WorldWideScience

Sample records for crystal elastic constants

  1. Extended temperature dependence of elastic constants in cubic crystals.

    Science.gov (United States)

    Telichko, A V; Sorokin, B P

    2015-08-01

    To extend the theory of the temperature dependence of the elastic constants in cubic crystals beyond the second- and third-order elastic constants, the fourth-order elastic constants, as well as the non-linearity in the thermal expansion temperature dependence, have been taken into account. Theoretical results were represented as temperature functions of the effective elastic constants and compared with experimental data for a number of cubic crystals, such as alkali metal halides, and elements gold and silver. The relations obtained give a more accurate description of the experimental temperature dependences of second-order elastic constants for a number of cubic crystals, including deviations from linear behavior. A good agreement between theoretical estimates and experimental data has been observed.

  2. Some Debye temperatures from single-crystal elastic constant data

    Science.gov (United States)

    Robie, R.A.; Edwards, J.L.

    1966-01-01

    The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.

  3. Elastic constants in orthorhombic hen egg-white lysozyme crystals.

    Science.gov (United States)

    Kitajima, N; Tsukashima, S; Fujii, D; Tachibana, M; Koizumi, H; Wako, K; Kojima, K

    2014-01-01

    The ultrasonic sound velocities of cross-linked orthorhombic hen egg-white lysozyme (HEWL) crystals, including a large amount of water in the crystal, were measured using an ultrasonic pulse-echo method. As a result, seven elastic constants of orthorhombic crystals were observed to be C11 = 5.24 GPa, C22 = 4.87 GPa, C12 = 4.02 GPa, C33 = 5.23 GPa, C44 = 0.30 GPa, C55 = 0.40 GPa, and C66 = 0.43 GPa, respectively. However, C13 and C23 could not be observed because the suitable crystal planes could not be cut from bulk crystals. We conclude that the observed elastic constants of the cross-linked crystals are coincident with those of the intrinsic crystals without cross-linking. Moreover, the characteristics of the elastic constants in orthorhombic HEWL crystals are due to the fact that the shear elastic constants, C44, C55, and C66, are softer than in tetragonal crystals. That is, the shear components, C44, C55, and C66, are one half of those of the tetragonal crystals.

  4. Single-crystal elastic constants of natural ettringite

    KAUST Repository

    Speziale, Sergio

    2008-07-01

    The single-crystal elastic constants of natural ettringite were determined by Brillouin spectroscopy at ambient conditions. The six non-zero elastic constants of this trigonal mineral are: C11 = 35.1 ± 0.1 GPa, C12 = 21.9 ±0.1 GPa, C13 = 20.0 ± 0.5 GPa, C14 = 0.6 ± 0.2 GPa, C33 = 55 ± 1 GPa, C44 = 11.0 ± 0.2 GPa. The Hill average of the aggregate bulk, shear modulus and the polycrystal Young\\'s modulus and Poisson\\'s ratio are 27.3 ± 0.9 GPa, 9.5 ± 0.8 GPa, 25 ± 2 GPa and 0.34 ± 0.02 respectively. The longitudinal and shear elastic anisotropy are C33/C11 = 0.64 ± 0.01 and C66/C44 =0.60 ± 0.01. The elastic anisotropy in ettringite is connected to its crystallographic structure. Stiff chains of [Al(OH)6]3- octahedra alternating with triplets of Ca2+ in eight-fold coordination run parallel to the c-axis leading to higher stiffness along this direction. The determination of the elastic stiffness tensor can help in the prediction of the early age properties of cement paste when ettringite crystals precipitate and in the modeling of both internal and external sulfate attack when secondary ettringite formation leads to expansion of concrete. © 2008 Elsevier Ltd. All rights reserved.

  5. Optimal cuts to extract the third-order elastic constants of langasite single crystals.

    Science.gov (United States)

    Zhang, Haifeng

    2011-06-01

    Optimal cuts to determine the third-order elastic constants of langasite single crystals by the resonator method are proposed. By designing a small number of langasite resonators with optimal cut angles and measuring their force-frequency effects, the third-order elastic constants of langasite single crystals may be extracted separately. The numerical method to search for these optimal cut angles is presented. All 14 third-order elastic constants may be determined through a series of experimental measurements. This method will simplify traditional methods used to determine the third-order elastic constants and could potentially produce more accurate results.

  6. Elastic constants of calcite

    Science.gov (United States)

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  7. Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal.

    Science.gov (United States)

    Soluch, Waldemar; Brzozowski, Ernest; Lysakowska, Magdalena; Sadura, Jolanta

    2011-11-01

    Mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal were determined. Mass density was obtained from the measured ratio of mass to volume of a cuboid. The dielectric constants were determined from the measured capacitances of an interdigital transducer (IDT) deposited on a Z-cut plate and from a parallel plate capacitor fabricated from this plate. The elastic and piezoelectric constants were determined by comparing the measured and calculated SAW velocities and electromechanical coupling coefficients on the Z- and X-cut plates. The following new constants were obtained: mass density p = 5986 kg/m(3); relative dielectric constants (at constant strain S) ε(S)(11)/ε(0) = 8.6 and ε(S)(11)/ε(0) = 10.5, where ε(0) is a dielectric constant of free space; elastic constants (at constant electric field E) C(E)(11) = 349.7, C(E)(12) = 128.1, C(E)(13) = 129.4, C(E)(33) = 430.3, and C(E)(44) = 96.5 GPa; and piezoelectric constants e(33) = 0.84, e(31) = -0.47, and e(15) = -0.41 C/m(2).

  8. Single-Crystal Elastic Constants of Yttria (Y2O3) Measured to High Temperatures

    Science.gov (United States)

    Sayir, Ali; Palko, James W.; Kriven, Waltraud M.; Sinogeikin, Sergey V.; Bass, Jay D.

    2001-01-01

    Yttria, or yttrium sesquioxide (Y2O3), has been considered for use in nuclear applications and has gained interest relatively recently for use in infrared optics. Single crystals of yttria have been grown successfully at the NASA Glenn Research Center using a laser-heated float zone technique in a fiber and rod. Such samples allow measurement of the single-crystal elastic properties, and these measurements provide useful property data for the design of components using single crystals. They also yield information as to what degree the elastic properties of yttria ceramics are a result of the intrinsic properties of the yttria crystal in comparison to characteristics that may depend on processing, such as microstructure and intergranular phases, which are common in sintered yttria. The single-crystal elastic moduli are valuable for designing such optical components. In particular, the temperature derivatives of elastic moduli allow the dimensional changes due to heating under physical constraints, as well as acoustic excitation, to be determined. The single-crystal elastic moduli of yttria were measured by Brillouin spectroscopy up to 1200 C. The room-temperature values obtained were C(sub 11) = 223.6 + 0.6 GPa, C(sub 44) = 74.6 + 0.5 GPa, and C(sub 12) = 112.4 + 1.0 GPa. The resulting bulk and (Voigt-Reuss-Hill) shear moduli were K = 149.5 + 1.0 GPa and G(sub VRH) = 66.3 + 0.8 GPa, respectively. Linear least-squares regressions to the variation of bulk and shear moduli with temperature resulted in derivatives of dK/dT = -17 + 2 MPa/C and dG(sub VRH)/dT = -8 + 2 MPa/ C. Elastic anisotropy was found to remain essentially constant over the temperature range studied.

  9. Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code

    Science.gov (United States)

    Perger, W. F.; Criswell, J.; Civalleri, B.; Dovesi, R.

    2009-10-01

    An automated procedure for calculating second-order elastic constants for crystalline systems of any symmetry using the CRYSTAL program is described. Second derivatives with respect to strain are evaluated numerically from analytical gradients. The internal co-ordinates are re-optimized with each applied strain. Point group symmetry is exploited to reduce the number of needed deformations according to Laue classes. A set of test cases covering many of the crystal classes is used to document the numerical accuracy of the scheme, and to define default values of the computational parameters so as to reduce the input file to a single keyword.

  10. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.; Korsunsky, A. M. [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom); Zhang, S. Y.; Kabra, S.; Kelleher, J. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Neo, T. K. [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, Singapore 228510 (Singapore)

    2014-08-07

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

  11. Contribution of Disclination Lines to Free Energy of Liquid Crystals in Single-Elastic Constant Approximation

    Institute of Scientific and Technical Information of China (English)

    YANGGuo-Hong; WANGYu-Sheng; DUANYi-Shi

    2004-01-01

    In the light of C-mapping method and topological current theory, the contribution of disclination lines to free energy density of liquid crystals is studied in the single-elastic constant approximation. It is pointed out that the total free energy density can be divided into two parts. One is the usual distorted energy density of director field around the disclination lines. The other is the free energy density of disclination lines themselves, which is shown to be centralized at the disclination lines and to be topologically quantized in the unit of kn/2. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director l~eld at the disclination lines, i.e. the disclination strengths. From the Lagrange's method of multipliers, the equilibrium equation and the molecular field ofliquid crystals are also obtained. The physical meaning of the Lagrangian multiplier is just the distorted energy density.

  12. Contribution of Disclination Lines to Free Energy of Liquid Crystals in Single-Elastic Constant Approximation

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-Hong; WANG Yu-Sheng; DUAN Yi-Shi

    2004-01-01

    In the light of φ-mapping method and topological current theory, the contribution of disclination lines to free energy density of liquid crystals is studied in the single-elastic constant approximation. It is pointed out that the total free energy density can be divided into two parts. One is the usual distorted energy density of director field around the disclination lines. The other is the free energy density of disclination lines themselves, which is shown to be centralized at the disclination lines and to be topologically quantized in the unit of kπ /2. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director field at the disclination lines, i.e. the disclination strengths. From the Lagrange's method of multipliers, the equilibrium equation and the molecular field of liquid crystals are also obtained. The physical meaning of the Lagrangian multiplier is just the distorted energy density.

  13. Pseudo-molecular approach for the elastic constants of nematic liquid crystals interacting via anisotropic dispersion forces

    Energy Technology Data Exchange (ETDEWEB)

    Simonário, P.S., E-mail: simonario@gmail.com [Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, Paraná (Brazil); Freire, F.C.M.; Evangelista, L.R. [Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo, 5790, 87020-900 Maringá, Paraná (Brazil); Teixeira-Souza, R.T. [Universidade Tecnológica Federal do Paraná – Câmpus Apucarana, Rua Marcílio Dias, 635, 86812-460 Apucarana, Paraná (Brazil)

    2014-01-17

    The bulk and the surface-like elastic constants of a nematic liquid crystal are calculated for an ensemble of particles interacting via anisotropic dispersion forces using the pseudo-molecular method. The geometrical anisotropy of the molecules is also taken into account in the calculations by choosing a molecular volume of ellipsoidal shape. Analytical expressions for the elastic constants are obtained as a function of the eccentricity in the molecular volume shape. The method allows one to explore the dependence on the molecular orientation with respect to the intermolecular vector by analyzing the magnitude and the behaviour of macroscopic elastic parameters defining the nematic phase.

  14. Splay-bend surface elastic constant of nematic liquid crystals: A solution of the Somoza-Tarazona paradox

    Science.gov (United States)

    Faetti, Massimo; Faetti, Sandro

    1998-06-01

    The Nehring-Saupe [J. Chem. Phys. 54, 337 (1971); 56, 5527 (1972)] elastic free energy of nematic liquid crystals (NLCs) contains the splay-bend elastic constant K13, which affects only the elastic surface free energy. Several years ago, Somoza and Tarazona [Mol. Phys. 72, 991 (1991)] showed that the value of K13 depends on the nonlocal to local mapping that is used to define the local elastic free energy. Then they concluded that the splay-bend constant is not a well-defined physical parameter. In the present paper we show that the Somoza-Tarazona result comes from an inconsistent treatment of the boundary effects. If all the boundary effects are correctly taken into account in an elastic approach, the elastic surface free energy contains an effective elastic constant Keff13 that is mapping independent. Keff13 is the sum of three different constants: the classical Nehring-Saupe bulk constant K13 and two specific interfacial constants K1 and Kh. While each surface constant (K13, K1, and Kh) depends on the kind of nonlocal to local mapping, the resulting surface constant Keff13=K13+K1+Kh is mapping independent. Using a simple molecular model of the intermolecular interactions, we obtain explicit expressions of Keff13 in terms of the characteristic parameters of the intermolecular energy. In the final part of this paper we discuss the meaning and the physical consequences of the elastic surface free energy Fs. We show that Fs is a semimacroscopic parameter that provides an approximate elastic description of the interfacial layer. Furthermore, we point out that the elastic surface free energy should not be confused with the thermodynamic surface free energy that appears in a consistent continuum theory of NLCs.

  15. Temperature dependences of piezoelectric, elastic and dielectric constants of L-alanine crystal

    Science.gov (United States)

    Tylczyński, Z.; Sterczyńska, A.; Wiesner, M.

    2011-09-01

    Temperature changes in the components of piezoelectric, elastic and dielectric tensors were studied in L-alanine crystals in the range 100-300 K. A jumpwise increase in the c55 component of the elastic stiffness accompanied by maxima in damping of all face-shear modes observed at 199 K in L-alanine crystal were interpreted as a result of changes in the NH3+ vibrations occurring through electron-phonon coupling. All components of the piezoelectric tensor show small anomalies in this temperature range. The components of the electromechanical coupling coefficient determined indicate that L-alanine is a weak piezoelectric.

  16. Dielectric technique to measure the twist elastic constant of liquid crystals: the case of a bent-core material.

    Science.gov (United States)

    Salamon, P; Eber, N; Seltmann, J; Lehmann, M; Gleeson, J T; Sprunt, S; Jákli, A

    2012-06-01

    The effect of director pretilt on the twist magnetic Fréedericksz transition of nematics was investigated in a planar cell. The director configuration was calculated as a function of magnetic inductance. The dielectric and optical response of the nematic liquid crystal was numerically modeled. A dielectric measurement method for determining the elastic constant K_{22} is presented. The influence of the conditions for the Mauguin effect is discussed. The theoretical predictions were confirmed by our experiments. Experimental data for all elastic constants of a bent-core nematic material are presented and discussed.

  17. Determination of elastic, piezoelectric, and dielectric constants of an R: BaTiO3 single crystal by Brillouin scattering

    Institute of Scientific and Technical Information of China (English)

    He Xiao-Kang; Zeng Li-Bo; Wu Qiong-Shui; Zhang Li-Yan; Zhu Ke; Liu Yu-Long

    2012-01-01

    From the sound velocity measured using the Brillouin scattering technique,the elastic,piezoelectric,and dielectric constants of a high-quality monodomain tetragonal Rh:BaTiO3 single crystal are determined at room temperature.The elastic constants are in fairly good agreement with those of the BaTiO3 single crystal,measured previously by Brillouin scattering and the low-frequency equivalent circuit methods.However,their electromechanical properties are significantly different.Based on the sound propagation equations and these results,the directional dependence of the compressional modulus and the shear modulus of Rh:BaTiO3 in the (010) plane is investigated.Some properties of sound propagation and electromechanical coupling in the crystal are discussed.

  18. Matched elastic constants for a perfect helical planar state and a fast switching time in chiral nematic liquid crystals.

    Science.gov (United States)

    Yu, Meina; Zhou, Xiaochen; Jiang, Jinghua; Yang, Huai; Yang, Deng-Ke

    2016-05-11

    Chiral nematic liquid crystals possess a self-assembled helical structure and exhibit unique selective reflection in visible and infrared light regions. Their optical properties can be electrically tuned. The tuning involves the unwinding and restoring of the helical structure. We carried out an experimental study on the mechanism of the restoration of the helical structure. We constructed chiral nematic liquid crystals with variable elastic constants by doping bent-dimers and studied their impact on the restoration. With matched twist and bend elastic constants, the helical structure can be restored dramatically fast from the field-induced homeotropic state. Furthermore, defects can be eliminated to produce a perfect planar state which exhibits high selective reflection.

  19. Crystal structure and elastic constants of Dharwar cotton fibre using WAXS data

    Indian Academy of Sciences (India)

    O M Samir; R Somashekar

    2007-10-01

    Wide-angle X-ray scattering (WAXS) recordings were carried out on raw Dharwar cotton fibres available in Karnataka. Using this data and employing linked atom least squares (LALS) method, we report here the molecular and crystal structure of these cotton fibres. Employing structural data, we have computed elastic moduli tensor components of these fibres. From these investigations, it turns out that the intrinsic strains present in the fibre arise due to hydrogen bonds and not covalent bonds, which is a significant result.

  20. Determination of elastic constants of a single-crystal topaz and their temperature dependence via sphere resonance method

    Science.gov (United States)

    Sema, Fumie; Watanabe, Tohru

    2017-10-01

    Water and halogens in ocean floor sediments transported by a descending slab might play important roles in geodynamic processes. Imaging subducted sediments through seismological observations requires a thorough understanding of elastic properties of sediment origin hydrous minerals. Topaz is a sediment origin hydrous mineral, which is formed at the depth of 250-350 km on a cold subducting slab. We determined elastic constants and their temperature derivatives of a natural single-crystal of topaz (Al1.97SiO4(F1.56, OH0.42)) at the temperature from 271.5 to 312.7 °K by using the sphere-resonance method. Elastic constants at an ambient temperature (T = 291.9 °K) are C11 = 281.21(1) GPa, C22 = 346.23(9) GPa, C33 = 294.99(9) GPa, C44 = 108.49(1) GPa, C55 = 132.47(1) GPa, C66 = 130.32(1) GPa, C12 = 121.48(3) GPa, C13 = 80.94(3) GPa and C23 = 81.77(2) GPa. Since our sample [Al2SiO4(F1.56,OH0.42)] was relatively rich in fluorine, only small differences in elastic constants can be seen between our sample and fluorine end member. Elastic constants of OH-rich topaz should be experimentally investigated to understand the influence of F-OH substitution on elasticity of topaz. All the elastic constants decrease linearly with increasing temperature. The temperature derivatives are dC11/dT = -0.014(3) GPa/°K, dC22/dT = -0.010(7) GPa/°K, dC33/dT = -0.021(5) GPa/°K, dC44/dT = -0.011(1) GPa/°K, dC55/dT = -0.016(2) GPa/°K, dC66/dT = -0.0101(2) GPa/°K, dC12/dT = -0.0041(6) GPa/°K, dC13/dT = -0.001(2) GPa/°K and dC23/dT = -0.002(1) GPa/°K. The isotropic seismic velocities in topaz are distinctly higher than those in olivine at 10 GPa and 300-1400 °K. There should be a strong velocity contrast between the overlying mantle and the thin sediment-origin layer at the depth around 300 km. A seismological technique like the receiver function technique should be applied to detect a thin layer of topaz in a cold subduction zone.

  1. Laser light scattering technique for non-invasive in situ simultaneous measurements on elastic constants and viscosity coefficients of nematic liquid crystals

    Institute of Scientific and Technical Information of China (English)

    TU; Mei; HUANG; Yaoxiong

    2004-01-01

    The laser light scattering technique for non-invasive in situ simultaneous measurements on elastic constants and viscosity coefficients of nematic liquid crystals is introduced. By measuring the autocorrelation function of the scattered light from nematic liquid crystals at different scattering angles, the splay and twist elastic constants K11 and K22 are obtained from the amplitudes of the autocorrelation function, and the viscosity coefficients of (Splay and (Twist are determined using the viscoelastic ratios K11/( Splay and K22/(Twist from the relaxation parameters of the two modes.

  2. Experimental determination of third-order elastic constants of diamond.

    Science.gov (United States)

    Lang, J M; Gupta, Y M

    2011-03-25

    To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.

  3. The Elastic Constants of the Single Crystal of the Mg-Zn-Zr-REM Alloy from the Data of the Elastic Anisotropy and the Texture of the Polycrystalline Sheet

    Directory of Open Access Journals (Sweden)

    S. V. San’kova

    2014-01-01

    Full Text Available The measuring of the constants of single-crystals requires the availability of crystals of relatively big size. In this paper the elastic constants of the single crystals of magnesium alloy with zinc, zirconium, and rare earth metals (REM were determined by means of the experimental anisotropy of Young’s modulus and integral characteristics of texture (ICT, which were found from pole figures. Using these constants the anisotropy of Young’s modulus of alloy sheet ZE10 was calculated. Deviation of calculated values from experimental values did not exceed 2%.

  4. Surface Brillouin scattering measurement of the elastic constants of single crystal InAs{sub 0.91}Sb{sub 0.09}

    Energy Technology Data Exchange (ETDEWEB)

    Kotane, L M; Comins, J D; Every, A G [Materials Physics Research Institute, School of Physics, University of the Witwatersrand, Johannesburg, Wits 2050 (South Africa); Botha, J R, E-mail: Lesias.Kotane@wits.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2011-01-01

    Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs{sub 0.91}Sb{sub 0.09}. The wave speed measurements have been used to determine the room temperature values of the elastic constants C{sub 11}, C{sub 12} and C{sub 44} of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.

  5. Light scattering study of the "pseudo-layer" compression elastic constant in a twist-bend nematic liquid crystal

    CERN Document Server

    Parsouzi, Z; Welch, C; Ahmed, Z; Mehl, G H; Baldwin, A R; Gleeson, J T; Lavrentovich, O D; Allender, D W; Selinger, J V; Jakli, A; Sprunt, S

    2016-01-01

    The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or "pseudo-layers", each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining "layer" compression and bending ought to be characterized by an effective layer compression elastic constant $B_{eff}$ and average director splay constant $K_1^{eff}$. The magnitude of $K_1^{eff}$ is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, $B_{eff}$ could differ substantially from the typical value of $\\sim 10^6$ Pa in a conventional smectic-A. Here we report the results of a dynamic l...

  6. Higher Order Elastic Constants, Gruneisen Parameters and Lattice Thermal Expansion of Trigonal Calcite

    OpenAIRE

    Thresiamma Phlip; Menon, C S; Indulekha, K.

    2005-01-01

    The second- and third-order elastic constants of trigonal calcite have been obtained using the deformation theory. The strain energy density derived using the deformation theory is compared with the strain dependent lattice energy obtained from the elastic continuum model approximation to get the expressions for the second- and third-order elastic constants. Higher order elastic constants are a measure of the anharmonicity of a crystal lattice. The seven second-order elastic constants and the...

  7. Apparatus for measurement of acoustic wave propagation under uniaxial loading with application to measurement of third-order elastic constants of piezoelectric single crystals.

    Science.gov (United States)

    Zhang, Haifeng; Kosinski, J A; Karim, Md Afzalul

    2013-05-01

    We describe an apparatus for the measurement of acoustic wave propagation under uniaxial loading featuring a special mechanism designed to assure a uniform mechanical load on a cube-shaped sample of piezoelectric material. We demonstrate the utility of the apparatus by determining the effects of stresses on acoustic wave speed, which forms a foundation for the final determination of the third-order elastic constants of langasite and langatate single crystals. The transit time method is used to determine changes in acoustic wave velocity as the loading is varied. In order to minimize error and improve the accuracy of the wave speed measurements, the cross correlation method is used to determine the small changes in the time of flight. Typical experimental results are presented and discussed.

  8. Third order elastic constants of bcc Cu-Al-Ni

    OpenAIRE

    Gonzàlez Comas, Alfons; Mañosa, Lluís

    1996-01-01

    We have measured the changes in the ultrasonic wave velocity, induced by the application of uniaxial stresses in a Cu-Al-Ni single crystal. From these measurements, the complete set of third-order elastic constants has been obtained. The comparison of results for Cu-Al-Ni with available data for other Cu-based alloys has shown that all these alloys exhibit similar anharmonic behavior. By using the measured elastic constants in a Landau expansion for elastic phase transitions, we have been abl...

  9. Monopoly price discrimination with constant elasticity demand

    OpenAIRE

    Aguirre Pérez, Iñaki; Cowan, Simon George

    2013-01-01

    This paper presents new results on the welfare e¤ects of third-degree price discrimination under constant elasticity demand. We show that when both the share of the strong market under uniform pricing and the elasticity di¤erence between markets are high enough,then price discrimination not only can increase social welfare but also consumer surplus.

  10. Monopoly price discrimination with constant elasticity demand

    OpenAIRE

    Aguirre Pérez, Iñaki; Cowan, Simon George

    2013-01-01

    This paper presents new results on the welfare e¤ects of third-degree price discrimination under constant elasticity demand. We show that when both the share of the strong market under uniform pricing and the elasticity di¤erence between markets are high enough,then price discrimination not only can increase social welfare but also consumer surplus.

  11. A constant elasticity of profit production function

    OpenAIRE

    Beard, Rodney

    2007-01-01

    Impact analysis of changes in production inputs may be simplified if one can apply a constant adjustment factor to profit. In particular, if a production function can be found for which the elasticity of profit is constant and this function has desirable properties, then one can use the input elasticity of profit to study the impact of input changes on profit. In this paper such a production function is derived from first principles.

  12. Stress in Thin Films; Diffraction Elastic Constants and Grain Interaction

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Untextured bulk polycrystals usually possess macroscopically isotropic elastic properties whereas for most thin films transverse isotropy is expected, owing to the limited dimensionality. The usually applied models for the calculation of elastic constants of polycrystals from single crystal elastic constants (so-called grain interaction models) erroneously predict macroscopic isotropy for an (untextured) thin film. This paper presents a summary of recent work where it has been demonstrated for the first time by X-ray diffraction analysis of stresses in thin films that elastic grain interaction can lead to macroscopically elastically anisotropic behaviour (shown by non-linear sin2ψ plots). A new grain interaction model, predicting the macroscopically anisotropic behaviour of thin films, is proposed.

  13. Athermal nonlinear elastic constants of amorphous solids.

    Science.gov (United States)

    Karmakar, Smarajit; Lerner, Edan; Procaccia, Itamar

    2010-08-01

    We derive expressions for the lowest nonlinear elastic constants of amorphous solids in athermal conditions (up to third order), in terms of the interaction potential between the constituent particles. The effect of these constants cannot be disregarded when amorphous solids undergo instabilities such as plastic flow or fracture in the athermal limit; in such situations the elastic response increases enormously, bringing the system much beyond the linear regime. We demonstrate that the existing theory of thermal nonlinear elastic constants converges to our expressions in the limit of zero temperature. We motivate the calculation by discussing two examples in which these nonlinear elastic constants play a crucial role in the context of elastoplasticity of amorphous solids. The first example is the plasticity-induced memory that is typical to amorphous solids (giving rise to the Bauschinger effect). The second example is how to predict the next plastic event from knowledge of the nonlinear elastic constants. Using the results of our calculations we derive a simple differential equation for the lowest eigenvalue of the Hessian matrix in the external strain near mechanical instabilities; this equation predicts how the eigenvalue vanishes at the mechanical instability and the value of the strain where the mechanical instability takes place.

  14. Twelve Elastic Constants of Betula platyphylla Suk.

    Institute of Scientific and Technical Information of China (English)

    Wang Liyu; Lu Zhenyou

    2004-01-01

    Wood elastic constants are needed to describe the elastic behaviors of wood and be taken as an important design parameter for wood-based composite materials and structural materials. This paper clarified the relationships between compliance coefficients and engineering elastic constants combined with orthotropic properties of wood, and twelve elastic constants of Betula platyphylla Suk. were measured by electrical strain gauges. Spreading the adhesive quantity cannot be excessive or too little when the strain flakes were glued. If excessive, the glue layer was too thick which would influence the strain flakes' performance, and if too little, glues plastered were not firm, which could not accurately transmit the strain. Wood as an orthotropic material, its modulus of elasticity and poisson's ratios are related by two formulas:μij /Ei =μji /Ej and μij 0.95) between the reciprocal of elastic modulus MOE-1 and the square of the ratio of depth to length (h/l)2, which indicate that shear modulus values measured were reliable by three point bending experiment.

  15. The Elastic Constants for Wrought Aluminum Alloys

    Science.gov (United States)

    Templin, R L; Hartmann, E C

    1945-01-01

    There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.

  16. Higher Order Elastic Constants, Gruneisen Parameters and Lattice Thermal Expansion of Trigonal Calcite

    Directory of Open Access Journals (Sweden)

    Thresiamma Phlip

    2005-01-01

    Full Text Available The second- and third-order elastic constants of trigonal calcite have been obtained using the deformation theory. The strain energy density derived using the deformation theory is compared with the strain dependent lattice energy obtained from the elastic continuum model approximation to get the expressions for the second- and third-order elastic constants. Higher order elastic constants are a measure of the anharmonicity of a crystal lattice. The seven second-order elastic constants and the fourteen non-vanishing third-order elastic constants of trigonal calcite are obtained. The second-order elastic constants C11, which corresponds to the elastic stiffness along the basal plane of the crystal is greater than C33, which corresponds to the elastic stiffness tensor component along the c-axis of the crystal. First order pressure derivatives of the second-order elastic constants of calcite are evaluated. The higher order elastic constants are used to find the generalized Gruneisen parameters of the elastic waves propagating in different directions in calcite. The Brugger gammas are evaluated and the low temperature limit of the Gruneisen gamma is obtained. The results are compared with available reported values.

  17. Elasticity of some mantle crystal structures. II.

    Science.gov (United States)

    Wang, H.; Simmons, G.

    1973-01-01

    The single-crystal elastic constants are determined as a function of pressure and temperature for rutile structure germanium dioxide (GeO2). The data are qualitatively similar to those of rutile TiO2 measured by Manghnani (1969). The compressibility in the c direction is less than one-half that in the a direction, the pressure derivative of the shear constant is negative, and the pressure derivative of the bulk modulus has a relatively high value of about 6.2. According to an elastic strain energy theory, the negative shear modulus derivative implies that the kinetic barrier to diffusion decreases with increasing pressure.

  18. Fractional constant elasticity of variance model

    OpenAIRE

    Ngai Hang Chan; Chi Tim Ng

    2007-01-01

    This paper develops a European option pricing formula for fractional market models. Although there exist option pricing results for a fractional Black-Scholes model, they are established without accounting for stochastic volatility. In this paper, a fractional version of the Constant Elasticity of Variance (CEV) model is developed. European option pricing formula similar to that of the classical CEV model is obtained and a volatility skew pattern is revealed.

  19. Elastic anisotropy of crystals

    Directory of Open Access Journals (Sweden)

    Christopher M. Kube

    2016-09-01

    Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  20. Higher Order Elastic Constants, Gruneisen Parameters and Lattice Thermal Expansion of Lithium Niobate

    Directory of Open Access Journals (Sweden)

    Thresiamma Philip

    2006-01-01

    Full Text Available The second and third-order elastic constants and pressure derivatives of second- order elastic constants of trigonal LiNbO3 (lithium niobate have been obtained using the deformation theory. The strain energy density estimated using finite strain elasticity is compared with the strain dependent lattice energy density obtained from the elastic continuum model approximation. The second-order elastic constants and the non-vanishing third-order elastic constants along with the pressure derivatives of trigonal LiNbO3 are obtained in the present work. The second and third-order elastic constants are compared with available experimental values. The second-order elastic constant C11 which corresponds to the elastic stiffness along the basal plane of the crystal is less than C33 which corresponds to the elastic stiffness tensor component along the c-axis of the crystal. The pressure derivatives, dC'ij/dp obtained in the present work, indicate that trigonal LiNbO3 is compressible. The higher order elastic constants are used to find the generalized Gruneisen parameters of the elastic waves propagating in different directions in LiNbO3. The Brugger gammas are evaluated and the low temperature limit of the Gruneisen gamma is obtained. The results are compared with available reported values.

  1. Constant-Elasticity-of-Substitution Simulation

    Science.gov (United States)

    Reiter, G.

    1986-01-01

    Program simulates constant elasticity-of-substitution (CES) production function. CES function used by economic analysts to examine production costs as well as uncertainties in production. User provides such input parameters as price of labor, price of capital, and dispersion levels. CES minimizes expected cost to produce capital-uncertainty pair. By varying capital-value input, one obtains series of capital-uncertainty pairs. Capital-uncertainty pairs then used to generate several cost curves. CES program menu driven and features specific print menu for examining selected output curves. Program written in BASIC for interactive execution and implemented on IBM PC-series computer.

  2. Electric field dependence of nonlinearity parameters and third order elastic constants of 0.70Pb(Mg(13)Nb(23))O(3)-0.30PbTiO(3) single crystal.

    Science.gov (United States)

    Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R; Cao, Wenwu

    2010-02-01

    Through second harmonic measurements, the ultrasonic nonlinearity parameters of [001](c) and [111](c) polarized 0.70Pb(Mg(13)Nb(23))O(3)-0.30PbTiO(3)(PMN-0.3PT) single crystals have been measured as a function of bias electric field. It was found that the nonlinearity parameter increases almost linearly with field at low field but shows a drastic increase near the coercive field. The [111](c) polarized single domain crystal has much smaller nonlinearity parameter than that of the [001](c) polarized multidomain crystal. Based on effective symmetries of these crystals, we were able to derive the field dependence of several third order elastic constants, which are important parameters for high field applications.

  3. Electric field dependence of nonlinearity parameters and third order elastic constants of 0.70Pb(Mg1∕3Nb2∕3)O3–0.30PbTiO3 single crystal

    Science.gov (United States)

    Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R.; Cao, Wenwu

    2010-01-01

    Through second harmonic measurements, the ultrasonic nonlinearity parameters of [001]c and [111]c polarized 0.70Pb(Mg1∕3Nb2∕3)O3–0.30PbTiO3(PMN–0.3PT) single crystals have been measured as a function of bias electric field. It was found that the nonlinearity parameter increases almost linearly with field at low field but shows a drastic increase near the coercive field. The [111]c polarized single domain crystal has much smaller nonlinearity parameter than that of the [001]c polarized multidomain crystal. Based on effective symmetries of these crystals, we were able to derive the field dependence of several third order elastic constants, which are important parameters for high field applications. PMID:20198132

  4. Analysis of Apparent Elasticity Constants of Woven Fabrics

    Institute of Scientific and Technical Information of China (English)

    董侠; 张建春; 张燕

    2001-01-01

    The woven fabric can be defined as orthogonal elastomer if the extension force that puts on the fabric is very small. Based on the precondition, the apparent elasticity constants of a woven fabric were analyzed theoretically in the paper. The bias angle (which is between weft yarns and extension direction ) affects apparent elasticity modulus and elasticity coefficient of the fabric in the extension direction. And the experiment describes fluxes of elasticity constants going with the bias angle of the fabric.

  5. Elastic constants of Al and TiN calculated by ab initio method

    Institute of Scientific and Technical Information of China (English)

    张铭; 申江; 何家文

    2001-01-01

    The elastic constants of Al single crystal were calculated by ab initio method for calibration. Three deformation directions were selected in order to obtain the different constants of c11, c12 and c44. The cohesion energy curves of the three deformation directions were calculated. The results of the second order partial differential at the equilibrium point of the cohesion energy curve provide the elastic constants of the Al single crystal. The changes of crystal symmetry and lattice can lead to the deviations of the calculated cohesion energy curves and the accurate elastic constants can not be obtained, but when the correction is taken into calculation, the calculated results are very close to the literature data. It is very difficult to obtain the elastic constants of thin films by experiment and the data from the handbook are scattered in a large scale. However, the elastic constants calculated by this method can be served as a standard. Though the errors of TiN elastic constants calculated by this method are a little higher than that for Al, the results are acceptable.

  6. Elastic constant versus temperature behavior of three hardened maraging steels

    Science.gov (United States)

    Ledbetter, H. M.; Austin, M. W.

    1985-01-01

    Elastic constants of three maraging steels were determined by measuring ultrasonic velocities. Annealed steels show slightly lower bulk moduli and considerably lower shear moduli than hardened steels. All the elastic constants (Young's modulus, shear modulus, bulk modulus and Poisson's ratio) show regular temperature behavior between 76 and 400 K. Young's modulus and the shear modulus increase with increasing yield strength, but the bulk modulus and Poisson's ratio are relatively unchanged. Elastic anisotropy is quite small.

  7. Third-order Elastic Constants of Bi12GeO20 Crystal%立方晶体Bi12GeO20的三阶弹性常数

    Institute of Scientific and Technical Information of China (English)

    吴昆裕; 邵继红

    2001-01-01

    By using of the ultrasonic pulse-echo overlap technique, the dependence of natural wave velocity on the hydrostatic pressure and uniaxial stress in cubic crystal Bi12 GeO20 was measured for various longitudinal and shear elastic modes. From the experimental results, the values of all independent second- and third-order elastic stiffness constants of Bi12GeO20 crystal were determined by means of the theory proposed by Thurston and Brugger.%用超声脉冲回波重合方法测量了立方晶体Bi12GeO20中九种不同模式纯纵波和 切变波自然声速值随流体静压力和单轴压力的变化关系,由此实验结果,用Thurston 和Brugger的理论,确定了Bi12GeO20晶体全部独立的三阶弹性常数.

  8. 晶体弹性常数的新算法、数据库与材料设计%A New Algorithm and Database for Elastic Constants of Crystals and Materials Design

    Institute of Scientific and Technical Information of China (English)

    于荣; 刘麟汗

    2014-01-01

    晶体弹性是材料的基本属性,是材料科学、固体物理、固体化学,以及地质科学等研究领域中的重要考虑因素。由于单晶弹性常数的实验测量比较困难,在数万种无机晶体中只有约1%的晶体的单晶弹性常数是已知的,因此经常需要从理论上计算晶体弹性。我们基于从应变到应力空间的映射,设计开发了新的单晶弹性常数算法与软件。与此前的算法相比,新算法的计算效率高,普适性好。我们在此基础上通过海量计算建立了晶体弹性数据库,并陆续收集了已知的实验数据。以材料的硬度为例,通过数据库进行数据挖掘,揭示了最软弹性形变模式控制材料硬度的“木桶效应”。论文还展示了这一木桶效应在材料设计中的应用。结果表明,通过氮或铼的合金化强化最软的弹性模式,可以进一步提高这种硬质材料的硬度。%The elasticity is a fundamental property of crystalline materials and is of great importance in physical sciences, including materials science, solid state physics and chemistry, and geological sciences. To measure the full set of elastic constants experimentally, single crystals of macroscopic size are typically required, making the full set of elastic constants available only for a very small portion of known materials. We designed a new algorithm and the corresponding software to calculate single-crystal elastic constants. Compared with previous algorithms, the new one is computationally more efficient and can be universally applied to crystals of any symmetry. Through high throughput calculations using the new algorithm, we established a database of elasticity of crystals, which also includes experimental data. Based on the database, we revealed the controlling factor of materials hardness through data mining. Materials design for hard alloys was performed by considering the controlling factor.

  9. A first-principles approach to finite temperature elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Wang, J J; Zhang, H; Manga, V R; Shang, S L; Chen, L-Q; Liu, Z-K [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    2010-06-09

    A first-principles approach to calculating the elastic stiffness coefficients at finite temperatures was proposed. It is based on the assumption that the temperature dependence of elastic stiffness coefficients mainly results from volume change as a function of temperature; it combines the first-principles calculations of elastic constants at 0 K and the first-principles phonon theory of thermal expansion. Its applications to elastic constants of Al, Cu, Ni, Mo, Ta, NiAl, and Ni{sub 3}Al from 0 K up to their respective melting points show excellent agreement between the predicted values and existing experimental measurements.

  10. X-ray elastic constants and residual stress of textured titanium nitride coating

    Energy Technology Data Exchange (ETDEWEB)

    Sue, J.A. (Union Carbide Coatings Service Corp., Indianapolis, IN (United States))

    1992-11-16

    X-ray elastic constants for the (422) and (333)/(511) reflections of the [l brace]111[r brace] textured TiN coating were determined. The coating exhibited high elastic anisotropy. The X-ray elastic constant of the (422) reflection was comparable with those predicted from single crystal elastic compliances on the basis of the Voigt and Reuss models, whereas a significant deviation from these models was found for (333)/(511). The residual stress of the coating was determined by X-ray diffraction and bi-metal deflection techniques. The magnitude of residual stress in the coating calculated using the measured X-ray elastic constants was in good agreement with these two reflections and, within experimental scatter, the values were also consistent with those obtained from the deflection measurement.

  11. Determination of the elastic constants of portlandite by Brillouin spectroscopy

    KAUST Repository

    Speziale, S.

    2008-10-01

    The single crystal elastic constants Cij and the shear and adiabatic bulk modulus of a natural portlandite (Ca(OH)2) crystal were determined by Brillouin spectroscopy at ambient conditions. The elastic constants, expressed in GPa, are: C11 = 102.0(± 2.0), C12 = 32.1(± 1.0), C13 = 8.4(± 0.4), C14 = 4.5(± 0.2), C33 = 33.6(± 0.7), C44 = 12.0(± 0.3), C66 = (C11-C12)/2 = 35.0(± 1.1), where the numbers in parentheses are 1σ standard deviations. The Reuss bounds of the adiabatic bulk and shear moduli are K0S = 26.0(± 0.3) GPa and G0 = 17.5(± 0.4) GPa, respectively, while the Voigt bounds of these moduli are K0S = 37.3(± 0.4) GPa and G0 = 24.4(± 0.3) GPa. The Reuss and Voigt bounds for the aggregate Young\\'s modulus are 42.8(± 1.0) GPa and 60.0(± 0.8) GPa respectively, while the aggregate Poisson\\'s ratio is equal to 0.23(± 0.01). Portlandite exhibits both large compressional elastic anisotropy with C11/C33 = 3.03(± 0.09) equivalent to that of the isostructural hydroxide brucite (Mg(OH)2), and large shear anisotropy with C66/C44 = 2.92(± 0.12) which is 11% larger than brucite. The comparison between the bulk modulus of portlandite and that of lime (CaO) confirms a systematic linear relationship between the bulk moduli of brucite-type simple hydroxides and the corresponding NaCl-type oxides. © 2008 Elsevier Ltd. All rights reserved.

  12. Large difference in the elastic properties of fcc and hcp hard-sphere crystals

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2003-01-01

    We report a numerical calculation of the elastic constants of the fcc and hcp crystal phases of monodisperse hard-sphere colloids. Surprisingly, some of these elastic constants are very different (up to 20%), even though the free-energy, pressure, and bulk compressibility of the two crystal structur

  13. Elastic constants of the human lens capsule.

    Science.gov (United States)

    Fisher, R F

    1969-03-01

    1. A technique is described whereby the elasticity of the human lens capsule has been determined at birth and throughout life. This technique requires three separate determinations: (a) thickness; (b) stress and strain; (c) Poisson's ratio; (a) the capsule was clamped between accurately perforated ground glass plates and its thickness determined by noting the change in depth of focus between Latex spherules adhering to its upper and lower surfaces; (b) the undisturbed capsule was then placed in a specially designed glass distension apparatus and the relationship between volume and pressure recorded when it was distended with isotonic saline. The permeability of the capsule was also measured; (c) in some cases Poisson's ratio was determined by measuring the change of thickness of the capsule and the height to which it rose when distended with isotonic saline at different pressures. An apparatus was designed for this purpose.2. The average thickness of the anterior capsule increases from birth until about the 60th year but thereafter it decreases slightly.3. Poisson's ratio was about 0.47 for both cat and human capsule, and no significant variations with age in human capsule could be detected.4. Corrected volume pressure curves obeyed Hook's law almost to the point of capsule rupture.5. In childhood Young's Modulus of elasticity is about 6 x 10(7) dyn/cm(2) and decreases to 3 x 10(7) dyn/cm(2) at 60 and 1.5 x 10(7) dyn/cm(2) in extreme old age.6. The ultimate tensile stress was 2.3 x 10(7) dyn/cm(2) in young capsules and 0.7 x 10(7) dyn/cm(2) in old ones. The maximum percentage elongation was 29 per cent and independent of age.7. The implications of these findings are discussed in relation to(a) the mechanical properties of the lens capsule;(b) the ageing of the lens capsule and basement membranes; and(c) the decrease in elasticity of the lens capsule as a cause of presbyopia.

  14. Measuring elastic constants using non-contact ultrasonic techniques

    Science.gov (United States)

    Edwards, R. S.; Perry, R.; Cleanthous, D.; Backhouse, D. J.; Moore, I. J.; Clough, A. R.; Stone, D. I.

    2012-05-01

    The use of ultrasound for measuring elastic constants and phase transitions is well established. Standard measurements use piezoelectric transducers requiring couplant and contact with the sample. Recently, non-destructive testing (NDT) has seen an increase in the use of non-contact ultrasonic techniques, for example electromagnetic acoustic transducers (EMATs) and laser ultrasound, due to their many benefits. For measurements of single crystals over a range of temperatures non-contact techniques could also bring many benefits. These techniques do not require couplant, and hence do not suffer from breaking of the bond between transducer and sample during thermal cycling, and will potentially lead to a simpler and more adaptable measurement system with lower risk of sample damage. We present recent work adapting EMAT advances from NDT to measurements of single crystals at cryogenic temperatures and illustrate this with measurements of magnetic phase transitions in Gd64Sc36 using both contact and non-contact transducers. We discuss the measurement techniques implemented to overcome noise problems, and a digital pulse-echo-overlap technique, using data analysis in the frequency domain to measure the velocity.

  15. Elastic constants of Transversely Isotropically Porous (TIP) materials

    Energy Technology Data Exchange (ETDEWEB)

    Tuchinskii, L.I.; Kalimova, N.L. [Institute of Problems of Materials Science, Kiev (Ukraine)

    1994-11-01

    The authors derive formulas describing the dependence of the elastic characteristics of multicapillary materials on the capillary porosity. The investigated materials are classified as transversely isotropic, and the anisotropy in their properties is the result of the directionality of the capillary pores. Analysis of the dependences obtained has shown that the elasticity moduli of these materials may be calculated using formulas suggested for reinforced materials, in which the elastic constants of the fibers are assumed to be equal to zero. The authors derive a relation between the Poisson`s ratios and the capillary porosity.

  16. Microstrain-level measurement of third-order elastic constants applying dynamic acousto-elastic testing

    Science.gov (United States)

    Renaud, Guillaume; Talmant, Maryline; Marrelec, Guillaume

    2016-10-01

    The nonlinear elasticity of solids at the microstrain level has been recently studied by applying dynamic acousto-elastic testing. It is the analog of conventional quasi-static acousto-elastic experiments but the strain-dependence (or stress-dependence) of ultrasonic wave-speed is measured with an applied strain ranging from 10-7 to 10-5 and produced by a stationary elastic wave. In conventional quasi-static acousto-elastic experiments, the strain is applied in a quasi-static manner; it exceeds 10-4 and can reach 10-2. In this work, we apply dynamic acousto-elastic testing to measure the third-order elastic constants of two isotropic materials: polymethyl methacrylate and dry Berea sandstone. The peak amplitude of the dynamic applied strain is 8 × 10-6. The method is shown to be particularly suitable for materials exhibiting large elastic nonlinearity like sandstones, since the measurement is performed in the domain of validity of the third-order hyperelastic model. In contrast, conventional quasi-static acousto-elastic experiments in such materials are often performed outside the domain of validity of the third-order hyperelastic model and the stress-dependence of the ultrasonic wave-speed must be extrapolated at zero stress, leading to approximate values of the third-order elastic constants. The uncertainty of the evaluation of the third-order elastic constants is assessed by repeating multiple times the measurements and with Monte-Carlo simulations. The obtained values of the Murnaghan third-order elastic constants are l = -73 GPa ± 9%, m = -34 GPa ± 9%, and n = -61 GPa ± 10% for polymethyl methacrylate, and l = -17 000 GPa ± 20%, m = -11 000 GPa ± 10%, and n = -30 000 GPa ± 20% for dry Berea sandstone.

  17. Higher-order elastic constants and megabar pressure effects of bcc tungsten: Ab initio calculations

    Science.gov (United States)

    Vekilov, Yu. Kh.; Krasilnikov, O. M.; Lugovskoy, A. V.; Lozovik, Yu. E.

    2016-09-01

    The general method for the calculation of n th (n ≥2 ) order elastic constants of the loaded crystal is given in the framework of the nonlinear elasticity theory. For the crystals of cubic symmetry under hydrostatic compression, the two schemes of calculation of the elastic constants of second, third, and fourth order from energy-finite strain relations and stress-finite strain relations are implemented. Both techniques are applied for the calculation of elastic constants of orders from second to fourth to the bcc phase of tungsten at a 0-600 GPa pressure range. The energy and stress at the various pressures and deformations are obtained ab initio in the framework of projector augmented wave+generalized gradient approximation (PAW+GGA) method, as implemented in Vienna Ab initio Simulation Package (VASP) code. Using the obtained results, we found the pressure dependence of Grüneisen parameters for long-wave acoustic modes in this interval. The Lamé constants of second and third order were estimated for polycrystalline tungsten. The proposed method is applicable for crystals with arbitrary symmetry.

  18. Higher Order Elastic Constants, Gruneisen Parameters and Lattice Thermal Expansion of Lithium Niobate

    OpenAIRE

    Thresiamma Philip; Menon, C S; Indulekha, K.

    2006-01-01

    The second and third-order elastic constants and pressure derivatives of second- order elastic constants of trigonal LiNbO3 (lithium niobate) have been obtained using the deformation theory. The strain energy density estimated using finite strain elasticity is compared with the strain dependent lattice energy density obtained from the elastic continuum model approximation. The second-order elastic constants and the non-vanishing third-order elastic constants along with the pressure derivative...

  19. Theory of nine elastic constants of biaxial nematics

    Institute of Scientific and Technical Information of China (English)

    Liu Hong

    2008-01-01

    In this paper, a rotational invariant of interaction energy between two biaxial-shaped molecules is assumed and in the mean field approximation, nine elastic constants for simple distortion patterns in biaxial nematica are derived in terms of the thermal averagewhere D(l)mn is the Wigner rotation matrix.In the lowest order terms, the elastic constants depend on coefficients г,г',λ, order parameters Q0=Q0+Q2vj'j''j(r12) and probability function fk'k'' k (r12), where r12 is the distance between two molecules, andλis proportional to temperature. Q0 and Q2 are parameters related to multiple moments of molecules. Comparing these results with those obtained from Landau-de Gennes theory, we have obtained relationships between coefficients, order parameters used in both theories. In the special case of uniaxial nematics, both results are reduced to a degenerate case where K11=K33.

  20. Recombining binomial tree for constant elasticity of variance process

    OpenAIRE

    Hi Jun Choe; Jeong Ho Chu; So Jeong Shin

    2014-01-01

    The theme in this paper is the recombining binomial tree to price American put option when the underlying stock follows constant elasticity of variance(CEV) process. Recombining nodes of binomial tree are decided from finite difference scheme to emulate CEV process and the tree has a linear complexity. Also it is derived from the differential equation the asymptotic envelope of the boundary of tree. Conducting numerical experiments, we confirm the convergence and accuracy of the pricing by ou...

  1. A first-principles study of cementite (Fe3C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Science.gov (United States)

    Ghosh, G.

    2015-08-01

    A comprehensive computational study of elastic properties of cementite (Fe3C) and its alloyed counterparts (M3C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr2FeC and CrFe2C) having the crystal structure of Fe3C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, Cij, of above M3Cs; (ii) anisotropies of bulk, Young's and shear moduli, and Poisson's ratio based on calculated Cijs, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young's moduli and Poisson's ratio) of M3Cs by homogenization of calculated Cijs; and (iv) acoustic Debye temperature, θD, of M3Cs based on calculated Cijs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  2. A first-principles study of cementite (Fe3C and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Directory of Open Access Journals (Sweden)

    G. Ghosh

    2015-08-01

    Full Text Available A comprehensive computational study of elastic properties of cementite (Fe3C and its alloyed counterparts (M3C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr2FeC and CrFe2C having the crystal structure of Fe3C is carried out employing electronic density-functional theory (DFT, all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA. Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i single-crystal elastic constants, Cij, of above M3Cs; (ii anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated Cijs, demonstrating their extreme anisotropies; (iii isotropic (polycrystalline elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio of M3Cs by homogenization of calculated Cijs; and (iv acoustic Debye temperature, θD, of M3Cs based on calculated Cijs. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  3. Properties of elastic percolating networks in isotropic media with arbitrary elastic constants

    Science.gov (United States)

    Pla, O.; Garcia-Molina, R.; Guinea, F.; Louis, E.

    1990-06-01

    The properties of diluted elastic media in two dimensions are investigated in an isotropic system in which the ratio between the two Lamé coefficients can be varied. Changes in the ratio between the continuum elastic constants induce significant variations in the behavior of the system away from the threshold for percolation, but not in the properties near the percolation transition. We discuss the results in both cases and their relevance to the definition of the universal properties of diluted elastic networks. It is shown that many features of interest, like the bulk modulus at intermediate concentrations of voids and the backbone, are very dependent on the microscopic details of the model, and not only on its macroscopic behavior. Thus, elastic percolation does not seem to have the same degree of universality as scalar percolation.

  4. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization.

    Science.gov (United States)

    Belli, Renan; Wendler, Michael; de Ligny, Dominique; Cicconi, Maria Rita; Petschelt, Anselm; Peterlik, Herwig; Lohbauer, Ulrich

    2017-01-01

    A deeper understanding of the mechanical behavior of dental restorative materials requires an insight into the materials elastic constants and microstructure. Here we aim to use complementary methodologies to thoroughly characterize chairside CAD/CAM materials and discuss the benefits and limitations of different analytical strategies. Eight commercial CAM/CAM materials, ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Elastic constants were evaluated using three methods: Resonant Ultrasound Spectroscopy (RUS), Resonant Beam Technique (RBT) and Ultrasonic Pulse-Echo (PE). The microstructures were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy and X-ray Diffraction (XRD). Young's modulus (E), Shear modulus (G), Bulk modulus (B) and Poisson's ratio (ν) were obtained for each material. E and ν reached values ranging from 10.9 (Lava Ultimate) to 201.4 (e.max ZirCAD) and 0.173 (Empress CAD) to 0.47 (Lava Ultimate), respectively. RUS showed to be the most complex and reliable method, while the PE method the easiest to perform but most unreliable. All dynamic methods have shown limitations in measuring the elastic constants of materials showing high damping behavior (hybrid materials). SEM images, Raman spectra and XRD patterns were made available for each material, showing to be complementary tools in the characterization of their crystal phases. Here different methodologies are compared for the measurement of elastic constants and microstructural characterization of CAD/CAM restorative materials. The elastic properties and crystal phases of eight materials are herein fully characterized. Copyright © 2016 The Academy of Dental Materials

  5. Elastic constants for superplastically formed/diffusion-bonded sandwich structures

    Science.gov (United States)

    Ko, W. L.

    1979-01-01

    Formulae and the associated graphs are presented for contrasting the effective elastic constants for a superplastically formed/diffusion-bonded (SPF/DB) corrugated sandwich core and a honeycomb sandwich core. The results used in the comparison of the structural properties of the two types of sandwich cores are under conditions of equal sandwich density. It was found that the stiffness in the thickness direction of the optimum SPF/DB corrugated core (i.e., triangular truss core) was lower than that of the honeycomb core, and that the former had higher transverse shear stiffness than the latter.

