
Crystallization from aqueous solution of a sparingly soluble electrolyte is accelerated by magnetic field if the crystalizing phase is a diamagnetic salt of a weak acid, and crystallization is from neutral or acid solution in ordinary (not heavy) water. Since the effect of Lorentz force...... is negligible, if not absent, the key property is likely to be the spin of protons which, by virtue of their half-integral spin, are fermions. An effect on crystal growth kinetics has been demonstrated, and the apparent effect on nucleation concerns the growth rate of nuclei. We are thus dealing with surface...... phenomena. The basis of the theory is a crystal model of a sparingly soluble salt with NaCl structure, where the ions are divalent, and the anion is a base. It is assumed that almost all the anions in the surface layer are protonized, and that an approaching metal ion pushes the proton away...
Correlation theory of crystal field and anisotropic exchange effects
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1985-01-01
A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds. The the......A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...... on the susceptibility, the first and second moment frequencies and the line shape are calculated self-consistently....
Tailor-made force fields for crystal-structure prediction.
Neumann, Marcus A
2008-08-14
A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom.
Crystal fields in UO2 - revisited
Energy Technology Data Exchange (ETDEWEB)
Nakotte, Heinz [Los Alamos National Laboratory; Rajatram, R [NMSU/UNIV OF N.C.; Kern, S [COLORADO STATE UNIV; Mcqueeney, R J [AMES LAB; Lander, G H [EUROPEAN COMMISIONS, JRC; Robinson, R A [BRAGG INSTITUTE
2009-01-01
We performed inelastic neutron scattering (INS) in order to re-investigate the crystal-field ground state and the level splitting in UO{sub 2}. Previous INS studies on UO{sub 2} by Amorelli et al. [Physical Review B 15, 1989, 1856] uncovered four excitations at low temperatures in the 150-180 meV range. Considering the dipole-allowed transitions, only three of these transitions could be explained by the published crystal-field model. Our INS results on a different UO{sub 2} sample revealed that the unaccounted peak at about 180 meV is a spurious one, and thus not intrinsic to UO{sub 2}. In good agreement with Amoretti's results, we corroborated that the ground-state of UO{sub 2} is the {Lambda}{sub 5} triplet, and we computed that the fourth- and six-order crystal field parameters are V{sub 4} = -116 meV and V{sub 6} = 26 meV, respectively. We also studied the INS response of the non-magnetic U{sub 0.4}Th{sub 0.6}O{sub 2}. The splitting for this thorium-doped compound is similar to the one of UO{sub 2}, which orders antiferromagnetically at low temperatures. Therefore, we can conclude that magnetic interactions only weakly perturb the energy level splitting, which is dominated by strong crystal fields.
Crystallization of Calcium Carbonate in a Large Scale Field Study
Ueckert, Martina; Wismeth, Carina; Baumann, Thomas
2017-04-01
The long term efficiency of geothermal facilities and aquifer thermal energy storage in the carbonaceous Malm aquifer in the Bavarian Molasse Basin is seriously affected by precipitations of carbonates. This is mainly caused by pressure and temperature changes leading to oversaturation during production. Crystallization starts with polymorphic nuclei of calcium carbonate and is often described as diffusion-reaction controlled. Here, calcite crystallization is favoured by high concentration gradients while aragonite crystallization is occurring at high reaction rates. The factors affecting the crystallization processes have been described for simplified, well controlled laboratory experiments, the knowledge about the behaviour in more complex natural systems is still limited. The crystallization process of the polymorphic forms of calcium carbonate were investigated during a heat storage test at our test site in the eastern part of the Bavarian Molasse Basin. Complementary laboratory experiments in an autoclave were run. Both, field and laboratory experiments were conducted with carbonaceous tap water. Within the laboratory experiments additionally ultra pure water was used. To avoid precipitations of the tap water, a calculated amount of {CO_2} was added prior to heating the water from 45 - 110°C (laboratory) resp. 65 - 110°C (field). A total water volume of 0.5 L (laboratory) resp. 1 L (field) was immediately sampled and filtrated through 10 - 0.1
Analytical stress tensor and pressure calculations with the CRYSTAL code
Doll, K.
2010-02-01
The calculation of the stress tensor and related properties and its implementation in the CRYSTAL code are described. The stress tensor is obtained from the earlier implemented analytical gradients with respect to the cell parameters. Subsequently, the pressure and enthalpy are computed, and a test concerning the pressure-driven phase transition in KI is used as an illustration. Finally, the possibility of applying external pressure is implemented. The constant-pressure optimization offers an alternative optimization method in addition to the already implemented optimization at constant volume.
Mean-field models for disordered crystals
Cancès, Eric; Lewin, Mathieu
2012-01-01
In this article, we set up a functional setting for mean-field electronic structure models of Hartree-Fock or Kohn-Sham types for disordered crystals. The electrons are quantum particles and the nuclei are classical point-like articles whose positions and charges are random. We prove the existence of a minimizer of the energy per unit volume and the uniqueness of the ground state density of such disordered crystals, for the reduced Hartree-Fock model (rHF). We consider both (short-range) Yukawa and (long-range) Coulomb interactions. In the former case, we prove in addition that the rHF ground state density matrix satisfies a self-consistent equation, and that our model for disordered crystals is the thermodynamic limit of the supercell model.
Brûlé, Yoann; Gralak, Boris
2015-01-01
Numerical calculation of modes in dispersive and absorptive systems is performed using the finite element method. The dispersion is tackled in the frame of an extension of Maxwell's equations where auxiliary fields are added to the electromagnetic field. This method is applied to multi-domain cavities and photonic crystals including Drude and Drude-Lorentz metals. Numerical results are compared to analytical solutions for simple cavities and to previous results of the literature for photonic crystals, showing excellent agreement. The advantages of the developed method lie on the versatility of the finite element method regarding geometries, and in sparing the use of tedious complex poles research algorithm. Hence the complex spectrum of resonances of non-hermitian operators and dissipative systems, like two-dimensional photonic crystal made of absorbing Drude metal, can be investigated in detail. The method is used to reveal unexpected features of their complex band structures.
Synthesis, Crystal Structural Investigations, and DFT Calculations of Novel Thiosemicarbazones
Directory of Open Access Journals (Sweden)
Brian J. Anderson
2016-02-01
Full Text Available The crystal and molecular structures of three new thiosemicarbazones, 2-[1-(2-hydroxy-5-methoxyphenylethylidene]-N-methyl-hydrazinecarbothioamide monohydrate (1, 2-[1-(2-hydroxy-5-methoxyphenylethylidene]-N-ethyl-hydrazinecarbothioamide (2 and 2-[1-(2-hydroxy-4-methoxyphenylethylidene]-N-ethyl-hydrazinecarbothioamide acetonitrile solvate (3, are reported and confirmed by single crystal X-ray diffraction, NMR and UV-vis spectroscopic data. Compound (1, C11H15N3O2S·H2O, crystallizes in the monoclinic with space group P21/c, with cell parameters a = 8.2304(3 Å, b = 16.2787(6 Å, c = 9.9708(4 Å, and β = 103.355(4°. Compound (2, C12H17N3O2S, crystallizes in the C2/c space group with cell parameters a = 23.3083(6 Å, b = 8.2956(2 Å, c = 13.5312(3 Å, β = 91.077(2°. Compound (3, C11H15N3O2S·C2H3N, crystallizes in the triclinic P-1 space group with cell constants a = 8.9384(7 Å, b = 9.5167(8 Å, c = 10.0574(8 Å, α = 110.773(7°, β = 92.413(6°, and γ = 90.654(7°. DFT B3LYP/6-31(G geometry optimized molecular orbital calculations were also performed and frontier molecular orbitals of each compound are displayed. The correlations between the calculated molecular orbital energies (eV for the surfaces of the frontier molecular orbitals to the electronic excitation transitions from the absorption spectra of each compound have been proposed. Additionally, similar correlations observed among three closely related compounds, (4, 2-[1-(2-hydroxy-4-methoxyphenylethylidene]-N-methyl-hydrazinecarbothioamide, (5, 2-[1-(2-hydroxy-6-methoxyphenylethylidene]-N-methyl-hydrazinecarbothioamide acetonitrile monosolvate and (6, 2-[1-(2-hydroxy-6-methoxyphenylethylidene]-N-ethyl-hydrazinecarbothioamide, examining structural differences from the substitution of the methoxy group from the phenyl ring (4, 5, or 6 position and the substitution of the terminal amine (methyl or ethyl to their frontier molecular orbital surfaces and from their Density Functional
Institute of Scientific and Technical Information of China (English)
Erhan Albayrak
2013-01-01
The spin-1 Blume-Capel model with transverse Ω and longitudinal external magnetic fields h,in addition to a longitudinal random crystal field D,is studied in the mean-field approximation.It is assumed that the crystal field is either turned on with probability p or turned off with probability 1-p on the sites of a square lattice.Phase diagrams are then calculated on the reduced temperature crystal field planes for given values of γ =-Ω/J and p at zero h.Thus,the effect of changing γ and p are illustrated on the phase diagrams in great detail and interesting results are observed.
Eighth-order phase-field-crystal model for two-dimensional crystallization
Jaatinen, A.; Ala-Nissila, T.
2010-01-01
We present a derivation of the recently proposed eighth order phase field crystal model [Jaatinen et al., Phys. Rev. E 80, 031602 (2009)] for the crystallization of a solid from an undercooled melt. The model is used to study the planar growth of a two dimensional hexagonal crystal, and the results are compared against similar results from dynamical density functional theory of Marconi and Tarazona, as well as other phase field crystal models. We find that among the phase field crystal models...
Status of lattice field theory calculations
Energy Technology Data Exchange (ETDEWEB)
Sharpe, S.R.
1990-01-01
This report briefly discusses the following topics: overview of all present calculation; reliability criteria for quenched calculation; quenched versus full QCD, and difficulties facing full QCD; results for the quenched pion wavefunction''; results for the quenched hadron spectrum; results for quenched B{sub K}; A new method for calculating the surface tension; the non-pertubative upper bound on the Higgs mass; and toward the TERAFLOP machine.
Temperature fields in a growing solar silicon crystal
Directory of Open Access Journals (Sweden)
Kondrik A. I.
2012-06-01
Full Text Available The optimal thermal terms for growing by Czochralski method Si single-crystals, suitable for making photoelectric energy converters, has been defined by the computer simulation method. Dependences of temperature fields character and crystallization front form on the diameter of the crystal, stage and speed of growing, and also on correlation between diameter and height of the crystal has been studied.
Crystal field effects on interionic distance in cubic MgO crystal doped with Fe{sup 2+} ions
Energy Technology Data Exchange (ETDEWEB)
Ivascu, S.; Gruia, A.S. [Faculty of Physics, West University of Timisoara, Bd. V. Parvan 4, 300223-Timisoara (Romania); Avram, N.M., E-mail: avram@physics.uvt.ro [Faculty of Physics, West University of Timisoara, Bd. V. Parvan 4, 300223-Timisoara (Romania); Academy of Romanian Scientists, Independentei 54, 050094-Bucharest (Romania)
2014-10-01
The exchange charge model of crystal field was applied to determine the dependence of the crystal field strength 10Dq on interionic distances R between the Fe{sup 2+} impurity ion and O{sup 2−} ligands in cubic MgO:Fe{sup 2+}. The obtained results were extrapolated by the power law and was shown that 10Dq depends on R as 1/R{sup n}, with n=6.3486. The deviations of these values from the value n=5 (predicted by the simple point charge model of crystal field) is explained by the covalent and exchange effects between impurity ion and ligands; the contribution of these effects into the total crystal field strength was considered separately. The 10Dq functions obtained as a result of our calculations were used for estimations of the electron–vibrational constants, Huang–Rhys parameters, and Jahn–Teller stabilization energy, and compared with available literature data.
Crystal field effects on interionic distance in cubic MgO crystal doped with Fe2+ ions
Ivascu, S.; Gruia, A. S.; Avram, N. M.
2014-10-01
The exchange charge model of crystal field was applied to determine the dependence of the crystal field strength 10Dq on interionic distances R between the Fe2+ impurity ion and O2- ligands in cubic MgO:Fe2+. The obtained results were extrapolated by the power law and was shown that 10Dq depends on R as 1/R, with n=6.3486. The deviations of these values from the value n=5 (predicted by the simple point charge model of crystal field) is explained by the covalent and exchange effects between impurity ion and ligands; the contribution of these effects into the total crystal field strength was considered separately. The 10Dq functions obtained as a result of our calculations were used for estimations of the electron-vibrational constants, Huang-Rhys parameters, and Jahn-Teller stabilization energy, and compared with available literature data.
Experimental investigation and crystal-field modeling of Er{sup 3+} energy levels in GSGG crystal
Energy Technology Data Exchange (ETDEWEB)
Gao, J.Y., E-mail: jygao1985@sina.com [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Sun, D.L.; Zhang, Q.L. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, X.F. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Liu, W.P.; Luo, J.Q.; Sun, G.H.; Yin, S.T. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China)
2016-06-25
The Er{sup 3+}-doped Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12} (Er{sup 3+}:GSGG) single crystal, a excellent medium of the mid-infrared and anti-radiation solid state laser pumped by laser diode, was grown by Czochralski method successfully. The absorption spectra were measured and analyzed in a wider spectral wavelength range of 350–1700 nm at different temperatures of 7.6, 77, 200 and 300 K. The free-ions and crystal-field parameters were fitted to the experimental energy levels with the root mean square deviation of 9.86 cm{sup −1}. According to the crystal-field calculations, 124 degenerate energy levels of Er{sup 3+} in GSGG host crystals were assigned. The fitting results of free-ions and crystal-field parameters were compared with those already reported of Er{sup 3+}:YSGG. The results indicated that the free-ions parameters for Er{sup 3+} in GSGG host are similar to those in YSGG host crystals, and the crystal-field interaction of GSGG is weaker than that of YSGG, which may result in the better laser characterization of Er{sup 3+}:GSGG crystal. - Highlights: • The efficient diode-end-pumped laser crystal Er:GSGG has been grown successfully. • The absorption spectra of Er:GSGG have been measured in range of 350–1700 nm. • The fitting result is very well for the root mean square deviation is 9.86 cm{sup −1}. • The 124 levels of Er:GSGG have been assigned from the crystal-field calculations.
Energy Technology Data Exchange (ETDEWEB)
Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Yadav, Awadhesh Kumar, E-mail: aky.physics@gmail.com
2015-06-15
Zero field splitting parameters (ZFSPs) D and E of Cr{sup 3+} ion doped ammonium oxalate monohydrate (AOM) are calculated with formula using the superposition model. The theoretically calculated ZFSPs for Cr{sup 3+} in AOM crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). Theoretical ZFSPs are in good agreement with the experimental ones. The energy band positions of optical absorption spectra of Cr{sup 3+} in AOM crystal calculated with CFA package are in good match with the experimental values.
Institute of Scientific and Technical Information of China (English)
何江平; 沈林放; 张全; 何赛灵
2002-01-01
A pseudospectral time-domain (PSTD) method is developed for calculating the band structure of a two-dimensional photonic crystal. Maxwell's equations are rewritten in terms of period fields by using the Bloch theorem. Instead of spatial finite differences, the fast Fourier transform is used to calculate the spatial derivatives. To reach a similar accuracy, fewer sample points are required in the present PSTD method as compared to the conventional finite-difference time-domain methods. Our numerical simulation shows that the present PSTD method is an efficient and accurate method for calculating the band structure of a photonic crystal.
Karbowiak, M.; Gnutek, P.; Rudowicz, C.; Ryba-Romanowski, W.
2011-08-01
Low temperature polarized absorption spectra are analyzed to achieve assignments of energy levels for Nd 3+ and Tm 3+ ions at monoclinic C s site symmetry in ABC 3O 7 crystals. Based on the concept of average optical center, the experimental energy levels for single crystals of SrLaGa 3O 7:Nd 3+ (SLG:Nd), BaLaGa 3O 7:Nd 3+ (BLG:Nd), and SrGdGa 3O 7:Tm 3+ (SGG:Tm) were analyzed in terms of the free-ion parameters and the crystal field (CF) ones, B kq. Assignments of the energy levels resolved in the spectra were done in stages applying the ascent/descent in symmetry method in CF analysis. The actual monoclinic C s site symmetry at the metal centers in ABC 3O 7 crystals and the approximated orthorhombic C 2v and tetragonal C 4v symmetry were considered. The starting values of B kq's for SLG:Nd and BLG:Nd crystals were obtained from superposition model (SPM) analysis. The final fitted crystal field parameters show high compatibility with the existing data for structurally similar ion-host systems. The obtained values of the intrinsic parameters provide basis for SPM analysis of CF parameters for rare earth ions in other similar systems, especially those exhibiting low-symmetry sites. The SPM parameters derived for SLG:Nd are used for simulation and assignment of the energy levels involved in the potential laser transitions at about 1800 nm due to Tm 3+ ions in SGG crystals. The evaluated emission cross-section is about two times lower than that obtained previously.
Saito, Shigeki; Inerbaev, Talgat M.; Mizuseki, Hiroshi; Igarashi, Nobuaki; Note, Ryunosuke; Kawazoe, Yoshiyuki
2006-11-01
First-principles calculations of the crystalline vibrations of a lactose monohydrate crystal in the terahertz (THz) region were performed using periodic density functional theory calculations. The calculated vibrational modes in the THz region were derived from group motions with different sizes: molecules of lactose and crystal water, pyranose rings, and intramolecular frames. The intermolecular modes with large vibrational amplitude of lactose of 17.5-100.6 cm-1 and of crystal-water of 136.1-237.7 cm-1 were clearly separated. This article especially refers to the intermolecular vibrational modes of crystal water with the THz absorption, which provide detectable spectral features of hydrated crystals.
Li, Junchang; Tu, Han-Yen; Yeh, Wei-Chieh; Gui, Jinbin; Cheng, Chau-Jern
2014-09-20
Based on scalar diffraction theory and the geometric structure of liquid crystal on silicon (LCoS), we study the impulse responses and image depth of focus in a holographic three-dimensional (3D) display system. Theoretical expressions of the impulse response and the depth of focus of reconstructed 3D images are obtained, and experimental verifications of the imaging properties are performed. The results indicated that the images formed by holographic display based on the LCoS device were periodic image fields surrounding optical axes. The widths of the image fields were directly proportional to the wavelength and diffraction distance, and inversely proportional to the pixel size of the LCoS device. Based on the features of holographic 3D imaging and focal depth, we enhance currently popular hologram calculation methods of 3D objects to improve the computing speed of hologram calculation.
Eighth-order phase-field-crystal model for two-dimensional crystallization
Jaatinen, A.; Ala-Nissilä, Tapio
2010-01-01
We present a derivation of the recently proposed eighth-order phase-field crystal model [A. Jaatinen et al., Phys. Rev. E 80, 031602 (2009)] for the crystallization of a solid from an undercooled melt. The model is used to study the planar growth of a two-dimensional hexagonal crystal, and the results are compared against similar results from dynamical density functional theory of Marconi and Tarazona, as well as other phase-field crystal models. We find that among the phase-field crystal mod...
Magnetic Field and Force Calculations for ATLAS Asymmetrical Structure
Nessi, Marzio
2001-01-01
Magnetic field distortion in the assymetrical ATLAS structure are calculated. Magnetic forces in the system are estimated. 3D magnetic field simulation by the Opera3D code for symmetrical and asymmetrical systems is used.
Crystal field and magnetism with Wannier functions：rare-earth doped aluminum garnets
Institute of Scientific and Technical Information of China (English)
Eva Mihóková; Pavel Novák; Valentin V. Laguta
2015-01-01
Using the recently developed method we calculated the crystal field parameters in yttrium and lutetium aluminum garnets doped with seven trivalent Kramers rare-earth ions. We then inserted calculated parameters into the atomic-like Hamiltonian taking into account the electron-electron, spin-orbit and Zeeman interactions and determined the multiplet splitting by the crystal field as well as magneticĝ tensors. We compared calculated results with available experimental data. Very good agreement with the spectro-scopic data and qualitative agreement with experimentalĝ tensors was found.
Energy Technology Data Exchange (ETDEWEB)
Florando, J; Rhee, M; Arsenlis, A; LeBlanc, M; Lassila, D
2006-02-21
A 3-D image correlation system, which measures the full-field displacements in 3 dimensions, has been used to experimentally determine the full deformation gradient matrix for two zinc single crystals. Based on the image correlation data, the slip system activity for the two crystals has been calculated. The results of the calculation show that for one crystal, only the primary slip system is active, which is consistent with traditional theory. The other crystal however, shows appreciable deformation on slip systems other than the primary. An analysis has been conducted which confirms the experimental observation that these other slip system deform in such a manner that the net result is slip which is approximately one third the magnitude and directly orthogonal to the primary system.
Efficient Calculation of Near Fields in the FDTD Method
DEFF Research Database (Denmark)
Franek, Ondrej
2011-01-01
When calculating frequency-domain near fields by the FDTD method, almost 50 % reduction in memory and CPU operations can be achieved if only E-fields are stored during the main time-stepping loop and H-fields computed later. An improved method of obtaining the H-fields from Faraday's Law...
Cluster model calculation of N near K-edge energy-loss fine structures in hexagonal GaN crystal
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A cluster model is used to calculate electron energy-loss fine structures in crystal. The multiple-scattering self-consistent-field method is employed in the calculation. Our theoretical results of N near K-edge energy loss fine structures in hexagonal GaN crystal are in good agreement with the experimental spectra. Future possible experiments in energy-filtered transmission electron microscopy (EFTEM) are discussed and proposed because our theoretical work can provide clear assignments for transmitted electrons with different energy losses.
Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets
Johnson, Phillip S.; García Lastra, Juan Maria; Kennedy, Colton K.; Jersett, Nathan J.; Boukahil, Idris; Himpsel, F. J.; Cook, Peter L.
2014-01-01
Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting value...
Magnetism and crystal field in TmCu sub 2
Energy Technology Data Exchange (ETDEWEB)
Sima, V.; Smetana, Z.; Divis, M.; Svoboda, P.; Zajac, S. (Karlova Univ., Prague (CS)); Bischof, J.; (Vyzkummy Ustav Silmoproude Elektrotechniky, Bechovice (CS)); Lebech, B. (Risoe National Lab., Roskilde (DK)); Kayzel, F. (Amsterdam Univ. (NL). Natuurkundig Lab.)
1988-12-01
The crystal field energies and Gruneisen parameters of the individual crystal field levels of Tm{sup 3+} in TmCu{sub 2} were determined from specific heat and thermal expansion data above T{sub N}. The magnetic phase transitions are discussed with respect to magnetic entropy and molar volume.
FORMATION (DECOMPOSITION) ENTHALPY CALCULATIONS FOR CRYSTAL LATTICES OF ALKALINE-EARTH FLUORIDES
Gruba, O.; Germanyuk, N.; Ryabukhin, A.
2015-01-01
A series of calculations of structural and thermochemical properties has been carried out for the alkaline-earth fluorides. The calculations have been carried out using the modified model of effective ionic radii and the model of enthalpy calculation for the crystal lattice. The results of the calculations are in accordance with the known experimental data within confidence intervals.
Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets
Energy Technology Data Exchange (ETDEWEB)
Johnson, Phillip S.; Boukahil, Idris; Himpsel, F. J., E-mail: fhimpsel@wisc.edu [Department of Physics, University of Wisconsin-Madison, 1150 University Ave., Madison, Wisconsin 53706 (United States); García-Lastra, J. M. [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Kennedy, Colton K.; Jersett, Nathan J.; Cook, Peter L. [Natural Sciences Department, University of Wisconsin-Superior, Belknap and Catlin, Superior, Wisconsin 54880 (United States)
2014-03-21
Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.
Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets
Johnson, Phillip S.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Boukahil, Idris; Himpsel, F. J.; Cook, Peter L.
2014-03-01
Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.
Raman spectrum of plutonium dioxide: Vibrational and crystal field modes
Naji, M.; Magnani, N.; Bonales, L. J.; Mastromarino, S.; Colle, J.-Y.; Cobos, J.; Manara, D.
2017-03-01
The Raman spectrum of plutonium dioxide is studied both experimentally and theoretically. Particular attention has been devoted to the identification of high-energy modes at 2110 and 2620 c m-1 , whose attribution has so far been controversial. The temperature dependence of both modes suggests an electronic origin for them. Original crystal field (CF) calculations reported in this work show that these two modes can be respectively assigned to the Γ1→Γ5 and Γ1→Γ3 CF transitions within the I54 manifold. These two modes, together with the only vibrational line foreseen by the group theory for the F m -3 m Pu O2 symmetry—the T2 gPu -O stretching mode observed at 478 c m-1 —can thus be used as a Raman fingerprint of fcc plutonium dioxide.
Effects of magnetic fields on dissolution of arthritis causing crystals
Takeuchi, Y.; Iwasaka, M.
2015-05-01
The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.
Energy Technology Data Exchange (ETDEWEB)
Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tachibana, M. [Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 (Japan); Kojima, K. [Department of Education, Yokohama Soei University, 1 Miho-tyou, Midori-ku, Yokohama, 226-0015 (Japan)
2014-10-06
X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.
Effect of magnetic field on the crystallization of zinc sulfate
Directory of Open Access Journals (Sweden)
Freitas A. M. B.
2000-01-01
Full Text Available The effect of magnetic field on the crystallization of diamagnetic zinc sulfate was investigated in a series of controlled batch cooling experiments. Zinc sulfate solutions were exposed to magnetic fields of different intensities, up to a maximum of 0.7T. A clear influence of magnetic field on the following zinc sulfate crystallization parameters was found: an increase in saturation temperature, a decrease in metastable zone width, and an increase in growth rate and average crystal size. These effects were observed for the diamagnetic zinc sulfate, but not in similar, previously reported experiments for paramagnetic copper sulfate.
Crystal-Field Engineering of Solid-State Laser Materials
Henderson, Brian; Bartram, Ralph H.
2005-08-01
This book examines the underlying science and design of laser materials. It emphasizes the principles of crystal-field engineering and discusses the basic physical concepts that determine laser gain and nonlinear frequency conversion in optical crystals. Henderson and Bartram develop the predictive capabilities of crystal-field engineering to show how modification of the symmetry and composition of optical centers can improve laser performance. They also discuss applications of the principles of crystal-field engineering to a variety of optical crystals in relation to the performances of laser devices. This book will be of considerable interest to physical, chemical and material scientists and to engineers involved in the science and technology of solid state lasers.
Cohesion energy calculations for ternary ionic novel crystals
Energy Technology Data Exchange (ETDEWEB)
Vazquez P, G.; Cabrera, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico); Mijangos, R.R. [Centro de Investigacion en Fisica, Universidad de Sonora, A.P. 5-88, 83190 Hermosillo, Sonora (Mexico); Valdez, E. [Escuela Nacional de Estudios Profesionales Acatlan, Universidad Nacional Autonoma de Mexico, Santa Cruz Acatlan, Naucalpan (Mexico); Duarte, C. [Departamento de Geologia, Universidad de Sonora, 83000 Hermosillo, Sonora (Mexico)
2001-07-01
The present work calculates the value of the link energy of a crystalline ternary structure newly formed by alkali halides. The ternary structure prepared with different concentrations of KCl{sub x}KBrRbCl{sub 2} maintains a very good miscibility and stability. The calculation is based on the use of a generalization of the Vegard law (which generally is valid for binary compounds) for calculating the values of the lattice constant and the repulsive m exponent. The value of the lattice parameter given by X-ray diffractometry agrees with the close approximation of the calculated value of the method used. It also compares the value of energy cohesion obtained by the Born expression with more complex approximations. (Author)
Calculating potential fields using microchannel spatial light modulators
Reid, Max B.
1993-01-01
We describe and present experimental results of the optical calculation of potential field maps suitable for mobile robot navigation. The optical computation employs two write modes of a microchannel spatial light modulator (MSLM). In one mode, written patterns expand spatially, and this characteristic is used to create an extended two dimensional function representing the influence of the goal in a robot's workspace. Distinct obstacle patterns are written in a second, non-expanding, mode. A model of the mechanisms determining MSLM write mode characteristics is developed and used to derive the optical calculation time for full potential field maps. Field calculations at a few hertz are possible with current technology, and calculation time vs. map size scales favorably in comparison to digital electronic computation.
Optical calculation of potential fields for robotic path planning.
Reid, M B
1994-02-10
Experimental results of the optical calculation of potential-field maps suitable for mobile robot navigation are presented and described. The optical computation employs two write modes of a microchannel spatial light modulator. In one mode, written patterns expand spatially, and this characteristic is used to create an extended two-dimensional function representing the influence of the goal in a robot's workspace. Distinct obstacle patterns are written in a second, nonexpanding, mode. A model of the mechanisms determining microchannel spatial light modulator write-mode characteristics is developed and used to derive the optical calculation time for full potential-field maps. Field calculations at a few hertz are possible with current technology, and calculation time versus map size scales favorably in comparison with digital electronic computation.
Accurate Calculation of Fringe Fields in the LHC Main Dipoles
Kurz, S; Siegel, N
2000-01-01
The ROXIE program developed at CERN for the design and optimization of the superconducting LHC magnets has been recently extended in a collaboration with the University of Stuttgart, Germany, with a field computation method based on the coupling between the boundary element (BEM) and the finite element (FEM) technique. This avoids the meshing of the coils and the air regions, and avoids the artificial far field boundary conditions. The method is therefore specially suited for the accurate calculation of fields in the superconducting magnets in which the field is dominated by the coil. We will present the fringe field calculations in both 2d and 3d geometries to evaluate the effect of connections and the cryostat on the field quality and the flux density to which auxiliary bus-bars are exposed.
DEFF Research Database (Denmark)
Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper
2009-01-01
We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide.......We present a multipole solution to the Lippmann-Schwinger equation for electromagnetic scattering in inhomogeneous geometries. The method is illustrated by calculating the Green’s function for a finite sized two-dimensional photonic crystal waveguide....
Quantum Monte Carlo calculations with chiral effective field theory interactions.
Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A
2013-07-19
We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.
Electric field calculations in brain stimulation based on finite elements
DEFF Research Database (Denmark)
Windhoff, Mirko; Opitz, Alexander; Thielscher, Axel
2013-01-01
, allowing for the creation of tetrahedral volume head meshes that can finally be used in the numerical calculations. The pipeline integrates and extends established (and mainly free) software for neuroimaging, computer graphics, and FEM calculations into one easy-to-use solution. We demonstrate...... elements. The latter is crucial to guarantee the numerical robustness of the FEM calculations. The pipeline will be released as open-source, allowing for the first time to perform realistic field calculations at an acceptable methodological complexity and moderate costs....
Eighth-order phase-field-crystal model for two-dimensional crystallization
Jaatinen, A.; Ala-Nissila, T.
2010-12-01
We present a derivation of the recently proposed eighth-order phase-field crystal model [A. Jaatinen , Phys. Rev. E 80, 031602 (2009)10.1103/PhysRevE.80.031602] for the crystallization of a solid from an undercooled melt. The model is used to study the planar growth of a two-dimensional hexagonal crystal, and the results are compared against similar results from dynamical density functional theory of Marconi and Tarazona, as well as other phase-field crystal models. We find that among the phase-field crystal models studied, the eighth-order fitting scheme gives results in good agreement with the density functional theory for both static and dynamic properties, suggesting it is an accurate and computationally efficient approximation to the density functional theory.
Near-field probing of photonic crystals
Flück, E.; Hammer, M.; Vos, W.L.; Hulst, van N.F.; Kuipers, L.
2004-01-01
Photonic crystals form an exciting new class of optical materials that can greatly affect optical propagation and light emission. As the relevant length scale is smaller than the wavelength of light, sub-wavelength detection forms an important ingredient to obtain full insight in the physical proper
Goethite liquid crystals and magnetic field effects
van den Pol, E
2010-01-01
In this thesis the liquid crystal phase behavior of colloidal, boardlike, goethite (alpha-FeOOH) particles is described. Apart from the nematic phase, a smectic A phase is formed in systems with a low and high polydispersity. Strong fractionation occurs which is able to reduce the local length polyd
Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model
DEFF Research Database (Denmark)
Tarp, Jens M.; Angheluta, Luiza; Mathiesen, Joachim;
2014-01-01
Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Disloc...
Kool, Th.W.; Bollegraaf, B.
2010-01-01
Numerical and analytical methods are used to investigate the calculation of the zero field splitting |2D| and g(perp) parameters in EPR for octahedrally surrounded d3 spin systems (S = 3/2) in strong and moderate axial crystal fields (|D|>=h{\
Fast dose calculation in magnetic fields with GPUMCD
Energy Technology Data Exchange (ETDEWEB)
Hissoiny, S; Ozell, B [Ecole Polytechnique de Montreal, Departement de genie informatique et genie logiciel, 2500 Chemin de Polytechnique, Montreal, Quebec H3T 1J4 (Canada); Raaijmakers, A J E; Raaymakers, B W [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht (Netherlands); Despres, P, E-mail: sami.hissoiny@polymtl.ca [Departement de physique, Universite Laval, Quebec (Canada)
2011-08-21
A new hybrid imaging-treatment modality, the MRI-Linac, involves the irradiation of the patient in the presence of a strong magnetic field. This field acts on the charged particles, responsible for depositing dose, through the Lorentz force. These conditions require a dose calculation engine capable of taking into consideration the effect of the magnetic field on the dose distribution during the planning stage. Also in the case of a change in anatomy at the time of treatment, a fast online replanning tool is desirable. It is improbable that analytical solutions such as pencil beam calculations can be efficiently adapted for dose calculations within a magnetic field. Monte Carlo simulations have therefore been used for the computations but the calculation speed is generally too slow to allow online replanning. In this work, GPUMCD, a fast graphics processing unit (GPU)-based Monte Carlo dose calculation platform, was benchmarked with a new feature that allows dose calculations within a magnetic field. As a proof of concept, this new feature is validated against experimental measurements. GPUMCD was found to accurately reproduce experimental dose distributions according to a 2%-2 mm gamma analysis in two cases with large magnetic field-induced dose effects: a depth-dose phantom with an air cavity and a lateral-dose phantom surrounded by air. Furthermore, execution times of less than 15 s were achieved for one beam in a prostate case phantom for a 2% statistical uncertainty while less than 20 s were required for a seven-beam plan. These results indicate that GPUMCD is an interesting candidate, being fast and accurate, for dose calculations for the hybrid MRI-Linac modality.
[Calculation of mobility and entropy of the binding of molecules by crystals].
Garbuzynskiy, S O; Finkelstein, A V
2016-01-01
A simple method for evaluating a range of molecular movements in crystals has been developed. This estimate is needed to calculate the entropy of binding, in particular in protein-ligand complexes. The estimate is based on experimental data concerning the enthalpy of sublimation and saturated vapor pressure obtained for 15 organic crystals with melting temperatures of 25-80°С. For this set, we calculated the values of the average range and the corresponding average amplitude of molecular movements in crystals that constituted 0.75 ± 0.14 Å and 0.18 ± 0.03 Å, respectively. The entropy of sublimation calculated based on the average range of molecular movements in crystals was well consistent with the experimental data.
Field renormalization in photonic crystal waveguides
DEFF Research Database (Denmark)
Colman, Pierre
2015-01-01
A novel strategy is introduced in order to include variations of the nonlinearity in the nonlinear Schro¨dinger equation. This technique, which relies on renormalization, is in particular well adapted to nanostructured optical systems where the nonlinearity exhibits large variations up to two...... Schro¨dinger equation is an occasion for physics-oriented considerations and unveils the potential of photonic crystal waveguides for the study of new nonlinear propagation phenomena....
Field induced heliconical structure of cholesteric liquid crystal
Lavrentovich, Oleg D.; Shiyanovsii, Sergij V.; Xiang, Jie; Kim, Young-Ki
2017-06-27
A diffraction grating comprises a liquid crystal (LC) cell configured to apply an electric field through a cholesteric LC material that induces the cholesteric LC material into a heliconical state with an oblique helicoid director. The applied electric field produces diffracted light from the cholesteric LC material within the visible, infrared or ultraviolet. The axis of the heliconical state is in the plane of the liquid crystal cell or perpendicular to the plane, depending on the application. A color tuning device operates with a similar heliconical state liquid crystal material but with the heliconical director axis oriented perpendicular to the plane of the cell. A power generator varies the strength of the applied electric field to adjust the wavelength of light reflected from the cholesteric liquid crystal material within the visible, infrared or ultraviolet.
Nucleation of lysozyme crystals under external electric and ultrasonic fields
Nanev, Christo N.; Penkova, Anita
2001-11-01
Preferred orientation along c-axis of hen-egg-white lysozyme (HEWL) crystals has been observed in an external electric field. Besides, the HEWL crystals grew predominantly on the cathode side of the glass cell. These facts were explained on the basis of a concept for specific spatial distribution of the positive electric charges on the individual HEWL molecules, and thus attributed to the (preferred) orientation of individual HEWL molecules in the solution, under these conditions. Ultrasonic field redoubles the nucleation rate of HEWL crystals, but does not change the number of building units in the critical nucleus. Taking into account the intermolecular binding energy, we conclude that ultrasonic field accelerates nucleation due to breaking of the protein crystals.
Excess vibrational modes of a crystal in an external non-affine field
Indian Academy of Sciences (India)
SASWATI GANGULY; SURAJIT SENGUPTA
2017-07-01
Thermal displacement fluctuations in a crystal may be classified as either “affine” or “non-affine”. While the former couples to external stress with familiar consequences, the response of a crystal when nonaffine displacements are enhanced using the thermodynamically conjugate field, is relatively less studied. We examine this using a simple model of a crystal in two dimensions for which analytical calculations are possible. Enhancing non-affine fluctuations destabilises the crystal. The population of small frequency phonon modesincreases, with the phonon density of states shifting, as a whole, towards zero frequency. Even though the crystal is free of disorder, we observe growing length and time scales. Our results, which may have implications for the glass transition and structural phase transitions in solids, are compared to molecular dynamics simulations. Possibility of experimental verification of these results is also discussed.
Anharmonic calculations in crystals having the diamond structure
Escamilla-Reyes, J. L.; Haro-Poniatowski, E.
1996-03-01
In this work the principal channels of decay are identified for Si, C, Ge and alpha tin. The corresponding double phonon densities of states are compu ted as well. These calculations are performed using a four parameter model developed by Wanser and Wallis [1]. Using the simplest anharmonic model : central potential nearest neighbor interactions, the phonon lifetimes are computed with the exception of alpha tin. Considering the simplicity of the employed models, a reasonable agreement with experimental results is obtain ed. [1] K. H. Wanser, R. F. Wallis, J. Phys. (Paris) 42, C6-128 (1981)
Gravitation Field Calculations on a Dynamic Lattice by Distributed Computing
Mähönen, Petri; Punkka, Veikko
A new method of calculating numerically time evolution of a gravitational field in General Relatity is introduced. Vierbein (tetrad) formalism, dynamic lattice and massively parallelized computation are suggested as they are expected to speed up the calculations considerably and facilitate the solution of problems previously considered too hard to be solved, such as the time evolution of a system consisting of two or more black holes or the structure of worm holes.
Gravitational field calculations on a dynamic lattice by distributed computing.
Mähönen, P.; Punkka, V.
A new method of calculating numerically time evolution of a gravitational field in general relativity is introduced. Vierbein (tetrad) formalism, dynamic lattice and massively parallelized computation are suggested as they are expected to speed up the calculations considerably and facilitate the solution of problems previously considered too hard to be solved, such as the time evolution of a system consisting of two or more black holes or the structure of worm holes.
Ding, Shoujun; Zhang, Qingli; Gao, Jinyun; Liu, Wenpeng; Luo, Jianqiao; Sun, Dunlu; Sun, Guihua; Wang, Xiaofei
2016-12-01
A Nd:YNbO4 single crystal was successfully grown by Czochralski (Cz) method, its structural and spectroscopic properties were investigated. The X-ray rocking curve of the (010) diffraction face of Nd:YNbO4 crystal was measured, the full width at half maximum (FWHM) of this diffraction peak is 0.05°, which indicates a high crystalline quality of the as-grown crystal. Its lattice parameters, atomic coordinates and so on were obtained by Rietvield refinement to X-ray diffraction data. According to the Archimedes drainage method, the crystal density of Nd:YNbO4 is calculated to be 5.4 g/cm3. The Mohr‧s hardness value along (010) face was determined to be 6.0. The transmission spectrum along (010) face at room temperature was recorded and the excitation and emission spectra at 8 K were measured. Photoluminescence peaks of Nd:YNbO4 were assigned, and the crystal-field splitting of Nd3+ in YNbO4 was obtained. The fluorescence lifetime of the 4F3/2→4I11/2 transition of Nd3+ in YNbO4 is fitted to be 152 μs These spectroscopic and energy splitting data give an important reference for the research of laser property of Nd:YNbO4 crystal.
Energy Technology Data Exchange (ETDEWEB)
Ding, Shoujun [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Key Laboratory of Photonic Devices and Materials, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Zhang, Qingli, E-mail: zql@aiofm.ac.cn [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Key Laboratory of Photonic Devices and Materials, Hefei 230031 (China); Gao, Jinyun; Liu, Wenpeng; Luo, Jianqiao; Sun, Dunlu; Sun, Guihua; Wang, Xiaofei [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Key Laboratory of Photonic Devices and Materials, Hefei 230031 (China)
2016-12-15
A Nd:YNbO{sub 4} single crystal was successfully grown by Czochralski (Cz) method, its structural and spectroscopic properties were investigated. The X-ray rocking curve of the (010) diffraction face of Nd:YNbO{sub 4} crystal was measured, the full width at half maximum (FWHM) of this diffraction peak is 0.05°, which indicates a high crystalline quality of the as-grown crystal. Its lattice parameters, atomic coordinates and so on were obtained by Rietvield refinement to X-ray diffraction data. According to the Archimedes drainage method, the crystal density of Nd:YNbO{sub 4} is calculated to be 5.4 g/cm{sup 3}. The Mohr′s hardness value along (010) face was determined to be 6.0. The transmission spectrum along (010) face at room temperature was recorded and the excitation and emission spectra at 8 K were measured. Photoluminescence peaks of Nd:YNbO{sub 4} were assigned, and the crystal-field splitting of Nd{sup 3+} in YNbO{sub 4} was obtained. The fluorescence lifetime of the {sup 4}F{sub 3/2}→{sup 4}I{sub 11/2} transition of Nd{sup 3+} in YNbO{sub 4} is fitted to be 152 μs These spectroscopic and energy splitting data give an important reference for the research of laser property of Nd:YNbO{sub 4} crystal.