  6. X-Ray Elastic Constants and Residual Stress Distributions of Zirconia Thermal Barrier Coating

    OpenAIRE

    鈴木, 賢治; 町屋, 修太郎; 田中, 啓介; 坂井田, 喜久; SUZUKI, Kenji; Machiya, Syutaro; Tanaka, Keisuke; Sakaida, Yoshihisa

    2001-01-01

    Accurate values of X-ray elastic constants are required for a reliable stress measurement of thermal barrier coating films (TBC films). In this paper, atmosphere and pressureless plasma sprayed TBC films were removed from substrates, then X-ray elastic constants of both TBC films were determained by using newly developed tensile jig. For the atmosphere plasma sprayed film, the value of the mechanical elastic constant was much smaller than the X-ray elastic constant owing to cracks or pores ex...

  7. A potential for Th from inversion of cohesive energy: Elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszewicz, S., E-mail: jaroszew@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Mosca, H.O. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Garces, J.E. [DAEE, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (Argentina)

    2012-08-15

    An interatomic pair potential for Th was derived by using the Chen-Mobius lattice inversion of cohesive energy for fcc Th as a starting point to develop a free-parameter potential suitable to be used in molecular dynamic calculations for predicting microstructure evolution and thermal properties in multicomponent nuclear fuel. The cohesive energy versus lattice parameter of Th was computed from first principles electronic structure calculations. The elastic constants for fcc Th were calculated by applying different types of strain to the starting crystal. Based on this information, the shear modulus, the Youngs modulus and the Poissons ratio were obtained. The computed elastic constants of fcc Th are found to be in a good agreement with experiments and previous theoretical results.

  8. The temperature dependence of second and higher order elastic constants of NH4Cl

    Science.gov (United States)

    Tiwari, Alpana; Gaur, N. K.

    2016-05-01

    We have incorporated the translational rotational (TR) coupling effects in the framework of three body force shell model (TSM) to develop an extended TSM (ETSM). This ETSM has been applied to reveal the second order elastic constants (C11, C12 and C44) of NH4Cl as a function of temperature for temperature range 240K≤T≤440K. An abrupt decrease in C44 is observed due to disorder present in the crystal as a result of random orientations of tetrahedral ammonium molecule. Our calculated results show similar trend as revealed by experimental data. Besides third order elastic constants have also been studied and discussed as a function of temperature for 240K≤T≤440K.

  9. Stresses and elastic constants of crystalline sodium, from molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schiferl, S.K.

    1985-02-01

    The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the results to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs.

  10. Controlling elastic waves with small phononic crystals containing rigid inclusions

    KAUST Repository

    Peng, Pai

    2014-05-01

    We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.

  11. A fluctuation method to calculate the third order elastic constants in crystalline solids

    Science.gov (United States)

    Chen, Zimu; Qu, Jianmin

    2015-05-01

    This paper derives exact expressions of the isothermal third order elastic constants (TOE) in crystalline solids in terms of the kinetic and potential energies of the system. These expressions reveal that the TOE constants consist of a Born component and a relaxation component. The Born component is simply the third derivative of the system's potential energy with respect to the deformation, while the relaxation component is related to the non-uniform rearrangements of the atoms when the system is subject to a macroscopic deformation. Further, based on the general expressions derived here, a direct (fluctuation) method of computing the isothermal TOE constants is developed. Numerical examples of using this fluctuation method are given to compute the TOE constants of single crystal iron.

  12. Elastic constant of Dendrobium protoplasts in AC electric fields

    Directory of Open Access Journals (Sweden)

    Pikul Wanichapichart

    2002-11-01

    Full Text Available This work reports elongation of Dendrobium protoplasts in an ac electric field between two cylindrical electrodes. A protoplast firstly was translated towards an electrode by dielectrophoretic force in 17 kV.m-1 field strength at 1 MHz, and secondly it was elongated due to an interaction between an induced electric dipole (μ and the electric field (E. Protoplast elongation was observed by varying both the field strength at 30, 45, 60, and 85 kV.m-1 and field frequency at 0.5, 1, 5, and 10 MHz. For a given field frequency and field strength, a parameter a/b (major/minor axis was measured as the protoplast elongation.Two-step elongation and restoration phases were observed. The former was completed within 2 minutes of field exposure, and the latter was completed within 15 seconds regardless of the field exposure time between 3 and 20 minutes. The evidence of a complete restoration indicated that the elasticity of the protoplast membrane obeyed Hooke’s law. This study also found that elastic constant k of the membrane varied non-linearly with the field strength. It was found to be from 0.04 to 0.08 mN.m-1, dependent on the field frequency.

  13. Is the Armington Elasticity Really Constant across Importers?

    OpenAIRE

    Yilmazkuday, Hakan

    2009-01-01

    This paper shows that the Armington elasticity, which refers to both the elasticity of substitution across goods and the price elasticity of demand under the assumption of a large number of varieties, systematically changes from one importer country to another in an international trade context. Then a natural question to ask is "What determines the Armington elasticity?" The answer comes from the distinction between the elasticity of demand with respect to the destination price (i.e., the Arm...

  14. Is the Armington Elasticity Really Constant across Importers?

    OpenAIRE

    Yilmazkuday, Hakan

    2009-01-01

    This paper shows that the Armington elasticity, which refers to both the elasticity of substitution across goods and the price elasticity of demand under the assumption of a large number of varieties, systematically changes from one importer country to another in an international trade context. Then a natural question to ask is "What determines the Armington elasticity?" The answer comes from the distinction between the elasticity of demand with respect to the destination price (i.e., the Arm...

  15. A first-principles study of cementite (Fe{sub 3}C) and its alloyed counterparts: Elastic constants, elastic anisotropies, and isotropic elastic moduli

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, G., E-mail: g-ghosh@northwestern.edu [Department of Materials Science and Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, 2220 Campus Drive, Evanston, IL 60208-3108 (United States)

    2015-08-15

    A comprehensive computational study of elastic properties of cementite (Fe{sub 3}C) and its alloyed counterparts (M{sub 3}C (M = Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Si, Ta, Ti, V, W, Zr, Cr{sub 2}FeC and CrFe{sub 2}C) having the crystal structure of Fe{sub 3}C is carried out employing electronic density-functional theory (DFT), all-electron PAW pseudopotentials and the generalized gradient approximation for the exchange-correlation energy (GGA). Specifically, as a part of our systematic study of cohesive properties of solids and in the spirit of materials genome, following properties are calculated: (i) single-crystal elastic constants, C{sub ij}, of above M{sub 3}Cs; (ii) anisotropies of bulk, Young’s and shear moduli, and Poisson’s ratio based on calculated C{sub ij}s, demonstrating their extreme anisotropies; (iii) isotropic (polycrystalline) elastic moduli (bulk, shear, Young’s moduli and Poisson’s ratio) of M{sub 3}Cs by homogenization of calculated C{sub ij}s; and (iv) acoustic Debye temperature, θ{sub D}, of M{sub 3}Cs based on calculated C{sub ij}s. We provide a critical appraisal of available data of polycrystalline elastic properties of alloyed cementite. Calculated single crystal properties may be incorporated in anisotropic constitutive models to develop and test microstructure-processing-property-performance links in multi-phase materials where cementite is a constituent phase.

  16. Elastic anisotropy effects on the electrical responses of a thin sample of nematic liquid crystal

    Science.gov (United States)

    Gomes, O. A.; Yednak, C. A. R.; Ribeiro de Almeida, R. R.; Teixeira-Souza, R. T.; Evangelista, L. R.

    2017-03-01

    The electrical responses of a nematic liquid crystal cell are investigated by means of the elastic continuum theory. The nematic medium is considered as a parallel circuit of a resistance and a capacitance and the electric current profile across the sample is determined as a function of the elastic constants. In the reorientation process of the nematic director, the resistance and capacitance of the sample are determined by taking into account the elastic anisotropy. A nonmonotonic profile for the current is observed in which a minimum value of the current may be used to estimate the elastic constants values. This scenario suggests a theoretical method to determine the values of the bulk elastic constants in a single planar aligned cell just by changing the direction of applied electrical field and measuring the resulting electrical current.

  17. Finite-temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations

    Science.gov (United States)

    Mozafari, E.; Shulumba, N.; Steneteg, P.; Alling, B.; Abrikosov, Igor A.

    2016-08-01

    We present a theoretical scheme to calculate the elastic constants of magnetic materials in the high-temperature paramagnetic state. Our approach is based on a combination of disordered local moments picture and ab initio molecular dynamics (DLM-MD). Moreover, we investigate a possibility to enhance the efficiency of the simulations of elastic properties using the recently introduced method: symmetry imposed force constant temperature-dependent effective potential (SIFC-TDEP). We have chosen cubic paramagnetic CrN as a model system. This is done due to its technological importance and its demonstrated strong coupling between magnetic and lattice degrees of freedom. We have studied the temperature-dependent single-crystal and polycrystalline elastic constants of paramagentic CrN up to 1200 K. The obtained results at T = 300 K agree well with the experimental values of polycrystalline elastic constants as well as the Poisson ratio at room temperature. We observe that the Young's modulus is strongly dependent on temperature, decreasing by ˜14 % from T = 300 K to 1200 K. In addition we have studied the elastic anisotropy of CrN as a function of temperature and we observe that CrN becomes substantially more isotropic as the temperature increases. We demonstrate that the use of Birch law may lead to substantial errors for calculations of temperature induced changes of elastic moduli. The proposed methodology can be used for accurate predictions of mechanical properties of magnetic materials at temperatures above their magnetic order-disorder phase transition.

  18. Evaluation of elastic constants of materials using the frequency spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, Ramiro J. da; Baroni, Douglas B.; Bittencourt, Marcelo de S.Q., E-mail: ramirobd@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Departamento de Materiais Nucleares. Laboratorio de Ultrassom

    2015-07-01

    The characterization of materials made with the support of non-destructive techniques has great importance in industrial applications. The ultrasonic techniques are distinguished by good resolution to measure small variations of wave velocities as a result of changes in the character suffered by a particular material. In general these ultrasonic techniques are studied in the time domain, which represents an experimental difficulties when thin materials are analyzed, as well as to attenuate the ultrasonic signal drastically. An ultrasonic technique that uses the frequency domain is used in this study aiming to provide good time measurements to calculate the elastic constants of the first order in an aluminum alloy 6351. With the aid of a statistical approach was possible to have good results of tests performed when compared by a time domain technique already well explored in Ultrasound works produced in the Nuclear Engineering Institute Laboratory (LABUS / IEN) and also presented in most of the package, in good agreement with the theoretical model established in literature and used to validate the experiment, which was found in the results with good approximation. The relevance of this work in the nuclear area is associated with the interest to know the mechanical properties of structural components of the nuclear industry, which is currently studied as a rule, resorting to the computer simulations or previously during the operation of the system. (author)

  19. Filtering of elastic waves by opal-based hypersonic crystal.

    Science.gov (United States)

    Salasyuk, Alexey S; Scherbakov, Alexey V; Yakovlev, Dmitri R; Akimov, Andrey V; Kaplyanskii, Alexander A; Kaplan, Saveliy F; Grudinkin, Sergey A; Nashchekin, Alexey V; Pevtsov, Alexander B; Golubev, Valery G; Berstermann, Thorsten; Brüggemann, Christian; Bombeck, Michael; Bayer, Manfred

    2010-04-14

    We report experiments in which high quality silica opal films are used as three-dimensional hypersonic crystals in the 10 GHz range. Controlled sintering of these structures leads to well-defined elastic bonding between the submicrometer-sized silica spheres, due to which a band structure for elastic waves is formed. The sonic crystal properties are studied by injection of a broadband elastic wave packet with a femtosecond laser. Depending on the elastic bonding strength, the band structure separates long-living surface acoustic waves with frequencies in the complete band gap from bulk waves with band frequencies that propagate into the crystal leading to a fast decay.

  20. Contribution of Disclination Lines to Free Energy of 2-Dimensional Liquid Crystals in Single-Elastic Constant Approximation%单一弹性常数近似下向错线对二维液晶自由能的贡献

    Institute of Scientific and Technical Information of China (English)

    王玉生; 张慧; 杨国宏

    2004-01-01

    In light of the φ-mapping method, the contribution of disclination lines to the free energy density of 2-dimensional liquid crystals is studied in the single-elastic constant approximation. It is pointed out that, compared with the previous theory, the free energy density can be divided into two parts. One is the usual distorted energy density of director field around the disclination lines. The other is the free energy density of the disclination lines themselves which is centralized at the disclination lines and topoligically quantized in a unit of 1/2kπ. The topological quantum numbers are determined by the Hopf indices and Brouwer degrees of the director field at the disclination lines, i.e., the disclination strength. From the method of Lagrangian multipliers, the equilibrium equation and the molecular field of 2-dimensional liquid crystals are also obtained. It is shown that the physical meaning of the Lagrangian multiplier is just the distorted energy density.

  1. Bounds and self-consistent estimates of the elastic constants of polycrystals

    Science.gov (United States)

    Kube, Christopher M.; Arguelles, Andrea P.

    2016-10-01

    The Hashin-Shtrikman bounds on the elastic constants have been previously calculated for polycrystalline materials with crystallites having general elastic symmetry (triclinic crystallite symmetry). However, the calculation of tighter bounds and the self-consistent estimates of these elastic constants has remained unsolved. In this paper, a general theoretical expression for the self-consistent elastic constants is formulated. An iterative method is used to solve the expression for the self-consistent estimates. Each iteration of the solution gives the next tighter set of bounds including the well-known Voigt-Reuss and Hashin-Shtrikman bounds. Thus, all of the bounds on the elastic constants and the self-consistent estimates for any crystallite symmetry are obtained in a single, computationally efficient procedure. The bounds and self-consistent elastic constants are reported for several geophysical materials having crystallites of monoclinic and triclinic symmetries.

  2. Evaluating Bounds and Estimators for Constants of Random Polycrystals Composed of Orthotropic Elastic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J. G.

    2012-03-01

    While the well-known Voigt and Reuss (VR) bounds, and the Voigt-Reuss-Hill (VRH) elastic constant estimators for random polycrystals are all straightforwardly calculated once the elastic constants of anisotropic crystals are known, the Hashin-Shtrikman (HS) bounds and related self-consistent (SC) estimators for the same constants are, by comparison, more difficult to compute. Recent work has shown how to simplify (to some extent) these harder to compute HS bounds and SC estimators. An overview and analysis of a subsampling of these results is presented here with the main point being to show whether or not this extra work (i.e., in calculating both the HS bounds and the SC estimates) does provide added value since, in particular, the VRH estimators often do not fall within the HS bounds, while the SC estimators (for good reasons) have always been found to do so. The quantitative differences between the SC and the VRH estimators in the eight cases considered are often quite small however, being on the order of ±1%. These quantitative results hold true even though these polycrystal Voigt-Reuss-Hill estimators more typically (but not always) fall outside the Hashin-Shtrikman bounds, while the self-consistent estimators always fall inside (or on the boundaries of) these same bounds.

  3. Large reduction in the magnitude and thermal variation of Frank elastic constants in a gold nanorod/nematic composite

    Science.gov (United States)

    Lakshmi Madhuri, P.; Krishna Prasad, S.; Shinde, Pravin; Prasad, B. L. V.

    2016-10-01

    We report measurements of splay and bend Frank elastic constants in a composite comprising a nematic liquid crystal doped with a small concentration of sterically stabilized gold nanorods. The composite exhibits not only a large reduction in the magnitude of the threshold voltage for switching (V th, 20%), as well as of the splay (K 11, 40%) and bend (K 33, 40%) elastic constants, but also presents an unprecedented feature: a substantial diminution in the temperature dependence of these parameters, almost to the point of becoming thermally invariant. This observation is significant because the electro-optic switching of liquid-crystal devices is largely controlled by the K 11 and K 33 elastic constants. Electrical conductivity measurements also show interesting behavior upon the inclusion of nanorods. Whereas the intrinsic Arrhenius behavior governing the temperature dependence is enhanced, the frequency dependence shows qualitative features of Jonscher’s universal model, albeit with a higher exponent. Further, photoisomerization of an azobenzene guest component provides an additional influence on the elastic constants. The results are discussed in terms of (a) the effect of the order parameter dependence seen from the viewpoint of an extended mean-field model, and (b) local order. The advantage of incorporating nanorods with photofunctionality is also pointed out.

  4. Effect of Saddle-Splay Elasticity on Stability of Disclination Rings in Nematic Liquid Crystals

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Sheng; YUAN Bao-He; YANG Guo-Hong

    2008-01-01

    In this paper, the stability of disclination ring in nematic liquid crystals is studied. In the presence of saddle-splay elasticity (characterized by k24) the disclination ring has a universal equilibrium radius. Depending on the values of the saddle-splay constant k24, the universal equilibrium radius is altered. When k24 > 0.92k (m=1/2) and k24>0.88k (m = -1/2), the disclination will be a point rather than a ring, where k is the Frank elastic constant in the one-constant approximation.

  5. Q-switching with single crystal photo-elastic modulators

    Science.gov (United States)

    Bammer, F.; Petkovsek, R.

    2011-02-01

    An overview is given about experiments with a new method for Q-switching lasers at a constant pulse repetition frequency. It uses inside the laser resonator a Single Crystal Photo-Elastic Modulator (SCPEM). This consists of one piezo-electric crystal electrically excited on a mechanical resonance frequency. In resonance mechanical stresses are induced that lead via the photo-elastic effect to a strongly modulated birefringence. Polarized light going through such an oscillating crystal will experience a significant modulation of its polarization and of transmission through a polarizer. Suitable materials should not be optically active, as it is for example the case for SiO2, and should allow the excitation of a longitudinal oscillation with an electric field perpendicular to the travelling direction of the light. Crystals of the group 3m, like LiTaO3 and LiNbO3, proved to be ideally suited for SCPEMS for the NIR- and VIS-region. For the infrared GaAs can be used. We demonstrated SCPEM-Q-switching for a Nd:YAG-fiber, a Nd:YVO4-slab- and a Nd:YAG-rod-laser with typical pulse repetition rates of 100-200kHz, pulse enhancement factors of 100 and pulse durations {1/100 of the period time. Typically the average power during pulsed operation is nearly the same as the cw-power, when the modulator is switched off. The most stable results were achieved up to now with the Nd:YVO4-slab-laser at 10W average power, 1.1 kW peak power, 127 kHz pulse repetition rate, and 70ns pulse durations.

  6. Elastic models of defects in two-dimensional crystals

    Science.gov (United States)

    Kolesnikova, A. L.; Orlova, T. S.; Hussainova, I.; Romanov, A. E.

    2014-12-01

    Elastic models of defects in two-dimensional (2D) crystals are presented in terms of continuum mechanics. The models are based on the classification of defects, which is founded on the dimensionality of the specification region of their self-distortions, i.e., lattice distortions associated with the formation of defects. The elastic field of an infinitesimal dislocation loop in a film is calculated for the first time. The fields of the center of dilatation, dislocation, disclination, and circular inclusion in planar 2D elastic media, namely, nanofilms and graphenes, are considered. Elastic fields of defects in 2D and 3D crystals are compared.

  7. Elastic interaction of point defects in crystals with cubic symmetry

    Science.gov (United States)

    Kuz'michev, S. V.; Kukushkin, S. A.; Osipov, A. V.

    2013-07-01

    The energy of elastic mechanical interaction between point defects in cubic crystals is analyzed numerically. The finite-element complex ANSYS is used to investigate the character of interaction between point defects depending on their location along the crystallographic directions , , and on the distance from the free boundary of the crystal. The numerical results are compared with the results of analytic computations of the energy of interaction between two point defects in an infinite anisotropic medium with cubic symmetry. The interaction between compressible and incompressible defects of general type is studied. Conditions for onset of elastic attraction between the defects, which leads to general relaxation of the crystal elastic energy, are obtained.

  8. The Elastic Constants Measurement of Metal Alloy by Using Ultrasonic Nondestructive Method at Different Temperature

    Directory of Open Access Journals (Sweden)

    Eryi Hu

    2016-01-01

    Full Text Available The ultrasonic nondestructive method is introduced into the elastic constants measurement of metal material. The extraction principle of Poisson’s ratio, elastic modulus, and shear modulus is deduced from the ultrasonic propagating equations with two kinds of vibration model of the elastic medium named ultrasonic longitudinal wave and transverse wave, respectively. The ultrasonic propagating velocity is measured by using the digital correlation technique between the ultrasonic original signal and the echo signal from the bottom surface, and then the elastic constants of the metal material are calculated. The feasibility of the correlation algorithm is verified by a simulation procedure. Finally, in order to obtain the stability of the elastic properties of different metal materials in a variable engineering application environment, the elastic constants of two kinds of metal materials in different temperature environment are measured by the proposed ultrasonic method.

  9. High-Order Elastic Constants and Anharmonic Properties of NaBH4: First-Principles Calculations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Dong; JIANG Zhen-Yi; ZHOU Bo; HOU Zhu-Feng; HOU Yu-Qing

    2011-01-01

    We present theoretical studies for second- and third-order elastic constants in NaBH4 based on ab initio calculations. Our calculated second-order elastic constants agree well with available experimental results. The anharmonic properties of NaBH4,such as pressure derivative of the second-order elastic constants and the Grüneisen constants for long-wavelength acoustic modeγ(q,j),are characterized using the third-order elastic constants.

  10. Microstrain-level measurement of third-order elastic constants applying dynamic acousto-elastic testing

    OpenAIRE

    Renaud, Guillaume; Talmant, Maryline; Marrelec, Guillaume

    2016-01-01

    International audience; The nonlinear elasticity of solids at the microstrain level has been recently studied by applying dynamic acousto-elastic testing. It is the analog of conventional quasi-static acousto-elastic experiments but the strain-dependence (or stress-dependence) of ultrasonic wave-speed is measured with an applied strain ranging from 10−7 to 10−5 and produced by a stationary elastic wave. In conventional quasi-static acousto-elastic experiments, the strain is applied in a quasi...

  11. Ultrasonic measurement of elastic constants in fiber-reinforced polymer composites under influence of absorbed moisture

    DEFF Research Database (Denmark)

    Nielsen, S.A.; Toftegaard, H.

    2000-01-01

    This paper presents an attempt to quantify hygral aging in fiber-reinforced polymer composites by the elastic constants C-11 and C-33. Quantitative ultrasonic measurements of the elastic constants for three different unidirectional as well as three different cross-ply specimens were compared....... The specimens were manufactured with different moisture resistant surfaces and immersed in water for 24 h. By calculating the elastic constants, it was taken into account that hygral aging was accompanied by absorption of moisture in the polymer matrix. Moisture changed the laminate dimensions significantly...

  12. Defect-induced change of temperature-dependent elastic constants in BCC iron

    Energy Technology Data Exchange (ETDEWEB)

    Gao, N.; Setyawan, W.; Zhang, S. H.; Wang, Z. G.

    2017-07-01

    The effects of radiation-induced defects (randomly distributed vacancies, voids, and interstitial dislocation loops) on temperature-dependent elastic constants, C11, C12, and C44 in BCC iron, are studied with molecular dynamics method. The elastic constants are found to decrease with increasing temperatures for all cases containing different defects. The presence of vacancies, voids, or interstitial loops further decreases the elastic constants. For a given number of point defects, the randomly distributed vacancies show the strongest effect compared to voids or interstitial loops. All these results are expected to provide useful information to combine with experimental results for further understanding of radiation damage.

  13. GREEN'S FUNCTION AND EFFECTIVE ELASTIC STIFFNESS TENSOR FOR ARBITRARY AGGREGATES OF CUBIC CRYSTALS

    Institute of Scientific and Technical Information of China (English)

    HuangMojia; ZhengChaomei

    2004-01-01

    A closed but approximate formula of Green's function for an arbitrary aggregate of cubic crystallites is given to derive the effective elastic stiffness tensor of the polycrystal. This formula, which includes three elastic constants of single cubic crystal and five texture coefficients,accounts for the effects of the orientation distribution function (ODF) up to terms linear in the texture coefficients. Thus it is expected that our formula would be applicable to arbitrary aggregates with weak texture or to materials such as aluminum whose single crystal has weak anisotropy.Three examples are presented to compare predictions from our formula with those from Nishioka and Lothe's formula and Synge's contour integral through numerical integration. As an application of Green's function, we briefly describe the procedure of deriving the effective elastic stiffness tensor for an orthorhombic aggregate of cubic crystallites. The comparison of the computational results given by the finite element method and our effective elastic stiffness tensor is made by an example.

  14. Multiple beam splitting in elastic phononic crystal plates.

    Science.gov (United States)

    Lee, Hyuk; Oh, Joo Hwan; Kim, Yoon Young

    2015-02-01

    This work presents an experimental evidence for triple beam splitting in an elastic plate with an embedded elastic phononic crystal (PC) prism and elaborates on its working mechanism. While there were reports on negative refraction and double beam splitting with PCs, no experimental evidence on the splitting of triple or more ultrasonic elastic beams through PCs has been shown yet. After the experimental results are presented in case of triple beam splitting, further analysis is carried out to explain how triple or more beams can be split depending on elastic PC prism angles. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. A Calculation Approach to Elastic Constants of Crystallines at High Pressure and Finite Temperature

    Institute of Scientific and Technical Information of China (English)

    向士凯; 蔡灵仓; 张林; 经福谦

    2002-01-01

    Elastic constants of Na and Li metals are calculated successfully for temperatures up to 350K and pressures up to 30 GPa using a scheme without involving any adjustable parameter. Elastic constants are assumed to depend only on an effective pair potential that is only determined by the average interatomic distance. Temperature has an effect on elastic constants by way of charging the equilibrium. The elastic constants can be obtained by fitting the relationship between total energy and strain tensor using the new set of lattice parameters obtained by calculating displacement of atoms at the finite temperature and at a fixed pressure. The relationship between the effective pair potential and the interatomic distance is fitted by using a series of data of cohesive energy corresponding to lattice parameters.

  16. First-principles study of the elastic constants and optical properties of uranium metal

    Institute of Scientific and Technical Information of China (English)

    Chen Qiu-Yun; Tan Shi-Yong; Lai Xin-Chun; Chen Jun

    2012-01-01

    We perform first-principles calculations of the lattice constants,elastic constants,and optical properties for alphaand gamma-uranium based on the ultra-soft pseudopotential method.Lattice constants and equilibrium atomic volume are consistent pretty well with the experimental results.Some difference exists between our calculated elastic constants and the experimental data.Based on the satisfactory ground state electronic structure calculations,the optical conductivity,dielectric function,refractive index,and extinction coefficients are also obtained.These calculated optical properties are compared with our results and other published experimental data.

  17. Elastic constants determined by nanoindentation for p-type thermoelectric half-Heusler

    Energy Technology Data Exchange (ETDEWEB)

    Gahlawat, S.; Wheeler, L.; White, K. W., E-mail: zren@uh.edu, E-mail: kwwhite@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); He, R.; Chen, S.; Ren, Z. F., E-mail: zren@uh.edu, E-mail: kwwhite@uh.edu [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States)

    2014-08-28

    This paper presents a study of the elastic properties of the p-type thermoelectric half-Heusler material, Hf{sub 0.44}Zr{sub 0.44}Ti{sub 0.12}CoSb{sub 0.8}Sn{sub 0.2}, using nanoindentation. Large grain-sized polycrystalline specimens were fabricated for these measurements, providing sufficient indentation targets within single grains. Electron Backscatter Diffraction methods indexed the target grains for the correlation needed for our elastic analysis of individual single crystals for this cubic thermoelectric material. Elastic properties, including the Zener ratio and the Poisson ratio, obtained from the elasticity tensor are also reported.

  18. An automatic system for crystal growth studies at constant supersaturation

    Science.gov (United States)

    March, J. G.; Costa-Bauzá, A.; Grases, F.; Söhnel, O.

    1992-01-01

    An automatic system for growing crystals from seeded supersaturated solutions at constant supersaturation is described. Control of burettes and data acquisition are controlled by computer. The system was tested with a study of the calcium oxalate kinetics of crystal growth. PMID:18924950

  19. Line Defects in the Small Elastic Constant Limit of a Three-Dimensional Landau-de Gennes Model

    Science.gov (United States)

    Canevari, Giacomo

    2016-09-01

    We consider the Landau-de Gennes variational model for nematic liquid crystals, in three-dimensional domains. More precisely, we study the asymptotic behaviour of minimizers as the elastic constant tends to zero, under the assumption that minimizers are uniformly bounded and their energy blows up as the logarithm of the elastic constant. We show that there exists a closed set S_line of finite length, such that minimizers converge to a locally harmonic map away from S_line . Moreover, S_line restricted to the interior of the domain is a locally finite union of straight line segments. We provide sufficient conditions, depending on the domain and the boundary data, under which our main results apply. We also discuss some examples.

  20. The elastic constants and anisotropy of superconducting MgCNi3 and CdCNi3 under different pressure

    KAUST Repository

    Feng, Huifang

    2013-11-23

    The second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of MgCNi3 and CdCNi3 are presented by using first-principles methods combined with homogeneous deformation theory. The Voigt-Reuss-Hill (VRH) approximation are used to calculate the bulk modulus B, shear modulus G, averaged Young\\'s modulus E and Poisson\\'s ratio ν for polycrystals and these effective modulus are consistent with the experiments. The SOECs under different pressure of MgCNi3 and CdCNi3 are also obtained based on the TOECs. Furthermore, the Zener anisotropy factor, Chung-Buessem anisotropy index, and the universal anisotropy index are used to describe the anisotropy of MgCNi3 and CdCNi3. The anisotropy of Young\\'s modulus of single-crystal under different pressure is also presented. © 2013 Springer Science+Business Media New York.

  1. Line Defects in the Small Elastic Constant Limit of a Three-Dimensional Landau-de Gennes Model

    Science.gov (United States)

    Canevari, Giacomo

    2017-02-01

    We consider the Landau-de Gennes variational model for nematic liquid crystals, in three-dimensional domains. More precisely, we study the asymptotic behaviour of minimizers as the elastic constant tends to zero, under the assumption that minimizers are uniformly bounded and their energy blows up as the logarithm of the elastic constant. We show that there exists a closed set {S_line} of finite length, such that minimizers converge to a locally harmonic map away from {S_line}. Moreover, {S_line} restricted to the interior of the domain is a locally finite union of straight line segments. We provide sufficient conditions, depending on the domain and the boundary data, under which our main results apply. We also discuss some examples.

  2. Third-order elastic constants of diamond determined from experimental data

    Science.gov (United States)

    Winey, J. M.; Hmiel, A.; Gupta, Y. M.

    2016-06-01

    The pressure derivatives of the second-order elastic constants (SOECs) of diamond were determined by analyzing previous sound velocity measurements under hydrostatic stress [McSkimin and Andreatch, J. Appl. Phys., vol. 43, 1972, pp. 2944] [4]. Our analysis corrects an error in the previously reported results. Using the corrected pressure derivatives, together with published data for the nonlinear elastic response of shock-compressed diamond [Lang and Gupta, Phys. Rev. Lett., vol. 106, 2011, pp. 125502] [3], a complete and corrected set of third-order elastic constants (TOECs) is presented that differs significantly from TOECs published previously.

  3. Elastic Constants of Solids and Fluids with Initial Pressure via a Unified Approach Based on Equations-of-State

    Science.gov (United States)

    Cantrell, John H.

    2014-01-01

    The second and third-order Brugger elastic constants are obtained for liquids and ideal gases having an initial hydrostatic pressure p(sub 1). For liquids the second-order elastic constants are C(sub 11) = A + p(sub 1), C(sub 12) = A -- p(sub 1), and the third-order constants are C(sub 111) = --(B + 5A + 3p(sub 1)), C(sub 112) = --(B + A -- p(sub 1)), and C(sub 123) = A -- B -- p1, where A and B are the Beyer expansion coefficients in the liquid equation of state. For ideal gases the second order constants are C(sub 11) = p(sub 1)gamma + p9sub 1), C(sub 12) = p(sub 1)gamma -- p(sub 1), and the third-order constants are C(sub 111) = p(sub 1)(gamma(2) + 4gamma + 3), C(sub 112) = --p(sub 1)(gamma(2) -- 1), and C(sub 123) = --p(sub 1) (gamma(2) -- 2gamma + 1), where gamma is the ratio of specific heats. The inequality of C(sub 11) and C(sub 12) results in a nonzero shear constant C(sub 44) = (1/2)(C(sub 11) C(sub 12)) = p(sub 1) for both liquids and gases. For water at standard temperature and pressure the ratio of terms p1/A contributing to the second-order constants is approximately 4.3 x 10(-5). For atmospheric gases the ratio of corresponding terms is approximately 0.7. Analytical expressions that include initial stresses are derived for the material 'nonlinearity parameters' associated with harmonic generation and acoustoelasticity for fluids and solids of arbitrary crystal symmetry. The expressions are used to validate the relationships for the elastic constants of fluids.

  4. Elastic constants of solids and fluids with initial pressure via a unified approach based on equations-of-state.

    Science.gov (United States)

    Cantrell, John H

    2014-07-01

    The second and third-order Brugger elastic constants are obtained for liquids and ideal gases having an initial hydrostatic pressure p1. For liquids the second-order elastic constants are C₁₁=A+p₁, C₁₂=A-p₁, and the third-order constants are C₁₁₁=-(B+5A+3p₁), C₁₁₂=-(B+A-p₁), and C₁₂₃=A-B-p₁, where A and B are the Beyer expansion coefficients in the liquid equation of state. For ideal gases the second-order constants are C₁₁=p₁γ+p₁, C₁₂=p₁γ-p₁, and the third-order constants are C₁₁₁=-p₁(γ(2)+4γ+3), C₁₁₂=-p₁(γ(2)-1), and C₁₂₃=-p₁ (γ(2)-2γ+1), where γ is the ratio of specific heats. The inequality of C₁₁ and C₁₂ results in a nonzero shear constant C₄₄=(1/2)(C₁₁-C₁₂)=p₁ for both liquids and gases. For water at standard temperature and pressure the ratio of terms p₁/A contributing to the second-order constants is approximately 4.3×10(-5). For atmospheric gases the ratio of corresponding terms is approximately 0.7. Analytical expressions that include initial stresses are derived for the material 'nonlinearity parameters' associated with harmonic generation and acoustoelasticity for fluids and solids of arbitrary crystal symmetry. The expressions are used to validate the relationships for the elastic constants of fluids.

  5. Elastic Constants and Phonons of Tungsten-Nitride from First Principles

    Science.gov (United States)

    Dane, Christian; Finkenstadt, Daniel; Mehl, Michael; Curtarolo, Stefano

    2013-03-01

    Certain Tungsten Nitride (WN) crystal structures have been found to exhibit tendencies for exceptional hardness. Some researchers [S. Aydin et al., J. Mater. Res. 27, 1705 (2012)] have made the claim that these structures have hardness qualities that rival diamond. There are three specific structures with unique compositions that are of interest. By calculating the bulk and shear moduli as well as analyzing phonon dispersion plots, the properties of these structures can be compared to known structures like diamond. We used VASP density-functional methods implemented within the MedeA software package to strain each structure in a series of directions in increasing amounts. A simple linear fit of stress vs. strain found that the leading structure in terms of thermodynamic stability has elastic constants of C11 = 753 GPa, C12 = 126 GPa, and C44 = 172 GPa. These constants, while high, are significantly lower than diamond's. This indicates that previous calculations may have been mistaken in predicting the qualities of the WN system. Some of the difference between our results is due to the exchange-correlation functional chosen, namely, LDA vs. GGA.

  6. Elastic constants at low temperatures - Recent measurements on technological materials at NBS

    Science.gov (United States)

    Ledbetter, H. M.

    1978-01-01

    Solid-state low-temperature elastic properties have been experimentally studied at the NBS Cryogenic Division for four years. Most studies were between room temperature and liquid-helium temperature; some were only to liquid-nitrogen temperature. Two dynamic (high-frequency) experimental methods were used, pulse-echo and resonance, resulting in adiabatic elastic constants. The present paper reviews these studies for 47 technological materials - metals, alloys, and composites. The elastic constants primarily discussed are Young's modulus, the shear modulus, the bulk modulus (reciprocal compressibility), and Poisson's ratio. A summary table is presented to show which base metals tend to exhibit regular, irregular, or anomalous behavior in their elastic constant/temperature curves.

  7. The modified Black-Scholes model via constant elasticity of variance for stock options valuation

    Science.gov (United States)

    Edeki, S. O.; Owoloko, E. A.; Ugbebor, O. O.

    2016-02-01

    In this paper, the classical Black-Scholes option pricing model is visited. We present a modified version of the Black-Scholes model via the application of the constant elasticity of variance model (CEVM); in this case, the volatility of the stock price is shown to be a non-constant function unlike the assumption of the classical Black-Scholes model.

  8. Formulas for the elastic constants of plates with integral waffle-like stiffening

    Science.gov (United States)

    Dow, Norris R; Libove, Charles; Hubka, Ralph E

    1954-01-01

    Formulas are derived for the fifteen elastic constants associated with bending, stretching, twisting, and shearing of plates with closely spaced integral ribbing in a variety of configurations and proportions. In the derivation the plates are considered, conceptually, as more uniform orthotropic plates somewhat on the order of plywood. The constants, which include the effectiveness of the ribs for resisting deformations other than bending and stretching in their longitudinal directions, are defined in terms of four coefficients, and theoretical and experimental methods for the evaluation of these coefficients are discussed. Four of the more important elastic constants are predicted by these formulas and are compared with test results. Good correlation is obtained. (author)

  9. Ab Initio Calculations of Elastic Constants of Li2O under Pressure

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Feng; CHEN Xiang-Rong; JI Guang-Fu; MENG Chuan-Min

    2006-01-01

    @@ We investigate the equilibrium lattice constant, bulk modulus, elastic constants and Debye temperature of Li2 O under pressure by using ab initio unrestricted Hartree-Fock (HF) linear combination of atomic orbital (LCAO) periodic approach. The obtained results at zero pressure are well consistent with the available experimental data and other theoretical results. It is found that the elastic constants C11, C12 and C44 and bulk modulus B increase monotonously as pressure increases. Also, the anisotropy will weaken and the Debye temperature will rise with pressure increasing.

  10. Nonlinear elastic response of strong solids: First-principles calculations of the third-order elastic constants of diamond

    Science.gov (United States)

    Hmiel, A.; Winey, J. M.; Gupta, Y. M.; Desjarlais, M. P.

    2016-05-01

    Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elastic constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.

  11. On the elastic contribution to crystal growth in complex environments

    Science.gov (United States)

    Gadomski, A.; Siódmiak, J.

    2005-03-01

    Based on a number of experimental studies, we propose to consider how elastic interactions between a crystal and its surroundings change crystal growing conditions. To aim to do this, we analyze the influence of some nonequilibrium modification of the Gibbs-Thomson thermodynamic condition, prescribed at the crystal boundary, on some properties of a kinetic model of protein crystal growth in a mass-convection regime. Next, to draw the physical picture more realistically, we study the influence of a certain stochastic perturbation on the crystal growth rate. To fulfill the task we apply the description of crystal growth in terms of nonequilibrium thermodynamics at a mesoscopic level. The proposed model offers a quite comprehensive picture of the formation of modern organic crystalline materials such as non-Kossel crystals.

  12. Measurement of elastic constants by simultaneously sensing longitudinal and shear waves as an overlapped signal

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Ho Geon; Song, Dong Gi; Jhang, Kyoung Young [Hanyang University, Seoul (Korea, Republic of)

    2016-04-15

    Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.

  13. Elasticity of some mantle crystal structures. I - Pleonaste and hercynite spinel.

    Science.gov (United States)

    Wang, H.; Simmons, G.

    1972-01-01

    The elasticity of high-pressure mantle phases can be characterized by using data for chemically similar crystal compounds. The single-crystal elastic constants are determined as a function of pressure and temperature for pleonaste spinel and at room conditions for hercynite spinel. The bulk modulus increases from 1.95 Mb for pleonaste spinel to 2.10 Mb for hercynite spinel. Low or negative values of the pressure derivatives of shear constants are characteristic of the spinel structure and imply a low kinetic barrier to phase transformations and diffusion. Compressional and shear velocities of the spinel phase of olivine are estimated as a function of mean atomic weight by using the pleonaste and hercynite data.

  14. On the third- and fourth-order constants of incompressible isotropic elasticity.

    Science.gov (United States)

    Destrade, Michel; Ogden, Raymond W

    2010-12-01

    Consider the constitutive law for an isotropic elastic solid with the strain-energy function expanded up to the fourth order in the strain and the stress up to the third order in the strain. The stress-strain relation can then be inverted to give the strain in terms of the stress with a view to considering the incompressible limit. For this purpose, use of the logarithmic strain tensor is of particular value. It enables the limiting values of all nine fourth-order elastic constants in the incompressible limit to be evaluated precisely and rigorously. In particular, it is explained why the three constants of fourth-order incompressible elasticity μ, Ā, and D are of the same order of magnitude. Several examples of application of the results follow, including determination of the acoustoelastic coefficients in incompressible solids and the limiting values of the coefficients of nonlinearity for elastic wave propagation.

  15. Third- and fourth-order constants of incompressible soft solids and the acousto-elastic effect.

    Science.gov (United States)

    Destrade, Michel; Gilchrist, Michael D; Saccomandi, Giuseppe

    2010-05-01

    Acousto-elasticity is concerned with the propagation of small-amplitude waves in deformed solids. Results previously established for the incremental elastodynamics of exact non-linear elasticity are useful for the determination of third- and fourth-order elastic constants, especially in the case of incompressible isotropic soft solids, where the expressions are particularly simple. Specifically, it is simply a matter of expanding the expression for ρv(2), where ρ is the mass density and v the wave speed, in terms of the elongation e of a block subject to a uniaxial tension. The analysis shows that in the resulting expression: ρv(2) = a+be+ce(2), say, a depends linearly on μ; b on μ and A; and c on μ, A, and D, the respective second-, third, and fourth-order constants of incompressible elasticity, for bulk shear waves and for surface waves.

  16. Elastic Constants of Na and K from Non-parameter Perturbation Calculation

    Institute of Scientific and Technical Information of China (English)

    陈军; 经福谦; 陈栋泉; 张景琳; 段素清

    2001-01-01

    Combining a linear muffin-tin orbital method, which can be used to calculate the total energy and pressure of solids in a self-consistent manner, with a generalized elastic energy equation, a non-parameter perturbation method has been proposed to compute the elastic constant for cubic metals. The pressure dependence of the shear modulus and bulk modulus forNa and K was calculated. It was found that the computed results agree well with experiments.

  17. Elastic constants characterization on graphite at 500°C by the virtual fields method

    Directory of Open Access Journals (Sweden)

    Baoqiao Guo

    2014-01-01

    Full Text Available In this paper the elastic constants of graphite at elevated temperature were experimentally investigated by using the virtual fields method (VFM. A new method was presented for the characterization of mechanical properties at elevated temperature. The three-point bending tests were performed on graphite materials by an universal testing machine equipped with heating furnace. Based on the heterogeneous deformation fields measured by the digital image correlation (DIC technique, the elastic constants were then extracted by using VFM. The measurement results of the elastic constants at 500°C were obtained. The effect on the experimental results was also analyzed. The successful results verify the feasibility of using the proposed method to measure the properties of graphite at high temperature, and the proposed method is believed to have a good potential for further applications.

  18. Measurement of third-order elastic constants and applications to loaded structural materials.

    Science.gov (United States)

    Takahashi, Sennosuke; Motegi, Ryohei

    2015-01-01

    The objective of this study is to obtain the propagation velocity of an elastic wave in a loaded isotropic solid and to show the usefulness of the third-order elastic constant in determining properties of practical materials. As is well known, the infinitesimal elastic theory is unable to express the influence of stress on elastic wave propagating in loaded materials. To solve this problem, the authors derive an equation of motion for elastic wave in a finitely deformed state and use the Lagrangian description where the state before deformation is used as a reference, and Murnaghans finite deformation theory for the unidirectional deformed isotropic solid. Ordinary derivatives were used for the mathematical treatment and although the formulas are long the content is simple. The theory is applied to the measurement of the third-order elastic constants of common steels containing carbon of 0.22 and 0.32 wt%. Care is taken in preparing specimens to precise dimensions, in properly adhering of transducer to the surface of the specimen, and in having good temperature control during the measurements to obtain precise data. As a result, the stress at various sites in the structural materials could be estimated by measuring the elastic wave propagation times. The results obtained are graphed for illustration.

  19. Elastic Constants and Its Pressure Derivative of Boron Phosphide Using Higher-Order Perturbation Theory

    Directory of Open Access Journals (Sweden)

    A.R. Jivani

    2011-01-01

    Full Text Available The elastic constants, pressure derivative of bulk modulus and pressure derivative of elastic constants are investigated using the higher-order perturbation theory based on pseudopotential formalism and the application of our proposed model potential for Boron Phosphide. The parameter of the potential is derived using zero-pressure equilibrium condition. In the present study, Hartree and Sarkar et al screening functions are used to consider exchange and correlation effect. The good agreement of presently investigated numerical data is found with the available experiment data and other such theoretical values.

  20. Determination of the third-order elastic constants of diamond by shock wave simulations

    Science.gov (United States)

    Modak, P.; Verma, Ashok K.; Sharma, Surinder M.

    2015-06-01

    A new methodology comprising finite-strain theory, Hugoniot jump conditions, second-order elastic constants (SOECs) and their pressure derivatives, has been developed and was used to estimate the third-order elastic constants (TOECs) of diamond. Density functional theory was used to compute SOECs and their pressure derivatives. The required shock wave Hugoniots were estimated along the , and directions by classical molecular dynamics simulations. Calculated SOECs and TOECs were compared with available experimental and theoretical results. For SOECs, a fairly good agreement with experimental data was obtained and for TOECs our methodology predicts a better agreement with experimental data compared to other theoretical methods.

  1. Elastic Constants of Superconducting MgB2 from Molecular Dynamics Simulations with Shell Model

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The elastic constants of superconducting MgB2 are calculated using a molecular dynamics method (MD)with shell model. The lattice parameters, five independent elastic constants, equations of state (EOS), Debye temperature, and bulk modulus of MgB2 are obtained. Meanwhile, the dependence of the bulk modulus B, the lattice parameters a and c, and the unit cell volume V on the applied pressure are presented. It is demonstrated that the method introduced here can well reproduce the experimental results with a reasonable accuracy.

  2. Non-contact ultrasonic spectroscopy measurement of elastic constants and ultrasonic attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.B.; Kuokkala, V.T.; Srinivasan, S.; Visscher, W.M.

    1991-01-01

    We have developed an ultrasonic spectroscopy method for measuring the elastic constants of solids in hostile environments and over a broad temperature regime. The sample is cut as a rectangular parallelepiped, approximately 1 mm{sup 3} in volume. One or two of the sample surfaces are coated with a thin film of a magnetostrictive material such as nickel. The sample is placed coaxially with two solenoids. One solenoid is used to generate an AC magnetic field of small amplitude which stretches the films. By sweeping the frequency of this field, the sample is excited successively into its various mechanical resonance modes. The second solenoid detects the mechanical resonances. The elastic constants are then deduced from the spectrum of mechanical resonances measured at constant temperature. The internal friction is deduced from the width of the resonance peaks. Because the technique is strictly non-contact (the sample may be encapsulated in a fused silica tube), it is deal for measuring elastic constants in hostile environments or under controlled atmospheres. In its present version the system allows us to measure the elastic constants and ultrasonic attenuation of a given sample between 80 and 100 K. The operation of the system is exemplified by measurements on amorphous Ni{sub 80}P{sub 20} and crystalline Ti{sub 60}Cr{sub 40}. 17 refs., 6 figs.

  3. Elasticity of lyotropic chromonic liquid crystal Sunset Yellow probed by magnetic Frederiks transition

    Science.gov (United States)

    Zhou, Shuang; Nastishin, Yu. A.; Omelchenko, M. M.; Tortora, L.; Nazarenko, V. G.; Boiko, O. P.; Ostapenko, T.; Sprunt, S. N.; Gleeson, J. T.; Lavrentovich, O. D.

    2012-02-01

    By using director reorientation in the magnetic field, we determine the concentration and temperature dependencies of the splay K1, twist K2, and bend K3 elastic constants (normalized by the anisotropy of the diamagnetic susceptibility) for a nematic lyotropic chromonic liquid crystal (LCLC) Sunset Yellow. In a sharp contrast to thermotropic liquid crystals, the Frederiks effects in LCLC show a hysteresis, which is more pronounced at high concentration and low temperatures. We attribute the hysteresis to the changes in self-assembled structure of LCLC aggregates under the influence of field-imposed deformations.

  4. Elastic constants of random solid solutions by SQS and CPA approaches: the case of fcc Ti-Al.

    Science.gov (United States)

    Tian, Li-Yun; Hu, Qing-Miao; Yang, Rui; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2015-08-12

    Special quasi-random structure (SQS) and coherent potential approximation (CPA) are techniques widely employed in the first-principles calculations of random alloys. Here we scrutinize these approaches by focusing on the local lattice distortion (LLD) and the crystal symmetry effects. We compare the elastic parameters obtained from SQS and CPA calculations, taking the random face-centered cubic (fcc) Ti(1-x)Al(x) (0 ≤ x ≤ 1) alloy as an example of systems with components showing different electronic structures and bonding characteristics. For the CPA and SQS calculations, we employ the Exact Muffin-Tin Orbitals (EMTO) method and the pseudopotential method as implemented in the Vienna Ab initio Simulation Package (VASP), respectively. We show that the predicted trends of the VASP-SQS and EMTO-CPA parameters against composition are in good agreement with each other. The energy associated with the LLD increases with x up to x = 0.625 ~ 0.750 and drops drastically thereafter. The influence of the LLD on the lattice constants and C12 elastic constant is negligible. C11 and C44 decrease after atomic relaxation for alloys with large LLD, however, the trends of C11 and C44 are not significantly affected. In general, the uncertainties in the elastic parameters associated with the symmetry lowering turn out to be superior to the differences between the two techniques including the effect of LLD.

  5. A molecular dynamics calculation of solid phase of malonic acid: role of hydrogen-bond chains and the elastic constants

    Indian Academy of Sciences (India)

    SATHYA S R R PERUMAL; YASHONATH SUBRAMANIAN

    2017-07-01

    Recent studies suggest that hydrogen bonds, in particular, hydrogen bond chains play an important role in determining the properties of a substance.We report an investigation into the triclinic phase of crystalline malonic acid. One of two intermolecular interaction potentials proposed here is seen to predict the lattice parameters as well as the enthalpy of the triclinic phase in good agreement with experimental data. Structural and dynamic properties are reported. Also reported are the lifetime of the hydrogen bond and hydrogen bondchains of length l along [011] direction where l = 1 to 5. From the temperature dependence of the lifetime we have obtained the activation energies of the chains. We also report the elements of elastic constant tensor. Theresults show that the presence of the hydrogen bond chain along [011] direction leads to higher value for elastic tensor Cyyzz suggesting a strong correlation between hydrogen bond chains and the elastic constant along thatdirection. This is consistent with the recent report of Azuri I et al. 2015 Angew. Chem. Int. Ed. Engl. 54 13566 who reported that rather large Young’s modulus for certain amino acid crystals.

  6. Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J G

    2004-09-16

    Peselnick, Meister, and Watt have developed rigorous methods for bounding elastic constants of random polycrystals based on the Hashin-Shtrikman variational principles. In particular, a fairly complex set of equations that amounts to an algorithm has been presented previously for finding the bounds on effective elastic moduli for polycrystals having hexagonal, trigonal, and tetragonal symmetries. The more analytical approach developed here, although based on the same ideas, results in a new set of compact formulas for all the cases considered. Once these formulas have been established, it is then straightforward to perform what could be considered an analytic continuation of the formulas (into the region of parameter space between the bounds) that can subsequently be used to provide self-consistent estimates for the elastic constants in all cases. These self-consistent estimates are easily shown (essentially by construction) to lie within the bounds for all the choices of crystal symmetry considered. Estimates obtained this way are quite comparable to those found by the Gubernatis and Krumhansl CPA (coherent potential approximation), but do not require any computations of scattering coefficients.

  7. Linear combinations of the third-order elastic and piezoelectric constants of quartz.

    Science.gov (United States)

    Hruska, C K

    1990-01-01

    The DC-field-induced change in the resonant frequency of the extentional mode of quartz rods is related to the third-order elastic and the third-order piezoelectric constants. Five linear combinations of these constants are determined by least-squares fit to data obtained from 50 different rods. The results are notable for their small standard errors of about two percent on average. They also agree very well with the values obtained independently by the transit-time method.

  8. Study of the temperature dependence of the elastic constants of natural and deuterated (NH[sub 4])[sub 2]MCl[sub 6] compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, B.R.K.; Kawald, U.; Johannsmann, H.; Pelzl, J. (Bochum Univ. (Germany). Inst. fuer Experimentalphysik AG 6); Xu, Y.C. (Tongji Univ., Shanghai (China). Pohl Inst.)

    1992-08-17

    Experimental and theoretical investigations of the temperature dependence of the elastic constants in the cubic phases of (NH[sub 4])[sub 2]TeCl[sub 6], (ND[sub 4])[sub 2]TeCl[sub 6], (NH[sub 4])[sub 2]SnCl[sub 6] and (ND[sub 4])[sub 2]SnCl[sub 6] have been made in the range of temperatures from 4.2 to 300 K. The temperature variation in the elastic constants has been measured by Brillouin scattering and an interionic potential model has been used to interpret the experimental results. It has been found that the three-body interaction considered in the potential model plays an important and significant role in explaining the characteristic behaviour of the crystals under study. Good agreement between the experimental and theoretical values of the temperature derivatives of the elastic constants at room temperature has been obtained. (author).

  9. Contribution of molecular flexibility to the elastic-plastic properties of molecular crystal α-RDX

    Science.gov (United States)

    Pal, Anirban; Picu, Catalin R.

    2017-01-01

    We show in this work that the mechanical properties of molecular crystals are strongly affected by the flexibility of the constituent molecules. To this end, we explore several kinematically restrained models of the molecular crystal cyclotrimethylene trinitramine in the α phase. We evaluate the effect of gradually removing the flexibility of the molecule on various crystal-scale parameters such as the elastic constants, the lattice parameters, the thermal expansion coefficients, the stacking fault energy and the critical stress for the motion of a dislocation (the Peierls-Nabarro stress). The values of these parameters evaluated with the fully refined, fully flexible atomistic model of the crystal are taken as reference. It is observed that the elastic constants, the lattice parameters and their dependence on pressure, and the thermal expansion coefficient can be accurately predicted with models that consider the NO2 and CH2 groups rigid, and the N-N bonds and the bonds of the triazine ring inextensible. Eliminating the dihedral flexibility of the ring leads to larger errors. The model in which the entire molecule is considered rigid or is mapped to a blob leads to even larger errors. Only the fully flexible, reference model provides accurate values for the stacking fault energy and the Peierls-Nabarro critical stress. Removing any component of the molecular flexibility leads to large errors in these parameters. These results also provide guidance for the development of coarse grained models of molecular crystals.

  10. Econometric estimation of the “Constant Elasticity of Substitution" function in R

    DEFF Research Database (Denmark)

    Henningsen, Arne; Henningsen, Geraldine

    The Constant Elasticity of Substitution (CES) function is popular in several areas of economics, but it is rarely used in econometric analysis because it cannot be estimated by standard linear regression techniques. We discuss several existing approaches and propose a new grid-search approach...

  11. Temperature variation of higher-order elastic constants of MgO

    Indian Academy of Sciences (India)

    K M Raju; R K Srivastava; Kailash

    2007-09-01

    An effort has been made for obtaining higher-order elastic constants for MgO starting from basic parameters, viz. nearest-neighbor distance and hardness parameter using Coulomb and Börn–Mayer potentials. These are calculated in a wide temperature range (100–1000 K) and compared with available theoretical and experimental results.

  12. Research on ablation process of constant elastic alloy with femtosecond laser in solution medium

    Science.gov (United States)

    Deng, Guilin; Su, Wenyi; Duan, Ji'an; Fan, Nannan; Sun, Xiaoyan; Zhou, Jianying; Wang, Cong; Yin, Kai; Dong, Xinran; Hu, Youwang

    2016-09-01

    Constant elastic alloy is widely used material with high applied performance. In order to develop the application of constant elastic alloy, laser ablation of constant elastic alloy in different ablation mediums was investigated with different femtosecond lasers. Constant elastic alloy was ablated in solution with different ethanol contents and different thicknesses of the liquid layer above the target material and for comparison, in air. Also, the effects of laser energy and laser pulses of femtosecond laser on the morphology are studied. The effects of the position of the laser focus relative to the target surface were also discussed. The experimental results indicate that larger laser-induced area and smaller depth of craters tend to be obtained in solution than in air. The laser-induced area firstly increases and then decreases, and depths of craters decrease at first and increase later with the increase in ethanol content. Furthermore, the larger were energy of laser pulses, the larger were laser-induced area and deeper craters made in all different ablation solutions.

  13. Pricing Volatility Derivatives Under the Modified Constant Elasticity of Variance Model

    OpenAIRE

    Leunglung Chan; Eckhard Platen

    2015-01-01

    This paper studies volatility derivatives such as variance and volatility swaps, options on variance in the modified constant elasticity of variance model using the benchmark approach. The analytical expressions of pricing formulas for variance swaps are presented. In addition, the numerical solutions for variance swaps, volatility swaps and options on variance are demonstrated.

  14. Calculation of Elastic Constants of Ag/Pd Superlattice Thin Films by Molecular Dynamics with Many-Body Potentials

    Institute of Scientific and Technical Information of China (English)

    GAO Ning; LAI Wen-Sheng

    2006-01-01

    @@ The calculation of elastic constants of Ag/Pd superlattice thin films by molecular dynamics simulations with many-body potentials is presented. It reveals that the elastic constants C11 and C55 increase with decreasing modulation wavelength A of the films, which is consistent with experiments. However, the change of C11 and C55 with A is found to be around the values determined by a rule of mixture using bulk elastic constants of metals.No supermodulus effect is observed and it is due to cancellation between enhanced and reduced contributions to elastic constants from Ag and Pd layers subjected to compressive and tensile strains, respectively.

  15. Fractional crystallization of iron meteorites: Constant versus changing partition coefficients

    Science.gov (United States)

    Jones, J. H.

    1994-01-01

    Analyses of magmatic iron meteorites, plotted on LogC(sub i) vs LogC(sub Ni) diagrams, often form linear arrays. Traditionally, this linearity has been ascribed to fractional crystallization under the assumption of constant partition coefficients (i.e., Rayleigh fractionation). Paradoxically, however, partition coefficients in the Fe-Ni-S-P system are decidedly not constant. This contribution provides a rationale for understanding how trends on LogC(sub i) vs LogC(sub Ni) diagrams can be linear, even when partition coefficients are changing rapidly.

  16. Band gap tunability of magneto-elastic phononic crystal

    Science.gov (United States)

    Bou Matar, O.; Robillard, J. F.; Vasseur, J. O.; Hladky-Hennion, A.-C.; Deymier, P. A.; Pernod, P.; Preobrazhensky, V.

    2012-03-01

    The possibility of control and tuning of the band structures of phononic crystals offered by the introduction of an active magnetoelastic material and the application of an external magnetic field is studied. Two means to obtain large elastic properties variations in magnetoelastic material are considered: Giant magnetostriction and spin reorientation transition effects. A plane wave expansion method is used to calculate the band structures. The magnetoelastic coupling is taken into account through the consideration of an equivalent piezomagnetic material model with elastic, piezomagnetic, and magnetic permeability tensors varying as a function of the amplitude and orientation of the applied magnetic field. Results of contactless tunability of the absolute bandgap are presented for a two-dimensional phononic crystal constituted of Terfenol-D square rod embedded in an epoxy matrix.

  17. Acetylated Lysozyme as Impurity in Lysozyme Crystals: Constant Distribution Coefficient

    Science.gov (United States)

    Thomas, B. R.; Chernov, A. A.

    2000-01-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A or B impurities added were 0.76, 0.38 and 0.1 milligram per millimeter while HEWL concentration were 20, 30 and 40 milligram per milliliter. The crystals grown in 18 experiments for each impurity were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K = 2.15 plus or minus 0.13 for A and K = 3.42 plus or minus 0.25 for B. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that impurity adsorption and incorporation rate is proportional to the impurity concentration and that the growth rate is proportional to the crystallizing protein in solution. With the kinetic coefficient for crystallization, beta = 5.10(exp -7) centimeters per second, the frequency at which an impurity molecule near the growing interface irreversibly joins a molecular site on the crystal was found to be 3 1 per second, much higher than the average frequency for crystal molecules. For best quality protein crystals it is better to have low microheterogeneous protein impurity concentration and high supers aturation.

  18. High pressure phase transition and variation of elastic constants of diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh; Sharma, P.; Kaurav, N. [School of Physics, Vigyan Bhawan, Devi Ahilya University, Takshila Campus, Indore 452017 (India); Shah, S. [Department of Physics, P. M. B. Gujarati Science College, Indore-452001 (India); Singh, R.K. [M. P. Bhoj (Open) University, Shivaji Nagar, Bhopal-462016 (India)

    2004-11-01

    A theoretical study of the high-pressure phase transition and elastic behavior in diluted magnetic semiconductors Zn{sub 0.83}Mn{sub 0.17}Se, using a three-body interaction (TBI) potential caused by the electron-shell deformation of the overlapping ions is carried out. The estimated values of phase transition pressure and the vast volume discontinuity in pressure-volume (PV) phase diagram indicate the structural phase transition from zincblende (B3) to rock salt (B1). The variation of second-order elastic constants with pressure resembles that observed in some binary semiconductors. The inconsistency in the deduced value of pressure derivative of second order elastic constant with the available data is attributed to the fact that we derive expressions neglecting thermal effects and assuming the overlap repulsion significant only up to nearest neighbors. The vdW interaction is effective in obtaining the thermodynamical parameters such as Debye temperature, Gruneisen parameter, thermal expansion coefficient, compressibility as well phase stability in diluted magnetic semiconductors. It is revealed that TBI model has a promise to predict the phase transition pressure and the pressure variation of elastic constants of other semiconductors as well. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Proposal for Ultrasonic Technique for evaluation elastic constants in UO{sub 2} pellets

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Alessandra Susanne Viana Ragone; Baroni, Douglas Brandao, E-mail: alessandra.lopes@ctmsp.mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil); Bittencourt, Marcelo de Siqueira Queiroz, E-mail: bittenc@ien.gov.br [Instituto de Engenharia Nuclear (IN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Souza, Mauro Carlos Lopes, E-mail: mauroclsouza@hotmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Pellets of uranium dioxide are used as fuel in nuclear power reactors, in which are exposed to high thermal gradients. This high energy will initiate fusion in the central part of the pellet. The expansion of the uranium dioxide pellets, resulting from fission products, can cause fissures or cracks, therefore, the study of their behavior is important. This work aims to develop and propose an ultrasonic technique to evaluate the elastic constants of UO{sub 2} pellets. However, because of the difficulties in handling nuclear material, we proposed an initial study of alumina specimens. Alumina pellets are also ceramic material and their porosity and dimensions are in the similar range of dioxide uranium pellets. They also are used as thermal insulation in the fuel rods, operating under the same conditions. They were fabricated and used in two different sets of 10 alumina pellets with densities of 92% and 96%. The developed ultrasonic technique evaluates the traveling time of ultrasonic waves, longitudinal and transverse, and correlates the observed time and the elastic constants of the materials. Equations relating the speed of the ultrasonic wave to the elastic modulus, shear modulus and Poisson's ratio have led to these elastic constants, with graphics of correlation that showed excellent agreement with the literature available for Alumina. In view of the results and the ease of implementation of this technique, we believe that it may easily be used for dioxide uranium pellets, justifying further studies for that application. (author)

  20. Using the spring constant method to analyze arterial elasticity in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Wei Ching-Chuan

    2012-04-01

    Full Text Available Abstract Background This study tests the validity of a newly-proposed spring constant method to analyze arterial elasticity in type 2 diabetic patients. Methods The experimental group comprised 66 participants (36 men and 30 women ranging between 46 and 86 years of age, all with diabetes mellitus. In the experimental group, 21 participants suffered from atherosclerosis. All were subjected to the measurements of both the carotid-femoral pulse wave velocity (cfPWV and the spring constant method. The comparison (control group comprised 66 normal participants (37 men and 29 women with an age range of 40 to 80 years who did not have diabetes mellitus. All control group members were subjected to measurement by the spring constant method. Results Statistical analysis of the experimental and control groups indicated a significant negative correlation between the spring constant and the cfPWV (P r = − 0.824 and – 0.71. Multivariate analysis similarly indicated a close relationship. The Student’s t test was used to examine the difference in the spring constant parameter between the experimental and control groups. A P-value less than .05 confirmed that the difference between the 2 groups was statistically significant. In receiver operating characteristic curve (ROC, the Area Under Curve (AUC, = 0.85 indicates good discrimination. These findings imply that the spring constant method can effectively identify normal versus abnormal characteristics of elasticity in normal and diabetic participants. Conclusions This study verifies the use of the spring constant method to assess arterial elasticity, and found it to be efficient and simple to use. The spring constant method should prove useful not only for improving clinical diagnoses, but also for screening diabetic patients who display early evidence of vascular disease.

  1. First-Principles Calculation of Static Equation of State and Elastic Constants for GaSe

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong-Wen; JIN Feng-Tao; YUAN Jian-Min

    2006-01-01

    @@ The all-electron full potential augmented plane-wave plus local orbital (APW+1o) method with the local-density approximation (LDA) is used to calculate the static equation of state (EOS) and elastic constants of crystalline GaSe. After the full relaxation of atomic positions, the calculated band structure at ambient pressure is consistent with the experimental data to the extent expected to give the known limits of LDA one-electron energies. The equilibrium lattice parameters found here exhibit the usual LDA-induced contraction. However, constrained with the experimental cell volume, the interlayer separation exhibits an expansion due to the LDA underestimate of the weak interlayer bonding. The calculated values of elastic constants are in good agreement with acoustic measurements. The pressure derivatives of the lattice constants derived from the theoretical elastic constants are in very good agreement with x-ray spectra measurements. Two analytical EOSs have been determined at pressures up to 4.5 GPa. The pressure evolution of the structure indicates that the layer thickness decreasesslightly under pressure.

  2. Corelli: Efficient single crystal diffraction with elastic discrimination

    Indian Academy of Sciences (India)

    Stephan Rosenkranz; Raymond Osborn

    2008-10-01

    Single crystal diffuse scattering provides one of the most powerful probes of short-range correlations on the 1-100 nm scale, which often are responsible for the extreme field response of many emerging phenomena of great interest. Accurate modeling of such complex disorder from diffuse scattering data however puts stringent experimental demands, requiring measurements over large volumes of reciprocal space with sufficient momentum and energy resolution. Here, we discuss the potential of the cross-correlation technique for efficient measurement of single crystal diffuse scattering with energy discrimination, as will be implemented in a novel instrument, Corelli. Utilizing full experiment simulations, we show that this technique readily leads up to a fifty-fold gain in efficiency, as compared to traditional methods, for measuring single crystal diffuse scattering over volumes of reciprocal space with elastic discrimination.

  3. Modelling and simulation of multi-phase effects on X-ray elasticity constants

    Energy Technology Data Exchange (ETDEWEB)

    Freour, S.; Gloaguen, D.; Guillen, R. [Laboratoire d' Applications des Materiaux a la Mecanique (L.A.M.M.), L.A.M.M.-C.R.T.T., Boulevard de L' Universite, BP 406, 44602 Saint Nazaire Cedex (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (L.A.S.M.I.S.), Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France)

    2003-10-01

    This paper deals with the calculation of X-ray Elasticity Constants (XEC) of phases embedded in multi-phase polycrystals. A three scales (macroscopic, pseudo-macroscopic, mesoscopic) model based on the classical self-consistent formalism is developed in order to analyse multi-phase effects on XEC values. Simulations are performed for cubic or hexagonal crystallographic structure phases embedded in several two-phases materials. In fact, it is demonstrated that XEC vary with the macroscopic stiffness of the whole polycrystal. In consequence, the constants of one particular phase depend on the elastic behaviour and the volume fraction of all the phases constituting the material. Now, XEC play a leading role in pseudo-macroscopic stresses determination by X-Ray Diffraction (XRD) methods. In this work, a quantitative analysis of the multi-phase effects on stresses determination by XRD methods was performed. Numerical results will be compared and discussed. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  4. First-principles elastic constants and phonons of delta-Pu

    DEFF Research Database (Denmark)

    Söderlind, P.; Landa, A.; Sadigh, B.

    2004-01-01

    Elastic constants and zone-boundary phonons of delta-plutonium have been calculated within the density-functional theory. The paramagnetic state of delta-Pu is modeled by disordered magnetism utilizing either the disordered local moment or the special quasirandom structure techniques. The anomalo......Elastic constants and zone-boundary phonons of delta-plutonium have been calculated within the density-functional theory. The paramagnetic state of delta-Pu is modeled by disordered magnetism utilizing either the disordered local moment or the special quasirandom structure techniques....... The anomalously soft C-' as well as a large anisotropy ratio (C-44/C-') of delta-Pu is reproduced by this theoretical model. Also the recently measured phonons for delta-Pu compare relatively well with their theoretical counterpart at the zone boundaries....

  5. Pressure dependent elastic constants of alpha and gamma cyclotrimethylene trinitramine: A quantum mechanical study

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, DeCarlos E., E-mail: decarlos.e.taylor.civ@mail.mil [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-08-07

    The elastic constants of the α and γ polymorphs of cyclotrimethylene trinitramine (RDX) have been computed using dispersion corrected density functional theory (DFT). The DFT results validate the values obtained in several experiments using ultrasonic and impulsive stimulated thermal scattering techniques and disagree with those obtained using Brillouin scattering which, in general, exceed the other experimental and theoretical results. Compressibility diagrams at zero pressure are presented for the ab, ac, and bc crystallographic planes, and the anisotropic linear compressibility within the ac plane of α-RDX at 0 GPa, observed using ultrasonic and impulsive stimulated thermal scattering measurements, is verified using DFT. The pressure dependence of the elastic constants of α-RDX (0–4 GPa) and γ-RDX (4–8 GPa) is also presented.

  6. CONSTANT ELASTICITY OF VARIANCE MODEL AND ANALYTICAL STRATEGIES FOR ANNUITY CONTRACTS

    Institute of Scientific and Technical Information of China (English)

    XIAO Jian-wu; YIN Shao-hua; QIN Cheng-lin

    2006-01-01

    The constant elasticity of variance(CEV) model was constructed to study a defined contribution pension plan where benefits were paid by annuity. It also presents the process that the Legendre transform and dual theory can be applied to find an optimal investment policy during a participant's whole life in the pension plan. Finally, two explicit solutions to exponential utility function in the two different periods (before and after retirement) are revealed. Hence, the optimal investment strategies in the two periods are obtained.

  7. First-Principles Calculations of Elastic Constants of Superconducting MgB2

    Institute of Scientific and Technical Information of China (English)

    GUO Hua-Zhong; CHEN Xiang-Rong; ZHU Jun; CAI Ling-Cang; GAO Jie

    2005-01-01

    @@ The five independent elastic constants of superconducting MgB2 are obtained using the first-principles plane wave method with the new relativistic analytic pseudopotential of the Hartwigsen-Goedecker-Hutter (HGH) scheme in the frame of local density approximation. The dependences of bulk modulus on temperature and pressure are also obtained. It is suggested that the HGH-type pseudopotentials are successful in investigating the ground-state mechanical properties of any solids.

  8. A constant compliance force modulation technique for scanning force microscopy (SFM) imaging of polymer surface elasticity

    Science.gov (United States)

    Stroup, E.W.; Pungor, A/

    2012-01-01

    A new method of force modulation scanning force microscopy (SFM) imaging based on a constant compliance feedback loop is presented. The feedback adjusts the loading force applied by the SFM tip to the surface in order to maintain a constant compliance beneath the tip. The new method, constant compliance force modulation (CCFM), has the advantage of being able to quantify the loading force exerted by the tip onto the sample surface and thus to estimate the elastic modulus of the material probed by the SFM tip. Once the elastic modulus of one region is known, the elastic moduli of other surface regions can be estimated from the spatial map of loading forces using the Hertz model of deformation. Force vs. displacement measurements made on one surface locality could also be used to estimate the local modulus. Several model surfaces, including a rubber-toughened epoxy polymer blend which showed clearly resolved compliant rubber phases within the harder epoxy matrix, were analyzed with the CCFM technique to illustrate the method’s application. PMID:9195751

  9. Extraction of depth profiles of third-order elastic constants in cracked media

    Science.gov (United States)

    Rjelka, Marek; Koehler, Bernd; Mayer, Andreas

    2017-02-01

    Elastic constants of components are usually determined by tensile tests in combination with ultrasonic experiments. However, these properties may change due to e.g. mechanical treatments or service conditions during their lifetime. Knowledge of the actual material parameters is key to the determination of quantities like residual stresses present in the medium. In this work the acoustic nonlinearity parameter (ANP) for surface acoustic waves is examined through the derivation of an evolution equation for the amplitude of the second harmonic. Given a certain depth profile of the third-order elastic constants, the dependence of the ANP with respect to the input frequency is determined and on the basis of these results, an appropriate inversion method is developed. This method is intended for the extraction of the depth dependence of the third-order elastic constants of the material from second-harmonic generation and guided wave mixing experiments, assuming that the change in the linear Rayleigh wave velocity is small. The latter assumption is supported by a 3D-FEM model study of a medium with randomly distributed micro-cracks as well as theoretical works on this topic in the literature.

  10. High-pressure structure and elastic properties of tantalum single crystal: First principles investigation

    Science.gov (United States)

    Gu, Jian-Bing; Wang, Chen-Ju; Zhang, Wang-Xi; Sun, Bin; Liu, Guo-Qun; Liu, Dan-Dan; Yang, Xiang-Dong

    2016-12-01

    Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systematical study on the high-pressure structure and elastic properties of the cubic Ta by using the first-principles method. Results show that the initial body-centered cubic phase of Ta remains stable even up to 500 GPa and the high-pressure elastic properties are excellently consistent with the available experimental results. Besides, the high-pressure sound velocities of the single- and poly-crystals Ta are also calculated based on the elastic constants, and the predications exhibit good agreement with the existing experimental data. Project supported by the Basic and Frontier Technical Research Project of Henan Province, China (Grant No. 152300410228), the University Innovation Team Project in Henan Province, China (Grant No. 15IRTSTHN004), and the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 17A140014).

  11. Estimation of Elastic Constants from Surface Acoustic Wave Velocity by Inverse Analysis using the Downhill Simplex Method

    Science.gov (United States)

    Sato, Harumichi; Nishino, Hideo; Cho, Hideo; Ogiso, Hisato; Yamanaka, Kazushi

    1998-05-01

    The measurement of surface acoustic wave (SAW) velocity is used to estimate the surface properties because the velocity depends on the elastic properties near the surface.To estimate the elastic constants, we developed a new inverse method combining the Monte Carlo method and the downhill simplex method.The initial values are determined using many random numbers, instead of an arbitrarily chosen several sets of values, in order to reduce the risk of trapping by the local pseudo minima.We confirm that the estimated elastic constants agree well with the reported elastic constants of Si and the experimental SAW velocity is quite well reproduced.We estimate the elastic constants of quartz for application purposes.

  12. Atomic, Crystal, Elastic, Thermal, Nuclear, and Other Properties of Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-02-01

    This report is part of a series of documents that provide a background to those involved in the construction of beryllium components and their applications. This report is divided into five sub-sections: Atomic/Crystal Structure, Elastic Properties, Thermal Properties, Nuclear Properties, and Miscellaneous Properties. In searching through different sources for the various properties to be included in this report, inconsistencies were at times observed between these sources. In such cases, the values reported by the Handbook of Chemistry and Physics was usually used. In equations, except where indicated otherwise, temperature (T) is in degrees Kelvin.

  13. Ab initio calculations of third-order elastic constants and related properties for selected semiconductors

    OpenAIRE

    Lopuszynski, Michal; Majewski, Jacek A.

    2007-01-01

    We present theoretical studies for the third-order elastic constants $C_{ijk}$ in zinc-blende nitrides AlN, GaN, and InN. Our predictions for these compounds are based on detailed ab initio calculations of strain-energy and strain-stress relations in the framework of the density functional theory. To judge the computational accuracy, we compare the ab initio calculated results for $C_{ijk}$ with experimental data available for Si and GaAs. We also underline the relation of the third-order ela...

  14. Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core

    Science.gov (United States)

    Ko, W. L.

    1980-01-01

    Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.

  15. An Inverse method of elastic constants for unidirectional fiber-reinforced composite plate

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; CUI Lian-jun; XU Jian; CHENG Jian-chun

    2006-01-01

    An inverse method is presented to determine the elastic constants of an experimental sample,a titanium graphite unidirectional fiber-reinforced composite plate,using wavelet transform and neural networks.Optimal algorithms of wavelet transform and neural networks are given here in order to improve the accuracy of inversion results.Coherent results were shown in both fiber direction and cross fiber direction,proving the feasibility of this method.Neither the group velocity of the Lamb wave modes are needed,as in the conventional method,and no direct least-square fitting of the experimental waveforms is necessary.

  16. Measurements along the growth direction of PMN-PT crystals: dielectric, piezoelectric, and elastic properties.

    Science.gov (United States)

    Tian, Jian; Han, Pengdi; Payne, David A

    2007-09-01

    Property measurements are reported for Pb(Mg1/3Nb2/3)03-PbTiO3 (PMN-PT) single crystals grown along (001) by a seeded-melt method. Chemical segregation occurs during crystal growth, leading to property changes along the growth direction. Variations in dielectric, piezoelectric, and elastic properties were evaluated for specimens selected from the crystals. Room-temperature data are correlated with Tc and composition that ranged from 27 to 32% PT, i.e., in the vicinity of the morphotropic phase boundary (MPB). While there was little change in the high electromechanical coupling factor k33 (0.87-0.92), both the piezoelectric charge coefficient d33 (1100-1800 pC/N) and the free dielectric constant K3 (4400-7000) were found to vary significantly with position. Increases in d33 and KT33 were relatively offsetting in that the ratio yielded a relatively stable piezoelectric voltage coefficient g33 (27-31 x 10(-3) Vm/N). Values are also reported for the elastic compliance (3.3-6.3 x 10(-11) m2/N) determined from resonance measurements. Enhancements in d33 and K(T)33 were associated with lattice softening (increasing sE33) as the composition approached the MPB. Details are reported for the piezoelectric, dielectric, and elastic properties as a function of growth direction, Tc, and composition. The results are useful for an understanding of properties in PMN-PT crystals and for the design of piezoelectric devices.

  17. Kelvin Notation for Stabilizing Elastic-Constant Inversion Notation Kelvin pour stabiliser l'inversion de constantes élastiques

    Directory of Open Access Journals (Sweden)

    Dellinger J.

    2006-12-01

    Full Text Available Inverting a set of core-sample traveltime measurements for a complete set of 21 elastic constants is a difficult problem. If the 21 elastic constants are directly used as the inversion parameters, a few bad measurements or an unfortunate starting guess may result in the inversion converging to a physically impossible solution . Even given perfect data, multiple solutions may exist that predict the observed traveltimes equally well. We desire the inversion algorithm to converge not just to a physically possible solution, but to the best(i. e. most physically likely solution of all those allowed. We present a new parameterization that attempts to solve these difficulties. The search space is limited to physically realizable media by making use of the Kelvin eigenstiffness-eigentensor representation of the 6 x 6 elastic stiffness matrix. Instead of 21 stiffnesses, there are 6 eigenstiffness parametersand 15 rotational parameters . The rotational parameters are defined using a Lie-algebra representation that avoids the artificial degeneracies and coordinate-system bias that can occur with standard polar representations. For any choice of these 21 real parameters, the corresponding stiffness matrix is guaranteed to be physically realizable. Furthermore, all physically realizable matrices can be represented in this way. This new parameterization still leaves considerable latitude as to which linear combinations of the Kelvin parameters to use, and how they should be ordered. We demonstrate that by careful choice and ordering of the parameters, the inversion can be relaxedfrom higher to lower symmetry simply by adding a few more parameters at a time. By starting from isotropy and relaxing to the general result in stages (isotropy, transverse isotropy, orthorhombic, general, we expect that the method should find the solution that is closest to isotropy of all those that fit the data. L'inversion d'un ensemble de mesures du temps de parcours d

  18. AB INITIO CALCULATIONS OF ELASTIC CONSTANTS OF BCC V-NB SYSTEM AT HIGH PRESSURES

    Energy Technology Data Exchange (ETDEWEB)

    Landa, A; Klepeis, J; Soderlind, P; Naumov, I; Velikokhatnyi, O; Vitos, L; Ruban, A

    2005-05-02

    First-principles total energy calculation based on the exact muffin-tin orbital and full potential linear muffin-tin orbital methods were used to calculate the equation of state and shear elastic constants of bcc V, Nb, and the V{sub 95}Nb{sub 05} disordered alloy as a function of pressure up to 6 Mbar. We found a mechanical instability in C{sub 44} and a corresponding softening in C at pressures {approx} 2 Mbar for V. Both shear elastic constants show softening at pressures {approx} 0.5 Mbar for Nb. Substitution of 5 at. % of V with Nb removes the instability of V with respect to trigonal distortions in the vicinity of 2 Mbar pressure, but still leaves the softening of C{sub 44} in this pressure region. We argue that the pressure induced shear instability (softening) of V (Nb) originates from the electronic system and can be explained by a combination of the Fermi surface nesting, electronic topological transition, and band Jahn-Teller effect.

  19. Single crystal elasticity of gold up to ˜20 GPa: Bulk modulus anomaly and implication for a primary pressure scale

    Science.gov (United States)

    Yoneda, Akira; Fukui, Hiroshi; Gomi, Hitoshi; Kamada, Seiji; Xie, Longjian; Hirao, Naohisa; Uchiyama, Hiroshi; Tsutsui, Satoshi; Baron, Alfred Q. R.

    2017-09-01

    We measured the elasticity of single crystal gold (Au) and its lattice parameters under high pressure using inelastic X-ray scattering (IXS). The elastic moduli were obtained at five pressure points between 0 and 20 GPa. The pressure variation of the bulk modulus displays anomalous behavior, being nearly constant up to ˜5 GPa, and then steeply increasing at higher pressure. A similar anomaly is observed in first-principles calculations. An absolute pressure scale was derived by direct numerical integration of the bulk modulus over volume change. This yields a scale that gives slightly lower pressure values than those of previous work, about 5-10% lower at ˜20 GPa.

  20. X-ray elastic constant determination and residual stress of two phase TiAl-based intermetallic alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To evaluate the residual stress in TiAl-based alloys by X-ray diffraction, X-ray elastic constants (REC) of a γ-TiAl alloy were determined. From these results, the stress state of a given phase in a duplex TiAl-based alloy under a uniaxial tensile loading has been characterized by X-ray diffraction. The results show that the X-ray elastic constants and the microscopic stresses of the given phase are different from the apparent elastic constants and the macroscopic stresses of the alloy. The reason of the different distribution of the alloy was also discussed.

  1. Bent Crystal Monochromator with Constant Crystal Center Position and 2-theta Arm for a Dispersive Beamline

    Science.gov (United States)

    Neuenschwander, Regis T.; Tolentino, Hélio C. N.

    2004-05-01

    For the new LNLS dispersive beam line it was designed a single-crystal monochromator and a 2-theta arm. The monochromator uses a new bender design assembled on the top of an in-vacuum HUBER goniometer. This bender is able to apply independent torque on each extremity of the crystal in a way that changes in the curvature radius do not affect the position of the center of the crystal. It also has a twist mechanism, based on eccentric bearings and elastic components. The crystal extremities are clamped to the bender using two water-cooled copper blocks, for thermal stabilization. All the bender's movements are done with vacuum compatible stepping-motors. The vacuum chamber was built with enough space to allow future installation of another bender for crystals with different Bragg planes. The internal mechanics is isolated from the vacuum chamber and can move up and down with three high precision jacks. The design of the 2-theta arm is based on two linear translation stages and some special bearings. The two stages are equipped with linear encoders, ball screws end linear bearings. With a proper alignment procedure, it is possible to find the equations that controls each translation stage in order to get a virtual rotation referenced to the monochromator center. The main arm is composed of a steel frame, a 3m long granite block, a central aluminum optical rail and two auxiliary side rails.

  2. Evaluation of third-order elastic constants using laser-generated multi-type ultrasound for isotropic materials.

    Science.gov (United States)

    Dong, Li-Ming; Lomonosov, Alexey M; Shen, Zhong-Hua; Li, Jia; Ni, Chen-Yin; Ni, Xiao-Wu

    2013-08-01

    Within the linear elasticity approximation the speed of a small-amplitude sound in conventional linear elasticity is determined only by the second order elastic (SOE) constants and the density of the medium. Subjecting the conveying solid to a static strain of a sufficient magnitude introduces the third-order elastic (TOE) constants in the equation of the sound speed. In this work we applied a homogeneous isotropic deformation caused by a thermal expansion of an aluminum alloy sample. Velocities of three acoustic modes: longitudinal, shear and Rayleigh waves were measured as functions of temperature within a range of 25-100 °C. Two TOE constants C111 and C112 were evaluated in an assumption that the third independent module C144 is far smaller than the former two.

  3. Single-crystal elasticity of diaspore, AlOOH, to 12 GPa by Brillouin scattering

    Science.gov (United States)

    Jiang, Fuming; Majzlan, Juraj; Speziale, Sergio; He, Duanwei; Duffy, Thomas S.

    2008-11-01

    The high-pressure elasticity of diaspore (AlOOH) has been determined by Brillouin spectroscopy to 12 GPa in diamond anvil cells. Experiments were carried out using a 16:3:1 methanol-ethanol-water mixture as pressure medium, and ruby as pressure standard. Acoustic velocities were measured in three roughly orthogonal planes at ambient and eight elevated pressures. The nine individual elastic stiffness constants of the orthorhombic crystal were obtained by fitting the velocity data to Christoffel's equation. Aggregate elastic moduli and pressure derivatives were calculated from the Cijs by fits to Eulerian finite strain equations, yielding: K=152(1) GPa, G0 = 117.2(5) GPa, (/∂P)T=3.7(1),   (=1.5(1) for the Voigt-Reuss-Hill average. All individual Cijs increase with pressure but C23 and C55 exhibit anomalously low pressure derivatives. From calculated linear compressibilities, the a-axis is the most compressible. The b-axis becomes the least compressible axis at high pressures. Over the examined pressure range, the azimuthal P-wave anisotropy decreased from 22% to 16%, while the azimuthal S-wave anisotropy increased from 15% to 21%. Both volume and axial compression curves calculated using our Brillouin results are in good agreement with the results from static compression studies. High-pressure sound velocities in diaspore exceed those of other hydrous minerals as well as many anhydrous phases relevant to Earth's upper mantle.

  4. Non-Extensive Entropy Econometrics: New Statistical Features of Constant Elasticity of Substitution-Related Models

    Directory of Open Access Journals (Sweden)

    Second Bwanakare

    2014-05-01

    Full Text Available Power-law (PL formalism is known to provide an appropriate framework for canonical modeling of nonlinear systems. We estimated three stochastically distinct models of constant elasticity of substitution (CES class functions as non-linear inverse problem and showed that these PL related functions should have a closed form. The first model is related to an aggregator production function, the second to an aggregator utility function (the Armington and the third to an aggregator technical transformation function. A q-generalization of K-L information divergence criterion function with a priori consistency constraints is proposed. Related inferential statistical indices are computed. The approach leads to robust estimation and to new findings about the true stochastic nature of this class of nonlinear—up until now—analytically intractable functions. Outputs from traditional econometric techniques (Shannon entropy, NLLS, GMM, ML are also presented.

  5. Econometric estimation of the “Constant Elasticity of Substitution" function in R

    DEFF Research Database (Denmark)

    Henningsen, Arne; Henningsen, Geraldine

    The Constant Elasticity of Substitution (CES) function is popular in several areas of economics, but it is rarely used in econometric analysis because it cannot be estimated by standard linear regression techniques. We discuss several existing approaches and propose a new grid-search approach...... for estimating the traditional CES function with two inputs as well as nested CES functions with three and four inputs. Furthermore, we demonstrate how these approaches can be applied in R using the add-on package micEconCES and we describe how the various estimation approaches are implemented in the mic......EconCES package. Finally, we illustrate the usage of this package by replicating some estimations of CES functions that are reported in the literature....

  6. A Mean-variance Problem in the Constant Elasticity of Variance (CEV) Mo del

    Institute of Scientific and Technical Information of China (English)

    Hou Ying-li; Liu Guo-xin; Jiang Chun-lan

    2015-01-01

    In this paper, we focus on a constant elasticity of variance (CEV) model and want to find its optimal strategies for a mean-variance problem under two con-strained controls: reinsurance/new business and investment (no-shorting). First, a Lagrange multiplier is introduced to simplify the mean-variance problem and the corresponding Hamilton-Jacobi-Bellman (HJB) equation is established. Via a power transformation technique and variable change method, the optimal strategies with the Lagrange multiplier are obtained. Final, based on the Lagrange duality theorem, the optimal strategies and optimal value for the original problem (i.e., the efficient strategies and efficient frontier) are derived explicitly.

  7. Optimal Investment and Consumption Decisions under the Constant Elasticity of Variance Model

    Directory of Open Access Journals (Sweden)

    Hao Chang

    2013-01-01

    Full Text Available We consider an investment and consumption problem under the constant elasticity of variance (CEV model, which is an extension of the original Merton’s problem. In the proposed model, stock price dynamics is assumed to follow a CEV model and our goal is to maximize the expected discounted utility of consumption and terminal wealth. Firstly, we apply dynamic programming principle to obtain the Hamilton-Jacobi-Bellman (HJB equation for the value function. Secondly, we choose power utility and logarithm utility for our analysis and apply variable change technique to obtain the closed-form solutions to the optimal investment and consumption strategies. Finally, we provide a numerical example to illustrate the effect of market parameters on the optimal investment and consumption strategies.

  8. Crack tip field in functionally gradient material with exponential variation of elastic constants in two directions

    Institute of Scientific and Technical Information of China (English)

    Tianhu Hao

    2005-01-01

    This paper presents an exact solution of the crack tip field in functionally gradient material with exponential variation of elastic constants. The dimensionless Poisson's ratios v0 of the engineering materials (iron, glass... ) are far less than one; therefore, neglecting them, one can simplify the basic equation and the exact solution is easy to obtain.Although the exact solution for the case v0 ≠ 0 is also obtained, it is very complicated and the main result is the same with the case v0 = 0 (it will be dealt with in Appendix Ⅶ).It has been found that the exponential term exp(ax + by) in the constitutive equations becomes exp (ax/2 + by/2 - kr / 2 ) in the exact solution.

  9. Elasticity, viscosity, and orientational fluctuations of a lyotropic chromonic nematic liquid crystal disodium cromoglycate.

    Science.gov (United States)

    Zhou, Shuang; Neupane, Krishna; Nastishin, Yuriy A; Baldwin, Alan R; Shiyanovskii, Sergij V; Lavrentovich, Oleg D; Sprunt, Samuel

    2014-09-14

    Using dynamic light scattering, we study orientational fluctuation modes in the nematic phase of a self-assembled lyotropic chromonic liquid crystal (LCLC) disodium cromoglycate and measure the Frank elastic moduli and viscosity coefficients. The elastic moduli of splay (K1) and bend (K3) are in the order of 10 pN while the twist modulus (K2) is an order of magnitude smaller. The splay constant K1 and the ratio K1/K3 both increase substantially as the temperature T decreases, which we attribute to the elongation of the chromonic aggregates at lower temperatures. The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger. The temperature dependence of bend viscosity is weak. The splay and twist viscosities change exponentially with the temperature. In addition to the director modes, the fluctuation spectrum reveals an additional mode that is attributed to diffusion of structural defects in the column-like aggregates.

  10. Study of Surface Cell Madelung Constant and Surface Free Energy of Nanosized Crystal Grain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jia; WANG Tian-Min; CUI Min

    2005-01-01

    Surface cell Madelung constant is firstly defined in calculating surface free energy of nanosized crystal grains, which explains the physical performance of small crystals and may be great benefit to make surface analysis and study dynamics of crystal nucleus growth. A new ap- proximative expression of surface energy and relevant thermodynamic data was used in this cal- culation. A new formula and computing method for calculating the Madelung constant α of any complex crystals is proposed, and surface free energies and surface electrostatic energies of nano- sized crystal grains as well as Madelung constant of some complex crystals are theoretically cal- culated in this paper. The surface free energy of nanosized crystal grain TiO2 and surface elec- trostatic energy(absolute value) of nanosized crystal grain α-Al2O3 are found to be the biggest among other crystal grains.

  11. Study of surface cell Madelung constant and surface free energy of nanosized crystal grain

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei-Jia; Wang Tian-Min; Rong Ai-Lun; Cui Min

    2006-01-01

    Surface cell Madelung constant is firstly defined for calculating the surface free energy of nanosized crystal grains,which explains the physical performance of small crystals and may be greatly beneficial to the analysis of surface states and the study of the dynamics of crystal nucleation and growth.A new approximative expression of the surface energy and relevant thermodynamic data are used in this calculation.New formula and computing method for calculating the Madelung constant α of any complex crystals are proposed,and the surface free energies and surface electrostatic energies of nanosized crystal grains and the Madelung constant of some complex crystals are theoretically calculated in this paper.The surface free energy of nanosized-crystal-grain TiO2 and the surface electrostatic energy (absolute value) of nanosized-crystal-grain α-A12O3 are found to be the biggest among all the crystal grains including those of other species.

  12. Estimation of brittleness index using dynamic and static elastic constants in the Haenam Basin, Southwestern Part of Korean Peninsula

    Science.gov (United States)

    Hwang, Seho; Shin, Jehyun; Kim, Jongman; Won, Byeongho; Song, Wonkyoung; Kim, Changryol; Ki, Jungseok

    2014-05-01

    One of the most important physical properties is the measurement of the elastic constants of the formation in the evaluation of shale gas. Normally the elastic constants by geophysical well logging and the laboratory test are used in the design of hydraulic fracturing . The three inches diameter borehole of the depth of 505 m for the evaluation of shale gas drilled and was fully cored at the Haenan Basin, southwestern part of Korea Peninsula. We performed a various laboratory tests and geophysical well logging using slime hole logging system. Geophysical well logs include the radioactive logs such as natural gamma log, density log and neutron log, and monopole and dipole sonic log, and image logs. Laboratory tests are the axial compression test, elastic wave velocities and density, and static elastic constants measurements for 21 shale and sandstone cores. We analyzed the relationships between the physical properties by well logs and laboratory test as well as static elastic constants by laboratory tests. In the case of an sonic log using a monopole source of main frequency 23 kHz, measuring P-wave velocity was performed reliably. When using the dipole excitation of low frequency, the signal to noise ratio of the measured shear wave was very low. But when measuring using time mode in a predetermined depth, the signal to noise ratio of measured data relatively improved to discriminate the shear wave. P-wave velocities by laboratory test and sonic logging agreed well overall, but S-wave velocities didn't. The reason for the discrepancy between the laboratory test and sonic log is mainly the low signal to noise ratio of sonic log data by low frequency dipole source, and measuring S-wave in the small diameter borehole is still challenge. The relationship between the P-wave velocity and two dynamic elastic constants, Young's modulus and Poisson's ratio, shows a good correlation. And the relationship between the static elastic constants and dynamic elastic constants also

  13. Determination of polycrystal diffraction elastic constants of Ti–2.5Cu by using in situ tensile loading and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maawad, E., E-mail: grossflotbek2000@gmail.com [Helmholtz-Zentrum Geesthacht, Max-Plank-Str. 1, D-21502 Geesthacht (Germany); Brokmeier, H.-G. [Helmholtz-Zentrum Geesthacht, Max-Plank-Str. 1, D-21502 Geesthacht (Germany); Institute of Materials Science and Engineering, Clausthal University of Technology, Agricolastr. 6, D-38678 Clausthal-Zellerfeld (Germany); Zhong, Z.Y.; Al-Hamdany, N.; Salih, M.; Wagner, L. [Institute of Materials Science and Engineering, Clausthal University of Technology, Agricolastr. 6, D-38678 Clausthal-Zellerfeld (Germany); Schell, N. [Helmholtz-Zentrum Geesthacht, Max-Plank-Str. 1, D-21502 Geesthacht (Germany)

    2014-01-31

    Residual stress determination in engineering components from diffraction strain measurements needs reliable diffraction elastic constants (DECs). From this sense, in situ uniaxial tensile loading experiment was performed on alpha titanium alloy Ti–2.5Cu at the HEMS beamline at DESY by means of a monochromatic synchrotron X-ray diffraction. A comparison between measured (polycrystal) and calculated (single crystal) DECs using for example the Kröner model was presented and discussed. The results revealed that the measured DECs slightly differ from the calculated ones. Furthermore, changes in the lattice parameters a and c as well as c/a ratio during tensile loading were also investigated.

  14. Impact of twin boundaries on bulk elastic constants: Density-functional theory data for Young׳s modulus of Ag

    Directory of Open Access Journals (Sweden)

    Tobias Klöffel

    2015-06-01

    Here, we present data of density-functional theory calculations of elastic constants and Young׳s modulus for defect-free bulk Ag as well as for bulk Ag containing dense arrays of twin boundaries. It is shown that rigorous convergence tests are required in order to be able to deduce changes in the elastic properties due to bulk defects in a reliable way.

  15. Elastic constants and thermodynamic properties of Mg2SixSn1-x from first-principles calculations

    Institute of Scientific and Technical Information of China (English)

    Liu Na-Na; Song Ren-Bo; Du Da-Wei

    2009-01-01

    This paper stuides the elastic constants and some thermodynamic properties of Mg2SixSn1-x (x = 0, 0.25, 0.5, 0.75, 1) compounds by first-principles total energy calculations using the pseudo-potential plane-waves approach based on density functional theory, within the generalized gradient approximation for the exchange and correlation potential. The elastic constants of Mg2SixSn1-x were calculated. It shows that, at 273 K, the elastic constants of Mg2Si and Mg2Sn are well consistent with previous experimental data. The isotropy decreases with increasing Sn content. The dependences of the elastic constants, the bulk modulus, the shear modulus and the Debye temperatures of Mg2Si and Mg2Si0.5Sn0.5 on pressure were discussed. Through the quasi-harmonic Debye model, in which phononic effects were considered, the specific heat capacities of Mg2SixSn1-x at constant volume and constant pressure were calculated. The calculated specific heat capacities are well consistent with the previous experimental data.

  16. Effect of ionic additives on elasticity of lyotropic chromonic liquid crystal

    Science.gov (United States)

    Zhou, Shuang; Cervenka, Adam J.; Singh, Yogesh; Tortora, Luana T.; Almasan, Carmen C.; Lavrentovich, Oleg D.

    2013-03-01

    Using a magnetic Frederiks transition technique, we determine how the splay K1 and bend K3 elastic constants of lyotropic chromonic liquid crystal Sunset Yellow (SSY) depend on concentration of ionic additives, sodium chloride (NaCl) and magnesium sulfate (MgSO4). Both salts increase the ratio K1 /K3 , by mainly increasing K1 (MgSO4) or mainly decreasing K3 (NaCl). The effects are attributed to the screening of electrostatic repulsions of chromonic molecules, which is expected to increase the contour length (thus increasing K1) and to decrease the persistence length (thus decreasing K3) of the chromonic aggregates in which the molecules are stacked face-to-face. As in salt-free SSY, the ratio K1 /K3 increases when the temperature decreases. The work was supporeted by NSF grants DMR 1104850 and 11212878.

  17. Determination of elastic constants of a fiber-textured gold film by combining synchrotron x-ray diffraction and in situ tensile testing

    Science.gov (United States)

    Faurie, D.; Renault, P.-O.; Le Bourhis, E.; Goudeau, Ph.

    2005-11-01

    The elastic behavior of gold thin films deposited onto Kapton substrate has been studied using in situ tensile tester in a four-circle goniometer on a synchrotron beam line (LURE facility, France). The mechanical description of the substrate-thin film composite structure has been developed to determine the stress tensor in the film while the strong {111} fiber texture was taken into account using the crystallite group method (CGM). CGM strain analysis allowed us to forecast the nonlinear relationship between strain and sin2 Ψ obtained for the thin films due to the strong anisotropy of gold. A least-square method was used to fit the overall experimental data with good accuracy and allows determining all single-crystal elastic constants.

  18. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    Science.gov (United States)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  19. Complete set of elastic, dielectric, and piezoelectric constants of [011]C poled rhombohedral Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3:Mn single crystals.

    Science.gov (United States)

    Huo, Xiaoqing; Zhang, Shujun; Liu, Gang; Zhang, Rui; Luo, Jun; Sahul, Raffi; Cao, Wenwu; Shrout, Thomas R

    2013-02-21

    Mn modified rhombohedral Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT:Mn) single crystals poled along [011]C crystallographic direction exhibit a "2R" engineered domain configuration, with macroscopic mm2 symmetry. The complete sets of material constants were determined using combined resonance and ultrasonic methods, and compared to [001]C poled PIN-PMN-PT:Mn crystals. The thickness shear piezoelectric coefficient d15 and electromechanical coupling factor k15 were found to be on the order of ∼3000 pC/N and 0.92, respectively, with longitudinal piezoelectric coefficient d33 and coupling factor k33 being on the order of ∼1050 pC/N and 0.90. Of particular importance is that PIN-PMN-PT:Mn single crystals exhibited high mechanical quality factor Q33 ∼ 1000, comparable to "hard" PZT8 ceramics, which can also be confirmed by the low extrinsic contribution, being ≤2% from the Rayleigh analysis.

  20. Elastic constants measurement of anisotropic Olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave.

    Science.gov (United States)

    Dahmen, Souhail; Ketata, Hassiba; Ben Ghozlen, Mohamed Hédi; Hosten, Bernard

    2010-04-01

    A hybrid elastic wave method is applied to determine the anisotropic constants of Olive wood specimen considered as an orthotropic solid. The method is based on the measurements of the Lamb wave velocities as well as the bulk ultrasonic wave velocities. Electrostatic, air-coupled, ultrasonic transducers are used to generate and receive Lamb waves which are sensitive to material properties. The variation of phase velocity with frequency is measured for several modes propagating parallel and normal to the fiber direction along a thin Olivier wood plates. A numerical model based mainly on an optimization method is developed; it permits to recover seven out of nine elastic constants with an uncertainty of about 15%. The remaining two elastic constants are then obtained from bulk wave measurements. The experimental Lamb phase velocities are in good agreement with the calculated dispersion curves. The evaluation of Olive wood elastic properties has been performed in the low frequency range where the Lamb length wave is large in comparison with the heterogeneity extent. Within the interval errors, the obtained elastic tensor doesn't reveal a large deviation from a uniaxial symmetry.

  1. Applying a Bayesian Approach to Identification of Orthotropic Elastic Constants from Full Field Displacement Measurements

    Science.gov (United States)

    Gogu, C.; Yin, W.; Haftka, R.; Ifju, P.; Molimard, J.; Le Riche, R.; Vautrin, A.

    2010-06-01

    A major challenge in the identification of material properties is handling different sources of uncertainty in the experiment and the modelling of the experiment for estimating the resulting uncertainty in the identified properties. Numerous improvements in identification methods have provided increasingly accurate estimates of various material properties. However, characterizing the uncertainty in the identified properties is still relatively crude. Different material properties obtained from a single test are not obtained with the same confidence. Typically the highest uncertainty is associated with respect to properties to which the experiment is the most insensitive. In addition, the uncertainty in different properties can be strongly correlated, so that obtaining only variance estimates may be misleading. A possible approach for handling the different sources of uncertainty and estimating the uncertainty in the identified properties is the Bayesian method. This method was introduced in the late 1970s in the context of identification [1] and has been applied since to different problems, notably identification of elastic constants from plate vibration experiments [2]-[4]. The applications of the method to these classical pointwise tests involved only a small number of measurements (typically ten natural frequencies in the previously cited vibration test) which facilitated the application of the Bayesian approach. For identifying elastic constants, full field strain or displacement measurements provide a high number of measured quantities (one measurement per image pixel) and hence a promise of smaller uncertainties in the properties. However, the high number of measurements represents also a major computational challenge in applying the Bayesian approach to full field measurements. To address this challenge we propose an approach based on the proper orthogonal decomposition (POD) of the full fields in order to drastically reduce their dimensionality. POD is

  2. Applying a Bayesian Approach to Identification of Orthotropic Elastic Constants from Full Field Displacement Measurements

    Directory of Open Access Journals (Sweden)

    Le Riche R.

    2010-06-01

    Full Text Available A major challenge in the identification of material properties is handling different sources of uncertainty in the experiment and the modelling of the experiment for estimating the resulting uncertainty in the identified properties. Numerous improvements in identification methods have provided increasingly accurate estimates of various material properties. However, characterizing the uncertainty in the identified properties is still relatively crude. Different material properties obtained from a single test are not obtained with the same confidence. Typically the highest uncertainty is associated with respect to properties to which the experiment is the most insensitive. In addition, the uncertainty in different properties can be strongly correlated, so that obtaining only variance estimates may be misleading. A possible approach for handling the different sources of uncertainty and estimating the uncertainty in the identified properties is the Bayesian method. This method was introduced in the late 1970s in the context of identification [1] and has been applied since to different problems, notably identification of elastic constants from plate vibration experiments [2]-[4]. The applications of the method to these classical pointwise tests involved only a small number of measurements (typically ten natural frequencies in the previously cited vibration test which facilitated the application of the Bayesian approach. For identifying elastic constants, full field strain or displacement measurements provide a high number of measured quantities (one measurement per image pixel and hence a promise of smaller uncertainties in the properties. However, the high number of measurements represents also a major computational challenge in applying the Bayesian approach to full field measurements. To address this challenge we propose an approach based on the proper orthogonal decomposition (POD of the full fields in order to drastically reduce their

  3. Elastic constants and thermodynamics properties of pristine PEDOT revealed: A first-principles PBE/PBE PAW approach

    CERN Document Server

    Agbaoye, R O; Akinlami, J O; Afolabi, T A; Karazhanov, S Zh; Ceresoli, D; Adebayo, G A

    2016-01-01

    In this work, we report for the first time, detailed calculations of elastic and thermodynamic properties of organic poly(3,4-ethylenedioxythiophene), PEDOT, in an undiluted state, using PBE and PBEsol-PAW pseudopotentials within the framework of Generalized Gradient Approximation Density Functional Theory. Contrary to Molecular Dynamic simulations, series of PBE and PBEsol-PAW calculations in the current work revealed the most stable state of monoclinic structured pristine PEDOT. We determined thirteen (13) independent elastic constants with elastic compliance which enables us to establish other elastic properties of pristine PEDOT; the Pugh's ratio and the Vicker's hardness calculations show small mismatches with PBE and PBEsol-PAW pseudopotentials. The Debye temperature TD is predicted both in the PBE and PBEsol-PAW calculations while the specific heat capacity Cv(T) follows the Dulong-Petit curve having no mismatch with Debye model at low temperature, with PBE predicting a higher Debye sound velocity than...

  4. Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator

    Science.gov (United States)

    Hu, Ji-Ying; Li, Zhao-Hui; Sun, Yang; Li, Qi-Hu

    2016-12-01

    Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A. Project supported by the National Defense Foundation of China (Grant No. 9149A12050414JW02180).

  5. Single-Crystal Elasticity of MgO at High Pressure and Temperature

    Science.gov (United States)

    Fan, D.; Mao, Z.; Lin, J. F.; Yang, J.; Prakapenka, V.

    2014-12-01

    Periclase (MgO) is a material of key importance to Earth sciences: it is one of the most abundant minerals in Earth's lower mantle. It has the simple NaCl structure with no phase transition at least up to 200 GPa and also has very high melting temperatures above 3000 K. These wide stability ranges of MgO cover high-pressure and high-temperature conditions corresponding to the Earth's lower mantle. Therefore, precise knowledge of the thermal elastic properties of MgO, major end-members of constituent mineral phases of the lower mantle, under high pressure and high temperature condition is crucial for constructing the accurate mineralogical model of the Earth's lower mantle. Here we have measured the single-crystal elasticity of MgO using in situ Brillouin spectroscopy and X-ray diffraction at simultaneous high pressure-temperature conditions up to 33 GPa and 900 K in an externally-heated diamond anvil cell. Using the third-order Eulerian finite-strain equations to model the elasticity data, we have derived the aggregate adiabatic bulk, KS0, and shear moduli, G0, at ambient conditions: KS0=162.9 (6) GPa (the value in parentheses represents propagated uncertainties) and G0=130.7 (8) GPa, respectively, consistent with literature results. The pressure derivatives of the bulk and shear moduli at 300K are (∂KS/∂P)T=4.06 (22) and (∂G/∂P)T=2.75(±0.18), respectively, which are also consistent with previous literature results. We also derived the temperature derivatives of these moduli at constant pressure. Our results here provide accurate insights into seismic profiles and mineralogical models of the lower mantle region.