Calculation of the Point Defects Ensemble in Zinc Sulfide Single Crystals and Films
Directory of Open Access Journals (Sweden)
D.I. Kurbatov
2012-11-01
Full Text Available In work calculation of concentration of the neutral and charged point defects, positions of Fermi level and free charge carriers in zinc sulfide single crystals and films depending on their condensation conditions was carried out. For calculations used the experimentally found energy levels of defects in ZnS band gap.
Calculation of the Point Defects Ensemble in Zinc Sulfide Single Crystals and Films
D.I. Kurbatov
2012-01-01
In work calculation of concentration of the neutral and charged point defects, positions of Fermi level and free charge carriers in zinc sulfide single crystals and films depending on their condensation conditions was carried out. For calculations used the experimentally found energy levels of defects in ZnS band gap.
Pressure calculation in hybrid particle-field simulations.
Milano, Giuseppe; Kawakatsu, Toshihiro
2010-12-07
In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.
Denis, T.; Reijnders, B.; Lee, J.H.H.; Vos, Willem L.; Boller, Klaus J.; van der Slot, Petrus J.M.
2013-01-01
We present a method to map the absolute electromagnetic field strength inside photonic crystals. We demonstrate our method by applying it to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to create a
Liu, Gang; Mei, Yang; Zhang, Xin-Xin; Zheng, Wen-Chen
2015-05-01
The high-order perturbation formulas based on a two-mechanism model (where in addition to the contributions from the crystal-field (CF) mechanism in the usually-applied CF theory, those from the generally-neglected charge-transfer (CT) mechanism are also contained) are employed to calculate the spin-Hamiltonian parameters (g factors g//, g⊥ and the hyperfine structure constants A//, A⊥) of the square planar CuCl4 2 - clusters in Cs2ZrCl6 crystal. The needed CF energy levels in the calculations are obtained from the observed optical spectra. The calculated results show reasonable agreement with the experimented values. The negative sign of A// and positive sign of A⊥ are proposed from the calculations. The calculations also suggest that one should take account of the contributions due to both the CF and CT mechanisms for the exact and rational calculations of spin-Hamiltonian parameters of Cu2+-Cl- combination in crystals.
$H_{2}^{+}$ ion in strong magnetic field an accurate calculation
López, J C; Turbiner, A V
1997-01-01
Using a unique trial function we perform an accurate calculation of the ground state $1\\sigma_g$ of the hydrogenic molecular ion $H^+_2$ in a constant uniform magnetic field ranging $0-10^{13}$ G. We show that this trial function also makes it possible to study the negative parity ground state $1\\sigma_u$.
Exchange field effect in the crystal field ground state of CeMAl{sub 4}Si{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Chen, Kai; Strigari, Fabio; Sundermann, Martin; Severing, Andrea [University of Cologne, Cologne (Germany); Agrestini, Stefano [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Bauer, Eric D.; Sarrao, John L.; Thompson, Joe D. [Los Alamos National Laboratory, Los Alamos, NM (United States); Otero, Edwige [Synchrotron Soleil, Gif-sur-Yvette (France); Tanaka, Arata [Hiroshima University, Higashi-Hiroshima (Japan)
2016-07-01
The crystal-field ground state wave functions of the tetragonal Kondo lattice materials CeMAl{sub 4}Si{sub 2}(M = Rh, Ir and Pt), as well as the crystal-field splittings, are determined with low temperature linear polarized soft x-ray absorption spectroscopy. Surprisingly, at T < 20 K, which is far below the first excited crystal-field level at 200 K, a change in linear dichroism was observed that cannot be accounted for by population of crystal-field states. Adding an exchange field to the ionic full multiplet calculations below 20 K leads to a splitting to the ground state doublet and modification of J{sub z} admixture, thus accounting for the change in low temperature linear dichroism. The direction of the required exchange field is parallel along c-axis for the antiferromagnetic Rh and Ir compounds, and perpendicular to c-axis for ferromagnetic CePtAl{sub 4}Si{sub 2}.
Theoretical Calculations of Refractive Properties for Hg3Te2Cl2 Crystals
Bokotey, O. V.
2016-05-01
This paper reviews the optical properties, such as refractive index, optical dielectric constant, and reflection coefficient of the Hg3Te2Cl2 crystals. The applications of the Hg3X2Y2 crystals as electronic, optical, and optoelectronic devices are very much determined by the nature and magnitude of these fundamental material properties. The origin of chemical bonding in the crystals is very important for definition of the physical and chemical properties. The main structural feature of the Hg3X2Y2 crystals is the presence of covalent pyramids [XHg3] and linear X-Hg-X groups. Optical properties are calculated according to the model proposed by Harrison. The refractive index in the spectral region far from the absorption edge is determined within the generalized single-oscillator model. The calculated results are found to be in good agreement with experimental data.
Fiber field-effect device via in situ channel crystallization.
Danto, Sylvain; Sorin, Fabien; Orf, Nicholas D; Wang, Zheng; Speakman, Scott A; Joannopoulos, John D; Fink, Yoel
2010-10-01
The in situ crystallization of the incorporated amorphous semiconductor within the multimaterial fiber device yields a large decrease in defect density and a concomitant five-order-of-magnitude decrease in resistivity of the novel metal-insulator-crystalline semiconductor structure. Using a post-drawing crystallization process, the first tens-of-meters-long single-fiber field-effect device is demonstrated. This work opens significant opportunities for incorporating higher functionality in functional fibers and fabrics.
Phase Field Modeling of Twinning in Indentation of Transparent Crystals
2011-09-01
twin boundaries . Equilibrium configurations of deformed and twinned crystals are attained via direct energy minimization. The theory is framed in the...phases: (i) the original crystal (the parent) and (ii) the twin. Interfaces between phases are twin boundaries . Order parameter η generally exhibits the...following values: η(X, •) = 0∀X ∈ parent, = 1∀X ∈ twin, ∈ (0, 1)∀X ∈ twin boundaries . (1) In linear elasticity, kinematic field variables are
Magnetic Fields and the Crystallization of White Dwarfs
Isern, J.; García-Berro, E.; Külebi, B.; Lorén-Aguilar, P.
2017-03-01
The evolution of white dwarfs can be described as a cooling process. When the temperature is low enough, the interior experiences a phase transition and crystallizes. Crystallization introduces two new sources of energy, latent heat and chemical sedimentation, and induces the formation of a convective mantle around the solid core. This structure, which is analogous to that of the Earth, could induce the formation of a magnetic field via dynamo mechanism. In this work we discuss the viability of such mechanism, and its use as a diagnostic tool of crystallization.
Crystal field spectra of lunar pyroxenes.
Burns, R. G.; Abu-Eid, R. M.; Huggins, F. E.
1972-01-01
Absorption spectra in the visible and near infrared regions have been obtained for pyroxene single crystals in rocks from the Apollo 11, 12, 14, and 15 missions. The polarized spectra are compared with those obtained from terrestrial calcic clinopyroxenes, subcalcic augites, pigeonites, and orthopyroxenes. The lunar pyroxenes contain several broad, intense absorption bands in the near infrared, the positions of which are related to bulk composition, Fe(2+) site occupancy and structure type of the pyroxene. The visible spectra contain several sharp, weak peaks mainly due to spin-forbidden transitions in Fe(2+). Additional weak bands in this region in Apollo 11 pyroxenes are attributed to Ti(3+) ions. Spectral features from Fe(3+), Mn(2+), Cr(3+), and Cr(2+) were not observed.
Hermansson, Kersti; Probst, Michael M; Gajewski, Grzegorz; Mitev, Pavlin D
2009-12-28
A two-dimensional quantum-mechanical vibrational model has been used to calculate the anharmonic OH vibrational frequencies in the layered Mg(OH)(2) (brucite) crystal. The underlying potential energy surface was generated by density functional theory (DFT) calculations. The resulting OH frequencies are upshifted (blueshifted) by about +75 cm(-1) with respect to the gas-phase OH frequency (+120 cm(-1) in experiments; the discrepancy is mainly due to inadequacies in the DFT and pseudopotential models). The Raman-IR split is about 50 cm(-1), both in the calculations and in experiments. We find that the blueshift phenomenon in brucite can qualitatively be explained by a parabolalike "OH frequency versus electric field" correlation curve pertaining to an OH(-) ion exposed to an electric field. We also find that it is primarily the neighbors within the Mg(OH)(2) layer that induce the blueshift while the interlayer interaction gives a smaller (and redshifting) contribution.
Formation Enthalpy Calculation of Oxygen Vacancy Defect in Doped Lithium Niobate Crystals
Institute of Scientific and Technical Information of China (English)
QIANG Liang-sheng; LI Yao; TANG Dong-yan; XU Chong-quan; WEI Yong-de
2004-01-01
The relationship between temperature and oxygen vacancy concentration is deduced in this paper. Based on the data of thermal weight-loss experiment, the formation enthalpies of congruent and several doped LN crystals have been calculated. It was found that the formation enthalpy of oxygen vacancies can be decreased evidently by doping valence-changeable ions. The experimental results were discussed and a new reduction process of the photorefractive LN crystal at a relatively low temperature was proposed, and the reduced crystals showed a good effect in practical use.
Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy
Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)
2002-01-01
The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented
Calculation and optimization of stray fields of septum dipole magnets
Holmes, Andrew J T
1976-01-01
A theoretical treatment is described of the external stray field of C- shaped septum magnets, such as those designed for the beam extraction systems of the 400 GeV CERN Super Proton Synchrotron. A special conformal transformation of the magnetic plane yields analytic expressions for the four components of the stray field: the septum- shape field (due to the form of the septum conductor), the edge-effect field (due to the mechanical clearance between septum and yoke), the cooling-duct field (due to the presence of these ducts in the septum), and the magnetomotance field (caused by the ampere-turn losses in the yoke). These expressions can be computed by numerical iteration. The septum-shape field turns out to be opposite in sign to the other three, making possible a criterion which creates a minimal stray field for a given magnetic induction. Plots of calculated and measured stray fields are presented for four prototype septum magnets whose total induction is between 0.38 and 1.41 T. (3 refs).
Structure and lattice dynamics of rare-earth ferroborate crystals: Ab initio calculation
Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.; Serdtsev, A. V.; Kashchenko, M. A.; Klimin, S. A.
2016-08-01
The ab initio calculation of the crystal structure and the phonon spectrum of crystals RFe3(BO3)4 ( R = Pr, Nd, Sm) has been performed in the framework of the density functional theory. The ion coordinates in the unit cell, the lattice parameters, the frequencies and the types of fundamental vibrations, and also the intensities of lines in the Raman spectrum and infrared reflection spectra have been found. The elastic constants of the crystals have been calculated. For low-frequency A 2 mode in PrFe3(BO3)4, a "seed" vibration frequency that strongly interacts with the electronic excitation on a praseodymium ion was found. The calculation results satisfactory agree with the experimental data.
Relaxation Dynamics of Ferroelectric Liquid Crystals in Pulsed Electric Field
Kudreyko, A. A.; Migranov, N. G.; Migranova, D. N.
2016-11-01
In this contribution we report a theoretical study of relaxation processes in surface-stabilized ferroelectric liquid crystals with spontaneous polarization. The influence of pulsed electric field on the behavior of ferroelectric liquid crystal in the SmC* phase, which is placed in a thin cell with strong anchoring of SmC* molecules with the boundary substrate, is studied. In the vicinity of the substrate interface, temporal dependence of the azimuthal motion of the director induced by electric field is obtained. The response to the external distortion of ferroelectric liquid crystal confined between two microstructured substrates is the occurrence of periodic temporal formation of solitons connected with the distortion of the director field n in the sample bulk. The interplay between microstructured substrates and director distribution of the ferroelectric SmC* phase is explained by the Frenkel-Kontorova model for a chain of atoms, but adapted for the continuum problem.
Physical modelling of Czochralski crystal growth in horizontal magnetic field
Grants, Ilmārs; Pal, Josef; Gerbeth, Gunter
2017-07-01
This study addresses experimentally the heat transfer, the temperature azimuthal non-uniformity and the onset of oscillations in a low temperature physical model of a medium-sized Czochralski crystal growth process with a strong horizontal magnetic field (HMF). It is observed that under certain conditions the integral heat flux may decrease with increasing magnetic field strength at the same time as the flow velocity increases. The azimuthal non-uniformity of the temperature field in the melt near the crystal model rim is only little influenced by its rotation rate outside of a narrow range where the centrifugal force balances the buoyant one. The flow oscillation onset has been observed for two values of the HMF strength. Conditions of this onset are little influenced by the crystal rotation. The critical temperature difference of the oscillation onset considerably exceeds that of the Rayleigh-Bénard (RB) cell in a strong HMF.
CRYSTAL-FIELD AND TRANSVERSE-FIELD EFFECTS OF THE SPIN-ONE ISING MODEL
Institute of Scientific and Technical Information of China (English)
宋为基; 杨传章
1993-01-01
A mean-field approximation (MFA) is used to treat the crystal-field and transverse-field effects of the spin-1 Ising modle in the presence of longitudinal field. In spite of its simplicity, this scheme still gives the satisfied results.
Crystal structure of Mg3Pd from first-principles calculations
Institute of Scientific and Technical Information of China (English)
DENG Yong-he; WANG Tao-fen; ZHANG Wei-bing; TANG Bi-yu; ZENG Xiao-qin; DING Wen-jiang
2008-01-01
Crystal structure of Mg3Pd alloy was studied by first-principles calculations based on the density functional theory. The total energy, formation heat and cohesive energy of the two types of Mg3Pd were calculated to assess the stability and the preferentiality. The results show that Mg3Pd alloy with Cu3P structure is more stable than Na3As structure, and Mg3Pd alloy is preferential to Cu3P structure. The obtained densities of states and charge density distribution for the two types of crystal structure were analyzed and discussed in combination with experimental findings for further discussion of the Mg3Pd structure.
Organic single-crystal field-effect transistors
Directory of Open Access Journals (Sweden)
Colin Reese
2007-03-01
Full Text Available Organic molecular crystals hold great promise for the rational development of organic semiconductor materials. Their long-range order not only reveals the performance limits of organic materials, but also provides unique insight into their intrinsic transport properties. The field-effect transistor (FET has served as a versatile tool for electrical characterization of many facets of their performance. In the last few years, breakthroughs in single-crystal FET fabrication techniques have enabled the realization of field-effect mobilities far surpassing amorphous Si, observation of the Hall effect in an organic material, and the study of transport as an explicit function of molecular packing and chemical structure.
Fine structure of fields in 2D photonic crystal waveguides
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.
2006-01-01
We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis.......We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....
Ab initio calculation of electron-phonon coupling in monoclinic β-Ga2O3 crystal
Ghosh, Krishnendu; Singisetti, Uttam
2016-08-01
The interaction between electrons and vibrational modes in monoclinic β-Ga2O3 is theoretically investigated using ab-initio calculations. The large primitive cell of β-Ga2O3 gives rise to 30 phonon modes all of which are taken into account in transport calculation. The electron-phonon interaction is calculated under density functional perturbation theory and then interpolated using Wannier-Fourier interpolation. The long-range interaction elements between electrons and polar optical phonon (POP) modes are calculated separately using the Born effective charge tensor. The direction dependence of the long-range POP coupling in a monoclinic crystal is explored and is included in the transport calculations. Scattering rate calculations are done using the Fermi golden rule followed by solving the Boltzmann transport equation using the Rode's method to estimate low field mobility. A room temperature mobility of 115 cm2/V s is observed. Comparison with recent experimentally reported mobility is done for a wide range of temperatures (30 K-650 K). It is also found that the POP interaction dominates the electron mobility under low electric field conditions. The relative contribution of the different POP modes is analyzed and the mode 21 meV POP is found to have the highest impact on low field electron mobility at room temperature.
Theory of crystal field states for heavy rare-earth impurities in MgB sub 2
Welsch, F; Faehnle, M
2002-01-01
For isolated rare-earth impurities substituting for Mg atoms in the superconductor MgB sub 2 the crystal field parameters are calculated by the ab initio density functional electron theory with constraints for the 4f charge and spin density. The crystal field parameter A sub 6 sup 6 is extremely small due to the structure and bonding properties of MgB sub 2 , and therefore the crystal field levels are nearly exclusively determined by one magnetic quantum number M. Implications for the pair-breaking mechanism of the superconductivity in MgB sub 2 are discussed.
Electromagnetic Field Effects in Semiconductor Crystal Growth
Dulikravich, George S.
1996-01-01
This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.
Electromagnetic field patterning or crystal light
Słupski, Piotr; Wymysłowski, Artur; Czarczyński, Wojciech
2016-12-01
Using the orbital angular momentum of light for the development of a vortex interferometer, the underlying physics requires microwave/RF models,1 as well as quantum mechanics for light1, 2 and fluid flow for semiconductor devices.3, 4 The combination of the aforementioned physical models yields simulations and results such as optical lattices,1 or an Inverse Farday effect.5 The latter is explained as the absorption of optical angular momentum, generating extremely high instantenous magnetic fields due to radiation friction. An algorithmic reduction across the computational methods used in microwaves, lasers, quantum optics and holography is performed in order to explain electromagnetic field interactions in a single computational framework. This work presents a computational model for photon-electron interactions, being a simplified gauge theory described using differentials or disturbances (photons) instead of integrals or fields. The model is based on treating the Z-axis variables as a Laplace fluid with spatial harmonics, and the XY plane as Maxwell's equations on boundaries. The result is a unified, coherent, graphical computational method of describing the photon qualitatively, quantitatively and with proportion. The model relies on five variables and is described using two equations, which use emitted power, cavity wavelength, input frequency, phase and time. Phase is treated as a rotated physical dimension under gauge theory of Feynmann's QED. In essence, this model allows the electromagnetic field to be treated with it's specific crystallography. The model itself is described in Python programming language. PACS 42.50.Pq, 31.30.J-, 03.70.+k, 11.10.-z, 67.10.Hk
Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields
Directory of Open Access Journals (Sweden)
Ilya eLisenker
2016-03-01
Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.
Calculations of the Electric Fields in Liquid Solutions
Fried, Stephen D.; Wang, Lee-Ping; Boxer, Steven G.; Ren, Pengyu; Pande, Vijay S.
2014-01-01
The electric field created by a condensed phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe non-polar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins. PMID:24304155
Brik, M. G.; Avram, N. M.; Gruia, A. S.
2013-08-01
Spectral, structural and electronic properties of two Cr3+-bearing systems (NaCrSi2O6, LiCrSi2O6) have been theoretically modeled using two different approaches: semi-empirical model of crystal field, in the framework of the Exchange Charge Model and two ab initio DFT-based calculations, as implemented in the CASTEP module [1] of Materials Studio package [2] and, for reliability, CRYSTAL09 code [3]. The first one allows for calculations of the electronic levels of sixfold coordinated Cr3+ ions in a crystal field of host's ligands and direct comparison with experimental absorption spectra [4]. The latter two allow for the analysis of the band structure and density of states (DOS), after optimization of the crystal lattice structures of these materials. In particular, a special attention was paid to the energetic position of the Cr3+ 3d states. All obtained results are compared with corresponding experimental values and discussed.
Calculation of the Electromagnetic Field Around a Microtubule
Directory of Open Access Journals (Sweden)
D. Havelka
2009-01-01
Full Text Available Microtubules are important structures in the cytoskeleton which organizes the cell. A single microtubule is composed of electrically polar structures, tubulin heterodimers, which have a strong electric dipole moment. Vibrations are expected to be generated in microtubules, thus tubulin heterodimers oscillate as electric dipoles. This gives rise to an electromagnetic field which is detected around the cells. We calculate here the electromagnetic field of microtubules if they are excited at 1 GHz. This paper includes work done for the bachelor thesis of the first author.
Computational approach for calculating bound states in quantum field theory
Lv, Q. Z.; Norris, S.; Brennan, R.; Stefanovich, E.; Su, Q.; Grobe, R.
2016-09-01
We propose a nonperturbative approach to calculate bound-state energies and wave functions for quantum field theoretical models. It is based on the direct diagonalization of the corresponding quantum field theoretical Hamiltonian in an effectively discretized and truncated Hilbert space. We illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial dimension and show where it agrees with the traditional method based on the potential picture and where it deviates due to recoil and radiative corrections. This method permits us also to obtain some insight into the spatial characteristics of the distribution of the fermions in the ground state, such as the bremsstrahlung-induced widening.
Calculating Casimir Energies in Renormalizable Quantum Field Theory
Milton, K A
2003-01-01
Quantum vacuum energy has been known to have observable consequences since 1948 when Casimir calculated the force of attraction between parallel uncharged plates, a phenomenon confirmed experimentally with ever increasing precision. Casimir himself suggested that a similar attractive self-stress existed for a conducting spherical shell, but Boyer obtained a repulsive stress. Other geometries and higher dimensions have been considered over the years. Local effects, and divergences associated with surfaces and edges have been considered by several authors. Quite recently, Graham et al. have re-examined such calculations, using conventional techniques of perturbative quantum field theory to remove divergences, and have suggested that previous self-stress results may be suspect. Here we show that the examples considered in their work are misleading; in particular, it is well-known that in two dimensions a circular boundary has a divergence in the Casimir energy for massless fields, while for general dimension $D$...
Capability of the free-ion eigenstates for crystal-field splitting
Mulak, Jacek
2011-01-01
Any electron eigenstate |\\Psi>of the paramagnetic ion open-shell is characterized by the three independent multipole asphericities A_{k}= for k=2,4 and 6 related to the second moments of the relevant crystal-field splittings by \\sigma_{k}^{2}=]A_{k}^{2}S_{k}^{2}, where S_{k}^{2}=]\\sum_{q}|B_{kq}|^{2}. The A_{k} can serve as a reliable measure of the state |\\Psi>capability for the splitting produced by the k-rank component of the crystal-field Hamiltonian and allow one to verify any fitted crystal-field parameter set directly comparing the calculated and the experimental second moments of the relevant crystal-field splittings. We present the multipole characteristics A_{k} for the extensive set of eigenstates from the lower parts of energy spectra of the tripositive 4f^{N} ions applying in the calculations the advanced eigenfunctions of the free lanthanide ions obtained based on the M. Reid f-shell programs. Such amended asphericities are compared with those achieved for the simplified Russell-Saunders states....
Crystal fields of Pr sup 3 sup + in LiYF sub 4 under pressure
Tröster, T
2003-01-01
Fluorescence spectra of LiYF sub 4 :Pr sup 3 sup + have been measured between 12,000 and 22,000 cm sup - sup 1 under pressures up to 10 GPa. In total, 25 crystal field energy levels were obtained and used for the determination of free-ion and crystal field parameters under pressure. According to the nephelauxetic effect, the free-ion parameters decrease with increasing pressure. The relative decrease is larger for the Slater than for the spin-orbit coupling parameter. This behavior is consistent with former studies on Pr sup 3 sup + in different crystals and can be explained by a special covalency model. According to an effective D sub 2 sub d symmetry, five crystal field parameters B sub 0 sup 2 (f,f), B sub 0 sup 4 (f,f), B sub 4 sup 4 (f,f), B sub 0 sup 6 (f,f), and B sub 4 sup 6 (f,f) are non-zero. The pressure-induced changes of these parameters have been determined up to the maximum pressure of 10 GPa. In order to improve the calculation of the crystal field levels, the configuration interactions with t...
Crystal Field Parameters and Phase Transitions in ErSb
DEFF Research Database (Denmark)
Shapiro, S. M.; Bak, P.
1975-01-01
The crystal field levels of the Er ion in a single crystal of ErSb have been measured by inelastic neutron scattering. The crystal field parameters obtained by a least squares fit to the spectra at several temperatures are: B4 = (0·473 ± 0·005) × 10−2°K and B6 = (0·59 ± 0·06) × 10−5°K, which differ...... considerably from the values o by interpolation from measurements on other compounds. In addition the temperature dependence of the magnetic scattering in the vicinity of the Néel temperature (TN = 3·55°K) clearly demonstrates that the transition is second order in contrast to the first order behavior...
Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets
DEFF Research Database (Denmark)
Johnson, Phillip S.; García Lastra, Juan Maria; Kennedy, Colton K.;
2014-01-01
Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization...
Calculated and measured fields in superferric wiggler magnets
Energy Technology Data Exchange (ETDEWEB)
Blum, E.B.; Solomon, L. [Brookhaven National Lab., Upton, NY (United States)
1995-02-01
Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peak on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.
Fine structure of fields in 2D photonic crystal waveguides
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.
2006-01-01
We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....
Control over colloidal crystallization by shear and electric fields
Wu, Y.L.
2007-01-01
We used shear flow and an electric field to control colloidal crystallization. The structures were examined in situ with confocal microscopy. For experiments under shear, a new parallel plate shear cell was designed. It had a zero-velocity plane that was stationary with respect to the microscope. Th
Field-effect transistors on tetracene single crystals
De Boer, R.W.I.; Klapwijk, T.M.; Morpurgo, A.F
2003-01-01
We report on the fabrication and electrical characterization of field-effect transistors at the surface of tetracene single crystals. We find that the mobility of these transistors reaches the room-temperature value of 0.4 cm2/V s. The nonmonotonous temperature dependence of the mobility, its weak g
Phase field simulations of ice crystal growth in sugar solutions
Sman, Van Der R.G.M.
2016-01-01
We present the first model ever, that describes explicitly ice crystal growth in a sugar solution during freezing. This 2-D model uses the phase field method, supplemented with realistic, and predictive theories on the thermodynamics and (diffusion) kinetics of this food system. We have to make u
Directory of Open Access Journals (Sweden)
Isabella Natali Sora
2012-01-01
Full Text Available Quantum mechanics density functional calculations provided gas-phase electron distributions and proton affinities for several mono- and diaza[5]helicenes; computational results, together with experimental data concerning crystal structures and propensity to methylation of the nitrogen atom(s, provide a basis for designing azahelicene complexes with transition metal ions.
Acceleration and Particle Field Interactions of Cosmic Rays II: Calculations
Tawfik, A; Ghoneim, M T; Hady, A
2010-01-01
Based on the generic acceleration model, which suggests different types of electromagnetic interactions between the cosmic charged particles and the different configurations of the electromagnetic (plasma) fields, the ultra high energy cosmic rays are studied. The plasma fields are assumed to vary, spatially and temporally. The well-known Fermi accelerations are excluded. Seeking for simplicity, it is assumed that the energy loss due to different physical processes is negligibly small. The energy available to the plasma sector is calculated in four types of electromagnetic fields. It has been found that the drift in a time--varying magnetic field is extremely energetic. The energy scale widely exceeds the Greisen-Zatsepin-Kuzmin (GZK) cutoff. The polarization drift in a time--varying electric field is also able to raise the energy of cosmic rays to an extreme value. It can be compared with the Hillas mechanism. The drift in a spatially--varying magnetic field is almost as strong as the polarization drift. The...
Using GIS for calculation and visualization of the velocity field
Grzempowski, P.; Kontny, B.,; Bogusz, J.; Kłos, A.
2012-04-01
In the paper structure of the system to collect data about the GPS permanent station velocities and velocity field modelling were described. The system includes modules for data managements, calculation and visualization. These modules were created in Visual Basic. Data management and visualization modules use ArcGIS .NET library for manage the data structure and drawing. This allows to visualize the velocity field and integrate spatial data and data (qualitative and quantitative) described the phenomenon and accompanying factors. This system allows to develop a model of the strain field in triangle network (TIN strain model) and model of the velocity field in regular grid. Some functions and procedures like spatial analysis are used to split points into separate sets, which are connected with tectonic units. Thus, it is possible to develop velocity fields in the sub-areas. System operation was described on the example of modeling the velocity field on the Poland area. Inputs to the model were velocities of the ASG-EUPOS stations.
Optical study of the molecular alignment in a nematic liquid crystal in an oblique magnetic field
Oldano, C.; Miraldi, E.; Strigazzi, A.; Taverna Valabrega, P.; Trossi, L.
1984-01-01
The light intensity I transmitted through a homeotropically oriented nematic liquid crystal slab held between crossed polarizers, as a function of the angle θH of an applied magnetic field, is calculated for oblique light incidence. The presence of singular points in the I vs. θ H curve which are related to the elastic constants of the liquid crystal is demonstrated One of these points, found here for the first time, for small angles of incidence depends only on the ratio K33/Χ a, and allows ...
Field stability of piezoelectric shear properties in PIN-PMN-PT crystals under large drive field.
Zhang, Shujun; Li, Fei; Luo, Jun; Xia, Ru; Hackenberger, Wesley; Shrout, Thomas
2011-02-01
The coercive fields (E(C)) of Pb(In₀.₅Nb₀.₅)O₃-Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg(¹/₃)Nb(²/₃)O₃-PbTiO₃ (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications. In addition to an increased EC, the acceptor modification resulted in the developed internal bias (E(int)), on the order of ~1 kV/cm. The piezoelectric shear properties of unmodified and Mn-modified PIN-PMN-PT crystals with various domain configurations were investigated. The shear piezoelectric coefficients and electromechanical coupling factors for different domain configurations were found to be >2000 pC/N and >0.85, respectively, with slightly reduced properties observed in Mn-modified tetragonal crystals. Fatigue/cycling tests performed on shearmode samples as a function of ac drive field level demonstrated that the allowable ac field levels (the maximum applied ac field before the occurrence of depolarization) were only ~2 kV/cm for unmodified crystals, less than half of their coercive field. Allowable ac drive levels were on the order of 4 to 6 kV/cm for Mn-modified crystals with rhombohedral/orthorhombic phase, further increased to 5 to 8 kV/cm in tetragonal crystals, because of their higher coercive fields. It is of particular interest that the allowable ac drive field level for Mn-modified crystals was found to be ≥ 60% of their coercive fields, because of the developed E(int), induced by the acceptor-oxygen vacancy defect dipoles.
Calculations of the Spin-Lattice Coupling Coefficients Fij and Zij for MgO:Co2+Crystal
Institute of Scientific and Technical Information of China (English)
ZHENG Wen-Chen; WU Shao-Yi
2001-01-01
According to a uniform and simple method of calculating spin-lattice coupling coefficients and the pert1rbation formulas of gi factors and hyperfine structure constants Ai based on the cluster approach for 3d7 ions in cubic,tetragonal and trigonal octahedral crystal fields, the spin-lattice coupling coefficients Fij (F11, Fl2, F44), Zij (Z11, Z12,Z44) and also g factor and hyperfine constant A for MgO:Co2+ are calculated by using the parameters obtained from the optical spectra without adjustable parameters. The calculated results show good agreement with the observed values.The difiiculty in explaining the coeficients Fij and Zij is therefore removed.``
Organic field-effect transistors using single crystals
Directory of Open Access Journals (Sweden)
Tatsuo Hasegawa and Jun Takeya
2009-01-01
Full Text Available Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs, the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20–40 cm2 Vs−1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.
TOPICAL REVIEW: Organic field-effect transistors using single crystals
Hasegawa, Tatsuo; Takeya, Jun
2009-04-01
Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm2 Vs-1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.
Ab initio calculations of optical constants of GaSe and InSe layered crystals
Sarkisov, S. Yu.; Kosobutsky, A. V.; Brudnyi, V. N.; Zhuravlev, Yu. N.
2015-09-01
The dielectric functions, refractive indices, and extinction coefficients of GaSe and InSe layered crystals have been calculated within the density functional theory. The calculations have been performed for the values of theoretical structural parameters optimized using the exchange-correlation functional, which allows one to take into account the dispersion interactions. It has been found that optical functions are characterized by the most pronounced polarization anisotropy in the range of photon energies of ˜4-7 eV. The frequency dependences for InSe compound in the range up to 4 eV demonstrate the more pronounced anisotropy as compared to GaSe. The results obtained for GaSe crystal agree better with the experimental data as compared to the previous calculations.
Effective-Field Theory on High Spin Systems with Biaxial Crystal Field
Institute of Scientific and Technical Information of China (English)
JIANG Wei; GUO An-Bang; LI Xin; WANG Xi-Kun; BAI Bao-Dong
2006-01-01
Based on the effective-field theory with self-spin correlations and the differential operator technique,physical properties of the spin-2 system with biaxial crystal field on the simple cubic, body-centered cubic, as well as faced-centered lattice have been studied. The influences of the external longitudinal magnetic field on the magnetization,internal energy, specific heat, and susceptibility have been discussed in detail. The phenomenon that the magnetization in the ground state shows quantum effects produced by the biaxial transverse crystal field has been found.
Ennaceur, Nasreddine; Henchiri, Rokaya; Jalel, Boutheina; Cordier, Marie; Ledoux-Rak, Isabelle; Elaloui, Elimame
2017-09-01
A new semi-organic hydrogen bonding complex salt of 2-ammonium phenylarsonic acid and nitric acid has been synthesized, thus successfully growing good quality single crystals by means of slow solvent evaporation technique at ambient temperature. The 1H and 13C NMR spectra were recorded to establish the molecular structure. The conducted single crystal XRD analysis has shown that the title salt is crystalized in orthorhombic crystal system with centrosymmetric Pbcm space group. The structure consists of infinite parallel two-dimensional planes built of (C6H6NH3AsO3)+ organic cation and NO3- inorganic anions connected by hydrogen bonds and π-π interactions giving birth a three-dimensional network. The performed TG/DSC thermal analysis has established the thermal stability of the crystal. The optimized structural parameters and vibrational frequencies (the experimental and theoretical vibrational frequencies) were assigned and compared by the Density Functional Theory (DFT) using the Gaussian method (DFT/B3LYP). Good consistency results were found between the calculated and the experimental crystal structure and FT-IR spectra.
Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code
Perger, W. F.; Criswell, J.; Civalleri, B.; Dovesi, R.
2009-10-01
An automated procedure for calculating second-order elastic constants for crystalline systems of any symmetry using the CRYSTAL program is described. Second derivatives with respect to strain are evaluated numerically from analytical gradients. The internal co-ordinates are re-optimized with each applied strain. Point group symmetry is exploited to reduce the number of needed deformations according to Laue classes. A set of test cases covering many of the crystal classes is used to document the numerical accuracy of the scheme, and to define default values of the computational parameters so as to reduce the input file to a single keyword.
Near-field probing of photonic crystal directional couplers
DEFF Research Database (Denmark)
Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo
2006-01-01
. By comparing the near-field optical images recorded in and after the directional coupler area, the features of light distribution are analyzed. Finally, the scanning near-field optical microscope observations are found to be in agreement with the transmission measurements conducted with the same sample.......We report the design, fabrication and characterization of a photonic crystal directional with a size of ~20 x 20 mm2 fabricated in silicon-on-insulator material. Using a scanning near-field optical microscope we demonstrate a high coupling efficiency for TM polarized light at telecom wavelengths...
Composite Fermion Theory for the High Field Wigner Crystal State
Narevich, Romanas; Murthy, Ganpathy; Fertig, Herbert
2001-03-01
The low filling fraction Quantum Hall Effect is reexamined using the hamiltonian composite fermion theory developed by Shankar and Murthy(R. Shankar and G. Murthy, Phys. Rev. Lett. 79), 4437 (1997). We address the experiment by Jiang et. al.(H. W. Jiang et. al., Phys. Rev. B 44), 8107 (1991) where the insulating phase surrounding the ν=1/5 quantum liquid was observed and its activation energies (gaps) measured. Previous studies either found gaps that were off by few orders of magnitude (Hartree-Fock calculations of the electronic Wigner crystal(D. Yoshioka and H. Fukuyama, J. Phys. Soc. Japan 47), 394 (1979)) or were unable to calculate them because of the computational complexity (Monte-Carlo studies of the correlated crystal(H. Yi and H. A. Fertig, Phys. Rev. B 58), 4019 (1998)). We use the Hartree-Fock approximation for the periodic density state of composite fermions and find gaps that have a correct order of magnitude and reproduce the experimental dependence on the filling factor. We also report the results of the shear modulus calculation relevant for the collective pinning of the crystal.
Evaluation of the exchange interaction and crystal fields in a prototype Dy2 SMM
Zhang, Qing; Sarachik, Myriam; Baker, Michael; Chen, Yizhang; Kent, Andrew; Pineda, Eufemio; McInnes, Eric
In order to gain an understanding of the INS and magnetization data obtained for Dy2, the simplest member of a newly synthesized family of dysprosium-based molecular magnets, we report on calculations of the magnetic behavior of a Dy2 cluster with the formula [hqH2][Dy2(hq)4(NO3)3].MeOH. The molecular complex contains one high symmetry Dy(III) ion and one low symmetry Dy(III) ion. Our calculations suggest that exchange coupling between the two ions controls the behavior of the magnetization at low temperature, while the crystal field of the low symmetry Dy(III) ion controls the behavior at higher temperature. A point charge electrostatic model, based on crystallographic coordinates, provides a starting point for the determination of the crystal field. Parameters in these calculations are adjusted to provide best fits to inelastic neutron scattering data (INS) and low temperature magnetometry: the INS measurements access crystal field energies and low temperature magnetization probes the Dy-Dy exchange interaction. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).
Fast calculation of digitally reconstructed radiographs using light fields
Russakoff, Daniel B.; Rohlfing, Torsten; Rueckert, Daniel; Shahidi, Ramin; Kim, Daniel; Maurer, Calvin R., Jr.
2003-05-01
Calculating digitally reconstructed radiographs (DRRs)is an important step in intensity-based fluoroscopy-to-CT image registration methods. Unfortunately, the standard techniques to generate DRRs involve ray casting and run in time O(n3),where we assume that n is approximately the size (in voxels) of one side of the DRR as well as one side of the CT volume. Because of this, generation of DRRs is typically the rate-limiting step in the execution time of intensity-based fluoroscopy-to-CT registration algorithms. We address this issue by extending light field rendering techniques from the computer graphics community to generate DRRs instead of conventional rendered images. Using light fields allows most of the computation to be performed in a preprocessing step;after this precomputation step, very accurate DRRs can be generated in time O(n2). Using a light field generated from 1,024 DRRs of resolution 256×256, we can create new DRRs that appear visually identical to ones generated by conventional ray casting. Importantly, the DRRs generated using the light field are computed over 300 times faster than DRRs generated using conventional ray casting(50 vs.17,000 ms on a PC with a 2 GHz Intel Pentium 4 processor).
Magnetic field calculations for iron oxide nanoparticles for MRI
Hernandez, Ricardo; Mendez Rojas, Miguel; Dies Suarez, Pilar; Hidalgo Tobón, Silvia
2014-11-01
The susceptibility effects of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with triethylenglycol (TREG) and Polyethylen Glycol (PEG) has been studied, those nanoparticles have the necessary properties to be used in the clinic as contrast media in imaging by MRI[1-3]. We are considering the behavior of the magnetic field as plane wave to explain the electrical and magnetic field produced by SPIONs. Images were acquired on a 1.5T imager Philips, using mFFE Sequence. Three glass capillary tubes with a) TREG (10nm) concentration of 300 μg/ml, and PEGCOOH 6000(10nm) with 300 μg/ml, and 2% agarosa. Magnetic field simulations were calculated in Matlab. The plane wave that comes in contact with a sphere of radius a, an propagation constant k1, and it is in an homogeneous space k2. We consider that the electric field is linearly polarized on x-direction, with a propagation on z-positive-axis. The secondary induced field can be explained from the interior of the sphere and valid exterior points. The referred waves are transmitted and reflected, this is valid only when the wavelength is smaller than the radius of the sphere. The obtained vibrational mode is an answer of the electrical oscillation and this is projection of the disturbed magnetic field. TREG-SPIONs produce more serious susceptibility artefacts compared to PEG-SPIONs. This study is promissory due to the concordance of the results of the simulations and the inhomogeneities showed in the MR images.
Limitations of analytical dose calculations for small field proton radiosurgery
Geng, Changran; Daartz, Juliane; Lam-Tin-Cheung, Kimberley; Bussiere, Marc; Shih, Helen A.; Paganetti, Harald; Schuemann, Jan
2017-01-01
The purpose of the work was to evaluate the dosimetric uncertainties of an analytical dose calculation engine and the impact on treatment plans using small fields in intracranial proton stereotactic radiosurgery (PSRS) for a gantry based double scattering system. 50 patients were evaluated including 10 patients for each of 5 diagnostic indications of: arteriovenous malformation (AVM), acoustic neuroma (AN), meningioma (MGM), metastasis (METS), and pituitary adenoma (PIT). Treatment plans followed standard prescription and optimization procedures for PSRS. We performed comparisons between delivered dose distributions, determined by Monte Carlo (MC) simulations, and those calculated with the analytical dose calculation algorithm (ADC) used in our current treatment planning system in terms of dose volume histogram parameters and beam range distributions. Results show that the difference in the dose to 95% of the target (D95) is within 6% when applying measured field size output corrections for AN, MGM, and PIT. However, for AVM and METS, the differences can be as great as 10% and 12%, respectively. Normalizing the MC dose to the ADC dose based on the dose of voxels in a central area of the target reduces the difference of the D95 to within 6% for all sites. The generally applied margin to cover uncertainties in range (3.5% of the prescribed range + 1 mm) is not sufficient to cover the range uncertainty for ADC in all cases, especially for patients with high tissue heterogeneity. The root mean square of the R90 difference, the difference in the position of distal falloff to 90% of the prescribed dose, is affected by several factors, especially the patient geometry heterogeneity, modulation and field diameter. In conclusion, implementation of Monte Carlo dose calculation techniques into the clinic can reduce the uncertainty of the target dose for proton stereotactic radiosurgery. If MC is not available for treatment planning, using MC dose distributions to
Quantum Monte Carlo calculations with chiral effective field theory interactions
Energy Technology Data Exchange (ETDEWEB)
Tews, Ingo
2015-10-12
The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By
Synthesis, Crystal Structure, and DFT Calculations of 1,3-Diisobutyl Thiourea
Directory of Open Access Journals (Sweden)
Ataf A. Altaf
2015-01-01
Full Text Available 1,3-Diisobutyl thiourea was synthesized and characterized by single crystal X-ray diffraction. It gives a monoclinic (α = γ = 90 and β ≠ 90 structure with the space group P21/c. The unit cell dimensions are a = 11.5131 (4 Å, b = 9.2355 (3 Å, c = 11.3093 (5 Å, α = 90°, β = 99.569° (2, γ = 90°, V = 1185.78 (8 Å3, and Z = 4. The crystal packing is stabilized by intermolecular (N–H⋯S hydrogen bonding in the molecules. The optimized geometry and Mullikan's charges of the said molecule calculated with the help of DFT using B3LYP-6-311G model support the crystal structure.