  6. Ab initio calculations of polarization, piezoelectric constants, and elastic constants of InAs and InP in the wurtzite phase

    Energy Technology Data Exchange (ETDEWEB)

    Hajlaoui, C., E-mail: hajlaouic@yahoo.fr; Pedesseau, L. [Université Européenne de Bretagne (France); Raouafi, F.; Ben Cheikh Larbi, F. [Université de Carthage, Laboratoire de Physico-Chimie, des Microstructures et des Microsystémes, Institut Préparatoire aux Études Scientifiques et Techniques (Tunisia); Even, J.; Jancu, J.-M. [Université Européenne de Bretagne (France)

    2015-08-15

    We report first-principle density functional calculations of the spontaneous polarization, piezoelectric stress constants, and elastic constants for the III–V wurtzite structure semiconductors InAs and InP. Using the density functional theory implemented in the VASP code, we obtain polarization values–0.011 and–0.013 C/m{sup 2}, and piezoelectric constants e{sub 33} (e{sub 31}) equal to 0.091 (–0.026) and 0.012 (–0.081) C/m{sup 2} for structurally relaxed InP and InAs respectively. These values are consistently smaller than those of nitrides. Therefore, we predict a smaller built-in electric field in such structures.

  7. Effect of Microstructure Constraints on the Homogenized Elastic Constants of Elastomeric Sylgard/GMB Syntactic Foam.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Steck, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Judith Alice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Previous numerical studies of Sylgard filled with glass microballoons (GMB) have relied on various microstructure idealizations to achieve a large range of volume fractions with high mesh quality. This study investigates how different microstructure idealizations and constraints affect the apparent homogenized elastic constants in the virgin state of the material, in which all GMBs are intact and perfectly bonded to the Sylgard matrix, and in the fully damaged state of the material in which all GMBs are destroyed. In the latter state, the material behaves as an elastomeric foam. Four microstructure idealizations are considered relating to how GMBs are packed into a representative volume element (RVE): (1) no boundary penetration nor GMB-GMB overlap, (2) GMB-GMB overlap, (3) boundary penetration, and (4) boundary penetration and GMB-GMB overlap. First order computational homogenization with kinematically uniform displacement boundary conditions (KUBCs) was employed to determine the homogenized (apparent) bulk and shear moduli for the four microstructure idealizations in the intact and fully broken GMB material states. It was found that boundary penetration has a significant effect on the shear modulus for microstructures with intact GMBs, but that neither boundary penetration nor GMB overlap have a significant effect on homogenized properties for microstructures with fully broken GMBs. The primary conclusion of the study is that future investigations into Sylgard/GMB micromechanics should either force GMBs to stay within the RVE fully and/or use periodic BCs (PBCs) to eliminate the boundary penetration issues. The implementation of PBCs requires the improvement of existing tools in Sandia’s Sierra/SM code.

  8. Detection of elastic and electric conductivity anomalies in Potassium Sulphamate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Varughese, George, E-mail: gvushakoppara@yahoo.co.i [Department of Physics, Catholicate College, Pathanamthitta, Kerala 689645 (India); Santhosh Kumar, A. [SPAP, Mahatma Gandhi University, Kottayam, Kerala 686 560 (India); Louis, Godfrey [Department of Physics, Cochin University of Science and Technology, Cochin 22 (India)

    2010-04-01

    Elastic anomalies in Potassium Sulphamate, (KNH{sub 2}SO{sub 3}), above room temperature were detected from temperature variation of elastic constants measured by ultrasonic Pulse Echo Overlap technique. Potassium Sulphamate has been reported to be a ferroelectric and piezo electric material. The elastic constants C{sub 11}, C{sub 44}, C{sub 55} and C{sub 66} have exhibited weak anomalies around 350 K. The DC conductivity measurement along a, b, and c axes also supports this conclusion.

  9. Microscopic Rate Constants of Crystal Growth from Molecular Dynamic Simulations Combined with Metadynamics

    Directory of Open Access Journals (Sweden)

    Dániel Kozma

    2012-01-01

    Full Text Available Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.

  10. Impact of twin boundaries on bulk elastic constants: Density-functional theory data for Young׳s modulus of Ag.

    Science.gov (United States)

    Klöffel, Tobias; Bitzek, Erik; Meyer, Bernd

    2015-06-01

    Experimental and theoretical studies on nanowires have reported a size-dependence of the Young׳s modulus in the axial direction, which has been attributed to the increasing influence of surface stresses with decreasing wire diameter. Internal interfaces and their associated interface stresses could lead to similar changes in the elastic properties. In Kobler et al. [1], however, we reported results from atomistic calculations which showed for Ag that twin boundaries have a negligible effect on the Young׳s modulus. Here, we present data of density-functional theory calculations of elastic constants and Young׳s modulus for defect-free bulk Ag as well as for bulk Ag containing dense arrays of twin boundaries. It is shown that rigorous convergence tests are required in order to be able to deduce changes in the elastic properties due to bulk defects in a reliable way.

  11. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method

    CERN Document Server

    Barkaoui, Abdelwahed; Tarek, Merzouki; Hambli, Ridha; Ali, Mkaddem

    2014-01-01

    The complexity and heterogeneity of bone tissue require a multiscale modelling to understand its mechanical behaviour and its remodelling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network computation and homogenisation equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained neural network simulation. Finite element (FE) calculation is performed at nanoscopic levels to provide a database to train an in-house neural network program; (iii) in steps 2 to 10 from fibril to continuum cortical bone tissue, homogenisation equations are used to perform the computation at the higher s...

  12. Elastic properties of the degenerate f.c.c. crystal of polydisperse soft dimers at zero temperature

    CERN Document Server

    Narojczyk, J W

    2015-01-01

    Elastic properties of soft, three-dimensional dimers, interacting through site-site n-inverse-power potential, are determined by computer simulations at zero temperature. The degenerate crystal of dimers exhibiting (Gaussian) size distribution of atomic diameters - i.e. size polydispersity - is studied at the molecular number density $1/\\sqrt{2}$; the distance between centers of atoms forming dimers is considered as a length unit. It is shown that, at the fixed number density of the dimers, increasing polydispersity causes, typically, an increase of pressure, elastic constants and Poisson's ratio; the latter is positive in most direction. A direction is found, however, in which the size polydispersity causes substantial decrease of Poisson's ratio, down to negative values for large $n$. Thus, the system is partially auxetic for large polydispersity and large n.

  13. First principle study on the elastic and thermodynamic properties of TiB2 crystal under high temperature

    Institute of Scientific and Technical Information of China (English)

    Wang Chun-Lei; Yu Ben-Hai; Huo Hai-Liang; Chen Dong; Sun Hai-Bin

    2009-01-01

    This paper predicts the elastic and thermodynamic characteristics of T1B2 crystal through the method of density functional theory within the generalized gradient approximation (GGA). The five independent elastic constants (Cij), the bulk modulus (Bo), the dependence of bulk modulus (Bo) on temperature T and pressure P and the coefficient of thermal expansion (αL) at various temperatures have been evaluated and discussed. According to calculation, the bulk modulus will increase with increasing pressure while decrease with the increasing temperature. The coefficient of thermal expansion is consistent with the famous Griineisen's law when the temperature is not too high. The obtained results agree well with the experimental and other theoretical results.

  14. The Effect of Iron and Aluminium Incorporation on the Single-Crystal Elasticity of Bridgmanite at High Pressure.

    Science.gov (United States)

    Kurnosov, A.; Marquardt, H.; Boffa Ballaran, T.; Frost, D. J.

    2015-12-01

    MgSiO3 bridgmanite constitutes about 70% by volume of the Earth's lower mantle and likely governs the physical behavior of this region. Chemical substitutions in MgSiO3 bridgmanite involving Al and Fe may explain seismic velocity anomalies observed in the Earth's lower mantle [1-3]. However, the effects of these substitutions on the anisotropic elastic properties of bridgmanite at high pressure and temperature are still experimentally unconstrained. Here, we present data of internally consistent measurements of the single-crystal elastic properties of Mg0.88Fe0.12Si0.09Al0.11O3 bridgmanite at high-pressures. Two differently oriented single-crystals of brigmanite have been double-side polished and cut as two semi-disks using a FEI Scios Focused Ion Beam (FIB) machine [4]. Two semi-disks, one for each of the crystallographic orientations, were loaded together in the pressure chamber of a diamond anvil cell with helium as a pressure-transmitting medium. Simultaneous measurements of density and sound velocities have been made on both crystals at high pressures using single-crystal X-ray diffraction and Brillouin spectroscopy in order to obtain self-consistent data, which do not depend on a secondary pressure scale. The Brillouin data at each pressure were fitted for both crystals simultaneously in order to reduce correlations among the elastic constants Cij. Our approach allows determining the single-crystal elastic properties of bridgmanite as a function of pressure, derived independently of a secondary pressure. We will use our results for Al-Fe-bearing bridgmanite to discuss the effects of chemical substitution on the high-pressure elasticity of bridgmanite and implications for the interpretation of seismic heterogeneities in Earth's lower mantle. [1] Ni et al. (2005), Geophys. J. Int. 161, 283-294. [2] Masters et al. (2000), AGU Monograph Series, 117, 63-87. [3] Garnero et al. (2005), The Geological Society of America Special Paper, 430, 79-101. [4] Marquardt et al

  15. Modeling of elastic and plastic waves for HCP single crystals in a 3D formulation based on zinc single crystal

    Science.gov (United States)

    Krivosheina, Marina; Kobenko, Sergey; Tuch, Elena; Kozlova, Maria

    2016-11-01

    This paper investigates elastic and plastic waves in HCP single crystals through the numerical simulation of strain processes in anisotropic materials based on a zinc single crystal. Velocity profiles for compression waves in the back surfaces of single-crystal zinc plates with impact loading oriented in 0001 and 10 1 ¯0 are presented in this work as a part of results obtained in numerical simulations. The mathematical model implemented in this study reflects the following characteristics of the mechanical properties inherent in anisotropic (transtropic) materials: varying degree of anisotropy of elastic and plastic properties, which includes reverse anisotropy, dependence of distribution of all types of waves on the velocity orientation, and the anisotropy of compressibility. Another feature of elastic and plastic waves in HCP single crystals is that the shock wave does not split into an elastic precursor and "plastic" compression shock wave, which is inherent in zinc single crystals with loading oriented in 0001. The study compares numerical results obtained in a three-dimensional formulation with the results of velocity profiles from the back surfaces of target plates obtained in real experiments. These results demonstrate that the mathematical model is capable of describing the properties of the above-mentioned anisotropic (transtropic) materials.

  16. Estimation of dispersion curves by combining Effective Elastic Constants and SAFE Method: A case study in a plate under stress

    Science.gov (United States)

    Quiroga, J. E.; Mujica, L.; Villamizar, R.; Ruiz, M.; Camacho, J.

    2017-05-01

    This paper presents an approach to calculate dispersion curves for homogeneous and isotropic plates subject to stress, via Semi-Analytical Finite Element and the Effective Elastic Constants, since stresses in the waveguide modify the phase and group velocities of the lamb waves. In the proposed methodology an isotropic specimen subjected to anisotropic loading is emulated by proposing an equivalent stress-free anisotropic specimen. This approximation facilitates determining the dispersion curves by using the well-studied numerical solution for the stress-free cases. The lamb wave in anisotropic materials can be studied by means of the Effective Elastic Constants, which reduces the complexity of the numerical implementation. Finally, numerical data available in literature were used to validate the proposed methodology, where it could be demonstrated its effectiveness as approximated method.

  17. Atomistic calculation of elastic constants of alpha-iron containing point defects by means of magnetic interatomic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Chiesa, S. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Derlet, P.M. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)], E-mail: peter.derlet@psi.ch; Dudarev, S.L. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Van Swygenhoven, H. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2009-04-30

    The recently developed magnetic potential for ferromagnetic BCC Fe [S.L. Dudarev, P.M. Derlet, J. Phys. ondens. Mat. 17 (2005) 7097; P.M. Derlet, S.L. Dudarev, Prog. Mater. Sci. 52 (2007) 299] is used to investigate the change in the elastic constants of bcc {alpha}-Fe as a function of a concentration of interstitial and vacancy defects. The results are discussed in terms of experiment and current theoretical understanding.

  18. Effects of carbon and nitrogen on the elastic constants of AISI (American Iron and Steel Institute) type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, H.M.; Austin, M.W.

    1985-01-01

    Nine AISI type 304 stainless steel alloys were studied at room temperature. The carbon-plus-nitrogen contents of these alloys ranged from 0.067 to 0.325 wt.% (from 0.3 to 1.3 at. %). Five elastic constants (the longitudinal modulus, Young's modulus, the shear modulus, the bulk modulus and Poisson's ratio) were determined by a pulse echo ultrasonic method.

  19. Elastic constants of B-HMX and tantalum, equations of state of supercritical fluids and fluid mixtures and thermal transport determinations

    Energy Technology Data Exchange (ETDEWEB)

    Zaug, J M

    1998-08-21

    Ultrasonic sound speed measurements via Impulsive Stimulated Light Scattering (ISLS) were made in single crystals of b-HMX and tantalum over an extended range of temperatures. Elastic constants are consequently determined for b-HMX. Sound speeds are calculated for tantalum, from known elastic constants, and compare favorably with the results presented here. ISLS time-domain fits of tantalum records allowed for thermal diffusion determinations and, correspondingly, thermal conductivity. Measurements of the speed of sound and of the thermal diffusivities of fluid oxygen up to pressures of 13 GPa and at several temperatures are presented. Between 0.1 and 13 GPa the fluid's density increases by a factor of three. Thermal diffusivities rise slowly over this range, and are substantially smaller than those previously measured for the solid b-phase. Additional sound speed measurements were made along the 250 C isotherm in a 1:1 molar ratio mixture of liquid oxygen and nitrogen. These experiments demonstrate the versatility and potential application of a new laboratory within the U. S. DOD and DOE complex. 1

  20. Cubic Single Crystal Representations in Classical and Size-dependent Couple Stress Elasticity

    CERN Document Server

    Bansal, Dipanshu; Aref, Amjad J; Hadjesfandiari, Ali R

    2015-01-01

    Beginning with Cosserat theory in the early 20th century, there have been several different formulations for size-dependent elastic response. In this paper, we concentrate on the application of classical Cauchy theory and the recent parsimonious consistent couple stress theory to model a homogeneous linear elastic solid, exemplified by a pure single crystal with cubic structure. The focus is on an examination of elastodynamic response based upon wave velocities from ultrasonic excitation and phonon dispersion curves, along with adiabatic bulk moduli measurements. In particular, we consider in detail elastic parameter estimation within classical elasticity and consistent couple stress theory for four different cubic single crystals (NaCl, KCl, Cu, CuZn). The classical theory requires the estimation of three independent material parameters, while only one additional parameter relating skew-symmetric mean curvature to skew-symmetric couple-stress is needed for the size-dependent consistent couple stress theory. ...

  1. Determination of the full elastic moduli of single crystals using shear-wave velocities by Brillouin spectroscopy

    Science.gov (United States)

    Fan, D.; Mao, Z.; Lin, J.; Yang, J.

    2013-12-01

    Brillouin light scattering (BLS) is the inelastic scattering of monochromatic laser light by phonons in the GHz frequency range [1]. BLS spectroscopy can be used to measure sound velocities traveling along certain directions of a single crystal through the frequency shifts of the scattered light from the acoustic phonons [1]. Over the past few decades, BLS spectroscopy has been widely used to measure the velocities of acoustic waves for a wide range of Earth's materials, in which the full elastic constants were derived from the measured compressional (VP) and shear wave (VS) velocities. However, the VP velocities of minerals normally overlap with the shear-wave velocities of diamonds in Brillouin measurements approximately above 25 GPa [2-5] such that only VS of minerals can be measured experimentally. Theoretical models have showed that the shear-wave velocities of minerals also carry necessary information to invert the full elastic tensors [2], although previous studies at high pressures have focused on measuring velocities within the principle planes of the crystals. This leads to a strong trade-off among individual Cij, preventing the derivation of the full elastic tensors from the VS velocities alone [3-5]. In this study, we have come up with an elastic model to overcome this problem by finding a suitable crystallographic plane that has optimized VS-VP interactions in the elastic tensors. Using MgO, spinel and zoisite as test samples, we have used measured VP/VS or VS velocities of these crystals using BLS spectroscopy to derive their full elastic tensors. This new approach sheds lights on future high-pressure elasticity studies relevant to materials the Earth's deep interior. 1. Sinogeikin, S.V., Bass, J.D., Phys. Earth Planet. Inter., 120, 43 (2000). 2. Every, A. G., Phys. Rev. B., 22, 1746, (1980) 3. Marquardt, H., Speziale, S., Reichmann, H.J., Frost, D.J., and Schilling, F.R., Earth Planet. Sci. Lett., 287, 345 (2009). 4. Marquardt, H., Speziale, S

  2. Phase-space properties of two-dimensional elastic phononic crystals and anharmonic effects in nano-phononic crystals

    Science.gov (United States)

    Swinteck, Nichlas Z.

    This dissertation contains research directed at investigating the behavior and properties of a class of composite materials known as phononic crystals. Two categories of phononic crystals are explicitly investigated: (I) elastic phononic crystals and (II) nano-scale phononic crystals. For elastic phononic crystals, attention is directed at two-dimensional structures. Two specific structures are evaluated (1) a two-dimensional configuration consisting of a square array of cylindrical Polyvinylchloride inclusions in air and (2) a two-dimensional configuration consisting of a square array of steel cylindrical inclusions in epoxy. For the first configuration, a theoretical model is developed to ascertain the necessary band structure and equi-frequency contour features for the realization of phase control between propagating acoustic waves. In contrasting this phononic crystal with a reference system, it is shown that phononic crystals with equifrequency contours showing non-collinear wave and group velocity vectors are ideal systems for controlling the phase between propagating acoustic waves. For the second configuration, it is demonstrated that multiple functions can be realized of a solid/solid phononic crystal. The epoxy/steel phononic crystal is shown to behave as (1) an acoustic wave collimator, (2) a defect-less wave guide, (3) a directional source for elastic waves, (4) an acoustic beam splitter, (5) a phase-control device and (6) a k-space multiplexer. To transition between macro-scale systems (elastic phononic crystals) and nano-scale systems (nano-phononic crystals), a toy model of a one-dimensional chain of masses connected with non-linear, anharmonic springs is utilized. The implementation of this model introduces critical ideas unique to nano-scale systems, particularly the concept of phonon mode lifetime. The nano-scale phononic crystal of interest is a graphene sheet with periodically spaced holes in a triangular array. It is found through equilibrium

  3. First-principles study of electronic, elastic, and optical properties of Yb:CaF{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yuan-Yuan; Li, Zhi-Guo; Chen, Xiang-Rong [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Lab. of High Energy Density Physics and Technology of Ministry of Education; Ji, Guang-Fu [Chinese Academy of Engineering Physics, Mianyang (China). National Key Lab. for Shock Wave and Detonation Physics Research

    2015-07-01

    The electronic structure, elastic, and optical properties of CaF{sub 2} and Yb-doped CaF{sub 2} are investigated by the first-principles calculations. The obtained lattice parameters, band structure, density of state, elastic constants, and imaginary part of dielectric function ε{sub 2} for CaF{sub 2} agree well with the experimental and other theoretical results. A good comparison of the properties is made between CaF{sub 2} and Yb:CaF{sub 2}, and it is found that: firstly, Yb doping leads to the crystal structure distortion of CaF{sub 2} and reduction of the elastic constants. Secondly, an impurity band is found at the top of valence band in the band structure of Yb:CaF{sub 2} and contributes to the bandgap narrowing. Thirdly, the peaks at about 26 eV in the optical curves disappear after Yb doping, and the remaining two peaks shift towards the longer-wavelength side, with the peak intensities drop down, indicating that Yb doping makes the ultraviolet transmittance of the system improve and the range of light in the UV region widen. Furthermore, Yb doping induces new peaks in the optical curves, which may be caused by 4f electron transitions of Yb atom. Finally, the transmittance of the doped system increases when the Yb-doped proportion decreases.

  4. Diffraction plane dependence of elastic constants in residual stress measurement by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Okido, Shinobu; Hayashi, Makoto [Hitachi Ltd., Tokyo (Japan); Morii, Yukio; Minakawa, Nobuaki; Tsuchiya, Yoshinori

    1997-06-01

    In a residual stress measurement by x-ray diffraction method and a neutron diffraction method, strictly speaking, the strain measurement of various diffracted surface was conducted and it is necessary to use its elastic modulus to convert from the strain to the stress. Then, in order to establish the residual stress measuring technique using neutron diffraction, it is an aim at first to make clear a diffraction surface dependency of elastic modulus for the stress conversion in various alloys. As a result of investigations the diffraction surface dependency of elastic module on SUS304 and STS410 steels by using RESA (Neutron diffractometer for residual stress analysis) installed at JRR-3M in Tokai Establishment of JAERI, following results are obtained. The elastic modulus of each diffraction surface considering till plastic region could be confirmed to be in a region of {+-}20% of that calculated by Kroner`s model and to be useful for that used on conversion to the stress. And, error of this elastic modulus was thought to cause the transition and defect formed at inner portion of the materials due to a plastic deformation. (G.K.)

  5. Acoustic and elastic properties of Sn(2)P(2)S(6) crystals.

    Science.gov (United States)

    Mys, O; Martynyuk-Lototska, I; Grabar, A; Vlokh, R

    2009-07-01

    We present the results concerned with acoustic and elastic properties of Sn(2)P(2)S(6) crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  6. Descriptors for predicting the lattice constant of body centered cubic crystal

    Science.gov (United States)

    Takahashi, Keisuke; Takahashi, Lauren; Baran, Jakub D.; Tanaka, Yuzuru

    2017-05-01

    The prediction of the lattice constant of binary body centered cubic crystals is performed in terms of first principle calculations and machine learning. In particular, 1541 binary body centered cubic crystals are calculated using density functional theory. Results from first principle calculations, corresponding information from periodic table, and mathematically tailored data are stored as a dataset. Data mining reveals seven descriptors which are key to determining the lattice constant where the contribution of descriptors is also discussed and visualized. Support vector regression (SVR) technique is implemented to train the data where the predicted lattice constants have the mean score of 83.6% accuracy via cross-validation and maximum error of 4% when compared to experimentally determined lattice constants. In addition, trained SVR is successful in predicting material combinations from a desired lattice constant. Thus, a set of descriptors for determining the lattice constant is identified and can be used as a base descriptor for lattice constants of further complex crystals. This would allow for the acceleration of the search for lattice constants of desired atomic compositions as well as the prediction of new materials based on a specified lattice constant.

  7. Design, construction, and measurements of a bender, which provide constant position of the central part of the crystal monocromator during bending process (abstract)

    Science.gov (United States)

    Artemev, A.; Artemiev, N.; Busetto, E.; Franc, F.; Hrdý, J.; Mrázek, D.; Savoia, A.

    2002-03-01

    The bender described is a part of the double crystal monochromator for the QUICKEXAFS spectrometer, which is under development for ELETTRA. Technical specification for the bender include the following: constant position of the central point of the crystal during the bending process, the full size of the crystal must be as small as possible in the dynamic bending process, and the bender must be highly vacuum compatible. To satisfy all of these demands we propose a new scheme for a bender of rectangular crystal with four living supports. The bender has two inner wings, which bear two inner crystal supports, and two outer wings, which bear two outer supports. These wings are moved by two cones placed on the same rod. The cones have different profiles. In order to keep the central part of the crystal in a constant position during the bending process these cone profiles are designed and manufactured in a very special way. Measurements of the bender characteristics were made with the help of a test bench. Instead of a Si single crystal we used a bronze plate of the same size, which had very similar elastic constants. The full scattering of the position of the central part of the bronze plate during the bending process is less then 100 μm. The measured profile of the plate bent to about 506 mm was compared with a circle fitted by the least square method. The relative difference between measured and fitted radius appeared to be about 10-5.

  8. Structural, elastic constants, hardness, and optical properties of pyrite-type dinitrides (CN 2, SiN 2, GeN 2)

    Science.gov (United States)

    Ding, Y. C.; Xiang, A. P.; He, X. J.; Hu, X. F.

    2011-04-01

    The crystal structures, band structures, elastic constants, hardness, and optical properties of pyrite-type dinitrides (CN 2, SiN 2, and GeN 2) are obtained from the density functional theory using the plane-wave pseudopotential (PWP) method within the local density and generalized gradient approximations. The formation enthalpies for AN 2 (A=C, Si, and Ge) compounds suggest the three structures that are stable. The calculated band structures show the indirect gaps ( Γ-R) in CN 2, SiN 2, and GeN 2. The intrinsic hardnesses of AN 2 (A=C, Si, and Ge ) compounds are calculated. Our results show that the cubic CN 2 and SiN 2 are superhard materials. Furthermore, we studied the optical properties such as the complex dielectric function and the electron energy loss spectra.

  9. Applications of a tight-binding total energy method for transition and noble metals Elastic Constants, Vacancies, and Surfaces of Monatomic Metals

    CERN Document Server

    Mehl, M J; Mehl, Michael J.; Papaconstantopoulos, Dimitrios A.

    1996-01-01

    A recent tight-binding scheme provides a method for extending the results of first principles calculations to regimes involving $10^2 - 10^3$ atoms in a unit cell. The method uses an analytic set of two-center, non-orthogonal tight-binding parameters, on-site terms which change with the local environment, and no pair potential. The free parameters in this method are chosen to simultaneously fit band structures and total energies from a set of first-principles calculations for monatomic fcc and bcc crystals. To check the accuracy of this method we evaluate structural energy differences, elastic constants, vacancy formation energies, and surface energies, comparing to first-principles calculations and experiment. In most cases there is good agreement between this theory and experiment. We present a detailed account of the method, a complete set of tight-binding parameters, and results for twenty-nine of the alkaline earth, transition and noble metals.

  10. Geometric methods in the elastic theory of membranes in liquid crystal phases

    CERN Document Server

    Ji Xing Liu; Yu Zhang Xie

    1999-01-01

    This book contains a comprehensive description of the mechanical equilibrium and deformation of membranes as a surface problem in differential geometry. Following the pioneering work by W Helfrich, the fluid membrane is seen as a nematic or smectic - A liquid crystal film and its elastic energy form is deduced exactly from the curvature elastic theory of the liquid crystals. With surface variation the minimization of the energy at fixed osmotical pressure and surface tension gives a completely new surface equation in geometry that involves potential interest in mathematics. The investigations

  11. Thermal expansion and elastic anisotropy in single crystal Al2O3 and SiC reinforcements

    Science.gov (United States)

    Salem, Jonathan A.; Li, Zhuang; Bradt, Richard C.

    1994-01-01

    In single crystal form, SiC and Al2O3 are attractive reinforcing components for high temperature composites. In this study, the axial coefficients of thermal expansion and single crystal elastic constants of SiC and Al2O3 were used to determine their coefficients of thermal expansion and Young's moduli as a function of crystallographic orientation and temperature. SiC and Al2O3 exhibit a strong variation of Young's modulus with orientation; however, their moduli and anisotropies are weak functions of temperature below 1000 C. The coefficients of thermal expansion exhibit significant temperature dependence, and that of the non-cubic Al2O3 is also a function of crystallographic orientation.

  12. Elastic Torque and the Levitation of Metal Wires by a Nematic Liquid Crystal

    Science.gov (United States)

    Lapointe, C.; Hultgren, A.; Silevitch, D. M.; Felton, E. J.; Reich, D. H.; Leheny, R. L.

    2004-01-01

    Anisotropic particles suspended in a nematic liquid crystal disturb the alignment of the liquid crystal molecules and experience small forces that depend on the particles' orientation. We have measured these forces using magnetic nanowires. The torque on a wire and its orientation-dependent repulsion from a flat surface are quantitatively consistent with theoretical predictions based on the elastic properties of the liquid crystal. These forces can also be used to manipulate submicrometer-scale particles. We show that controlled spatial variations in the liquid crystal's alignment convert the torque on a wire to a translational force that levitates the wire to a specified height.

  13. Elasticity

    CERN Document Server

    Soutas-Little, Robert William

    2010-01-01

    According to the author, elasticity may be viewed in many ways. For some, it is a dusty, classical subject . . . to others it is the paradise of mathematics."" But, he concludes, the subject of elasticity is really ""an entity itself,"" a unified subject deserving comprehensive treatment. He gives elasticity that full treatment in this valuable and instructive text. In his preface, Soutas-Little offers a brief survey of the development of the theory of elasticity, the major mathematical formulation of which was developed in the 19th century after the first concept was proposed by Robert Hooke

  14. Optimal cuts to extract the third-order piezoelectric constants and electrostictive constants of langasite single crystals through the electroelastic effect.

    Science.gov (United States)

    Zhang, Haifeng

    2013-07-01

    Optimal cuts to determine the third-order piezoelectric constants and electrostrictive constants of langasite single crystals by the resonator method are proposed. By selecting several langasite resonators with optimal cut angles and measuring their electroelastic effects, third-order piezoelectric constants and electrostrictive constants of langasite single crystals may be extracted. The numerical method to search these optimal cut angles is presented. The methodology has been validated by finite element analysis. This method will simplify traditional methods used to determine the third-order piezoelectric and electrostrictive constants for langasite single crystals and could potentially produce more accurate results. The method could also be used to determine the third-order piezoelectric and electrostrictive constants for other crystals with trigonal 32 symmetry.

  15. Elastic interactions and manipulation of wire-shaped inclusions in nematic liquid crystals

    Science.gov (United States)

    Lapointe, Clayton P.

    Anisotropic particles suspended in a nematic liquid crystal disturb the alignment of the liquid crystal molecules and experience small forces and torques mediated by the elasticity of the fluid. These elastic interactions depend upon the orientation of the particle relative to the alignment of the liquid crystal as well as the nature of the molecular-scale alignment at the surface of the particle. In this thesis, I present the results of video microscopy studies on elastic interactions on ferromagnetic nanowires suspended in the nematic liquid crystal 4-pentyl-4-cyanobiphenyl (5CB). In the first part, I describe measurements that characterize the orientation-dependent elastic torque on a nanowire with longitudinal anchoring in uniformly aligned 5CB, its temperature dependence, as well as the elastic repulsion of a nanowire from a flat wall. These measurements were found to be quantitatively consistent with theoretical predictions based on the elastic properties of 5CB. In the second part of this thesis, I demonstrate that distorting the liquid crystal from a state of uniform alignment results in converting the elastic torque on a nanowire into an orientation-dependant translational force that can be utilized to reversibly manipulate the positions of isolated nanowires as well as to assemble suspensions of them into pre-designed arrays on a substrate. First, I describe measurements of an orientation-dependent levitating force on a nanowire in a twisted nematic cell. This force can be used to position nanowires to pre-determined heights above the bottom substrate by controlling their orientation with an external magnetic field. I then describe a series of experiments in which in a liquid crystal cell with a pattern of micron-scale stripe domains was used to drive nanowires held at a fixed orientation with external magnetic fields selectively into the middle of the stripe domains. In the last part of this thesis, I discuss video microscopy experiments to probe the

  16. An accurate determination of the Avogadro constant by counting the atoms in a 28Si crystal

    CERN Document Server

    Andreas, B; Bartl, G; Becker, P; Bettin, H; Borys, M; Busch, I; Gray, M; Fuchs, P; Fujii, K; Fujimoto, H; Kessler, E; Krumrey, M; Kuetgens, U; Kuramoto, N; Mana, G; Manson, P; Massa, E; Mizushima, S; Nicolaus, A; Picard, A; Pramann, A; Rienitz, O; Schiel, D; Valkiers, S; Waseda, A

    2010-01-01

    The Avogadro constant links the atomic and the macroscopic properties of matter. Since the molar Planck constant is well known via the measurement of the Rydberg constant, it is also closely related to the Planck constant. In addition, its accurate determination is of paramount importance for a definition of the kilogram in terms of a fundamental constant. We describe a new approach for its determination by "counting" the atoms in 1 kg single-crystal spheres, which are highly enriched with the 28Si isotope. It enabled isotope dilution mass spectroscopy to determine the molar mass of the silicon crystal with unprecedented accuracy. The value obtained, 6.02214084(18) x 10^23 mol^-1, is the most accurate input datum for a new definition of the kilogram.

  17. Elastic properties of Cs{sub 2}HgBr{sub 4} and Cs{sub 2}CdBr{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kityk, A.V.; Zadorozhna, A.V.; Shchur, Y.I.; Martynyuk-Lototska, Y.I.; Burak, Y.; Vlokh, O.G. [Institute of Physical Optics, Lvov (Ukraine)

    1998-12-31

    Using ultrasonic velocity measurements, all components of the elastic constant matrix C{sub ij} , elastic compliances matrix S{sub ij}, and linear compressibility constants matrix K{sub ij} of orthorhombic Cs{sub 2}HgBr{sub 4} and Cs{sub 2}CdBr{sub 4} crystals have been determined over a wide temperature range, including the region of the phase transition from the normal to the incommensurate phase. Results obtained are considered within the framework of the phenomenological theory. Preliminary analysis of the acoustical properties at room temperature clearly indicates that both crystals are relatively important materials for acousto-optical applications. Copyright (1998) CSIRO Australia 16 refs., 1 tab. 8 figs. The URL for the electronic version of this article is http://www.publish.csiro.au/journals/ajp/electronic.html

  18. Second- and Third-Order Elastic Constants of Filaments of HexTow® IM7 Carbon Fiber

    Science.gov (United States)

    Oliveira, L.; Hitchcock, D.; Behlow, H.; Podila, R.; Skove, M. J.; Serkiz, S. M.; Rao, A. M.

    2014-03-01

    Single filaments of HexTow® IM7-12K carbon fiber were subjected to tensile measurements on a device which applies a known stress σ, and measures the resulting strain ɛ, and the change in resistivity Δρ. Young's modulus E, the resistivity ρ, the piezoresistivity Δρ/ρɛ, and the nonlinearity in the stress-strain relation δ, were determined to be 264.1 ± 16.0 GPa, 1.5 ± 0.1 × 10-3 Ω cm, 1.3 ± 0.1, and -4.96 ± 0.23, respectively. The values obtained for Young's modulus and the resistivity of the fiber are in reasonable agreement with the values reported by the manufacturer. To the best of our knowledge, this is the first report of a measurement of a third-order elastic constant of a single filament of HexTow® IM7-12K. Given the high elastic strains attainable in these fibers and the negative value of δ, the usual calculation of E from a linear fit to the stress-strain data leads to an incorrect higher value of E. According to the accepted thermodynamic definition of the elastic constants, one must use the initial slope of the stress-strain curve to evaluate E. We also observed that the glue used to secure the fiber has an influence on the apparent modulus of the fiber.

  19. Defects in Nonlinear Elastic Crystals: Differential Geometry, Finite Kinematics, and Second-Order Analytical Solutions

    Science.gov (United States)

    2015-04-01

    of dislocations in anisotropic crystals, Int. J. Eng. Sci. 5, 171–190 (1967). [92] A. Yavari and A. Goriely, Riemann -Cartan geometry of nonlinear...distributed point defects, Proc. R. Soc. Lond. A 468, 3902–3922 (2012). [94] A. Yavari and A. Goriely, Riemann -Cartan geometry of nonlinear disclination...ARL-RP-0522 ● APR 2015 US Army Research Laboratory Defects in Nonlinear Elastic Crystals: Differential Geometry , Finite

  20. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants.

    Science.gov (United States)

    Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo

    2016-07-01

    The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated.

  1. On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations

    DEFF Research Database (Denmark)

    Andriollo, Tito; Hattel, Jesper

    2016-01-01

    particle strength. It is shown that if the nodule internal structure is considered, the traditional isotropy assumption leads to the definition of a domain of admissible values for the effective elastic constants. However, micromechanical calculations indicate that values within the domain do not provide....... In the present paper, the nodules’ elastic properties are thoroughly investigated by means of both analytical and numerical techniques. The analysis takes into account the influence of several non-linear phenomena, as local residual stresses arising during solid-state cooling, interface debonding and limited...... mesoscopic moduli in agreement with Young's modulus and Poisson's ratio recorded for common ferritic ductile iron grades. This suggests that graphite nodules may not be considered isotropic at the microscopic scale, at least from a mechanical viewpoint....

  2. On geological interpretations of crystal size distributions: Constant vs. proportionate growth

    Science.gov (United States)

    Eberl, D.D.; Kile, D.E.; Drits, V.A.

    2002-01-01

    Geological interpretations of crystal size distributions (CSDs) depend on understanding the crystal growth laws that generated the distributions. Most descriptions of crystal growth, including a population-balance modeling equation that is widely used in petrology, assume that crystal growth rates at any particular time are identical for all crystals, and, therefore, independent of crystal size. This type of growth under constant conditions can be modeled by adding a constant length to the diameter of each crystal for each time step. This growth equation is unlikely to be correct for most mineral systems because it neither generates nor maintains the shapes of lognormal CSDs, which are among the most common types of CSDs observed in rocks. In an alternative approach, size-dependent (proportionate) growth is modeled approximately by multiplying the size of each crystal by a factor, an operation that maintains CSD shape and variance, and which is in accord with calcite growth experiments. The latter growth law can be obtained during supply controlled growth using a modified version of the Law of Proportionate Effect (LPE), an equation that simulates the reaction path followed by a CSD shape as mean size increases.

  3. Comment on "Reappraisal of experimental values of third-order elastic constants of some cubic semiconductors and metals"

    OpenAIRE

    Mañosa, Lluís

    2006-01-01

    In a recent paper A. S. Johal and D. J. Dunstan [Phys. Rev. B 73, 024106 (2006)] have applied multivariate linear regression analysis to the published data of the change in ultrasonic velocity with applied stress. The aim is to obtain the best estimates for the third-order elastic constants in cubic materials. From such an analysis they conclude that uniaxial stress data on metals turns out to be nearly useless by itself. The purpose of this comment is to point out that by a proper analysis o...

  4. Optical constants of yttrium-iron garnet single-crystal film structures

    Science.gov (United States)

    Sobol, V. R.; Volchik, T. V.; Arabei, S. M.; Korzun, B. V.; Kalanda, N. A.

    2009-03-01

    Light-attenuation spectra of yttrium-iron garnet single-crystal film structures grown on a gallium-gadolinium garnet substrate by liquid-phase epitaxy from the undercooled solution in the melt have been studied and compared with those of bulk yttrium-iron garnet samples. The calculated optical constants are discussed taking into account the influence of crystal field on the splitting of the energy states of iron ions in the film samples.

  5. Elastic Wave Propagation in Two-Dimensional Ordered and Weakly Disordered Phononic Crystals

    Institute of Scientific and Technical Information of China (English)

    YUAN Zuo-Dong; CHENG Jian-Chun

    2005-01-01

    @@ Elastic wave propagation in two-dimensional solid-solid ordered and weakly disordered phononic crystals is studied by using finite-difference time-domain method.Theoretical results show that obvious band gaps in the ordered crystal could be found, while in the weakly disordered ones the band gaps could partially vanish.Furthermore,with increase of disorder, band gaps are destructed badly and prominently in the high frequency regime while slightly in the low regime.Comparing the energy transmission dependent on time, we find that the coda wave phenomenon is prominent in the ordered crystal while weakened in the weakly disordered ones, and the physical properties are discussed.

  6. The study of the elasticity of spider dragline silk with liquid crystal model

    Energy Technology Data Exchange (ETDEWEB)

    Cui Linying, E-mail: cly05@mails.tsinghua.edu.c [Department of Physics, Tsinghua University, Beijing 100084 (China); Liu Fei [Centre for Advanced Study, Tsinghua University, Beijing 100084 (China); Ouyang Zhongcan, E-mail: oy@itp.ac.c [Centre for Advanced Study, Tsinghua University, Beijing 100084 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, PO Box 2735, Beijing 100190 (China)

    2009-11-30

    Spider dragline silk is an optimal biomaterial with a combination of high tensile strength and high elasticity, and it has long been suggested to belong to liquid crystalline materials. However, a satisfactory liquid crystal description for the mechanical properties of the dragline is still missing. To solve the long existing problem, we generalized the Maier-Saupe theory of nematics to construct a liquid crystal model of the deformation mechanism of the dragline silk. We show that the remarkable elasticity of the dragline can be understood as the isotropic-nematic phase transition of the chain network with the beginning of the transition corresponding to the yield point. The calculated curve fits well with the measurements and the yield point is obtained self-consistently within our framework. The present theory can also qualitatively account for the drop of stress in supercontracted spider silk. All these comprehensive agreements between theory and experiments strongly indicate the dragline to belong to liquid crystal materials.

  7. The application of the photoacoustic transmittance oscillations for determining elastic constants in gallium and indium selenides

    Science.gov (United States)

    Ferrer, Ch.; Segura, A.; Andrés, M. V.; Muñoz, V.; Pellicer, J.

    1996-03-01

    Transmittance periodic oscillations are observed in GaSe and InSe on excitation with optical pulses. Such oscillations are explained in terms of photoacoustic generation of dilatational waves, which become resonant within the crystal. Spectral analysis of those oscillations in samples of different thickness has led to an accurate determination of the longitudinal acoustic-wave velocity along the crystallographic axis c.

  8. Elastic anomalies in BaFe{sub 2-x}Ni{sub x}As{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Saint-Paul, M., E-mail: michel.saint-paul@grenoble.cnrs.fr [Institut Neel, CNRS et Universite Joseph Fourier BP 166, F 38042 Grenoble Cedex 9 (France); Abbassi, A. [Faculte des Sciences et Techniques de Tanger, BP 416 Tanger, Universite Abdelmalek Essaadi (Morocco); Wang Zhaosheng [Institut Neel, CNRS et Universite Joseph Fourier BP 166, F 38042 Grenoble Cedex 9 (France); Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190 (China); Luo Huinqian; Lu Xingye; Ren Cong [Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190 (China); Wen, Hai-Hu [Institute of Physics and National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190 (China); National Laboratory for Solid State Microstuctures, Department of Physics, Nanjing University, 210093 Nanjing (China); Hasselbach, K. [Institut Neel, CNRS et Universite Joseph Fourier BP 166, F 38042 Grenoble Cedex 9 (France)

    2012-12-14

    We present ultrasonic measurements on superconducting BaFe{sub 2-x}Ni{sub x}As{sub 2} crystals with x = 0.07 and x = 0.15. The elastic constants C{sub 33} and C{sub 44} for the underdoped crystal (x = 0.07) show a large softening related to the structural phase transition at high temperatures. Anomalies in the sound velocity and the ultrasonic attenuation have been found at the superconducting phase transition T{sub c} = 17 K. Ultrasonic attenuation exhibits a peak at the superconducting transition in contrast with the attenuation in conventional superconductors. In the overdoped crystal (x = 0.15) a minimum of C{sub 66} is found at a temperature just above the superconducting temperature T{sub c} = 13 K. Superconducting energy gap values have been tentatively extracted from the longitudinal ultrasonic attenuation. Unconventional behaviour of the ultrasonic attenuation is observed in the superconducting BaFe{sub 2-x}Ni{sub x}As{sub 2} crystals.

  9. Photo-elastic effect, thermal lensing and depolarization in a-cut tetragonal laser crystals

    Science.gov (United States)

    Yumashev, K. V.; Zakharova, A. N.; Loiko, P. A.

    2016-06-01

    We report on analytical description of thermal lensing effect in tetragonal crystals cut along the [1 0 0] crystallographic axis, for the two principal light polarizations, E ┴ c and E || c, under diode-pumping (plane stress approximation). Within this approach, we take into account anisotropy of elastic, photo-elastic, thermal and optical properties of the material. Expressions for the ‘generalized’ thermo-optic coefficient χ are presented. It is shown that astigmatism of thermal lens is determined both by the photo-elastic and end-bulging effects. The sign of the photo-elastic term χ″ can be either positive or negative affecting significantly the sign of the thermal lens. Depolarization loss in a-cut tetragonal crystals is few orders of magnitude lower than that in cubic crystals. Calculations are performed for a-cut tetragonal molybdates, Nd:CaMoO4, Nd:PbMoO4 and Nd:NaBi(MoO4)2.

  10. Elastic Properties of Nematic Liquid Crystals Formed by Living and Migrating Cells

    CERN Document Server

    Kemkemer, R; Kaufmann, D; Gruler, H; Kemkemer, Ralf; Kling, Dieter; Kaufmann, Dieter; Gruler, Hans

    1998-01-01

    In culture migrating and interacting amoeboid cells can form nematic liquid crystal phases. A polar nematic liquid crystal is formed if the interaction has a polar symmetry. One type of white blood cells (granulocytes) form clusters where the cells are oriented towards the center. The core of such an orientational defect (disclination) is either a granulocyte forced to be in an isotropic state or another cell type like a monocyte. An apolar nematic liquid crystal is formed if the interaction has an apolar symmetry. Different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (= fat cells) etc., form an apolar nematic liquid crystal. The orientational elastic energy is derived and the orientational defects (disclination) of nematic liquid crystals are investigated. The existence of half-numbered disclinations show that the nematic phase has an apolar symmetry. The density- and order parameter dependence...

  11. Computation of the Madelung constant for hypercubic crystal structures in any dimension

    CERN Document Server

    Mamode, Malik

    2015-01-01

    A new method of computing the Madelung constants for hypercubic crystal structures in any dimension $n\\geq 2$ is given. It is shown for $n\\geq 3$ that the Madelung constant may be obtained in a simple, efficient and unambiguous way as the Hadamard finite part of the integral representation of the potential within the crystal which is divergent at any point charge location. Such a regularization method fails in the bidimensional case due to the logarithmic nature of singularities for the potential. In that case, a specific approach is proposed taking in account the scale invariance of the Poisson equation and the existence of a finite horizon for each point charge in the plane. Since a closed-form exact solution for the 2D electrostatic potential may be derived, one shows that the Madelung constant may be defined via an appropriate limit calculation as the mean value of potential energies of charges composing the unit cell.

  12. WNx and MoNx Layers: Elastic Properties and Crystal Structure

    Science.gov (United States)

    Ozsdolay, Brian

    epitaxial WN(001) and WN(111) layers indicate Hill's elastic and shear moduli for cubic WN of 251+/-17 and 99+/-8 GPa, respectively. The resistivity of WN(111)/MgO(111) is 1.9x10-5 and 2.2x10-5 O-m at room temperature and 77 K, respectively, indicating weak carrier localization. The room temperature resistivity is 16% and 42% lower for WN/MgO(001) and WN/Al2O 3(0001), suggesting a resistivity decrease with decreasing crystalline quality and phase purity. Density functional theory calculations indicate an increase in structural stability by the introduction of either W or N vacancies into the cubic WN rock-salt structure, reducing the formation energy per W atom from 0.63 eV for the rock-salt structure to 0.16 eV for WN0.75 and -0.16 eV for WN1.33, to -0.83 eV for stoichiometric WN in the NbO structure. The out-of-plane lattice constant decreases from 4.357-4.169 A with increasing Ts = 500-700 °C. Comparing these values with calculated lattice constants indicates that the W vacancy concentration increases from 6-11% for Ts = 500-600 °C to 11-18% for Ts = 700 °C, while the N vacancy concentration also increases from negligible to 18-29%. The simultaneous increase of both vacancy types is attributed to thermally activated N2 recombination and desorption and atomic rearrangement towards the thermodynamically favorable cubic NbO structure which contains 25% of both W and N vacancies. The measured elastic modulus ranges from 110-260 GPa for 500-700 °C and decreases with increasing N-content, and increases to 350 GPa for Ts = 800 °C. The room temperature resistivity decreases with increasing Ts = 500-700 °C from 4.5-1.1x103 microO-cm, indicating a resistivity decrease with decreasing nitrogen content and increasing crystalline quality and phase purity. MoNx layers were deposited epitaxially on MgO(001) substrates by reactive magnetron sputtering in 20 mTorr N2 at 600-1000 °C. X-ray diffraction showed that all layers were 001 oriented cubic crystals with lattice constants

  13. Design, construction and tests of a crystal bender which provides constant position of the central part of the crystal

    CERN Document Server

    Artemiev, A I; Busetto, E; Franc, F; Hrdy, J; Mrazek, D; Savoia, A

    2001-01-01

    We propose a new scheme for a crystal bender. This scheme provides the constant position of the central point of a rectangular crystal during the bending process. The measurements show that the full scatter of the position of the central part of a sample during the bending process is slightly less than 100 microns. The measured profile of a sample bent to a radius of about 50 cm was compared with a circle fitted by the least square method. The relative difference between measured and fitted radii appeared to be about 10 sup - sup 5.

  14. Microscopic partition of pressure and elastic constants in CdTe polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, T. [Laboratoire de Physique Théorique, Tlemcen University, 13000 Tlemcen (Algeria); École Préparatoire en Sciences et Techniques, 13000 Tlemcen (Algeria); Franco, R.; Menéndez, J.M.; Marqués, M. [MALTA Team and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33006 Oviedo (Spain); Recio, J.M., E-mail: jmrecio@uniovi.es [MALTA Team and Departamento de Química Física y Analítica, Universidad de Oviedo, E-33006 Oviedo (Spain)

    2014-04-01

    Highlights: • Pressure ranges of stability of CdTe polymorphs are successfully computed. • A cubic B2 phase is predicted at pressures above 70 GPa. • Microscopic pressures are defined without resorting to energy partitions. • Cd shows a greater mechanical resistance than Te when pressure is applied. • Atomic equations of state are proposed for Cd and Te along the polymorphic sequence. - Abstract: Within the framework of density functional theory, first principles calculations were carried out to determine pressure stability ranges of zinc-blende (B3), cinnabar (Cinn), rock-salt (B1), orthorhombic (Cmcm), and cesium chloride (B2) phases of CdTe. In agreement with experimental observations, we found a B3→Cinn→B1→Cmcm pressure-induced sequence, and predict the B2 phase as a potential high pressure polymorph. The equations of state of all these polymorphs and the components of the elasticity tensor of the B3 phase at zero pressure were determined and microscopically analyzed in terms of atomic contributions. The concept of local pressure allows for quantifying differences in the role played by Cd and Te as regards the compressibility of CdTe phases, and suggests the existence of a general behavior under pressure for binary II–VI semiconductors.

  15. Core-Shell Microgels with Switchable Elasticity at Constant Interfacial Interaction.

    Science.gov (United States)

    Seuss, Maximilian; Schmolke, Willi; Drechsler, Astrid; Fery, Andreas; Seiffert, Sebastian

    2016-06-29

    Hydrogels based on poly(N-isopropylacrylamide) (pNIPAAm) exhibit a thermo-reversible volume phase transition from swollen to deswollen states. This change of the hydrogel volume is accompanied by changes of the hydrogel elastic and Young's moduli and of the hydrogel interfacial interactions. To decouple these parameters from one another, we present a class of submillimeter sized hydrogel particles that consist of a thermosensitive pNIPAAm core wrapped by a nonthermosensitive polyacrylamide (pAAm) shell, each templated by droplet-based microfluidics. When the microgel core deswells upon increase of the temperature to above 34 °C, the shell is stretched and dragged to follow this deswelling into the microgel interior, resulting in an increase of the microgel surficial Young's modulus. However, as the surface interactions of the pAAm shell are independent of temperature at around 34 °C, they do not considerably change during the pNIPAAm-core volume phase transition. This feature makes these core-shell microgels a promising platform to be used as building blocks to assemble soft materials with rationally and independently tunable mechanics.

  16. Weak Anchoring and Surface Elasticity Effects in Electroosmotic Flow of Nematic Liquid Crystals Through Narrow Confinements

    CERN Document Server

    Poddar, Antarip; Chakraborty, Suman

    2016-01-01

    Advent of nematic liquid crystals flows have attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electroosmosis stands as one of the efficient flow actuation method through narrow confinement. In the present study, we explore the electrically actuated flow of a nematic fluid with ionic inclusions taking into account the influences from surface induced elastic and electrical double layer phenomena. Influence of surface effects on the flow characteristics is known to get augmented in micro-confined environment and must be properly addressed. Towards this, we devise the coupled flow governing equations from fundamental free energy analysis considering the contributions from first and second-order elastic, dielectric, flexoelectric, ionic and entropic energies. We have further considered weak anchoring surface conditions with second order elasticity which helps us to more accurately capture the director deformations along the boundaries. The present study fo...

  17. Molecular dynamics simulations to calculate glass transition temperature and elastic constants of novel polyethers.

    Science.gov (United States)

    Sarangapani, Radhakrishnan; Reddy, Sreekantha T; Sikder, Arun K

    2015-04-01

    Molecular dynamics simulations studies are carried out on hydroxyl terminated polyethers that are useful in energetic polymeric binder applications. Energetic polymers derived from oxetanes with heterocyclic side chains with different energetic substituents are designed and simulated under the ensembles of constant particle number, pressure, temperature (NPT) and constant particle number, volume, temperature (NVT). Specific volume of different amorphous polymeric models is predicted using NPT-MD simulations as a function of temperature. Plots of specific volume versus temperature exhibited a characteristic change in slope when amorphous systems change from glassy to rubbery state. Several material properties such as Young's, shear, and bulk modulus, Poisson's ratio, etc. are predicted from equilibrated structures and established the structure-property relations among designed polymers. Energetic performance parameters of these polymers are calculated and results reveal that the performance of the designed polymers is comparable to the benchmark energetic polymers like polyNIMMO, polyAMMO and polyBAMO. Overall, it is worthy remark that this molecular simulations study on novel energetic polyethers provides a good guidance on mastering the design principles and allows us to design novel polymers of tailored properties.

  18. Wavelet-based method for computing elastic band gaps of one-dimensional phononic crystals

    Institute of Scientific and Technical Information of China (English)

    YAN; ZhiZhong; WANG; YueSheng

    2007-01-01

    A wavelet-based method was developed to compute elastic band gaps of one-dimensional phononic crystals. The wave field was expanded in the wavelet basis and an equivalent eigenvalue problem was derived in a matrix form involving the adaptive computation of integrals of the wavelets. The method was then applied to a binary system. For comparison, the elastic band gaps of the same one-di- mensional phononic crystals computed with the wavelet method and the well- known plane wave expansion (PWE) method are both presented in this paper. The numerical results of the two methods are in good agreement while the computation costs of the wavelet method are much lower than that of PWE method. In addition, the adaptability of wavelets makes the method possible for efficient band gap computation of more complex phononic structures.

  19. Mapping residual stresses in PbWO$_{4}$ crystals using photo-elastic analysis

    CERN Document Server

    Lebeau, Michel; Majni, G; Paone, N; Pietroni, P; Rinaldi, D

    2005-01-01

    Large scintillating crystals are affected by internal stresses induced by the crystal growth temperature gradient remanence. Cutting boules (ingots) into finished crystal shapes allows for a partial tension relaxation but residual stresses remain the main cause of breaking. Quality control of residual stresses is essential in the application of Scintillating Crystals to high-energy physics calorimeters (e.g. CMS ECAL at CERN LHC). In this context the industrial process optimisation towards stress reduction is mandatory. We propose a fast technique for testing samples during the production process in order to evaluate the residual stress distribution after the first phases of mechanical processing. We mapped the stress distribution in PbWO/sub 4/slabs cut from the same production boule. The analysis technique is based on the stress intensity determination using the photo-elastic properties of the samples. The stress distribution is mapped in each sample. The analysis shows that there are regions of high residu...