Theoretical modeling of zircon's crystal morphology according to data of atomistic calculations
Gromalova, Natalia; Nikishaeva, Nadezhda; Eremin, Nikolay
2017-04-01
Zircon is an essential mineral that is used in the U-Pb dating. Moreover, zircon is highly resistant to radioactive exposure. It is of great interest in solving both fundamental and applied problems associated with the isolation of high-level radioactive waste. There is significant progress in forecasting of the most energetically favorable crystal structures at the present time. Unfortunately, the theoretical forecast of crystal morphology at high technological level is under-explored nowadays, though the estimation of crystal equilibrium habit is extremely important in studying the physical and chemical properties of new materials. For the first time, the thesis about relation of the equilibrium shape of a crystal with its crystal structure was put forward in the works by O.Brave. According to it, the idealized habit is determined in the simplest case by a correspondence with the reticular densities Rhkl of individual faces. This approach, along with all subsequent corrections, does not take into account the nature of atoms and the specific features of the chemical bond in crystals. The atomistic calculations of crystal surfaces are commonly performed using the energetic characteristics of faces, namely, the surface energy (Esurf), which is a measure of the thermodynamic stability of the crystal face. The stable crystal faces are characterized by small positive values of Esurf. As we know from our previous research (Gromalova et al.,2015) one of the constitutive factors affecting the value of the surface energy in calculations is a choice of potentials model. In this regard, we studied several sets of parameters of atomistic interatomic potentials optimized previously. As the first test model («Zircon 1») were used sets of interatomic potentials of interaction Zr-O, Si-O and O-O in the form of Buckingham potentials. To improve playback properties of zircon additionally used Morse potential for a couple of Zr-Si, as well as the three-particle angular harmonic
Ferrero, Mauro; Rérat, Michel; Kirtman, Bernard; Dovesi, Roberto
2008-12-01
A computational scheme for the evaluation of the static first (β) and second (γ) hyperpolarizability tensors of systems periodic in 1D (polymers), 2D (slabs), 3D (crystals), and, as a limiting case, 0D (molecules) has been implemented, within the coupled perturbed Hartree-Fock framework (CPHF), in the CRYSTAL code, which uses a Gaussian type basis set. This generalizes to 2D and 3D the work by Bishop et al. (J. Chem. Phys. 114, 7633 (2001)). CPHF is applied for β and γ (the polarizability tensor α is also reported for completeness) of LiF in different aggregation states: finite and infinite chains, slabs, and cubic crystal. Correctness of the computational scheme and its numerical efficiency are documented by the trend of β and γ for increasing dimensionality: for a finite linear chain containing N LiF units, the hyperpolarizability tends to the infinite chain value at large N, N parallel chains give the slab value when N is sufficiently large, and N superimposed slabs tend to the bulk value. High numerical accuracy can be achieved at relatively low cost, with a dependence on the computational parameters similar to that observed for field-free self-consistent field (SCF) calculations.
Orientation ordering in J = 1 solid hydrogens at crystal fields
Antsygina, T N; Freimann, Y A; Hemley, R J
2003-01-01
A system of quantum linear rotators with a rotational quantum number J 1 is considered at a crystal field. An equation for orientation order parameter is derived, and the critical parameters, the phase separation curve and the lines of overheating and overcooling points are obtained. It is shown that in terms of the thermodynamics the behavior of the above linear rotators in the classical case and in the extremely quantum (J = 1) one is identical. For positive values of the crystal field there also exist parallels between orientation phase transitions in a system of rotators with J = 1 and phase transitions in a liquid-vapor system. It is shown that the consideration of J > 1 states results in a radical change of the phase transition behavior in a system of rotators: instead of the sole critical point typical for the J = 1 system, there appears a line of critical points.
Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers
Directory of Open Access Journals (Sweden)
Carla C. Kato
2011-11-01
Full Text Available A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.
Magnetic field measurements based on Terfenol coated photonic crystal fibers.
Quintero, Sully M M; Martelli, Cicero; Braga, Arthur M B; Valente, Luiz C G; Kato, Carla C
2011-01-01
A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.
Low-frequency electromagnetic field in a Wigner crystal
Stupka, Anton
2016-01-01
Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.
Electrical properties and electrical field in depletion layer for CZT crystals
Institute of Scientific and Technical Information of China (English)
LI Qiang; JIE Wan-qi; FU Li; YANG Ge; ZHA Gang-qiang; WANG Tao; BAI Xu-xu
2006-01-01
Current—voltage (I—V) and capacitance-voltage (C—V) characteristics of Au/p-CZT contacts with different surface treatments on cadmium zinc telluride (CZT) wafer's surface were measured with Agilent 4339B high resistance meter and Agilent 4294A precision impedance analyzer,respectively. The Schottky barrier height was 0.85±0.05,0.96±0.05 eV for non-passivated and passivated CZT crystals by I—V measurement. By C—V measurement,the Schottky barrier height was 1.39±0.05,1.51±0.05 eV for non-passivated and passivated CZT crystals. The results show that the passivation treatment can increase the barrier height of the Au/p-CZT contact and decrease the leakage current. The main reason is that the higher barrier height of Au/p-CZT contacts can decrease the possibility for electrons to pass through the native TeO2 film. Most of the applied voltage appears on the depleted layer and there is only a negligible voltage drops across the nearly undepleted region. Furthermore,the electric field in the depleted layer is not uniform and can be calculated by the depletion approximation. The maximum electric field of CZT crystals is Em1=133 V/cm at x=0 for non-passivated CZT crystal and Em2=55 V/cm for passivated CZT crystal,respectively.
The First-Principle Calculation of La-doping Effect on Piezoelectricity in Tetragonal KNN Crystal
Zhang, Qiaoli; Zhu, Jiliang; Yuan, Daqing; Zhu, Bo; Wang, Mingsong; Zhu, Xiaohong; Fan, Ping; Zuo, Yi; Zheng, Yongnan; Zhu, Shengyun
2012-05-01
The La-dopping effect on the piezoelectricity in the K0.5Na0.5NbO3 (KNN) crystal with a tetragonal phase is investigated for the first time using the first-principle calculation based on density functional theory. The full potentiallinearized augumented plane wave plus local orbitals (APW-LO) method and the supercell method are used in the calculation for the KNN crystal with and without the La doping. The results show that the piezoelectricity originates from the strong hybridization between the Nb atom and the O atom, and the substitution of the K or Na atom by the La impurity atom introduces the anisotropic relaxation and enhances the piezoelectricity at first and then restrains the hybridization of the Nb-O atoms when the La doping content further increases.
The First-Principle Calculation of La-doping Effect on Piezoelectricity in Tetragonal KNN Crystal
Institute of Scientific and Technical Information of China (English)
张乔丽; 朱基亮; 袁大庆; 朱波; 王明松; 朱小红; 范平; 左翼; 郑永男; 朱升云
2012-01-01
The La-dopping effect on the piezoelectricity in the K0.5Na0.5NbO3 （KNN） crystal with a tetragonal phase is investigated for the first time using the first-principle calculation based on density functional theory. The full potentiallinearized augumented plane wave plus local orbitals （APW-LO） method and the supercell method are used in the calculation for the KNN crystal with and without the La doping. The results show that the piezoelectricity originates from the strong hybridization between the Nb atom and the O atom, and the substitution of the K or Na atom by the La impurity atom introduces the anisotropic relaxation and enhances the piezoelectricity at first and then restrains the hybridization of the Nb-O atoms when the La doping content further increases.
Role of internal demagnetizing field for the dynamics of a surface-modulated magnonic crystal
Langer, M.; Röder, F.; Gallardo, R. A.; Schneider, T.; Stienen, S.; Gatel, C.; Hübner, R.; Bischoff, L.; Lenz, K.; Lindner, J.; Landeros, P.; Fassbender, J.
2017-05-01
This work aims to demonstrate and understand the key role of local demagnetizing fields in hybrid structures consisting of a continuous thin film with a stripe modulation on top. To understand the complex spin dynamics of these structures, the magnonic crystal was reconstructed in two different ways—performing micromagnetic simulations based on the structural shape as well as based on the internal demagnetizing field, which both are mapped on the nanoscale using electron holography. The simulations yield the frequency-field dependence as well as the angular dependence revealing the governing role of the internal field landscape around the backward-volume geometry. Simple rules for the propagation vector and the mode localization are formulated in order to explain the calculated mode profiles. Treating internal demagnetizing fields equivalent to anisotropies, the complex angle-dependent spin-wave behavior is described for an in-plane rotation of the external field.
Semiconductor Crystal Growth in Static and Rotating Magnetic fields
Volz, Martin
2004-01-01
Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a
Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets
Rau, Jeffrey G.; Petit, Sylvain; Gingras, Michel J. P.
2016-05-01
Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7 , with the ground state selection proceeding by order by disorder induced through the effects of quantum fluctuations. This identification assumes the smallness of the effect of virtual crystal field fluctuations that could provide an alternative route to picking the ground state. Here we show that this order by virtual crystal field fluctuations is not only significant, but competitive with the effects of quantum fluctuations. Further, we argue that higher-multipolar interactions that are generically present in rare-earth magnets can dramatically enhance this effect. From a simplified bilinear-biquadratic model of these multipolar interactions, we show how the virtual crystal field fluctuations manifest in Er2Ti2O7 using a combination of strong-coupling perturbation theory and the random-phase approximation. We find that the experimentally observed ψ2 state is indeed selected and the experimentally measured excitation gap can be reproduced when the bilinear and biquadratic couplings are comparable while maintaining agreement with the entire experimental spin-wave excitation spectrum. Finally, we comment on possible tests of this scenario and discuss implications for other order-by-disorder candidates in rare-earth magnets.
Energy Technology Data Exchange (ETDEWEB)
Nakata, Manabu; Okada, Takashi; Komai, Yoshinori; Nohara, Hiroki [Kyoto Univ. (Japan). Hospital
1996-08-01
Modern linear accelerators have four independent jaws and multileaf collimators (MLC) of 1 cm width at the isocenter. Asymmetric fields defined by such independent jaws and irregular multileaf collimated fields can be used to match adjacent fields or to spare the spinal cord in external photon beam radiotherapy. We have developed a new approximate algorithm for depth dose calculations at the collimator rotation axis. The program is based on Clarkson`s principle, and uses a more accurate modification of Day`s method for asymmetric fields. Using this method, tissue-maximum ratios (TMR) and field factors of ten kinds of asymmetric fields and ten different irregular multileaf collimated fields were calculated and compared with the measured data for 6 MV and 15 MV photon beams. The dose accuracy with the general A/Pe method was about 3%, however, with the new modified Day`s method, accuracy was within 1.7% for TMR and 1.2% for field factors. The calculated TMR and field factors were found to be in good agreement with measurements for both the 6 MV and 15 MV photon beams. (author)
Miura, Hitoshi; Yokoyama, Etsuro; Tsukamoto, Katsuo
2010-07-01
The growth of crystal induces a change of ambient environment (temperature, concentration, etc.), and the environmental change gives some feedback to the growth of crystal. The interaction between the crystal growth and ambient environment is important to be taken into consideration, also in the crystallization process of cosmic crystals observed in chondritic meteorites. In this lecture, we will introduce the phase-field simulation, which is one of the powerful numerical methods to treat the crystal growth and diffusion fields (temperature, concentration, etc.) simultaneously. Participants can experience some phase-field simulations on their own laptop by using a newly developed Java program, which will be distributed at the school.
CCSD(T)/CBS fragment-based calculations of lattice energy of molecular crystals
Červinka, Ctirad; Fulem, Michal; Růžička, Květoslav
2016-02-01
A comparative study of the lattice energy calculations for a data set of 25 molecular crystals is performed using an additive scheme based on the individual energies of up to four-body interactions calculated using the coupled clusters with iterative treatment of single and double excitations and perturbative triples correction (CCSD(T)) with an estimated complete basis set (CBS) description. The CCSD(T)/CBS values on lattice energies are used to estimate sublimation enthalpies which are compared with critically assessed and thermodynamically consistent experimental values. The average absolute percentage deviation of calculated sublimation enthalpies from experimental values amounts to 13% (corresponding to 4.8 kJ mol-1 on absolute scale) with unbiased distribution of positive to negative deviations. As pair interaction energies present a dominant contribution to the lattice energy and CCSD(T)/CBS calculations still remain computationally costly, benchmark calculations of pair interaction energies defined by crystal parameters involving 17 levels of theory, including recently developed methods with local and explicit treatment of electronic correlation, such as LCC and LCC-F12, are also presented. Locally and explicitly correlated methods are found to be computationally effective and reliable methods enabling the application of fragment-based methods for larger systems.
Precision decay rate calculations in quantum field theory
Andreassen, Anders; Frost, William; Schwartz, Matthew D
2016-01-01
Tunneling in quantum field theory is worth understanding properly, not least because it controls the long term fate of our universe. There are however, a number of features of tunneling rate calculations which lack a desirable transparency, such as the necessity of analytic continuation, the appropriateness of using an effective instead of classical potential, and the sensitivity to short-distance physics. This paper attempts to review in pedagogical detail the physical origin of tunneling and its connection to the path integral. Both the traditional potential-deformation method and a recent more direct propagator-based method are discussed. Some new insights from using approximate semi-classical solutions are presented. In addition, we explore the sensitivity of the lifetime of our universe to short distance physics, such as quantum gravity, emphasizing a number of important subtleties.
Phase-field-crystal model for fcc ordering.
Wu, Kuo-An; Adland, Ari; Karma, Alain
2010-06-01
We develop and analyze a two-mode phase-field-crystal model to describe fcc ordering. The model is formulated by coupling two different sets of crystal density waves corresponding to and reciprocal lattice vectors, which are chosen to form triads so as to produce a simple free-energy landscape with coexistence of crystal and liquid phases. The feasibility of the approach is demonstrated with numerical examples of polycrystalline and (111) twin growth. We use a two-mode amplitude expansion to characterize analytically the free-energy landscape of the model, identifying parameter ranges where fcc is stable or metastable with respect to bcc. In addition, we derive analytical expressions for the elastic constants for both fcc and bcc. Those expressions show that a nonvanishing amplitude of [200] density waves is essential to obtain mechanically stable fcc crystals with a nonvanishing tetragonal shear modulus (C11-C12)/2. We determine the model parameters for specific materials by fitting the peak liquid structure factor properties and solid-density wave amplitudes following the approach developed for bcc [K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007)]. This procedure yields reasonable predictions of elastic constants for both bcc Fe and fcc Ni using input parameters from molecular dynamics simulations. The application of the model to two-dimensional square lattices is also briefly examined.
Institute of Scientific and Technical Information of China (English)
Wen Jun; Duan Chang-Kui; Yin Min; Yu.V.Orlovskii; Xia Shang-Da; Zhang Yong-Fan
2012-01-01
The local coordination structures around the doping Yb2+ ions in sodium and potassium halides were calculated by using the first-principles supercell model.Both the cases with and without the charge compensation vacancy in the local environment of the doping Yb2+ were calculated to study the effect of the doping on the local coordination structures of Yb2+.Using the calculated local structures,we obtained the crystal-field parameters for the Yb2+ ions doped in sodium and potassium halides by a method based on the combination of the quantum-chemical calculations and the effective Hamiltonian method.The calculated crystal-field parameters were analyzed and compared with the fitted results.
Crystal field in ErGa sub 3 - a neutron spectroscopy study
Murasik, A; Clementyev, E; Schefer, J
2000-01-01
The splitting of the J=15/2 multiplet of Er sup 3 sup + in a cubic crystal field has been determined by inelastic scattering from a polycrystalline sample of ErGa sub 3. On the basis of the observed intensities and their temperature variation we have been able to determine two crystal electric field (CEF) parameters required for cubic symmetry. Least-squares fits applied to the observed spectra taken at various temperatures gave crystal field parameters: B sub 4 =(7.15+-0.05)x10 sup - sup 5 and B sub 6 =(1.28+-0.05)x10 sup - sup 6 meV yielding the GAMMA sub 7 doublet as a ground level with the overall splitting of 10.92 meV. The results are used to calculate the temperature-dependant zero-field magnetisation, the Schottky anomaly of the specific heat associated with the CEF splitting of Er sup 3 sup + in ErGa sub 3 , and the high-field magnetisation.
Magnetic properties of a three layer superlattice with a crystal field
Institute of Scientific and Technical Information of China (English)
Jiang Wei; Li Xin; Wang Xi-Kun; Guo An-Bang
2006-01-01
In this paper the magnetic properties of a three layer superlattice with the crystal field on the honeycomb and square lattice have been studied based on the effective-field theory with self-spin correlations and the differential operator technique. The effects of the crystal field and longitudinal magnetic field on the susceptibility are discussed in detail. A number of interesting phenomena, originating from the competition between the longitudinal magnetic field, crystal-field,and coordination number, have been found.
Velocity field of streams in nonuniform constant magnetic fields. Part 1: numerical calculations
Energy Technology Data Exchange (ETDEWEB)
Gel' fgat, Yu.M.; Peterson, D.Ye.; Shcherbinin, E.V.
1978-01-01
Steady flow of a conducting fluid through a rectangular pipe in nonuniform magnetic fields of various configurations is analyzed and the results are found to depend on whether the magnetic field is assumed to have only a transverse or also a longitudinal component. Velocity and potential profiles are calculated numerically for each case, according to grids with various step sizes, also for an asymmetrically nonuniform and for a periodically nonuniform magnetic field. The feasibility of establishing practically any desired flow pattern by tailoring the magnetic field has thus been established, but the success of this procedure depends largely on the choice of the computation scheme and on the accuracy of computations, as well as on the assumptions made concerning the distribution of the magnetic field. 9 references, 6 figures.
Direct calculation of the lattice Green function with arbitrary interactions for general crystals.
Yasi, Joseph A; Trinkle, Dallas R
2012-06-01
Efficient computation of lattice defect geometries such as point defects, dislocations, disconnections, grain boundaries, interfaces, and free surfaces requires accurate coupling of displacements near the defect to the long-range elastic strain. Flexible boundary condition methods embed a defect in infinite harmonic bulk through the lattice Green function. We demonstrate an efficient and accurate calculation of the lattice Green function from the force-constant matrix for general crystals with an arbitrary basis by extending a method for Bravais lattices. New terms appear due to the presence of optical modes and the possible loss of inversion symmetry. By separately treating poles and discontinuities in reciprocal space, numerical accuracy is controlled at all distances. We compute the lattice Green function for a two-dimensional model with broken symmetry to elucidate the role of different coupling terms. The algorithm is generally applicable in two and three dimensions to crystals with arbitrary number of atoms in the unit cell, symmetry, and interactions.
Jin, R. Y.; Sun, X. H.; Liu, Y. F.; Long, W.; Chen, B.; Shen, S. Q.; Ma, H. X.
2016-01-01
Series of isoxazole derivatives were synthesized by substituted chalcones and 2-chloro-6-fluorobenzene formaldehyde oxime with 1,3-dipolar cycloaddition. The target compounds were determined by melting point, IR, 1H NMR, elemental analyses and HRMS. The crystal structure of compound 3a was detected by X-ray diffraction and it crystallizes in the triclinic space group p2(1)/c with z = 4. The molecular geometry of compound 3a was optimized using density functional theory (DFT/B3LYP) method with the 6-31G+(d,p) basis set in the ground state. From the optimized geometry of the molecule, FT-IR, FT-Raman, HOMO-LUMO and natural bond orbital (NBO) were calculated at B3LYP/6-31G+(d,p) level. Finally, the antifungal activity of the synthetic compounds were evaluated against Pythium solani, Gibberella nicotiancola, Fusarium oxysporium f.sp. niveum and Gibberella saubinetii.
The Crystal Structure of Impurity Centers Tm^{2+} and Eu^{2+} in SrCl2: Ab Initio Calculations
Chernyshev, V. A.; Serdcev, A. V.; Petrov, V. P.; Nikiforov, A. E.
2016-12-01
Ab initio calculations of the impurity centers Tm^{2+} thulium and europium Eu^{2+} in SrCl2 and MeF2 (Me = Ca, Sr, Ba) were carried out at low (zero) temperature. The crystal structure of impurity centers was investigated. Charge density maps show that the bonds formed by the rare-earth ions have an ionic character. The crystal structures, lattice dynamics, and band structures of MeF2 and SrCl2 were calculated at low temperature. Ab initio calculations were performed in periodic CRYSTAL code within the framework of the MO LCAO approach by using hybrid DFT functionals.
Calculation of inelastic scattering processes of relativistic electrons in oriented crystals
Energy Technology Data Exchange (ETDEWEB)
Hinderks, Dieter; Kohl, Helmut
2015-04-15
The inelastic scattering of electrons in oriented crystals has been used to determine the positions of atoms within a crystal, to obtain site-dependent electron energy loss spectra and, more recently, to obtain an energy loss signal corresponding to the circular dichroism in X-ray absorption spectroscopy. The theoretical approaches currently used for the description of these processes are based on the nonrelativistic Schrödinger equation. Nowadays many experiments, however, are conducted with incident energies of 200 or 300 keV. Therefore it is indispensable to use a relativistic description for such processes based on the Dirac equation. Using the Coulomb gauge it is shown, that the fully relativistic cross sections for plane wave scattering are given by the modulus square of a sum of two terms: one describing the electrostatic interactions similar to the nonrelativistic theory plus one additional term describing the interaction of the specimen with the magnetic field produced by the incident electron. In crystals both terms can interfere leading to large deviations from nonrelativistic theory. - Highlights: • Inelastic scattering of relativistic electrons in oriented crystals is described. • We have derived equations for relativistic Bloch waves. • Strong deviations from nonrelativistic theory have been demonstrated.
Near-field characterization of photonic crystal Y-splitters
DEFF Research Database (Denmark)
Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo
2005-01-01
-1570 nm. The recorded intensity distribution exhibit highly wavelength (and polarization) dependent intensity variations along the propagation direction, especially around the fork and bend regions. By comparing the SNOM images recorded in and after the PC Y-splitter area, the features of light......A scanning near-field optical microscope (SNOM) is used to directly map the propagation of light in a specially designed 50/50 photonic crystal (PC) Y-splitter fabricated on silicon-on-insulator (SOI) wafers. SNOM images are obtained for TE- and TM-polarized light in the wavelength range 1425...
Charge Penetration Effects in Rare-Earth Crystal Fields.
1982-06-01
Interactions, 3. Three-Parameter Theory of Crystal Fields, Harry Diamond Laboratories HDL-TR-1673 (June 1975). 2R. M. Sternheimer , Phys. Rev., 84 (1951...R. M. Sternheimer , Phys. Rev., 84 (1951), 244. (3) R. E. Watson and A. J. Freeman, Phys. Rev., 135 (1964), A1209. (4) D. Sengupta and J. 0. Artman...A RARE-EARTH ION INTO THE CHARGE DI! THE RESULTS ARE CAST INTO A FORM REMINISCENT OF THE STERNHEIMER SHIELDING FA( A PRIME NM(R TO THE NTH POWER) TO
Effect of magnetic field on the wave dispersion relation in three-dimensional dusty plasma crystals
Energy Technology Data Exchange (ETDEWEB)
Yang Xuefeng [School of Mathematical Sciences, Dalian University of Technology, Dalian 116024 (China); Wang Zhengxiong [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)
2012-07-15
Three-dimensional plasma crystals under microgravity condition are investigated by taking into account an external magnetic field. The wave dispersion relations of dust lattice modes in the body centered cubic (bcc) and the face centered cubic (fcc) plasma crystals are obtained explicitly when the magnetic field is perpendicular to the wave motion. The wave dispersion relations of dust lattice modes in the bcc and fcc plasma crystals are calculated numerically when the magnetic field is in an arbitrary direction. The numerical results show that one longitudinal mode and two transverse modes are coupled due to the Lorentz force in the magnetic field. Moreover, three wave modes, i.e., the high frequency phonon mode, the low frequency phonon mode, and the optical mode, are obtained. The optical mode and at least one phonon mode are hybrid modes. When the magnetic field is neither parallel nor perpendicular to the primitive wave motion, all the three wave modes are hybrid modes and do not have any intersection points. It is also found that with increasing the magnetic field strength, the frequency of the optical mode increases and has a cutoff at the cyclotron frequency of the dust particles in the limit of long wavelength, and the mode mixings for both the optical mode and the high frequency phonon mode increase. The acoustic velocity of the low frequency phonon mode is zero. In addition, the acoustic velocity of the high frequency phonon mode depends on the angle of the magnetic field and the wave motion but does not depend on the magnetic field strength.
Anitha, R; Gunasekaran, M; Kumar, S Suresh; Athimoolam, S; Sridhar, B
2015-01-01
The common house hold pharmaceutical drug, paracetamol (PAR), has been synthesized from 4-chloroaniline as a first ever report. After the synthesis, good quality single crystals were obtained for slow evaporation technique under the room temperature. The crystal and molecular structures were re-determined by the single crystal X-ray diffraction. The vibrational spectral measurements were carried out using FT-IR and FT-Raman spectroscopy in the range of 4000-400 cm(-1). The single crystal X-ray studies shows that the drug crystallized in the monoclinic system polymorph (Form-I). The crystal packing is dominated by N-H⋯O and O-H⋯O classical hydrogen bonds. The ac diagonal of the unit cell features two chain C(7) and C(9) motifs running in the opposite directions. These two chain motifs are cross-linked to each other to form a ring R4(4)(22) motif and a chain C2(2)(6) motif which is running along the a-axis of the unit cell. Along with the classical hydrogen bonds, the methyl group forms a weak C-H⋯O interactions in the crystal packing. It offers the support for molecular assembly especially in the hydrophilic regions. Further, the strength of the hydrogen bonds are studied the shifting of vibrational bands. Geometrical optimizations of the drug molecule were done by the Density Functional Theory (DFT) using the B3LYP function and Hartree-Fock (HF) level with 6-311++G(d,p) basis set. The optimized molecular geometry and computed vibrational spectra are compared with experimental results which show significant agreement. The factor group analysis of the molecule was carried out by the various molecular symmetry, site and factor group species using the standard correlation method. The Natural Bond Orbital (NBO) analysis was carried out to interpret hyperconjugative interaction and intramolecular charge transfer (ICT). The chemical softness, chemical hardness, electro-negativity, chemical potential and electrophilicity index of the molecule were found out first
Zhou, Changjiang; Sai, Yi; Chen, Jiujiu
2016-09-01
This paper theoretically investigates the band gaps of Lamb mode waves in two-dimensional magnetoelastic phononic crystal slabs by an applied external magnetostatic field. With the assumption of uniformly oriented magnetization, an equivalent piezomagnetic material model is used. The effects of magnetostatic field on phononic crystals are considered carefully in this model. The numerical results indicate that the width of the first band gap is significantly changed by applying the external magnetic field with different amplitude, and the ratio between the maximum and minimum gap widths reaches 228%. Further calculations demonstrate that the orientation of the magnetic field obviously affects the width and location of the first band gap. The contactless tunability of the proposed phononic crystal slabs shows many potential applications of vibration isolation in engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
PDielec: The calculation of infrared and terahertz absorption for powdered crystals
Kendrick, John
2016-01-01
The Python package PDielec is described, which calculates the infrared absorption characteristics of a crystalline material supported in a non‐absorbing medium. PDielec post processes solid‐state quantum mechanical and molecular mechanical calculations of the phonons and dielectric response of the crystalline material. Using an effective medium method, the package calculates the internal electric field arising from different particle morphologies and calculates the resulting shift in absorption frequency and intensity arising from the coupling between a phonon and the internal field. The theory of the approach is described, followed by a description of the implementation within PDielec. Finally, a section providing several examples of its application is given. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27074733
Organic single-crystal light-emitting field-effect transistors
Hotta, Shu; Yamao, Takeshi; Bisri, Satria Zulkarnaen; Takenobu, Taishi; Iwasa, Yoshihiro
2014-01-01
Growth and characterisation of single crystals constitute a major field of materials science. In this feature article we overview the characteristics of organic single-crystal light-emitting field-effect transistors (OSCLEFETs). The contents include the single crystal growth of organic semiconductor
Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît
2013-09-21
In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.
Directory of Open Access Journals (Sweden)
Xiaodong Wang
2016-06-01
Full Text Available Flow induced crystallization of semi-crystalline polymers is an important issue in polymer science and engineering because the changes in morphology strongly affect the properties of polymer materials. In this study, a phase field technique considering polymer characteristics was established for modeling and predicting the resulting morphologies. The considered crystallization process can be divided into two stages, which are nucleation upon the flow induced structures and subsequent crystal growth after the cessation of flow. Accordingly, the proposed technique consists of two parts which are a flow induced nucleation model based on the calculated information of molecular orientation and stretch, and a phase field crystal growth model upon the oriented nuclei. Two-dimensional simulations are carried out to predict the crystallization morphology of isotactic polystyrene under an injection molding process. The results of these simulations demonstrate that flow affects crystallization morphology mainly by producing oriented nuclei. Specifically, the typical skin-core structures along the thickness direction can be successfully predicted. More importantly, the results reveal that flow plays a dominant part in generating oriented crystal morphologies compared to other parameters, such as anisotropy strength, crystallization temperature, and physical noise.
Energy Technology Data Exchange (ETDEWEB)
Maeta, Takahiro [Graduate School of System Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); GlobalWafers Japan Co., Ltd., Higashikou, Seirou-machi, Kitakanbara-gun, Niigata 957-0197 (Japan); Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan)
2014-08-21
Ge-based substrates are being developed for applications in advanced nano-electronic devices because of their higher intrinsic carrier mobility than Si. The stability and diffusion mechanism of impurity atoms in Ge are not well known in contrast to those of Si. Systematic studies of the stable sites of 2nd to 6th row element impurity atoms in Ge crystal were undertaken with density functional theory (DFT) and compared with those in Si crystal. It was found that most of the impurity atoms in Ge were stable at substitutional sites, while transition metals in Si were stable at interstitial sites and the other impurity atoms in Si were stable at substitutional sites. Furthermore, DFT calculations were carried out to clarify the mechanism responsible for the diffusion of impurity atoms in Ge crystals. The diffusion mechanism for 3d transition metals in Ge was found to be an interstitial-substitutional diffusion mechanism, while in Si this was an interstitial diffusion mechanism. The diffusion barriers in the proposed diffusion mechanisms in Ge and Si were quantitatively verified by comparing them to the experimental values in the literature.
Crystal-field and covalency effects in uranates: an X-ray spectroscopic study
Energy Technology Data Exchange (ETDEWEB)
Butorin, Sergei M. [Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Kvashnina, Kristina O. [European Synchrotron Radiation Facility, CS40220, Grenoble (France); Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Dresden (Germany); Smith, Anna L. [Department of Radiation Science and Technology, TU Delft (Netherlands); Popa, Karin [European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe (Germany); Martin, Philippe M. [CEA Marcoule, CEA, DEN, DTEC/SECA/LCC, Bagnols-sur-Ceze (France)
2016-07-04
The electronic structure of U{sup V}- and U{sup VI}-containing uranates NaUO{sub 3} and Pb{sub 3}UO{sub 6} was studied by using an advanced technique, namely X-ray absorption spectroscopy (XAS) in high-energy-resolution fluorescence-detection (HERFD) mode. Due to a significant reduction in core-hole lifetime broadening, the crystal-field splittings of the 5f shell were probed directly in HERFD-XAS spectra collected at the U 3d edge, which is not possible by using conventional XAS. In addition, the charge-transfer satellites that result from U 5f-O 2p hybridization were clearly resolved. The crystal-field parameters, 5f occupancy, and degree of covalency of the chemical bonding in these uranates were estimated by using the Anderson impurity model by calculating the U 3d HERFD-XAS, conventional XAS, core-to-core (U 4f-3d transitions) resonant inelastic X-ray scattering (RIXS), and U 4f X-ray photoelectron spectra. The crystal field was found to be strong in these systems and the 5f occupancy was determined to be 1.32 and 0.84 electrons in the ground state for NaUO{sub 3} and Pb{sub 3}UO{sub 6}, respectively, which indicates a significant covalent character for these compounds. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Takaba, Hiromitsu; Kimura, Shou; Alam, Md. Khorshed
2017-03-01
Durability of organo-lead halide perovskite are important issue for its practical application in a solar cells. In this study, using density functional theory (DFT) and molecular dynamics, we theoretically investigated a crystal structure, electronic structure, and ionic diffusivity of the partially substituted cubic MA0.5X0.5PbI3 (MA = CH3NH3+, X = NH4+ or (NH2)2CH+ or Cs+). Our calculation results indicate that a partial substitution of MA induces a lattice distortion, resulting in preventing MA or X from the diffusion between A sites in the perovskite. DFT calculations show that electronic structures of the investigated partially substituted perovskites were similar with that of MAPbI3, while their bandgaps slightly decrease compared to that of MAPbI3. Our results mean that partial substitution in halide perovskite is effective technique to suppress diffusion of intrinsic ions and tune the band gap.
Institute of Scientific and Technical Information of China (English)
LIU Zhao-Sen
2007-01-01
A theoretical approach is generalized and employed to calculate the magneto-resistivity of a rare-earth crystalline (CeAl2) with degenerate ground crystal-field (CF) level in the presence of external fields. The calculated results show that when a magnetic field is applied in the c-direction, the magneto-resistivity may be reduced by more than 90% in certain cases in comparison with the pure CF contribution at the same temperature, demonstrating the strong effects of the degeneracy removals of the CF levels on the magnetic resistivity.
Vast, Nathalie; Baroni, Stefano
2000-04-01
We present a method to study the effects of isotopic composition on the Raman spectra of crystals, in which disorder is treated exactly without resorting to any kind of mean-field approximation. The Raman cross section is expressed in terms of a suitable diagonal element of the vibrational Green's function, which is accurately and efficiently calculated using the recursion technique. This method can be used in conjunction with both semiempirical lattice-dynamical models and with first-principles interatomic force constants. We have applied our technique to diamond and germanium using the most accurate interatomic force constants presently available, obtained from density-functional perturbation theory. Our method correctly reproduces the light scattering in diamond-where isotopic effects dominates over the anharmonic ones-as well as in germanium, where anharmonic effects are larger.
Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors
Energy Technology Data Exchange (ETDEWEB)
Li, Z. Q.; Podzorov, V.; Sai, N.; Martin, Michael C.; Gershenson, M. E.; Di Ventra, M.; Basov, D. N.
2007-03-01
We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m[small star, filled]comparable to free electron mass. Furthermore, the m[small star, filled]values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.
Tight-binding calculation of radiation loss in photonic crystal CROW.
Ma, Jing; Martínez, Luis Javier; Fan, Shanhui; Povinelli, Michelle L
2013-01-28
The tight binding approximation (TBA) is used to relate the intrinsic, radiation loss of a coupled resonator optical waveguide (CROW) to that of a single constituent resonator within a light cone picture. We verify the validity of the TBA via direct, full-field simulation of CROWs based on the L2 photonic crystal cavity. The TBA predicts that the quality factor of the CROW increases with that of the isolated cavity. Moreover, our results provide a method to design CROWs with low intrinsic loss across the entire waveguide band.
Crystal field excitations of YbMn2Si2
Mole, R. A.; Hofmann, M.; Adroja, D. T.; Moze, O.; Campbell, S. J.
2013-12-01
The crystal field excitations of the rare earth intermetallic compound YbMn2Si2 have been measured by inelastic neutron scattering over the temperature range 2.5-50 K. The YbMn2Si2 spectra exhibit three low energy excitations (~3-7 meV) in the antiferromagnetic AFil region above the magnetic phase transition at TN2 = 30(5) K. The crystal field parameters have been determined for YbMn2Si2 in the antiferromagnetic AFil region. A further two inelastic excitations (~9 meV, 17 meV) are observed below TN2=30(5) K, the temperature at which the high temperature antiferromagnetic structure is reported to exhibit doubling of the magnetic cell. Energy level diagrams have been determined for Yb3+ ions in the different sites above (single site) and below the magnetic transition temperature (two sites). The excitation energies for both sites are shown to be temperature independent with the temperature dependences of the transition intensities for the two sites described well by a simple Boltzmann model. The spectra below TN2 cannot be described fully in terms of molecular field models based on either a single Yb3+ site or two Yb3+ sites. This indicates that the magnetic behaviour of YbMn2Si2 is more complicated than previously considered. The inability to account fully for excitations below the magnetic phase transition may be due to an, as yet, unresolved structural transition associated with the magnetic transition.
Hysteresis behaviors of the crystal field diluted general spin-S Ising model
Akıncı, Ümit
2017-10-01
Hysteresis characteristics of the crystal field diluted general Spin-S (S > 1) Blume-Capel model have been studied within the effective field approximation. Particular emphasis has been paid on the large negative valued crystal field and low temperature region and it has been demonstrated for this region that, rising dilution of the crystal field results in decreasing number of windowed hysteresis loops. The evolution of the multiple hysteresis loop with the dilution of the crystal field has been investigated and physical mechanism behind this evolution has been given.
Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays
Energy Technology Data Exchange (ETDEWEB)
Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang [Inha University, Incheon (Korea, Republic of)
2014-08-15
We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9 view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.
The Effects of a Magnetic Field on the Crystallization of a Fluorozirconate Glass
Tucker, Dennis S.; Lapointe, Michael R.; Jia, Zhiyong
2006-01-01
An axial magnetic field of 0.1T was applied to ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibers during heating to the glass crystallization temperature. Scanning electron microscopy and x-ray diffraction were used to identify crystal phases. It was shown that fibers exposed to the magnetic field did not crystallize while fibers not exposed to the field did crystallize. A hypothesis based on magnetic work was proposed to explain the results and tested by measuring the magnetic susceptibilities of the glass and crystal.
Reductive renormalization of the phase-field crystal equation.
Oono, Y; Shiwa, Y
2012-12-01
It has been known for some time that singular perturbation and reductive perturbation can be unified from the renormalization-group theoretical point of view: Reductive extraction of space-time global behavior is the essence of singular perturbation methods. Reductive renormalization was proposed to make this unification practically accessible; actually, this reductive perturbation is far simpler than most reduction methods, such as the rather standard scaling expansion. However, a rather cryptic exposition of the method seems to have been the cause of some trouble. Here, an explicit demonstration of the consistency of the reductive renormalization-group procedure is given for partial differentiation equations (of a certain type, including time-evolution semigroup type equations). Then, the procedure is applied to the reduction of a phase-field crystal equation to illustrate the streamlined reduction method. We conjecture that if the original system is structurally stable, the reductive renormalization-group result and that of the original equation are diffeomorphic.
The Strength of PIN-PMN-PT Single Crystals under Bending with a Longitudinal Electric Field
2011-04-06
The strength of PIN– PMN – PT single crystals under bending with a longitudinal electric field This article has been downloaded from IOPscience. Please...COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Strength Of PIN- PMN - PT Single Crystals Under Bending With A Longitudinal Electric Field... PMN ? PT ) single crystals was measured using a four point bending apparatus with a longitudinal electric field applied to the bar during bending. The
Lattice dynamics of diamond-like crystals from a tight-binding calculation of valence bands
Roman, R.; Pascual, J.
1988-11-01
We report on the results of calculations of the TA(X) phonon energy in the series of C, Si, Ge, Sn homopolar crystals. The starting point is the tight-binding model for the electronic Hamiltonian where Es and Ep are taken to be the free atomic energies while the interatomic matrix elements are described by a universal d-2 Harrison's scaling law. The change of the total energy with the atomic distortion is given in terms of changes in the valence band energy and changes in the overlap energy. The numerical calculations for Si gives U1 = -21.77eV and U2 = 60.44eV, close to the values predicted by Harrison U1 = -17.76eV and U2 = 53.28eV. The calculations of the TA(X) phonon energy gives (in the case the interatomic distances are held constant): 26.09 THz (C), 6.46 THz (Si), 3.37THz (Ge) and 1.91 THz (Sn), in reasonably good agreement with the experimental results 24.1 THz (C), 4.49 THz (Si), 2.39 THz (Ge) and 1.26 THz (Sn).
Electric field gradients from first-principles and point-ion calculations
Stoll, E. P.; Meier, P. F.; Claxton, T. A.
2002-02-01
Point-ion models have been extensively used to determine ``hole numbers'' at copper and oxygen sites in high-temperature superconducting cuprate compounds from measured nuclear quadrupole frequencies. The present study assesses the reliability of point-ion models to predict electric field gradients accurately and also the implicit assumption that the values can be calculated from the ``holes'' and not the total electronic structure. First-principles cluster calculations using basis sets centered on the nuclei have enabled the determination of the charge- and spin-density distribution in the CuO2 plane. The contributions to the electric field gradients and the magnetic hyperfine couplings are analyzed in detail. In particular they are partitioned into regions in an attempt to find a correlation with the most commonly used point-ion model, the Sternheimer equation, which depends on the two parameters R and γ. Our most optimistic objective was to find expressions for these parameters, which would improve our understanding of them, but although estimates of the R parameter were encouraging, the method used to obtain the γ parameter indicated that the two parameters may not be independent. The problem seems to stem from the covalently bonded nature of the CuO2 planes in these structures which severely questions using the Sternheimer equation for such crystals, since its derivation is heavily reliant on the application of perturbation theory to predominantly ionic structures. Furthermore, it is shown that the complementary contributions of electrons and holes in an isolated ion cannot be applied to estimates of electric field gradients at copper and oxygen nuclei in cuprates.
Manin, Alex N; Voronin, Alexander P; Manin, Nikolay G; Vener, Mikhail V; Shishkina, Anastasia V; Lermontov, Anatoly S; Perlovich, German L
2014-06-19
A new cocrystal of 2-hydroxybenzamide (A) with 4-acetamidobenzoic acid (B) has been obtained by the DSC screening method. Thermophysical analysis of the aggregate [A:B] has been conducted and a fusion diagram has been plotted. Cocrystal formation from melts was studied by using thermomicroscopy. A cocrystal single-crystal was grown and its crystal structure was determined. The pattern of noncovalent interactions has been quantified using the solid-state DFT computations coupled with the Bader analysis of the periodic electron density. The sublimation processes of A-B cocrystal have been studied and its thermodynamic functions have been calculated. The classical method of substance transfer by inert gas-carrier was chosen to investigate sublimation processes experimentally. The lattice energy is found to be 143 ± 4 kJ/mol. It is lower than the sum of the corresponding values of the cocrystal pure components. The theoretical value of the lattice energy, 156 kJ/mol, is in reasonable agreement with the experimental one. A ternary phase diagram of solubility (A-B-ethanol) has been plotted and the areas with solutions for growing thermodynamically stable cocrystals have been determined.
Energy Technology Data Exchange (ETDEWEB)
Nascimento, Josenaide P. do; Santos, Lourivaldo S.; Carmo, Maria Carolina L. do; Brasil, Davi S.B.; Alves, Claudio N., E-mail: nahum@ufpa.b [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Ciencias Exatas e Naturais; Santos, Regina Helena A.; Tozzo, Erica; Ferreira, Janaina G. [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica
2010-07-01
The synthesis and X-ray crystal diffraction structure of two analogues of neolignans, 2-(4-chlorophenyl)-1-phenylethanone (20) and 2-[(4-chlorophenyl)thio]-1-(3,4-dimethoxyphenyl) propan-1-one (12) is described. The compound 12 presents activity against intracellular Leishmania donovani and Leishmania amazonensis amastigotes that cause cutaneous and visceral leishmaniasis. In addition, the density functional theory (DFT) with the B3LYP hybrid functional was employed to calculate a set of molecular descriptors for nineteen synthetic analogues of neolignans with antileishmanial activities. Afterwards, the stepwise discriminant analysis was performed to investigate possible relationship between the molecular descriptors and biological activities. Through this analysis the compounds were classified into two groups active and inactive according to their degree of biological activities, and the more important properties were charges on some key atoms, electronic affinity and ClogP. (author)
Accounting for chemical kinetics in field scale transport calculations
Energy Technology Data Exchange (ETDEWEB)
Bryan, N.D. [Manchester Univ. (United Kingdom). Dept. of Chemistry
2005-04-01
The modelling of column experiments has shown that the humic acid mediated transport of metal ions is dominated by the non-exchangeable fraction. Metal ions enter this fraction via the exchangeable fraction, and may transfer back again. However, in both directions these chemical reactions are slow. Whether or not a kinetic description of these processes is required during transport calculations, or an assumption of local equilibrium will suffice, will depend upon the ratio of the reaction half-time to the residence time of species within the groundwater column. If the flow rate is sufficiently slow or the reaction sufficiently fast then the assumption of local equilibrium is acceptable. Alternatively, if the reaction is sufficiently slow (or the flow rate fast), then the reaction may be 'decoupled', i.e. removed from the calculation. These distinctions are important, because calculations involving chemical kinetics are computationally very expensive, and should be avoided wherever possible. In addition, column experiments have shown that the sorption of humic substances and metal-humate complexes may be significant, and that these reactions may also be slow. In this work, a set of rules is presented that dictate when the local equilibrium and decoupled assumptions may be used. In addition, it is shown that in all cases to a first approximation, the behaviour of a kinetically controlled species, and in particular its final distribution against distance at the end of a calculation, depends only upon the ratio of the reaction first order rate to the residence time, and hence, even in the region where the simplifications may not be used, the behaviour is predictable. In this way, it is possible to obtain an estimate of the migration of these species, without the need for a complex transport calculation. (orig.)
An Overview of Hardware for Protein Crystallization in a Magnetic Field
Directory of Open Access Journals (Sweden)
Er-Kai Yan
2016-11-01
Full Text Available Protein crystallization under a magnetic field is an interesting research topic because a magnetic field may provide a special environment to acquire improved quality protein crystals. Because high-quality protein crystals are very useful in high-resolution structure determination using diffraction techniques (X-ray, neutron, and electron diffraction, research using magnetic fields in protein crystallization has attracted substantial interest; some studies have been performed in the past two decades. In this research field, the hardware is especially essential for successful studies because the environment is special and the design and utilization of the research apparatus in such an environment requires special considerations related to the magnetic field. This paper reviews the hardware for protein crystallization (including the magnet systems and the apparatus designed for use in a magnetic field and progress in this area. Future prospects in this field will also be discussed.
Phase-field modeling on morphological landscape of isotactic polystyrene single crystals.
Xu, Haijun; Matkar, Rushikesh; Kyu, Thein
2005-07-01
Spatio-temporal growth of isotactic polystyrene single crystals during isothermal crystallization has been investigated theoretically based on the phase field model by solving temporal evolution of a nonconserved phase order parameter coupled with a heat conduction equation. In the description of the total free energy, an asymmetric double-well local free energy density has been adopted to represent the metastable melt and the stable solid crystal. Unlike the small molecule systems, polymer crystallization rarely reaches thermodynamic equilibrium; most polymer crystals are kinetically stabilized in some metastable states. To capture various metastable polymer crystals, the phase field crystal order parameter at the solidification potential has been treated to be supercooling dependent such that it can assume an intermediate value between zero (melt) and unity (perfect crystal), reflecting imperfect polycrystalline nature of polymer crystals. Two-dimensional simulations exhibit various single crystal morphologies of isotactic polystyrene crystals such as faceted hexagonal patterns transforming to nonfaceted snowflakes with increasing supercooling. Of particular interest is that heat liberation from the crystallizing front influences the curvature of the crystal-melt interface, leading to directional growth of lamellar tips and side branches. The landscape of these morphological textures has been established as a function of anisotropy of surface energy and supercooling. With increasing supercooling and decreasing anisotropy, the hexagonal single crystal transforms to the dense lamellar branching morphology in conformity with the experimental findings.
Oettel, M; Dorosz, S; Berghoff, M; Nestler, B; Schilling, T
2012-08-01
In materials science the phase-field crystal approach has become popular to model crystallization processes. Phase-field crystal models are in essence Landau-Ginzburg-type models, which should be derivable from the underlying microscopic description of the system in question. We present a study on classical density functional theory in three stages of approximation leading to a specific phase-field crystal model, and we discuss the limits of applicability of the models that result from these approximations. As a test system we have chosen the three-dimensional suspension of monodisperse hard spheres. The levels of density functional theory that we discuss are fundamental measure theory, a second-order Taylor expansion thereof, and a minimal phase-field crystal model. We have computed coexistence densities, vacancy concentrations in the crystalline phase, interfacial tensions, and interfacial order parameter profiles, and we compare these quantities to simulation results. We also suggest a procedure to fit the free parameters of the phase-field crystal model. Thereby it turns out that the order parameter of the phase-field crystal model is more consistent with a smeared density field (shifted and rescaled) than with the shifted and rescaled density itself. In brief, we conclude that fundamental measure theory is very accurate and can serve as a benchmark for the other theories. Taylor expansion strongly affects free energies, surface tensions, and vacancy concentrations. Furthermore it is phenomenologically misleading to interpret the phase-field crystal model as stemming directly from Taylor-expanded density functional theory.
Effective Field Theory Calculations Of Inclusive B Meson Decay
Trott, M
2005-01-01
The thesis work presented herein deals with calculations of inclusive B meson decays, with the aim of improving extractions of the Standard Model parameters |Vcb|, | Vub| and mb. In the first chapter, we review the theoretical structure of the Standard Model and its experimental status. In the following chapter we discuss the general theoretical framework used in the study of inclusive decays. The inclusive decay spectra of B¯ → X cℓν allow the CKM element |V cb|, and the b quark mass mb , to be determined from experiment. Calculations of these decays parameterize the nonperturbative physics of the B meson is in a series of nonperturbative parameters through an expansion in the ratio Λ QCD/mb. In the third chapter, the general moment method developed to improve the determination of these nonperturbative parameters, and examine the assumption of negligible Quark-Hadron duality violation in these decays, is outlined. The lepton energy spectra and hadronic invariant ma...
Calculation and measurement of electric field under HVDC transmission lines
Kasdi, A.; Zebboudj, Y.; Yala, H.
2007-03-01
A stable corona discharge in a two conductors-to-plane configuration is analysed in this paper. A linear biased probe, without end-effect, has been adapted to a linear geometry and is used for the first time to measure the ground-plane current density and electric field during the bipolar corona. The values of the electric field and the current density are maximum under the two coronating conductors and decrease when moving away from them. Furthermore, a hybrid technique is developed to obtain a general solution of the governing equations of the coupled space-charge and electric field problem. The technique is to use the finite-element method (FEM) to solve Poisson's equation, and the method of characteristic (MOC) to find the charge density from a current-continuity relation. The model avoids resorting to the Deutsch assumption. The computed values are in good agreement with experimental data.
Calculation of temperature field near stagnation point in explosive welding
Institute of Scientific and Technical Information of China (English)
Wang Jinxiang; Li Xiaojie; Wang Zhanlei; Chen Tao
2006-01-01
Energy deposition at the interface of explosive welding is analyzed by symmetrical impaction model of uncompressible liquid.Equation of energy in the flow field of explosive welding is deduced and the distribution of temperature in the flow field is solved by finite difference method on the basis that the adiabatic compression is considered.The results show that the temperature rise increases with the increasing of the velocity of approaching flow and impactangle, under appropriate velocity of approaching flow and impact angle the temperature rise near the welding interface will be higher than the melting point of the material and the thin melted layer is localized on the region near welding interface.
Directory of Open Access Journals (Sweden)
V.O. Kharchenko
2015-06-01
Full Text Available Within this paper we have the studied structural and electronic properties of zirconium crystal with vacancies from the first principles. We have defined the optimal values for the lattice constants. The corresponding densities of states and energetic spectrum were calculated. These results gave a possibility to define the Fermi structure of the zirconium crystal with vacancies. In the framework of the molecular dynamics simulations we have studied the dynamics of the ensemble of periodically located vacancies in the zirconium crystal with an increase in temperature. We have analyzed the reconstruction of atomic structure and change in the total volume of the crystal with the temperature growth. The dependencies of the volume expansion coefficient for the pure zirconium without vacancies end zirconium crystal with different vacancies concentration on the temperature were studied.
Institute of Scientific and Technical Information of China (English)
Ni Zhen; Feng-Lian Li; Yue-Sheng Wang; Chuan-Zeng Zhang
2012-01-01
In this paper,a method based on the Dirichletto-Neumann map is developed for bandgap calculation of mixed in-plane waves propagating in 2D phononic crystals with square and triangular lattices.The method expresses the scattered fields in a unit cell as the cylindrical wave expansions and imposes the Bloch condition on the boundary of the unit cell.The Dirichlet-to-Neumann (DtN) map is applied to obtain a linear eigenvalue equation,from which the Bloch wave vectors along the irreducible Brillouin zone are calculated for a given frequency.Compared with other methods,the present method is memory-saving and time-saving.It can yield accurate results with fast convergence for various material combinations including those with large acoustic mismatch without extra computational cost.The method is also efficient for mixed fluid-solid systems because it considers the different wave modes in the fluid and solid as well as the proper fluid-solid interface condition.
Field-theoretic calculation of kinetic helicity flux
Indian Academy of Sciences (India)
V Avinash; Mahendra K Verma; Amar K Chandra
2006-02-01
In this paper we apply perturbative field-theoretic technique to helical turbulence. In the inertial range the kinetic helicity flux is found to be constant and forward. The universal constant H appearing in the spectrum of kinetic helicity was found to be 2.47.
Effective and efficient method of calculating Bessel beam fields
CSIR Research Space (South Africa)
Litvin, IA
2005-01-01
Full Text Available Bessel beams have gathered much interest of late due to their properties of near diffraction free propagation and self reconstruction after obstacles. Such laser beams have already found applications in fields such as optical tweezers and as pump...
Bicritical universality of the anisotropic Heisenberg model in a crystal field.
Freire, R T S; Plascak, J A
2015-03-01
The bicritical properties of the three-dimensional classical anisotropic Heisenberg model in a crystal field are investigated through extensive Monte Carlo simulations on a simple cubic lattice, using Metropolis and Wolff algorithms. Field-mixing and multidimensional histogram techniques were employed in order to compute the probability distribution function of the extensive conjugate variables of interest and, using finite-size scaling analysis, the first-order transition line of the model was precisely located. The fourth-order cumulant of the order parameter was then calculated along this line and the bicritical point located with good precision from the cumulant crossings. The bicritical properties of this point were further investigated through the measurement of the universal probability distribution function of the order parameter. The results lead us to conclude that the studied bicritical point belongs in fact to the three-dimensional Heisenberg universality class.
Sternheimer Factors and Electric-Field-Gradient Hyperpolarisabilities for Ions in Crystals
Fowler, P. W.; Kelly, H. M.
1994-02-01
Analytic coupled Hartree-Fock calculations of the electric field gradient response properties y (the Sternheimer shielding factor) and e (the dipole-dipole-electric field gradient hyperpolarisability) have been carried out on anions in clusters that simulate that crystal environment. The systems studied are F- in LiF and NaF, Cl- in LiCl and NaCl, O2-in MgO, S2- in MgS, and H- in LiH. Both properties show large reductions from free-ion values and significant variation with lattice parameter, and the results indicate that damped values of anion Sternheimer factors will be necessary in accurate simulation of N Q R data or modelling of properties of ion-pairs.
Institute of Scientific and Technical Information of China (English)
ZHANG Bi-Xing; WANG Cheng-Hao; Anders Bostr(o)m
2005-01-01
@@ A piezoelectric strip with finite width and thickness is placed on top of an isotropic elastic half-space. Acoustical field can be excited when a voltage is across the piezoelectric strip. An analytical method is presented to calculate the acoustical field by the dynamics characteristics of the piezoelectric strip. Considering the piezoelectric strip as an anisotropic material of the 6 mm-type crystal system, we study the two-dimensional P-SV acoustical fields inside the piezoelectric strip and the isotropic half-space. The displacement and stress distributions are analysed thoroughly. The effects of the width and thickness of the piezoelectric strip and other parameters on the acoustical field are also analysed.
Piezo-optic tensor of crystals from quantum-mechanical calculations
Energy Technology Data Exchange (ETDEWEB)
Erba, A., E-mail: alessandro.erba@unito.it; Dovesi, R. [Dipartimento di Chimica, Università di Torino and NIS, Nanostructured Interfaces and Surfaces, Centre of Excellence, Via Giuria 5, 10125 Torino (Italy); Ruggiero, M. T.; Korter, T. M. [Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, New York 13244-4100 (United States)
2015-10-14
An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO{sub 4}, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π{sub 61} constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.
Piezo-optic tensor of crystals from quantum-mechanical calculations.
Erba, A; Ruggiero, M T; Korter, T M; Dovesi, R
2015-10-14
An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO4, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π61 constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.
Institute of Scientific and Technical Information of China (English)
ZHANG Jing; YANG Bing-Qin; ZHU Hai-Yan; LI Tao; WEN Zhen-Yi
2006-01-01
A novel benzimidazole derivative, 1,3-dimethyl-2-ferrocenylmethylbenzimidazolium iodide (1) was synthesized and characterized by elemental analysis, MS, 1H NMR and IR spectra. Its crystal structure was determined by X-ray single crystal diffraction, and the title compound belongs to monoclinic system with space group P2(1)/c.According to the crystal structure, the quantum chemistry calculation was performed by Gaussian 03 program, and full geometry optimizations of the title compound were carried out with DFT method at B3LYP/6-31G level. Its structure, stability, frontier molecular orbital components and net charge distribution were discussed.
Calculation of electromagnetic fields in inductor-screen-ingot systems
Energy Technology Data Exchange (ETDEWEB)
Getselev, Z.N.; Martynov, G.I.
1977-01-01
The method proposed is used for designing complex electromagnetic ''inductor-screen-ingot'' systems with non-uniform boundary conditions which are encountered in electromagnetic formation and induction heating. As a result of using the approximate Fourier transformation, the original system of integral equations is replaced by a system of linear algebraic equations with known coefficients and which is numerically solved on a computer. The vector potential in regional boundaries is calculated in the first stage, and the potential within the region is computed in the second stage. The method is analyzed in detail by solving five specific problems.
Kevorkyants, Ruslan; Wang, Xiqiao; Close, David M; Pavanello, Michele
2013-11-14
We present an application of the linear scaling frozen density embedding (FDE) formulation of subsystem DFT to the calculation of isotropic hyperfine coupling constants (hfcc's) of atoms belonging to a guanine radical cation embedded in a guanine hydrochloride monohydrate crystal. The model systems range from an isolated guanine to a 15,000 atom QM/MM cluster where the QM region is comprised of 36 protonated guanine cations, 36 chlorine anions, and 42 water molecules. Our calculations show that the embedding effects of the surrounding crystal cannot be reproduced by small model systems nor by a pure QM/MM procedure. Instead, a large QM region is needed to fully capture the complicated nature of the embedding effects in this system. The unprecedented system size for a relativistic all-electron isotropic hfcc calculation can be approached in this work because the local nature of the electronic structure of the organic crystals considered is fully captured by the FDE approach.
Numerical calculation of transient field effects in quenching superconducting magnets
Schwerg, Nikolai; Russenschuck, Stephan
2009-01-01
The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...
DEFF Research Database (Denmark)
Touborg, P.; Høg, J.
1974-01-01
Crystal field parameters of Tb, Dy, and Er in Sc, Y, and Lu are summarized. These parameters are obtained from magnetization measurements on dilute single crystals, and successfully checked by a number of different methods. The crystal field parameters vary unpredictably with the rare-earth solute....... B40, B60, and B66 are similar in Y and Lu. Crystal field parameters for the pure metals Tb, Dy, and Er are estimated from the crystal fields in Y and Lu....
Brik, M. G.
2006-04-01
Exchange charge model of crystal field [B.Z. Malkin, in: A.A. Kaplyanskii, B.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare-earth Ions, North-Holland, Amsterdam, 1987, pp. 33 50.] was used to analyze the energy level schemes of Ni2+ ion at both possible positions (octahedral and tetrahedral) in Ca3Sc2Ge3O12. The crystal field parameters were calculated from the crystal structure data; the crystal field Hamiltonian was diagonalised in the complete basis consisting of 25 wave functions of all LS terms of the Ni2+ ion. Results of calculations are in a good agreement with experimental data. From the experimental spectra available in the literature, the Huang Rhys parameter S=3.5 and effective phonon energy ℏω=200cm were evaluated for the octahedral Ni2+ ion.
Velocity field calculation for non-orthogonal numerical grids
Energy Technology Data Exchange (ETDEWEB)
Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2015-03-01
Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation, and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non
SOLIDIFICATION OF NICKEL-BASED SINGLE CRYSTAL SUPERALLOY BY ELECTRIC FIELD
Institute of Scientific and Technical Information of China (English)
Y.S. Yang; X.H. Feng; G.F. Cheng; Y.J. Li; Z.Q. Hu
2005-01-01
The crystal growth of a nickel-based single crystal superalloy DD3 was researched via controlled directional solidification under the action of a DC electric field. The cellular or dendrite spacing of the single crystal superalloy is refined and microsegregation of alloying elements Al,Ti, Mo and W, is reduced by the electric field. The electric field decreases the interface stability and reduces the critical growth rate of the cellular-dendritic translation because of Thomson effect and Joule heating. The precipitation of the γ' phase is more uniform and the size of the γ'phase is smaller with the electric field than that without the electric field.
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt; Svendsen, Niels Bruun
1992-01-01
A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested. It relies on the Tupholme-Stepanishen method for calculating pulsed pressure fields, and can also handle the continuous wave and pulse-echo case. The field...... is calculated by dividing the surface into small rectangles and then Summing their response. A fast calculation is obtained by using the far-field approximation. Examples of the accuracy of the approach and actual calculation times are given...
Estimation of the Birefringence Change in Crystals Induced by Gravitation Field
Vlokh R.; Kostyrko M.
2007-01-01
The effect of gravitation field of spherically symmetric mass on the birefringent properties of crystals has been analysed. It has been shown that the gravitation field with spherical symmetry can lead to a change of birefringence in anisotropic media.
Institute of Scientific and Technical Information of China (English)
Kun Ma; Junchang Li; Zebin Fan; Jinbin Gui; Yingxiong Qin; Qiguang Zheng
2005-01-01
@@ Based on the calculation formulas of heat treatment temperature field for an arbitrary incident laser intensity distribution, the transformation intensity distribution of CO2 laser beam passing an integrating mirror is studied theoretically and experimentally. The derived formulas are applied in laser heat treatment research which is transformed by optical system, and the theoretical calculation results are compared with experimental results. It is shown that the formulas can be used to calculate the laser heat treatment temperature field accurately, and the calculation speed is obviously faster than the numerical calculation methods with the same precision. The calculation software can be used to select proper experiment parameters.
Single-crystal organic field-effect transistors based on dibenzo-tetrathiafulvalene
Mas-Torrent, M.; Hadley, P.; Bromley, S.T.; Crivillers, N.; Veciana, J.; Rovira, C.
2004-01-01
We report on the fabrication and characterization of field-effect transistors based on single crystals of the organic semiconductor dibenzo-tetrathiafulvalene (DB-TTF). We demonstrate that it is possible to prepare very-good-quality DB-TTF crystals from solution. These devices show high field-effect
Method to map individual electromagnetic field components inside a photonic crystal
Denis, T.; Reijnders, B.; Lee, J.H.H.; van der Slot, Petrus J.M.; Vos, Willem L.; Boller, Klaus J.
2012-01-01
We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the dominant electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing
Malkin, B. Z.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Dhalenne, G.; Zakirov, A. R.
2010-01-01
The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R2Ti2O7 (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the s
Crystal fields at light rare-earth ions in Y and Lu
DEFF Research Database (Denmark)
Touborg, P.; Nevald, Rolf; Johansson, Torben
1978-01-01
Crystal-field parameters have been deduced for the light rare-earth solutes Ce, Pr, and Nd in Y or Lu hosts from measurements of the paramagnetic susceptibilities. In the analysis all multiplets in the lowest LS term were included. For a given host, crystal-field parameters divided by Stevens fac...
Assessment of pressure field calculations from particle image velocimetry measurements
Charonko, John J.; King, Cameron V.; Smith, Barton L.; Vlachos, Pavlos P.
2010-10-01
This paper explores the challenges associated with the determination of in-field pressure from DPIV (digital particle image velocimetry)-measured planar velocity fields for time-dependent incompressible flows. Several methods that have been previously explored in the literature are compared, including direct integration of the pressure gradients and solution of different forms of the pressure Poisson equations. Their dependence on grid resolution, sampling rate, velocity measurement error levels and off-axis recording was quantified using artificial data of two ideal sample flow fields—a decaying vortex flow and pulsatile flow between two parallel plates, and real DPIV and pressure data from oscillating flow through a diffuser. The need for special attention to mitigate the velocity error propagation in the pressure estimation is also addressed using a physics-preserving approach based on proper orthogonal decomposition (POD). The results demonstrate that there is no unique or optimum method for estimating the pressure field and the resulting error will depend highly on the type of the flow. However, the virtual boundary, omni-directional pressure integration scheme first proposed by Liu and Katz (2006 Exp. Fluids 41 227-40) performed consistently well in both synthetic and experimental flows. Estimated errors can vary from less than 1% to over 100% with respect to the expected value, though in contrast to more traditional smoothing algorithms, the newly proposed POD-based filtering approach can reduce errors for a given set of conditions by an order of magnitude or more. This analysis offers valuable insight that allows optimizing the choice of methods and parameters based on the flow under consideration.
Thermopower switching by magnetic field: first-principles calculations
DEFF Research Database (Denmark)
Maslyuk, Volodymyr V.; Achilles, Steven; Sandratskii, Leonid
2013-01-01
of the thermopower on the angle between the magnetizations of the electrodes. This complex behavior is explained by the resonant properties of the electron transmission. Consequently, the nanocontacts can be utilized for local heating or cooling controlled by the external magnetic field.......We present first-principles studies of the thermopower of the organometallic V4Bz5 molecule attached between Co electrodes with noncollinear magnetization directions. Different regimes in the formation of the noncollinear magnetic state of the molecule lead to a remarkable nonmonotonous dependence...
Effect of axial magnetic field on the shape of copper ribbon crystal grown by Czochralski method
Shen, Zhe; Zhong, Yunbo; Dong, Licheng; FAN, Lijun; Wang, Huai; Li, Chuanjun; Ren, Weili; Lei, Zuosheng; Ren, Zhongming
2015-01-01
International audience; During the process of growing ribbon crystal by Czochralski method, Turbulent convection in copper melt was effectively suppressed by applying an axial magnetic field (magnetic induction B≤57mT). The changes of thermal fluctuation and flow field were measured and modeled. With the magnetic field increased gradually (from 0 to 57mT), the shape of ribbon crystal became regularly wider. We concluded that the axial magnetic field could promote to form a suitable temperatur...
Phonon and crystal field excitations in geometrically frustrated rare earth titanates
Lummen, T. T. A.; Handayani, I. P.; Donker, M. C.; Fausti, D.; Dhalenne, G.; Berthet, P.; Revcolevschi, A.; van Loosdrecht, P. H. M.
2008-06-01
The phonon and crystal field excitations in several rare earth titanate pyrochlores are investigated. Magnetic measurements on single crystals of Gd2Ti2O7 , Tb2Ti2O7 , Dy2Ti2O7 , and Ho2Ti2O7 are used for characterization, while Raman spectroscopy and terahertz time domain spectroscopy are employed to probe the excitations in the materials. The lattice excitations are found to be analogous across the compounds over the whole temperature range investigated (295-4 K). The resulting full phononic characterization of the R2Ti2O7 pyrochlore structure is then used to identify crystal field excitations observed in the materials. Several crystal field excitations have been observed in Tb2Ti2O7 in Raman spectroscopy, among which all of the previously reported excitations. The presence of additional crystal field excitations, however, suggests the presence of two inequivalent Tb3+ sites in the low-temperature structure. Furthermore, the crystal field level at approximately 13cm-1 is found to be both Raman and dipole active, indicating broken inversion symmetry in the system and thus undermining its current symmetry interpretation. In addition, evidence is found for a significant crystal field-phonon coupling in Tb2Ti2O7 . The additional crystal field information on Tb2Ti2O7 adds to the recent discussion on the low temperature symmetry of this system and may serve to improve its theoretical understanding.
Thermodynamical Properties of Spin-3／2 Ising Model in a Longitudinal Random Field with Crystal Field
Institute of Scientific and Technical Information of China (English)
LIANGYa-Qiu; WEIGuo-Zhu; ZHANGHong; SONGGuo-Li
2004-01-01
A theoretical study of a spin-3/2 Ising model in a longitudinal random field with crystal field is studied by using of the effective-field theory with correlations. The phase diagrams and the behavior of the tricritical point are investigated numerically for the honeycomb lattice when the random field is bimodal. In particular, the specific heat and the internal energy are examined in detail for the system with a crystal-field constant in the critical region where the ground-state configuration may change from the spin-3/2 state to the spin-1/2 state. We find many interesting phenomena in the system.
Thermodynamical Properties of Spin-3/2 Ising Model in a Longitudinal Random Field with Crystal Field
Institute of Scientific and Technical Information of China (English)
LIANG Ya-Qiu; WEI Guo-Zhu; ZHANG Hong; SONG Guo-Li
2004-01-01
A theoretical study of a spin-3/2 Ising model in a longitudinal random field with crystal field is studiedby using of the effective-field theory with correlations. The phase diagrams and the behavior of the tricritical point areinvestigated numerically for the honeycomb lattice when the randorm field is bimodal. In particular, the specific heatand the internal energy are examined in detail for the system with a crystal-field constant in the critical region wherethe ground-state configuration may change from the spin-3/2 state to the spin-1/2 state. We find many interestingphenomena in the system.
Spectroscopic and crystal-field analysis of new Yb-doped laser materials
Energy Technology Data Exchange (ETDEWEB)
Haumesser, Paul-Henri; Gaume, Romain; Antic-Fidancev, Elisabeth; Vivien, Daniel; Viana, Bruno [Laboratoire de Chimie Appliquee de l' Etat Solide UMR 75 74, ENSCP, Paris (France)]. E-mail: viana@ext.jussieu.fr
2001-06-11
Crystal-field effects are very important as far as laser performances of Yb-doped materials are concerned. In order to simplify the interpretation of low-temperature spectra, two tools derived from a careful examination of crystal-field interaction are presented. Both approaches are successfully applied in the case of new Yb-doped materials, namely Ca{sub 3}Y{sub 2}(BO{sub 3}){sub 4} (CYB), Ca{sub 3}Gd{sub 2}(BO{sub 3}){sub 4} (CaGB), Sr{sub 3}Y(BO{sub 3}){sub 3} (SrYBO), Ba{sub 3}Lu(BO{sub 3}){sub 3} (BLuB), Y{sub 2}SiO{sub 5} (YSO), Ca{sub 2}Al{sub 2}SiO{sub 7} (CAS) and SrY{sub 4}(SiO{sub 4}){sub 3}O (SYS). The {sup 2}F{sub 7/2} splitting is particularly large in these materials and favourable to a quasi-three-level laser operating scheme. Calculations performed using the point charge electrostatic model for these compounds and using a consistent set of effective atomic charges confirm the experimental results. This should permit to use this model in a predictive approach. (author)
Numerical calculation of transient field effects in quenching superconducting magnets
Energy Technology Data Exchange (ETDEWEB)
Schwerg, Juljan Nikolai
2010-07-01
The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could
Institute of Scientific and Technical Information of China (English)
WANG Dajun; XIA Shangda; YIN Min
2008-01-01
The ab initio self-consistent DV-Xα (discrete variational Xα) method was used in its relativistic and spin-polarized model to investigate the ground-state electronic structures of the crystal YPO4 and YPO4:RE3+ (RE=Ce, Pr and Sm) and f-d transition energies of the lattice. The calculation was performed on the clusters Y5P10O32 and REY4P10O32 embedded in a microcrystal containing about 1500 ions, respectively. The ground-state calculation provided the locations of the 4f and 5d crystal-field one-electron levels of RE3+ relative to the valence and conduction bands of host, the curve of total and the partial density of states, and the corresponding occupation numbers, etc. Especially, the transition-state calculation was performed to obtain the 4f→5d transition energies of RE3+ in comparison to the experimental observations. The lattice relaxation caused by the dopant ion RE3+ was discussed based on the total energy calculation and the transition-state calculation of the f-d transition energies.
Numerical calculation of superheating magnetic fields and currents for superconducting slabs
Landau, I. L.; Rinderer, L.
1995-08-01
Numerical calculations of superheating magnetic fields and superheating currents for superconducting slabs for a wide range of the sample thickness are presented. The calculations were made for low values of Ginzburg-Landau parameter κ, i.e., for type-1 superconductors. We propose also experimental procedures to measure superheating fields and currents in films and bulk samples.
MEASURING OF COMPLEX STRUCTURE TRANSFER FUNCTION AND CALCULATING OF INNER SOUND FIELD
Institute of Scientific and Technical Information of China (English)
Chen Yuan; Huang Qibai; Shi Hanmin
2005-01-01
In order to measure complex structure transfer function and calculate inner sound field, transfer function of integration is mentioned. By establishing virtual system, transfer function of integration can be measured and the inner sound field can also be calculated. In the experiment, automobile body transfer function of integration is measured and experimental method of establishing virtual system is very valid.
Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects
Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.
1999-04-01
We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.
Choi, Tae-Hoon; Oh, Seung-Won; Park, Young-Jin; Choi, Yeongyu; Yoon, Tae-Hoon
2016-06-01
We report a simple method for reducing the response time of a fringe-field switching liquid crystal cell by using two-dimensional confinement of the liquid crystals. Through both numerical calculations and experiments, we show that the switching speed can be increased by several fold in a fringe-field switching cell by simply using a rubbing angle of zero, which causes virtual walls to be built when an electric field is applied between the interdigitated electrodes and the common electrode, without requiring additional fabrication steps or complicated drive schemes. Furthermore, the devices fabricated with this method exhibit a reduced color shift and excellent dynamic stability, even with a high applied voltage and under external pressure.
Voronov, Mikhail M
2016-01-01
The approach based on the generalized Kirchhoff's law for calculating photoluminescence spectra of one-dimensional multi-layered structures, in particular, 1D photonic crystals has been developed. It is valid in the local thermodynamic equilibrium approximation and leads to simple and explicit expressions for the photoluminescence intensity. In the framework of the present theory the Purcell factor has been discussed as well.
The Symmetry of Optical Field in Photonic Crystal Fibre with Trigonal Symmetry
Directory of Open Access Journals (Sweden)
Ivan Turek
2006-01-01
Full Text Available Some photographs of intensity of optical field of a photonic crystal fibre are presented in the contribution. Presented photographs document that the symmetry of photonic crystal creating the cladding of fibre is manifested in the symmetry of distribution of the optical field intensity. In case when more modes are excited in the fibre the symmetry of the generated field can be different as the symmetry of the eventual modes. How the symmetry may be changed is illustrated by amodel example.
Spin-3/2 Ising model AFM/AFM two-layer lattice with crystal field
Institute of Scientific and Technical Information of China (English)
Erhan Albayrak; Ali Yigit
2009-01-01
The spin-3/2 Ising model is investigated for the case of antiferromagnetic (AFM/AFM) interactions on the two-layer Bethe lattice by using the exact recursion relations in the pairwise approach for given coordination numbers q = 3, 4 and 6 when the layers are under the influences of equal external magnetic and equal crystal fields. The ground state, (GS) phase diagrams are obtained on the different planes in detail and then the temperature-dependent phase diagrams of the system are calculated accordingly. It is observed that the system presents both second- and first-order phase transitions for all q, therefore, tricritical points. It is also found that the system exhibits double-critical end points and isolated points. The model aiso presents two Néel temperatures, T_N, and the existence of which leads to the reentrant behaviour.
Inductive crystal field control in layered metal oxides with correlated electrons
Energy Technology Data Exchange (ETDEWEB)
Balachandran, P. V.; Cammarata, A.; Rondinelli, J. M., E-mail: jrondinelli@nortwestern.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Nelson-Cheeseman, B. B. [School of Engineering, University of St. Thomas, St. Paul, Minnesota 55105 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Bhattacharya, A. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States)
2014-07-01
We show that the NiO{sub 6} crystal field energies can be tailored indirectly via heterovalent A cation ordering in layered (La,A)NiO{sub 4} Ruddlesden–Popper (RP) oxides, where A = Sr, Ca, or Ba, using density functional calculations. We leverage as a driving force the electrostatic interactions between charged [LaO]{sup 1+} and neutral [AO]{sup 0} planes to inductively tune the Ni–O bond distortions, without intentional doping or epitaxial strain, altering the correlated d-orbital energies. We use this strategy to design cation ordered LaCaNiO{sub 4} and LaBaNiO{sub 4} with distortions favoring enhanced Ni e{sub g} orbital polarization, and find local electronic structure signatures analogous to those in RP La-cuprates, i.e., parent phases of the high-temperature superconducting oxides.
Influence of magnetic field on the growth and properties of calcium tartrate crystals
Energy Technology Data Exchange (ETDEWEB)
Saban, K.V. E-mail: sabanvarkey@rediffmail.com; Jini, T.; Varghese, G
2003-10-01
The growth of calcium tartrate crystals in hydrosilica gel, in the presence of static magnetic fields has been investigated. Crystal formation at the free surface of the gel was studied under fields of strength up to 3 T. Weak magnetic fields created by permanent ferrite magnets were used to study the crystal formation in the gel column over long duration. The XRD spectra of the samples grown under magnetic fields exhibit increase in d values of most of the diffraction peaks and noticeable change in the intensity of reflections from certain planes. Application of the field resulted in the appearance of two additional absorption peaks in the IR spectrum of the material. Samples grown under fields of strength 1 and 3 T show paramagnetism up to 6 and 7 T, respectively, of the probing field strength. For stronger probing fields, the samples start exhibiting diamagnetism.
DEFF Research Database (Denmark)
Kleis, Jesper; Schröder, Elsebeth; Hyldgaard, Per
2008-01-01
The dispersive interaction between nanotubes is investigated through ab initio theory calculations and in an analytical approximation. A van der Waals density functional (vdW-DF) [M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] is used to determine and compare the binding of a pair of nanotubes...... for the nanotube-crystal binding energy can be approximated by a sum of nanotube-pair interactions when these are calculated in vdW-DR This observation suggests a framework for an efficient implementation of quantum-physical modeling of the carbon nanotube bundling in more general nanotube bundles, including...... as well as in a nanotube crystal. To analyze the interaction and determine the importance of morphology, we further compare results of our ab initio calculations to a simple analytical result,that we obtain for a pair of well-separated nanotubes. In contrast to traditional density functional theory...
Kaya, Savaş; Kaya, Cemal
2015-09-08
This paper presents a new technique for estimation of lattice energies of inorganic ionic compounds using a simple formula. This new method demonstrates the relationship between chemical hardness and lattice energies of ionic compounds. Here chemical hardness values of ionic compounds are calculated via our molecular hardness equation. The results obtained using the present method and comparisons made by considering experimental data and the results from other theoretical methods in the literature showed that the new method allows easy evaluation of lattice energies of inorganic ionic crystals without the need for ab initio calculations and complex calculations.
Goponov, Yu. A.; Laktionova, S. A.; Sidnin, M. A.; Vnukov, I. E.
2017-07-01
To evaluate and improve the previously proposed method of calculating diffracted photon yields in thin perfect crystals, a comparison between calculated and experimental results in wide range of photons and electrons energy was carried out. It is shown that the proposed method describes all investigated experimental results for bremsstrahlung diffraction and transition radiation one with an error less than ten-fifteen percent. Consequently, the method may be used for calculation of the electron beam divergence influence on the diffracted transition radiation angular distribution.
Probing the sheath electric field with a crystal lattice by using thermophoresis in dusty plasma
Land, Victor; Matthews, Lorin; Hyde, Truell
2010-01-01
A two-dimensional dust crystal levitated in the sheath of a modified Gaseous Electronics Conference (GEC) reference cell is manipulated by heating or cooling the lower electrode. The dust charge is obtained by measuring global characteristics of the levitated crystal obtained from top-view pictures. From the force balance, the electric field in the sheath is reconstructed. From the Bohm criterion, we conclude that the dust crystal is levitated mainly above and just below the classical Bohm point.
Patterning technology for solution-processed organic crystal field-effect transistors
Yun Li; Huabin Sun; Yi Shi; Kazuhito Tsukagoshi
2014-01-01
Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recent development...
Hysteresis Loops and Phase Diagrams of the Spin-1 Ising Model in a Transverse Crystal Field
Institute of Scientific and Technical Information of China (English)
S. Bouhou; I. Essaoudi; A. Ainane; M. Saber; J. J. de Miguel; M. Kerouad1
2012-01-01
Within the framework of the effective-Geld theory with a probability distribution technique, which accounts for the self-spin correlation functions, the ferromagnetic spin-l Ising model with a transverse crystal field on honeycomb, square and simple cubic lattices is studied. We have investigated the effect of the transverse crystal field on the phase diagrams, magnetization, hysteresis loops and χz,h of the system. A number of interesting phenomena of the system are discussed.%Within the framework of the effective-field theory with a probability distribution technique,which accounts for the self-spin correlation functions,the ferromagnetic spin-1 Ising model with a transverse crystal field on honeycomb,square and simple cubic lattices is studied.We have investigated the effect of the transverse crystal field on the phase diagrams,magnetization,hysteresis loops and xz,h of the system.A number of interesting phenomena of the system are discussed.
Wang, Benjamin; Cappelli, Mark
2016-10-01
A fully tunable plasma photonic crystal is used to control the propagation of free space electromagnetic waves in the S to X band of the microwave spectrum. A structured array of discharge plasma tubes are arranged in a square crystal lattice with the individual plasma dielectric constant tuned through variation in the plasma density. Microwave field-mapping is used to characterize the transmitted electromagnetic fields of the tunable device operating in waveguiding and bending modes. These modes are obtained by introducing appropriate line defects in the photonic crystal structure by controlling the activity of individual plasma tubes. Comparisons are made of the measured fields to those simulated using commercially-available software.
Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R
2010-07-14
The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.