  20. The model of solid phase crystallization of amorphous silicon under elastic stress

    OpenAIRE

    2000-01-01

    Solid phase crystallization of an amorphous silicon (a-Si) film stressed by a Si3N4 cap was studied by laser Raman spectroscopy. The a-Si films were deposited on Si3N4 (50 nm)/Si(100) substrate by rf sputtering. The stress in an a-Si film was controlled by thickness of a Si3N4 cap layer. The Si3N4 films were also deposited by rf sputtering. It was observed that the crystallization was affected by the stress in a-Si films introduced by the Si3N4 cap layer. The study suggests that the elastic s...

  1. Single-Crystal Elastic Properties of the Spinel (MgAl2O4) - Galaxite (MnAl2O4) Solid Solution Series

    Science.gov (United States)

    Speziale, S.; Bruschini, E.; Andreozzi, G. B.; Bosi, F.; Hålenius, U.

    2014-12-01

    Spinels are a subject of intense research in solid state physics, materials science and geosciences. Their general formula is T(A1-i)M(AiB2-i)X4 (A and B are cations, X are anions, T and M indicate tetrahedrally- and octahedrally-coordinated sites and i is the inversion degree). They are ideal materials to study the interplay between chemical substitutions, structure and the physical properties of solids. As spinel-structured ringwoodite (Mg,Fe)2SiO4 is the most abundant mineral in the lower transition zone, understanding the effect of chemical substitution on the elastic properties of spinels is of crucial for geophysics. We have experimentally studied the variation of the elastic properties along the join MgAl2O4 - MnAl2O4. Crystals of 4 compositions along the join were synthesized at the very same experimental conditions and their crystal chemistry was fully characterized. Single-crystal elastic constants Cij of all the samples were measured by Brillouin spectroscopy at ambient conditions. For compositions with Mn/Mg Bosi, F., et al. (2011) Am. Mineral., 96, 594; [3] Shannon, R.D. (1976) Acta Crystall., A32, 751.

  2. Light-Intensity-Induced Characterization of Elastic Constants and d33 Piezoelectric Coefficient of PLZT Single Fiber Based Transducers

    Directory of Open Access Journals (Sweden)

    Jiri Erhart

    2013-02-01

    Full Text Available Enhanced functionality of electro-optic devices by implementing piezoelectric micro fibers into their construction is proposed. Lanthanum-modified lead zirconate titanate (PLZT ceramics are known to exhibit high light transparency, desirable electro-optic properties and fast response. In this study PLZT fibers with a diameter of around 300 microns were produced by a thermoplastic processing method and their light-induced impedance and piezoelectric coefficient were investigated at relatively low light intensity (below 50 mW/cm2. The authors experimentally proved higher performance of light controlled microfiber transducers in comparison to their bulk form. The advantage of the high surface area to volume ratio is shown to be an excellent technique to design high quality light sensors by using fibrous materials. The UV absorption induced change in elastic constants of 3% and 4% for the piezoelectric coefficient d33.

  3. Light-intensity-induced characterization of elastic constants and d33 piezoelectric coefficient of PLZT single fiber based transducers.

    Science.gov (United States)

    Kozielski, Lucjan; Erhart, Jiri; Clemens, Frank Jörg

    2013-02-12

    Enhanced functionality of electro-optic devices by implementing piezoelectric micro fibers into their construction is proposed. Lanthanum-modified lead zirconate titanate (PLZT) ceramics are known to exhibit high light transparency, desirable electro-optic properties and fast response. In this study PLZT fibers with a diameter of around 300 microns were produced by a thermoplastic processing method and their light-induced impedance and piezoelectric coefficient were investigated at relatively low light intensity (below 50 mW/cm2). The authors experimentally proved higher performance of light controlled microfiber transducers in comparison to their bulk form. The advantage of the high surface area to volume ratio is shown to be an excellent technique to design high quality light sensors by using fibrous materials. The UV absorption induced change in elastic constants of 3% and 4% for the piezoelectric coefficient d(33).

  4. Improved measurement results for the Avogadro constant using a 28Si-enriched crystal

    CERN Document Server

    Azuma, Y; Bartl, G; Bettin, H; Borys, M; Busch, I; Cibik, L; D'Agostino, G; Fujii, K; Fujimoto, H; Hioki, A; Krumrey, M; Kuetgens, U; Kuramoto, N; Mana, G; Massa, E; Meeß, R; Mizushima, S; Narukawa, T; Nicolaus, A; Pramann, A; Rabb, S A; Rienitz, O; Sasso, C; Stock, M; Vocke, R D; Waseda, A; Wundrack, S; Zakel, S

    2015-01-01

    New results are reported from an ongoing international research effort to accurately determine the Avogadro constant by counting the atoms in an isotopically enriched silicon crystal. The surfaces of two 28Si-enriched spheres were decontaminated and reworked in order to produce an outer surface without metal contamination and improved sphericity. New measurements were then made on these two reconditioned spheres using improved methods and apparatuses. When combined with other recently refined parameter measurements, the Avogadro constant derived from these new results has a value of $N_A = 6.022 140 76(12) \\times 10^{23}$ mol$^{-1}$. The X-ray crystal density method has thus achieved the target relative standard uncertainty of $2.0 \\times 10^{-8}$ necessary for the realization of the definition of the new kilogram.

  5. An innovative method to measure the peripheral arterial elasticity: spring constant modeling based on the arterial pressure wave with radial vibration.

    Science.gov (United States)

    Wei, Ching-Chuan

    2011-11-01

    In this study, we propose an innovative method for the direct measurement of the peripheral artery elasticity using a spring constant model, based on the arterial pressure wave equation, vibrating in a radial direction. By means of the boundary condition of the pressure wave equation at the maximum peak, we can derive the spring constant used for evaluating peripheral arterial elasticity. The calculated spring constants of six typical subjects show a coincidence with their proper arterial elasticities. Furthermore, the comparison between the spring constant method and pulse wave velocity (PWV) was investigated in 70 subjects (21-64 years, 47 normotensives and 23 hypertensives). The results reveal a significant negative correlation for the spring constant vs. PWV (correlation coefficient = -0.663, p constant method to assess the arterial elasticity is carefully verified, and it is shown to be effective as well as fast. This method should be useful for healthcare, not only in improving clinical diagnosis of arterial stiffness but also in screening subjects for early evidence of cardio-vascular diseases and in monitoring responses to therapy in the future.

  6. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection

    KAUST Repository

    Shaikh, Parvez A.

    2016-08-16

    Schottky junctions formed between semiconductors and metal contacts are ubiquitous in modern electronic and optoelectronic devices. Here we report on the physical properties of Schottky-junctions formed on hybrid perovskite CH3NH3PbBr3 single crystals. It is found that light illumination can significantly increase the dielectric constant of perovskite junctions by 2300%. Furthermore, such Pt/perovskite junctions are used to fabricate self-biased photodetectors. A photodetectivity of 1.4 × 1010 Jones is obtained at zero bias, which increases to 7.1 × 1011 Jones at a bias of +3 V, and the photodetectivity remains almost constant in a wide range of light intensity. These devices also exhibit fast responses with a rising time of 70 μs and a falling time of 150 μs. As a result of the high crystal quality and low defect density, such single-crystal photodetectors show stable performance after storage in air for over 45 days. Our results suggest that hybrid perovskite single crystals provide a new platform to develop promising optoelectronic applications. © 2016 The Royal Society of Chemistry.

  7. Genetic algorithm for estimating in-situ rock elastic constants by acoustic reflection records

    Directory of Open Access Journals (Sweden)

    Luis Montes

    2013-01-01

    Full Text Available Las propiedades elastomecánicas de las rocas se pueden estimar a partir de la densidad (ρ y las velocidades de ondas acústica (Vp y cizalla (Vs cuyos valores establecen las amplitudes de las ondas reflejadas. Este artículo presenta un método indirecto para estimar propiedades elásticas de las rocas, que usa valores de Vp, Vs y ρ por la inversión de registros de reflexión acústica. Debido a la no-unicidad y a la naturaleza no-lineal de la inversión el motor de inferencia debe buscar una solución en un espacio de búsqueda, minimizando una función de costo que mide el error entre el dato observado y el inferido. La búsqueda puede converger en un mínimo local y no alcanzar el mínimo global verdadero. Los algoritmos genéticos han mostrado ser más eficientes en hallar la solución óptima en este tipo de espacios de búsqueda. Un algoritmo genético codificado en Matlab estima ρ, Vp y Vs a través de la inversión de una ecuación que las relaciona con las amplitudes y ángulos de incidencia de las ondas acústicas. La constante elástica de Lamé (λ, el coeficiente de Poisson (ν, y los módulos de elasticidad (, compresibilidad ( y rigidez ( se pueden estimar a partir de ρ, Vp y Vs. Para verificar la robustez y estabilidad del algoritmo, éste se probó con datos sintéticos y se aplicó a registros reales exhibiendo un buen desempeño en alcanzar las soluciones en ambos casos. El método presentado tiene una profundidad de sondeo mayor al método de refracción, siendo aplicable en distintos campos de la ingeniería.

  8. A New Inverse Method of Elastic Constants for a Fibre-Reinforced Composite Plate from Laser-Based Ultrasonic Lamb Waves

    Institute of Scientific and Technical Information of China (English)

    杨京; 程建春

    2001-01-01

    A new inverse method based on the wavelet transform and artificial neural networks (ANN) is presented to recover elastic constants of a fibre-reinforced composite plate from laser-based ultrasonic Lamb waves. The transient waveforms obtained by numerical simulations under different elastic constants are taken as the input of the ANN for training and learning. The wavelet transform is employed for extracting the eigenvectors from the raw Lamb wave signals so as to simplify the structure of the ANN. Then these eigenvectors are input to a multi-layer internally recurrent neural network with a back-propagation algorithm. Finally, the experimental waveforms are used as the input in the whole system to inverse elastic constants of the experimental material.

  9. Application of RPR to Monoclinic and Triclinic Symmetries: Initial Results on Elasticity of Single-Crystal Diopside

    Science.gov (United States)

    Isaak, D. G.; Ohno, I.

    2001-12-01

    In past years, the rectangular parallelepiped resonance (RPR) method has been used to measure single-crystal elastic moduli, and their temperature dependences, of several materials important to geophysics. The high-temperature elastic properties of cubic, orthorhombic, tetragonal, and trigonal crystals, in addition to polycrystals, have all been studied with the RPR method. One feature of the RPR method is that, in principle, all the single-crystal elastic moduli (Cij) can be obtained from a single spectral sweep. However, no materials with crystal symmetry lower than orthorhombic symmetry have been reported in RPR studies. We extend the RPR theory to monoclinic and triclinic crystal symmetries. With these developments, we are able to compute single-crystal resonant spectra using a set of assumed Cij for right-rectangular parallelepiped monoclinic specimens cut along the b and c axes, or monoclinic specimens cut along known, but arbitrary, axes. We present initial results showing the comparison of calculated and measured resonance modes for single-crystal monoclinic diopside. Our measured resonance spectrum on chrome diopside is markedly more consistent with the spectrum calculated from the elasticity data of Collins and Brown (PCM, 26, 7-13, 1998) using a specimen that is 72% diopside than the end-member diopside elasticity data reported by Levien et al. (PCM, 4, 105-113, 1979).

  10. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  11. Elastic properties of solids at high pressure

    Science.gov (United States)

    Vekilov, Yu Kh; Krasilnikov, O. M.; Lugovskoy, A. V.

    2015-11-01

    This review examines the elastic response of solids under load. The definitions of isothermal and adiabatic elastic constants of ( n≥2) for a loaded crystal are given. For the case of hydrostatic pressure, two techniques are proposed for calculating the second-, third-, and fourth-order elastic constants from the energy-strain and stress-strain relations. As an example, using the proposed approach within the framework of the density functional theory, the second- to fourth-order elastic constants of bcc tungsten are calculated for the pressure range of 0-600 GPa.

  12. Geometry explains the large difference in the elastic properties of fcc and hcp crystals of hard spheres

    NARCIS (Netherlands)

    Sushko, N; van der Schoot, P

    2005-01-01

    As is well known, hard-sphere crystals of the fcc and hcp type differ very little in their thermodynamic properties. Nonetheless, recent computer simulations by Pronk and Frenkel indicate that the elastic response to mechanical deformation of these two types of crystal are quite different [S. Pronk

  13. Effect of thermal shield and gas flow on thermal elastic stresses in 300 mm silicon crystal

    Institute of Scientific and Technical Information of China (English)

    GAO Yu; XIAO Qinghua; ZHOU Qigang; DAI Xiaolin; TU Hailing

    2006-01-01

    The thermal elastic stresses induced in 300 mm Si crystal may be great troubles because it can incur the generation of dislocations and undesirable excessive residual stresses.A special thermal modeling tool, CrysVUn, was used for numerical analysis of thermal elastic stresses and stress distribution of 300 mm Si crystal under the consideration of different thermal shields and gas flow conditions.The adopted governing partial equations for stress calculation are Cauchy's first and second laws of motion.It is demonstrated that the presence and shape of thermal shield, the gas pressure and velocity can strongly affect von Mises stress distribution in Si crystal.With steep-wall shield, however, the maximal stress and ratio of high stress area are relatively low.With slope-wall shield or without shield, both maximal stress and ratio of high stress area are increased in evidence.Whether thermal shields are used or not, the increase of gas flow velocity could raise the stress level.In contrast, the increase of gas pressure cannot result in so significant effect.The influence of thermal shield and gas flow should be attributed to the modification of heat conduction and heat radiation by them.

  14. Manipulating lipid membrane architecture by liquid crystal-analog curvature elasticity (Presentation Recording)

    Science.gov (United States)

    Lee, Sin-Doo

    2015-10-01

    Soft matters such as liquid crystals and biological molecules exhibit a variety of interesting physical phenomena as well as new applications. Recently, in mimicking biological systems that have the ability to sense, regulate, grow, react, and regenerate in a highly responsive and self-adaptive manner, the significance of the liquid crystal order in living organisms, for example, a biological membrane possessing the lamellar order, is widely recognized from the viewpoints of physics and chemistry of interfaces and membrane biophysics. Lipid bilayers, resembling cell membranes, provide primary functions for the transport of biological components of ions and molecules in various cellular activities, including vesicle budding and membrane fusion, through lateral organization of the membrane components such as proteins. In this lecture, I will describe how the liquid crystal-analog curvature elasticity of a lipid bilayer plays a critical role in developing a new platform for understanding diverse biological functions at a cellular level. The key concept is to manipulate the local curvature at an interface between a solid substrate and a model membrane. Two representative examples will be demonstrated: one of them is the topographic control of lipid rafts in a combinatorial array where the ligand-receptor binding event occurs and the other concerns the reconstitution of a ring-type lipid raft in bud-mimicking architecture within the framework of the curvature elasticity.

  15. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  16. Melting of a nonequilibrium vortex crystal in a fluid film with polymers : elastic versus fluid turbulence

    CERN Document Server

    Gupta, Anupam

    2016-01-01

    We perform a direct numerical simulation (DNS) of the forced, incompressible two-dimensional Navier-Stokes equation coupled with the FENE-P equations for the polymer-conformation tensor. The forcing is such that, without polymers and at low Reynolds numbers $Re$, the film attains a steady state that is a square lattice of vortices and anti-vortices. We find that, as we increase the Weissenberg number ${\\mathcal Wi}$, this lattice undergoes a series of nonequilibrium phase transitions, first to spatially distorted, but temporally steady, crystals and then to a sequence of crystals that oscillate in time, periodically, at low ${\\mathcal Wi}$, and quasiperiodically, for slightly larger ${\\mathcal Wi}$. Finally, the system becomes disordered and displays spatiotemporal chaos and elastic turbulence. We then obtain the nonequilibrium phase diagram for this system, in the ${\\mathcal Wi} - Re$ plane, and show that (a) the boundary between the crystalline and turbulent phases has a complicated, fractal-type character ...

  17. Research on the elastic wave band gaps of curved beam of phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shaogang, Liu; Shidan, Li; Haisheng, Shu, E-mail: shuhaisheng@hrbeu.edu.cn; Weiyuan, Wang; Dongyan, Shi; Liqiang, Dong; Hang, Lin; Wei, Liu

    2015-01-15

    Based on wave equations of Timoshenko curved beam, the theoretical derivation and numerical calculation of the behavior of in-plane and out-of-plane wave propagating in curved beam of phononic crystals (CBPC) are carried out using transfer matrix method combined with the Bloch theorem. Finite CBPC is also simulated by FEM method. It is shown that both in-plane and out-of-plane elastic waves band gaps exist in CBPC. Compared with equivalent straight beam of phononic crystals (SBPC), CBPC has some unique characteristics, such as the first complete in-plane band gap, special in-plane coupling band gap, and out-of-plane coupling band gap. In those band gaps, CBPC has a better property of vibration reduction than the equivalent SBPC in some ways. Furthermore, effects of curvature of CBPC on the in-plane and out-of-plane band gaps are discussed.

  18. Gyrotropic elastic response of skyrmion crystals to current-induced tensions

    Science.gov (United States)

    Ochoa, Hector; Kim, Se Kwon; Tchernyshyov, Oleg; Tserkovnyak, Yaroslav

    2017-07-01

    We theoretically study the dynamics of skyrmion crystals in electrically insulating chiral magnets subjected to current-induced spin torques by adjacent metallic layers. We develop an elasticity theory that accounts for the gyrotropic force engendered by the nontrivial topology of the spin texture, tensions at the boundaries due to the exchange of linear and spin angular momentum with the metallic reservoirs, and dissipation in the bulk of the film. A steady translation of the skyrmion crystal is triggered by the current-induced tensions and subsequently sustained by dissipative forces, generating an electromotive force on itinerant spins in the metals. This phenomenon should be revealed as a negative drag in an open two-terminal geometry, or equivalently, as a positive magnetoresistance when the terminals are connected in parallel. We propose nonlocal transport measurements with these salient features as a tool to characterize the phase diagram of insulating chiral magnets.

  19. A Simple Method to Measure the Twist Elastic Constant of a Nematic Liquid Crystal

    Science.gov (United States)

    2015-01-01

    as 180° super- twisted nematic (STN) cell. Next, we assume the helical twisting power ( HTP ) of chiral dopant is also unknown, same as K22. To solve...threshold voltages of these two 180° STN cells, both K22 and HTP can be obtained simultaneously. In the whole process, there is no need to measure...Equation (1), if we sub- stitute ϕ = π and pitch length P = 1/( HTP · c) (where c is chiral concentration), then the critical voltage can be rewritten

  20. Elastic constants and Debye temperature of wz-AlN and wz-GaN semiconductors under high pressure from first-principles

    Indian Academy of Sciences (India)

    B P Pandey; V Kumar; Eduardo Menendez Proupin

    2014-09-01

    First-principles calculations were performed to study the elastic stiffness constants ($C_{ij}$) and Debye temperature ($_D$) of wurzite (wz) AlN and GaN binary semiconductors at high pressure. The lattice constants were calculated from the optimized structure of these materials. The band gaps were calculated at point using local density approximation (LDA) approach. The unit cell volume, lattice parameters, /, internal parameter (), elastic constant ($C_{ij}$), Debye temperature ($_D$), Hubbard parameter () and band gap ($E_g$) were studied under different pressures. The bulk modulus ($B_0$), reduced bulk modulus ($B'_0$) and Poisson ratio ($\\vee$) were also calculated. The calculated values of these parameters are in fair agreement with the available experimental and reported values.

  1. Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl

    KAUST Repository

    Wu, Shaohua

    2014-12-01

    Effects of Ni vacancy, Ni antisite in Al sublattice, Cr in Al sublattice, Pt in Ni sublattice on the second-order elastic constants (SOECs) and third-order elastic constants (TOECs) of the B2 NiAl have been investigated using the first-principles methods. Lattice constant and the SOECs of NiAl are in good agreement with the previous results. The brittle/ductile transition map based on Pugh ratio G/B and Cauchy pressure Pc shows that Ni antisite, Cr, Pt and pressure can improve the ductility of NiAl, respectively. Ni vacancy and lower pressure can enhance the Vickers hardness Hv of NiAl. The density of states (DOS) and the charge density difference are also used to analysis the effects of vacancy, Ni antisite, Cr and Pt on the mechanical properties of NiAl, and the results are in consistent with the transition map. © 2014 Elsevier Ltd. All rights reserved.

  2. Structural and elastic anisotropy of crystals at high pressures and temperatures from quantum mechanical methods: The case of Mg{sub 2}SiO{sub 4} forsterite

    Energy Technology Data Exchange (ETDEWEB)

    Erba, A., E-mail: alessandro.erba@unito.it; Dovesi, R. [Dipartimento di Chimica and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, IT-10125 Torino (Italy); Maul, J. [Dipartimento di Chimica and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, IT-10125 Torino (Italy); Laboratório de Combustíveis e Materiais, INCTMN-UFPB, Universidade Federal da Paraíba, CEP 58051-900 João Pessoa, PB (Brazil); De La Pierre, M. [Nanochemistry Research Institute, Curtin Institute for Computation, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2015-05-28

    We report accurate ab initio theoretical predictions of the elastic, seismic, and structural anisotropy of the orthorhombic Mg{sub 2}SiO{sub 4} forsterite crystal at high pressures (up to 20 GPa) and temperatures (up to its melting point, 2163 K), which constitute earth’s upper mantle conditions. Single-crystal elastic stiffness constants are evaluated up to 20 GPa and their first- and second-order pressure derivatives reported. Christoffel’s equation is solved at several pressures: directional seismic wave velocities and related properties (azimuthal and polarization seismic anisotropies) discussed. Thermal structural and average elastic properties, as computed within the quasi-harmonic approximation of the lattice potential, are predicted at high pressures and temperatures: directional thermal expansion coefficients, first- and second-order pressure derivatives of the isothermal bulk modulus, and P-V-T equation-of-state. The effect on computed properties of five different functionals, belonging to three different classes of approximations, of the density functional theory is explicitly investigated.

  3. An Alternative Three-Term Decomposition for Single Crystal Deformation Motivated by Non-Linear Elastic Dislocation Solutions

    Science.gov (United States)

    2014-04-01

    irreversible deformation, the three-term model allows for residual elastic strains— including dilatation observed in experiments and atomic simulations...residual elastic strains—including dilatation observed in experiments and atomic simulations—not addressed by conventional two-term crystal plasticity...gradient for an element of crystalline material. For simplicity, thermal effects are omitted, gliding dislocations are the only kind of defect considered

  4. Far-infrared optical constants of a selection of zincblende structure crystals at 300 K

    Science.gov (United States)

    Maslin, K. A.; Parker, T. J.; Patel, C.

    The far-infrared amplitude and phase reflection spectra of six group III-V single crystal compounds (GaP, GaAs, GaSb, InP, InAs, and InSb) and two group II-VI single crystal compounds (CdTe and ZnSe) with the zincblende structure have been determined at room temperature in the region of their reststrahlen bands by reflection dispersive Fourier transform spectroscopy. The measured amplitude and phase reflection spectra and values of the optical constants calculated from them are presented. As an illustration of weak mode anharmonicity in these crystals, the imaginary part of the anharmonic self-energy of the infrared-active transverse optic mode of ZnSe at the center of the Brillouin zone is calculated from its measured dielectric functions. Prominent features in the self-energy function in the region of the reststrahlen band are assigned as phonon combination bands with the aid of critical point phonon frequencies derived from an 11-parameter rigid-ion model.

  5. Superconductivity in LiOHFeS single crystals with a shrunk c-axis lattice constant

    Science.gov (United States)

    Lin, Hai; Kang, RuiZhe; Kong, Lu; Zhu, XiYu; Wen, Hai-Hu

    2017-02-01

    By using a hydrothermal ion-exchange method, we have successfully grown superconducting crystals of LiOHFeS with T c of about 2.8 K. Being different from the sister sample (Li1- x Fe x )OHFeSe, the energy dispersion spectrum analysis on LiOHFeS shows that the Fe/S ratio is very close to 1:1, suggesting an almost charge neutrality and less electron doping in the FeS planes of the system. Comparing with the non superconducting LiOHFeS crystal, each peak of the X-ray diffraction pattern of the superconducting crystal splits into two, and the diffraction peaks locating at lower reflection angles are consistent with that of non-superconducting ones. The rest set of diffraction peaks with higher reflection angles is corresponding to the superconducting phase, suggesting that the superconducting phase may has a shrunk c-axis lattice constant. Magnetization measurements indicate that the magnetic shielding due to superconductivity can be quite high under a weak magnetic field. The resistivity measurements under various magnetic fields show that the upper critical field is quite low, which is similar to the tetragonal FeS superconductor.

  6. Acoustic and elastic properties of Sn{sub 2}P{sub 2}S{sub 6} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mys, O; Martynyuk-Lototska, I; Vlokh, R [Institute of Physical Optics of the Ministry of Education and Science of Ukraine, 23 Dragomanov Street, 79005 Lviv (Ukraine); Grabar, A [Istitute for Solid State Physics and Chemistry, Uzhgorod National University, 54 Voloshyn Street, 88000 Uzhgorod (Ukraine)], E-mail: vlokh@ifo.lviv.ua

    2009-07-01

    We present the results concerned with acoustic and elastic properties of Sn{sub 2}P{sub 2}S{sub 6} crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  7. Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals

    Science.gov (United States)

    Miniaci, M.; Gliozzi, A. S.; Morvan, B.; Krushynska, A.; Bosia, F.; Scalerandi, M.; Pugno, N. M.

    2017-05-01

    The appearance of nonlinear effects in elastic wave propagation is one of the most reliable and sensitive indicators of the onset of material damage. However, these effects are usually very small and can be detected only using cumbersome digital signal processing techniques. Here, we propose and experimentally validate an alternative approach, using the filtering and focusing properties of phononic crystals to naturally select and reflect the higher harmonics generated by nonlinear effects, enabling the realization of time-reversal procedures for nonlinear elastic source detection. The proposed device demonstrates its potential as an efficient, compact, portable, passive apparatus for nonlinear elastic wave sensing and damage detection.

  8. Pinning features of the magnetic flux trapped by YBCO single crystals in weak constant magnetic fields

    Science.gov (United States)

    Monarkha, V. Yu.; Paschenko, V. A.; Timofeev, V. P.

    2013-02-01

    The dynamics of Abrikosov vortices and their bundles was experimentally investigated in weak constant magnetic fields, in the range of Earth's magnetic field. Characteristics of the isothermal magnetization relaxation in YBCO single-crystal samples with strong pinning centers were studied for different sample-field orientation. The obtained values of normalized relaxation rate S allowed us to estimate the effective pinning potential U in the bulk of the YBCO sample and its temperature dependence, as well as the critical current density Jc. A comparison between the data obtained and the results of similar measurements in significantly higher magnetic fields was performed. To compare different techniques for evaluation of Jc, the magnetization loop measurements M(H), which relate the loop width to the critical current, were carried out. These measurements provided important parameters of the samples under study (penetration field Hp and first critical field Hc1), which involve the geometrical configuration of the samples.

  9. First principles calculations of formation energies and elastic constants of inclusions α-Al2O3, MgO and AlN in aluminum alloy

    Science.gov (United States)

    Liu, Yu; Huang, Yuanchun; Xiao, Zhengbing; Yang, Chuge; Reng, Xianwei

    2016-05-01

    In this paper, the formation energies and elastic constants of α-Al2O3, MgO and AlN in both rock salt (cubic) and wurtzite (hexagonal) structures were investigated by first principles calculations. The results show that the formation energy being -17.8, -6.3, -3.06 and -3.46 eV/formula unit for α-Al2O3, MgO, AlN (rock salt) and AlN (wurtzite). It suggests that in the ground state, α-Al2O3 is relatively more stable than MgO and AlN. The elastic properties for a polycrystalline in the ground state were calculated with the obtained elastic constants, the elastic properties reveal the rock salt structure AlN is the hardest particles among all the inclusions, and all of these inclusions are classified as brittle materials, which is detrimental to the ductile nature of aluminum matrix. The calculated anisotropy index shows that the AlN (wurtzite) and α-Al2O3 have a lower degree of anisotropy compared with MgO and AlN (rock salt). The calculated results are in good agreement with the values of experimental and other works.

  10. Elastic constants of the layered compounds GaS, GaSe, InSe, and their pressure dependence. 2. Theoretical part

    Energy Technology Data Exchange (ETDEWEB)

    Gatulle, M.; Fischer, M.

    1984-01-01

    The block diagonalization of the dynamical matrix of ..beta..-GaS is reported in the case of propagation perpendicular to the layers. A linear chain model that includes intralayer interactions between any atoms is introduced, the principal frequencies and the elastic constants C/sub 33/ and C/sub 44/ are calculated. Within the model, the existence of real coupling parameters is discussed, that leads to an evaluation of the intralayer forces contribution to the elastic constants. The evolution of the interlayer interactions with pressure is studied, using previously published experimental results. Finally, as far as possible, the theoretical formulas are applied to the similar structures of epsilon-GaSe and ..gamma..-InSe.

  11. Al4SiC4 wurtzite crystal: Structural, optoelectronic, elastic, and piezoelectric properties

    Directory of Open Access Journals (Sweden)

    L. Pedesseau

    2015-12-01

    Full Text Available New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al4SiC4. A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al4SiC4 material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude that the Al4SiC4 material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.

  12. Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting

    Science.gov (United States)

    Tol, S.; Degertekin, F. L.; Erturk, A.

    2016-08-01

    We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.

  13. Shock Compression of Metal Crystals: A Comparison of Eulerian and Lagrangian Elastic-Plastic Theories

    Science.gov (United States)

    2014-11-01

    temperature equation-of-state (EOS) [ Luscher et al., 2013] for the pressure. For isotropic (e.g., untextured polycrystalline) solids, nonlinear elasticity...elastoplasticity [ Luscher et al., 2013]. 1450048-12 2nd Reading October 15, 2014 11:4 WSPC-255-IJAM S1758-8251 1450048 Shock Compression of Metal Crystals...Clayton, 2011; Luscher et al., 2013] S̄ = ∂Ū ∂E = ∂Ψ̄ ∂E = JFE−1σFE−T, θ = ∂Ū/∂η, η = −∂Ψ̄/∂θ, χ̄ = −∂Ψ̄/∂ζ, (3.7) c̄θ̇ = ∑ α τ̄αγ̇α + θ ∂S̄ ∂θ : Ė

  14. Elastic analysis of a mode Ⅱ crack in a decagonal quasi-crystal

    Institute of Scientific and Technical Information of China (English)

    李显方; 范天佑

    2002-01-01

    The elastic analysis of a mode Ⅱ Griffith crack penetrating through a decagonal quasi-crystal along the periodicaxis is made within the context of the continuum theory. By using a general solution obtained previously, the problemin the case of uniform shear stress at infinity is solved, and the analytical expressions for the entire stress field disturbedby an internal crack are derived in an explicit form. The asymptotic fields of the displacement and stress around a cracktip in both phonon and phason fields indicate that the stresses near a crack tip exhibit the square-root singularity. Theformula for evaluating the energy release rate is also given. If imposing that the phason field is absent, the well-knownresults of a mode Ⅱ crack in a conventional material are recovered from the present results.

  15. Elasticity of single-crystal superhydrous phase B at simultaneous high pressure-temperature conditions

    Science.gov (United States)

    Li, Xinyang; Mao, Zhu; Sun, Ningyu; Liao, Yifan; Zhai, Shuangmeng; Wang, Yi; Ni, Huaiwei; Wang, Jingyun; Tkachev, Sergey N.; Lin, Jung-Fu

    2016-08-01

    We investigated the combined effect of pressure and temperature on the elasticity of single-crystal superhydrous phase B (Shy-B) using Brillouin scattering and X-ray diffraction up to 12 GPa and 700 K. Using the obtained elasticity, we modeled the anisotropy of Shy-B along slab geotherms, showing that Shy-B has a low anisotropy and cannot be the major cause of the observed anisotropy in the region. Modeled velocities of Shy-B show that Shy-B will be shown as positive velocity anomalies at the bottom transition zone. Once Shy-B is transported to the topmost lower mantle, it will exhibit a seismic signature of lower velocities than topmost lower mantle. We speculate that an accumulation of hydrous phases, such as Shy-B, at the topmost lower mantle with a weight percentage of ~17-26% in the peridotite layer as subduction progresses could help explain the observed 2-3% low shear velocity anomalies in the region.

  16. Structural and magnetic characterization of electro-crystallized magnetite nanoparticles under constant current

    Energy Technology Data Exchange (ETDEWEB)

    Mosivand, Saba [Physics Department, Faculty of Science, Lorestan University, Lorestan (Iran, Islamic Republic of); Kazeminezhad, Iraj, E-mail: I.Kazeminezhad@scu.ac.ir [Physics Department, Faculty of Science, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)

    2015-10-15

    Graphical abstract: Structural and magnetic properties of electro-crystallized magnetite nanoparticles under constant current were studied. All samples were characterized using XRD, SEM, VSM, and Mössbauer spectrometry. - Highlights: • The effect of applied current on morphology and properties of Fe{sub 3}O{sub 4} is studied. • The particle size and morphology are controllable by adjusting the current. • The magnetization depends on particle size, type of surfactant and applied current. • The clear correlation between magnetization and the mean particle size is observed. - Abstract: The effect of applied current on the morphology, particle size, structure, and magnetic properties of magnetite nanoparticles prepared by electro-crystallization method was studied. The synthesis was performed in an electrochemical cell containing two iron electrodes and an aqueous solution of sodium sulfate, and either thiourea, sodium butanoate, or β-cyclodextrine as organic stabilizer. All the samples were characterized by XRD, SEM, VSM, and Mössbauer spectroscopy. X-ray diffraction patterns, clearly confirmed that all products have the cubic spinel Fe{sub 3}O{sub 4} crystal structure. Electron microscope images of the samples showed that their mean particle size is in the range 20–80 nm, and depends critically on the applied current and type of the organic additives. Specific magnetization of the samples at room temperature ranges from 60 to 90 A m{sup 2} kg{sup −1}, depending on the growth conditions. Room temperature Mössbauer spectra are typical of nonstoichiometric Fe{sub 3−δ}O{sub 4}, with a small excess of Fe{sup 3+}, 0.06 ≤ δ ≤ 0.17.

  17. Theoretical study of high-pressure phase stability of NaZr2(PO4)3 via elastic constants and equation of state

    Science.gov (United States)

    Chinnappan, Ravi; Panigrahi, B. K.

    2017-03-01

    Phase stability of NaZr_2(PO_4)_3 has been studied through density functional theory calculations of elastic constants, equation of state and enthalpies. The changes in elastic constants as a function of pressure show that the ambient rhombohedral (Rbar{3}c) NaZr_2(PO_4)_3 becomes unstable above 8 GPa and this instability is driven by a softening of C_{44} elastic constant through one of the Born stability criteria. High-pressure equation-of-state and enthalpy calculations further show that the ambient rhombohedral (Rbar{3}c) structure transforms first into another rhombohedral ( R3) phase and subsequently to LiZr_2(PO_4)_3-type orthorhombic phase at pressures above 6 and 8 GPa respectively which are in agreement with a recent x-ray diffraction study. Analysis of interatomic distances show that LiZr_2(PO_4)_3-type orthorhombic structure allows for shorter Na-O and Zr-P bonds at high pressures which appears to enable strong bonding and stability. Calculated formation enthalpy and bulk modulus of the ambient phase of NaZr_2(PO_4)_3 are found to be in reasonable agreement with the respective experimental values.

  18. Single crystal elasticity of majoritic garnet at high pressure and temperature

    Science.gov (United States)

    Pamato, M. G.; Kurnosov, A.; Boffa Ballaran, T.; Frost, D. J.; Ziberna, L.; Giannini, M.; Trots, D. M.; Tkachev, S. N.; Zhuravlev, K. K.; Prakapenka, V.

    2013-12-01

    Seismological observations are fundamental for understanding the chemistry and structure of the Earth's interior, providing a tangible method for tracing the chemical anomalies caused by the subduction of oceanic lithosphere. The mineral garnet is a dominant component of subducted mid ocean ridge basalts (MORB) in the upper mantle and transition zone and as such can influence its physical-chemical properties. Among garnet minerals, the high pressure structured majoritic garnet, is stable throughout the entire transition zone, being volumetrically the most abundant mineral phase in this region. In order to constrain the seismic appearance and buoyancy of subducting slabs into the Earth's transition zone, the knowledge of the elastic properties and density of majoritic garnet at high pressures and temperatures is of crucial importance. Here, we report for the first time the P-V-T equation of state and Vs and Vp sound velocities of single crystals of majoritic garnet (Mg3.24Al1.53Si3.23O12) simultaneously determined by means of Brillouin spectroscopy and X ray diffraction, up to 30 GPa and 880 K. Measurements were performed on single-crystals synthesized in a multianvil apparatus at 17 GPa and 1900 °C and loaded in a diamond anvil cell with Ne as a pressure transmitting medium. A single crystal of Sm:YAG, whose fluorescence has been calibrated against an absolute pressure determination, was used as a pressure calibrant. In addition, ruby chips were used to accurately derive the temperature inside the cell. A specially designed internal resistive heater was placed around the diamonds for achieving high temperatures. An accurate pressure scale is a major issue in the investigation of physical properties of mantle minerals at the depth and temperature required to understand the Earth's interior. In this study, simultaneous measurements of density and sound velocities at the same conditions, allowed accurate determinations of the absolute pressure. We combine our

  19. A Theoretical Investigation of the Effect of Pressure on the Structural, Elastic and Mechanical Properties of ZnS Crystals

    Science.gov (United States)

    Güler, E.; Güler, M.

    2015-06-01

    Structural, elastic, and mechanical properties of blende-type zinc sulfide ( bt-ZnS) were investigated under pressures up to 20 GPa. Unlike previous theoretical calculations, an existing mixed-type interatomic potential was applied with geometry optimization calculations. B3 → B1 phase transition pressure was obtained as 17 GPa under zero pressure and temperature. Pressure dependence of typical cubic elastic constants, bulk, shear and Young moduli, elastic wave velocities, Kleinman parameter, static and high-frequency dielectric constants of bt-ZnS were also obtained. Overall, our results for the considered parameters of bt-ZnS are in good agreement with experiments and better than those of several available theoretical data.

  20. Theory of elastic wave propagation in anisotropic film on anisotropic substrate: TiN film on single-crystal Si.

    Science.gov (United States)

    Tewary, V K

    2002-09-01

    The delta-function representation of the elastodynamic Green's function is used to derive an expression for the elastic wave forms on the surface of an anisotropic thin film on an anisotropic substrate due to a point or a line source located at the surface of the film. The dispersion relation for surface acoustic waves (SAWs) is obtained from the poles of the Green's function. A computationally efficient algorithm is formulated to obtain the elastic constants and the density of the film from the SAW dispersion data. The theory is used to analyze measured SAW dispersion relations in a titanium nitride film on silicon. The analysis yields values of the elastic constants and the density of the film. Excellent agreement is obtained between the theoretical and experimental dispersion results. Calculated wave forms for the surface wave due to a pulsed line source on the surface of the film are reported.

  1. Elastic, dielectric and piezoelectric characterization of single domain PIN-PMN-PT: Mn crystals.

    Science.gov (United States)

    Huo, Xiaoqing; Zhang, Shujun; Liu, Gang; Zhang, Rui; Luo, Jun; Sahul, Raffi; Cao, Wenwu; Shrout, Thomas R

    2012-12-15

    Mn modified 0.26Pb(In(1/2)Nb(1/2))O(3)-0.42Pb(Mg(1/3)Nb(2/3))O(3)-0.32PbTiO(3) (PIN-PMN-PT:Mn) single crystals with orthorhombic perovskite crystal structure were polarized along [011] direction, resulting in the single domain state "1O." The complete set of material constants was determined using the combined resonance and ultrasonic methods. The thickness shear piezoelectric coefficient d(15) and electromechanical coupling factor k(15) were found to be on the order of 3100 pC/N and 94%, respectively, much higher than longitudinal d(33) ∼ 270 pC/N and k(33) ∼ 70%. Using the single domain data, the rotated value of d(33)* along [001] direction was found to be 1230 pC/N, in agreement with the experimentally determined d(33) value of 1370 pC/N, conferring extrinsic contributions being about 10%, which was also confirmed using the Rayleigh analysis. In addition, the mechanical quality factors Q(m) were evaluated for different "1O" vibration modes, where the longitudinal Q(m) was found to be ∼1200, much higher than the value for "4O" crystals, ∼300.

  2. Surface induced constant composition crystal growth kinetics studies. The brushite gypsum system

    Science.gov (United States)

    Hina, A.; Nancollas, G. H.; Grynpas, M.

    2001-02-01

    The possible oriented growth of one crystalline phase on the surface of another is especially important in systems containing both phosphate and sulfate salts of calcium. Whether the overgrowth results from a true epitaxial relationship is dependent on factors such as the thermodynamic driving forces and the free energies of the surfaces. Despite the fact that calcium sulfate dihydrate (CSD, gypsum) and calcium hydrogen phosphate dihydrate (DCPD, brushite) show many crystallographic and structural analogies, their surface reactions are quite different. The nucleation and growth of gypsum on brushite surfaces has been investigated in supersaturated solutions of calcium sulfate dihydrate at 25.0°C using the constant composition (CC) method. During the kinetics experiments, the harvested solid phases were examined by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). Induction periods, τ, preceding the initial formation of gypsum crystals at the brushite surfaces, varied markedly with relative supersaturation, σ. A thin layer wicking method was used to investigate the interfacial free energies of the growing phases, and these data were also calculated from the kinetics results. The interfacial free energy, γ, estimated from initial growth rates was 8.4 mJ m -2, while that calculated from the induction times was 8.9 mJ m -2. These values were in agreement with those determined directly using thin layer wicking.

  3. The effect of pressure on open-framework silicates: elastic behaviour and crystal-fluid interaction

    Science.gov (United States)

    Gatta, G. D.; Lotti, P.; Tabacchi, G.

    2017-08-01

    The elastic behaviour and the structural evolution of microporous materials compressed hydrostatically in a pressure-transmitting fluid are drastically affected by the potential crystal-fluid interaction, with a penetration of new molecules through the zeolitic cavities in response to applied pressure. In this manuscript, the principal mechanisms that govern the P-behaviour of zeolites with and without crystal-fluid interaction are described, on the basis of previous experimental findings and computational modelling studies. When no crystal-fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around O atoms that behave as hinges. Tilting of tetrahedra is the dominant mechanism at low-mid P-regime, whereas distortion and compression of tetrahedra represent the mechanisms which usually dominate the mid-high P regime. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. The deformation mechanisms are dictated by the topological configuration of the tetrahedral framework; however, the compressibility of the cavities is controlled by the nature and bonding configuration of the ionic and molecular content, resulting in different unit-cell volume compressibility in isotypic structures. The experimental results pertaining to compression in "penetrating" fluids, and thus with crystal-fluid interaction, showed that not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, zeolites with well-stuffed channels at room conditions (e.g. natural zeolites) tend to hinder the penetration of new species through the zeolitic cavities. Several variables govern the sorption phenomena at high pressure, among those: the "free diameters" of the framework cavities, the chemical nature and the configuration of the extra-framework population, the partial pressure of the penetrating molecule in the

  4. Magneto-elastic Coupling in Single-crystal CeFeAsO

    Science.gov (United States)

    Li, H.-F.; Yan, J.-Q.; Kim, J. W.; McCallum, R. W.; Lograsso, T. A.; Vaknin, D.; Ames Laboratory, U. S. DOE, Ames, Iowa 50011, USA Team; Department of Physics; Astronomy, Iowa State University, Ames, Iowa 50011, USA Team; Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA Team; Department of Materials Science; Engineering, Iowa State University, Ames, Iowa 50011, USA Team

    2011-03-01

    Single-crystal synchrotron X-ray diffraction studies of CeFeAsO reveal strong anisotropy in the charge correlation lengths along or perpendicular to the in-plane antiferromagnetic (AFM) wave-vector at low temperatures. The high-resolution setup allows to distinctly monitor each of the twin domains by virtue of a finite misfit angle between them that follows the order parameter. We find that the in-plane correlations, above the orthorhombic (O)-to-tetragonal (T) transition, are shorter than those in each of the domains in the AFM phase, indicating a distribution of the in-plane lattice constants. This strongly suggests that the phase above the structural transition is virtually T with strong O-T fluctuations that are induced by magnetic fluctuations. Ames Laboratory is supported by the U.S. DOE under Contract No. DE-AC02-07CH11358.

  5. Comparison of slowness profiles of lamb wave with elastic moduli and crystal structure in single crystalline silicon wafers

    Energy Technology Data Exchange (ETDEWEB)

    Min, Young Jae; Yun, Gyeong Won; Kim, Kyung Min; Roh, Yuji; Kim, Young H. [Applied Acoustics Lab, Korea Science Academy of KAIST, Busan (Korea, Republic of)

    2016-02-15

    Single crystalline silicon wafers having (100), (110), and (111) directions are employed as specimens for obtaining slowness profiles. Leaky Lamb waves (LLW) from immersed wafers were detected by varying the incident angles of the specimens and rotating the specimens. From an analysis of LLW signals for different propagation directions and phase velocities of each specimen, slowness profiles were obtained, which showed a unique symmetry with different symmetric axes. Slowness profiles were compared with elastic moduli of each wafer. They showed the same symmetries as crystal structures. In addition, slowness profiles showed expected patterns and values that can be inferred from elastic moduli. This implies that slowness profiles can be used to examine crystal structures of anisotropic solids.

  6. Full Elasticity Tensor from Thermal Diffuse Scattering

    Science.gov (United States)

    Wehinger, Björn; Mirone, Alessandro; Krisch, Michael; Bosak, Alexeï

    2017-01-01

    We present a method for the precise determination of the full elasticity tensor from a single crystal diffraction experiment using monochromatic x rays. For the two benchmark systems calcite and magnesium oxide, we show that the measurement of thermal diffuse scattering in the proximity of Bragg reflections provides accurate values of the complete set of elastic constants. This approach allows for a reliable and model-free determination of the elastic properties and can be performed together with crystal structure investigation in the same experiment.

  7. Elastic constants of the layered compounds GaS, GaSe, InSe, and their pressure dependence. 1. Experimental part

    Energy Technology Data Exchange (ETDEWEB)

    Gatulle, M.; Fischer, M.; Chevy, A. (Paris-6 Univ., 75 (France))

    1983-09-01

    The elastic constants of the lamellar compounds GaS, GaSe, InSe are measured on several samples using an ultrasonic method, and the results are compared with previous publications. The variations of C/sub 33/, C/sub 11/, and C/sub 66/ with hydrostatic pressure are measured up to 3 kbars. In the range of pressure studied, the variations of these constants are perfectly linear. The results on the three compounds are very similar, and typical of the lamellar structure: an important variation of C/sub 33/ caused by the weakness of the interlayer bond; on the other hand, C/sub 66/ is affected very little by pressure.

  8. Inhibition of calcium carbonate crystal growth by organic additives using the constant composition method in conditions of recirculating cooling circuits

    Science.gov (United States)

    Chhim, Norinda; Kharbachi, Chams; Neveux, Thibaut; Bouteleux, Céline; Teychené, Sébastien; Biscans, Béatrice

    2017-08-01

    The cooling circuits used in power plants are subject to mineral crystallization which can cause scaling on the surfaces of equipment and construction materials reducing their heat exchange efficiency. Precipitated calcium carbonate is the predominant mineral scale commonly observed in cooling systems. Supersaturation is the key parameter controlling the nucleation and growth of calcite in these systems. The present work focuses on the precipitation of calcite using the constant composition method at constant supersaturation, through controlled addition of reactants to a semi-batch crystallizer, in order to maintain constant solution pH. The determination of the thermodynamic driving force (supersaturation) was based on the relevant chemical equilibria, total alkalinity and calculation of the activity coefficients. Calcite crystallization rates were derived from the experiments performed at supersaturation levels similar to those found in industrial station cooling circuits. Several types of seeds particles were added into the aqueous solution to mimic natural river water conditions in terms of suspended particulate matters content, typically: calcite, silica or illite particles. The effect of citric and copolycarboxylic additive inhibitors added to the aqueous solution was studied. The calcium carbonate growth rate was reduced by 38.6% in the presence of the citric additive and a reduction of 92.7% was observed when the copolycarboxylic additive was used under identical experimental conditions. These results are explained by the location of the adsorbed inhibitor at the crystal surface and by the degree of chemical bonding to the surface.

  9. Eruption versus intrusion? Arrest of propagation of constant volume, buoyant, liquid-filled cracks in an elastic, brittle host

    Science.gov (United States)

    Taisne, B.; Tait, S.

    2009-06-01

    When a volume of magma is released from a source at depth, one key question is whether or not this will culminate in an eruption or in the emplacement of a shallow intrusion. We address some of the physics behind this question by describing and interpreting laboratory experiments on the propagation of cracks filled with fixed volumes of buoyant liquid in a brittle, elastic host. Experiments were isothermal, and the liquid was incompressible. The cracks propagated vertically because of liquid buoyancy but were then found to come to a halt at a configuration of static mechanical equilibrium, a result that is inconsistent with the prediction of the theory of linear elastic fracture mechanics in two dimensions. We interpret this result as due to a three-dimensional effect. At the curved crack front, horizontal cracking is necessary in order for vertical propagation to take place. As the crack elongates and thins, the former becomes progressively harder and, in the end, impossible to fracture. We present a scaling law for the final length and breadth of cracks as a function of a governing dimensionless parameter, constructed from the liquid volume, the buoyancy, and host fracture toughness. An important implication of this result is that a minimum volume of magma is required for a volcanic eruption to occur for a given depth of magma reservoir.

  10. The focusing effect of electromagnetic waves in two-dimensional photonic crystals with gradually varying lattice constant

    Directory of Open Access Journals (Sweden)

    F Bakhshi Garmi

    2016-02-01

    Full Text Available In this paper we studied the focusing effect of electromagnetic wave in the two-dimensional graded photonic crystal consisting of Silicon rods in the air background with gradually varying lattice constant. The results showed that graded photonic crystal can focus wide beams on a narrow area at frequencies near the lower edge of the band gap, where equal frequency contours are not concave. For calculation of photonic band structure and equal frequency contours, we have used plane wave expansion method and revised plane wave expansion method, respectively. The calculation of the electric and magnetic fields was performed by finite difference time domain method.

  11. Molecular constants of LiCl(X1Σ+) and elastic collisions of two ground-state Cl and Li atoms at low and ultralow temperatures

    Institute of Scientific and Technical Information of China (English)

    Zhu Zun-Lue; Zhang Xiao-Niu; Kou Su-Hua; Shi De-Heng; Sun Jin-Feng

    2010-01-01

    Interaction potentials for LiCl(X1Σ+) are constructed by the highly accurate valence internally contracted multireference configuration interaction in combination with a number of large correlation-consistent basis sets,which are used to determine the spectroscopic parameters (Do,De,Re,ωe,ωeχe,Βe and αe).The potentials obtained at the basis sets,i.e.,aug-cc-pV5Z-JKFI for Cl and cc-pV5Z for Li,are selected to study the elastic collision properties of Li and Cl atoms at the impact energies from 1.0×10-12 to 1.0×10-4 a.u.The derived total elastic cross sections are very large and almost constant at ultralow temperatures,and their shapes are mainly dominated by the s-partial wave at very low impact energies.Only one shape resonance can be found in the total el.astic cross sections over the present collision energy regime,which is rather strong and obviously broadened by the overlap contributions of the abundant resonances coming from various partial waves.Abundant resonances exist for the elastic partial-wave cross sections until l = 22 partial waves.The vibrational manifolds of the LiCl(X1Σ+) molecule,which are predicted at the present level of theory and the basis sets cc-pV5Z for Li and the aug-cc-pV5Z-JKFI for Cl,should achieve much high accuracy due to the employment of the large correlation-consistent basis sets.

  12. Acoustic Defect-Mode Waveguides Fabricated in Sonic Crystal: Numerical Analyses by Elastic Finite-Difference Time-Domain Method

    Science.gov (United States)

    Miyashita, Toyokatsu

    2006-05-01

    A novel acoustic waveguide composed of a line of single defects in a sonic crystal is shown to have desirable properties for acoustic circuits. The absence of a scatterer, i.e., a single defect or a point defect, in artificial crystals such as photonic crystals and phononic crystals leads to some localized resonant modes around the defect. Single defects in a sonic crystal made of acrylic resin cylinders in air are shown in this paper to have resonant modes or defect modes, which are excited successively to form a mode guided along a line of defects. Both a straight waveguide and a sharp bending waveguide composed of lines of single defects are shown equally to have a good transmission with small reflections at the inlet as well as at the outlet within the full band gap of the sonic crystal. Their advantages over conventional line-defect waveguides are clearly shown by their transmission versus frequency characteristics and also by typical examples of their spatial acoustic field distribution. On the basis of these properties, coupled defect-mode waveguides are investigated, and a high mode-coupling ratio is obtained. Defect-mode waveguides in a sonic crystal are expected to be desirable elements for functional acoustic circuits. The results of the elastic finite difference time domain (FDTD) method used as a tool of numerical calculation are also investigated and precisely compared with the experimental band gaps.

  13. Effect of thermoelectromagnetic convection on the growth of bulk single crystals from semiconductor melts in a constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, L.A.

    1987-12-01

    The growth of bulk single crystals in semiconductor melts is investigated with emphasis on the effect of constant magnetic fields on the hydrodynamic processes and heat and mass transfer occurring in the melt. In particular, it is shown that the thermal emf in semiconductor melts can produce thermal currents whose interaction with a constant magnetic field can generate electromagnetic forces and lead to melt mixing (thermoelectromagnetic convection). The parameters of thermoelectromagnetic convection are estimated, and the importance of allowing for its effect in real processes is emphasized. 11 references.

  14. Lattice constant and hardness of InSb:Bi bulk crystals grown by vertical directional solidification

    Science.gov (United States)

    Maske, Dilip; Deshpande, Manisha; Choudhary, Rashmi; Gadkari, Dattatray

    2016-05-01

    Ingots of the Bi doped InSb (InSb1-xBix) bulk semiconductor crystals were grown by specially designed Vertical Directional Solidification (VDS) technique. Substrates of seven crystals grown with various composition values of x (0 ≤ x 0.05.