The effect of magnetic field on the shape of etch pits of paracetamol crystals
Energy Technology Data Exchange (ETDEWEB)
Ivashchenko, V.E. [Kemerovo State University, Novosibirsk (Russian Federation); Research and Educational Center, Novosibirsk State University (Russian Federation); Boldyrev, V.V.; Shakhtshneider, T.P. [Institute of Solid State Chemistry and Mechanochemistry, RAS, Novosibirsk (Russian Federation); Zakharov, Yu.A.; Krasheninin, V.I. [Kemerovo State University, Novosibirsk (Russian Federation); Ermakov, A.E. [Institute of Physics of Metals, Ural Branch of RAS, Ekaterinburg (Russian Federation)
2002-04-01
In the present study we investigate the effect of magnetic field on the shape of etch pits of the crystals of p-hydroxyacetanilide (paracetamol), which is widely used in pharmacy as antipyretic, antiphlogistic medicine. It was discovered that the magnetic field (H=0.5 T, {tau}=15 min) changes the morphology of etch pits and shifts dislocations in paracetamol crystal. Activation energy of the changes induced by the action of the magnetic field was determined to be 63 kJ/mol, which is comparable with the energy of hydrogen bonds in crystal lattice. (orig.)
Anisotropic magnetic properties and crystal electric field studies on CePd2Ge2 single crystal.
Maurya, Arvind; Kulkarni, R; Dhar, S K; Thamizhavel, A
2013-10-30
The anisotropic magnetic properties of the antiferromagnetic compound CePd2Ge2, crystallizing in the tetragonal crystal structure have been investigated in detail on a single crystal grown by the Czochralski method. From the electrical transport, magnetization and heat capacity data, the Néel temperature is confirmed to be 5.1 K. Anisotropic behaviour of the magnetization and resistivity is observed along the two principal crystallographic directions-namely, [100] and [001]. The isothermal magnetization measured in the magnetically ordered state at 2 K exhibits a spin reorientation at 13.5 T for the field applied along the [100] direction, whereas the magnetization is linear along the [001] direction attaining a value of 0.94 μ(B)/Ce at 14 T. The reduced value of the magnetization is attributed to the crystalline electric field (CEF) effects. A sharp jump in the specific heat at the magnetic ordering temperature is observed. After subtracting the phononic contribution, the jump in the heat capacity amounts to 12.5 J K(-1)mol(-1) which is the expected value for a spin ½ system. From the CEF analysis of the magnetization data the excited crystal field split energy levels were estimated to be at 120 K and 230 K respectively, which quantitatively explains the observed Schottky anomaly in the heat capacity. A magnetic phase diagram has been constructed based on the field dependence of magnetic susceptibility and the heat capacity data.
Ferromagnetism and crystal electric field in the cerium compound CeRh3B2
Givord, F.; Boucherle, J.-X.; Galéra, R.-M.; Fillion, G.; Lejay, P.
2007-09-01
The magnetic behavior of CeRh3B2 is very unusual: it orders ferromagnetically with an exceptionally high Curie temperature TC around 115 K, but with a small saturation moment of about 0.4 μB/fu. The thermal variations of magnetization and susceptibility have been measured on a single crystal for fields applied along the easy and hard magnetization directions, with, in the latter case, special care taken to avoid rotation of the sample. The results are compared to calculations based on the crystalline electric field formalism. Due to its large value, one has to take into account the admixture of the two J multiplets of the Ce3+ ion as it is usually used for samarium compounds but not for cerium ones. These calculations actually show the important role of the excited J' = 7/2 multiplet on the 4f spin moment, leading to an enhancement of the exchange, i.e. the Curie temperature, and to a decrease of the moment. An extra polarization, as previously found from the study of magnetization density maps, is confirmed and discussed.
Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna
2017-08-01
Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
Energy Technology Data Exchange (ETDEWEB)
Walter, U.; Holland-Moritz, E.
1981-12-01
The LLW-parameters x and W of dilute rare earth impurities (RE = Pr, Nd, Tb, Dy, Ho, Er, Tm; c approx. equal to 0.05) in the cubic matrices YPd/sub 3/ and YAl/sub 2/ could be determined unequivocally in the crystal field scheme of Lea, Leask and Wolf by inelastic neutron scattering. The crystal field parameters derived from x and W are not consistent with the point charge model. The ratio of N(Esub(F))Jsub(ex) for the (REY)Al/sub 2/ extracted from the RE-linewidths correlates with the corresponding ratio extracted from their magnetic ordering temperatures.
Influence of Superconductivity on Crystal Electric Field Transitions in La1-xTbxAl2
DEFF Research Database (Denmark)
Feile, R.; Loewenhaupt, M.; Kjems, Jørgen
1981-01-01
Inelastic neutron scattering from the crystal electric field transitions in La1-xTbxAl2 single crystals has revealed an abrupt increase in the lifetimes of these transitions when the system becomes superconducting. An increase in the integrated intensities is also observed. The lifetime effects...
Non-Born-Oppenheimer calculations of the HD molecule in a strong magnetic field
Adamowicz, Ludwik; Tellgren, Erik I.; Helgaker, Trygve
2015-10-01
An effective variational non-Born-Oppenheimer method is applied to calculate the ground state of the HD molecule in a strong magnetic field. The Hamiltonian used in the calculations is obtained by subtracting the operator representing the kinetic energy of the center-of-mass motion from the total laboratory-frame Hamiltonian. Orbital basis sets are used for the deuteron, the proton, and the electrons. Based on the calculated expectation values, it is determined that, with increasing field strength, the bond length decreases and the alignment of the molecule with the field increases.
Gyrokinetic Calculations of the Neoclassical Radial Electric Field in Stellarator Plasmas
Energy Technology Data Exchange (ETDEWEB)
Lewandowski, J.L.V.; Williams, J.; Boozer, A.H.; Lin, Z.
2001-04-09
A novel method to calculate the neoclassical radial electric field in stellarator plasmas is described. The method, which does not have the inconvenience of large statistical fluctuations (noise) of standard Monte Carlo technique, is based on the variation of the combined parallel and perpendicular pressures on a magnetic surface. Using a three-dimensional gyrokinetic delta f code, the calculation of the radial electric field in the National Compact Stellarator Experiment has been carried out. It is shown that a direct evaluation of radial electric field based on a direct calculation of the radial particle flux is not tractable due to the considerable noise.
Reflectivity calculated for a 3D silicon photonic band gap crystal with finite support
Devashish, D; van der Vegt, J J W; Vos, Willem L
2016-01-01
We study numerically the reflectivity of three-dimensional (3D) photonic crystals with a complete 3D photonic band gap, with the aim to interpret recent experiments. We employ the finite element method to study crystals with the cubic diamond-like inverse woodpile structure. The high-index backbone has a dielectric function similar to silicon. We study crystals with a range of thicknesses up to ten unit cells ($L \\leq 10 c$). The crystals are surrounded by vacuum, and have a finite support as in experiments. The polarization-resolved reflectivity spectra reveal Fabry-P{\\'e}rot fringes related to standing waves in the finite crystal, as well as broad stop bands with nearly $100~\\%$ reflectivity, even for thin crystals. From the strong reflectivity peaks, it is inferred that the maximum reflectivity observed in experiments is not limited by finite size. The frequency ranges of the stop bands are in excellent agreement with stop gaps in the photonic band structure, that pertain to infinite and perfect crystals. ...
van de Streek, Jacco; Neumann, Marcus A
2010-10-01
This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.
Reversed Crystal-Field Splitting and Spin-Orbital Ordering in α-Sr2CrO4
Ishikawa, Takashi; Toriyama, Tatsuya; Konishi, Takehisa; Sakurai, Hiroya; Ohta, Yukinori
2017-03-01
The origin of successive phase transitions observed in the layered perovskite α-Sr2CrO4 is studied by the density-functional-theory-based electronic structure calculation and mean-field analysis of the proposed low-energy effective model. We find that, despite the fact that the CrO6 octahedron is elongated along the c-axis of the crystal structure, the crystal-field level of nondegenerate 3dxy orbitals of the Cr ion is lower in energy than that of doubly degenerate 3dyz and 3dxz orbitals, giving rise to the orbital degrees of freedom in the system with a 3d2 electron configuration. We show that the higher (lower) temperature phase transition is caused by the ordering of the orbital (spin) degrees of freedom.
Lahiri, T.; Pal Majumder, T.; Ghosh, N. K.
2014-07-01
Commercialization of ferroelectric liquid crystal displays (FLCDs) suffers from mechanical and electro-convective instabilities. Impurity ions play a pivotal role in the latter case, and therefore we developed a mean-field type model to understand the complex role of space charges, particularly ions in a ferroelectric liquid crystal. Considering an effective ion-chirality relation, we obtained a modified Poisson-Boltzmann equation for ions dissolved into a chiral solvent like the ferroelectric smectic phase. A nonuniform director profile induced by the mean electrostatic potential of the ions is then calculated by solving an Euler-Lagrange equation for a helically twisted smectic state. A combination of effects resulting from molecular chirality and an electrostatically driven twist created by the ions seems to produce this nonuniform fluctuation in the director orientation. Finally, both theoretical and experimental points of view are presented on the prediction of this mean-field model.
Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors
Energy Technology Data Exchange (ETDEWEB)
Zhu, Xiaoyang [Columbia Univ., New York, NY (United States); Frisbie, Daniel [Univ. of Minnesota, Minneapolis, MN (United States)
2017-03-31
The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering.
Mixed spin Ising model with four-spin interaction and random crystal field
Energy Technology Data Exchange (ETDEWEB)
Benayad, N., E-mail: n.benayad@fsac.ac.ma [Groupe de Mecanique Statistique, Laboratoire de physique theorique et appliquee, Faculte des sciences-Aien Chock, Universite Hassan II-Casablanca, B.P 5366 Maarif, Casablanca 20100 (Morocco); Laboratoire de physique des hautes energies et de la matiere condensee, Faculte des sciences-Aien Chock, Universite Hassan II-Casablanca, B.P 5366 Maarif, Casablanca 20100 (Morocco); Ghliyem, M. [Groupe de Mecanique Statistique, Laboratoire de physique theorique et appliquee, Faculte des sciences-Aien Chock, Universite Hassan II-Casablanca, B.P 5366 Maarif, Casablanca 20100 (Morocco); Laboratoire de physique des hautes energies et de la matiere condensee, Faculte des sciences-Aien Chock, Universite Hassan II-Casablanca, B.P 5366 Maarif, Casablanca 20100 (Morocco)
2012-01-01
The effects of fluctuations of the crystal field on the phase diagram of the mixed spin-1/2 and spin-1 Ising model with four-spin interactions are investigated within the finite cluster approximation based on a single-site cluster theory. The state equations are derived for the two-dimensional square lattice. It has been found that the system exhibits a variety of interesting features resulting from the fluctuation of the crystal field interactions. In particular, for low mean value D of the crystal field, the critical temperature is not very sensitive to fluctuations and all transitions are of second order for any value of the four-spin interactions. But for relatively high D, the transition temperature depends on the fluctuation of the crystal field, and the system undergoes tricritical behaviour for any strength of the four-spin interactions. We have also found that the model may exhibit reentrance for appropriate values of the system parameters.
Imposed Orientation of Dye Molecules by Liquid Crystals and an Electric Field.
Sadlej-Sosnowska, Nina
1980-01-01
Describes experiments using dye solutions in liquid crystals in which polar molecules are oriented in an electrical field and devices are constructed to change their color in response to an electric signal. (CS)
Energy Technology Data Exchange (ETDEWEB)
Beckman, S.P. [Departments of Physics and Chemical Engineering, Center of Computational Materials, Institute of Computational Engineering and Sciences, University of Texas, Austin, TX 78712 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 (United States)], E-mail: spbeckman@gmail.com; Chelikowsky, James R. [Departments of Physics and Chemical Engineering, Center of Computational Materials, Institute of Computational Engineering and Sciences, University of Texas, Austin, TX 78712 (United States)
2007-12-15
The structure and properties of vacancies in a 2 nm Si nano-crystal are studied using a real space density functional theory/pseudopotential method. It is observed that a vacancy's electronic properties and energy of formation are directly related to the local symmetry of the vacancy site. The formation energy for vacancies and Frenkel pair are calculated. It is found that both defects have lower energy in smaller crystals. In a 2 nm nano-crystal the energy to form a Frenkel pair is 1.7 eV and the energy to form a vacancy is no larger than 2.3 eV. The energy barrier for vacancy diffusion is examined via a nudged elastic band algorithm.
Bishop, David M.; Cybulski, sławomir M.
1994-05-01
Electric field gradients, generalized Sternheimer shielding constants, and electric-field-gradient polarizabilities are calculated for H2, N2, F2, HF, HCl, CO, HCN, HNC, H2O, and NH3. The calculations are performed at both the Hartree-Fock and second order Møller-Plesset levels of approximation using large basis sets. For most of these molecules this is the first time that the shielding constants and electric field gradient polarizabilities have been determined. Electron correlation is generally found to be a significant factor.
Energy Technology Data Exchange (ETDEWEB)
Beloglovsky, A.A.; Burmistrov, M.M.; Orlov, A.V.; Vinokurov, V.N. [Moscow Power Engineering Institute, (Russian Federation)
1997-12-31
The development of a method used for calculating electromagnetic industrial frequencies was presented. The FIELD 3.0 program can be used for calculations of near high voltage overhead power transmission lines and substations. In this study, 500 and 750 kV power transmission lines and 750 kV substation fields were computed and compared with measured data. Good agreement was found between measured and computed results, confirming that the FIELD 3.0 software can be a useful tool for successfully determining the electromagnetic field around complicated objects. 8 refs., 5 figs.
Naumov, Vladimir S; Ignatov, Stanislav K
2017-08-01
The GROMOS 56ACARBO force field for the description of carbohydrates was modified for calculations of chitosan (poly-1,4-(N-acetyl)-β-D-glucopyranosamine-2) with protonated and non-protonated amino groups and its derivatives. Additional parameterization was developed on the basis of quantum chemical calculations. The modified force field (56ACARBO_CHT) allows performing the molecular dynamic calculations of chitosans with different degrees of protonation corresponding to various acidity of medium. Test calculations of the conformational transitions in the chitosan rings and polymeric chains as well as the chitosan nanocrystal dissolution demonstrate good agreement with experimental data. Graphical abstract The GROMOS 56ACARBO_CHT force field allows performing the molecular dynamic calculations of chitosans with different types of amio-group: free, protonated, substituted.
Calculation of Guided Modes and Leaky Modes in Photonic Crystal Slabs
Institute of Scientific and Technical Information of China (English)
YE Wei-Min; YUAN Xiao-Dong; JI Jia-Rong; ZENG Chun
2004-01-01
@@ The scattering matrix S describing photonic crystal slabs is formulated. A new method is introduced to solve the eigenfrequency ω for a given Bloch wave vector K from the equation det S-1 (ω, K) = 0. Using this method,we can obtain not only guided modes but also leaky modes in photonic crystal slabs with a higher-frequency resolution than that of the FDTD method.
Low field investigations of single crystal Bi(2212): DC magnetization
Energy Technology Data Exchange (ETDEWEB)
Shaw, G.; Murphy, S.D.; Bhagat, S.M. (Center for Superconductivity Research and Dept. of Physics and Astronomy, Univ. of Maryland, College Park (USA))
1989-12-01
DC Magnetization measurements on micaceous Bi(2212) single crystals suggest that; 1. for T< or approx.25 K the material is a bulk Superconductor (SC), 2. as T is increased, the interlayer coupling weakens, until for T> or approx.55 K the lamina become independent. (orig.).
Final unioned files for Yampa coal field resource calculations, northwestern Colorado (yam*fing)
U.S. Geological Survey, Department of the Interior — These are shapefiles and final unioned polygon coverages used to calculate coal resources of the A through D coal zones, Yampa coal field, northwestern Colorado....
Unioned layer of coal resource calculation in the Danforth Hills coal field, Colorado (dan*fing)
U.S. Geological Survey, Department of the Interior — Final unioned polygon coverages and shapefiles used to calculate coal resources of the A through G coal zones, Danforth Hills coal field, northwestern Colorado....
Calculating the 3D magnetic field of ITER for European TBM studies
Äkäslompolo, Simppa; Bergmans, Thijs; Gagliardi, Mario; Galabert, Jose; Hirvijoki, Eero; Kurki-Suonio, Taina; Sipilä, Seppo; Snicker, Antti
2015-01-01
The magnetic perturbation due to the ferromagnetic test blanket modules (TBMs) may deteriorate fast ion confinement in ITER. This effect must be quantified by numerical studies in 3D. We have implemented a combined finite element method (FEM) -- Biot-Savart law integrator method (BSLIM) to calculate the ITER 3D magnetic field and vector potential in detail. Unavoidable geometry simplifications changed the mass of the TBMs and ferritic inserts (FIs) up to 26%. This has been compensated for by modifying the nonlinear ferromagnetic material properties accordingly. Despite the simplifications, the computation geometry and the calculated fields are highly detailed. The combination of careful FEM mesh design and using BSLIM enables the use of the fields unsmoothed for particle orbit-following simulations. The magnetic field was found to agree with earlier calculations and revealed finer details. The vector potential is intended to serve as input for plasma shielding calculations.
Calculate Electric Field Gradient of TiO2 Within Density Functional Theory
Institute of Scientific and Technical Information of China (English)
2008-01-01
<正>TiO2 electric field gradient has been calculated utilizing WIEN2K program, which is ab initio based on density function theory (DFT). DFT uses the charge density as a variable instead of electronic wave
Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields
Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa
2002-01-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately
Scholten, Olaf; de Vries, Krijn D; van Sloten, Lucas
2016-01-01
We have developed a code that semi-analytically calculates the radio footprint (intensity and polarization) of an extensive air shower subject to atmospheric electric fields. This can be used to reconstruct the height dependence of atmospheric electric field from the measured radio footprint. The various parameterizations of the spatial extent of the induced currents are based on the results of Monte-Carlo shower simulations. The calculated radio footprints agree well with microscopic CoREAS simulations.
Synthesis, crystal structure, IR, 1H NMR and theoretical calculations of 1,2,4-triazole Schiff base
Jin, R. Y.; Sun, X. H.; Liu, Y. F.; Long, W.; Lu, W. T.; Ma, H. X.
2014-03-01
5-Propyl-4-amino-1,2,4-triazole Schiff base was characterized by FT-IR, 1H NMR and X-ray single crystal diffraction techniques. The compound crystallizes in the triclinic space group p-1 with z = 2. The molecular geometry was optimized using density functional theory (DFT/B3LYP) and hartree fock (HF) methods with the 6-311G+(d,p) and 6-311G basis set in ground state. From the optimized geometry of the molecule, vibrational frequencies, HOMO-LUMO and natural bond orbital (NBO) were calculated with B3LYP/6-311G+(d,p) level. In addition, gauge independent atomic orbital (GIAO) 1H NMR chemical shift values was calculated at B3LYP/6-311G+(d,p) and HF/6-311G+(d,p) level.
Lattice calculations for A=3,4,6,12 nuclei using chiral effective field theory
Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G
2010-01-01
We present lattice calculations for the ground state energies of tritium, helium-3, helium-4, lithium-6, and carbon-12 nuclei. Our results were previously summarized in a letter publication. This paper provides full details of the calculations. We include isospin-breaking, Coulomb effects, and interactions up to next-to-next-to-leading order in chiral effective field theory.
Calculation of the magnetic field in the active zone of a hysteresis clutch
Ermilov, M. A.; Glukhov, O. M.
1977-01-01
The initial distribution of magnetic induction in the armature stationary was calculated relative to the polar system of a hysteresis clutch. Using several assumptions, the problem is reduced to calculating the static magnetic field in the ferromagnetic plate with finite and continuous magnetic permeability placed in the air gap between two identical, parallel semiconductors with rack fixed relative to the tooth or slot position.
DEFF Research Database (Denmark)
Ruud, Kenneth; Helgaker, Trygve; Kobayashi, Rika
1994-01-01
Nuclear shielding calculations are presented for multiconfigurational self-consistent field wave functions using London atomic orbitals (gauge invariant atomic orbitals). Calculations of nuclear shieldings for eight molecules (H2O, H2S, CH4, N2, CO, HF, F2, and SO2) are presented and compared...
Ouksel, Louiza; Chafaa, Salah; Bourzami, Riadh; Hamdouni, Noudjoud; Sebais, Miloud; Chafai, Nadjib
2017-09-01
Single Diethyl [hydroxy (phenyl) methyl] phosphonate (DHPMP) crystal with chemical formula C11H17O4P, was synthesized via the base-catalyzed Pudovik reaction and Lewis acid as catalyst. The results of SXRD analyzes indicate that this compound crystallizes into a mono-clinic system with space group P21/n symmetry and Z = 4. The crystal structure parameters are a = 9.293 Å, b = 8.103 Å, c = 17.542 Å, β = 95.329° and V = 1315.2 Å3, the structure displays one inter-molecular O-H⋯O hydrogen bonding. The UV-Visible absorption spectrum shows that the crystal exhibits a good optical transmission in the visible domain, and strong absorption in middle ultraviolet one. The vibrational frequencies of various functional groups present in DHPMP crystal have been deduced from FT-IR and FT-Raman spectra and then compared with theoretical values performed with DFT (B3LYP) method using 6-31G (p, d) basis sets. Chemical and thermodynamic parameters such as: ionization potential (I), electron affinity (A), hardness (σ), softness (η), electronegativity (χ) and electrophilicity index (ω), are also calculated using the same theoretical method. The thermal decomposition behavior of DHPMP, studied by using thermogravimetric analysis (TDG), shows a thermal stability until to 125 °C.
Crystal Fields in Er0.2Y0.98 Studied by Neutron Scattering
DEFF Research Database (Denmark)
Rathmann, Ole; Als-Nielsen, Jens Aage; Bak, Poul Erik;
1974-01-01
The splitting of the J=15/2 multiplet of Er in an hcp crystal field has been determined by inelastic neutron scattering from a single crystal of Er0.02Y0.98. Least-squares fits to the spectra gave crystal-field parameters B20=-0.34±0.04, B40=(0.7±0.2)×10-3, B60=(0.21±0.02)×10-4, and B66=(-0.30±0....
Phase field crystal study of deformation and plasticity in nanocrystalline materials.
Stefanovic, Peter; Haataja, Mikko; Provatas, Nikolas
2009-10-01
We introduce a modified phase field crystal (MPFC) technique that self-consistently incorporates rapid strain relaxation alongside the usual plastic deformation and multiple crystal orientations featured by the traditional phase field crystal (PFC) technique. Our MPFC formalism can be used to study a host of important phase transformation phenomena in material processing that require rapid strain relaxation. We apply the MPFC model to study elastic and plastic deformations in nanocrystalline materials, focusing on the "reverse" Hall-Petch effect. Finally, we introduce a multigrid algorithm for efficient numerical simulations of the MPFC model.
Ma, Nancy
2003-01-01
Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.
Hybrid finite-element/boundary-element method to calculate Oersted fields
Energy Technology Data Exchange (ETDEWEB)
Hertel, Riccardo, E-mail: hertel@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, Strasbourg (France); Kákay, Attila [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich GmbH, D-52428 Jülich (Germany)
2014-11-15
The article presents a general-purpose hybrid finite-element/boundary-element method (FEM/BEM) to calculate magnetostatic fields generated by stationary electric currents. The efficiency of this code lies in its ability to simulate Oersted fields in complex geometries with non-uniform current density distributions. As a precursor to the calculation of the Oersted field, an FEM algorithm is employed to calculate the electric current density distribution. The accuracy of the code is confirmed by comparison with analytic results. Two examples show how this method provides important numerical data that can be directly plugged into micromagnetic simulations: The current density distribution in a thin magnetic strip with a notch, and the Oersted field in a three-dimensional contact geometry; similar to the type commonly used in spin-torque driven nano-oscillators. It is argued that a precise calculation of both, the Oersted field and the current density distribution, is essential for a reliable simulation of current-driven micromagnetic processes. - Highlights: • We present a numerical method to calculate Oersted fields for arbitrary geometries. • Description of a FEM algorithm to calculate current density distributions. • It is argued that these methods are valuable for micromagnetic STT-simulations. • Several examples are shown, highlighting the methods’ importance and accuracy.
Dependence of magnetization on crystal fields and exchange interactions in magnetite
Energy Technology Data Exchange (ETDEWEB)
Ouaissa, Mohamed, E-mail: m.ouaissa@yahoo.fr [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Benyoussef, Abdelilah [Laboratory of Magnetism and Physics of High Energy, Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Abo, Gavin S. [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ouaissa, Samia; Hafid, Mustapha [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Belaiche, Mohammed [Laboratoire de Magnétisme, Matériaux Magnétiques, Microonde et Céramique, Ecole Normale Supérieure, Université Mohammed V-Agdal, B.P. 9235, Océan, Rabat (Morocco)
2015-11-15
In this work, we study the magnetization of magnetite (Fe{sub 3}O{sub 4}) with different exchange interactions and crystal fields using variational method based on the Bogoliubov inequality for the Gibbs free energy within the mean field theory. The magnetic behavior was investigated in the absence and presence of crystal fields. The investigations also revealed that the transition temperature depends on the crystal fields of the octahedral and tetrahedral sites. Magnetite exhibits ferrimagnetic phase with second order transition to paramagnetic phase at 850 K. This result is confirmed using the mean field theory within the Heisenberg model. Important factors that can affect the magnetic behavior of the system are exchange interactions and crystal field. Indeed, a new magnetic behavior was observed depending on these parameters. A first order phase transition from ferrimagnetic to ferromagnetic was found at low temperature, and a second order transition from ferromagnetic to paramagnetic was observed at high temperature. - Highlights: • Magnetization of magnetite versus temperature was studied by mean field theory. • The critical temperature of magnetite (Fe{sub 3}O{sub 4}) was approximately obtained. • Effect of sublattice crystal fields on the magnetization of Fe{sub 3}O{sub 4} was investigated.
Muromets, A. V.; Trushin, A. S.
Influence of acoustic field structure on polarization characteristics of acousto-optic interaction is investigated. It is shown that inhomogeneity of acoustic field and mechanism of ultrasound excitation causes changes in values of acousto-optic figure of merit for ordinary and extraordinary light beams in comparison with theoretic values. The theoretic values were derived under assumption that acoustic wave is homogeneous. Experimental analysis was carried out in acousto-optic cell based on lithium niobate crystal where the acoustic wave propagates at the angle 13 degrees to Z axis of the crystal. We used three different methods of ultrasound generation in the crystal: by means of external piezotransducer, by interdigital transducer and by two sets of electrodes placed on top of the crystal surface. In the latter case, the first pair of the electrodes was directed along X crystal axis, while the second pair of the electrodes was directed orthogonally to X crystal axis and the direction of ultrasound. Obtained values for diffraction efficiencies for ordinary and extraordinary polarized optical beams were qualitatively different which may be caused by spatial inhomogeneity of the generated acoustic waves in the crystal. Structure of acoustic field generated by these sets of electrodes was examined by laser probing. We performed the analysis of the acoustic field intensity using acousto-optic method. A relation of diffraction efficiencies for ordinary and extraordinary light waves was measured during each iteration of the laser probing.
Zhu, Yong-zheng; Cao, Yan-ling; Li, Zhi-hui; Ding, Juan; Liu, Jun-song; Chi, Yuan-bin
2007-02-01
With the help of self-assembly, thermal sintering, selective etching techniques and sol-gel process, the non-close packed (ncp) face-centered cubic (fcc) photonic crystals of titanium dioxide (TiO2) hollow spheres connected by TiO2 cylindrical tubes have been fabricated using silica template. The photonic bandgap calculations indicate that the ncp structure of TiO2 hollow spheres was easier to open the pseudogaps than close packed system at the lowest energy.
Ground-State Phase Diagram of Transverse Spin-2 Ising Model with Longitudinal Crystal-Field
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The transverse spin-2 Ising ferromagnetic model with a longitudinal crystal-field is studied within the mean-field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram and the tricritical point are obtained in the transverse field Ω/z J-longitudinal crystal D/zJ field plane. We find that there are the first order-order phase transitions in a very smallrange of D/zJ besides the usual first order-disorder phase transitions and the second order-disorder phase transitions.
Song, Linze; Shi, Qiang
2015-05-07
We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated.
Coordination field calculation for rare earth complexes in dihedral symmetry field
Institute of Scientific and Technical Information of China (English)
范英芳; 杨频; 潘大丰; 王越奎
1995-01-01
The coordination field perturbation matrix element expressions about D2-field of the terms 2S+1Lf (J=0 - 8 and 7=1/2 - 15/2) with fN (N=1 -13) configuration have been derived The concrete forms of the DSCPCF parameters Akm in the dihedral field (D2, C2v) for various ligand numbers (5 -12) and their reducing behavior in the higher symmetry fields (D4, C4v, D2d, D4d, D2k, D4h and Oh) are discussed with the double sphere coordination point charge field (DSCPCF) model and the irreducible operator tensor method. Besides, the corresponding computational schemes have been developed and the computer program DSF.D has been compiled, which is applicable for the spectral analysis of the rare earth ion complexes with arbitrary ligand numbers in the dihedral, tetragonal and cubical symmetry fields.
Hidden local symmetry of Eu{sup 3+} in xenotime-like crystals revealed by high magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Han, Yibo; Ma, Zongwei; Zhang, Junpei; Wang, Junfeng; Du, Guihuan; Xia, Zhengcai; Han, Junbo, E-mail: junbo.han@mail.hust.edu.cn; Li, Liang [Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, Xuefeng [Department of Physics, Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)
2015-02-07
The excellent optical properties of europium-doped crystals in visible and near infrared wavelength regions enable them to have broad applications in optoelectronics, laser crystals and sensing devices. The local site crystal fields can affect the intensities and peak positions of the photo-emission lines strongly, but they are usually difficult to be clarified due to magnetically degenerate 4f electronic levels coupling with the crystal fields. Here, we provide an effective way to explore the hidden local symmetry of the Eu{sup 3+} sites in different hosts by taking photoluminescence measurements under pulsed high magnetic fields up to 46 T. The zero-field photoluminescence peaks split further at high magnetic fields when the Zeeman splitting energy is comparable to or larger than that of the crystal field induced zero-field splitting. In particular, a magnetic field induced crossover of the local crystal fields has been observed in the GdVO{sub 4}:Eu{sup 3+} crystal, which resulted from the alignment of Gd{sup 3+} magnetic moment in high magnetic fields; and a hexagonally symmetric local crystal fields was observed in the YPO{sub 4} nanocrystals at the Eu{sup 3+} sites characterized by the special axial and rhombic crystal field terms. These distinct Zeeman splitting behaviors uncover the crystal fields-related local symmetry of luminescent Eu{sup 3+} centers in different hosts or magnetic environments, which are significant for their applications in optics and optoelectronics.
Tokuda, M.; Weijian, M.; Hayami, S.; Yoshiasa, A.; Mashimo, T.
2017-04-01
Many researchers have studied the multiferroicity of the hexagonal RMnO3 (R: rare-earth element) for both applications and fundamental studies. To investigate the relationship between the structure and physical properties of materials, some people apply the chemical pressure effect. The procedure of chemical pressure effect involves substituting rare-earth elements for ones which have a different ionic radius. Mashimo et al. have developed a high-temperature ultracentrifuge apparatus that can generate extended duration strong gravitational field in excess of 106 G under a wide range of temperatures (up to 500°C). Strong gravitational fields directly act on each atom as a different body force. This can cause the change in crystal structure. Thus, we subjected YMnO3 single crystal to strong gravity experiments (0.78×106 G, 400°C, 2 h) and investigated the resulting changes in the crystal structure and physical properties of the gravity sample. The single crystal four-circle X-ray diffraction measurements revealed the change in the nearest neighboring Mn-Mn and M-O bond distances. The temperature dependence of magnetic susceptibility by SQUID showed the change in the magnetic anisotropy of gravity sample.
Indian Academy of Sciences (India)
Feng Wen-Lin; Zheng Wen-Chen
2008-09-01
By calculating the optical spectrum band positions and EPR parameters ( factors, ∥, ⊥ and zero-field splitting ) by diagonalizing the complete energy matrix of 3d8 ions in trigonal symmetry, the defect structure of Ni2+ centre in -LiIO3 crystal is studied. It is found that to reach the good fits of optical and EPR data between calculation and experiment, the Ni2+ ion should shift by ≈ 0.298 Å along C3 -axis and the O2− ions between the Ni2+ ion and Li+ vacancy (Li) should be displaced away from the Li by ≈ 0.097 Å because of the electrostatic interaction. The results are discussed.
Petrescu, M I
2012-10-01
The calculation of the hardness of Mo and W disulfides using a crystallo-chemical model provides a unique opportunity to obtain separate quantitative information on the maximum hardness H(max) governed by strong intra-layer covalent bonds acting within the (0001) plane versus the minimum hardness H(min) governed by weak inter-layer van der Waals bonds acting along the c-axis of the hexagonal lattice. The penetration hardness derived from fundamental crystallo-chemical data (confirmed by experimental determinations) proved to be far lower in MS(2) (M = Mo, W) than in graphite and hexagonal BN, both for H(max) (H(graph)/H(MoS2) = 3.85; H(graph)/H(WS2) = 3.60; H(hBN)/H(MoS2) = 2.54; H(hBN)/H(WS2) = 2.37) as well as for H(min) (H(graph)/H(MoS2) = 6.22; H(graph)/H(WS2) = 5.87; H(hBN)/H(MoS2) = 4.72; H(hBN)/H(WS2) = 4.46). However, the gap between H(max) and H(min) is considerably larger in MS(2) (M = Mo,W), as indicated by H(max)/H(min) being 279 in 2H-MoS(2), 282 in 2H-WS(2), 173 in graphite and 150 in hBN. The gap was found to be even larger in MS(2) (M = Mo, W) nanostructures. These findings help to explain the excellent properties of MS(2) (M = Mo, W) as solid lubricants in high tech fields, either as bulk 2H crystals (inter-layer shear and peeling off lubricating mechanisms), or especially as onion-like fullerene nanoparticles (rolling/sliding mechanisms).
Approaches to calculating P balance at the field-scale in Europe
Tunney, H.; Csathó, P.; Ehlert, P.A.I.
2003-01-01
Policies for mitigating phosphorus (P) loss from agriculture are being developed in a number of European countries and calculation of P balance at farm-gate or field-scale is likely to be a part of such policies. The aim of the paper was to study P balance at the field-scale in 18 countries that par
High-Field Magnetization in PrCo2Si2 Single Crystals
Shigeoka, Toru; Fujii, Hironobu; Yonenobu, Kenji; Sugiyama, Kiyohiro; Date, Muneyuki
1989-02-01
Magnetic properties of PrCo2Si2 single crystals have been studied by measurements of high-field magnetization, magnetic susceptibility and electrical resistivity. Anomalous behaviors in the resistivity appear at three successive magnetic phase transition temperatures of 9, 17 and 30K. The magnetic susceptibility is highly anisotropic and is analyzed using the single-ion Hamiltonian, including the crystal-field and molecular-field effects. The thermal variations of the susceptibilities can be well reproduced by the crystal-field parameters estimated from the point-charge model. Metamagnetic transitions with four steps are observable in the c-axis magnetization process up to 300 kOe. The magnetization process is discussed in terms of the incommensurate exchange field model in the Ising system proposed by Date.
Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field.
Matsuyama, Akihiko
2014-11-14
We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant.
Crystal-field analysis of Eu sup 3 sup + in Lu sub 2 O sub 3
Karbowiak, M; Hoelsae, J
2003-01-01
Low temperature (7 K) absorption spectra of polycrystalline sintered ceramic Lu sub 2 O sub 3 :Eu sup 3 sup + were recorded between 3950 and 50000 cm sup - sup 1. There are two different intrinsic Eu sup 3 sup + sites, C sub 2 and S sub 6 (C sub 3 sub i), in this host. A total of 105 crystal-field (CF) energy levels were assigned and fitted to a semiempirical Hamiltonian representing the combined free-ion (FI) and CF interactions for a 4f sup 6 ion in the C sub 2 symmetry site. 10 FI and 14 CF parameters were varied simultaneously in the least square adjustments yielding an rms deviation between the calculated and experimental levels of 15 cm sup - sup 1. The CF strength parameter, S, obtained from calculated B sub q sup k parameters is larger for Lu sub 2 O sub 3 when compared to the Y sub 2 O sub 3 host, which is in accordance with the smaller ionic radius of the Lu sup 3 sup + ion. The CF splittings of the sup 7 F sub 1 and sup 5 D sub 1 levels were also determined experimentally for the Eu sup 3 sup + ion...
Engineering the near-field imaging of a rectangular-lattice photonic-crystal slab in the second band
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Imaging properties of a two-dimensional rectangular-lattice photonic crystal (PC) slab consisting of air holes immersed in a dielectric are studied in this work. The field patterns of electromagnetic waves radiated from a point source through the PC slab are calculated with the finite-difference time-domain method. Comparing the field patterns with the corresponding equifrequency-surface contours simulated by the plane-wave expansion method, we find that an excellent-quality near-field image may be formed through the PC slab by the mechanisms of the simultaneous action of the self-collimation effect and the negative-refraction effect. Near-field imaging may be obtained within two different frequency regions in two vertical directions of the PC slab.
Engineering the near-field imaging of a rectangular-lattice photonic-crystal slab in the second band
Institute of Scientific and Technical Information of China (English)
FENG Shuai; AO Ling; WANG YiQuan
2009-01-01
Imaging properties of a two-dimensional rectangular-lattice photonic crystal (PC) slab consisting of air holes immersed in a dielectric are studied in this work. The field patterns of electromagnetic waves radiated from a point source through the PC slab are calculated with the finite-difference time-domain method. Comparing the field patterns with the corresponding equifrequency-surface contours simu-lated by the plane-wave expansion method, we find that an excellent-quality near-field image may be formed through the PC slab by the mechanisms of the simultaneous action of the self-collimation effect and the negative-refraction effect. Near-field imaging may be obtained within two different frequency regions in two vertical directions of the PC slab.
Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd
2011-03-01
The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.
Fast Near-Field Calculation for Volume Integral Equations for Layered Media
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2005-01-01
An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density....... Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since...
Mohammed, Ahmed A. K.; Limacher, Peter A.; Ayers, Paul W.
2017-08-01
The finite field method was used to calculate the static first and second hyperpolarizabilities (β and γ) for organic molecules. The dependence of β and γ on the applied electric field strength was investigated and used to determine the optimal field strength for each individual molecule. For γ, we designed a protocol that uses the maximum atomic distance within the molecule along the direction of the applied field to estimate optimal field strengths. However, β is nearly independent of the descriptors we considered, and largely depends on the composition (e.g., the presence of certain functional groups) of the molecule.
A fast and flexible library-based thick-mask near-field calculation method
Ma, Xu; Gao, Jie; Chen, Xuanbo; Dong, Lisong; Li, Yanqiu
2015-03-01
Aerial image calculation is the basis of the current lithography simulation. As the critical dimension (CD) of the integrated circuits continuously shrinks, the thick mask near-field calculation has increasing influence on the accuracy and efficiency of the entire aerial image calculation process. This paper develops a flexible librarybased approach to significantly improve the efficiency of the thick mask near-field calculation compared to the rigorous modeling method, while leading to much higher accuracy than the Kirchhoff approximation method. Specifically, a set of typical features on the fullchip are selected to serve as the training data, whose near-fields are pre-calculated and saved in the library. Given an arbitrary test mask, we first decompose it into convex corners, concave corners and edges, afterwards match each patch to the training layouts based on nonparametric kernel regression. Subsequently, we use the matched near-fields in the library to replace the mask patches, and rapidly synthesize the near-field for the entire test mask. Finally, a data-fitting method is proposed to improve the accuracy of the synthesized near-field based on least square estimate (LSE). We use a pair of two-dimensional mask patterns to test our method. Simulations show that the proposed method can significantly speed up the current FDTD method, and effectively improve the accuracy of the Kirchhoff approximation method.
Variational Monte Carlo calculations of lithium atom in strong magnetic field
Energy Technology Data Exchange (ETDEWEB)
Doma, S. B., E-mail: sbdoma@alexu.edu.eg [Alexandria University, Mathematics Department, Faculty of Science (Egypt); Shaker, M. O.; Farag, A. M. [Tanta University, Mathematics Department, Faculty of Science (Egypt); El-Gammal, F. N., E-mail: famta-elzahraa4@yahoo.com [Menofia University, Mathematics Department, Faculty of Science (Egypt)
2017-01-15
The variational Monte Carlo method is applied to investigate the ground state and some excited states of the lithium atom and its ions up to Z = 10 in the presence of an external magnetic field regime with γ = 0–100 arb. units. The effect of increasing field strength on the ground state energy is studied and precise values for the crossover field strengths were obtained. Our calculations are based on using accurate forms of trial wave functions, which were put forward in calculating energies in the absence of magnetic field. Furthermore, the value of Y at which ground-state energy of the lithium atom approaches to zero was calculated. The obtained results are in good agreement with the most recent values and also with the exact values.
Energy Technology Data Exchange (ETDEWEB)
Bisui, D. [Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713 104, West Bengal (India); Chattopadhyay, K.N. [Institute of Science Education, Burdwan University, Burdwan 713 104, West Bengal (India); Chakrabarti, P.K. [Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713 104, West Bengal (India)], E-mail: pabitra_c@hotmail.com
2008-02-15
Single crystals of erbium tri-fluoromethanesulfonate (ErTFMS) were prepared from the slow evaporation of the aqueous solution. The principal magnetic susceptibilities perpendicular to the c-axis of the hexagonal crystal was measured down to 13 K. Principal magnetic anisotropy was also measured from 300 K down to 80 K which provides principal susceptibility parallel to the c-axis down to 80 K. A very good theoretical simulation of the thermal variation of principal magnetic susceptibilities of ErTFMS has been obtained with a crystal field (CF) of C{sub 3h} site symmetry, in which J-mixed eigenvectors and intermediate coupling effects have been used. No ordering effects were noticed down to the lowest temperature (13 K) attained, indicating the inter-ionic interaction to be of predominantly dipolar type. The g-values are found to be g{sub parallel}=8.86 and g{sub perpendicular}=1.62, respectively. The Schottky anomaly in the electronic heat capacity at about 80 K has been computed from the Stark pattern. The thermal behavior of quadrupole splitting and hyperfine heat capacity were calculated from the CF analysis.
Resource-saving application of FDTD technique in 3D photonic crystal waveguide calculations
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Tromborg, Bjarne
2002-01-01
This paper presents an algorithm based on the well-known FDTD numerical method which is adapted for 3D problems of transmission and reflection of photonic crystal waveguides, and which effectively saves memory and computing resources. Specific examples showing its validity and effectiveness...
Drużbicki, Kacper; Mikuli, Edward; Kocot, Antoni; Ossowska-Chruściel, Mirosława Danuta; Chruściel, Janusz; Zalewski, Sławomir
2012-08-02
The experimental and theoretical vibrational spectroscopic study of one of a novel antiferroelectric liquid crystals (AFLC), known under the MHPSBO10 acronym, have been undertaken. The interpretation of both FT-IR and FT-Raman spectra was focused mainly on the solid-state data. To analyze the experimental results along with the molecular properties, density functional theory (DFT) computations were performed using several modern theoretical approaches. The presented calculations were performed within the isolated molecule model, probing the performance of modern exchange-correlations functionals, as well as going beyond, i.e., within hybrid (ONIOM) and periodic boundary conditions (PBC) methodologies. A detailed band assignment was supported by the normal-mode analysis with SQM ab initio force field scaling. The results are supplemented by the noncovalent interactions analysis (NCI). The relatively noticeable spectral differences observed upon Crystal to AFLC phase transition have also been reported. For the most prominent vibrational modes, the geometries of the transition dipole moments along with the main components of vibrational polarizability were analyzed in terms of the molecular frame. One of the goals of the paper was to optimize the procedure of solid-state calculations to obtain the results comparable with the all electron calculations, performed routinely for isolated molecules, and to test their performance. The presented study delivers a complex insight into the vibrational spectrum with a noticeable improvement of the theoretical results obtained for significantly attracting mesogens using modern molecular modeling approaches. The presented modeling conditions are very promising for further description of similar large molecular crystals.
Light field distribution of general function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Zhang, Si-Qi; Wang, Jing; Ba, Nuo; Xiao, Li; Li, Hong
2012-01-01
In this paper, We have presented a new general function photonic crystals (GFPCs), which refractive indexes are line functions of space position in two mediums $A$ and $B$, and obtain new results: (1) when the line function of refractive indexes is up or down, the transmissivity can be far larger or smaller than 1. (2) when the refractive indexes function increase or decrease along the direction of incident light, the light intensity should be magnified or weaken, which can be made optical magnifier or attenuator. (3) The GFPCs can be made optical diode when the light positive and negative incident the GFPCs.
Scientists summit at Shanghai in the field of polymer crystallization
Institute of Scientific and Technical Information of China (English)
Wenbing HU
2009-01-01
@@ From Aug. 12 to 15 at Galaxy Hotel, Shanghai, more than 100 scientists and graduate students from macromolecular phy-sics, engineering and chemistry met together in the Interna-tional Discussion Meeting of Polymer Crystallization (IDMPC). The participants were coming from China, Japan, United States, Germany, England, France, Netherlands, Italy, Korea and Canada. The meeting was initiated by the Ministry of Education of China and European Physical Society, sponsored by the National Natural Science Foundation of China and Donghua University, and organized by the State Key Laboratory for Modification of Chemical Fibers and Chemical Materials.
Critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field
Dias, D. A.; Xavier, J. C.; Plascak, J. A.
2017-01-01
The phase diagram and the critical behavior of the spin-1 and the spin-3/2 two-dimensional Baxter-Wu model in a crystal field are studied by conventional finite-size scaling and conformal invariance theory. The phase diagram of this model, for the spin-1 case, is qualitatively the same as those of the diluted 4-states Potts model and the spin-1 Blume-Capel model. However, for the present case, instead of a tricritical point one has a pentacritical point for a finite value of the crystal field, in disagreement with previous work based on finite-size calculations. On the other hand, for the spin-3/2 case, the phase diagram is much richer and can present, besides a pentacritical point, an additional multicritical end point. Our results also support that the universality class of the critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field is the same as the pure Baxter-Wu model, even at the multicritical points.
Hirvonen, Petri; Ervasti, Mikko M.; Fan, Zheyong; Jalalvand, Morteza; Seymour, Matthew; Vaez Allaei, S. Mehdi; Provatas, Nikolas; Harju, Ari; Elder, Ken R.; Ala-Nissila, Tapio
2016-07-01
We extend the phase field crystal (PFC) framework to quantitative modeling of polycrystalline graphene. PFC modeling is a powerful multiscale method for finding the ground state configurations of large realistic samples that can be further used to study their mechanical, thermal, or electronic properties. By fitting to quantum-mechanical density functional theory (DFT) calculations, we show that the PFC approach is able to predict realistic formation energies and defect structures of grain boundaries. We provide an in-depth comparison of the formation energies between PFC, DFT, and molecular dynamics (MD) calculations. The DFT and MD calculations are initialized using atomic configurations extracted from PFC ground states. Finally, we use the PFC approach to explicitly construct large realistic polycrystalline samples and characterize their properties using MD relaxation to demonstrate their quality.
Crystal field analysis of the magnetic properties of RFe11Ti and RFe11TiH (R=Sm, Tb, Ho)
Institute of Scientific and Technical Information of China (English)
Su Gang; Yan Yu; Xu Shu-Wei; Du Xiao-Bo; Jin Han-Min; Wang Xiang-Qun
2005-01-01
The crystalline-electric-field parameters Anm for RFe11Ti and RFenTiH (R=Sm, Tb, Ho) are evaluated by fitting calculations to the magnetization curves measured on the single crystals or on magnetically aligned powder samples at 4.2K and higher temperatures. Interstitial hydrogen atom in RFe11Ti has been found to have a significant effect on crystalline-electric-field parameters Anm. By using the parameters of exchange field 2μBHex estimated from inelastic neutron scattering experiments and the fitted Anm, the calculations can reproduce the experimental curves well.
Electric-field variations within a nematic-liquid-crystal layer.
Cummings, L J; Mema, E; Cai, C; Kondic, L
2014-07-01
A thin layer of nematic liquid crystal (NLC) across which an electric field is applied is a setup of great industrial importance in liquid crystal display devices. There is thus a large literature modeling this situation and related scenarios. A commonly used assumption is that an electric field generated by electrodes at the two bounding surfaces of the layer will produce a field that is uniform: that is, the presence of NLC does not affect the electric field. In this paper, we use calculus of variations to derive the equations coupling the electric potential to the orientation of the NLC's director field, and use a simple one-dimensional model to investigate the limitations of the uniform field assumption in the case of a steady applied field. The extension of the model to the unsteady case is also briefly discussed.
Directory of Open Access Journals (Sweden)
Amanda García-García
2016-06-01
Full Text Available Single-wall carbon nanotubes (SWCNT are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules.
García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M
2016-01-01
Summary Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599
Tunable defect modes in 2D photonic crystals by means of external magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Soltani Vala, A., E-mail: asoltani@tabrizu.ac.i [Physics Department, University of Tabriz, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Rezaei, B. [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of); Kalafi, M. [Physics Department, University of Tabriz, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)
2010-07-15
We investigate the tunable defect modes in 2D photonic crystal of silicon rods in air background in which one of the rods is replaced by ferrite material and an external static magnetic field is applied in the ferrite rod direction. Using the supercell method, the dependence of E-polarized defect modes on the magnetic field has been reported.
Spin-orbit qubits of rare-earth-metal ions in axially symmetric crystal fields.
Bertaina, S; Shim, J H; Gambarelli, S; Malkin, B Z; Barbara, B
2009-11-27
Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several micros) and the Rabi frequency Omega(R) is anisotropic. Here, we present a study of the variations of Omega(R)(H(0)) with the magnitude and direction of the static magnetic field H(0) for the odd 167Er isotope in a single crystal CaWO(4):Er(3+). The hyperfine interactions split the Omega(R)(H(0)) curve into eight different curves which are fitted numerically and described analytically. These "spin-orbit qubits" should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Orlando, Roberto, E-mail: roberto.orlando@unito.it; Erba, Alessandro; Dovesi, Roberto [Dipartimento di Chimica, Università di Torino and NIS, Nanostructured Interfaces and Surfaces, Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); De La Pierre, Marco [Dipartimento di Chimica, Università di Torino and NIS, Nanostructured Interfaces and Surfaces, Centre of Excellence, Via P. Giuria 7, 10125 Torino (Italy); Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Zicovich-Wilson, Claudio M. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, 62209 Cuernavaca (Morelos) (Mexico)
2014-09-14
Use of symmetry can dramatically reduce the computational cost (running time and memory allocation) of self-consistent-field ab initio calculations for molecular and crystalline systems. Crucial for running time is symmetry exploitation in the evaluation of one- and two-electron integrals, diagonalization of the Fock matrix at selected points in reciprocal space, reconstruction of the density matrix. As regards memory allocation, full square matrices (overlap, Fock, and density) in the Atomic Orbital (AO) basis are avoided and a direct transformation from the packed AO to the symmetry adapted crystalline orbital basis is performed, so that the largest matrix to be handled has the size of the largest sub-block in the latter basis. Quantitative examples, referring to the implementation in the CRYSTAL code, are given for high symmetry families of compounds such as carbon fullerenes and nanotubes.
Raman study of crystal-field excitations in Pr{sub 2}CuO{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Jandl, S. [Centre de Recherche en Physique du Solide, Departement de Physique, Universite de Sherbrooke, Sherbrooke, Quebec, J1K2R1 (CANADA); Strach, T.; Ruf, T.; Cardona, M. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Nekvasil, V. [Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Iliev, M. [Faculty of Physics, University of Sofia, BG-1126 Sofia (Bulgaria); Zhigunov, D.I.; Barilo, S.N.; Shiryaev, S.V. [Institute of Physics of Solids and Semiconductors, Academy Science Belarus, Tolstoi street 4, 220072 Minsk (Belarus)
1997-09-01
Raman measurements in a Pr{sub 2}CuO{sub 4} single crystal show structures related to nine crystal-field (CF) excitations. They correspond to transitions within the {sup 3}H{sub 4}, {sup 3}H{sub 5}, and {sup 3}H{sub 6} multiplets of Pr{sup 3+} ions in C{sub 4v} site symmetry. Satellites to these CF excitations are also observed and associated with the presence of an inequivalent Pr{sup 3+} site of lower symmetry. A set of CF parameters which describes the observed energy spectra is derived and compared to previous calculations. {copyright} {ital 1997} {ital The American Physical Society}
Directory of Open Access Journals (Sweden)
Seied R Mahdavi
2012-01-01
Full Text Available Aims: The objective of this study is to evaluate the accuracy of a treatment planning system (TPS for calculating the dose distribution parameters in conformal fields (CF. Dosimetric parameters of CF′s were compared between measurement, Monte Carlo simulation (MCNP4C and TPS calculation. Materials and Methods: Field analyzer water phantom was used for obtaining percentage depth dose (PDD curves and beam profiles (BP of different conformal fields. MCNP4C was used to model conformal fields dose specification factors and head of linear accelerator varian model 2100C/D. Results: Results showed that the distance to agreement (DTA and dose difference (DD of our findings were well within the acceptance criteria of 3 mm and 3%, respectively. Conclusions: According to this study it can be revealed that TPS using equivalent tissue air ratio calculation method is still convenient for dose prediction in non small conformal fields normally used in prostate radiotherapy. It was also showed that, since there is a close correlation with Monte Carlo simulation, measurements and TPS, Monte Carlo can be further confirmed for implementation and calculation dose distribution in non standard and complex conformal irradiation field for treatment planning systems.
Energy Technology Data Exchange (ETDEWEB)
Derenzo, S.E.; Riles, J.K.
1981-10-01
The high density and atomic number of bismuth germanate (Bi/sub 4/Ge/sub 3/O/sub 12/ or BGO) make it a very useful detector for positron emission tomography. Modern tomograph designs use large numbers of small, closely-packed crystals for high spatial resolution and high sensitivity. However, the low light output, the high refractive index (n=2.15), and the need for accurate timing make it important to optimize the transfer of light to the photomultiplier tube (PMT). We describe the results of a Monte Carlo computer program developed to study the effect of crystal shape, reflector type, and the refractive index of the PMT window on coupling efficiency. The program simulates total internal, external, and Fresnel reflection as well as internal absorption and scattering by bubbles.
Spectral element method for band-structure calculations of 3D phononic crystals
Shi, Linlin; Liu, Na; Zhou, Jianyang; Zhou, Yuanguo; Wang, Jiamin; Huo Liu, Qing
2016-11-01
The spectral element method (SEM) is a special kind of high-order finite element method (FEM) which combines the flexibility of a finite element method with the accuracy of a spectral method. In contrast to the traditional FEM, the SEM exhibits advantages in the high-order accuracy as the error decreases exponentially with the increase of interpolation degree by employing the Gauss-Lobatto-Legendre (GLL) polynomials as basis functions. In this study, the spectral element method is developed for the first time for the determination of band structures of 3D isotropic/anisotropic phononic crystals (PCs). Based on the Bloch theorem, we present a novel, intuitive discretization formulation for Navier equation in the SEM scheme for periodic media. By virtue of using the orthogonal Legendre polynomials, the generalized eigenvalue problem is converted to a regular one in our SEM implementation to improve the efficiency. Besides, according to the specific geometry structure, 8-node and 27-node hexahedral elements as well as an analytic mesh have been used to accurately capture curved PC models in our SEM scheme. To verify its accuracy and efficiency, this study analyses the phononic-crystal plates with square and triangular lattice arrangements, and the 3D cubic phononic crystals consisting of simple cubic (SC), bulk central cubic (BCC) and faced central cubic (FCC) lattices with isotropic or anisotropic scatters. All the numerical results considered demonstrate that SEM is superior to the conventional FEM and can be an efficient alternative method for accurate determination of band structures of 3D phononic crystals.
Energy Technology Data Exchange (ETDEWEB)
Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.; Korsunsky, A. M. [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom); Zhang, S. Y.; Kabra, S.; Kelleher, J. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Neo, T. K. [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, Singapore 228510 (Singapore)
2014-08-07
Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.
2016-09-12
AFRL-RX-WP-JA-2017-0209 TWO BEAM ENERGY EXCHANGE IN HYBRID LIQUID CRYSTAL CELLS WITH PHOTOREFRACTIVE FIELD CONTROLLED BOUNDARY...DATES COVERED (From - To) 29 August 2016 Interim 26 October 2015 – 29 July 2016 4. TITLE AND SUBTITLE TWO BEAM ENERGY EXCHANGE IN HYBRID LIQUID... energy gain when two light beams intersect in a hybrid nematic liquid crystal (LC) cell with photorefractive crystalline substrates. A periodic space
Palmesi, Pietro; Bruckner, Florian; Abert, Claas; Suess, Dieter
2016-01-01
The long-range magnetic field is the most time-consuming part in micromagnetic simulations. Improvements both on a numerical and computational basis can relief problems related to this bottleneck. This work presents an efficient implementation of the Fast Multipole Method [FMM] for the magnetic scalar potential as used in micromagnetics. We assume linearly magnetized tetrahedral sources, treat the near field directly and use analytical integration on the multipole expansion in the far field. This approach tackles important issues like the vectorial and continuous nature of the magnetic field. By using FMM the calculations scale linearly in time and memory.
Energy Technology Data Exchange (ETDEWEB)
Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)
2016-01-15
Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.
Filatov, Michael; Zou, Wenli; Cremer, Dieter
2012-08-07
Based on the analytic derivatives formalism for the spin-free normalized elimination of the small component method, a new computational scheme for the calculation of the electric field gradient at the atomic nuclei was developed and presented. The new computational scheme was tested by the calculation of the electric field gradient at the mercury nucleus in a series of Hg-containing inorganic and organometallic compounds. The benchmark calculations demonstrate that the new formalism is capable of reproducing experimental and theoretical reference data with high accuracy. The method developed can be routinely applied to the calculation of large and very large molecules and holds considerable promise for the interpretation of the experimental data of biologically relevant compounds containing heavy elements.
Liquid crystal cell design of VGA field sequential color LCoS display
Liu, Yanyan; Geng, Weidong; Dai, Yongping
2009-07-01
The design of liquid crystal cell is an important factor to determine the display quality of LCoS display device. The goal of this paper is to gain VGA field sequential color (FSC) LCoS device used for near-to-eye system. The characteristics of optics and electrooptics for the twist nematic liquid crystal material and the material requirements of the FSC LCoS were studied. The LCOS liquid crystal cell optimized by dynamic parameter space method had an uniform reflectivity (about 90%) for the light with wave length from 450nm to 650nm. Both considering the electrooptic response curve of liquid crystal and the relationship between the contrast ratio and pixel size, we determined to use high speed twist nematic liquid crystal working in normally white mode. The liquid crystal cell gap and the pixel size were determined as 2.5um and 12um, respectively. The VGA FSC LCoS device was fabricated with SMIC 0.35um CMOS process and filled with LC-A liquid crystal of Merck in Varitronix. The measurement showed that the response time of liquid crystal from light to dark was 1.8ms and from dark to light was 4.4ms. The contrast ratio is bigger than 50:1. The LCoS displays well.
Method for calculating dose when lung tissue lies in the treatment field
Energy Technology Data Exchange (ETDEWEB)
McDonald, S.C.; Keller, B.E.; Rubin, P.
1976-07-01
The absorbed dose in lung and beyond lung as a result of increased lung transmission of x and ..gamma.. irradiation is described. The correction factor used to calculate the absorbed dose is a function of beam energy, field area, lung density, and lung and soft tissue depth. Agreement between measurements and calculations in the Alderson phantom is within 3%. An example of how this technique can be used is described. (AIP)
Comment on ``New ansatz for metric operator calculation in pseudo-Hermitian field theory''
Bender, Carl M.; Benincasa, Gregorio; Jones, H. F.
2009-12-01
In a recent Brief Report by Shalaby, a new first-order perturbative calculation of the metric operator for an iϕ3 scalar field theory is given. It is claimed that the incorporation of derivative terms in the ansatz for the metric operator results in a local solution, in contrast to the nonlocal solution previously obtained by Bender, Brody, and Jones. Unfortunately, Shalaby’s calculation is not valid because of sign errors.
Atomic density functional and diagram of structures in the phase field crystal model
Ankudinov, V. E.; Galenko, P. K.; Kropotin, N. V.; Krivilyov, M. D.
2016-02-01
The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindrical tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.
Energy Technology Data Exchange (ETDEWEB)
Kneur, J.L
2006-06-15
This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.
Mazuruk, K.; Volz, M. P.
1996-01-01
A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.
Accuracy of out-of-field dose calculations by a commercial treatment planning system
Energy Technology Data Exchange (ETDEWEB)
Howell, Rebecca M; Scarboro, Sarah B; Kry, S F; Yaldo, Derek Z, E-mail: Rhowell@mdanderson.or [University of Texas Health Science Center Houston, Graduate School of Biomedical Sciences, Houston, TX 77030 (United States)
2010-12-07
The dosimetric accuracy of treatment planning systems (TPSs) decreases for locations outside the treatment field borders. However, the true accuracy of specific TPSs for locations beyond the treatment field borders is not well documented. Our objective was to quantify the accuracy of out-of-field dose predicted by the commercially available Eclipse version 8.6 TPS (Varian Medical Systems, Palo Alto, CA) for a clinical treatment delivered on a Varian Clinac 2100. We calculated (in the TPS) and determined (with thermoluminescent dosimeters) doses at a total of 238 points of measurement (with distance from the field edge ranging from 3.75 to 11.25 cm). Our comparisons determined that the Eclipse TPS underestimated out-of-field doses by an average of 40% over the range of distances examined. As the distance from the treatment field increased, the TPS underestimated the dose with increasing magnitude--up to 55% at 11.25 cm from the treatment field border. These data confirm that accuracy beyond the treatment border is inadequate, and out-of-field data from TPSs should be used only with a clear understanding of this limitation. Studies that require accurate out-of-field dose should use other dose reconstruction methods, such as direct measurements or Monte Carlo calculations.
Accuracy of out-of-field dose calculations by a commercial treatment planning system
Howell, Rebecca M.; Scarboro, Sarah B.; Kry, S. F.; Yaldo, Derek Z.
2010-12-01
The dosimetric accuracy of treatment planning systems (TPSs) decreases for locations outside the treatment field borders. However, the true accuracy of specific TPSs for locations beyond the treatment field borders is not well documented. Our objective was to quantify the accuracy of out-of-field dose predicted by the commercially available Eclipse version 8.6 TPS (Varian Medical Systems, Palo Alto, CA) for a clinical treatment delivered on a Varian Clinac 2100. We calculated (in the TPS) and determined (with thermoluminescent dosimeters) doses at a total of 238 points of measurement (with distance from the field edge ranging from 3.75 to 11.25 cm). Our comparisons determined that the Eclipse TPS underestimated out-of-field doses by an average of 40% over the range of distances examined. As the distance from the treatment field increased, the TPS underestimated the dose with increasing magnitude--up to 55% at 11.25 cm from the treatment field border. These data confirm that accuracy beyond the treatment border is inadequate, and out-of-field data from TPSs should be used only with a clear understanding of this limitation. Studies that require accurate out-of-field dose should use other dose reconstruction methods, such as direct measurements or Monte Carlo calculations.
Calculation of free energy of Al-Cu-Li alloy under electric field
Institute of Scientific and Technical Information of China (English)
ZHANG Jian-jun; WANG Yong-xin; CHEN Zheng; LIU Bing
2007-01-01
Based on Thomas-Fermi model, the interior potential boundary condition with the effect of electric field was defined, the calculation method of free energy for atom cluster under electric field was established. The change of free energy of Al-Cu-Li alloy under the effect of electric field was calculated quantitatively. It is shown that: near the zero electric field and the side of positive electric field, the free energy of Cu4LiAl7 compound at aging temperature 460 K is higher than that of free energy at solid solution temperature 725 K, but once the negative electric field increases to certain degree there will be opposite result. Under the effect of electric field, at 725 K the free energy of Cu4LiAl7 is higher than that of Al-1.0%Li-4.0%Cu, and at 460 K the free energy of compound is lower than that of solid solution. When the copper content in the Al-Li-Cu solid solution is below 5%, under the effect of electric field the free energy of solid solution increases gradually with the increasing of copper content, but the increasing amplitude reduces with the increasing of copper content. The free energy of binary solid solution increases with the addition of lithium, and with the increasing of electric field intensity the free energy margin of two kinds of solid solution becomes bigger.
Velizhanin, Kirill A; Kilina, Svetlana; Sewell, Thomas D; Piryatinski, Andrei
2008-10-23
Numerical studies of vibrational energy transport and associated (non)linear infrared and Raman response in polyatomic materials require knowledge of the multidimensional vibrational potential-energy surface and the ability to perform normal-mode analysis on that potential. The presence of translational symmetry, as in crystals, leads to the observed dispersion of the unit cell normal modes and has to be accounted for in calculations of energy transfer rates and other spectroscopic quantities. Here we report on the implementation of a computational approach that combines the generalized supercell method and density functional theory electronic structure calculations to investigate the vibrational structure in translationally symmetric materials containing relatively large numbers of atoms in the unit cell (58 atoms in the present study). The method is applied to calculate the phonon and vibron dispersion relations and the vibrational density of states in pentaerythritol tetranitrate (PETN) molecular crystal which is an important energetic material. The results set the stage for future investigations of vibrational energy transport and associated nonlinear spectroscopic signatures in this class of materials.
Dynamical mean field theory-based electronic structure calculations for correlated materials.
Biermann, Silke
2014-01-01
We give an introduction to dynamical mean field approaches to correlated materials. Starting from the concept of electronic correlation, we explain why a theoretical description of correlations in spectroscopic properties needs to go beyond the single-particle picture of band theory.We discuss the main ideas of dynamical mean field theory and its use within realistic electronic structure calculations, illustrated by examples of transition metals, transition metal oxides, and rare-earth compounds. Finally, we summarise recent progress on the calculation of effective Hubbard interactions and the description of dynamical screening effects in solids.
Mean-field potential calculations of high-pressure equation of state for BeO
Institute of Scientific and Technical Information of China (English)
Zhang Qi-Li; Zhang Ping; Song Hai-Feng; Liu Hai-Feng
2008-01-01
A systematic study of the Hugoniot equation of state, phase transition, and the other thermodynamic properties including the Hugoniot temperature, the electronic and ionic heat capacities, and the Griineisen parameter for shockcompressed BeO, has been carried out by calculating the total free energy. The method of calculations combines first-principles treatment for 0 K and finite-T electronic contribution and the mean-field-potential approach for the vibrational contribution of the lattice ion to the total energy. Our calculated Hugoniot is in good agreement with the experimental data.
Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice
Casini, Horacio
2014-01-01
We study entanglement entropy (EE) for a Maxwell field in 2+1 dimensions. We do numerical calculations in two dimensional lattices. This gives a concrete example of the general results of our recent work on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: An "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a non standard way in which strong subaddi...
[A 3D FEM model for calculation of electromagnetic fields in transmagnetic stimulation].
Seilwinder, J; Kammer, T; Andrä, W; Bellemann, M E
2002-01-01
We developed a realistic finite elements method (FEM) model of the brain for the calculation of electromagnetic fields in transcranial magnetic stimulation (TMS). A focal butterfly stimulation coil was X-rayed, parameterized, and modeled. The magnetic field components of the TMS coil were calculated and compared for validation to pointwise measurements of the magnetic fields with a Hall sensor. We found a mean deviation of 7.4% at an axial distance of 20 mm to the coil. A 3D brain model with the biological tissues of white and gray matter, bone, and cerebrospinal fluid was developed. At a current sweep of 1000 A in 120 microseconds, the maximum induced current density in gray matter was 177 mA/m2 and the strongest electric field gradient covered an area of 40 mm x 53 mm.
Hydrogen atom in strong magnetic field: a high accurate calculation in spheroidal coordinates
Institute of Scientific and Technical Information of China (English)
LIU Qiang; KANG Shuai; ZHANG Xian-zhou; SHI Ting-yun
2006-01-01
A B-spline-type basis set method for the calculation of hydrogen atom in strong magnetic fields in the frame of spheroidal coordinates has been introduced.High accurate energy levels of hydrogen in the magnetic field,with strength ranging from 0 to 1000 a.u.,have been obtained.For the ground state,ls0,energies with at least 11 significant digits have been obtained.For the low-lying excited state,2p-1,energies with at least 9 significant digits are obtained.The method has also been applied to the calculation of hydrogen Rydberg states in laboratory magnetic fields.Energy spectra with at least 10 significant digits are presented.A comparison with other results in the literatures has been performed.Our results are comparable to the most accurate one up to date.A possible extension to the cases of parallel and crossed electric and magnetic fields have been discussed.
Mei, Yang; Chen, Bo-Wei; Zheng, Wen-Chen; Li, Bang-Xing
2017-02-01
The crystal field energy levels (obtained from optical spectra) together with the spin-Hamiltonian parameters g//, g⊥ and D (obtained from EPR spectra) for 3d3 ions Cr3+ and Mn4+ at the trigonal octahedral Ga3+ sites in La3Ga5SiO14 crystals are computed from the complete diagonalization (of energy matrix) method based on the two-spin-orbit-parameter model. The model takes into account the contributions due to the spin-orbit parameter of central dn ion (in the traditional crystal field theory) and that of ligand ions via covalence effect. The calculated results are in rational accord with the experimental values. The calculations also imply that the covalence of (MnO6)8- center in La3Ga5SiO14 crystals is stronger than that of (CrO6)9- center, and the impurity-induced local lattice relaxation for (MnO6)8- center is larger than that for (CrO6)9- cluster because of the larger size and charge mismatch for Mn4+ replacing Ga3+ in La3Ga5SiO14 crystals.
Zaim, N.; Zaim, A.; Kerouad, M.
2017-02-01
In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.
Calculation of induced modes of magnetic field in the geodynamo problem
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, Yukiko; Yukutake, Takesi
1989-01-01
In the dynamo problem, the calculation of induced modes is of vital importance, because the interaction of fluid motions with the magnetic field induces specific types of fields which are, in many cases, different either from the type of velocity field or from the original magnetic field. This special induction relationship, known as 'selection rules', has so far been derived by calculating Adams-Gaunt integrals and Elsasser integrals. In this paper, we calculate the induced modes in a more direct way, expressing the magnetic fields and the velocity in a spherical harmonic series. By linearizing the product terms of spherical harmonic functions, which appear in interaction terms between the velocity and the magnetic field, into a simple spherical harmonic series, we have derived the induced magnetic modes in a simple general form. When the magnetic field and the velocity are expressed by toroidal and poloidal modes, four kinds of interaction are conceivable between the velocity and the magnetic field. By each interaction, two modes, the poloidal and toroidal, are induced, except in the interaction of the toroidal velocity with the toroidal magnetic field, which induces only the toroidal mode. In spite of the diversity of interaction processes, the induced modes have been found to be expressed simply by two types. For a velocity of degree l and order k interacting with a magnetic field of degree n and order m, one type is the mode with degree and order of n+l-2t, m+-k for an integer t, and the other with n+l-2t-1, m+-k . (author).
Zero-field nuclear magnetic resonance of a nematic liquid crystal
Energy Technology Data Exchange (ETDEWEB)
Thayer, A.M.; Millar, J.M.; Luzar, M.; Jarvie, T.P.; Pines, A.
1986-04-10
The molecular order parameter of CH/sub 2/Cl/sub 2/ in a nematic liquid crystal was measured by using a version of zero-field NMR employing pulsed dc magnetic fields. Spectral frequencies and intensities are shown to reflect the ordering on a molecular and macroscopic scale, respectively. Samples oriented in high magnetic field did not significantly change their state of alignment during the time scale of the field cycle. Zero-field measurements of the order parameter yielded values within experimental error of those measured in high field. A zero-field echo experiment was performed to decrease the effect of residual fields on line width. Dipolar order was created in zero field by using a pulsed dc field analogue of the Jeener-Brokaert experiment. 26 references, 8 figures.
Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.
2016-01-01
We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370
Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4
Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David
2017-03-01
We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.
Directory of Open Access Journals (Sweden)
A.V. Erisov
2016-05-01
Full Text Available Purpose. Simplification of accounting ratio to determine the magnetic field strength of electric power lines, and assessment of their environmental safety. Methodology. Description of the transmission lines of the magnetic field by using techniques of spatial harmonic analysis in the cylindrical coordinate system is carried out. Results. For engineering calculations of electric power lines magnetic field with sufficient accuracy describes their first spatial harmonic magnetic field. Originality. Substantial simplification of the definition of the impact of the construction of transmission line poles on the value of its magnetic field and the bands of land alienation sizes. Practical value. The environmentally friendly projection electric power lines on the level of the magnetic field.
Institute of Scientific and Technical Information of China (English)
WANG De-Hua; DING Shi-Liang
2003-01-01
Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. Using the closed-orbit theory and classical perturbation theory, we calculate the scaled recurrence spectra of Lithium atom in magnetic field plus a weak perpendicular electric field. The results show when the crossed electric field is added, the recurrence spectra are weakened greatly. As the scaled electric field f increases, the peaks of the recurrence spectra lose strength. Some recurrences are very sensitive and fall off rapidly as f increases; others persist till much higher f . As the electric field is stronger, some of the peaks revive. This phenomenon, caused by the interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.
Institute of Scientific and Technical Information of China (English)
WANGDe-Hua; DINGShi-Liang
2003-01-01
Closed-orbit theory is a semiclassical technique for explaining the spectra of Rydberg atoms in external fields. Using the dosed-orblt theory and classical perturbation theory, we calculate the scaled recurrence spectra of Lithium atom in magnetic field plus a weak perpendicular electric field. The results show when the crossed electric field is added, the recurrence spectra are weakened greatly. As the scaled electric field f increases, the peaks of the recurrence spectra lose strength. Some recurrences are very sensitive and fall off rapidly as f increases, others persist till much higher f. As the electric field is stronger, some of the peaks revive. This phenomenon, caused by the interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.
Crystal field of Dy in non-magnetic metals
Kikkert, Pieter Jan Willem
1980-01-01
Many investigations carried out during the last 15 years have demonstrated that the crystalline electric field (CEF) has a great influence on the low temperature magnetic behaviour of rare earth ions in metallic systems (see e.g. /1/) . It is therefore important to understand the origin of the CEF i
Field gradient calculation of HTS double-pancake coils considering the slanted turns and the splice
Energy Technology Data Exchange (ETDEWEB)
Baek, Geon Woo; Kim, Jin Sub; Song, Seung Hyun; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Lee, Woo Seung [JH ENGINEERING CO., LTD., Gunpo (Korea, Republic of); Lee, On You [Korea National University of Transportation, Chungju (Korea, Republic of)
2017-03-15
To obtain Nuclear Magnetic Resonance (NMR) measurement of membrane protein, an NMR magnet is required to generate high intensity, homogeneity, and stability of field. A High-Temperature Superconducting (HTS) magnet is a promising alternative to a conventional Low-Temperature Superconducting (LTS) NMR magnet for high field, current density, and stability margin. Conventionally, an HTS coil has been wound by several winding techniques such as Single-Pancake (SP), Double-Pancake (DP), and layer-wound. The DP winding technique has been frequently used for a large magnet because long HTS wire is generally difficult to manufacture, and maintenance of magnet is convenient. However, magnetic field generated by the slanted turns and the splice leads to field inhomogeneity in Diameter of Spherical Volume (DSV). The field inhomogeneity degrades performance of NMR spectrometer and thus effect of the slanted turns and the splice should be analyzed. In this paper, field gradient of HTS double-pancake coils considering the slanted turns and the splice was calculated using Biot-Savart law and numerical integration. The calculation results showed that magnetic field produced by the slanted turns and the splice caused significant inhomogeneity of field.
Institute of Scientific and Technical Information of China (English)
Luo Kai-Fu; Jiang Xiu-Li; Yang Yu-Liang
2008-01-01
Under a simple shear flow and in a static external magnetic field, the production of defects in the director-aligning regime of nematic liquid crystals has been investigated in terms of the Leslie-Ericksen theory. The equation of motion of the nematic director, which conforms to the driven over-damped sine-Gordon equation, has a soliton solution of the amplitude π. We show that the stationary state with the director uniformly oriented at a Leslie angle is only a metastable state and the potential, which governs the motion of the director, has a number of stable stationary states. For a strong magnetic field, the higher energy barrier between the stable and unstable states leads the director to be locked along the magnetic field direction. However, at the appropriate shear rate and magnetic field the defects, which appear as a stable solitary solution, can be nucleated from a uniformly aligned nematic liquid crystal. We have calculated the stationary travelling velocity of the solitary waves and the distance between a pair of defects.
Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L.; Sinha, Chittaranjan
2015-02-01
Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)sbnd H(7A)---O(2), N(7)sbnd H(7B)---O(3), N(1)sbnd H(1)---N(2), C(5)sbnd H(5)---O(3)sbnd S(1) and N(7)sbnd (H7A)---O(2)sbnd S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37 × 104 M-1. The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.
Das, Dipankar; Sahu, Nilima; Roy, Suman; Dutta, Paramita; Mondal, Sudipa; Torres, Elena L; Sinha, Chittaranjan
2015-02-25
Sulfamethoxazole (SMX) [4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide] is structurally established by single crystal X-ray diffraction measurement. The crystal packing shows H-bonded 2D polymer through N(7)-H(7A)-O(2), N(7)-H(7B)-O(3), N(1)-H(1)-N(2), C(5)-H(5)-O(3)-S(1) and N(7)-(H7A)-O(2)-S(1). Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT) computations of optimized structure of SMX determine the electronic structure and has explained the electronic spectral transitions. The interaction of SMX with CT-DNA has been studied by absorption spectroscopy and the binding constant (Kb) is 4.37×10(4)M(-1). The in silico test of SMX with DHPS from Escherichia coli and Streptococcus pneumoniae helps to understand drug metabolism and accounts the drug-molecule interactions. The molecular docking of SMX-DNA also helps to predict the interaction feature.
Institute of Scientific and Technical Information of China (English)
ZHANG Xiangmu; MA Wenjuan; CUI Shuwen; WANG Lihua
2006-01-01
Based on a single ion model, Hamiltonian of the simplest form about magnetocrystalline anisotropy for Tb3+ ion was solved by using the numerical method. The relation between the stabilization energy, crystal field coefficient B20 and the magnetic exchange interaction was studied as temperature approaches to 0K. The results show that the stabilization energy contributed by Tb3+ is linear with crystal field coefficient B20 approximately, but it is insensitive to the change of magnetic exchange interaction for the strong magnetic substancessuch as TbCo5, Tb2Co17 and Tb2Fe14B compounds.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Organic single crystals hold great promise for the development of organic semiconductor materials,because they could reveal the intrinsic electronic properties of these materials,providing high-performance electronic devices and probing the structureproperty relationships.This article reviews the preparation methods for organic single crystals or crystalline micro/nanostructures,including vapor phase growth methods and solution-processed methods,and summarizes a few methods employed in the fabrication of field-effect transistors along with dozens of examples concerning both small molecules and polymers with high field-effect performance.
Electric field-induced optical second harmonic generation in nematic liquid crystal 5CB
Torgova, S. I.; Shigorin, V. D.; Maslyanitsyn, I. A.; Todorova, L.; Marinov, Y. G.; Hadjichristov, G. B.; Petrov, A. G.
2014-12-01
Electric field-induced second harmonic generation (EFISH) was studied for the liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) (a nematic phase material at room temperature). The intensity of coherent SHG from 5CB cells upon DC electric field was measured for various initial orientations of the liquid crystal. The dependence of the SHG intensity on the pump beam incidence angle was obtained in transmission geometry using sample rotation method. The experimental results (the registered light intensity in the output SHG interference patterns) were theoretically modelled and analyzed.
Crystal electric field effects and thermal expansion of rare-earth hexaborides
Novikov, V. V.; Pilipenko, E. S.; Bud'ko, S. L.
2017-02-01
Anomalies in the magnetic contribution to the thermal expansion coefficients ∆β(T)of the CeB6, PrB6, and NdB6 hexaborides in the range of 5-300 K were found by comparison with diamagnetic LaB6. The characteristic of the anomalies was the same in all the studied borides: a distinct peak at low temperatures, followed by a broad maximum at higher temperatures (50-100 K), then a decrease and transition to the region of negative values as the temperature increases further. The features of ∆β(T) are explained by the effects of the magnetic order (sharp low temperature peaks) and the crystal electric field (CEF). The βCEF(T) dependencies were calculated using Raman and neutron scattering data on the splitting of the rare-earth (RE) ions R3+ f-level by the CEF. A satisfactory consistency between the values of βCEF(T) and ∆β(T)was obtained for the studied hexaborides. Additionally, we determined the values of the Grüneisen parameter γi that correspond to the transition between the ground and excited multiplets of R3+ ions f-level splitting.
A single-gap transflective liquid crystal driven by fringe and vertical electric fields
Energy Technology Data Exchange (ETDEWEB)
Lim, Young Jin; Chin, Mi Hyung; Kim, Jin Ho; Her, Jung Hwa; Lee, Seung Hee [Polymer BIN Fusion Research Center, Department of Polymer Nano-Science and Technology, Chonbuk National University, Chonju, Chonbuk 561-756 (Korea, Republic of); Jin, Hyun Suk; Kim, Byeong Koo, E-mail: lsh1@chonbuk.ac.k [Mobile Product Development Department, LG Display Co., Ltd., Gumi, Gyungbuk 730-350 (Korea, Republic of)
2009-07-21
A single-gap transflective liquid-crystal display driven by a fringe electric field in the transmissive (T) region and a vertical electric field in the reflective (R) region was designed. In the device, a homogeneously aligned liquid crystal (LC) rotates almost in plane by a fringe field in the T-region whereas the LC tilts upwards by a vertical field in the R-region. A high surface pre-tilt angle of the LC in the R-region is achieved through polymerization of an UV curable reactive mesogen monomer at the surfaces and thus the effective cell retardation in the R-region becomes half of that in the T-region. Consequently, a transflective display driven by a vertical and a fringe electric field with a single cell gap and single gamma curves is realized.
Institute of Scientific and Technical Information of China (English)
REN Yong-Gang; CHEN Zhi-Rong; LI Hao-Hong; ZHAO Bin; HUANG Chang-Cang; LI Jun-Qian
2005-01-01
The title compound [Cu(dafone)2(DMF)2](2ClO4 1 (dafone = 4,5-diazafluoren- 9-one, dmf = N,N(A)-dimethyl formamide) was synthesized by the reaction of Cu(ClO4 )2 and dafone in DMF solution at room temperature with pH = 3.0.The single-crystal X-ray analysis has revealed that 1 crystallizes in monoclinic, space group P21/n with a = 8.4853(8), b = 13.1520 (14), c = 14.3866(12) (A), β = 102.629(3)o, V = 1566.7(3) (A)3, C28H26Cl2CuN6O12, Mr = 773.00, Z = 2, Dc = 1.639 g/cm3 , F(000) = 790, μ = 0.942 mm-1, the final R = 0.0438 and wR = 0.1214 for 3165 obser- ved reflections with I > 2σ(I).X-ray analysis shows that compound 1 has unsymmetric chelation of dafone with one Cu-N bond being much longer than the other.Coordination geometry of Cu is a highly distorted octahedron and the whole structure is stabilized by π-π stacking and static attractive forces from [ClO4]- anions.Based on the crystal data, quantum chemistry calculation at the DFT/ B3LPY level was used to reveal the electronic structure of 1.
Striations in CZ silicon crystals grown under various axial magnetic field strengths
Kim, K. M.; Smetana, P.