  15. Investigations on molecular constants of the CD(X2Ⅱ) radical and elastic collisions between ground-state C and D atoms at low temperatures

    Institute of Scientific and Technical Information of China (English)

    Shi De-Heng; Zhang Jin-Ping; Sun Jin-Feng; Liu Yu-Fang; Zhu Zun-Lue

    2009-01-01

    The potential energy curve of the CD(X2Ⅱ) radical is obtained using the coupled-cluster singles-doublesapproximate-triples [CCSD(T)] theory in combination with the correlation-consistent quintuple basis set augmented with diffuse functions,aug-cc-pV5Z. The potential energy curve is fitted to the Murrell-Sorbie function,which is usedto determine the spectroscopic parameters. The obtained D0,De,Re,ωe,ωeXe,αe and Be values are 3.4971 eV,3.6261 eV,0.11197 nm,2097.661 cm-1,34.6963 cm-1,0.2083 cm-1 and 7.7962 cm-1,respectively,which conform almost perfectly to the available measurements. With the potential obtained at the UCCSD(T)/aug-cc-pV5Z level of theory,a total of 24 vibrational states have been predicted for the first time when J = 0 by solving the radial SchrSdinger equation of nuclear motion. The complete vibrational levels,the classical turning points,the inertial rotation constants and centrifugal distortion constants are reproduced from the CD(X2Ⅱ) potential when J = 0,and are in excellent agreement with the available measurements. The total and the various partial-wave cross sections are calculated for the elastic collisions between the ground-state C and D atoms at energies from 1.0× 10-11 to 1.0× 10-4 a.u. When the two atoms approach each other along the CD(X2Ⅱ) potential energy curve. Only one shape resonance is found in the total elastic cross sections,and the resonant energy is 8.36×10-6 a.u. The results show that the shape of the total elastic cross section is mainly dominated by the s partial wave at very low temperatures. Because of the weak shape resonances coming from higher partial waves,most of them are passed into oblivion by the strong total elastic cross sections.

  16. A Comparative Study of Elastic Constants of NiTi and NiAl Alloys from First-Principle Calculations

    Institute of Scientific and Technical Information of China (English)

    Jianmin Lu; Qingmiao Hu; Rui Yang

    2009-01-01

    To investigate the origin of the strong dependence of martensitic transformation temperature on composition,the elastic properties of high temperature B2 phases of both NiTi and NiAl were calculated by a first-principle method, the exact-muffin orbital method within coherent potential approximation. In the composition range of 50-56 at. pct Ni of NiTi and 60-70 at. pct Ni of NiAI in which martensitic transformation occurs, non-basalplane shear modulus c44 increases with increasing Ni content, while basal-plane shear modulus c' decreases.In the above composition ranges however the transformation temperature of NiAI increases with increasing Ni content while that of NiTi decreases from experimental observation. The softening of c' is experimentally observed only in NiAl, and the decrease of c' with increasing Ni content is responsible for the increase of transformation temperature. The result of the present work demonstrates that, besides c', c44 also influences the martensitic transformation of NiTi and plays quite important a role.

  17. Elastic collisions between Si and D atoms at low temperatures and accurate analytic potential energy function and molecular constants of the SiD(X2∏) radical

    Institute of Scientific and Technical Information of China (English)

    Shi De-Heng; Zhang Jin-Ping; Sun Jin-Feng; Zhu Zun-Lue

    2009-01-01

    Interaction potential of the SiD(X2∏) radical is constructed by using the CCSD(T) theory in combination with the largest correlation-consistent quintuple basis set augmented with the diffuse functions in the valence range. Using the interaction potential, the spectroscopic parameters are accurately determined. The present D0, De, Re, ωe, αe and Be values are of 3.0956 eV, 3.1863 eV, 0.15223 nm, 1472.894 cm-1, 0.07799 cm-1 and 3.8717 cm-1, respectively,which are in excellent agreement with the measurements. A total of 26 vibrational states is predicted when J = 0 by solving the radial Schr(o)dinger equation of nuclear motion. The complete vibrational levels, classical turning points,initial rotation and centrifugal distortion constants when J = 0 are reported for the first time, which are in good accord with the available experiments. The total and various partial-wave cross sections are calculated for the elastic collisions between Si and D atoms in their ground states at 1.0×10-11-1.0×10-3 a.u. when the two atoms approach each other along the SiD(X2∏) potential energy curve. Four shape resonances are found in the total elastic cross sections, and their resonant energies are of 1.73×10-5, 4.0×10-5, 6.45×10-5 and 5.5×10-4 a.u., respectively. Each shape resonance in the total elastic cross sections is carefully investigated. The results show that the shape of the total elastic cross sections is mainly dominated by the s partial wave at very low temperatures. Because of the weakness of the shape resonances coming from the higher partial waves, most of them are passed into oblivion by the strong s partial-wave elastic cross sections.

  18. Empirical correlation among the dynamic elastic constants and the waves P and S velocities in rocks; Correlaciones empiricas entre las constantes elasticas dinamicas y las velocidades de las ondas P y S de las rocas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Lopez, Enrique [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    Departing from the analysis of a data base on the velocities of the compression waves (V{sub p}) and the transverse waves (V{sub s}) in a group of 97 specimens of sedimentary, igneous and metamorphic rocks, the existence of four types of empirical correlation very well entailed between the dynamic elastic constants and the velocities V{sub p} and V{sub s}. These correlation allow the estimation with a very close approximation the elastic dynamic constants without the need of having available of the complete set of data (V{sub p}, V{sub s} and total density) that is normally required for its determination. The identified correlation is mathematically expressed by means of adjustment equations that reproduce in all of the cases the experimental values with a standard error of estimation within 10%, for the universe of rocks studied and with much less error for different specific lithological groups. The application methodologies of the correlation found for different cases of practical interest, are described. [Espanol] A partir del analisis de una base de datos experimentales sobre la velocidad de las ondas compresionales (V{sub p}) y de las ondas transversales (V{sub s}) de un conjunto de 97 especimenes de rocas sedimentarias, igneas y metamorficas, se identifica la existencia de cuatro tipos de correlaciones empiricas muy bien comportadas entre las constantes elasticas dinamicas y las velocidades V{sub p} y V{sub s}. Estas correlaciones permiten estimar con muy buena aproximacion las constantes elasticas dinamicas de las rocas sin tener que disponer del conjunto completo de datos (V{sub p}, V{sub s} y densidad total) que normalmente se requieren para su determinacion. Las correlaciones identificadas se expresan matematicamente mediante ecuaciones de ajuste que reproducen en todos los casos los valores experimentales con un error estandar de estimacion dentro de 10% para el universo de las rocas estudiadas, y con mucho menor error para diferentes grupos litologicos

  19. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: molecular dynamics study of elastic constants, diffusion, and segregation.

    Science.gov (United States)

    Shin, Yun Kyung; Kwak, Hyunwook; Zou, Chenyu; Vasenkov, Alex V; van Duin, Adri C T

    2012-12-13

    We have developed a ReaxFF force field for Fe/Al/Ni binary alloys based on quantum mechanical (QM) calculations. In addition to the various bulk phases of the binary alloys, the (100), (110) and (111) surface energies and adatom binding energies were included in the training set for the force field parametrization of the Fe/Al/Ni binary alloys. To validate these optimized force fields, we studied (i) elastic constants of the binary alloys at finite temperatures, (ii) diffusivity of alloy components in Al/Ni alloy, and (iii) segregation on the binary alloy surfaces. First, we calculated linear elastic constants of FeAl, FeNi(3), and Ni(3)Al in the temperature range 300 to 1100 K. The temperature dependences of the elastic constants of these three alloys, showing a decrease in C(11), C(12), and C(44) as temperature increases, were in good agreement with the experimental results. We also performed ReaxFF molecular dynamics (MD) simulations for Al or Ni diffusion in the system modeled as Al/Ni mixed layers with the linear composition gradients. At 1000 K, Al diffusivity at the pure Al end was 2 orders of magnitude larger than that in the Al trace layers, probably explaining the nature of different diffusion behavior between molten metals and alloys. However, the diffusivity of Ni at the pure Ni end was only slightly larger than that in the Ni trace layers at the system temperature much lower than the melting temperature of Ni. Third, we investigated the surface segregation in L1(2)-Fe(3)Al, Fe(3)Ni, and Ni(3)Al clusters at high temperature (2500 K). From the analysis of composition distribution of the alloy components from the bulk to the surface layer, it was found that the degree of segregation depended on the chemical composition of the alloy. Al surface segregation occurred most strongly in Fe(3)Al, whereas it occurred most weakly in Ni(3)Al. These results may support the segregation mechanism that surface segregation results from the interplay between the

  20. Thermodynamic Predictions of Thermal Expansivity and Elastic Compliances at High Temperatures and Pressures Applied to Perovskite Crystals

    Science.gov (United States)

    Burns, S. J.

    2016-12-01

    The possibility of near zero thermal expansion coefficients at very high pressures is explored for application to the Earth's core materials and mantle dynamics. The pressures in the Earth are large enough to effectively reduce thermal expansion coefficients to values which will decouple heat from mechanical work. It is shown that at pressures below the bulk modulus the thermal expansion coefficient will approach zero in all simple linear-elastic crystalline models. Advanced models of crystalline elastic solids based on interatomic potentials and density functional theory are shown to violate Gibb's potential for a solid, crystalline material described by three elastic matrix compliance entries; it is established that the temperature dependence of S 11 and S 12 are thermodynamically identical; it is also established that the pressure dependence of S 11 and S 12 are thermodynamically identical. The basis for thermal energy in materials is the phonon energy in solids. However, it is noted that heat capacity measurements which are obtained from constant pressure heat capacity conditions converted to constant volume values on isobars are not in the correct state when compared to theoretical models; at atmospheric pressure there may be very little difference between these states but at very high pressures the effect may be major. Very large pressures always reduce thermal expansion coefficients; the importance of very small thermal expansion coefficients is discussed in relation to physical processes deep in the core and mantle of the Earth.

  1. ELASTIC WAVE LOCALIZATION IN TWO-DIMENSIONAL PHONONIC CRYSTALS WITH ONE-DIMENSIONAL QUASI-PERIODICITY AND RANDOM DISORDER

    Institute of Scientific and Technical Information of China (English)

    Ali Chen; Yuesheng Wang; Guilan Yu; Yafang Guo; Zhengdao Wang

    2008-01-01

    The band structures of both in-plane and anti-plane elastic waves propagating in two-dimensional ordered and disordered (in one direction) phononic crystals are studied in this paper. The localization of wave propagation due to random disorder is discussed by introducing the concept of the localization factor that is calculated by the plane-wave-based transfer-matrix method. By treating the quasi-periodicity as the deviation from the periodicity in a special way, two kinds of quasi phononic crystal that has quasi-periodicity (Fibonacci sequence) in one direction and translational symmetry in the other direction are considered and the band structures are characterized by using localization factors. The results show that the localization factor is an effective parameter in characterizing the band gaps of two-dimensional perfect, randomly disordered and quasi-periodic phcnonic crystals. Band structures of the phononic crystals can be tuned by different random disorder or changing quasi-periodic parameters. The quasi phononic crystals exhibit more band gaps with narrower width than the ordered and randomly disordered systems.

  2. Elastic Constants of Plane Orthotropic Elasticity

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    The four independent material parameters of plane orthotropic elasti city are introduced as the effective stiffness, the effective Poisson ratio, the stiffness ratio and the shear parameter. It is proved that stress boundary value problems with zero resulting force on internal contours lead to st...

  3. Exploring Equivalent Elastic Constants of Functional Prismatic Sandwich Panel%功能型多孔夹层板的等效弹性常数研究

    Institute of Scientific and Technical Information of China (English)

    孟俊苗; 邓子辰; 张凯; 周加喜

    2014-01-01

    Under the condition that the strain energy of the periodic representative volume element ( RVE ) is e-quivalent to the elastic solid RVE, we improve the method for calculating the equivalent elastic constants by consid-ering the in-plane shear effect of a functional prismatic sandwich panel. The prismatic core is equalized to the aniso-tropic and homogenous material with the macroscopically equivalent elastic constants that are derived from the rela-tionship between strain and macro-strain of the Timoshenko beam theory. The effectiveness of the method is verified by comparing the structural response and the first five natural frequencies of a square prismatic sandwich panel with those of an equivalent sandwich panel;the verification results, given in Figs. 4, 5 and Table 1, and their analysis show preliminarily that our method that considers the in-plane shear effect can caculate more accurately.%基于应变能等效原理,将功能型多孔夹层板的夹芯层等效为均匀的各向异性材料,并通过考虑夹芯层的面内剪切作用,即将构成代表体单元的基元杆件考虑为Timoshenko梁,建立Timoshenko梁单元的应变和宏观应变之间的关系,得到等效固体代表体单元的应变能密度与宏观应变的关系,从而,给出相应的宏观等效弹性常数。最后,通过有限元方法计算实际正方形蜂窝夹层板和等效夹层板的结构响应和低阶振动频率,验证该方法的有效性,对比分析得知该方法较原方法具有更高的精度,说明考虑面内剪切作用的必要性。

  4. A new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro’s constant

    Science.gov (United States)

    Abrosimov, N. V.; Aref'ev, D. G.; Becker, P.; Bettin, H.; Bulanov, A. D.; Churbanov, M. F.; Filimonov, S. V.; Gavva, V. A.; Godisov, O. N.; Gusev, A. V.; Kotereva, T. V.; Nietzold, D.; Peters, M.; Potapov, A. M.; Pohl, H.-J.; Pramann, A.; Riemann, H.; Scheel, P.-T.; Stosch, R.; Wundrack, S.; Zakel, S.

    2017-08-01

    A metrological challenge is currently underway to replace the present definition of the kilogram. One prerequisite for this is that the Avogadro constant, N A, which defines the number of atoms in a mole, needs to be determined with a relative uncertainty of better than 2  ×  10-8. The method applied in this case is based on the x-ray crystal density experiment using silicon crystals. The first attempt, in which silicon of natural isotopic composition was used, failed. The solution chosen subsequently was the usage of silicon highly enriched in 28Si from Russia. First, this paper reviews previous efforts from the very first beginnings to an international collaboration with the goal of producing a 28Si single crystal with a mass of 5 kg, an enrichment greater than 0.9999 and of sufficient chemical purity. Then the paper describes the activities of a follow-up project, conducted by PTB, to produce a new generation of highly enriched silicon in order to demonstrate the quasi-industrial and reliable production of more than 12 kg of the 28Si material with enrichments of five nines. The intention of this project is also to show the availability of 28Si single crystals as a guarantee for the future realisation of the redefined kilogram.

  5. Enhanced time response of 1-in. LaBr{sub 3}(Ce) crystals by leading edge and constant fraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Vedia, V., E-mail: mv.vedia@ucm.es [Grupo de Física Nuclear, Facultad de CC. Físicas, Universidad Complutense, CEI Moncloa, ES-28040 Madrid (Spain); Mach, H. [Grupo de Física Nuclear, Facultad de CC. Físicas, Universidad Complutense, CEI Moncloa, ES-28040 Madrid (Spain); National Centre for Nuclear Research, Division for Nuclear Physics, BP1, PL-00-681 Warsaw (Poland); Fraile, L.M.; Udías, J.M. [Grupo de Física Nuclear, Facultad de CC. Físicas, Universidad Complutense, CEI Moncloa, ES-28040 Madrid (Spain); Lalkovski, S. [Faculty of Physics, University of Sofia, St. Kliment Ohridski, BG-1164 Sofia (Bulgaria)

    2015-09-21

    We have characterized in depth the time response of three detectors equipped with cylindrical LaBr{sub 3}(Ce) crystals with dimensions of 1-in. in height and 1-in. in diameter, and having nominal Ce doping concentration of 5%, 8% and 10%. Measurements were performed at {sup 60}Co and {sup 22}Na γ-ray energies against a fast BaF{sub 2} reference detector. The time resolution was optimized by the choice of the photomultiplier bias voltage and the fine tuning of the parameters of the constant fraction discriminator, namely the zero-crossing and the external delay. We report here on the optimal time resolution of the three crystals. It is observed that timing properties are influenced by the amount of Ce doping and the crystal homogeneity. For the crystal with 8% of Ce doping the use of the ORTEC 935 CFD at very shorts delays in addition to the Hamamatsu R9779 PMT has made it possible to improve the LaBr{sub 3}(Ce) time resolution from the best literature value at {sup 60}Co photon energies to below 100 ps.

  6. Ab initio calculations of optical constants of GaSe and InSe layered crystals

    Science.gov (United States)

    Sarkisov, S. Yu.; Kosobutsky, A. V.; Brudnyi, V. N.; Zhuravlev, Yu. N.

    2015-09-01

    The dielectric functions, refractive indices, and extinction coefficients of GaSe and InSe layered crystals have been calculated within the density functional theory. The calculations have been performed for the values of theoretical structural parameters optimized using the exchange-correlation functional, which allows one to take into account the dispersion interactions. It has been found that optical functions are characterized by the most pronounced polarization anisotropy in the range of photon energies of ˜4-7 eV. The frequency dependences for InSe compound in the range up to 4 eV demonstrate the more pronounced anisotropy as compared to GaSe. The results obtained for GaSe crystal agree better with the experimental data as compared to the previous calculations.

  7. Electromechanical constants and their anisotropy in LiNbO sub 3 -type crystals having 180 deg. inclined domain walls

    CERN Document Server

    Topolov, V Y

    1998-01-01

    The paper is devoted to the determination of effective electromechanical constants d sub i sub j sup p , e sub i sub j sup p , epsilon sub k sub l supsigma sup , sup p and s sub f sub g sup E sup , sup p of polydomain LiNbO sub 3 and LiNb sub 0 sub . sub 1 Ta sub 0 sub . sub 9 O sub 3 crystals at room temperature. 180 deg domain structures considered here contain inclined plane walls providing a significant anisotropy of piezoelectric constants e sub i sub j sup p. The effect of such domain structures is established for the first time and discussed. (author)

  8. Effect of non-hydrostatic conditions on the elastic behaviour of magnetite: an in situ single-crystal X-ray diffraction study

    Science.gov (United States)

    Gatta, G. Diego; Kantor, I.; Boffa Ballaran, T.; Dubrovinsky, L.; McCammon, C.

    2007-11-01

    The high-pressure elastic behaviour and the pressure-induced structural evolution of synthetic magnetite were investigated up to 11.11(5) GPa by means of in situ single-crystal X-ray diffraction with a diamond anvil cell, using the mix methanol:ethanol:water = 16:3:1 as pressure-transmitting medium and the ruby-fluorescence method for pressure-calibration. The evolution of the ruby R1-fluorescence line with P, with a drastic increase of the full-width-at-half-maximum (FWHM) of the Lorentzian profile at P > 9 GPa, shows that the P-medium is not hydrostatic above 9 GPa. Such a condition is well reflected by the drastic increase (by 20-22%) of the FWHM of the diffraction peak profiles of magnetite, by the behaviour of the Eulerian finite strain versus normalized pressures plot ( f e - F e plot) and by the slight EoS-misfit. However, the diffraction data collected during decompression showed a reversible/complete restoration of the diffraction profiles and of the elastic behaviour in the f e - F e plot. The reflection conditions dictated by the Fdbar 3m space group confirm that symmetry of magnetite is maintained within the P-range investigated. The structural refinements performed at 0.0001, 4.99(3) and 9.21(8) GPa show that the evolution of the oxygen u-parameter is almost constant within the P-range investigated. A weighted linear regression through the data points gives only a slight negative slope and no discontinuity is observed within the P-range investigated. A similar continuous behaviour is also observed in the evolution of the T- and M-polyhedral volumes, bond distances and angles with P. On the basis of data reported in this study, it appears that the elastic behaviour and the structural evolution of magnetite is drastically influenced by the experimental conditions (i.e., hydrostatic or non-hydrostatic), and diffraction data of magnetite collected under non-hydrostatic conditions are unusable for a reliable description of the elastic behaviour and for the

  9. Growth of KH/sub 2/PO/sub 4/ crystals at constant temperature and supersaturation. Final report, October 20, 1980-October 20, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Loiacono, G.M.; Zola, J.; Kostecky, G.

    1982-02-01

    A large three-zone crystallizer system was constructed and successfully operated for growing KH/sub 2/PO/sub 4/ single crystals. Under conditions of constant crystallization temperature and supersaturation, growth rates exceding 5 mm per day were demonstrated for KH/sub 2/PO/sub 4/ crystals of 5 x 5 cm cross section. The optical quality of these crystals was equivalent to that of crystals grown at rates presently considered as state-of-the-art (approx. 1 mm/day). Sample crystals were supplied for comparison testing. The three-zone system appears to be ideally suitable for growth of large-diameter KH/sub 2/PO/sub 4/ crystals for the Laser Fusion Program.

  10. How Sensitive Is the Elasticity of Hydroxyapatite-Nanoparticle-Reinforced Chitosan Composite to Changes in Particle Concentration and Crystallization Temperature?

    Directory of Open Access Journals (Sweden)

    Kean Wang

    2015-10-01

    Full Text Available Hydroxyapatite (HA nanoparticle-reinforced chitosan composites are biocompatible and biodegradable structural materials that are used as biomaterials in tissue engineering. However, in order for these materials to function effectively as intended, e.g., to provide adequate structural support for repairing damaged tissues, it is necessary to analyse and optimise the material processing parameters that affect the relevant mechanical properties. Here we are concerned with the strength, stiffness and toughness of wet-spun HA-reinforced chitosan fibres. Unlike previous studies which have addressed each of these parameters as singly applied treatments, we have carried out an experiment designed using a two-factor analysis of variance to study the main effects of two key material processing parameters, namely HA concentration and crystallization temperature, and their interactions on the respective mechanical properties of the composite fibres. The analysis reveals that significant interaction occurs between the crystallization temperature and HA concentration. Starting at a low HA concentration level, the magnitude of the respective mechanical properties decreases significantly with increasing HA concentration until a critical HA concentration is reached, at around 0.20–0.30 (HA mass fraction, beyond which the magnitude of the mechanical properties increases significantly with HA concentration. The sensitivity of the mechanical properties to crystallization temperature is masked by the interaction between the two parameters—further analysis reveals that the dependence on crystallization temperature is significant in at least some levels of HA concentration. The magnitude of the mechanical properties of the chitosan composite fibre corresponding to 40 °C is higher than that at 100 °C at low HA concentration; the reverse applies at high HA concentration. In conclusion, the elasticity of the HA nanoparticle-reinforced chitosan composite fibre is

  11. Transmission Frequency Properties of Elastic Waves along a Hetero-Phononic Crystal Waveguide

    Institute of Scientific and Technical Information of China (English)

    YAO Yuan-Wei; HOU Zhi-Lin; LIU You-Yan

    2007-01-01

    We investigate the propagation properties of hetero-phononic crystal waveguides by the improved eigen-mode matching theory, which can be used at same time to calculate both the transmission (reflection) coefficient and band structure. The numerical results show that the transmission frequency range is the same as the common range for two uniform waveguides composing the hetero-system, and the gap of any composite waveguide is also the gap of the hetero-phononic crystals waveguide.

  12. Investigation of Elastic Energy on Single Crystal GaN Nanobeams with Different Span

    Directory of Open Access Journals (Sweden)

    Shang-Chao Hung

    2014-01-01

    Full Text Available This research presents a novel technique which can more efficiently fabricate different spans of nanobeams on the same substrate. It requires less time to prepare specimen and further shortens the process of aligning, clamping, and testing. Also, we probe into the elastic deformation properties of clamped freestanding GaN nanobeams with different spans. In the bending process, displacement, D, corresponding to load, P is strongly dependent on the span of nanobeam at the same penetration depth and a distinct linearity is observed. Young’s moduli E of the GaN in this study are calculated as 171.3 GPa ±5.4% and 264.2 GPa ±4.7% by strain energy methods, respectively, for the longer and shorter spans of nanobeams, serving as a simple supporting beam of elastic material under small deformation. The result shows that, even under small deformation, the rigidity enhancement helps the shorter nanobeam store more elastic energy.

  13. Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene.

    Science.gov (United States)

    Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q

    2012-01-21

    From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene.

  14. Growth of KH/sub 2/PO/sub 4/ crystals at constant temperature and supersaturation. Final report, 20 October 1980-20 October 1981

    Energy Technology Data Exchange (ETDEWEB)

    Loiacono, G.M.; Zola, J.; Kostecky, G.

    1982-02-01

    A large three-zone cyrstallizer system was constructed and successfully operated for growing KH/sub 2/PO/sub 4/ single crystals. Under conditions of constant crystallization temperature and supersaturation, growth rates exceeding 5 mm per day were demonstrated for KH/sub 2/PO/sub 4/ crystals of 5 x 5 cm cross section. The optical quality of these crystals was equivalent to that of crystals grown at rates presently considered as state-of-the-art (approx. 1 mm/day). Sample crystals were supplied for comparison testing. The three-zone system appears to be ideally suitable for growth of large-diameter KH/sub 2/PO/sub 4/ crystals for the Laser Fusion Program.

  15. Al{sub 4}SiC{sub 4} wurtzite crystal: Structural, optoelectronic, elastic, and piezoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Pedesseau, L., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Even, J., E-mail: laurent.pedesseau@insa-rennes.fr, E-mail: jacky.even@insa-rennes.fr; Durand, O. [Fonctions Optiques pour les Technologies de l’Information, FOTON UMR 6082, CNRS, INSA de Rennes, 35708 Rennes (France); Modreanu, M. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Chaussende, D.; Sarigiannidou, E.; Chaix-Pluchery, O. [LMGP, CNRS, Université Grenoble Alpes, 38000 Grenoble (France)

    2015-12-01

    New experimental results supported by theoretical analyses are proposed for aluminum silicon carbide (Al{sub 4}SiC{sub 4}). A state of the art implementation of the density functional theory is used to analyze the experimental crystal structure, the Born charges, the elastic properties, and the piezoelectric properties. The Born charge tensor is correlated to the local bonding environment for each atom. The electronic band structure is computed including self-consistent many-body corrections. Al{sub 4}SiC{sub 4} material properties are compared to other wide band gap wurtzite materials. From a comparison between an ellipsometry study of the optical properties and theoretical results, we conclude that the Al{sub 4}SiC{sub 4} material has indirect and direct band gap energies of about 2.5 eV and 3.2 eV, respectively.

  16. Surface-Controlled Orientational Transitions in Elastically Strained Films of Liquid Crystal That Are Triggered by Vapors of Toluene.

    Science.gov (United States)

    Bedolla Pantoja, Marco A; Abbott, Nicholas L

    2016-05-25

    We report the fabrication of chemically patterned microwells that enable the rapid and facile preparation (by spin coating and patterned dewetting) of thin films of liquid crystals (LCs) that have precise thicknesses (0.7-30 μm), are supported on chemically defined substrates, and have free upper surfaces. We use these microwells to prepare elastically strained nematic LC films supported on silica glass, gold, or polystyrene substrates and thereby characterize the response of the strained LC films to vapors of toluene. We report that low concentrations of toluene vapor (LC to lower the anchoring energy of the LC on these substrates, thus allowing the elastic energy of the strained LC film to drive the LC films through an orientational transition. The central role of the toluene-induced change in surface anchoring energy is supported by additional experiments in which the response of the nematic LC to changes in film thickness and substrate identity are quantified. A simple thermodynamic model captures these trends and yielded estimates of anchoring energies (8-22 μJ/m(2)). Significantly, the orientational transitions observed in these strained LC thin films occur at concentrations of toluene vapor that are almost 1 order of magnitude below those which lead to bulk phase transitions, and they are not triggered by exposure to water vapor. Overall, these results hint at principles for the design of responsive LC-based materials that can be triggered by concentrations of aromatic, volatile organic compounds that are relevant to human health.

  17. 电阻应变法测定杉木弹性常数的研究%Study on Determining the Elastic Constants of Wood of Cunninghamia lanceolata by Means of Electric Resistance-Strain Gauges

    Institute of Scientific and Technical Information of China (English)

    邵卓平; 祝山

    2001-01-01

    The elastic constants of wood of Cunninghamia lanceolata was determined and the limits of orthotropic model adopted for wood was studied. The results showed that the elastic constants of wood could be determined by means of electric resistance-strain gauges,and the constants was satisfied to the limits of orthotropic.%测试杉木的弹性常数,研究木材采用正交各向异性体模型的限制条件。结果表明,可以采用电阻应变法以单轴压缩试件测定木材弹性常数;所测木材弹性常数满足正交各向异性材料的限制条件。

  18. Elastic Properties of Ho0.5Er0.5 Single Crystal

    DEFF Research Database (Denmark)

    Spichkin, Yu.I.; Bohr, Jakob; Tishin, A.M.

    1996-01-01

    The results of an investigation of the Young's modulus E and the interval friction Q-1 of a Ho0.5Er0.5 single crystal in the basal plane in the temperature range 4.2-400 K are reported. The measurements were carried out by the method of flexural autovibrations of a thin sample with sound frequenc...

  19. A "theory of relativity" for cognitive elasticity of time and modality dimensions supporting constant working memory capacity: involvement of harmonics among ultradian clocks?

    Science.gov (United States)

    Glassman, R B

    2000-02-01

    1. The capacity of working memory (WM) for about 7+/-2 ("the magical number") serially organized simple verbal items may represent a fundamental constant of cognition. Indeed, there is the same capacity for sense of familiarity of a number of recently encountered places, observed in radial maze performance both of lab rats and of humans. 2. Moreover, both species show a peculiar capacity for retaining WM of place over delays. The literature also describes paradoxes of extended time duration in certain human verbal recall tasks. Certain bird species have comparable capacity for delayed recall of about 4 to 8 food caches in a laboratory room. 3. In addition to these paradoxes of the time dimension with WM (still sometimes called "short-term" memory) there are another set of paradoxes of dimensionality for human judgment of magnitudes, noted by Miller in his classic 1956 paper on "the magical number." We are able to reliably refer magnitudes to a rating scale of up to about seven divisions. Remarkably, that finding is largely independent of perceptual modality or even of the extent of a linear interval selected within any given modality. 4. These paradoxes suggest that "the magical number 7+/2" depends on fundamental properties of mammalian brains. 5. This paper theorizes that WM numerosity is conserved as a fundamental constant, by means of elasticity of cognitive dimensionality, including the temporal pace of arrival of significant items of cognitive information. 6. A conjectural neural code for WM item-capacity is proposed here, which extends the hypothetical principle of binding-by-synchrony. The hypothesis is that several coactive frequencies of brain electrical rhythms each mark a WM item. 7. If, indeed, WM does involve a brain wave frequency code (perhaps within the gamma frequency range that has often been suggested with the binding hypothesis) mathematical considerations suggest additional relevance of harmonic relationships. That is, if copresent sinusoids

  20. 常弹性方差模型下保险人的最优投资策略%Insurer's optimal investment strategy under constant elasticity of variance model

    Institute of Scientific and Technical Information of China (English)

    荣喜民; 范立鑫

    2012-01-01

    Research insurance funds investment based on constant elasticity of variance (CEV) model, consider a model which the risky asset is modeled by CEV model and the aggregate claims are modeled by a Brownian motion with drift. As employment of premium is different from ordinary, which means that the insurer should keep an eye on underwrite risk when he use insurance funds, assume that investment risk has a linear correlation with underwrite risk. According to stochastic control theory, derive the HJB equation related with insurance problem. This equation is non-linear partial differential equation, yet it is difficult to solve it, change primary problem to the dual problem by using Legendre transform. Through setting the parameter values, the optimal investment strategy for an insurer with CARA or CRRA utility function is presented and the relevant analysis is given, which provides important practical significance for an insurer to invest.%假设风险资产价格服从常弹性方差(CEV)模型,保险人面临的风险过程是带漂移的布朗运动.投资过程与承保风险过程完全相关.根据随机最优控制理论,建立保险基金投资问题的HJB方程.由于该方程是非线性偏微分方程,不易求解,因此采用Legendre变换将其转换成对偶问题进行研究.最后针对特定参数值分别得到以CARA和CRRA效用函数为目标的保险人的最优投资策略,这样的投资策略更符合金融市场的实际要求.

  1. Elastic wave localization in two-dimensional phononic crystals with one-dimensional random disorder and aperiodicity

    Science.gov (United States)

    Yan, Zhi-Zhong; Zhang, Chuanzeng; Wang, Yue-Sheng

    2011-03-01

    The band structures of in-plane elastic waves propagating in two-dimensional phononic crystals with one-dimensional random disorder and aperiodicity are analyzed in this paper. The localization of wave propagation is discussed by introducing the concept of the localization factor, which is calculated by the plane-wave-based transfer-matrix method. By treating the random disorder and aperiodicity as the deviation from the periodicity in a special way, three kinds of aperiodic phononic crystals that have normally distributed random disorder, Thue-Morse and Rudin-Shapiro sequence in one direction and translational symmetry in the other direction are considered and the band structures are characterized using localization factors. Besides, as a special case, we analyze the band gap properties of a periodic planar layered composite containing a periodic array of square inclusions. The transmission coefficients based on eigen-mode matching theory are also calculated and the results show the same behaviors as the localization factor does. In the case of random disorders, the localization degree of the normally distributed random disorder is larger than that of the uniformly distributed random disorder although the eigenstates are both localized no matter what types of random disorders, whereas, for the case of Thue-Morse and Rudin-Shapiro structures, the band structures of Thue-Morse sequence exhibit similarities with the quasi-periodic (Fibonacci) sequence not present in the results of the Rudin-Shapiro sequence.

  2. Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials

    Directory of Open Access Journals (Sweden)

    J. O. Vasseur

    2011-12-01

    Full Text Available The feasibility of contactless tunability of the band structure of two-dimensional phononic crystals is demonstrated by employing magnetostrictive materials and applying an external magnetic field. The influence of the amplitude and of the orientation with respect to the inclusion axis of the applied magnetic field are studied in details. Applications to tunable selective frequency filters with switching functionnality and to reconfigurable wave-guides and demultiplexing devices are then discussed.

  3. A methodology to determine the elastic moduli of crystals by matching experimental and simulated lattice strain pole figures using discrete harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Wielewski, Euan J.; Boyce, Donald; Park, Jun-Sang; Miller, M P; Dawson, Paul

    2017-03-01

    Determining reliable single crystal material parameters for complex polycrystalline materials is a significant challenge for the materials community. In this work, a novel methodology for determining those parameters is outlined and successfully applied to the titanium alloy, Ti-6Al-4V. Utilizing the results from a lattice strain pole figure experiment conducted at the Cornell High Energy Synchrotron Source, an iterative approach is used to optimize the single crystal elastic moduli by comparing experimental and simulated lattice strain pole figures at discrete load steps during a uniaxial tensile test. Due to the large number of unique measurements taken during the experiments, comparisons were made by using the discrete spherical harmonic modes of both the experimental and simulated lattice strain pole figures, allowing the complete pole figures to be used to determine the single crystal elastic moduli. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Single-crystal elastic properties of (Cs,Na)AlSi2O6.H2O pollucite: A zeolite with potential use for long-term storage of Cs radioisotopes

    Science.gov (United States)

    Sanchez-Valle, Carmen; Chio, Chi-Hong; Gatta, G. Diego

    2010-11-01

    The single-crystal and aggregate elastic properties of the zeolite pollucite (Cs,Na)AlSi2O6ṡH2O, a potential host for Cs radionucleides in geological repositories, have been determined by Brillouin scattering spectroscopy at ambient conditions. The three nonzero individual elastic constants of cubic pollucite are: C11=105.0(1.3) GPa, C44=27.0(3) GPa, and C12=25.7(6) GPa. The Voigt-Reuss-Hill average of the aggregate bulk, shear modulus, Young's modulus and Poisson's ratio are KS=52.2(1.0) GPa, G=31.5(7) GPa, E=78.6(1.0) GPa, and ν =0.248(4), respectively. The bulk modulus of pollucite is 12.7% lower than that of the all-Na isotypic mineral analcime NaAlSi2O6ṡH2O whereas the shear moduli G are identical within mutual uncertainties. The higher compressibility of pollucite results from the weaker Cs-O bonds compared to Na-O bonds, suggesting strong control of the nature and configuration of the extraframework content on the behavior of the structure. The elastic properties of pollucite reported here will help in the prediction of its behavior as a geological barrier and in the modeling of the short-term and long-term safety of the Cs-repositories.

  5. Thermo-optical characteristics of DKDP crystal

    Science.gov (United States)

    Mironov, E. A.; Vyatkin, A. G.; Starobor, A. V.; Palashov, O. V.

    2017-03-01

    This letter presents a theoretical and experimental investigation of thermally induced polarization distortions occurring in an optical element made of c-cut tetragonal crystals. Two material characteristics were defined for this class of crystals: the optical anisotropy parameter ξ and the thermo-optical constant Q. These were generalized with analogous characteristics of elastically isotropic cubic crystals. The experimental investigation of these characteristics for popular tetragonal deuterated potassium dihydrogen phosphate (DKDP) crystal was carried out.

  6. Design of radial phononic crystal using annular soft material with low-frequency resonant elastic structures

    Science.gov (United States)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang

    2016-10-01

    Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.

  7. Experimental and theoretical investigation of the elastic moduli of silicate glasses and crystals

    Science.gov (United States)

    Philipps, Katharina; Stoffel, Ralf Peter; Dronskowski, Richard; Conradt, Reinhard

    2017-02-01

    A combined quantum-mechanical and thermodynamic approach to the mechanical properties of multicomponent silicate glasses is presented. Quantum chemical calculations based on density-functional theory (DFT) on various silicate systems were performed to explore the crystalline polymorphs existing for a given chemical composition. These calculations reproduced the properties of known polymorphs even in systems with extensive polymorphism, like MgSiO3. Properties resting on the atomic and electronic structure, i.e., molar volumes (densities) and bulk moduli were predicted correctly. The theoretical data (molar equilibrium volumes, bulk moduli) were then used to complement the available experimental data. In a phenomenological evaluation, experimental data of bulk moduli, a macroscopic property resting on phononic structure, were found to linearly scale with the ratios of atomic space demand to actual molar volume in a universal way. Silicates ranging from high-pressure polymorphs to glasses were represented by a single master line. This suggests that above the Debye limit (in practice: above room temperature), the elastic waves probe the short range order coordination polyhedra and their next-neighbor linkage only, while the presence or absence of an extended translational symmetry is irrelevant. As a result, glasses can be treated - with respect to the properties investigated - as commensurable members of polymorphic series. Binary glasses fit the very same line as their one-component end-members, again both in the crystalline and glassy state. Finally, it is shown that the macroscopic properties of multicomponent glasses also are linear superpositions of the properties of their constitutional phases (as determined from phase diagrams or by thermochemical calculations) taken in their respective glassy states. This is verified experimentally for heat capacities and Young’s moduli of industrial glass compositions. It can be concluded, that the combined quantum

  8. Full solution, for crystal class 3m, of the Holland-EerNisse complex material-constant theory of lossy piezoelectrics for harmonic time dependence.

    Science.gov (United States)

    Piquette, Jean C; McLaughlin, Elizabeth A

    2007-06-01

    A complex material-constant theory of lossy piezoelectrics is fully solved for crystal class 3m for harmonic time dependence of the fields and stresses. A new demonstration that the theory's eigen coupling factor equation applies to the lossy alternating current (AC) case also is given. The solution presented for crystal class 3m provides a complete orthonormal set of eigenvectors and eigenvalues for the eigen coupling factor problem, and it also provides a complete orthonormal set of eigenvectors and eigenvalues for the eigen loss tangent problem, for this crystal class. It is shown that two positive coupling factors are sufficient to express an arbitrary 3m crystal state. Despite the complex nature of the material constants, the Holland-EerNisse theory produces fully real expressions for the coupling factors. The loss tangent eigenvalues also are fully real and positive. The loss eigenstates are important because driving a crystal in a loss eigenstate tends to minimize the impact of material losses. Given also is a set of loss inequalities for crystal class 3m. The loss inequalities of crystal class 6mm are recovered from these when d22 and s(E)14 both vanish.

  9. First-Principle Calculations for Elastic and Thermodynamic Properties of Diamond

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-Jian; JI Guang-Fu; CHEN Xiang-Rong; GOU Qing-Quan

    2009-01-01

    The elastic constants and thermodynamic properties of diamond are investigated by using the CRYSTAL03 ture are obtained. The results are in good agreement with the available experimental and theoretical data. Moreover, the relationship between V/V0 and pressure, the elastic constants under high pressure are successfully obtained. Especially, the elastic constants of diamond under high pressure are firstly obtained theoretically. At the same time, the variations of the thermal expansion α with pressure P and temperature Tare obtained systematically in the ranges of 0-870 GPa and 0-1600 K.

  10. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures

    Science.gov (United States)

    Mookherjee, Mainak; Tsuchiya, Jun; Hariharan, Anant

    2016-02-01

    We examined the equation of state and high-pressure elasticity of the hydrous aluminosilicate mineral topaz-OH (Al2SiO4(OH)2) using first principles simulation. Topaz-OH is a hydrous phase in the Al2O3-SiO2-H2O (ASH) ternary system, which is relevant for the mineral phase relations in the hydrated sedimentary layer of subducting slabs. Based on recent neutron diffraction experiments, it is known that the protons in the topaz-OH exhibit positional disorder with half occupancy over two distinct crystallographic sites. In order to adequately depict the proton environment in the topaz-OH, we examined five crystal structure models with distinct configuration for the protons in topaz-OH. Upon full geometry optimization we find two distinct space group, an orthorhombic Pbnm and a monoclinic P21/c for topaz-OH. The topaz-OH with the monoclinic P21/c space group has a lower energy compared to the orthorhombic Pbmn space group symmetry. The pressure-volume results for the monoclinic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0mon = 348.63 (±0.04) Å3, K0mon = 164.7 (±0.04) GPa, and K0mon = 4.24 (±0.05). The pressure-volume results for the orthorhombic topaz-OH is well represented by a third order Birch-Murnaghan formulation, with V0orth = 352.47 (±0.04) Å3, K0orth = 166.4 (±0.06) GPa, and K0orth = 4.03 (±0.04). While the bulk moduli are very similar for both the monoclinic and orthorhombic topaz-OH, the shear elastic constants and the shear moduli are very sensitive to the position of the proton, orientation of the O-H dipole, and the space group symmetry. The S-wave anisotropy for the orthorhombic and monoclinic topaz-OH are also quite distinct. In the hydrated sedimentary layer of subducting slabs, transformation of a mineral assemblage consisting of coesite (SiO2) and diaspore (AlOOH) to topaz-OH (Al2SiO4(OH)2) is likely to be accompanied by an increase in density, compressional velocity, and shear wave velocity. However

  11. First Principles Calculation of Elastic Constants of Monoclinic HfO2 Thin Film%单斜相HfO2薄膜弹性常数的第一性原理计算

    Institute of Scientific and Technical Information of China (English)

    蔺玲; 邵淑英; 李静平

    2013-01-01

    用电子束蒸发沉积在K9玻璃基底上镀制HfO2薄膜,沉积温度为200℃,蒸发速率为0.03 nm/s.由X射线衍射谱可知薄膜出现明显结晶,且为单斜相和正交相混合结构,其中单斜相占明显优势.用Jade5软件分析得到单斜相HfO2的晶格常数a,b,c以及晶格矢量a和c之间的夹角β.基于得到的晶格常数建立了单斜相HfO2薄膜的晶体结构模型.同时建立固态单斜相HfO2的晶体结构模型进行对比.通过密度泛函理论(DFT)框架下的平面超软赝势法,采用两种不同的交换关联函数:局域密度近似(LDA)中的CA-PZ和广义梯度近似(GGA)中的质子平衡方程(PBE),计算了薄膜态和固态单斜晶相HfO2的弹性刚度系数矩阵Gij和弹性柔度系数矩阵Sij,Reuss模型、Voigt模型和Hill理论下的体积模量和剪切模量,材料平均杨氏模量和泊松比.此外还计算得到薄膜态和固态单斜晶相HfO2在不同方向上的杨氏模量.%HfO2 films are deposited by electron beam evaporation at a deposition rate of 0.03 nm/s and deposition temperature of 200 ℃ on K9 glass substrates. The films are observed to show a mixed structure of monoclinic and orthorhombic phase through X-ray diffraction and monoclinic phase is of obvious advantages. The structure parameters a, b, c and angel β of monoclinic HfO2 films are obtained using Jade5 software, based on which the crystal structure model is built. While solid crystal monoclinic HfO2 model is built to compare with the thin film one. Elastic stiffness constants of monoclinic HfO2 thin film and solid crystal are investigated using the plane waves ultrasoft pseudopotential technique based on the density functional theory (DFT) under two different exchange correlation functions of local density approximation (LDA) CA-PZ and generalized gradient approximation (GGA) PBE. Reuss, Voigt and Hill theories are used to estimate the bulk, shear and average Young's moduli and Possion ratio for polycrystalline HfO2

  12. Inferring elastic properties of an fcc crystal from displacement correlations: subspace projection and statistical artifacts.

    Science.gov (United States)

    Hasan, A; Maloney, C E

    2014-12-01

    We compute the effective dispersion and vibrational density of states (DOS) of two-dimensional subregions of three-dimensional face-centered-cubic crystals using both a direct projection-inversion technique and a Monte Carlo simulation based on a common underlying Hamiltonian. We study both a (111) and (100) plane. We show that for any given direction of wave vector, both (111) and (100) show an anomalous ω(2)∼q regime at low q where ω(2) is the energy associated with the given mode and q is its wave number. The ω(2)∼q scaling should be expected to give rise to an anomalous DOS, D(ω), at low ω: D(ω)∼ω(3) rather than the conventional Debye result: D(ω)∼ω(2). The DOS for (100) looks to be consistent with D(ω)∼ω(3), while (111) shows something closer to the conventional Debye result at the smallest frequencies. In addition to the direct projection-inversion calculation, we perform Monte Carlo simulations to study the effects of finite sampling statistics. We show that finite sampling artifacts act as an effective disorder and bias D(ω), giving a behavior closer to D(ω)∼ω(2) than D(ω)∼ω(3). These results should have an important impact on the interpretation of recent studies of colloidal solids where the two-point displacement correlations can be obtained directly in real-space via microscopy.

  13. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers.

    Science.gov (United States)

    Guo, Xiao; Wei, Peijun; Lan, Man; Li, Li

    2016-08-01

    The effects of functionally graded interlayers on dispersion relations of elastic waves in a one-dimensional piezoelectric/piezomagnetic phononic crystal are studied in this paper. First, the state transfer equation of the functionally graded interlayer is derived from the motion equation by the reduction of order (from second order to first order). The transfer matrix of the functionally graded interlayer is obtained by solving the state transfer equation with the spatial-varying coefficient. Based on the transfer matrixes of the piezoelectric slab, the piezomagnetic slab and the functionally graded interlayers, the total transfer matrix of a single cell is obtained. Further, the Bloch theorem is used to obtain the resultant dispersion equations of in-plane and anti-plane Bloch waves. The dispersion equations are solved numerically and the numerical results are shown graphically. Five kinds of profiles of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab are considered. It is shown that the functionally graded interlayers have evident influences on the dispersion curves and the band gaps.

  14. Determination of the macroscopic elastic constants of a phase embedded in a multiphase polycrystal-application to the {beta}-phase of a Ti-17 titanium based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Freour, S.; Gloaguen, D.; Guillen, R.; Girard, E. [Lab. d' Applications des Materiaux a la Mecanique (LAMM), L.A.M.M. - C.R.T.T., Saint Nazaire (France); Francois, M. [Lab. des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS), Univ. De Technologie de Troyes, Troyes (France); Bouillo, J. [Dept. Genie Civil - IUT de Saint Nazaire (France)

    2002-07-01

    A one-site elastic self-consistent model following the mathematical formalism introduced by Kroener and Eshelby (KE) has been developed in order to solve the case of multiphase materials. This model has been applied to duplex steels and aluminium - silicium carbide metal matrix composites (MMC) in the aim to study the evolution of their stiffness at pseudomacroscopic scale. Simulations justify the usually implicit hypothesis of the identity of the elastic moduli of a given phase, at macroscopic and pseudomacroscopic scales. The implementation of KE model by this hypothesis yields a new implicit formulation for the stiffness of a given unknown phase embedded in a two-phases material. This original characterization method will be applied to the {beta}-phase of Ti-17 alloy. The singular behaviour in terms of residual pseudomacrostress of each phase after uniaxial loadings will be deduced from these data. (orig.)

  15. Detection of anomalies in NLO sulphamic acid single crystals by ultrasonic and thermal studies

    Indian Academy of Sciences (India)

    GEORGE VARUGHESE

    2016-09-01

    The ultrasonic pulse echo overlap technique (PEO) has been used to measure the velocities of 10 MHz acoustic waves in sulphamic acid single crystals in the range of 300–400 K. This study evaluated all the elastic stiffnessconstants, compliance constants and Poisson’s ratios of the crystal. The temperature variations of the elastic constants have been determined. The phase transition studies above room temperature were investigated using ultrasonic PEO technique. This study has suggested new weak elastic anomalies for the crystal around 330 K. The transverse elastic constants C44 and C66 have shown clear thermal hysteresis of 2 K. The present differential scanningcalorimetric (DSC) studies carried out at a slow heating rate have also suggested weak phase transition around 331 K. The present elastic and thermal studies have been substantiated by already reported DC electrical conductivitystudies around 330 K.

  16. Elasticity of hcp cobalt at high pressure and temperature: a quasi-harmonic case

    Energy Technology Data Exchange (ETDEWEB)

    Antonangeli, D; Krisch, M; Farber, D L; Ruddle, D G; Fiquet, G

    2007-11-30

    We performed high-resolution inelastic x-ray scattering measurements on a single crystal of hcp cobalt at simultaneous high pressure and high temperature, deriving 4 of the 5 independent elements of the elastic tensor. Our experiments indicate that the elasticity of hcp-Co is well described within the frame of a quasi-harmonic approximation and that anharmonic high-temperature effects on the elastic moduli, sound velocities and elastic anisotropy are minimal at constant density. These results support the validity of the Birch's law and represent an important benchmark for ab initio thermal lattice dynamics and molecular-dynamics simulations.

  17. Systematic hardness measurements on some rare earth garnet crystals

    Indian Academy of Sciences (India)

    D B Sirdeshmukh; L Sirdeshmukh; K G Subhadra; K Kishan Rao; S Bal Laxman

    2001-10-01

    Microhardness measurements were undertaken on twelve rare earth garnet crystals. In yttrium aluminium garnet and gadolinium gallium garnet, there was no measurable difference in the hardness values of pure and nominally Nd-doped crystals. The hardness values were correlated with the lattice and elastic constants. An analysis of hardness data in terms of the interatomic binding indicated a high degree of covalency.

  18. Negative refraction of elastic waves in 2D phononic crystals: Contribution of resonant transmissions to the construction of the image of a point source

    Directory of Open Access Journals (Sweden)

    Anne-Christine Hladky-Hennion

    2011-12-01

    Full Text Available Negative refraction properties of a two-dimensional phononic crystal (PC, made of a triangular lattice of steel rods embedded in epoxy are investigated both experimentally and numerically. First, experiments have been carried out on a prism shaped PC immersed in water. Then, for focusing purposes, a flat lens is considered and the construction of the image of a point source is analyzed in details, when indices are matched between the PC and the surrounding fluid medium, whereas acoustic impedances are mismatched. Optimal conditions for focusing longitudinal elastic waves by such PC flat lens are then discussed.

  19. Resonance reflection of elastic waves at the interface between two crystals with sliding contact: I. Plane waves in structures with arbitrary anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Alshits, V.I.; Darinskii, A.N. [Russian Academy of Sciences, Moscow (Russian Federation); Radovich, A. [Kielce Technological Univ., Kielce (Poland)

    1995-05-01

    The theory of resonance reflection is formulated for elastic waves at the interface between two anisotropic media under conditions of sliding contact. The phenomenon under study arises in the close vicinity of a certain incidence angle for which the tangential wave vector component of the bulk wave is equal to the real part of the wave vector for the leaky mode. The relations presenting the behavior of wave-response parameters near the leaky mode resonance are derived for arbitrary crystal anisotropy. In particular, the behavior of reflection, transmission, and transformation of the bulk mode to the nonuniform one is discussed. 18 refs.

  20. Relationships among chemical composition, lattice constants, and acoustic properties for Ca3Ta(Ga1-xAlx)3Si2O14 single crystals

    Science.gov (United States)

    Ohashi, Yuji; Kitahara, Masanori; Kudo, Tetsuo; Arakawa, Mototaka; Yokota, Yuui; Shoji, Yasuhiro; Yamaji, Akihiro; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2017-06-01

    The relationship among lattice constant a, Al content, and acoustic properties were experimentally examined using a plate specimen perpendicular to Y-axis prepared from Ca3Ta(Ga0.75Al0.25)3Si2O14 [CTGAS(0.25)] single crystal grown by Czochralski method. As the acoustic properties, leaky surface acoustic wave (LSAW) velocities with different propagation directions, X- and Z-propagations, and longitudinal wave velocity propagating along Y-axis direction were measured by the line-focus-beam/plane-wave ultrasonic-material-characterization (LFB/PW-UMC) system. The measured results of LSAW velocity distributions revealed inhomogeneity in radial direction of the crystal ingot exhibiting lower velocity area at the center of the ingot. In addition, the distributions of lattice constant a and chemical composition (especially Al content) were measured along the radial direction. Abnormal changes suggesting existence of residual stresses concentrated on the central part of the crystal ingot other than the effect of chemical composition change were detected from the relationships among the measured parameters.

  1. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    Energy Technology Data Exchange (ETDEWEB)

    Erba, A., E-mail: alessandro.erba@unito.it; Mahmoud, A.; Dovesi, R. [Dipartimento di Chimica and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, IT-10125 Torino (Italy); Belmonte, D. [DISTAV, Università di Genova, Corso Europa 26, 16132 Genoa (Italy)

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  2. Possibilités actuelles du calcul des constantes élastiques de polymères par des méthodes de simulation atomistique Current Possibilities of the Computation of Elastic Constants of Polymers Using Atomistic Simulations

    Directory of Open Access Journals (Sweden)

    Dal Maso F.

    2006-12-01

    Full Text Available Les propriétés élastiques des phases amorphe et cristalline pures de polymères semi-cristallins ne sont en général pas mesurables directement avec les moyens physiques habituels. Il est donc nécessaire de recourir à des méthodes de calcul numérique. Cet article décrit certaines de ces méthodes, fondées sur des modélisations atomistiques, ainsi qu'une évaluation des implémentations actuelles. Il est montré que la méthode proposée par Zehnder et al. (1996 fournit les meilleurs résultats, au prix d'un temps long de calcul, dû à la dynamique moléculaire. Néanmoins, aucune de ces méthodes n'est vraiment utilisable simplement au jour le jour, car elles requièrent des moyens importants de calcul. Elastic properties of pure crystalline and amorphous phases of a semicrystalline polymer are usually not directly measurable by usual physical means. It therefore is necessary to resort to numerical computing methods. This paper describes some of these methods, based on atomistic simulations, as well as an assessment of current implementations. It is shown that the method proposed by Zehnder et al. (1996 gives the best results, at the expense of long computing time, due to molecular dynamic simulation. Nevertheless none of these methods are really usable on a daily basis, since there are demanding important computing capabilities.