1985-10-01
Inhibition of fluid flow instabilities in the melt by the axial magnetic field in Czochralski silicon crystal growth (AMCZ) is investigated precisely by a high-sensitivity striation etch in conjunction with temperature measurements. The magnetic field strength (B) was varied up to 4.0 kG, incremented mostly in 0.5-kG/2.5-cm crystal length. The convection flow was substantially suppressed at B greater than or equal to 1.0 kG. A low oxygen level of 2-3 ppm and a high resistivity of 400 ohm-cm is achieved in the AMCZ silicon crystals at B greater than or equal to 1.0 kG. Random striations at B = O, characteristic of turbulent convection, assumed progressively a periodicity, indicative of oscillatory convection at B from 0.35-4.0 kG. The striation contrast or 'intensity' decreased steadily with the increase in B. At B = 4 kG, most of the crystal was free of striations, although some weak, localized periodic striations persisted near the crystal periphery. Spreading-resistance measurement shows, however, a uniform dopant distribution in all crystal sections grown at B from 0.35-4.0 kG within a few percent.
Calculation and Analysis of Magnetic Field Pattern for TEXT-U Equipment
Institute of Scientific and Technical Information of China (English)
何勇; 江中和; 夏胜国
2003-01-01
In this paper, the toroidal field B of a tokamak produced by separate coils hasbeen calculated from the basic electrodynamic theory. As an example, the toroidal magneticfield B(R) in TEXT-U tokamak is plotted, and the curve is fitted well to the analysis formulaB(R) ＝ B0R0/R with a precision of several percents.
Energy Technology Data Exchange (ETDEWEB)
Lauber, T.S.
1980-12-01
The purpose of this report is to present a digital computer program capable of calculating the electrostatic field in an arbitrary two-dimensional configuration. The program was developed as a preliminary result in a project aimed at producing a three-dimensional program. Thus, this report represents an interim report on the entire project.
DEFF Research Database (Denmark)
Johnsen, Kristinn; Yngvason, Jakob
1996-01-01
and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...
On the calculation of the response of (planar) hall-effect devices to inhomogeneous magnetic fields
Fluitman, J.H.J.
1981-01-01
The calculation of Hall potentials in a rectangular Hall plate is treated for the case in which the device is subject to a magnetic field B that is inhomogeneous in the y-direction perpendicular to the direction of initial current flow. The potentials are presented in the form φH(→r′) = const. ∫widt
Jensen, L; van Duijnen, PT; Snijders, JG
2003-01-01
A discrete solvent reaction field model for calculating frequency-dependent molecular linear response properties of molecules in solution is presented. The model combines a time-dependent density functional theory (QM) description of the solute molecule with a classical (MM) description of the discr
Calculation of Spark Breakdown or Corona Starting Voltages in Nonuniform Fields
DEFF Research Database (Denmark)
Pedersen, A.
1967-01-01
The processes leading to a spark breakdown or corona discharge are discussed very briefly. A quantitative breakdown criterion for use in high-voltage design is derived by which spark breakdown or corona starting voltages in nonuniform fields can be calculated. The criterion is applied to the sphere...
CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 8 AND 9 CRYSTAL RIVER UNIT 3
Energy Technology Data Exchange (ETDEWEB)
Michael L. Wilson
2001-02-08
The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 8 and 9 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.
CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 4 AND 5 OF CRYSTAL RIVER UNIT 3
Energy Technology Data Exchange (ETDEWEB)
Kenneth D. Wright
1997-07-30
The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 4 and 5 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.
Method to calculate interior sound field of arbitrary-shaped closed thin shell
Institute of Scientific and Technical Information of China (English)
WU Jiuhui; CHEN Hualing; HU Xuanli
2001-01-01
The concept of covering-domain means that an arbitrary-shaped closed shell can be approached by a series of closed spherical shells. Based on it, the interior scattering sound field of the arbitrary-shaped closed shell is given. According to the reciprocity theory, the radiating sound field of the elastic surface due to the action of external force is presented. The method presented can also be used to calculate the interior sound fields of arbitraryshaped closed thin shells of which the thickness are either equal or unequal. It is verified to be correct by corresponding test.
Silva, A. M.; Silva, B. P.; Sales, F. A. M.; Freire, V. N.; Moreira, E.; Fulco, U. L.; Albuquerque, E. L.; Maia, F. F., Jr.; Caetano, E. W. S.
2012-11-01
Density functional theory (DFT) computations within the local-density approximation and generalized gradient approximation in pure form and with dispersion correction (GGA+D) were carried out to investigate the structural, electronic, and optical properties of L-aspartic acid anhydrous crystals. The electronic (band structure and density of states) and optical absorption properties were used to interpret the light absorption measurements we have performed in L-aspartic acid anhydrous crystalline powder at room temperature. We show the important role of the layered spatial disposition of L-aspartic acid molecules in anhydrous L-aspartic crystals to explain the observed electronic and optical properties. There is good agreement between the GGA+D calculated and experimental lattice parameters, with (Δa, Δb, Δc) deviations of (0.029,-0.023,-0.024) (units in Å). Mulliken [J. Chem. Phys.JCPSA60021-960610.1063/1.1740588 23, 1833 (1955)] and Hirshfeld [Theor. Chim. ActaTCHAAM0040-574410.1007/BF00549096 44, 129 (1977)] population analyses were also performed to assess the degree of charge polarization in the zwitterion state of the L-aspartic acid molecules in the DFT converged crystal. The lowest-energy optical absorption peaks related to transitions between the top of the valence band and the bottom of the conduction band involve O 2p valence states and C 1p and O 2p conduction states, with the carboxyl and COOH lateral chain group contributing significantly to the energy band gap. Among the calculated band gaps, the lowest GGA+D (4.49-eV) gap is smaller than the experimental estimate of 5.02 eV, as obtained by optical absorption. Such a wide-band-gap energy together with the small carrier effective masses estimated from band curvatures allows us to suggest that an L-aspartic acid anhydrous crystal can behave as a wide-gap semiconductor. A comparison of effective masses among directions parallel and perpendicular to the L-aspartic molecules layers reveals that charge
Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields
Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa
2002-11-01
An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately
Schwarcz, Henry P; McNally, Elizabeth A; Botton, Gianluigi A
2014-12-01
In a previous study we showed that most of the mineral in bone is present in the form of "mineral structures", 5-6nm-thick, elongated plates which surround and are oriented parallel to collagen fibrils. Using dark-field transmission electron microscopy, we viewed mineral structures in ion-milled sections of cortical human bone cut parallel to the collagen fibrils. Within the mineral structures we observe single crystals of apatite averaging 5.8±2.7nm in width and 28±19nm in length, their long axes oriented parallel to the fibril axis. Some appear to be composite, co-aligned crystals as thin as 2nm. From their similarity to TEM images of crystals liberated from deproteinated bone we infer that we are viewing sections through platy crystals of apatite that are assembled together to form the mineral structures.
Analyses of crystal field and exchange interaction of Dy3Ga5O12 under extreme conditions
Institute of Scientific and Technical Information of China (English)
Wang Wei; Qi Xin; Yue Yuan
2011-01-01
This paper theoretically investigates the effects of crystal field and exchange interaction field on magnetic properties in dysprosium gallium garnet under extreme conditions (low temperatures and high magnetic fields) based on quantum theory. Here, five sets of crystal field parameters are discussed and compared. It demonstrates that, only considering the crystal field effect, the experiments can not be successfully explained. Thus, referring to the molecular field theory,an effective exchange field associated with the Dy-Dy exchange interaction is further taken into account. Under special consideration of crystal field and the exchange interaction field, it obtains an excellent agreement between the theoretical results and experiments, and further confirms that the exchange interaction field between rare-earth ions has great importance to magnetic properties in paramagnetic rare-earth gallium garnets.
Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals
Śliwa, I.; JeŻewski, W.; Kuczyński, W.
2016-01-01
Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external electric fields is studied both theoretically and experimentally. As has already been shown, molecular reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a statistical approach to distinguish numerically response signals of samples from noise generated by measuring devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized liquid crystal samples.
Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals.
Śliwa, I; Jeżewski, W; Kuczyński, W
2016-01-01
Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external electric fields is studied both theoretically and experimentally. As has already been shown, molecular reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a statistical approach to distinguish numerically response signals of samples from noise generated by measuring devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized liquid crystal samples.
Energy Technology Data Exchange (ETDEWEB)
Gendron, Frederic; Pritchard, Ben; Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY (United States); Paez-Hernandez, Dayan; Bolvin, Helene [Laboratoire de Physique et de Chimie Quantiques, Universite Toulouse 3 (France); Notter, Francois-Paul [Laboratoire de Chimie Quantique, Universite de Strasbourg (France)
2014-06-23
The electronic structure and magnetic properties of neptunyl(VI), NpO{sub 2}{sup 2+}, and two neptunyl complexes, [NpO{sub 2}(NO{sub 3}){sub 3}]{sup -} and [NpO{sub 2}Cl{sub 4}]{sup 2-}, were studied with a combination of theoretical methods: ab initio relativistic wavefunction methods and density functional theory (DFT), as well as crystal-field (CF) models with parameters extracted from the ab initio calculations. Natural orbitals for electron density and spin magnetization from wavefunctions including spin-orbit coupling were employed to analyze the connection between the electronic structure and magnetic properties, and to link the results from CF models to the ab initio data. Free complex ions and systems embedded in a crystal environment were studied. Of prime interest were the electron paramagnetic resonance g-factors and their relation to the complex geometry, ligand coordination, and nature of the nonbonding 5f orbitals. The g-factors were calculated for the ground and excited states. For [NpO{sub 2}Cl{sub 4}]{sup 2-}, a strong influence of the environment of the complex on its magnetic behavior was demonstrated. Kohn-Sham DFT with standard functionals can produce reasonable g-factors as long as the calculation converges to a solution resembling the electronic state of interest. However, this is not always straightforward. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Briesemeister, A.; Zhai, K.; Anderson, D. T.; Anderson, F. S. B.; Talmadge, J. N.
2013-01-01
Intrinsic flow velocities of up to ˜20 km s-1 have been measured using charge exchange recombination spectroscopy (CHERS) in the quasi-helically symmetric HSX stellarator and are compared with the neoclassical values calculated using an updated version (Lore 2010 Measurement and Transport Modeling with Momentum Conservation of an Electron Internal Transport Barrier in HSX (Madison, WI: University of Wisconsin); Lore et al 2010 Phys. Plasmas 17 056101) of the PENTA code (Spong 2005 Phys. Plasmas. 12 056114). PENTA uses the monoenergetic transport coefficients calculated by the drift kinetic equation solver code (Hirshman et al 1986 Phys. Fluids 29 2951; van Rij and Hirshman 1989 Phys. Fluids B 1 563), but corrects for momentum conservation. In the outer half of the plasma good agreement is seen between the measured parallel flow profile and the calculated neoclassical values when momentum correction is included. The flow velocity in HSX is underpredicted by an order of magnitude when this momentum correction is not applied. The parallel flow is calculated to be approximately equal for the majority hydrogen ions and the C6+ ions used for the CHERS measurements. The pressure gradient of the protons is the primary drive of the calculated parallel flow for a significant portion of the outer half of the plasma. The values of the radial electric field calculated with and without momentum correction were similar, but both were smaller than the measured values in the outer half of the plasma. Differences between the measured and predicted radial electric field are possibly a result of uncertainty in the composition of the ion population and sensitivity of the ion flux calculation to resonances in the radial electric field.
Coupling-reducing k-points for photonic crystal fibre calculations
DEFF Research Database (Denmark)
Albertsen, Maja; Lægsgaard, Jesper; Barkou Libori, Stig Eigil
2003-01-01
When describing localized electromagnetic modes in dielectric waveguides by the planewave method, a supercell geometry must necessarily be adopted. We demonstrate in the present work that the convergence of the calculations with respect to supercell size depends strongly on the choice of the tran...
$\\pi_0$ pole mass calculation in a strong magnetic field and lattice constraints
Avancini, Sidney S; Pinto, Marcus Benghi; Tavares, William R; Timóteo, Varese S
2016-01-01
The $\\pi_0$ neutral meson pole mass is calculated in a strongly magnetized medium using the SU(2) Nambu-Jona-Lasinio model within the random phase approximation (RPA) at zero temperature and zero baryonic density. We employ a magnetic field dependent coupling $G(eB)$ fitted to reproduce lattice QCD results for the quark condensates. Divergent quantities are handled with a magnetic field independent regularization scheme in order to avoid unphysical oscillations. A comparison between the running and the fixed couplings reveals that the former produces results much closer to the predictions from recent lattice calculations. In particular, we find that the $\\pi_0$ meson mass systematically decreases when the magnetic field increases while the scalar mass remains almost constant. We also investigate how the magnetic background influences other mesonic properties such as $f_{{\\pi}_0}$ and $g_{\\pi_0 q q}$.
New Breakdown Electric Field Calculation for SF6 High Voltage Circuit Breaker Applications
Institute of Scientific and Technical Information of China (English)
Ph.ROBIN-JOUAN; M.YOUSFI
2007-01-01
The critical electric fields of hot SF6 are calculated including both electron and ion kinetics in wide ranges of temperature and pressure,namely from 300 K up to 4000 K and 2 atmospheres up to 32 atmospheres respectively.Based on solving a multi-term electron Boltzmann equation the calculations use improved electron-gas collision cross sections for twelve SF6 dissociation products with a particular emphasis on the electron-vibrating molecule interactions.The ion kinetics is also considered and its role on the critical field becomes non negligible as the temperature is above 2000 K.These critical fields are then used in hydrodynamics simulations which correctly predict the circuit breaker behaviours observed in the case of breaking tests.
Calculation of nuclear matter in the presence of strong magnetic field using LOCV technique
Bordbar, G H
2015-01-01
In the present work, we are interested in the properties of nuclear matter at zero temperature in the presence of strong magnetic fields using the lowest order constraint variational (LOCV) method employing $AV_{18}$ nuclear potential. Our results indicate that in the absence of a magnetic field, the energy per particle is a symmetric function of the spin polarization parameter. This shows that for the nuclear matter, the spontaneous phase transition to a ferromagnetic state does not occur. However, we have found that for the magnetic fields $ B\\gtrsim 10 ^ {18}\\ G$, the symmetry of energy is broken and the energy has a minimum at a positive value of the spin polarization parameter. We have also found that the effect of magnetic field on the value of energy is more significant at the low densities. Our calculations show that at lower densities, the spin polarization parameter is more sensitive to the magnetic field.
Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations
DEFF Research Database (Denmark)
Hemmingsen, Lars Bo Stegeager; Madsen, D.E.; Esbensen, A.L.
2004-01-01
A quantitative evaluation of 20 second-generation carbohydrate force fields was carried out using ab initio and density functional methods. Geometry-optimized structures (B3LYP/6-31G(d)) and relative energies using augmented correlation consistent basis sets were calculated in gas phase...... for monosaccharide carbohydrate benchmark systems. Selected results are: (i) The interaction energy of the alpha-D-alucopyranose-H2O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error......-generation carbohydrate force fields. No single force field is consistently better than the others for all the test cases. A statistical assessment of the performance of the force fields indicates that CHEAT(95), CFF, certain versions of Amber and of MM3 have the best overall performance, for these gas phase...
High accuracy calculation of the hydrogen negative ion in strong magnetic fields
Institute of Scientific and Technical Information of China (English)
Zhao Ji-Jun; Wang Xiao-Feng; Qiao Hao-Xue
2011-01-01
Using a full configuration-interaction method with Hylleraas-Gaussian basis function, this paper investigates the 110+, 11(-1)+ and l1(-2)+ states of the hydrogen negative ion in strong magnetic fields. The total energies, electron detachment energies and derivatives of the total energy with respect to the magnetic field are presented as functions of magnetic field over a wide range of field strengths. Compared with the available theoretical data, the accuracy for the energies is enhanced significantly. The field regimes 3 ＜γ＜ 4 and 0.02 ＜ 7＜ 0.05, in which the l1(-l)+ and l1(-2)+states start to become bound, respectively, are also determined based on the calculated electron detachment energies.
Calculation of Calibration Functions and Explosive Aftershock Magnitudes in the Near Field
Institute of Scientific and Technical Information of China (English)
Li Xuezheng; Wang Haijun; Lei Jun
2003-01-01
The current calibration function used in calculating the magnitude of natural earthquakes within 5km is a constant; a fact that causes several serious difficulties for the calculation of the magnitude of small and shallow-focus earthquakes. According to the attenuation law of explosions and the propagation theory of elastic waves, the calibration function is calculated for near field quakes from 0km to 5km. Magnitudes of two aftershock sequences are calculated.The magnitudes of most explosion earthquakes are small, ranging mainly from magnitude 0.5 to 1.0. The M-t chart of the explosive aftershocks is completely different from that of strong earthquake aftershocks. It not only shows positive columnar lines indicating large magnitudes but also short negative columnar lines indicating small magnitudes.
Compositing orbital angular momentum beams in Bi4Ge3O12 crystal for magnetic field sensing
Yu, Shuangfeng; Pang, Fufei; Liu, Huanhuan; Li, Xianjin; Yang, Junfeng; Wang, Tingyun
2017-08-01
The polarization states and orbital angular momentum (OAM) properties of light are of considerable importance for several aspects of high-precision optical measurements. In this work, we have investigated the properties of composited OAM beams propagating in a Bi4Ge3O12 crystal under an applied magnetic field and have demonstrated a magnetic field sensing method based on compositing of OAM beams using a Sagnac configuration. The polarization rotation can be projected into petal-like patterns by the rotation of the OAM beams. However, the accurate measurement of the rotation angles of the petal-like patterns of OAM beams remains challenging. Therefore, an image processing technique based on the Radon transform is explored to enable the accurate calculation of the rotation angle of the petal-like patterns of composite OAM beams under different magnetic fields. The rotation angle of these petal-like patterns is found to have a linear dependence on the magnetic field intensity, which means that the proposed system is appropriate for magnetic field sensing applications. Using this method, a magnetic field sensitivity of 28°/T has been achieved experimentally with a measurement error of 0.0123 T in a high-intensity magnetic field ranging from 191 to 3322 G for OAM beams with topological charge (TC) l =±1 .
Deformations of charge-density wave crystals under electric field
Energy Technology Data Exchange (ETDEWEB)
Pokrovskii, V.Ya. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation)], E-mail: pok@cplire.ru; Zybtsev, S.G.; Loginov, V.B. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation); Timofeev, V.N. [Baikov Institute of Metallurgy of RAS, Leninsky prosp. 49, 119991 Moscow (Russian Federation); Kolesov, D.V.; Yaminsky, I.V. [Advanced Technologies Center, Department of Physics, Moscow State University, Leninskie Gori, 119991 Moscow (Russian Federation); Gorlova, I.G. [Kotel' nikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11, 125009 Moscow (Russian Federation)
2009-03-01
We report the effects of electric field induced deformations of quasi one-dimensional conductors with charge-density wave (CDW). The most pronounced sort of deformation is torsional strain (TS). The TS is found to comprise two contributions. The features of the 1st-the larger one-are threshold hysteretic dependence on electric field and high relaxation time {tau}: For o-TaS{sub 3}{tau}{approx}10{sup -2} s at T=80 K and falls as exp(900 K/T) with increasing T. The 2nd contribution is linear in electric field and does not drop with frequency increase. The amplitude of this contribution falls abruptly with T approaching the Peierls transition temperature T{sub P} from below. Similar features of TS are demonstrated for other CDW compounds: (TaSe{sub 4}){sub 2}I, K{sub 0.3}MoO{sub 3} and NbS{sub 3} type II, for which T{sub P}{approx}360 K. We attribute the 1st and the 2nd contributions to large (hysteretic) and small (near-equilibrium) CDW deformations, respectively, likely-shear at the surface. The TS is observed also above T{sub P}: For TaS{sub 3} and (TaSe{sub 4}){sub 2}I typical torsional amplitude is 10{sup -1} deg./V in the resonance regimes, corresponding to the piezomodulus {approx}10{sup -9} m/V. A separate study of TS was performed at room temperature with AFM technique. Apart from this ('intrinsic') effect, we observe electrostatic contribution to the TS. In contrast to the intrinsic response, the electrostatic one is proportional to the potential either over the sample, or over an additional electrode ('gate') placed nearby, but not to the difference of potentials between the sample ends. It is typically 2 orders of magnitude less. The intrinsic TS reveals a new electromechanical effect at room temperature, presumably associated with the excitations of the pinned mode of the CDW fluctuations. Its observation opens prospects for application of quasi one-dimensional conductors as micro- and nano-actuators. Basing on the electrostatic
Oh, Seung-Won; Baek, Jong-Min; Kim, Jung-Wook; Yoon, Tae-Hoon
2016-09-01
Two types of image flicker, which are caused by the flexoelectric effect of liquid crystals (LCs), are observed when a fringe-field switching (FFS) LC cell is driven by a low frequency electric field. Static image flicker, observed because of the transmittance difference between neighboring frames, has been reported previously. On the other hand, research on dynamic image flicker has been minimal until now. Dynamic image flicker is noticeable because of the brief transmittance drop when the sign of the applied voltage is reversed. We investigated the dependence of the image flicker in an FFS LC cell on dielectric anisotropy of the LCs in terms of both the static and dynamic flicker. Experimental results show that small dielectric anisotropy of the LC can help suppress not only the static but also dynamic flicker for positive LCs. We found that both the static and dynamic flicker in negative LCs is less evident than in positive LCs.
Density functional theory calculations of tetracene on low index surfaces of copper crystal
Institute of Scientific and Technical Information of China (English)
Dou Wei-Dong; Zhang Han-Jie; Bao Shi-Ning
2009-01-01
This paper carries out the density functional theory calculations to study the adsorbate-substrate interaction between tetracene and Cu substrates (Cu (110) and Cu (100) surface). On each of the surfaces, two kinds of geometry are calculated, namely 'flat-lying' mode and 'upright standing' mode. For 'flat-lying' geometry, the molecule is found to be aligned with its longer molecular axis along close-packed direction of the substrata surfaces. For 'upright standing' geometry, the long axis of tetracene is found to be parallel to the surface normal of the substrate on Cu (110) surface. However, tetracene appears as 'tilted' mode on Cu (100) surface. Structures with 'flat-lying' mode have much larger adsorption energy and charge transfer upon adsorption than that with 'upright standing' mode, indicating the preference of 'flat-lying' geometry on both Cu (110) and Cu (100) surface.
Functionalized 4-Hydroxy Coumarins: Novel Synthesis, Crystal Structure and DFT Calculations
Directory of Open Access Journals (Sweden)
Olga Igglessi-Markopoulou
2011-01-01
Full Text Available A novel short-step methodology for the synthesis in good yields of functionalized coumarins has been developed starting from an activated precursor, the N-hydroxysuccinimide ester of O-acetylsalicylic acid. The procedure is based on a tandem C-acylation-cyclization process under mild reaction conditions. The structure of 3-methoxycarbonyl-4-hydroxy coumarin has been established by X-ray diffraction analysis and its geometry was compared with optimized parameters by means of DFT calculations.
Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution.
Qi, Jian Quan; Guo, Rui; Wang, Yu; Liu, Xuan Wen; Chan, Helen Lai Wah
2016-12-01
The role of electric field is investigated in determining the structure, morphology, and crystallographic characteristics of CaCO3 nanostructures crystallized from solution. It is found that the lattice structure and crystalline morphology of CaCO3 can be tailed by the electric field applied to the solution during its crystallization. The calcite structure with cubic-like morphology can be obtained generally without electric field, and the vaterite structure with the morphology of nanorod is formed under the high electric field. The vaterite nanorods can be piled up to the petaliform layers. Both the nanorod and the petaliform layer can have mesocrystal structures which are piled up by much fine units of the rods with the size of several nanometers. Beautiful rose-like nanoflowers can be self-arranged by the petaliform layers. These structures can have potential application as carrier for medicine to involve into metabolism of living cell.
Directory of Open Access Journals (Sweden)
Xu Bao-Qing
2016-01-01
Full Text Available A simplified model of the 750kV tower is established by CDEGS software which is based on the Method Of Moment. The power frequency electric field distribution on the ground is achieved by software calculation and field-measuring. The validity of the calculation is proved when compare the calculation and experiment results. The model also can be used to calculate the electric field in prepared hanging points on the tower. Results show that the electric field distribution on the ground surface around the tower and prepared hanging points are meet the standard by calculation and experiment.
First-principles calculation on dilute magnetic alloys in zinc blend crystal structure
Energy Technology Data Exchange (ETDEWEB)
Ullah, Hamid, E-mail: hamidullah@yahoo.com [Department of Physics, Government Post Graduate Jahanzeb College, Saidu Sharif Swat (Pakistan); Inayat, Kalsoom [Department of Physics, Government Post Graduate Jahanzeb College, Saidu Sharif Swat (Pakistan); Khan, S.A; Mohammad, S. [Department of Physics, Materials Modeling Laboratory, Hazara University, Mansehra 21300 (Pakistan); Ali, A. [Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam-do 356-706 (Korea, Republic of); Alahmed, Z.A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Reshak, A.H. [New Technologies-Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)
2015-07-01
Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic alloys in zinc blende structure. The first-principles study is carried out on Mn doped III–V semiconductors. The calculated band structures, electronic properties and magnetic properties of Ga{sub 1−x}Mn{sub x}X (X=P, As) compounds reveal that Ga{sub 0.75}Mn{sub 0.25}P is half metallic turned to be metallic with increasing x to 0.5 and 0.75, whereas substitute P by As cause to maintain the half-metallicity nature in both of Ga{sub 0.75}Mn{sub 0.25}As and Ga{sub 0.5}Mn{sub 0.5}As and tune Ga{sub 0.25}Mn{sub 0.75}As to be metallic. Calculated total magnetic moments and the robustness of half-metallicity of Ga{sub 0.75}Mn{sub 0.25}P, Ga{sub 0.75}Mn{sub 0.25}As and Ga{sub 0.5}Mn{sub 0.5}As with respect to the variation in lattice parameters are also discussed. The predicted theoretical evidence shows that some Mn-doped III–V semiconductors can be effectively used in spintronic devices.
First-principles calculations of hydrogen in perfect WFe and WFeNb crystals
Chen, L.; Wang, Q.; Xiong, L.; Gong, H. R.
2017-01-01
First principles calculations reveal that the addition Nb in WFeH phases changes the preferred site, i.e., WFeH(O2) → WFeNbH(T), and the addition of Nb can decrease the structural stability of WFeNbH(T) phase. It is also shown that Nb-H bond should have a stronger chemical bonding than W-H bond and Fe-H bond in WFeNbH phases when the bond length is bigger than 1.8 Å, which account for favorable mechanical properties of WFeNbH phases. Additionally, the most probable paths of H diffusion in WFe and WFeNb phases are calculated. The values of barriers denote that the addition of Nb in WFeH phases can result in H diffusing rapidly. The calculated results are in good agreements with experimental observations in the literature, and are discussed in terms of electronic structures and bond characteristics.
Institute of Scientific and Technical Information of China (English)
关荣华; 杨国琛
2003-01-01
Based on the modified formula of Rapini-Papoular, the equilibrium equation and boundary condition of the director have been obtained and the behaviour of the Freedericksz transition at the threshold point has been studied for weak-anchoring nematic liquid crystal cells under external electric and magnetic fields with the methods of analytical derivation and numerical calculation. The results show that, except for the usual second-order transition, the first-order Freedericksz transition can also be induced by a suitable surface anchoring technique for the liquid crystal cell given in the paper. The conditions for the existence of the first-order Freedericksz transition are obtained. They are related to the material elastic coefficient k11, k33 the thickness of the liquid crystal cell, the external electric field and the strength of surface anchoring, etc.
Institute of Scientific and Technical Information of China (English)
Ali Yigit; Erhan Albayrak
2012-01-01
We have investigated the random crystal field effects on the phase diagrams of the spin-2 Blume-Capel model for a honeycomb lattice using the effective-field theory with correlations.To do so,the thermal variations of magnetization are studied via calculating the phase diagrams of the model.We have found that the model displays both second-order and first-order phase transitions in addition to the tricritical and isolated points.Reentrant behavior is also observed for some appropriate values of certain system parameters.Besides the usual ground state phases of the spin-2 model including ±2,±1,and 0,we have also observed the phases ±3/2 and ±1/2,which are unusual for the spin-2 case.
Crystal fields of dilute Tb, Dy, or Er in Sc obtained by magnetization measurements
DEFF Research Database (Denmark)
Høg, J.; Touborg, P.
1976-01-01
Crystal-field parameters for dilute Sc-Tb, Sc-Dy, and Sc-Er alloys have been obtained by fitting theoretical expressions to the experimentally measured paramagnetic susceptibility. The initial susceptibility was measured and corrected for the effects of ordering at the lowest temperatures in the ...
Tuning the Colloidal Crystal Structure of Magnetic Particles by External Field
Pal, Antara; Malik, Vikash; He, Le; Erne, Ben H.; Yin, Yadong; Kegel, Willem K.; Petukhov, A. V.
2015-01-01
Manipulation of the self-assembly of magnetic colloidal particles by an externally applied magnetic field paves a way toward developing novel stimuli responsive photonic structures. Using microradian X-ray scattering technique we have investigated the different crystal structures exhibited by self-a
Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors
De Boer, R.W.I.; Stassen, A.F.; Craciun, M.F.; Mulder, C.L.; Molinari, A.; Rogge, S.; Morpurgo, A.F.
2005-01-01
We report the observation of ambipolar transport in field-effect transistors fabricated on single crystals of copper- and iron-phthalocyanine, using gold as a high work-function metal for the fabrication of source and drain electrodes. In these devices, the room-temperature mobility of holes reaches
Hulea, I.N.; Russo, S.; Molinari, A.; Morpurgo, A.F.
2006-01-01
We have investigated the contact resistance of rubrene single-crystal field-effect transistors (FETs) with nickel electrodes by performing scaling experiments on devices with channel length ranging from 200 nm up to 300 μm. We find that the contact resistance can be as low as 100 Ω cm with narrowly
Bias-dependent contact resistance in rubrene single-crystal field-effect transistors
Molinari, A.; Gutiérrez, I.; Hulea, I.N.; Russo, S.; Morpurgo, A.F.
2007-01-01
The authors report a systematic study of the bias-dependent contact resistance in rubrene single-crystal field-effect transistors with Ni, Co, Cu, Au, and Pt electrodes. They show that the reproducibility in the values of contact resistance strongly depends on the metal, ranging from a factor of 2 f
Ambipolar Cu- and Fe-phthalocyanine single-crystal field-effect transistors
De Boer, R.W.I.; Stassen, A.F.; Craciun, M.F.; Mulder, C.L.; Molinari, A.; Rogge, S.; Morpurgo, A.F.
2005-01-01
We report the observation of ambipolar transport in field-effect transistors fabricated on single crystals of copper- and iron-phthalocyanine, using gold as a high work-function metal for the fabrication of source and drain electrodes. In these devices, the room-temperature mobility of holes reaches
Effect of electrical field on crystallization and ferroelectric properties of Ge:Sb:Te films
Energy Technology Data Exchange (ETDEWEB)
Gervacio Arciniega, J.J.; Prokhorov, E.; Espinoza Beltran, F.J.; Trapaga Martinez, L.G. [CINVESTAV, Unidad Queretaro (Mexico); Gonzalez-Hernandez, J. [Centro de Investigacion en Materiales Avanzados, S.C. and Laboratorio Nacional de Nanotecnologia, Chihuahua (Mexico)
2011-11-15
In this work impedance spectroscopy has been used to investigate of the NaCl type-hexagonal transition in stoichiometric Ge{sub 2}Sb{sub 2}Te{sub 5} and in non-stoichiometric (Ge{sub 24}Sb{sub 15}Te{sub 61}) films. The temperature dependence of capacitance in all films shows an abrupt change (about 4-6 times) at the temperature corresponding to the end of the NaCl type-hexagonal transition. Additional, impedance measurements were carried out in films which have been crystallized with an external DC electric field. Comparing the results in the films crystallized with and without the external electric field, it is observed that in films crystallized with an external electric field, the capacitance increases during the NaCl type-hexagonal transition for about 9-15 times and that the piezoresponse force microscopy measurements have shown ferroelectric domains in the NaCl type phase. External electrical field changes significantly the onset of amorphous-NaCl type crystallization temperature which could be related with an increase in atomic diffusion, promoting the growth of the crystalline phase. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Scaling of crystal field parameters between Pd 2REIn and Pd 2RESn
Babateen, M.; Neumann, K.-U.; Ziebeck, K. R. A.
1995-02-01
Experimentally it is found that crystal field (CF) parameters between the same rare earth compounds in the alloy series Pd 2REIn and Pd 2RESn (RE = rare earth element) exhibit scaling properties. A phenomenological model is put forward to explain this observation.
Near-field imaging of out-of-plane light scattering in photonic crystal slabs
DEFF Research Database (Denmark)
Volkov, Valentyn; Bozhevolnyi, Sergey; Taillaert, Dirk
2003-01-01
A collection scanning near-field optical microscope (SNOM) is used to image the propagating of light at telecommunication wavelengths (1520-1570 nm) along photonic crystal (PC) slabs, which combine slab waveguides with in-plane PCs consisting of one- and two-dimensional gratings. The efficient out...
Magnetic-Field-Induced Weak Order in Nematic Liquid Crystals Formed by Biaxial Molecules
Institute of Scientific and Technical Information of China (English)
ZHANG Zhi-Dong; ZHANG De-Xian; SUN Yu-Bao
2000-01-01
Nematic liquid crystal system of interacting biaxial particles via dispersion forces is studied. The molecular orienting potential form in a magnetic field is given for the first time. Weakly ordered isotropic phase is treated in the two-particle cluster approximation. Taking account of the molecular biaxiality, it is found that the ratio of the lowest supercooling temperature T* to the nematic-isotropic phase transition temperature TC approaches the observed value, and the validity of the mean field theory is clarified.
Energy Technology Data Exchange (ETDEWEB)
Kalin, J., E-mail: jan.kalin@zag.s [Slovenian National Building and Civil Engineering Institute, Dimiceva 12, SI-1000 Ljubljana (Slovenia); Petkovsek, B., E-mail: borut.petkovsek@zag.s [Slovenian National Building and Civil Engineering Institute, Dimiceva 12, SI-1000 Ljubljana (Slovenia); Montarnal, Ph., E-mail: philippe.montarnal@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Genty, A., E-mail: alain.genty@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Deville, E., E-mail: estelle.deville@cea.f [CEA/Saclay, DM2S/SFME/LSET, Gif-sur-Yvette, 91191 cedex (France); Krivic, J., E-mail: jure.krivic@geo-zs.s [Geological Survey of Slovenia, Dimiceva 14, SI-1000 Ljubljana (Slovenia); Ratej, J., E-mail: joze.ratej@geo-zs.s [Geological Survey of Slovenia, Dimiceva 14, SI-1000 Ljubljana (Slovenia)
2011-04-15
In the past years the Slovenian Performance Analysis/Safety Assessment team has performed many generic studies for the future Slovenian low and intermediate level waste repository, most recently a Special Safety Analysis for the Krsko site. The modelling approach was to split the problem into three parts: near-field (detailed model of the repository), far-field (i.e., geosphere) and biosphere. In the Special Safety Analysis the code used to perform the near-field calculations was Hydrus2D. Recently the team has begun a cooperation with the French Commisariat al'Energie Atomique/Saclay (CEA/Saclay) and, as a part of this cooperation, began investigations into using the Alliances numerical platform for near-field calculations in order to compare the overall approach and calculated results. The article presents the comparison between these two codes for a silo-type repository that was considered in the Special Safety Analysis. The physical layout and characteristics of the repository are presented and a hydraulic and transport model of the repository is developed and implemented in Alliances. Some analysis of sensitivity to mesh fineness and to simulation timestep has been preformed and is also presented. The compared quantity is the output flux of radionuclides on the boundary of the model. Finally the results from Hydrus2D and Alliances are compared and the differences and similarities are commented.
Nosov, G. V.; Kuleshova, E. O.; Vassilyeva, Yu Z.; Elizarov, A. I.
2016-04-01
The authors of the paper have obtained formulas for analytical calculation of the constants with the harmonic electromagnetic field, which characterize the surface layer (a skin layer) of the ferromagnetic conductors in case of heating and nonlinear magnetic properties, which can be used for practical calculation of the electromagnetic screens, rotors of the electrical machines and inductive heating installations. A nonlinear dependence of the magnetic induction on the magnetic tension of the ferromagnetic conductor is replaced by one or two linear sections. It is considered that the skin layer of the conductor has constant quantities of the specific conductivity and averaged temperature. Linear electrodynamics equations are solved for the conductive half-space. Parameters of the ferromagnetic conductor's surface layer are calculated: magnetic permeability, the thickness of the skin layer and its averaged temperature, exposure time of the electromagnetic field on the conductor with the established maximum temperature on the conductor's surface, pressure of the field on the conductor and its resistance, inductivity of the internal magnetic field in the conductor, the thermal energy capacity. The methods credibility is confirmed with the concurrence of the resistance and inductiviry of the ferromagnetic conductor with analogous quantities from other methods.
Synthesis, Crystal Structure, Theoretical Calculation and Thermal Behavior of DNAZ·NTO
Institute of Scientific and Technical Information of China (English)
LI, Zhaona; MA, Haixia; YAN, Biao; GUAN, Yulei; SONG, Jirong
2009-01-01
DNAZ·NTO was prepared by mixing 3,3-dinitroazetidine (DNAZ) and 3-nitro-1,2,4-triazol-5-one (NTO) in ethanol solution. Single crystals suitable for X-ray measurement were obtained, which belong to monoclinic, space group P2_1/n with unit cell parameters of a=1.4970(4) nm, b=0.6325(2) nm, c=2.2347(7) nm, β=96.55(1)°,V=2.1022(11) nm~3, D_c=1.752 g·cm~(-3), F(000)=1136 and Z=8. Based on the analysis of the molecule structure,the theoretical investigation of the title compound was carried out at B3LYP/6-311 + +G~(**) levels, and the natural atomic charge and natural bond orbital analysis were performed. The interaction between the cation and anion was also discussed. The thermal behavior of DNAZ·NTO was carried out by DSC and TG/DTG techniques. The apparent activation energy (E_a) and pre-exponential constant (A) of the main exothermic decomposition reaction were obtained.
Ding, Li-Ping; Shao, Peng; Zhang, Fang-Hui; Lu, Cheng; Ding, Lei; Ning, Shu Ya; Huang, Xiao Fen
2016-07-18
On the basis of the first-principles techniques, we perform the structure prediction for MoB2. Accordingly, a new ground-state crystal structure WB2 (P63/mmc, 2 fu/cell) is uncovered. The experimental synthesized rhombohedral R3̅m and hexagonal AlB2, as well as theoretical predicted RuB2 structures, are no longer the most favorite structures. By analyzing the elastic constants, formation enthalpies, and phonon dispersion, we find that the WB2 phase is thermodynamically and mechanically stable. The high bulk modulus B, shear modulus G, low Poisson's ratio ν, and small B/G ratio are benefit to its low compressibility. When the pressure is 10 GPa, a phase transition is observed between the WB2-MoB2 and the rhombohedral R3̅m MoB2 phases. By analyzing the density of states and electron density, we find that the strong covalent is formed in MoB2 compounds, which contributes a great deal to its low compressibility. Furthermore, the low compressibility is also correlated with the local buckled structure.
Influence of the jaw tracking technique on the dose calculation accuracy of small field VMAT plans.
Swinnen, Ans C C; Öllers, Michel C; Roijen, Erik; Nijsten, Sebastiaan M; Verhaegen, Frank
2017-01-01
The aim of this study was to evaluate experimentally the accuracy of the dose calculation algorithm AcurosXB in small field highly modulated Volumetric Modulated Arc Therapy (VMAT). The 1000SRS detector array inserted in the rotational Octavius 4D phantom (PTW) was used for 3D dose verification of VMAT treatments characterized by small to very small targets. Clinical treatment plans (n = 28) were recalculated on the phantom CT data set in the Eclipse TPS. All measurements were done on a Varian TrueBeamSTx, which can provide the jaw tracking technique (JTT). The effect of disabling the JTT, thereby fixing the jaws at static field size of 3 × 3 cm(2) and applying the MLC to shape the smallest apertures, was investigated for static fields between 0.5 × 0.5-3 × 3 cm(2) and for seven VMAT patients with small brain metastases. The dose calculation accuracy has been evaluated by comparing the measured and calculated dose outputs and dose distributions. The dosimetric agreement has been presented by a local gamma evaluation criterion of 2%/2 mm. Regarding the clinical plans, the mean ± SD of the volumetric gamma evaluation scores considering the dose levels for evaluation of 10%, 50%, 80% and 95% are (96.0 ± 6.9)%, (95.2 ± 6.8)%, (86.7 ± 14.8)% and (56.3 ± 42.3)% respectively. For the smallest field VMAT treatments, discrepancies between calculated and measured doses up to 16% are obtained. The difference between the 1000SRS central chamber measurements compared to the calculated dose outputs for static fields 3 × 3, 2 × 2, 1 × 1 and 0.5 × 0.5 cm(2) collimated with MLC whereby jaws are fixed at 3 × 3 cm(2) and for static fields shaped with the collimator jaws only (MLC retracted), is on average respectively, 0.2%, 0.8%, 6.8%, 5.7% (6 MV) and 0.1%, 1.3%, 11.7%, 21.6% (10 MV). For the seven brain mets patients was found that the smaller the target volumes, the higher the improvement in agreement between measured and calculated doses after disabling the JTT
Wang, Lei; Ge, Shijun; Chen, Zhaoxian; Hu, Wei; Lu, Yanqing
2016-09-01
Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric layer to realize electrically fast tunable terahertz metamaterial absorbers. We demonstrate strong, position-dependent terahertz near-field enhancement with sub-wavelength resolution inside the metamaterial absorber. We measure the terahertz far-field absorption as the driving voltage increases. By combining experimental results with liquid crystal simulations, we verify the near-field distribution in the middle layer indirectly and bridge the near-field and far-field observations. Our work opens new opportunities for creating high-performance, fast, tunable, terahertz metamaterial devices that can be applied in biological imaging and sensing. Project supported by the National Basic Research Program of China (Grant No. 2012CB921803), the National Natural Science Foundation of China (Grants Nos. 61225026, 61490714, 11304151, and 61435008), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20150845 and 15KJB140004), the Open Foundation Project of National Laboratory of Solid State Microstructures, China (Grant No. M28003), and the Research Center of Optical Communications Engineering & Technology, Jiangsu Province, China.