  3. Elastic limit of silicane.

    Science.gov (United States)

    Peng, Qing; De, Suvranu

    2014-10-21

    Silicane is a fully hydrogenated silicene-a counterpart of graphene-having promising applications in hydrogen storage with capacities larger than 6 wt%. Knowledge of its elastic limit is critical in its applications as well as tailoring its electronic properties by strain. Here we investigate the mechanical response of silicane to various strains using first-principles calculations based on density functional theory. We illustrate that non-linear elastic behavior is prominent in two-dimensional nanomaterials as opposed to bulk materials. The elastic limits defined by ultimate tensile strains are 0.22, 0.28, and 0.25 along armchair, zigzag, and biaxial directions, respectively, an increase of 29%, 33%, and 24% respectively in reference to silicene. The in-plane stiffness and Poisson ratio are reduced by a factor of 16% and 26%, respectively. However, hydrogenation/dehydrogenation has little effect on its ultimate tensile strengths. We obtained high order elastic constants for a rigorous continuum description of the nonlinear elastic response. The limitation of second, third, fourth, and fifth order elastic constants are in the strain range of 0.02, 0.08, and 0.13, and 0.21, respectively. The pressure effect on the second order elastic constants and Poisson's ratio were predicted from the third order elastic constants. Our results could provide a safe guide for promising applications and strain-engineering the functions and properties of silicane monolayers.

  4. Elastic properties of nematoid arrangements formed by amoeboid cells

    Science.gov (United States)

    Kemkemer, R.; Kling, D.; Kaufmann, D.; Gruler, H.

    2000-02-01

    In culture migrating and interacting amoeboid cells can form nematoid arrangements in analogy to a nematic liquid crystal phase. A nematoid arrangement is formed if the interaction has an apolar symmetry. Different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (=fat cells) etc., form a nematoid structure. Our hypothesis is that elastic properties of these nematoid structures can be described in analogy to that of classical nematic liquid crystals. The orientational elastic energy is derived and the orientational defects (disclination) of nematoid arrangements are investigated. The existence of half-numbered disclinations shows that the nematoid structure has an apolar symmetry. The density- and order parameter dependence of the orientational elastic constants and their absolute values are estimated. From the defect structure, one finds that the splay elastic constant is smaller than the bend elastic constant (melanocytes). The core of a disclination is either a cell free space or occupied by non oriented cells (isotropic state), by a cell with a different symmetry, or by another cell type.

  5. Anharmonic properties of potassium halide crystals

    OpenAIRE

    RAJU, Krishna Murti

    2011-01-01

    An effort has been made to obtain the anharmonic properties of potassium halides starting from primary physical parameters viz. nearest neighbor distance and hardness parameters assuming long- and short- range potentials at elevated temperatures. The elastic energy density for a deformed crystal can be expanded as power series of strains for obtaining coefficients of quadratic, cubic and quartic terms which are known as the second, third and fourth order elastic constants respectively...

  6. Ab-initio DFT FP-LAPW GGA and LDA TB-mBJ and SO theoretical study of structural and elastic properties of Zinc-Blende crystal phase GaAs1-xBix alloys

    Science.gov (United States)

    Menezla, S.; Kadri, A.; Zitouni, K.; Djelal, A.; Djermouni, M.; Hallouche, A.; Zaoui, A.

    2015-12-01

    We present an ab-initio theoretical study of structural and elastic properties of GaAs1-xBix alloys in the Zinc-Blende (ZB) phase. We use a recent version of Wien2k package code based on Density Functional Theory (DFT) Full Potential and Linearized Augmented Plane Waves (FP-LAPW) method including recent Tran-Blaha modified Becke-Johnson correction of the exchange potential (TB-mBJ) and the spin-orbit interaction (SO). The calculations are performed within the Local Density Approximation (LDA) as well as the Generalized Gradient Approximation (GGA). We study first the structural properties of GaAs1-xBix alloys by solving Murnaghan equation of state. Our results show that the ZB phase is the lowest equilibrium crystal structure of GaAs1-xBix in the whole alloy composition range, in agreement with previous theoretical predictions. The variations versus Bi contents of the ZB GaAs1-xBix lattice constant a0, bulk modulus B0 and its pressure derivative B0‧ are also found very close to other theoretical and experimental data, but with much smaller bowing effects indicating a better resolution thanks to TB-mBJ correction. The variations of B0 versus the reverse equilibrium volume of the unit cell (1/V0) are found to be described by the simple linear empirical expression B0 = -0.21068 + 0.16695/V0 which is close to the theoretical prediction for III-V semiconductors with, however, somewhat lower linear coefficients values, suggesting a more metallic behavior. In a second part of this work, we use Birch-Murnaghan approach to study the elastic properties of GaAs1-xBix alloys. The elastic stiffness coefficients, C11, C12 and C44, and their variations versus alloy composition were determined for ZB GaAs1-xBix alloy. Their values in GaAs and GaBi binary compounds are found in very good agreement with available experimental and/or theoretical data. Their variations in GaAs1-xBix alloy show a monotonic decrease with increasing Bi contents, indicating a softening behavior as is

  7. Piezoelectric properties of Sr3Ga2Ge4O14 single crystals

    Indian Academy of Sciences (India)

    Anhua Wu; Jiayue Xu; Juan Zhou; Hui Shen

    2007-04-01

    A new piezoelectric single crystal, Sr3Ga2Ge4O14 (SGG), has been grown successfully by the vertical Bridgman method with crucible-sealing technique. SGG crystal up to 2″ in diameter has been obtained. The relative dielectric constants, the piezoelectric strain constants, elastic compliance constants and electromechanical coupling factors have been determined with resonance and anti-resonance frequencies method by using the impedance analyzer (Agilent 4294A). The results show that the piezoelectric strain constants and electromechanical coupling factors of SGG single crystal are higher than those of LGS single crystals making it a potential substrate material for surface-acoustic wave applications.

  8. The Analytical Form of the Dispersion Equation of Elastic Waves in Periodically Inhomogeneous Medium of Different Classes of Crystals

    Directory of Open Access Journals (Sweden)

    Nurlybek A. Ispulov

    2017-01-01

    Full Text Available The investigation of thermoelastic wave propagation in elastic media is bound to have much influence in the fields of material science, geophysics, seismology, and so on. The heat conduction equations and bound equations of motions differ by the difficulty level and presence of many physical and mechanical parameters in them. Therefore thermoelasticity is being extensively studied and developed. In this paper by using analytical matrizant method set of equation of motions in elastic media are reduced to equivalent set of first-order differential equations. Moreover, for given set of equations, the structure of fundamental solutions for the general case has been derived and also dispersion relations are obtained.

  9. Elastic Constants of Aluminum Alloys, 2024-T3510, 5083-H131 and 7039-T64 as Measured by a Sonic Technique

    Science.gov (United States)

    1976-08-01

    23 13 1 /L 3 I I i I I I I. INTRODUCTION The sonic tests reported herein were conducted in connection with the Core Materials Program of the Solid...Mechanics Branch of the Terminal Ballistics Laboratory. The purpose of the Core Materials Program is to characterize the mechanical behavior of armor and...that shown in Figure 2. Poisson’s ratio for steels8,10 is reported to remain constant or to increase slightly as the temperature is raised. Daca on

  10. Elastic modulus of TiN film investigated with Kroner model and X-ray diffraction

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The four-point bending method was applied to measure X-ray elastic constants(XEC) of (422) and (331) planes of TiN coating. Elastic Modulus and XECs of all the crystal planes were calculated by Kroner method. The results from the calculation and the experiment were compared. It is concluded that the XECs values of same film prepared by different techniques scatter a little because of the effects of stoichiometric proportion and microstructure of films.

  11. Bringing to Light Hidden Elasticity in the Liquid State Using In-Situ Pretransitional Liquid Crystal Swarms.

    Directory of Open Access Journals (Sweden)

    Philipp Kahl

    Full Text Available The present work reveals that at the sub-millimeter length-scale, molecules in the liquid state are not dynamically free but elastically correlated. It is possible to "visualize" these hidden elastic correlations by using the birefringent properties of pretransitional swarms persistent in liquids presenting a weak first order transition. The strategy consists in observing the optical response of the isotropic phase of mesogenic fluids to a weak (low energy mechanical excitation. We show that a synchronized optical response is observable at frequencies as low as 0.01Hz and at temperatures far away from any phase transition (up to at least 15°C above the transition. The observation of a synchronized optical signal at very low frequencies points out a collective response and supports the existence of long-range elastic (solid-like correlations existing at the sub-millimeter length-scale in agreement to weak solid-like responses already identified in various liquids including liquid water. This concept of elastically linked molecules differs deeply with the academic view of molecules moving freely in the liquid state and has profound consequences on the mechanisms governing collective effects as glass formation, gelation and transport, or synchronized processes in physiological media.

  12. Third-Order Elastic Constants and Anharmonic Properties of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    WANG Ru-Ju; LI Feng-Ying; QIN Zhi-Cheng; WANG Wei-Hua

    2001-01-01

    The longitudinal velocity V1 and shear velocity Vs of an ultrasonic wave propagated along three arbitrary perpendicular directions of the Zr41.2 Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass (Zr/Ti BMG) have been measured at ambient pressure, under hydrostatic pressure (up to 0.5 GPa) and uniaxial compression (up to 70 MPa) using the pulse echo overlap method. The third-order elastic constants and the Gruneisen parameter related to the anharmonic properties were derived and discussed. It was found that the BMG with marked different microstructural characteristics, compared with the amorphous carbon, exhibited different behaviours related to shear vibratory under high pressure.

  13. Shear elastic constants of thin films of the misfit layered compound [(SnSe)1.05]n[MoSe2]n

    Science.gov (United States)

    Li, Dongyao; Mitchson, Gavin; Johnson, David; Schleife, Andre; Cahill, David

    Crystalline materials with interlayer van der Waals bonding typically have low stiffness for shear deformation that reduces the through-plane thermal conductivity and facilitates the use of layered materials as solid-state lubricants. In graphite and MoS2, c44 = 5GPa and 18GPa respectively. The shear modulus of incommensurate layered materials is expected to be strongly reduced relative to ordered crystals but the magnitude of the suppression is currently unknown. We have recently developed an approach for measuring the shear modulus of thin layers using GHz surface acoustic waves (SAW). [(SnSe)1.05]n[MoSe2]n with n =1-4 were prepared as thin films (60 nm) on Si substrates using the modulated elemental reactants technique. The SAW velocity vSAWof Al/[(SnSe)(MoSe2) ]/Si structures was measured using a polydimethylsiloxane (PDMS) phase-shift optical mask in a pump-probe system. c44 was determined by fitting the measured vSAW to the calculated SAW velocity using multi-layer SAW model. c33was measured by picosecond acoustics. c11, c12 and c13 were calculated using density functional theory (DFT) with van der Waals correction. The measured c33 and c44 are compared with the DFT prediction. Experimentally we obtain c44 = 1.9GPa, 1.2GPa, and smaller than 0.05GPa for n =1, 2 and 4. The author acknowledge the support of International Institute for Carbon Neutral Energy Research.

  14. High Birefringence Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Jakub Herman

    2013-09-01

    Full Text Available Liquid crystals, compounds and mixtures with positive dielectric anisotropies are reviewed. The mesogenic properties and physical chemical properties (viscosity, birefringence, refractive indices, dielectric anisotropy and elastic constants of compounds being cyano, fluoro, isothiocyanato derivatives of biphenyl, terphenyl, quaterphenyl, tolane, phenyl tolane, phenyl ethynyl tolane, and biphenyl tolane are compared. The question of how to obtain liquid crystal with a broad range of nematic phases is discussed in detail. Influence of lateral substituent of different kinds of mesogenic and physicochemical properties is presented (demonstrated. Examples of mixtures with birefringence ∆n in the range of 0.2–0.5 are given.

  15. Elastic stability of high dose neutron irradiated spinel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Chan, S.K. [Argonne National Lab., Chicago, IL (United States); Garner, F.A. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1995-04-01

    The objective of this effort is to identify ceramic materials that are suitable for fusion reactor applications. Elastic constants (C{sub 11}, C{sub 12}, and C{sub 44}) of spinel (MgAl{sub 2}O{sub 4}) single crystals irradiated to very high neutron fluences have geen measured by an ultrasonic technique. Although results of a neutron diffraction study show that cation occupation sites are significantly changed in the irradiated samples, no measurable differences occurred in their elastic properties. In order to understand such behavior, the elastic properties of a variety of materials with either normal or inverse spinel structures were studied. The cation valence and cation distribution appear to have little influence on the elastic properties of spinel materials.

  16. Elastic anisotropy in multifilament Nb$_3$Sn superconducting wires

    CERN Document Server

    Scheuerlein, C; Alknes, P; Arnau, G; Bjoerstad, R; Bordini, B

    2015-01-01

    The elastic anisotropy caused by the texture in the Nb3Sn filaments of PIT and RRP wires has been calculated by averaging the estimates of Voigt and Reuss, using published Nb3Sn single crystal elastic constants and the Nb3Sn grain orientation distribution determined in both wire types by Electron Backscatter Diffraction. At ambient temperature the calculated Nb3Sn E-moduli in axial direction in the PIT and the RRP wire are 130 GPa and 140 GPa, respectively. The calculated E-moduli are compared with tensile test results obtained for the corresponding wires and extracted filament bundles.

  17. On the theory of elastic properties of two-dimensional hexagonal structures

    Science.gov (United States)

    Davydov, S. Yu.; Posrednik, O. V.

    2015-04-01

    The properties of graphene and graphene-like materials (GLMs) have been considered using the Harrison bond-orbital method, within which the stability of GLMs with a high bond ionicity has been analyzed. For purely covalent crystals (graphene, silicene, and germanen) and GLMs with a low bond ionicity, the anharmonic elastic properties (Grüneisen constant, pressure and temperature dependences of the bulk modulus) have been considered. Within the Keating force constant model, the second- and third-order elastic constants and the pressure dependence of the second-order elastic constants have been determined. The parameters of the previously proposed empirical potential have been determined. The results obtained are compared with the available experimental data and calculation results of other studies.

  18. Electric field effect on elastic properties of uniaxial relaxor Sr x Ba1‑ x Nb2O6 single crystals with strong random fields

    Science.gov (United States)

    Aftabuzzaman, Md; Helal, Md Al; Dec, Jan; Kleemann, Wolfgang; Kojima, Seiji

    2017-10-01

    The elastic properties of uniaxial relaxor Sr x Ba1‑ x Nb2O6 (x = 0.70, SBN70) single crystals with strong random fields (RFs) were studied by Brillouin scattering spectroscopy as functions of temperature and external electric field along the [001] direction. A remarkable diffuseness of a ferroelectric phase transition was observed both on zero field heating and zero field cooling. The analysis of elastic anomaly shows the stretched critical slowing down of polar nanoregions (PNRs). Under 3.0 kV/cm, a complete alignment of nanodomains and an enhancement of the long-range ferroelectric order were observed below the Curie temperature T C = 23 °C. The alignment of quasistatic PNRs above T C was also observed under a sufficiently strong electric field. In a field-dependent measurement, a mixed state consisting of field-induced macrodomains and nanodomains caused by RFs was observed at 3.4 kV/cm. This mixed state persisted up to 9.0 kV/cm due to the incomplete switching of nanodomains to the macro/single domain state.

  19. Single-crystal elasticity of (Mg[subscript 0.9]Fe[subscript 0.1])O to 81 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, Hauke; Speziale, Sergio; Reichmann, Hans J.; Frost, Daniel J.; Shilling, Frank R.; (Bayreuth); (GFZ)

    2009-10-26

    Ferropericlase is the second most abundant mineral in Earth's lower mantle and knowledge of its elastic properties at relevant conditions is needed to adequately interpret seismic observations in terms of the mineralogy and thermal state of the deep Earth. Here, we report the complete elastic tensor of (Mg{sub 0.9}Fe{sub 0.1})O ferropericlase to 81.2 GPa at room temperature measured by Brillouin spectroscopy and X-ray diffraction in the diamond-anvil cell. Our data indicate that the spin transition of iron between 45 and 63 GPa dramatically affects the longitudinal and off-diagonal elements of the elastic stiffness tensor c{sub 11} and c{sub 12}, whereas it leaves the shear constant c{sub 44} almost unaffected. Based on our results, the spin transition markedly changes the pressure (and temperature) dependence of the compressional and bulk sound velocities and must be taken into account in any attempt to match average radial seismic velocity profiles with mineral physics observations. The different pressure dependence of compressional (and bulk) and shear sound velocities across the high-spin to low-spin (HS-LS) transition implies that the spin transition might be best observed in the v{sub p}/v{sub s} ratio and its pressure (and temperature) derivative. We also point out the possibility that the spin transition leads to an anti-correlated temperature dependence of shear and compressional wave speeds in certain pressure-temperature regimes in Earth's lower mantle.

  20. Multiple-scattering theory for out-of-plane propagation of elastic waves in two-dimensional phononic crystals.

    Science.gov (United States)

    Mei, Jun; Liu, Zhengyou; Qiu, Chunyin

    2005-06-29

    We extend the multiple-scattering theory (MST) to out-of-plane propagating elastic waves in 2D periodical composites by taking into account the full vector character. The formalism for both the band structure calculation and the reflection and transmission coefficient calculation for finite slabs is presented. The latter is based on a double-layer scheme, which obtains the reflection and transmission matrix elements for the multilayer slab from those of a single layer. Being more rapid in both the band structure and the transmission coefficient calculations for out-of-plane propagating elastic waves, our approach especially shows great advantages in handling the systems with mixed solid and fluid components, for which the conventional plane wave approach fails. As the applications of the formalism, we calculate the band structure as well as the transmission coefficients through finite slabs for systems with lead rods in an epoxy host, steel rods in a water host and water rods in a PMMA host.

  1. Elastic models for the non-Arrhenius relaxation time of glass-forming liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short......-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  2. Elastic models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Dyre, J. C.

    2006-01-01

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short......-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion....

  3. Elastic Models for the Non-Arrhenius Relaxation Time of Glass-Forming Liquids

    Science.gov (United States)

    Dyre, Jeppe C.

    2006-05-01

    We first review the phenomenology of viscous liquids and the standard models used for explaining the non-Arrhenius average relaxation time. Then the focus is turned to the so-called elastic models, arguing that these models are all equivalent in the Einstein approximation (where the short-time elastic properties are all determined by just one effective, temperature-dependent force constant). We finally discuss the connection between the elastic models and two well-established research fields of condensed-matter physics: point defects in crystals and solid-state diffusion.

  4. Elastic and mechanical properties of Mg3Rh intermetallic compound: An ab initio study

    Directory of Open Access Journals (Sweden)

    S. Boucetta

    2016-06-01

    Full Text Available In this work, density functional theory plane-wave pseudo potential method, with local density approximation (LDA and generalized gradient approximation (GGA are used to investigate the structural, elastic, mechanical and thermodynamic properties of the intermetallic compound Mg3Rh. Comparison of the calculated equilibrium lattice constants and experimental data shows very good agreement. The elastic constants were determined from a linear fit of the calculated stress-strain function according to Hooke's law. From the elastic constants, the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ, anisotropy factor A, the ratio B/G and the hardness parameter H for Mg3Rh compound are obtained. Our calculated elastic constants indicate that the ground state structure of Mg3Rh is mechanically stable. The calculation results show that this intermetallic crystal is stiff, elastically anisotropic and ductile material. The sound velocities and Debye temperature are also predicted from elastic constants. This is the first quantitative theoretical prediction of these properties.

  5. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles

    Science.gov (United States)

    Wu, Zhi-Jian; Zhao, Er-Jun; Xiang, Hong-Ping; Hao, Xian-Feng; Liu, Xiao-Juan; Meng, Jian

    2007-08-01

    First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3 , hexagonal P3221 , tetragonal P42/mnm , orthorhombic Pmmn , Pnnm , and Pnn2 , and monoclinic P21/c . Our calculation indicates that the P21/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414Å . These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P21/c . The calculated bulk modulus of 373GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357GPa within 4.3% and of 402GPa within 7.8%, but smaller than the experimental value of 428GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2 . For IrN3 , cubic skutterudite structure (Im-3) was assumed. Our calculation indicated that it is also promising to be superhard due to the large bulk modulus of 358GPa and shear modulus of 246GPa . The diatomic N-N bond distance is even shorter (1.272Å) .

  6. Elastic properties of sulphur and selenium doped ternary PbTe alloys by first principles

    Energy Technology Data Exchange (ETDEWEB)

    Bali, Ashoka, E-mail: rcmallik@physics.iisc.ernet.in; Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in [Thermoelectric Materials and Devices Laboratory, Department of Physics, Indian Institute of Science, Bangalore-560012 (India)

    2014-04-24

    Lead telluride (PbTe) is an established thermoelectric material which can be alloyed with sulphur and selenium to further enhance the thermoelectric properties. Here, a first principles study of ternary alloys PbS{sub x}Te{sub (1−x)} and PbSe{sub x}Te{sub (1−x)} (0≤x≤1) based on the Virtual Crystal Approximation (VCA) is presented for different ratios of the isoelectronic atoms in each series. Equilibrium lattice parameters and elastic constants have been calculated and compared with the reported data. Anisotropy parameter calculated from the stiffness constants showed a slight improvement in anisotropy of elastic properties of the alloys over undoped PbTe. Furthermore, the alloys satisfied the predicted stability criteria from the elastic constants, showing stable structures, which agreed with the previously reported experimental results.

  7. Effect of B and Cr on elastic strength and crystal structure of Ni{sub 3}Al alloys under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Raju, S.V., E-mail: sraju@fiu.edu [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States); Oni, A.A. [Department of Materials Science and Engr., North Carolina State University, Raleigh, NC 27695 (United States); Godwal, B.K. [Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720 (United States); Yan, J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94730 (United States); Earth and Planetary Sciences Department, University of California, Santa Cruz, CA 95064 (United States); Drozd, V. [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States); Srinivasan, S. [Department of Materials Science and Engg., Iowa State University, Iowa, IA (United States); LeBeau, J.M. [Department of Materials Science and Engr., North Carolina State University, Raleigh, NC 27695 (United States); Rajan, K. [Department of Materials Science and Engg., Iowa State University, Iowa, IA (United States); Saxena, S.K. [CeSMEC, Dept. of Mechanical Engr., Florida International University, Miami, FL 33172 (United States)

    2015-01-15

    Highlights: • Ni{sub 3}Al, Ni{sub 3}Al:B and Ni-Al-Cr alloys were prepared by Bridgman-Stockburger technique. • Crystal structures confirmed by XRD and Electron microscopy studies. • Bulk modulus from XRD studies under pressure and Young’s modulus from nano-indentation were determined. • Combining the above results enabled shear modulus and Poisson’s ratio. • K/G ratio suggests that Ni{sub 3}Al doped with B (500 ppm) has the highest hardness with ductility. - Abstract: Samples of Ni{sub 3}Al, Ni{sub 3}Al:B and Ni–Al–Cr super alloys were prepared by directional solidification method and their effect of alloying with ternary elements on the mechanical properties was investigated. In-situ X-ray diffraction studies were carried out on undoped Ni{sub 3}Al, Ni{sub 3}Al:B with boron 500 ppm and Ni–Al–Cr with 7.5 at.% of chromium super alloys at high pressure using diamond anvil cell. The results indicate that micro-alloying with B forms γ′-phase (L1{sub 2} structure), similar to the pure Ni {sub 3}Al, while Ni–Al–Cr alloy consists of γ′ precipitates in a matrix of γ-phase (Ni-FCC structure). The crystal structure of all three alloys was stable up to 20 GPa. Micro alloying with boron increases bulk modulus of Ni{sub 3}Al by 8% whereas alloying with chromium has the opposite effect decreasing the modulus by 11% when compared to undoped alloy. Further, the elastic modulus and hardness of Ni{sub 3}Al, Ni{sub 3}Al:B and Ni–Al–Cr alloys were determined using the nano-indentation technique, in combination with compressibility data which enabled the estimation of shear modulus and Poisson’s ratio of these alloys.

  8. Second harmonic generation of shear waves in crystals.

    Science.gov (United States)

    Jiang, Wenhua; Cao, Wenwu

    2004-02-01

    Nonlinear self-interaction of shear waves in electro-elastic crystals is investigated based on the rotationally invariant state function. Theoretical analyses are conducted for cubic, hexagonal, and trigonal crystals. The calculations show that nonlinear self-interaction of shear waves has some characteristics distinctly different from that of longitudinal waves. First, the process of self-interaction to generate its own second harmonic wave is permitted only in some special wave propagation directions for a shear wave. Second, the geometrical nonlinearity originated from finite strain does not contribute to the second harmonic generation (SHG) of shear waves. Therefore, unlike the case of longitudinal wave, the second-order elastic constants do not involve in the nonlinear parameter of the second harmonic generation of shear waves. Third, unlike the nonlinearity parameter of the longitudinal waves, the nonlinear parameter of the shear wave exhibits strong anisotropy, which is directly related to the symmetry of the crystal. In the calculations, the electromechanical coupling nonlinearity is considered for the 6 mm and 3 m symmetry crystals. Complement to the SHG of longitudinal waves already in use, the SHG of shear waves provides more measurements for the determination of third-order elastic constants of solids. The method is applied to a Z-cut lithium niobate (LiNbO3) crystal, and its third-order elastic constant c444 is determined.

  9. High quality factor and high sensitivity photonic crystal rectangular holes slot nanobeam cavity with parabolic modulated lattice constant for refractive index sensing

    Science.gov (United States)

    Sun, Fujun; Zhou, Jian; Huang, Lijun; Fu, Zhongyuan; Tian, Huiping

    2017-09-01

    In this paper, we present a novel optical sensor based on photonic crystal slot nanobeam cavity (PCSNC) with rectangular air holes. By introducing a continuous slot and quadratically modulated hole spacing (lattice constant a) structure, the majority of the optical field is localized in the slot region, which enhances the light-matter interaction. With applying the three dimensional finite-difference time-domain (3D-FDTD) simulations, three key geometric parameters (hole width wx, slot width ws and the number of the holes N) are optimized to achieve a high sensitivity (S) while keeping a high quality (Q) factor. The highest S over 1000 nm/RIU (refractive index unit) is achieved when the slot width equals to 200 nm. The highest Q-factor of 2.15×107 is obtained when 30 holes are placed on both sides of the host waveguide with the slot width of 80 nm. Considering the transmission efficiency and the trade-off between S and Q-factor, the slot width and the number of the tapered region are chosen as 80 nm and 20, respectively. A high S approximately 835 nm/RIU and a Q-factor about 5.50×105 with small effective mode volume of 0.03(λ/nair)3 are achieved simultaneously, resulting in an ultra-high figure-of-merit (FOM) above 2.92×105. Furthermore, the active sensing region of the optimized structure occupies only about 12 μm×0.08 μm, which makes the device attractive for realizing on-chip integrated sensor arrays.

  10. Elasticity of single-crystal NAL phase at high pressure: A potential source of the seismic anisotropy in the lower mantle

    Science.gov (United States)

    Wu, Ye; Yang, Jing; Wu, Xiang; Song, Maoshuang; Yoshino, Takashi; Zhai, Shuangmeng; Qin, Shan; Huang, Haijun; Lin, Jung-Fu

    2016-08-01

    The new hexagonal aluminous phase, named the NAL phase, is expected to be stable at depths of CaFe2O4-type aluminous phase. Here elasticity of the single-crystal NAL phase is investigated using Brillouin light scattering coupled with diamond anvil cells up to 20 GPa at room temperature. Analysis of the results shows that the substitution of iron lowers the shear modulus of the NAL phase by ~5% (~6 GPa) but does not significantly affect the adiabatic bulk modulus. The NAL phase exhibits high-velocity anisotropies with AVP = 14.7% and AVS = 15.12% for the Fe-bearing phase at ambient conditions. The high AVS of the NAL phase mainly results from the high anisotropy of the faster VS1 (13.9~15.8%), while the slower VS2 appears almost isotropic (0.1~2.8%) at ambient and high pressures. The AVP and AVS of the NAL phase decrease with increasing pressure but still have large values with AVP = 11.4% and AVS = 14.12% for the Fe-bearing sample at 20.4 GPa. The extrapolated AVP and AVS of the Fe-free and Fe-bearing NAL phases at 40 GPa are larger than those of bridgmanite at the same pressure. Together with its spin transition of iron and structural transition to the CF phase, the presence of the NAL phase with high-velocity anisotropies may contribute to the observed seismic anisotropy around subducted slabs in the uppermost lower mantle.

  11. Elastic and Photoelastic Properties of M(NO3)2, MO (M = Mg, Ca, Sr, Ba)

    Science.gov (United States)

    Zhuravlev, Yu. N.; Korabel'nikov, D. V.

    2017-05-01

    The paper deals with ab initio investigations of elastic and photoelastic properties of oxides and nitrates of alkaline-earth metals. In gradient approximation of the density functional theory (DFT), these properties are studied with the use of the linear combination of the atomic orbital technique. DFT calculations are done with the CRYSTAL 14 software package. The paper introduces the elastic and photoelastic constants, anisotropy parameters for single-crystalline phases and the elastic modules, hardness, Poisson ratio for polycrystalline phases. Such parameters as sonic speed, Debye temperature, thermal conductivity, and Gruneisen parameter are estimated herein. For the fist time, mechanical stability, anisotropy of elastic and photoelastic properties and their dependences are investigated ab initio in this paper. Experimental results on elastic and photoelastic properties of oxides and nitrates are in good agreement with theoretical calculations.

  12. First-principles elastic and thermal properties of TiO{sub 2}: a phonon approach

    Energy Technology Data Exchange (ETDEWEB)

    Shojaee, E; Mohammadizadeh, M R, E-mail: zadeh@ut.ac.i, E-mail: mohammadi@nano.ipm.ac.i [Superconductivity Research Laboratory (SRL), Department of Physics, University of Tehran, North Karegar Avenue, PO Box 14395-547, Tehran (Iran, Islamic Republic of)

    2010-01-13

    Elastic and thermal properties of the TiO{sub 2} lattice in anatase and rutile phases were studied in the framework of density functional perturbation theory within the local density approximation (LDA) and generalized-gradient approximation (GGA). The full elastic constant tensors of the polymorphs were calculated by linear fits to the acoustic branches of the phonon band structure near the center of the first Brillouin zone in symmetry directions of the crystals. It was observed that the elastic constants within the GGA are in better agreement with experiment. In addition, the Born effective charges, dielectric tensor, heat capacity, mean sound velocity and Debye temperature were calculated. The heat capacity at room temperature and the Debye temperature within the LDA are in better agreement with the experimental results. Therefore, using the phonon band structure and the density of states, one can obtain the important mechanical and thermal properties of materials.

  13. Elasticity of superhydrous phase, B, Mg10Si3O14(OH)4

    Science.gov (United States)

    Mookherjee, Mainak; Tsuchiya, Jun

    2015-01-01

    We have used first principles simulation based on density functional theory to calculate the equation of state and elasticity of superhydrous phase B, Mg10Si3O14(OH)4. The pressure-volume results for superhydrous phase B is well represented by a third order Birch-Murnaghan formulation, with K0 = 161.8 (±0.2) GPa and K0‧ = 4.4 (±0.01). The calculated full elastic tensor at 0 GPa is in good agreement with Brillouin scattering results, with the compressional elastic constants: c11 = 329.5 GPa, c22 = 294.9 GPa, c33 = 306.8 GPa, the shear elastic constants - c44 = 99.8 GPa, c55 = 98 GPa, and c66 = 99 GPa; the off-diagonal elastic constants c12 = 82.5 GPa, c13 = 84.6 GPa, and c23 = 98.7 GPa. At the depths corresponding to the mantle transition zone, the aggregate sound wave velocities for superhydrous phase B is slower compared to dry ringwoodite which is the dominant mineral phase. However, hydrous ringwoodite bulk sound velocities are comparable to that of superhydrous phase B. Majoritic garnet, the second most abundant mineral in the transition zone, has bulk sound wave velocities slower than superhydrous phase B. An assemblage consisting of hydrous ringwoodite, superhydrous phase B, and majorite garnet could account for the low velocities observed in certain subduction zone settings at depths corresponding to the base of the transition zone and upper mantle. Superhydrous phase B exhibits moderate single-crystal elastic anisotropy with AVP ∼ 3% and AVS ∼ 5% at the base of the transition zone. Single-crystal elastic anisotropy of other dense hydrous magnesium silicate phases phase such as hydrous phase D is significantly larger at these conditions and might play a major role in explaining the observed mid mantle seismic anisotropy.

  14. Varying Constants

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume

    2003-01-01

    We review some string-inspired theoretical models which incorporate a correlated spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring unnatural fine-tunings of parameters, a variation of the fine-structure constant as large as that recently ``observed'' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP. Recent claims by Bekenstein that fine-structure-constant variability does not imply detectable violations of the equivalence principle are shown to be untenable.

  15. Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound

    Directory of Open Access Journals (Sweden)

    S. Boucetta

    2014-03-01

    Full Text Available In the last years, Magnesium alloys are known to be of great technological importance and high scientific interest. In this work, density functional theory plane-wave pseudo potential method, with local density approximation (LDA and generalized gradient approximation (GGA are used to perform first-principles quantum mechanics calculations in order to investigate the structural, elastic and mechanical properties of the intermetallic compound MgRh with a CsCl-type structure. Comparison of the calculated equilibrium lattice constant and experimental data shows good agreement. The elastic constants were determined from a linear fit of the calculated stress–strain function according to Hooke's law. From the elastic constants, the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ, anisotropy factor A and the ratio B/G for MgRh compound are obtained. The sound velocities and Debye temperature are also predicted from elastic constants. Finally, the linear response method has been used to calculate the thermodynamic properties. The temperature dependence of the enthalpy H, free energy F, entropy S, and heat capacity at constant volume Cv of MgRh crystal in a quasi-harmonic approximation have been obtained from phonon density of states and discussed for the first report. This is the first quantitative theoretical prediction of these properties.

  16. Complete set of material constants of Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3)single crystal with morphotropic phase boundary composition.

    Science.gov (United States)

    Liu, Xiaozhou; Zhang, Shujun; Luo, Jun; Shrout, Thomas R; Cao, Wenwu

    2009-10-01

    Using combined resonance and ultrasonic methods, a full set of material constants has been measured for morphotropic phase boundary (MPB) composition xPb(In(12)Nb(12))O(3)-(1-x-y)Pb(Mg(13)Nb(23))O(3)-yPbTiO(3) (PIN-PMN-PT) single crystals poled along [001](c). Compared with the MPB composition (1-x)Pb(Mg(13)Nb(23))O(3)-xPbTiO(3) (PMN-PT) single crystals, the PIN-PMN-PT single crystals have smaller anisotropy, higher Curie temperature (T(c) approximately 197 degrees C), and higher rhombohedral to tetragonal phase transition temperature (T(R-T) approximately 96 degrees C). The electromechanical properties obtained here are the best found so far for this ternary system with d(33) approximately 2742 pCN, d(31) approximately -1337 pCN, k(33) approximately 95%, and k(31) approximately 65%.

  17. Biopolymer Elasticity

    CERN Document Server

    Sinha, S

    2003-01-01

    In recent years molecular elasticity has emerged as an active area of research: there are experiments that probe mechanical properties of single biomolecules such as DNA and Actin, with a view to understanding the role of elasticity of these polymers in biological processes such as transcription and protein-induced DNA bending. Single molecule elasticity has thus emerged as an area where there is a rich cross-fertilization of ideas between biologists, chemists and theoretical physicists. In this article we present a perspective on this field of research.

  18. Elastic anisotropy of Tambo gneiss from Promontogno, Switzerland: a comparison of crystal orientation and microstructure-based modeling and experimental measurements

    Science.gov (United States)

    Vasin, R. N.; Kern, H.; Lokajíček, T.; Svitek, T.; Lehmann, E.; Mannes, D. C.; Chaouche, M.; Wenk, H.-R.

    2017-01-01

    SUMMARYFelsic and mafic gneisses constitute large proportions of the upper and lower continental crust. Gneisses often demonstrate high anisotropy of elastic properties associated with preferred orientations of sheet silicates. Here we study the elastic anisotropy of a sample of Tambo gneiss from Promontogno in the Central Alps. We apply optical microscopy, time-of-flight neutron diffraction, neutron and X-ray tomography to quantify mineral composition and microstructures and use them to construct self-consistent models of elastic properties. They are compared to results of ultrasonic measurements on a cube sample in a multi anvil apparatus and on a spherical sample in an apparatus that can measure velocities in multiple directions. Both methods provide similar results. It is shown that models of microstructure-derived elastic properties provide a good match with ultrasonic experiment results at pressures above 100 MPa. At a pressure of 0.1 MPa the correspondence between the model and the experiment is worse. This may be caused by an oversimplification of the model with respect to microfractures or uncertainties in the experimental determination of S-wave velocities and elastic tensor inversion. The study provides a basis to determine anisotropic elastic properties of rocks either by ultrasonic experiments or quantitative models based on microstructures. This information can then be used for interpretation of seismic data of the crust.

  19. Elastic moduli of pyrope rich garnets

    Science.gov (United States)

    Pandey, B. K.; Pandey, A. K.; Singh, C. K.

    2013-06-01

    The elastic properties of minerals depend on its composition, crystal structure, temperature and level of defects. The elastic parameters are important for the interpretation of the structure and composition of the garnet rich family. In present work we have calculated the elastic moduli such as isothermal bulk modulus, Young's modulus and Shear modulus over a wide range of temperature from 300 K to 1000 K by using Birch EOS and Poirrier Tarantola equation of state. The obtained results are compared with the experimental results obtained by measuring the elastic moduli of single crystal. The calculated results show that the logarithmic isothermal EOS does not cooperate well with experimental results.

  20. Mechanical properties of layered InSe and GaSe single crystals

    Science.gov (United States)

    Mosca, D. H.; Mattoso, N.; Lepienski, C. M.; Veiga, W.; Mazzaro, I.; Etgens, V. H.; Eddrief, M.

    2002-01-01

    The mechanical properties of InSe and GaSe single crystals have been studied by means of nanoindentation tests. Both bulk crystals are well ordered and present a predominant γ-type interlayer stacking sequence as determined by x-ray diffraction and transmission electron microscopy measurements. The course of plastic deformation induced in the crystals by application of a definite shear stress through the penetration of a Berkovich tip indicates that the deformation occurs predominantly by pop-in events along easy slip directions having a fairly elastic character between displacements. Hardness anisotropy along crystal axes is clearly seen and the measured elastic modulus presents a discrepancy smaller than 5% in comparison with theoretical calculations performed using previous experimental values of the elastic constants.

  1. Density functional theory and evolution algorithm calculations of elastic properties of AlON

    Energy Technology Data Exchange (ETDEWEB)

    Batyrev, I. G.; Taylor, D. E.; Gazonas, G. A.; McCauley, J. W. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-01-14

    Different models for aluminum oxynitride (AlON) were calculated using density functional theory and optimized using an evolutionary algorithm. Evolutionary algorithm and density functional theory (DFT) calculations starting from several models of AlON with different Al or O vacancy locations and different positions for the N atoms relative to the vacancy were carried out. The results show that the constant anion model [McCauley et al., J. Eur. Ceram. Soc. 29(2), 223 (2009)] with a random distribution of N atoms not adjacent to the Al vacancy has the lowest energy configuration. The lowest energy structure is in a reasonable agreement with experimental X-ray diffraction spectra. The optimized structure of a 55 atom unit cell was used to construct 220 and 440 atom models for simulation cells using DFT with a Gaussian basis set. Cubic elastic constant predictions were found to approach the experimentally determined AlON single crystal elastic constants as the model size increased from 55 to 440 atoms. The pressure dependence of the elastic constants found from simulated stress-strain relations were in overall agreement with experimental measurements of polycrystalline and single crystal AlON. Calculated IR intensity and Raman spectra are compared with available experimental data.

  2. Calculations of the interatomic force constants of argon crystal from its thermal properties%由热学性质获取氩晶体原子间各阶力常数

    Institute of Scientific and Technical Information of China (English)

    黄建平; 胡诗一

    2014-01-01

    本文基于晶格动力学和量子力学微扰理论推导了氩晶体的热膨胀系数和比热与原子间相互作用的各阶力常数之间的关系公式,在此基础上根据热膨胀系数和比热的数据计算了氩晶体内的原子间相互作用的各阶力常数,并根据这些力常数绘制了原子间相互作用势能曲线,经比对发现该势能曲线与Morse势能曲线能较好吻合,这表明,本文提出的从热膨胀系数和比热获取各阶力常数的方法是正确的。%The formulas to describe thermal expansion coefficient and heat capacity of argon crystal in terms of interatomic force constants are derived based on the lattice dynamics and perturbation theory of quantum mechan-ics, and then the interatomic force constants are obtained from thermal expansion coefficients and heat capacities of argon crystal with these formulas.Finally the interatomic potential energy curve is plotted based on these force constants.It is found that this potential energy curve coincides with the Morse potential energy curve well, this means that the method of obtaining the interatomic force constants of argon crystal from thermal properties is cor-rect.

  3. Continuous ferroelastic phase transition of a KBr:KCN mixed crystal

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1985-01-01

    The ferroelastic phase transition of (KBr)0.27(KCN)0.73 has been studied by X-ray diffraction, ultrasonics, and inelastic neutron scattering. It is the first example of a cubic crystal where the elastic shear constant C 44 softens completely corresponding to the m=2 universality class. C44...

  4. MATHEMATICAL CONSTANTS.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, H.P.; Potter, Elinor

    1971-03-01

    This collection of mathematical data consists of two tables of decimal constants arranged according to size rather than function, a third table of integers from 1 to 1000, giving some of their properties, and a fourth table listing some infinite series arranged according to increasing size of the coefficients of the terms. The decimal values of Tables I and II are given to 20 D.

  5. Hemaka's constant

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    As proposed in a previous paper, the decorations of ancient objects can provide some information on the approximate evaluations of constant {\\pi}, the ratio of circumference to diameter. Here we discuss some disks found in the tomb of Hemaka, the chancellor of a king of the First Dynasty of Egypt, about 3000 BC. The discussion is based on measurements of the dimensionless ratio of lengths.

  6. Theoretical elastic moduli of ferromagnetic bcc Fe alloys.

    Science.gov (United States)

    Zhang, Hualei; Punkkinen, Marko P J; Johansson, Börje; Vitos, Levente

    2010-07-14

    The polycrystalline elastic parameters of ferromagnetic Fe(1-x)M(x) (M = Al, Si, V, Cr, Mn, Co, Ni, Rh; 0 ≤ x ≤ 0.1) random alloys in the body centered cubic (bcc) crystallographic phase have been calculated using first-principles alloy theory in combination with statistical averaging methods. With a few exceptions, the agreement between the calculated and the available experimental data for the polycrystalline aggregates is satisfactory. All additions considered here decrease the bulk modulus (B) and Poisson's ratio (ν) of bcc Fe. The complex composition dependence of the C(44) single-crystal elastic constant is reflected in the polycrystalline shear modulus (G), Young's modulus (E), and Debye temperature (Θ). The polycrystalline anisotropy of bcc Fe is increased by all additions, and Al, Si, Ni, and Rh yield the largest alloying effects.

  7. First principles investigation of structural, electronic, elastic and thermal properties of rare-earth-doped titanate Ln2TiO5

    Directory of Open Access Journals (Sweden)

    Hui Niu

    2012-09-01

    Full Text Available Systematic first-principles calculations based on density functional theory were performed on a wide range of Ln2TiO5 compositions (Ln = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy and Y in order to investigate their structural, elastic, electronic, and thermal properties. At low temperature, these compounds crystallize in orthorhombic structures with a Pnma symmetry, and the calculated equilibrium structural parameters agree well with experimental results. A complete set of elastic parameters including elastic constants, Hill's bulk moduli, Young's moduli, shear moduli and Poisson's ratio were calculated. All Ln2TiO5 are ductile in nature. Analysis of densities of states and charge densities and electron localization functions suggests that the oxide bonds are highly ionic with some degree of covalency in the Ti-O bonds. Thermal properties including the mean sound velocity, Debye temperature, and minimum thermal conductivity were obtained from the elastic constants.

  8. Teaching nonlinear dynamics through elastic cords

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, R; Galan, C A; Sanchez-Bajo, F, E-mail: rchacon@unex.e [Departamento de Fisica Aplicada, Escuela de IngenierIas Industriales, Universidad de Extremadura, Apartado Postal 382, E-06071 Badajoz (Spain)

    2011-01-15

    We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.

  9. Elastic Beanstalk

    CERN Document Server

    Vliet, Jurg; Wel, Steven; Dowd, Dara

    2011-01-01

    While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots

  10. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. II. Elastic properties

    Science.gov (United States)

    Lugovy, Mykola; Aman, Amjad; Chen, Yan; Orlovskaya, Nina; Kuebler, Jakob; Graule, Thomas; Reece, Michael J.; Ma, Dong; Stoica, Alexandru D.; An, Ke

    2014-07-01

    Calculations of elastic constants and development of elastic anisotropy under uniaxial compression in originally isotropic polycrystalline LaCoO3 perovskite are reported. The lattice strains in individual (hkl) planes as well as average lattice strain were determined both for planes oriented perpendicular and parallel to the loading direction using in-situ neutron diffraction. Utilizing average lattice strains as well as lattice strains along the a and c crystallographic directions, an attempt was made to determine Poisson's ratio of LaCoO3, which was then compared with that measured using an impulse excitation technique. The elastic constants were calculated and Young's moduli of LaCoO3 single crystal in different crystallographic directions were estimated.

  11. In-situ neutron diffraction of LaCoO{sub 3} perovskite under uniaxial compression. II. Elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Institute for Problems of Materials Science, Kiev 03142 (Ukraine); Aman, Amjad; Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chen, Yan [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kuebler, Jakob; Graule, Thomas [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Reece, Michael J. [The School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS (United Kingdom); Ma, Dong; Stoica, Alexandru D.; An, Ke [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-07-07

    Calculations of elastic constants and development of elastic anisotropy under uniaxial compression in originally isotropic polycrystalline LaCoO{sub 3} perovskite are reported. The lattice strains in individual (hkl) planes as well as average lattice strain were determined both for planes oriented perpendicular and parallel to the loading direction using in-situ neutron diffraction. Utilizing average lattice strains as well as lattice strains along the a and c crystallographic directions, an attempt was made to determine Poisson's ratio of LaCoO{sub 3}, which was then compared with that measured using an impulse excitation technique. The elastic constants were calculated and Young's moduli of LaCoO{sub 3} single crystal in different crystallographic directions were estimated.

  12. Elastic properties of the ferromagnetic heavy fermion system SmOs{sub 4}Sb{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Y [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Tanizawa, T [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Fujino, T [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Sun, P [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Nakamura, M [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Sugawara, H [Faculty of Integrated Arts and Sciences, University of Tokushima, Tokushima, 770-8502 (Japan); Kikuchi, D [Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397 (Japan); Sato, H [Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397 (Japan); Yoshizawa, M [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan)

    2006-11-15

    Ultrasonic measurements were made on a single crystal of the filled skutterudite compound SmOs{sub 4}Sb{sub 12}. A remarkable elastic softening toward low temperature was observed in the elastic constants C{sub 11} (C{sub 11}-C{sub 12})/2 and C{sub 44} as a function of temperature, followed by a sharp drop which is associated with the onset of ferromagnetic ordering, and then display a monotonic increase below T{sub c}. The present results indicate that the crystalline electric field (CRF) effect would not support straightforward the observed elastic softening toward low temperature. We suggest that this fact is originated from valence instability of the Sm ion at low temperature in SmOs{sub 4}Sb{sub 12}. The 4f electronic ground state of the Sm ion and its elastic property are discussed.

  13. An ab initio study of the structural, elastic, electronic and optical properties of the newly synthesized nitridoaluminate LiCaAlN2

    Science.gov (United States)

    Haddadi, K.; Bouhemadou, A.; Bin-Omran, S.; Maabed, S.; Khenata, R.

    2015-01-01

    The structural parameters, elastic constants, electronic structure and optical properties of the recently reported monoclinic quaternary nitridoaluminate LiCaAlN2 are investigated in detail using the ab initio plane-wave pseudopotential method within the generalized gradient approximation. The calculated equilibrium structural parameters are in excellent agreement with the experimental data, which validate the reliability of the applied theoretical method. The chemical and structural stabilities of LiCaAlN2 are confirmed by calculating the cohesion energy and enthalpy of formation. Chemical band stiffness is calculated to explain the pressure dependence of the lattice parameters. Through the band structure calculation, LiCaAlN2 is predicted to be an indirect band gap of 2.725 eV. The charge-carrier effective masses are estimated from the band structure dispersions. The frequency-dependent dielectric function, absorption coefficient, refractive index, extinction coefficient, reflectivity coefficient and electron energy loss function spectra are calculated for polarized incident light in a wide energy range. Optical spectra exhibit a noticeable anisotropy. Single-crystal and polycrystalline elastic constants and related properties, including isotropic sound velocities and Debye temperatures, are numerically estimated. The calculated elastic constants and elastic compliances are used to analyse and visualize the elastic anisotropy of LiCaAlN2. The calculated elastic constants demonstrate the mechanical stability and brittle behaviour of the considered material.

  14. Elastic properties of type-I clathrate K8Zn4Sn42 determined by inelastic X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Leu, Bogdan M.; Sturza, Mihai; Hong, Jiawang; Alatas, Ahmet; Baran, Volodymyr; Fassler, Thomas F.

    2016-01-01

    We measured the phonon dispersion at ambient conditions in single-crystal type-I clathrate K8Zn4Sn42, a material with promising thermoelectric properties that has only recently been synthesized, using the high-energy resolution inelastic X-ray scattering (IXS) technique. From the sound velocities along high-symmetry directions, we extracted the elastic constants (C 11, C 12, C 44 = 63.2, 19.1, 21.9 GPa, respectively). Experimental results agree with the predictions from first-principles calculations on the hypothetical, "guest-free", type-I clathrate Sn46. The size of the crystal investigated was several orders of magnitude smaller than what is required for neutron and ultrasonic measurements. Due to this essential property, together with the high-energy resolution, high-momentum-transfer resolution, and the access to the strongest Bragg reflections, IXS is the technique of choice for measuring the full elastic constant tensor for microcrystals.

  15. Rotational elasticity

    Science.gov (United States)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  16. Comment on ``The limits of flexoelectricity in liquid crystals'' [AIP Advances 1, 032120 (2011)

    Science.gov (United States)

    Palffy-Muhoray, P.

    2013-01-01

    In their paper, using the principle of energy conservation, F. Castles, S. M. Morris, and H. J. Coles [AIP Advances 1, 032120 (2011)], 10.1063/1.3624725 establish inequalities involving the elastic and dielectric constants and flexoelectric coefficients of liquid crystals. They then argue that recently measured values of flexoelectric coefficients by Harden et al. do not obey these inequalities, hence they violate the principle of energy conservation. In this comment, we point out that in their calculation, Castles et al. use an inappropriate value for an elastic constant, hence their conclusions, predicated on the outcome of this calculation, are not justified.

  17. Simulation of a Hard-Spherocylinder Liquid Crystal with the pe

    CERN Document Server

    Fischermeier, Ellen; Preclik, Tobias; Marechal, Matthieu; Mecke, Klaus

    2014-01-01

    The pe physics engine is validated through the simulation of a liquid crystal model system consisting of hard spherocylinders. For this purpose we evaluate several characteristic parameters of this system, namely the nematic order parameter, the pressure, and the Frank elastic constants. We compare these to the values reported in literature and find a very good agreement, which demonstrates that the pe physics engine can accurately treat such densely packed particle systems. Simultaneously we are able to examine the influence of finite size effects, especially on the evaluation of the Frank elastic constants, as we are far less restricted in system size than earlier simulations.

  18. Elastic Tensor and Thermodynamic Property of Magnesium Silicate Perovskite from First-principles Calculations

    Institute of Scientific and Technical Information of China (English)

    Zi-iiang Liu; Xiao-wei Sun; Cai-rong Zhang; Jian-bo Hu; Ting Song; Jian-hong Qi

    2011-01-01

    The thermodynamic and elastic properties of magnesium silicate (MgSiO3) perovskite at high pressure are investigated with the quasi-harmonic Debye model and the first-principles method based on the density functional theory.The obtained equation of state is consistent with the available experimental data.The heat capacity and the thermal expansion coefficient agree with the observed values and other calculations at high pressures and temperatures.The elastic constants are calculated using the finite strain method.A complete elastic tensor of MgSiO3 perovskite is determined in the wide pressure range.The geologically important quantities: Young's modulus,Poisson's ratio,Debye temperature,and crystal anisotropy,are derived from the calculated data.

  19. Effect of Pressure on Elastic Constants, Generalized Stacking Fault Energy, and Dislocation Properties in Antiperovskite-Type Ni-Rich Nitrides ZnNNi3 and CdNNi3

    KAUST Repository

    Liu, Lili

    2014-07-31

    The elastic properties and generalized stacking fault energy curves of antiperovskite-type Ni-rich nitrides MNNi3 (M = Zn, Cd) under different pressure have been obtained from the first-principles calculations. By using the variational method, the core width and Peierls stresses of (Formula presented.) edge dislocation and screw dislocation in ZnNNi3 and CdNNi3 within the improved Peierls-Nabarro (P-N) model in which the lattice discrete effect is taken into account have been investigated. Whatever the material or the pressure range, the Peierls stress of edge dislocation is smaller than that of screw dislocation. This also demonstrates that the edge dislocation is considered to be the dominant factor in determining the plastic behavior of MNNi3 (M = Zn, Cd) in the pressure range of 0–30 GPa.

  20. Optical constants of silicon carbide for astrophysical applications. II. Extending optical functions from IR to UV using single-crystal absorption spectra

    CERN Document Server

    Hofmeister, A M; Goncharov, A F; Speck, A K

    2009-01-01

    Laboratory measurements of unpolarized and polarized absorption spectra of various samples and crystal stuctures of silicon carbide (SiC) are presented from 1200--35,000 cm$^{-1}$ ($\\lambda \\sim$ 8--0.28 $\\mu$m) and used to improve the accuracy of optical functions ($n$ and $k$) from the infrared (IR) to the ultraviolet (UV). Comparison with previous $\\lambda \\sim$ 6--20 $\\mu$m thin-film spectra constrains the thickness of the films and verifies that recent IR reflectivity data provide correct values for $k$ in the IR region. We extract $n$ and $k$ needed for radiative transfer models using a new ``difference method'', which utilizes transmission spectra measured from two SiC single-crystals with different thicknesses. This method is ideal for near-IR to visible regions where absorbance and reflectance are low and can be applied to any material. Comparing our results with previous UV measurements of SiC, we distinguish between chemical and structural effects at high frequency. We find that for all spectral re...