Institute of Scientific and Technical Information of China (English)
ZHANG Hongsheng; ZHAO Jiachen; LI Penghui; YUE Wenhan; WANG Zhenxiang
2016-01-01
Since the wind wave model Simulating Waves Nearshore (SWAN) cannot effectively simulate the wave fields near the lateral boundaries, the change characteristics and the distortion ranges of calculated wave factors including wave heights, periods, directions, and lengths near the lateral boundaries of calculation domain are carefully studied in the case of different water depths and wind speeds respectively. The calculation results show that the effects of the variety of water depth and wind speed on the modeled different wave factors near the lateral boundaries are different. In the case of a certain wind speed, the greater the water depth is, the greater the distortion range is. In the case of a certain water depth, the distortion ranges defined by the relative errors of wave heights, periods, and lengths are different from those defined by the absolute errors of the corresponding wave factors. Moreover, the distortion ranges defined by the relative errors decrease with the increase of wind speed;whereas the distortion ranges defined by the absolute errors change a little with the variety of wind speed. The distortion range of wave direction decreases with the increase of wind speed. The calculated wave factors near the lateral boundaries with the SWAN model in the actual physical areas, such as Lake Taihu and Lake Dianshan considered in this study, are indeed distorted if the calculation domains are not enlarged on the basis of actual physical areas. Therefore, when SWAN is employed to calculate the wind wave fields near the shorelines of sea or inland lakes, the appropriate approaches must be adopted to reduce the calculation errors.
Effect of non-uniform magnetic field on crystal growth by floating-Zone method in microgravity
Institute of Scientific and Technical Information of China (English)
LI; Kai(
2001-01-01
［1］Markov, E. V., Antropov, V. Yu, Biryukov, V. M. et al., Space materials for microelectronics, in Proceedings of the Joint Xth European and VIth Russian Symposium on Physical Sciences in Microgravity, St. Petersburg, Russia (eds. Av-duyevsky, V. S., Polezhaev, V. I.), Moscow: RAS, 1997, Vol. 2, 11-20.［2］Croll, A., Dold, P., Benz, K. W., Segregation in Si floating-zone crystals grown under microgravity and in a magnetic field, J. Crystal Growth, 1994, 137: 95-101.［3］Leon de, N., Guldberg, J., Sailing, J. , Growth of homogeneous high resistivity FZ silicon crystals under magnetic field bias, J. Crystal Growth, 1981, 55: 406-408.［4］Robertson, D. G., O' connor Jr., D. J., Magnetic field effects on float-zone Si crystal growth: strong axial fields, J. Crystal Growth, 1986, 76: 111-122.［5］Series, R. W., Hurle, D. T. J., The use of magnetic field in semiconductor crystal growth, J. Crystal Growth, 1991, 113:305-328.［6］Lan, C. W. , Effect of axisymmetric magnetic fields on radial dopant segregation of floating-zone silicon growth in a mirror fur-nace, J. Crystal Growth, 1996, 169: 269-278.［7］Li, K., Hu, W. R. , Numerical simulation of magnetic field design for damping thermocapillary convection in a floating half zone, J. Crystal Growth, 2001, 222: 677-684.［8］Li. K., Hu, W. R., Magnetic design for crystal growth, 3rd International Workshop on Modeling in Crystal Growth, New York, USA, 2000, to be published in J. Crystal Growth.［9］Patankar, S. V., Advanced Computational Heat Transfer and Fluid Flow, Graduate Student Course 8352 of Mechanical Engi-neering Department at Univ. of Minnesota, USA.
Lu, Mai; Ueno, Shoogo
2013-01-01
Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) may be beneficial in the treatment of several neurological and psychiatric disorders. This paper presents numerical simulation of deep transcranial magnetic stimulation (dTMS) by considering double cone, H-and Halo coils. Three-dimensional distributions of the induced fields i.e. magnetic flux density, current density and electric fields in realistic head model by dTMS coils were calculated by impedance method and the results were compared with that of figure-of-eight coil. It was found that double cone and H-coils have significantly deep field penetration at the expense of induced higher and wider spread electrical fields in superficial cortical regions. The Halo coil working with a circular coil carrying currents in opposite directions provides a flexible way to stimulate deep brain structures with much lower stimulation in superficial brain tissues.
Institute of Scientific and Technical Information of China (English)
ZHAO Xinyu; GANG Tie; ZHANG Bixing
2009-01-01
A nonparaxial multi-Gaussian beam model based on the rectangular aperture is proposed in order to overcome the hmitation of paraxial Gaussian beam model which losing accuracy in off-axis beam fields. With the method, acoustical field generated by an ultra-sonic linear phased array transducer is calculated and compared with the corresponding field obtained by Rayleigh-Sommerfeld integral, paraxial multi-Gaussian beam model, and Fraunhof-fer approximation method. Simulation examples show that nonparaxial multi-Gaussian beam model is not limited by the paraxial approximation condition and can predict efficiently and accurately the acoustical field radiated by a linear phased array transducer over a wide range of steering angles.
Patterning technology for solution-processed organic crystal field-effect transistors
Li, Yun; Sun, Huabin; Shi, Yi; Tsukagoshi, Kazuhito
2014-04-01
Organic field-effect transistors (OFETs) are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recent development in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed.
Patterning technology for solution-processed organic crystal field-effect transistors
Directory of Open Access Journals (Sweden)
Yun Li
2014-04-01
Full Text Available Organic field-effect transistors (OFETs are fundamental building blocks for various state-of-the-art electronic devices. Solution-processed organic crystals are appreciable materials for these applications because they facilitate large-scale, low-cost fabrication of devices with high performance. Patterning organic crystal transistors into well-defined geometric features is necessary to develop these crystals into practical semiconductors. This review provides an update on recent development in patterning technology for solution-processed organic crystals and their applications in field-effect transistors. Typical demonstrations are discussed and examined. In particular, our latest research progress on the spin-coating technique from mixture solutions is presented as a promising method to efficiently produce large organic semiconducting crystals on various substrates for high-performance OFETs. This solution-based process also has other excellent advantages, such as phase separation for self-assembled interfaces via one-step spin-coating, self-flattening of rough interfaces, and in situ purification that eliminates the impurity influences. Furthermore, recommendations for future perspectives are presented, and key issues for further development are discussed.
Ionization of Atoms and the Thomas-Fermi Model for the Electric Field in Crystal Planar Channels
Institute of Scientific and Technical Information of China (English)
LIU Ying-Tai; ZHANG Qi-Ren; GAO Chun-Yuan
2002-01-01
The electric field in the crystal planar channels is studied by the Thomas Fermi method. The Thomas-Fermi equation and the corresponding boundary conditions are derived for the crystal planar channels. The numericalsolution for the electric field in the channels between (110) planes of the single crystal silicon and the critical angles ofchannelling protons in them are shown. Reasonable agreements with the experimental data are obtained. The resultsshow that the Thomas-Fermi method for the crystal works well in this study, and a microscopic research of the channelelectric field with the contribution of all atoms and the atomic ionization being taken into account is practical.
New crystal structure prediction of fully hydrogenated borophene by first principles calculations
Wang, Zhi-Qiang; Wang, Hui-Qiong; Feng, Yuan Ping; Zheng, Jin-Cheng
2016-01-01
We have studied the structure stability, band structures and mechanical properties of fully hydrogenated borophene (borophane) with different configurations by first principles calculations. Comparing with the Chair-like borophane (C-boropane) that has been reported in literature, we obtained four new conformers with much lower total-energy. The most stable one, Washboard-like borophane (W-borophane), has energy difference about 113.41 meV/atom lower than C-borophane. In W-borophane, B atoms are staggered by zigzag mode along the a direction, and staggered by up and down wrinkle mode along the b direction. Furthermore, we examined the dynamical stability of borophane conformers by calculating phonon dispersions. For the five conformers, no imaginary frequencies along the high-symmetry directions of the Brillouin zone were found, indicating that the five conformers are all dynamically stable. In addition, the band structures of the five conformers all show a Dirac cone along {\\Gamma}-Y or {\\Gamma}-X direction....
Estes, Robert D.
1989-01-01
A method is presented for calculating the electromagnetic wave field on the earth's surface associated with the operation of an electrodynamic tethered satellite system of constant or slowly varying current in the upper ionosphere. The wave field at the ionospheric boundary and on the earth's surface is obtained by numerical integration. The results suggest that the ionospheric waves do not propagate into the atmosphere and that the image of the Alfven wings from a steady-current tether should be greatly broadened on the earth's surface.
Allowing for hysteresis in the calculation of fields in the elements of accelerator magnetic systems
Vinokurov, N. A.; Shevchenko, O. A.; Serednyakov, S. S.; Shcheglov, M. A.; Royak, M. E.; Stupakov, I. M.; Kondratyeva, N. S.
2016-07-01
Iron magnetic circuit residual magnetization may contribute as much as several Gs to the magnetic field in charged-particle accelerators. This contribution depends on the magnetization "history." It is not taken into account in most of the existing software that uses the main magnetization curve. Therefore, an error in field calculations usually exceeds 1%, which is unacceptable for accelerators. In this article, a simple phenomenological magnetic-hysteresis model that is suitable for numerical computations is suggested. Approximations based on the proposed model are compared to the results of measurements on partial hysteresis cycles in a steel ring.
1980-09-01
WORCHESKY, T., 13200 ATTN BROWN, E. A., 00210 (25 COPIES) CENTER FOR LASER STUDIES ATTN CHIEF, 13300 UNIVERSITY OF SOUTHERN CALIFORNIA ATTN TOBIN, M., 13200 ATTN DR. L. G. DE SHAZER LOS ANGELES, CA 90007 39
Liu, Jicheng; Huang, Kama; Guo, Lanting; Zhang, Hong; Hu, Yayi
2005-04-01
It is the intent of this paper to locate the activation point in Transcranial Magnetic Stimulation (TMS) efficiently. The schemes of coil array in torus shape is presented to get the electromagnetic field distribution with ideal focusing capability. Then an improved adaptive genetic algorithm (AGA) is applied to the optimization of both value and phase of the current infused in each coil. Based on the calculated results of the optimized current configurations, ideal focusing capability is drawn as contour lines and 3-D mesh charts of magnitude of both magnetic and electric field within the calculation area. It is shown that the coil array has good capability to establish focused shape of electromagnetic distribution. In addition, it is also demonstrated that the coil array has the capability to focus on two or more targets simultaneously.
Time-reversed particle dynamics calculation with field line tracing at Titan - an update
Bebesi, Zsofia; Erdos, Geza; Szego, Karoly; Juhasz, Antal; Lukacs, Katalin
2014-05-01
We use CAPS-IMS Singles data of Cassini measured between 2004 and 2010 to investigate the pickup process and dynamics of ions originating from Titan's atmosphere. A 4th order Runge-Kutta method was applied to calculate the test particle trajectories in a time reversed scenario, in the curved magnetic environment. We evaluated the minimum variance directions along the S/C trajectory for all Cassini flybys during which the CAPS instrument was in operation, and assumed that the field was homogeneous perpendicular to the minimum variance direction. We calculated the magnetic field lines with this method along the flyby orbits and we could determine those observational intervals when Cassini and the upper atmosphere of Titan could be magnetically connected. We used three ion species (1, 2 and 16 amu ions) for time reversed tracking, and also considered the categorization of Rymer et al. (2009) and Nemeth et al. (2011) for further features studies.
Crystal-field spectra of 3d super n impurities in II-VI and III-V compound semiconductors.
Allen, J. W.; Baranowski, J. M.; Pearson, G. L.
1967-01-01
Impurity crystal-field spectra in II-VI and III- V compound semiconductors used to predict unexplored systems spectra impurity crystal-field spectra in II-VI and III-V compound semiconductors used to predict unexplored systems spectra
Thankachan, P. P.; Narasimhan, P. T.
The electric field gradients (EFG) at the D. Li. N and O sites in the linear molecules LID, DF, DCN, DCCD. OCCF, N 2, CO and NCCN have been rigorously evaluated with the inclusion of all integrals using four different semi-empirical SCFMO methods with a view to assess their suitability for EFG calculations. The methods chosen are the CNDO/2 and INDO methods of Pople, a method using explicitly orthogonalised AO's and distinguishing s and p orbitals in the valence shell due to Nanda and Narasimhan (NN-INDO) and a reparametrisation of the same using Clementi-Raimondi exponents. It is found that orbital exponents play a crucial role in semi-empirical EFG calculations. Use of explicitly orthogonalised basis sets as in the NN-INDO schemes is seen to improve the EFG values for the first-row atoms. A few comments are made on population-based methods for EFG calculations.
A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
Nagaoka, Tomoaki; Watanabe, Soichi
2010-01-01
Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.
Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie
2016-12-01
Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.
Photon splitting in a strong magnetic field recalculation and comparison with previous calculations
Adler, Stephen Louis; Adler, Stephen L; Schubert, Christian
1996-01-01
We recalculate the amplitude for photon splitting in a strong magnetic field below the pair production threshold, using the worldline path integral variant of the Bern--Kosower formalism. Numerical comparison (using programs that we have made available for public access on the Internet) shows that the results of the recalculation are identical to the earlier calculations of Adler and later of Stoneham, and to the recent recalculation by Baier, Milstein, and Shaisultanov.
Mean-Field Calculations for the Three-Dimensional Holstein Model
Institute of Scientific and Technical Information of China (English)
罗强; 刘川
2002-01-01
The electron-phonon Holstein model is studied in three spatial dimensions. It is argued that this model can be used to account for major features of the high-To BaPb1-xBixO3 and BaxK1-xBiO3 systems. Mean-field calculations are performed via a path integral representation of the model. Charge-density-wave order parameters and transition temperatures are obtained.
Calculation of the diffraction field in a layered medium illuminated through a phase mask
Sotsky, A. B.; Parashkov, S. O.; Sokolov, V. I.; Sotskaya, L. I.
2016-12-01
A local mode technique has been developed for calculating a diffraction field in a layered medium illuminated by the TE-polarized light through a phase mask with a surface-relief diffraction grating. This technique has been used to evaluate the possibilities for optimizing conditions of the formation of refractive index Bragg gratings with the use of ultraviolet standing waves in polymer waveguides on a silicon substrate.
Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities.
Nakagawa, Wataru; Sun, Pang-Chen; Chen, Chyong-Hua; Fainman, Yeshaiahu
2002-02-01
We describe a novel approach to implementing wide-field-of-view narrow-band spectral filters, using an array of resonant nanocavities consisting of periodic defects in a two-dimensional three-material photonic-crystal nanostructure. We analyze the transmissivity of this type of filter for a range of wavelengths and in-plane incidence angles as a function of the defect's refractive index, the number of layers in the photonic-crystal reflectors, and the period of the defects and find that this structure diminishes the angular sensitivity of the resonance condition relative to that of a standard multilayer filter.
An energy-stable convex splitting for the phase-field crystal equation
Vignal, P.
2015-10-01
Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. © 2015 Elsevier Ltd.
Institute of Scientific and Technical Information of China (English)
Yuye Wang; Jianquan Yao; Degang Xu; Pu Zhao; Peng Wang
2006-01-01
@@ A method of precisely calculating the external applied voltage and the optimum type-Ⅱ phase matching angles for KTP crystal, which is used as both an intracavity electro-optic (EO) Q-switch and a frequency doubler, is presented. The effective EO coefficient along the phase-matching direction is defined to calculate the half-wave voltage and the quarter-wave voltage, and the precise calculation for the phase matching angles in the condition of KTP crystal optimum second harmonic phase matching is theoretically realized.
Gerth, E.; Glagolevskij, Yu. V.
The observable magnetic field of a star is the result of integration over its visible hemisphere, related to the information transferring medium: the spectral line profile. The hitherto practised simple integration of the magnetic field strength neglects the spotty face of the star and is physically wrong. Because of the topographically distributed line-generating elements in the stellar atmosphere, the contribution of all parts of the surface to the integration is different. For an effective computation, both the magnetic field and the element distribution are transformed from globes to Mercator maps and arranged as right-angled matrices. The numerical evaluation is performed by a special computer program, which uses matrices and vector algebra. The theory is based on the mathematical derivation of convolution integrals for the rotation of the star and the line profiles formed in its atmosphere, whereby the radiation from all surface areas in direction to the observer is integrated, accounting for the geometrical and radiation transfer conditions of the disk-like visible hemisphere and the element distribution of chemically peculiar (CP) stars. The computation starts from a given magnetic field structure on the surface of a star and progresses straightforward over convolution integrals to the phase curves of the integral magnetic field strength. The calculation procedure is independent of a special generation model of the stellar magnetic field and possesses common validity. In consideration of other approaches to the problem of field structure analysis, also the inversion of the convolution is discussed.
Mie calculation of electromagnetic near-field for a multilayered sphere
Ladutenko, Konstantin; Pal, Umapada; Rivera, Antonio; Peña-Rodríguez, Ovidio
2017-05-01
We have developed an algorithm to calculate electric and magnetic fields inside and around a multilayered sphere. The algorithm includes explicit expressions for Mie expansion coefficients inside the sphere and calculation of the vector spherical harmonics in terms of the Riccati-Bessel functions and their logarithmic derivatives. This novel approach has been implemented in the new version of our program scattnlay. Scattnlay 2.0 will be the first publicly available (at GitHub, https://github.com/ovidiopr/scattnlay) program, based on the Mie theory, which can calculate near-fields for the general case of a multilayer sphere. Several tests were designed to verify that the results obtained with our code match literature results and those obtained through similar programs (limited to core-shell structures) or full-wave 3D simulations. These tests demonstrate that the implementation is effective, yielding accurate values of electric and magnetic fields for a wide range of size parameters, number of layers, and refractive indices.
Energy Technology Data Exchange (ETDEWEB)
Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Owen, Steven J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abdeljawad, Fadi F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hanks, Byron [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-09-01
In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.
Nitts, V V
2001-01-01
Bases for neutron researches of magnetic properties of crystal substances with use of a pulsed magnetic field and analysis of possible application of various neutron sources in this area are submitted. The review of the most interesting physical results is presented. Main investigations on pulsed reactors of JINR are researches on kinetics of the first order reorientational phase transitions induced in single crystals, and also measurements of antiferromagnetic ordering induced by an external magnetic field. Magnetic phase transitions, induced by a field up to 160 kOe in several magnetic ordering substances, were studied in KEK (Japan). Experiment on observation of spin-flop transition in MnF sub 2 was carried out on TRIGA-reactor in a mode of single flashes of power
Crystal-field excitations in PrAl sub 3 and NdAl sub 3 at ambient and elevated pressure
Straessle, T; Rusz, J; Janssen, S; Juranyi, F; Sadykov, R; Furrer, A
2003-01-01
The crystal fields (CFs) of the binary rare-earth compounds PrAl sub 3 and NdAl sub 3 have been examined at ambient pressure by means of inelastic neutron scattering. The CF of the latter compound has also been measured under hydrostatic pressure (p = 0.84 GPa). The observed substantial changes of the CF under pressure are discussed within the framework of first-principles density functional theory calculations.
Wang, Y.G.; Reeves, M. E.; Rachford, F. J.
2000-01-01
We use a near-field scanning microwave microscope to simultaneously image the dielectric constant, loss tangent, and topography in a PbTiO_3 crystal. By this method, we study the effects of the local dielectric constant and loss tangent in the geometry of periodic domains on the measured resonant frequency, and quality factor. We also carry out theoretical calculations and the results agree well with the experimental data and reveal the anisotropic nature of dielectric constant.
Zhang, Chao-Zhi; Li, Shi-Juan; Cao, Hui; Song, Ming-Xia; Kong, Qing-Gang
2015-05-01
A convenient method was reported to synthesize 3-(4‧-nitrophenyl)iminocoumarin by a cyclization reaction following a Knoevenagel reaction of 2-hydroxybenzaldehyde with 4-nitrophenylacenitrile in an ethanol solution. Piperidine or piperazine was employed respectively as catalyst. Crystal structure of 3-(4‧-nitrophenyl)iminocoumarin shows that the molecules are H-aggregation due to π-π stacking and hydrogen bonds between adjacent molecules, as a result, electrons would transfer easily from a molecule to an adjacent molecule. Based on theoretical calculations of the electronic structures and thermodynamic parameters of the reactive intermediates in these cyclization reactions, the reaction mechanisms were postulated. Data of single crystal and spectrum of UV-vis absorption show that 3-(4‧-nitrophenyl)iminocoumarin is good π-conjugated compound and would be potentially employed as donor-acceptor polymer units for developing bulk heterojunction solar cell. This paper suggests a convenient and effective method for synthesizing ring-locked D-A copolymer units for developing solar cell materials.
Marchewka, M. K.; Drozd, M.; Janczak, J.
2011-08-01
The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.
Marchewka, M K; Drozd, M; Janczak, J
2011-08-15
The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2(1)/c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H···O hydrogen bonds with O···O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H···O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double CC bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.
Size of the fragment for crystal cluster SCF-X/sub /-SW calculations of alkaline earth metal oxides
Energy Technology Data Exchange (ETDEWEB)
Lobach, V.A.; Sobolev, A.B.; Shul' gin, B.V.
Calculation of (A/sub x/B/sub y/) (x=1, 13; y=6, 14) clusters, corresponding to ideal crystals of alkaline earth metal oxides (AEMO) MgO, CaO, SrO by means of molecular cluster (MC) and crystal cluster (CC) SCF-X/sub /-SW method is carried out. MC method is not suitable for description of ideal AEMO electron structure due to long-range Coulomb interaction and potential cluster effect. Even in CC method at x < 13 and y < 14 (A/sub x/B/sub y/) cluster nonstoichiometry is inhibitory to the obtaining of satisfactory agreement with the experimental optical and X-ray spectra. (A13B14) and (B13A14) clusters satisfactorily reproduce partial composition of valence band (VB) and conduction band (CB), VB and CB widths, a fine structure of oxygen K-emission spectra in MgO and also experimental distribution of electron density. Sphere radii variation effect on the value of intersphere region error with muffin-tin averaging is considered.
Greco, Cristina; Jiang, Ying; Chen, Jeff Z. Y.; Kremer, Kurt; Daoulas, Kostas Ch.
2016-11-01
Self Consistent Field (SCF) theory serves as an efficient tool for studying mesoscale structure and thermodynamics of polymeric liquid crystals (LC). We investigate how some of the intrinsic approximations of SCF affect the description of the thermodynamics of polymeric LC, using a coarse-grained model. Polymer nematics are represented as discrete worm-like chains (WLC) where non-bonded interactions are defined combining an isotropic repulsive and an anisotropic attractive Maier-Saupe (MS) potential. The range of the potentials, σ, controls the strength of correlations due to non-bonded interactions. Increasing σ (which can be seen as an increase of coarse-graining) while preserving the integrated strength of the potentials reduces correlations. The model is studied with particle-based Monte Carlo (MC) simulations and SCF theory which uses partial enumeration to describe discrete WLC. In MC simulations the Helmholtz free energy is calculated as a function of strength of MS interactions to obtain reference thermodynamic data. To calculate the free energy of the nematic branch with respect to the disordered melt, we employ a special thermodynamic integration (TI) scheme invoking an external field to bypass the first-order isotropic-nematic transition. Methodological aspects which have not been discussed in earlier implementations of the TI to LC are considered. Special attention is given to the rotational Goldstone mode. The free-energy landscape in MC and SCF is directly compared. For moderate σ the differences highlight the importance of local non-bonded orientation correlations between segments, which SCF neglects. Simple renormalization of parameters in SCF cannot compensate the missing correlations. Increasing σ reduces correlations and SCF reproduces well the free energy in MC simulations.
Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields
Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.
2016-04-01
The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.
Optical near-field microscopy of light focusing through a photonic crystal flat lens.
Fabre, Nathalie; Lalouat, Loïc; Cluzel, Benoit; Mélique, Xavier; Lippens, Didier; de Fornel, Frédérique; Vanbésien, Olivier
2008-08-15
We report here the direct observation by using a scanning near-field microscopy technique of the light focusing through a photonic crystal flat lens designed and fabricated to operate at optical frequencies. The lens is fabricated using a III-V semiconductor slab, and we directly visualize the propagation of the electromagnetic waves by using a scanning near-field optical microscope. We directly evidence spatially, as well as spectrally, the focusing operating regime of the lens. At last, in light of the experimental scanning near-field optical microscope pictures, we discuss the lens ability to focus light at a subwavelength scale.
Enhancement of local electromagnetic fields in plasmonic crystals of coaxial metallic nanostructures
Iwanaga, Masanobu; Ikeda, Naoki; Sugimoto, Yoshimasa
2012-01-01
We have experimentally and numerically examined resonant modes in plasmonic crystals (PlCs) of coaxial metallic nanostructures. Resonance enhancements of local electromagnetic (EM) fields were evaluated quantitatively. We clarified that a local mode induced in the coaxial metallic structure shows the most significant field enhancement. The enhancement factors are comprehensively discussed by comparison with other PlCs, indicating that the coaxial PlC provides a locally intense electric field and EM power flux in the annular slit of 50-nm metallic gaps.
Nagaoka, Tomoaki; Watanabe, Soichi
2012-01-01
Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.
Near-Field Optical Microscopy of Defects in Cholesteric Oligomeric Liquid Crystal Films
Energy Technology Data Exchange (ETDEWEB)
Lukishova, S.G.; Schmid, A.W.
2006-08-18
This paper describes formation of 2-D hexagonal structures with a periodicity ~0.5-0.8 um in the defects of thin films of cholesteric oligomeric liquid crystals prepared by the evaporation of the solvent from the oligomer solution on the substrate. These regular arrays were observed by scanning near-field optical and concurrent atomic force microscopy. The mechanisms considered are both Benard-Marangoni and buoyancy conventions induced by solvent evaporation and air-bubble creation around the condensed water droplets from the air during evaporative cooling. Hexagonal structures prepared by this method can be used in photonic devices for emission enhancement, for instance, in liquid crystal lasers and single photon sources with oligomeric liquid crystal hosts.
Phase-field simulations of faceted Ge/Si-crystal arrays, merging into a suspended film
Salvalaglio, Marco; Bergamaschini, Roberto; Backofen, Rainer; Voigt, Axel; Montalenti, Francesco; Miglio, Leo
2017-01-01
We simulate the morphological evolution of Ge microcrystals, grown out-of-equilibrium on deeply patterned Si substrates, as resulting from surface diffusion driven by the tendency toward the minimization of the surface energy. In particular, we report three-dimensional phase-field simulations accounting for the realistic surface energy anisotropy of Ge/Si crystals. In Salvalaglio et al. (2015) [10] it has been shown both by experiments and simulations that annealing of closely spaced crystals leads to a coalescence process with the formation of a suspended film. However, this was explained only by considering an isotropic surface energy. Here, we extend such a study by showing first the morphological changes of faceted isolated crystals. Then, the evolution of dense arrays is considered, describing their coalescence along with the evolution of facets. Combined with the previous results without anisotropy in the surface energy, this work allows us to confirm and assess the key features of the coalescence process.
Monarkha, V. Yu.; Paschenko, V. A.; Timofeev, V. P.
2013-02-01
The dynamics of Abrikosov vortices and their bundles was experimentally investigated in weak constant magnetic fields, in the range of Earth's magnetic field. Characteristics of the isothermal magnetization relaxation in YBCO single-crystal samples with strong pinning centers were studied for different sample-field orientation. The obtained values of normalized relaxation rate S allowed us to estimate the effective pinning potential U in the bulk of the YBCO sample and its temperature dependence, as well as the critical current density Jc. A comparison between the data obtained and the results of similar measurements in significantly higher magnetic fields was performed. To compare different techniques for evaluation of Jc, the magnetization loop measurements M(H), which relate the loop width to the critical current, were carried out. These measurements provided important parameters of the samples under study (penetration field Hp and first critical field Hc1), which involve the geometrical configuration of the samples.
arXiv Axion-photon conversion caused by dielectric interfaces: quantum field calculation
Ioannisian, Ara N.; Millar, Alexander J.; Raffelt, Georg G.
2017-09-05
Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ("Garibian wave function") and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagnetic fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unpertu...
DEFF Research Database (Denmark)
Madsen, Kristoffer Hougaard; Ewald, Lars; Siebner, Hartwig R.
2015-01-01
Background: Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector...... potential of the TMS coils. Objective: To develop an approach to reconstruct the magnetic vector potential based on automated measurements. Methods: We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel...... approach to determine the magnetic vector potential via volume integration of the measured field. Results: The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well...
Calculation of the Helmholtz potential of an elastic strand in an external electric field.
Khaliullin, Renat N; Schieber, Jay D
2011-02-14
We derive from statistical mechanics the Gibbs free energy of an elastic random-walk chain affected by the presence of an external electric field. Intrachain charge interactions are ignored. In addition, we find two approximations of the Helmholtz potential for this system analogous to the gaussian and Cohen-Padé approximations for an elastic strand without the presence of an electric field. Our expressions agree well with exact numerical calculations of the potential in a wide range of conditions. Our analog of the gaussian approximation exhibits distortion of the monomer density due to the presence of the electric field, and our analog of the Cohen-Padé approximation additionally includes finite chain extensibility effects. The Helmholtz potential may be used in modeling the dynamics of electrophoresis experiments.
Energy Technology Data Exchange (ETDEWEB)
Tominaka, Toshiharu [Ministry of Education, Culture, Sports, Science and Technology (MEXT), 2-5-1, Marunouchi, Chiyoda-ku, Tokyo 100-8959 (Japan)
2006-10-15
The current distributions of untwisted infinitely long superconductors have been studied during the current sweep and under an external field, using the inductance matrix among superconducting finite elements which are generated from a superconductor. The self- and mutual inductances of general polygonal conductors with a uniform current density over each cross section are precisely calculated from the analytical expressions for the geometrical mean distances. The current distributions among each superconducting element are obtained by solving the circuit equation with the Bean model and a nonlinear E-J relation based on the power law. In addition, the magnetic field and vector potential distributions of an untwisted superconducting composite are also obtained, using the analytical expressions for the magnetic field and vector potential due to polygonal conductors.
Field-theory calculation of the electric dipole moment of the neutron and paramagnetic atoms
Griffith, Joel; Blundell, Steven; Sapirstein, Jonathan
2013-04-01
Electric dipole moments (edms) of bound states that arise from the constituents having edms are studied with field-theoretic techniques. The systems treated are the neutron and a set of paramagnetic atoms. In the latter case it is well known that the atomic edm differs greatly from the electron edm when the internal electric fields of the atom are taken into account. In the nonrelativistic limit these fields lead to a complete suppression, but for heavy atoms large enhancement factors are present. A general bound-state field theory approach applicable to both the neutron and paramagnetic atoms is set up. It is applied first to the neutron, treating the quarks as moving freely in a confining spherical well. It is shown that the effect of internal electric fields is small in this case. The atomic problem is then revisited using field-theory techniques in place of the usual Hamiltonian methods, and the atomic enhancement factor is shown to be consistent with previous calculations. Possible application of bound-state techniques to other sources of the neutron edm is discussed.
Bandura, A V; Sofo, J O; Kubicki, J D
2006-04-27
Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.
Kupcewicz, Bogumiła; Ciolkowski, Michal; Karwowski, Boleslaw T.; Rozalski, Marek; Krajewska, Urszula; Lorenz, Ingo-Peter; Mayer, Peter; Budzisz, Elzbieta
2013-11-01
The series of pyrazole derivatives (1a-4a) were used as bidentate N,N' ligands to obtain neutral Cu(II) complexes of ML2Cl2 type (1b-4b). The molecular structures of ligand 1a and Cu(II) complex 4b were determined by X-ray crystallography and theoretical DFT calculations. In this study, three functionals B3LYP, BP86 and mPW1PW91 with different basis sets and two effective core potentials Los Alamos and Stuttgart/Dresden were performed. The DFT study disclosed the usefulness of BP86 functional with SDD-ECP for Cu(II) ion and dedicated D95 basis set for other non-transition metal atoms, with the exclusion of Cl for which 6-31++G(2df,2pd) were used. The structural analysis shows that the presence of phenyl substituent in a pyrazole ring contributed to Cu-N bond elongation, which can result in different reactivity of complexes 1b and 3b. The cytotoxicity of the obtained compounds was evaluated on three cancer cells lines: HL-60, NALM-6 and WM-115. The complexes have exhibited similar moderate antiproliferative activity. All the complexes, except for 1b, were found to be more active against three cancer cell lines than uncomplexed pyrazoles. The lipophilicity and electrochemical properties of ligands and complexes was also studied. For complexes with ligand 1a and 3a only one reduction process at the metal centre occurs (Cu(II) → Cu(I)) with oxidization of Cu(I)-Cu(II) in the backward step.
A few remarks on the simulation and use of crystal field energy level schemes of the rare earth ions
Hölsä, Jorma; Lastusaari, Mika; Maryško, Miroslav; Tukia, Mika
2005-02-01
The usefulness of the simulation of the energy level schemes of the trivalent rare earth ( R3+) ions in the prediction of the properties of the rare earth compounds is demonstrated for a few selected cases emphasizing the connection between different spectroscopic and magnetic properties of the R 3+ ions. The importance of the calculated energy level schemes in the UV-VUV range in interpreting complicated spectra and designing new phosphors by energy transfer and quantum cutting is described. In the absence of direct measurements, the calculated energy level values can be very useful. The possibilities to interpret the magnetic properties of the R3+ (and R2+) ions are described by using the wave functions of the energy levels obtained from the energy level simulations. As a fine example, it is shown how the amount of an Eu 2+ impurity can be obtained from the calculation of the paramagnetic susceptibility as a function of temperature. The problems involved in the simulation of the 7FJ crystal field energy level scheme of the Eu 3+ ion are highlighted by using a comparison between the extensive literature data and calculated level schemes.
Wang, Jianguo; Liang, Yandong; Chen, Si
2016-09-01
In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.
Milestone in the History of Field-Effect Liquid Crystal Displays and Materials
Schadt, Martin
2009-03-01
The history of digital electronics would have been very different without the invention of field-effect liquid crystal displays (LCDs) in 1970 and their sophisticated development and implementation into numerous products. Transmissive and reflective LCDs have become a key interface between man and machine. After almost 40 years of interdisciplinary R+D and engineering, today's LCDs enable virtually all display applications, including high definition television. Field-effect LCDs are characterized by flat design, low weight, low driving voltage, design flexibility, compatibility with silicon-on-glass and very low power consumption, especially in reflection. Their polarization-sensitive layer concept is the basis for sandwiching and integration of optical and electronic thin-film functions. The liquid crystal technology has become a fast growing industry over the past 38 years, today surpassing 100 billion, with many spin-offs into new areas. Prerequisite for field-effect LCDs and their large diversification potential is the unique self-organization of liquid crystals. New applications beyond displays based on self-organisation, smart boundary alignment, dedicated liquid crystalline materials and the ability of LCs to respond to electromagnetic fields, including light, are being developed. Examples for new applications are LC polymer thin-film optics, or synergies between LCDs and solid state back-lighting, such as inorganic and organic light emitting diodes (LEDs/OLEDs).
Yau, Yu-Chyi; Peacor, Donald R.; Essene, Eric J.
1986-09-01
Amphiboles and pyroxenes occurring in the Salton Sea Geothermal Field were found to contain coherent intergrowths of chain silicates with other than double and single chain widths by using transmission and analytical electron microscopy. Both occur in the biotite zone at the temperature (depth) interval of 310° C (1,060 m) to 330° C (1,547m) which approximately corresponds to temperatures of the greenschist facies. The amphiboles occur as euhedral fibrous crystals occupying void space and are composed primarily of irregularly alternating (010) slabs of double or triple chains, with rare quadruple and quintuple chains. Primary crystallization from solution results in euhedral crystals. Clinopyroxenes formed mainly as a porefilling cement and subordinately as prismatic crystals coexisting with fibrous amphiboles. Fine lamellae of double and triple chains are irregularly intercalated with pyroxene. AEM analyses yield formulae (Ca1.8Mg2.9Fe1.9Mn0.1) Si8O21.8(OH)1.8 (310° C) and (Ca2.0Fe2.5Mg2.3) Si8O21.8 (OH)2.0 (330° C) for amphiboles and (Ca1.1Fe0.6Mg0.3) Si2O6 for clinopyroxene. Thermodynamic calculations at Pfluid=100 bar of equilibrium reactions of (1) 3 chlorite +10 calcite + 21 quartz = 3 actinolite + 2 clinozoisite + 8 H2O + 10 CO2 and (2) actinolite+ 3 calcite+ 2 quartz = 5 clinopyroxene + H2O + 3 CO2 using Mg-end member phases indicate that formation of amphibole and pyroxene require very water-rich conditions (X_{CO_2 } < 0.06) at temperatures below 330° C.
Diego Azcona, Juan; Barbés, Benigno; Wang, Lilie; Burguete, Javier
2016-01-01
This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac’s head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was
Hyperfine and crystal field interactions in multiferroic HoCrO3
Kumar, C. M. N.; Xiao, Y.; Nair, H. S.; Voigt, J.; Schmitz, B.; Chatterji, T.; Jalarvo, N. H.; Brückel, Th
2016-11-01
We report a comprehensive specific heat and inelastic neutron scattering study to explore the possible origin of multiferroicity in HoCrO3. We have performed specific heat measurements in the temperature range 100 mK-290 K and inelastic neutron scattering measurements were performed in the temperature range 1.5-200 K. From the specific heat data we determined hyperfine splitting at 22.5(2) μeV and crystal field transitions at 1.379(5) meV, 10.37(4) meV, 15.49(9) meV and 23.44(9) meV, indicating the existence of strong hyperfine and crystal field interactions in HoCrO3. Further, an effective hyperfine field is determined to be 600(3) T. The quasielastic scattering observed in the inelastic scattering data and a large linear term γ =6.3(8) mJ mol-1 K-2 in the specific heat is attributed to the presence of short range exchange interactions, which is understood to be contributing to the observed ferroelectricity. Further the nuclear and magnetic entropies were computed to be, ˜17.2 Jmol-1 K-1 and ˜34 Jmol-1 K-1, respectively. The entropy values are in excellent agreement with the limiting theoretical values. An anomaly is observed in the peak position of the temperature dependent crystal field spectra around 60 K, at the same temperature an anomaly in the pyroelectric current is reported. From this we could elucidate a direct correlation between the crystal electric field excitations of Ho3+ and ferroelectricity in HoCrO3. Our present study, along with recent reports, confirm that HoCrO3, and RCrO3 (R = rare earth) in general, possess more than one driving force for the ferroelectricity and multiferroicity.
Energy Technology Data Exchange (ETDEWEB)
Murogaki, K. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)]. E-mail: murogaki@fiberbit.net; Kawano, S. [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Andoh, Y. [Faculty of Regional Sciences, Tottori University, Tottori 680-8551 (Japan); Takahashi, M. [Institute of Materials Science, University of Tsukuba, Ibaraki 305-8573 (Japan); Kurisu, M. [Japan Advanced Institute of Science and Technology, Ishikawa 923-1292 (Japan); Nakamoto, G. [Japan Advanced Institute of Science and Technology, Ishikawa 923-1292 (Japan); Anh, D.T. Kim [Japan Advanced Institute of Science and Technology, Ishikawa 923-1292 (Japan); Tsutaoka, T. [Graduate School of Education, Hiroshima University, Hiroshima 739-8524 (Japan)
2006-02-09
Single crystal neutron diffraction studies have been performed on the rare-earth ternary compound, DyNiSn. This crystal exhibits an incommensurate magnetic structure expressed by the propagation vector, Q = (0.662 0.352 0) with its third harmonics at low temperatures. In an external magnetic field applied along the c-axis DyNiSn shows incommensurate modulation with Q = (1 0.315 0) at 1.6 K, while along the easy magnetization direction of the b-axis a commensurate modulation with Q = (2/3 0 0) develops at 2 K. The results along the b-axis are fully consistent with the magnetization curve.
Checking calculation of the steady state temperature field of HTR-10
Energy Technology Data Exchange (ETDEWEB)
Yujie Dong; Zuying Gao [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)
2005-07-01
Full text of publication follows: Modular high temperature gas-cooled reactor (HTR), to which has lately been paid much attention by international community of nuclear energy, is a type of promising advanced reactor for power generation and process heat production. A 10 MW test module (HTR-10) has been designed, constructed and operated by the Institute of Nuclear and New Energy Technology (INET). It is a helium-cooled, graphite-moderated, pebble-bed type and reached the first criticality in December 2000 and full power operation in January 2003. The reactor consists of reactor pressure vessel (RPV), internal graphite components and carbon bricks, metallic components, fuel elements, control rods and their driven mechanisms, small absorber ball shut-down system, fuel charging and discharging systems, etc. Internal metallic components include core vessel, bottom support plate, top support plate, etc. During construction of this reactor, a number of thermocouples had been fixed in the side reflector, top reflector and bottom reflector, carbon brick thermal insulator, core vessel and pressure vessel. The temperatures at corresponding points were recorded when the reactor was operating. The measurement results depicted the general situation of temperature distribution within the reactor. In order to check the design validity and verify the analysis program, a checking calculation of the steady state temperature field of the reactor has been done. The calculation program is THERMIX, which was used in the thermal-hydraulic design of the HTR-10. An R-Z coordinate was used. Helium bypass flows and leakage via clearances among graphite components were simulated. Heat generation rate distribution used in this calculation is obtained from the calculated results of VSOP code, which is a special purpose program for pebble bed reactor physics. The temperatures calculated include temperature distribution within the pebble bed, solid material temperatures and the maximum
Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M; Hilgart, Mark C; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K; Smith, Janet L; Fischetti, Robert F
2014-12-01
The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.