  1. Anisotropic Elastic Properties of Muscle-like Nematic Elastomers

    Science.gov (United States)

    Ratna, Banahalii; Thomseniii, Donald L.; Shenoy, Devanand; Srinivasan, Amritha; Keller, Patrick

    2001-03-01

    De Gennes suggested in 1997 that the liquid crystal elastomers are an excellent framework to mimic muscular action. We have prepared anisotropic freestanding films of nematic elastomers from laterally attached side-chain polymers that show muscle-like mechanical properties. The orientational order of the liquid crystal side groups imposes a conformational anisotropy in the polymer backbone. When the order parameter drops at the nematic-isotropic phase transition, there is a concomitant loss of order in the backbone which results in a contraction of the film in the direction of the director orientation. Dynamic mechanical data along directions parallel and perpendicular to the optic axis, show anisotropic stress-strain behavior. The film exhibits soft elasticity when strained in the perpendicular direction when the liquid crystal mesogens reorient without appreciable stress build up. Thermostrictive studies in the parallel direction show 40constriction at the nematic-isotropic phase transition. Isometric studies show that the elastic energy stored is purely entropic in origin and the elastomer acts like a spring with unusually large spring constant at the NI transition. The maximum stress measured is 300kPa. A strain rate of 5s-1 is estimated from shear relaxation studies.

  2. Influence of Dielectric Constant on Dispersive Relation of One-dimensional Plasma Photonic Crystals%介电常数对一维等离子体光子晶体色散关系的影响

    Institute of Scientific and Technical Information of China (English)

    范伟丽; 张新立; 董丽芳

    2011-01-01

    In order to investigate the influences of the dielectric constant on the plasma photonic crystals, the dispersion relation of one-dimensional plasma photonic crystals has been studied by solving a stationary Maxwell wave equation with a method analogous to Kronig-Penney's problem in quantum mechanics. The results showed that the dielectric constant affected greatly on both of the band gap width and the band edge frequencies. The bandgaps became more obvious with an increasing of the dielectric constant,and the changes of the first and second band gap widths were different. In addition, the cut-off frequency of this plasma photonic crystal as well as the edge frequency of the second band gap was decreased with an increasing of the dielectric constants.%为深入研究介电常数对等离子体光子晶体性质的影响,本工作从Maxwell方程出发,采用类似于量子力学Kronig-Penney模型求解周期势的方法,对一维等离子体光子晶体介质层介电常数对能带结构的影响进行了讨论.研究发现:介电常数的大小对等离子体光子晶体的禁带宽度和能级位置均具有重要影响.随介电常数的增加,等离子体光子晶体的带隙特征越加明显,但第一、二级禁带宽度随介电常数的变化规律不同.此外,等离子体光子晶体的截止频率以及第二级光子禁带的边缘频率随介电常数的增大而减小.

  3. Role of the crystal lattice constants and band structures in the optoelectronic spectra of CdGa{sub 2}S{sub 4} by DFT approaches

    Energy Technology Data Exchange (ETDEWEB)

    Rahnamaye Aliabad, H.A. [Department of Physics, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Vaezi, Hamide [Department of Physics, Khayyam Institute of Higher Education, Mashhad (Iran, Islamic Republic of); Basirat, Shiva [Department of Physics, Payame Noor University of Mashhad, Mashhad (Iran, Islamic Republic of); Ahmad, Iftikhar [Center for Computational Materials Science, University of Malakand, Chakdara (Pakistan); Abbottabad University of Science and Technology, Havelian (Pakistan)

    2017-07-17

    The electronical and optical properties of CdGa{sub 2}S{sub 4} under high pressures were studied using the full potential linearized augmented plane wave (FP-LAPW) method within the GGA and mBJ exchange correlation potentials from 0.0 to 16.92 GPa. The obtained results show that the lattice constants, bandgap values, and optoelectronic properties are sensitive to applied external pressures. The mBJ results indicate that the bandgap increases and the static dielectric constants decrease with increasing the pressure. The two none zero dielectric tensor components show considerable anisotropy between the perpendicular and parallel components. The maximum absorption for x direction in all pressures takes place in vacuum UV region. Also, the plasma frequency shifts to the higher energies with increasing the pressure for application in optical devices. The calculated results by mBJ are in close agreement with the experimental values. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Elasticity of a quantum monolayer solid

    DEFF Research Database (Denmark)

    Bruch, Ludwig Walter

    1992-01-01

    A perturbation-theory formulation of the zero-temperature elastic constants is used to verify symmetry relations for a (monolayer) triangluar lattice. A generalization of the Cauchy relation between the two elastic constants of the triangular lattice with central-pair-potential interactions is gi...... is given for the quantum solid. The first-order quantum corrections are rederived in this formalism, and previous calculations are reanalyzed....

  5. Theoretical and Numerical Study of Nonlinear Phononic Crystals

    Science.gov (United States)

    Guerder, Pierre-Yves

    This work is dedicated to the theoretical and numerical study of nonlinear phononic crystals. The studied nonlinearities are those due to the second (quadratic) and third (cubic) order elastic constants of the materials that constitute the crystals. Nonlinear effects are studied by the means of finite element methods, used to simulate the propagation of an elastic wave through the crystals. A first research project concerns the study of a bone structure, namely the dispersion of elastic waves in a structure composed of collagen and hydroxy apatite alternate constituent layers. Simulations showed that it exists a strong link between bones hydration and their ability to dissipate the energy. The second study relates to an elastic resonator. A structure composed of steel inclusions in a silica matrix shows a switch behavior when the cubic nonlinearities of steel are taken into account. This strong nonlinear effect appears when the amplitude of the incident wave reaches a threshold. A full analytical model is provided. The last study demonstrates the design of composite materials with both strong cubic nonlinearities and weak quadratic nonlinearities. The derivation of the mixing laws of the elastic parameters of a nonlinear material inside a linear one is performed up to order three. Equations show a strong amplification of the nonlinear parameters of the material for some concentrations. Numerical simulations allow to conclude that the above mentioned resonator can be produced.

  6. Crystal structure, electronic and elastic properties for novel Hf{sub 3}AlN and Zr{sub 3}AlN ceramics explored by first principles studies

    Energy Technology Data Exchange (ETDEWEB)

    Feng Wenxia, E-mail: wxiafeng@yahoo.com [School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059 (China); Key Laboratory of Optical Communication Science and Technology of Shandong, Liaocheng 252059 (China); Hu Haiquan; Cui Shouxin; Zhang Guiqing; Lv Zengtao; Xiao Xiaoguang [School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059 (China); Key Laboratory of Optical Communication Science and Technology of Shandong, Liaocheng 252059 (China); Gong Zizheng [National Key Laboratory of Science and Technology on Reliability and Environment Engineering, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China)

    2012-02-01

    Investigations into crystal structure, electronic and elastic properties of M{sub 3}AlN (M=Hf, Zr) had been conducted by plane-wave pseudopotential calculations. The absence of band gap at the Fermi level and the finite value of the density of states at the Fermi energy reveal the metallic behavior of these two compounds. The charge density distributions and density of states indicate that there exist relatively soft Al-M and strong N-M covalent bonds, which might be contributed to layered chemical bonding character of M{sub 3}AlN. By analyzing Cauchy pressure and the bulk modulus to C{sub 44} ratio, Hf{sub 3}AlN was predicted to be more ductile than Zr{sub 3}AlN.

  7. High temperature and pressure effects on the elastic properties of B2 intermetallics AgRE

    Science.gov (United States)

    Liu, Lili; Wu, Xiaozhi; Li, Weiguo; Wang, Rui; Liu, Qing

    2015-02-01

    The high temperature and pressure effects on the elastic properties of the AgRE (RE=Sc, Tm, Er, Dy, Tb) intermetallic compounds with B2 structure have been performed from first principle calculations. For the temperature range 0-1000 K, the second order elastic constants for all the AgRE intermetallic compounds follow a normal behavior: they decrease with increasing temperature. The pressure dependence of the second order elastic constants has been investigated on the basis of the third order elastic constants. Temperature and pressure dependent elastic anisotropic parameters A have been calculated based on the temperature and pressure dependent elastic constants.

  8. Magnetic field and in situ stress dependence of elastic behavior in EuTiO3 from resonant ultrasound spectroscopy

    Science.gov (United States)

    Schiemer, Jason; Spalek, Leszek J.; Saxena, Siddharth S.; Panagopoulos, Christos; Katsufuji, Takuro; Bussmann-Holder, Annette; Köhler, Jürgen; Carpenter, Michael A.

    2016-02-01

    Magnetoelectric coupling phenomena in EuTiO3 are of considerable fundamental interest and are also understood to be key to reported multiferroic behavior in strained films, which exhibit distinctly different properties to the bulk. Here, the magnetoelastic coupling of EuTiO3 is investigated by resonant ultrasound spectroscopy with in situ applied magnetic field and stress as a function of temperature ranging from temperatures above the structural transition temperature T s to below the antiferromagnetic ordering temperature T n. One single crystal and two polycrystalline samples are investigated and compared to each other. Both paramagnetic and diamagnetic transducer carriers are used, allowing an examination of the effect of both stress and magnetic field on the behavior of the sample. The properties are reported in constant field/variable temperature and in constant temperature/variable field mode where substantial differences between both data sets are observed. In addition, elastic and magnetic poling at high fields and stresses at low temperature has been performed in order to trace the history dependence of the elastic constants. Four different temperature regions are identified, characterized by unusual elastic responses. The low-temperature phase diagram has been explored and found to exhibit rich complexity. The data evidence a considerable relaxation of elastic constants at high temperatures, but with little effect from magnetic field alone above 20 K, in addition to the known low-temperature coupling.

  9. Probing Viscoelasticity of Cholesteric Liquid Crystals in a Twisting Cell

    Science.gov (United States)

    Angelo, Joseph; Moheghi, Alireza; Diorio, Nick; Jakli, Antal

    2013-03-01

    Viscoelastic properties of liquid crystals are typically studied either using Poiseuille flow, which can be produced by a pressure gradient in a capillary tube,[2] or Couette flow, which can be generated by a shear between concentric cylinders.[3] We use a different method in which we twist the liquid crystal sandwiched between two cylindrical glass plates, one of which can rotate about its center, the other of which is fixed. When the cell is twisted, there is a force proportional to the twist angle and the twist elastic constant, and inversely proportional to the pitch and sample thickness, normal to the substrates due to the change in pitch in the cholesteric liquid crystal (CLC). Measuring this force on various CLCs with known pitch we could obtain the twist elastic constants. In addition to the equilibrium force, we observed a transient force during the rotation, which is related to the flow of the material, thus allowing us to determine the Leslie viscosity component α1, which typically cannot be assessed by other methods. We expect this apparatus to be a useful tool to study the visco-elastic properties of liquid crystals. The authors acknowledge support from NSF grant DMR-0907055.

  10. High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications.

    Science.gov (United States)

    Zu, Hongfei; Wu, Huiyan; Wang, Qing-Ming

    2016-03-01

    In this review paper, nine different types of high-temperature piezoelectric crystals and their sensor applications are overviewed. The important materials' properties of these piezoelectric crystals including dielectric constant, elastic coefficients, piezoelectric coefficients, electromechanical coupling coefficients, and mechanical quality factor are discussed in detail. The determination methods of these physical properties are also presented. Moreover, the growth methods, structures, and properties of these piezoelectric crystals are summarized and compared. Of particular interest are langasite and oxyborate crystals, which exhibit no phase transitions prior to their melting points ∼ 1500 °C and possess high electrical resistivity, piezoelectric coefficients, and mechanical quality factor at ultrahigh temperature ( ∼ 1000 °C). Finally, some research results on surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors developed using this high-temperature piezoelectric crystals are discussed.

  11. Measurement of damping in magnetic materials by optical heterodyne interferometry[75.80.+q; 62.40.+i; 43.20.Ks; 43.35.Cg; Damping; Elastic constants; Resonance; Interferometry; Speckle

    Energy Technology Data Exchange (ETDEWEB)

    Chicharro, J.M. E-mail: jchicharro@dfarn.upm.es; Bayon, A.; Salazar, F

    2004-01-01

    A study of damping and its field-dependence in magnetic materials is presented. An optical heterodyne interferometer is used as detector of the longitudinal vibration of a slender rod located within a solenoid. Two different experiments are carried out in order to investigate damping in the demagnetized and saturated states. In one, the attenuation constant is determined by examining the free vibration of the sample. In the other, damping is indirectly measured from the sharpness of its resonance curve. Logarithmic decrement and its variation with the magnetic field is calculated. The detection and excitation systems used do not interact with the sample. Nickel rods and wires ranging in diameter from 2 to 10 mm are used as samples. Young's modulus is also determined.

  12. Development of non-destructive Young's modulus measurement techniques in non-oriented CeF$_{3}$ crystals

    CERN Document Server

    Pietroni, P; Lebeau, M; Majni, G; Rinaldi, D

    2005-01-01

    For a reliable mechanical assembly of scintillating crystals for the application to radiographic systems such as Positron Emission Tomographer (PET) and high-energy physics calorimeters (e.g. in CMS at CERN LHC), the evaluation of the monocrystal elastic constant (Young's modulus) is needed. Its knowledge is also essential in the photoelastic analysis for the determination of residual stresses. In this work non-destructive techniques based on elastic wave propagation are tested. They differ in the mechanical excitation device: instrumented hammer, traditional ultrasonic probes and laser- generated ultrasound. We have analysed three non-oriented cerium fluoride crystal samples produced for scintillation applications. Finally, we have validated the experimental results comparing them with the elastic constant calculated by using the stiffness matrix.

  13. Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon

    Science.gov (United States)

    Drikis, Ivars; Plate, Matiss; Sennikovs, Juris; Virbulis, Janis

    2017-09-01

    Simulations of 3D anisotropic stress are carried out in and oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is 5-11% higher in crystals compared to crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the crystal has a higher azimuthal variation of stress along the triple point line ( 8%) than the crystal ( 2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ridge compared with the round crystal.

  14. PMN-PT夹层弹性半空间结构中 SH 波的传播%Propagation of SH waves in sandwich structures consisting of PMN-PT single crystal layer and elastic half-spaces

    Institute of Scientific and Technical Information of China (English)

    孔艳平; 聂国权; 刘金喜

    2016-01-01

    The propagation of SH waves in a sandwich structure consisting of a PMN‐PT single crystal layer and two different elastic half‐spaces is analytically investigated .The PMN‐PT piezoelectric crystals are being polarized along [011 ]c of the cubic reference directions so that the effective macroscopic symmetries is mm2 .T he cutting angle of the PM N‐PT single crystal isθ.Based on the basic equations of the orthotropic piezoelectric material and elastic material ,the dispersion equations are obtained in determinant form by interface continuous conditions .T he numerical examples are presented to show that the phase velocity is sensitive to the cutting angle of the PMN‐PT and the material properties .The results of the paper are useful and important for surface acoustic wave devices .%分析了弹性上下半空间和PMN‐PT单晶层组成的夹层结构中SH波的传播性质,PMN‐PT单晶沿[011]c方向极化,宏观上呈mm2对称,且晶体沿角度θ方向切割。基于正交各向异性压电材料和各向同性弹性材料的基本方程,得到了夹层结构中SH波传播时行列式形式的频散方程。通过对数值算例进行分析可以看出,PMN‐PT单晶的切割角度和弹性材料属性对结构中的相速度有很大影响,因此波的某些传播性能可以通过材料的设计以及晶体切割的方向来实现,这些结论为声表面波器件的开发和应用提供了理论依据。

  15. Ultrasonic characterization of Cu-Al-Ni single crystals lattice stability in the vicinity of the phase transition.

    Science.gov (United States)

    Landa, Michal; Novák, Václav; Sedlák, Petr; Sittner, Petr

    2004-04-01

    Measurements of elastic constants of the austenite phase when approaching the phase transformation either upon cooling or stressing is of the crucial interest for the shape memory alloy field. Acoustic properties (wave velocity and also attenuation changes) of the Cu-Al-Ni single crystal were investigated in situ during stress-induced martensitic transformation at constant (room) temperature. The parent austenite cubic lattice of the Cu-Al-Ni exhibits very high elastic anisotropy (anisotropy factor A approximately 12). The measurements were made using nine combinations of (i) applied uniaxial compression in a given crystal direction, (ii) the wave propagation and (iii) polarization vectors. The chosen configurations are sufficient for evaluation of all independent third order elastic constants (TOEC). The longitudinal modes were also measured by the immersion technique, using the transducer pair in a water tank installed on the testing machine. The device works as "a ultrasonic extensometer" measuring a transverse strain of the specimen. The dependencies of both natural and initial wave velocities on the applied stress may be evaluated. Three elastic constants of the stress-induced martensite were determined. The elastic properties were found to vary with the increasing stress above the Ms transformation temperature, which is interpreted as a precursor for the martensitic transformation. The onset of the transformation was additionally identified from the acoustic emission measurement.

  16. Raman and infrared vibrational frequencies and elastic properties of solid BaFCl calculated with various Hamiltonians: an ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Merawa, Mohammadou [Laboratoire de Chimie Theorique et de Physico-Chimie Moleculaire, UMR 5624, FR ' IPREM' 2606, BP 27540 IFR-rue Jules Ferry 64075 Pau-Cedex (France); Noel, Yves [Laboratoire de Petrologie et Modelisation des Materiaux et des Processus, Universite P and M Curie Paris 6, 4 place Jussieu 75252 Paris Cedex 05 (France); Civalleri, Bartolomeo [Dipartimento di Chimica IFM, University of Torino, Via Giuria 7, I-10125 Torino (Italy); Brown, Ross [Laboratoire de Chimie Theorique et de Physico-Chimie Moleculaire, UMR 5624, FR ' IPREM' 2606, BP 27540 IFR-rue Jules Ferry 64075 Pau-Cedex (France); Dovesi, Roberto [Dipartimento di Chimica IFM, University of Torino, Via Giuria 7, I-10125 Torino (Italy)

    2005-01-26

    The structural, elastic, vibrational and electronic properties of barium fluorochloride (BaFCl) have been investigated for the first time at the ab initio level, by using the periodic CRYSTAL program. Both Hartree-Fock (HF) and density functional theory (DFT) Hamiltonians have been used, with the latter in its local density (LV), gradient-corrected (PP), and hybrid (B3LYP) versions. All properties, and in particular the phonon frequencies and the elastic constants, are strongly Hamiltonian dependent. The structural features are in reasonable agreement with experiment, the percentage deviation being smaller than 5% in all cases. The B3LYP elastic constants are in good agreement with experiment, whereas LV systematically overestimates them. PP and B3LYP provide the best results for the vibrational frequencies, the mean percentage absolute difference with respect to experiment being 2.9 and 4.3%, for Raman and 4.8 and 6.3%, for infrared mode frequencies, respectively.

  17. Influence of Nb and Mo contents on phase stability and elastic property of β-type Ti-X alloys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The energetic, electronic structure and elastic property of β-type Ti1-xXx (X=Nb and Mo, x=0.041 7, 0.062 5, 0.125 0,0.187 5, 0.250 0, 0.312 5 and 0.375) binary alloys were calculated by the method of supercell and augmented plane waves plus local orbitals within generalized gradient approximation. The elastic moduli of the polycrystals for these Ti1-xXx alloys were calculated from the elastic constants of the single crystal by the Voigt-Reuss-Hill averaging method. Based on the calculated results, the influence of X content on the phase stability and elastic property of β-type Ti1-xXx alloys was investigated. The results show that the phase stability, tetragonal shear constant C', bulk modulus, elastic modulus and shear modulus ofβ-type Ti1-xXx alloys increase with an increase of X content monotonously. When the valence electron number ofβ-type Ti1-xXx alloys is around 4.10, i.e. the content of Nb is 9.87% (molar fraction) in the Ti-Nb alloy and Mo is 4.77% (molar fraction) in Ti-Mo alloy, the tetragonal shear constant is nearly zero. The Ti1-xXx alloys achieve low phase stability and low elastic modulus when the tetragonal shear constant reaches nearly zero. In addition, the phase stability of β-type Ti1-xXx alloys was discussed together with the calculated electronic structure.

  18. Propagation of elastic waves through textured polycrystals: application to ice.

    Science.gov (United States)

    Maurel, Agnès; Lund, Fernando; Montagnat, Maurine

    2015-05-08

    The propagation of elastic waves in polycrystals is revisited, with an emphasis on configurations relevant to the study of ice. Randomly oriented hexagonal single crystals are considered with specific, non-uniform, probability distributions for their major axis. Three typical textures or fabrics (i.e. preferred grain orientations) are studied in detail: one cluster fabric and two girdle fabrics, as found in ice recovered from deep ice cores. After computing the averaged elasticity tensor for the considered textures, wave propagation is studied using a wave equation with elastic constants c=〈c〉+δc that are equal to an average plus deviations, presumed small, from that average. This allows for the use of the Voigt average in the wave equation, and velocities are obtained solving the appropriate Christoffel equation. The velocity for vertical propagation, as appropriate to interpret sonic logging measurements, is analysed in more details. Our formulae are shown to be accurate at the 0.5% level and they provide a rationale for previous empirical fits to wave propagation velocities with a quantitative agreement at the 0.07-0.7% level. We conclude that, within the formalism presented here, it is appropriate to use, with confidence, velocity measurements to characterize ice fabrics.

  19. Structural, mechanical and thermodynamic properties of AuIn{sub 2} crystal under pressure: A first-principles density functional theory calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ching-Feng [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Cheng, Hsien-Chie, E-mail: hccheng@fcu.edu.tw [Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Chen, Wen-Hwa, E-mail: whchen@pme.nthu.edu.tw [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2015-01-15

    Highlights: • The mechanical and thermodynamic properties of AuIn{sub 2} are reported for the first time. • The calculated lattice constants and elastic properties of AuIn{sub 2} are consistent with the literature data. • The results reveal that AuIn{sub 2} demonstrates low elastic anisotropy, low hardness and high ductility. • It is worth to note that the anisotropic AuIn{sub 2} tends to become elastically isotropic as hydrostatic pressure increases. - Abstract: The structural, mechanical and thermodynamic properties of cubic AuIn{sub 2} crystal in the cubic fluorite structure, and also their temperature, hydrostatic pressure and direction dependences are investigated using first-principles calculations based on density functional theory (DFT) within the generalized gradient approximation (GGA). The optimized lattice constants of AuIn{sub 2} single crystal are first evaluated, by which its hydrostatic pressure-dependent elastic constants are also derived. Then, the hydrostatic pressure-dependent mechanical characteristics of the single crystal, including ductile/brittle behavior and elastic anisotropy, are explored according to the characterized angular character of atomic bonding, Zener anisotropy factor and directional Young’s modulus. Moreover, the polycrystalline elastic properties of AuIn{sub 2}, such as bulk modulus, shear modulus and Young’s modulus, and its ductile/brittle and microhardness characteristics are assessed versus hydrostatic pressure. Finally, the temperature-dependent Debye temperature and heat capacity of AuIn{sub 2} single crystal are investigated by quasi-harmonic Debye modeling. The present results reveal that AuIn{sub 2} crystal demonstrates low elastic anisotropy, low hardness and high ductility. Furthermore, its heat capacity strictly follows the Debye T{sup 3}-law at temperatures below the Debye temperature, and reaches the Dulong–Petit limit at temperatures far above the Debye temperature.

  20. NONLINEAR ELASTICITY OF BLOOD ARTERIAL DUCT

    Institute of Scientific and Technical Information of China (English)

    黄孟才; 顾忠; 沈俊; 唐复勇

    1991-01-01

    The paper deals with nonlinear elasticity of blood arterial duct, in which the artery is modeled to bea locally triclinic, transverse isotropic, incorapressible, axisymmetric and thickwalled tube with large deformations, The nonlinear coustitutive relationship of arterial tissues is based on the theorv of Green and Adkins. A nonlinear strain energy density function is introduced for nonlinear stress-strain relationship of second order, in which the coefficient of each term is expressed by means of a Lame’s constant, The elasticity constants are nqcessary to describe such a uonlinear finite strain etastieity of the second order, These constants are determined by means of the stress-strain increment theory.

  1. Elastic wave band gaps tuned by configuring radii of rods in two-dimensional phononic crystals with a hybrid square-like lattice

    Science.gov (United States)

    Liu, Rongqiang; Zhao, Haojiang; Zhang, Yingying; Guo, Honghwei; Deng, Zongquan

    2015-12-01

    The plane wave expansion (PWE) method is used to calculate the band gaps of two-dimensional (2D) phononic crystals (PCs) with a hybrid square-like (HSL) lattice. Band structures of both XY-mode and Z-mode are calculated. Numerical results show that the band gaps between any two bands could be maximized by altering the radius ratio of the inclusions at different positions. By comparing with square lattice and bathroom lattice, the HSL lattice is more efficient in creating larger gaps.

  2. Electronic and Elastic Properties of CaMg2 Alloy Phase under Various Pressures by Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Fu Jia

    2017-01-01

    Full Text Available The influencing effect of pressure on structural, elastic and electronic properties of CaMg2 Laves phase is mainly investigated. The optimized structural parameters at zero pressure are a = b = 6.250Å, c = 10.101Å, which has good agreement with the experimental and theoretical values. The elastic constants are calculated, and then the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and anisotropy factor are determined. The results show that the applied pressure is beneficial to the elastic properties of CaMg2. The analysis of electronic density of states (DOS and Mulliken electron population reveal the bonding characteristics in CaMg2 crystal. Finally, the Debye temperatures under different pressures are obtained from the average sound velocity.

  3. Elastic properties of the filled and unfilled skutterudite compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Y [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Fujino, T [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Kikuchi, F [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Tanizawa, T [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Sun, P [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Nakamura, M [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Yoshino, G [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Ochiai, A [Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Sugawara, H [Faculty of Integrated Arts and Sciences, University of Tokushima, Tokushima, 770-8502 (Japan); Kikuchi, D [Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397 (Japan); Sato, H [Department of Physics, Tokyo Metropolitan University, Hachioji, 192-0397 (Japan); Yoshizawa, M [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan)

    2007-12-15

    Ultrasonic measurements were made on a single crystal of the unfilled skutterudite compounds RhSb{sub 3} and IrSb{sub 3} and compare with that of the filled skutterudite PrOs{sub 4} Sb{sub 12} to elucidate the role of the guest ions Pr. A characteristic increase was observed around 30 K in the temperature dependence of elastic constants (C{sub 11}-C{sub 12})/2 and C{sub 44} which is ascribed to unusual vibration 'rattling' of Pr ions in an atomic cage formed by Sb-'icosahedron. On the other hand, the elastic constants C{sub 11} (C{sub 11}-C{sub 12})/2 and C{sub 44} increase monotonically with decreasing temperature in the case of RhSb{sub 3} and IrSb{sub 3}. No such a characteristic increase was observed. These results give us a piece of evidence that the guest ions would play a crucial role for 'rattling motion' in filled skutterudite compounds.

  4. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Tlili, Brahim; Vercher-Martínez, Ana; Hambli, Ridha

    2016-10-01

    Bone is a living material with a complex hierarchical structure which entails exceptional mechanical properties, including high fracture toughness, specific stiffness and strength. Bone tissue is essentially composed by two phases distributed in approximately 30-70%: an organic phase (mainly type I collagen and cells) and an inorganic phase (hydroxyapatite-HA-and water). The nanostructure of bone can be represented throughout three scale levels where different repetitive structural units or building blocks are found: at the first level, collagen molecules are arranged in a pentameric structure where mineral crystals grow in specific sites. This primary bone structure constitutes the mineralized collagen microfibril. A structural organization of inter-digitating microfibrils forms the mineralized collagen fibril which represents the second scale level. The third scale level corresponds to the mineralized collagen fibre which is composed by the binding of fibrils. The hierarchical nature of the bone tissue is largely responsible of their significant mechanical properties; consequently, this is a current outstanding research topic. Scarce works in literature correlates the elastic properties in the three scale levels at the bone nanoscale. The main goal of this work is to estimate the elastic properties of the bone tissue in a multiscale approach including a sensitivity analysis of the elastic behaviour at each length scale. This proposal is achieved by means of a novel hybrid multiscale modelling that involves neural network (NN) computations and finite elements method (FEM) analysis. The elastic properties are estimated using a neural network simulation that previously has been trained with the database results of the finite element models. In the results of this work, parametric analysis and averaged elastic constants for each length scale are provided. Likewise, the influence of the elastic constants of the tissue constituents is also depicted. Results highlight

  5. Critical slowing down and elastic anomaly of uniaxial ferroelectric Ca0.28Ba0.72Nb2O6 crystals with tungsten bronze structure

    Science.gov (United States)

    Suzuki, K.; Matsumoto, K.; Dec, J.; Łukasiewicz, T.; Kleemann, W.; Kojima, S.

    2014-08-01

    The ferroelectric phase transition of uniaxial Ca0.28Ba0.72Nb2O6 single crystals with a moderate effective charge disorder was investigated by Brillouin scattering to clarify the dynamic properties. In the tetragonal paraelectric phase a remarkable softening of the sound velocity of the longitudinal acoustic mode and a significant increase in the sound attenuation were observed close to the Curie temperature TC=527K. The intermediate temperature T* ˜640K and the Burns temperature TB ˜790K were determined from the temperature variation in the sound attenuation. The intense broad central peak (CP) caused by polarization and strain fluctuations due to polar nanoregions was clearly observed in the vicinity of TC. The relaxation time determined by the CP width clearly shows critical slowing down towards TC, reflecting a weakly first-order phase transition under weak random fields.

  6. Resonance reflection of elastic waves at the interface between two crystals with sliding contact: II. Plane waves and acoustic beams in structures with hexagonal symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Alshits, V.I.; Darinskii, A.N. [Russian Academy of Sciences, Moscow (Russian Federation); Radovich, A. [Kielce Technological Univ., Kielce (Poland)

    1995-05-01

    The specific features of acoustic wave reflection are analyzed at the interface between two hexagonal crystals with a sliding contact between them. Attention is focused on the angles of incidence corresponding to excitation of the leaky wave. The conditions supporting the existence of leaky waves are found. The expressions illustrating the behavior of plane wave transformation coefficients for reflection, refraction, and excitation of interfacial oscillations are found in analytic form. In addition, the features of nonmirror reflection are studied for a slightly diverging acoustic beam having initially a rectangular profile. The study deals with the case when the tangential projection of the {open_quotes}mean{close_quotes} wavevector for the beam is close to or coincides with the real part of the wavevector of the leaky wave. 9 refs., 10 figs.

  7. Anisotropic elasticity of silicon and its application to the modelling of X-ray optics.

    Science.gov (United States)

    Zhang, Lin; Barrett, Raymond; Cloetens, Peter; Detlefs, Carsten; Sanchez Del Rio, Manuel

    2014-05-01

    The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young's modulus, the shear modulus and Poisson's ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson's ratio. For an isotropic constant Poisson's ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν12 and ν13 as an effective isotropic Poisson's ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson's ratio for these orientations leads to an error in thermal deformation smaller than 5.5%.

  8. On Some Elastic Instabilities in Biaxial Nematics

    OpenAIRE

    Sukumaran, Sreejith; G. Ranganath

    1997-01-01

    Within the framework of the continuum elastic theory of biaxial nematic liquid crystals, we have addressed ourselves to the structure, stability and energetics of some singular and non–singular topological defects, and certain director configurations. We find that certain non–singular hybrid disclinations could be energetically favourable relative to certain half–strength disclinations. The interaction between singular hybrids depends strongly on the biaxial elastic anisotropy. We suggest pos...

  9. Electronic and Elastic Properties of CrO2 in the Orthorhombic CaCl2-TYPE Structure

    Science.gov (United States)

    Wu, H. Y.; Chen, Y. H.; Deng, C. R.; Su, X. F.

    2012-07-01

    The structure, electronic and elastic properties of CrO2 in the high pressure orthorhombic CaCl2 (Pnnm) phase are investigated by first-principles calculations based on density functional theory (DFT). Our calculated crystal parameters are in good agreement with the available experimental data. The electronic band structure, density of state (DOS) and projected density of state (PDOS) at 14 GPa are studied within local spin density approximation (LSDA) and generalized gradient approximation (GGA) in details. The CaCl2 phase of CrO2 still has the half metal character, which is in accordance with previous theoretical predictions. The elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson ratio under pressures are successfully obtained for the orthorhombic CaCl2 phase of CrO2. This structure is mechanically stable at our applied range of pressures. The calculated elastic anisotropic factors show that the CaCl2 phase of CrO2 is provided with high elastic anisotropy and the elastic anisotropy decreases with increasing pressures. The propagation speed of transverse, longitudinal elastic wave together with associated Debye temperatures are also estimated.

  10. Thermo-optical properties of beryllium containing oxide crystals as materials for high power laser systems

    Science.gov (United States)

    Pestryakov, E. V.; Petrov, V. V.; Trunov, V. I.; Kirpichnikov, A. V.; Laptev, A. V.; Matrosov, V. N.

    2007-06-01

    The elastic and thermo-optical properties of chrysoberyl, beryllium hexaaluminate and beryllium-lanthanum hexaaluminate crystals have been experimentally studied. The velocities of elastic-wave propagation in the crystals are measured by acousto-optic interference method. The values of all the independent components of elastic-constant tensor are determined and used to calculate a number of important dynamic parameters of the crystals such as the Young's and shear moduli, the modulus of volume elasticity, Poisson's ratio, the Debye temperature. Also measurements of refractive indices in 25 - 75 C temperature range in VIS spectral region were performed. Using experimental data the dispersion of thermal optical coefficients (dn/dT) was calculated, these data were employed to evaluate the thermal lens in beryllium containing laser crystals. The experimental and calculated data are compared with similar parameters for well-known laser hosts. Some of beryllium containing oxide crystals was shown to be candidates for master oscillator and amplifying stages of high power femtosecond laser systems.

  11. Study of structural, electronic and elastic properties of RPd{sub 3} (R = Lu and Sc) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Veena, E-mail: gita-pagare@yahoo.co.in; Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Chouhan, S. S., E-mail: gita-pagare@yahoo.co.in [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Sanyal, S. P. [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2014-04-24

    The structural, electronic and elastic properties of nonmagnetic RPd{sub 3} (R = Lu and Sc) compounds, which crystallize in AuCu{sub 3}-type structure, are studied using first principles density functional theory based on full potential linearized augmented plane wave (FP-LAPW) method. The calculations are carried out within the PBE-GGA and WC-GGA for the exchange correlation potential. Our calculated ground state properties such as lattice constant (a0), bulk modulus (B) and its pressure derivative (B’) are in good agreement with the experimental results. We first time predict the elastic constants for these compounds using different approximations of GGA. These RPd{sup 3} compounds are found to be ductile in nature in accordance with Pugh’s criteria. The computed electronic band structures and density of states show metallic character of these compounds.

  12. Breakdown of elasticity in amorphous solids

    Science.gov (United States)

    Biroli, Giulio; Urbani, Pierfrancesco

    2016-12-01

    What characterizes a solid is the way that it responds to external stresses. Ordered solids, such as crystals, exhibit an elastic regime followed by a plastic regime, both understood microscopically in terms of lattice distortion and dislocations. For amorphous solids the situation is instead less clear, and the microscopic understanding of the response to deformation and stress is a very active research topic. Several studies have revealed that even in the elastic regime the response is very jerky at low temperature, resembling very much the response of disordered magnetic materials. Here we show that in a very large class of amorphous solids this behaviour emerges upon decreasing temperature, as a phase transition, where standard elastic behaviour breaks down. At the transition all nonlinear elastic moduli diverge and standard elasticity theory no longer holds. Below the transition, the response to deformation becomes history- and time-dependent.

  13. Using coupling slabs to tailor surface-acoustic-wave band structures in phononic crystals consisting of pillars attached to elastic substrates

    Science.gov (United States)

    Zhang, Heng; Yu, SiYuan; Liu, FuKang; Wang, Zhen; Lu, MingHui; Hu, XiaoBo; Chen, YanFeng; Xu, XianGang

    2017-04-01

    The propagation of surface acoustic waves (SAWs) in two-dimensional phononic crystals (PnCs) with and without coupling-enhancement slabs was theoretically investigated using a three-dimensional finite element method. Different piezoelectric substrates, for example, lithium niobate (LiNbO3), gallium nitride (GaN), and aluminium nitride (AlN), were taken into account. Compared to the PnCs without coupling-enhancement slabs, the coupling between each pillar and its nearest neighbor was largely enhanced in the presence of slabs. The bandwidth of the first directional band gap increased markedly compared with its initial value for the PnCs without a slab (within square symmetry). In addition, with increasing thicknesses of the slabs bonded between neighboring pillars, the first directional band-gap and second directional band gap of the PnCs tend to merge. Therefore, the structure with coupling-enhancement slabs can be used as an excellent electrical band elimination filter for most electro-SAW devices, offering a new strategy to realize chip-scale applications in electroacoustic signal processing, optoacoustic modulation, and even SAW microfluidic devices.

  14. Using coupling slabs to tailor surface-acoustic-wave band structures in phononic crystals consisting of pillars attached to elastic substrates

    Science.gov (United States)

    Zhang, Heng; Yu, SiYuan; Liu, FuKang; Wang, Zhen; Lu, MingHui; Hu, XiaoBo; Chen, YanFeng; Xu, XianGang

    2017-04-01

    The propagation of surface acoustic waves (SAWs) in two-dimensional phononic crystals (PnCs) with and without coupling-enhancement slabs was theoretically investigated using a three-dimensional finite element method. Different piezoelectric substrates, for example, lithium niobate (LiNbO3), gallium nitride (GaN), and aluminium nitride (AlN), were taken into account. Compared to the PnCs without coupling-enhancement slabs, the coupling between each pillar and its nearest neighbor was largely enhanced in the presence of slabs. The bandwidth of the first directional band gap increased markedly compared with its initial value for the PnCs without a slab (within square symmetry). In addition, with increasing thicknesses of the slabs bonded between neighboring pillars, the first directional band-gap and second directional band gap of the PnCs tend to merge. Therefore, the structure with coupling-enhancement slabs can be used as an excellent electrical band elimination filter for most electro-SAW devices, offering a new strategy to realize chip-scale applications in electroacoustic signal processing, optoacoustic modulation, and even SAW microfluidic devices.

  15. Investigation of quasi-one-dimensional finite phononic crystal with conical section

    Indian Academy of Sciences (India)

    Zhiqiang Fu; Shuyu Lin; Shi Chen; Xiaojun Xian; Chenghui Wang

    2014-12-01

    In this paper, we studied the propagation of elastic longitudinal waves in quasi-onedimensional (1D) finite phononic crystal with conical section, and derived expressions of frequencyresponse functions. It is found that, contrary to the 1D phononic crystal with a constant section, the value of attenuation inside the band gaps decreases quickly when cross-sectional area increases, and the initial frequency also decreases, but the cut-off frequency increases, thus the width of the band gap increases. The effects of lattice constant and the filling fraction on the band gap are also analysed, and the change trends of the initial frequency and cut-off frequency are consistent with those of constant section. It is shown that the results using this method are in good agreement with the results analysed by the finite element software, ANSYS.We hope that the results will be helpful in practical applications of phononic crystals.

  16. On the elasticity of transverse isotropic soft tissues (L).

    Science.gov (United States)

    Royer, Daniel; Gennisson, Jean-Luc; Deffieux, Thomas; Tanter, Mickaël

    2011-05-01

    Quantitative elastography techniques have recently been developed to estimate the shear modulus μ of soft tissues in vivo. In the case of isotropic and quasi-incompressible media, the Young's modulus E is close to 3 μ, which is not true in transverse anisotropic tissues such as muscles. In this letter, the transverse isotropic model established for hexagonal crystals is revisited in the case of soft solids. Relationships between elastic constants and Young's moduli are derived and validated on experimental data found in the literature. It is shown that 3 μ(⊥) ≤ E(⊥) ≤ 4 μ(⊥) and that E(//) cannot only be determined from the measurements of μ(//) and μ(⊥).

  17. Mechanical, elastic and thermodynamic properties of crystalline lithium silicides

    CERN Document Server

    Schwalbe, Sebastian; Trepte, Kai; Biedermann, Franziska; Mertens, Florian; Kortus, Jens

    2016-01-01

    We investigate crystalline thermodynamic stable lithium silicides phases (LixSiy) with density functional theory (DFT) and a force-field method based on modified embedded atoms (MEAM) and compare our results with experimental data. This work presents a fast and accurate framework to calculate thermodynamic properties of crystal structures with large unit cells with MEAM based on molecular dynamics (MD). Mechanical properties like the bulk modulus and the elastic constants are evaluated in addition to thermodynamic properties including the phonon density of states, the vibrational free energy and the isochoric/isobaric specific heat capacity for Li, Li12Si7, Li7Si3, Li13Si4, Li15Si4, Li21Si5, Li17Si4, Li22Si5 and Si. For a selected phase (Li13Si4) we study the effect of a temperature dependent phonon density of states and its effect on the isobaric heat capacity.

  18. Prediction of molecular crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Theresa

    2001-07-01

    The ab initio prediction of molecular crystal structures is a scientific challenge. Reliability of first-principle prediction calculations would show a fundamental understanding of crystallisation. Crystal structure prediction is also of considerable practical importance as different crystalline arrangements of the same molecule in the solid state (polymorphs)are likely to have different physical properties. A method of crystal structure prediction based on lattice energy minimisation has been developed in this work. The choice of the intermolecular potential and of the molecular model is crucial for the results of such studies and both of these criteria have been investigated. An empirical atom-atom repulsion-dispersion potential for carboxylic acids has been derived and applied in a crystal structure prediction study of formic, benzoic and the polymorphic system of tetrolic acid. As many experimental crystal structure determinations at different temperatures are available for the polymorphic system of paracetamol (acetaminophen), the influence of the variations of the molecular model on the crystal structure lattice energy minima, has also been studied. The general problem of prediction methods based on the assumption that the experimental thermodynamically stable polymorph corresponds to the global lattice energy minimum, is that more hypothetical low lattice energy structures are found within a few kJ mol{sup -1} of the global minimum than are likely to be experimentally observed polymorphs. This is illustrated by the results for molecule I, 3-oxabicyclo(3.2.0)hepta-1,4-diene, studied for the first international blindtest for small organic crystal structures organised by the Cambridge Crystallographic Data Centre (CCDC) in May 1999. To reduce the number of predicted polymorphs, additional factors to thermodynamic criteria have to be considered. Therefore the elastic constants and vapour growth morphologies have been calculated for the lowest lattice energy

  19. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-05-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  20. First-principles study of the structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure

    Science.gov (United States)

    Escamilla, R.; Carvajal, E.; Cruz-Irisson, M.; Romero, M.; Gómez, R.; Marquina, V.; Galván, D. H.; Durán, A.

    2016-12-01

    The structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure are assessed using first-principles calculations based on the generalized gradient approximation (GGA) proposed by Perdew-Wang (PW91). Our results show that the calculated structural parameters at a pressure of zero GPa are in good agreement with the available experimental data. The effect of high pressures on the lattice constants shows that the compression along the c-axis and along the a-axis are similar. The elastic constants were calculated using the static finite strain technique, and the bulk shear moduli are derived from the ideal polycrystalline aggregate. We find that the elastic constants, elastic modulus and hardness monotonically increase as a function of pressure; consequently, the structure is dynamically stable and tends from brittle to ductile behavior under pressure. The Debye temperature θD increases and the so-called Gru¨ neisen constant γ decreases due to stiffening of the crystal structure. The phonon dispersion curves were obtained using the direct method. Additionally, the internal energy (ΔE), the Helmholtz free energy (ΔF), the entropy (S) and the lattice contribution to the heat capacity Cv were calculated and analyzed with the help of the phonon dispersion curves. The N(EF) and the electron transfer between the B and Mo atoms increase as a function of pressure.

  1. Ab-initio study of structural, elastic, thermal, electronic and magnetic properties of quaternary Heusler alloys CoMnCrZ (Z = Al, As, Si, Ge)

    Science.gov (United States)

    Mohamedi, Mohamed Walid; Chahed, Abbes; Amar, Amina; Rozale, Habib; Lakdja, Abdelaziz; Benhelal, Omar; Sayede, Adlane

    2016-12-01

    First-principles approach is used to study the structural, electronic and magnetic properties of CoMnCrZ (Z = Al, Si, Ge and As) quaternary Heusler compounds, using full-potential linearized augmented plane wave (FP-LAPW) scheme within the generalized gradient approximation (GGA). The computed equilibrium lattice parameters agree well with the available theoretical data. The obtained negative formation energy shows that CoMnCrZ (Z = Al, Si, Ge, As) compounds have strong structural stability. The elastic constants Cij are calculated using the total energy variation with strain technique. The polycrystalline elastic moduli (namely: the shear modulus, Young's modulus, Poisson's ratio, sound velocities, Debye temperature and melting temperature were derived from the obtained single-crystal elastic constants. The ductility mechanism for the studied compounds is discussed via the elastic constants Cij. Our calculations with the GGA approximation predict that CoMnCrGe, CoMnCrAl, CoMnCrSi and CoMnCrAs are half-metallic ferrimagnets (HMFs) with a half-metallic gap EHM of 0.03 eV, 0.19 eV, 0.34 eV and 0.50 eV for, respectively. We also find that the half-metallicity is maintained on a wide range of lattice constants.

  2. A first-principles study of the structural and elastic properties of orthorhombic and tetragonal Ca3Mn2O7

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Tong Pei-Qing

    2013-01-01

    The structural and elastic properties of multiferroic Ca3Mn2O7 with ferroelectric orthorhombic (O-phase) and paraelectric tetragonal structures (T-phase) have been studied by first-principles calculations within the generalized gradient approximation (GGA) and the GGA plus Hubbard U approaches (GGA + U).The calculated theoretical structures are in good agreement with the experimental values.The T-phase is found to be antiferromagnetic (AFM) and the AFM O-phase is more stable than the T-phase,which also agree with the experiments.On these bases,the single-crystal elastic constants (Cijs) and elastic properties of polycrystalline aggregates are investigated for the two phases.Our elasticity calculations indicate Ca3Mn2O7 is mechanically stable against volume expansions.The AFM O-phase is found to be a ductile material,while the AFM T-phase shows brittle nature and tends to be elastically isotropic.We also investigate the influence of strong correlation effects on the elastic properties,qualitatively consistent results are obtained in a reasonable range of values of U.Finally,the ionicity is discussed by Bader analysis.Our work provides useful guidance for the experimental elasticity measurements of Ca3Mn2O7,and makes the strain energy calculation in multiferroic Ca3Mn2O7 thin films possible.

  3. Nematic liquid crystals on spherical surfaces: Control of defect configurations by temperature, density, and rod shape

    Science.gov (United States)

    Dhakal, Subas; Solis, Francisco J.; Olvera de la Cruz, Monica

    2012-07-01

    Recent experiments have shown that defect conformations in spherical nematic liquid crystals can be controlled through variations of temperature, shell thickness, and other environmental parameters. These modifications can be understood as a result of the induced changes in the effective elastic constants of the system. To characterize the relation between defect conformations and elastic anisotropy, we carry out Monte Carlo simulations of a nematic on a spherical surface. As the anisotropy is increased, the defects flow from a tetrahedral arrangement to two coalescing pairs and then to a great circle configuration. We also analyze this flow using a variational method based on harmonic configurations.

  4. Elastic scattering of surface states on three-dimensional topological insulators

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Zhu Bang-Fen

    2013-01-01

    Topological insulators as a new type of quantum matter materials are characterized by a full insulating gap in the bulk and gapless edge/surface states protected by the time-reversal symmetry.We propose that the interference patterns caused by the elastic scattering of defects or impurities are dominated by the surface states at the extremal points on the constant energy contour.Within such a formalism,we summarize our recent theoretical investigations on the elastic scattering of topological surface states by various imperfections,including non-magnetic impurities,magnetic impurities,step edges,and various other defects,in comparison with the recent related experiments in typical topological materials such as BiSb alloys,Bi2Te3,and Bi2Se3 crystals.

  5. Effect of hydrostatic pressure on the structural, elastic and electronic properties of (B3) boron phosphide

    Indian Academy of Sciences (India)

    Salah Daoud; Kamel Loucif; Nadhira Bloud; Noudjoud Lebgaa; Laarbi Belagraa

    2012-07-01

    In this paper we present the results obtained from first-principles calculations of the effect of hydrostatic pressure on the strucural, elastic and electronic properties of (B3) boron phosphide, using the pseudopotential plane-wave method (PP-PW) based on density functional theory within the Teter and Pade exchange-correlation functional form of the local density approximation (LDA). The lattice parameter, molecular and crystal densities, near-neighbour distances, independent elastic constant, bulk modulus, shear modulus, anisotropy factor and energy bandgaps of (B3) BP under high pressure are presented. The results showed a phase transition pressure from the zinc blende to rock-salt phase at around 1.56 Mbar, which is in good agreement with the theoretical data reported in the literature.

  6. Anisotropy in elastic properties of lithium sodium sulphate hexahydrate single crystal—An ultrasonic study

    Indian Academy of Sciences (India)

    George Varughese; A Santhosh Kumar; J Philip; Godfrey Louis

    2009-12-01

    The double sulfate family (ABSO4), where A and B are alkali metal cations, is the object of great interest owing to the complexity and richness of its sequence of phase transition induced by temperature variation. A new sulfate salt characterized by the presence of water molecule in the unit cell with the chemical formula, Li2Na3(SO4)2.6H2O (LSSW), was obtained. The ultrasonic velocity measurement was done with pulse echo overlap technique [PEO]. All the six second order elastic stiffness constants, 11 = 22, 33, 44 = 55, 12, 14 and 13 = 23 are reported for the first time. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the polar plots of phase velocity, slowness, Young’s modulus and linear compressibility in – and – planes.

  7. Anisotropy in elastic properties of lithium sodium sulphate hexahydrate single crystal—An ultrasonic study

    Indian Academy of Sciences (India)

    George Varughese; A S Kumar; J Philip; Godfrey Louis

    2013-02-01

    The double sulfate family of (ABSO4) where A and B are alkali metal cations, is the object of great interest owing to the complexity and richness of its sequence of phase transition induced by temperature variation. A new sulfate salt characterized by the presence of water molecule in the unit cell with the chemical formula, Li2Na3(SO4)2.6H2O (LSSW), was obtained. The ultrasonic velocity measurement was done with pulse echo overlap technique [PEO]. All the six second order elastic stiffness constants, 11 = 22, 33, 44 = 55, 12, 14 and 13 = 23, are reported for the first time. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the surface plots of phase velocity, slowness, Young’s modulus and linear compressibility in – and – planes.

  8. An experimental study of the elastic theory for granular flows

    Science.gov (United States)

    Guo, Tongtong; Campbell, Charles S.

    2016-08-01

    This paper reports annular shear cell measurements granular flows with an eye towards experimentally confirming the flow regimes laid out in the elastic theory of granular flow. Tests were carried out on four different kinds of plastic spherical particles under both constant volume flows and constant applied stress flows. In particular, observations were made of the new regime in that model, the elastic-inertial regime, and the predicted transitions between the elastic-inertial and both the elastic-quasistatic and pure inertial regimes.

  9. Marangoni elasticity of flowing soap films

    CERN Document Server

    Kim, Ildoo

    2016-01-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm is likely applicable to other similarly constructed flowing soap films.

  10. Marangoni elasticity of flowing soap films

    OpenAIRE

    Kim, Ildoo; Mandre, Shreyas

    2016-01-01

    We measure the Marangoni elasticity of a flowing soap film to be 22 dyne/cm irrespective of its width, thickness, flow speed, or the bulk soap concentration. We perform this measurement by generating an oblique shock in the soap film and measuring the shock angle, flow speed and thickness. We postulate that the elasticity is constant because the film surface is crowded with soap molecules. Our method allows non-destructive measurement of flowing soap film elasticity, and the value 22 dyne/cm ...

  11. Thermodynamic properties of ferroelectric NH3CH2COOH·H2PO3 crystal

    Science.gov (United States)

    Zachek, I. R.; Shchur, Ya.; Levitskii, R. R.; Vdovych, A. S.

    2017-09-01

    Using a modified microscopic model of NH3CH2COOH·H2PO3 by taking into account piezoelectric coupling with strains εi, ε4, ε5 and ε6 in two-particle cluster approximation, the temperature dependence of polarization and tensor of static dielectric permittivity of mechanically clamped and free crystal, their piezoelectric characteristics, elastic constants and heat capacity are calculated.

  12. Dynamic measurements of the elastic constants of glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2005-01-01

    The sound wave in the air between the fibers of glass wool exerts an oscillatory viscous drag on the fibers and excites a mechanical wave in the fiber skeleton. Accurate calculations of sound attenuation in glass wool must take the mechanical wave in the fiber skeleton into account...

  13. Instability of a Biaxial Nematic Liquid Crystal Formed by Homeotropic Anchoring on Surface Grooves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Dong; XUAN Li

    2011-01-01

    A method used to treat the elastic distortion of a uniaxial nematic liquid crystal induced by homogeneous anchoring on the surface grooves is generalized to biaxial nematic liquid crystals under the homeotropic anchoring condition.Employing some approximations for the elastic constants,we obtain an additional term in the elastic energy per unit area which depends on the angle between the minor director at infinity and the direction of the grooves,with a period of π/2.This leads to instability on the surface grooves so that two states with crossed minor directors are energetically indistinguishable.Our theoretical study explains why the homeotropic alignment method developed for uniaxial liquid crystals loses efficacy for biaxial nematics.In most liquid crystal devices,the liquid crystals are sandwiched between two substrates coated with alignment layers.In the absence of externally applied fields,the orientation of the liquid crystal in the cell is determined by the anchoring condition of the alignment layer.[1-3] One usually distinguishes three main types of liquid crystalline director alignment near solid walls:homeotropic,homogeneous (or planar) and tilted orientations.Here we study the first of these and consider the biaxial nematic phase,which was observed in lyotropic systems as early as 1980[4] and has been confirmed by deuterium NMR spectroscopy.%A method used to treat the elastic distortion of a uniaxial nematic liquid crystal induced by homogeneous anchoring on the surface grooves is generalized to biaxial nematic liquid crystals under the homeotropic anchoring condition. Employing some approximations for the elastic constants, we obtain an additional term in the elastic energy per unit area which depends on the angle between the minor director at infinity and the direction of the grooves, with a period of π/2. This leads to instability on the surface grooves so that two states with crossed minor directors are energetically indistinguishable. Our

  14. Phase-field-crystal model for fcc ordering.

    Science.gov (United States)

    Wu, Kuo-An; Adland, Ari; Karma, Alain

    2010-06-01

    We develop and analyze a two-mode phase-field-crystal model to describe fcc ordering. The model is formulated by coupling two different sets of crystal density waves corresponding to and reciprocal lattice vectors, which are chosen to form triads so as to produce a simple free-energy landscape with coexistence of crystal and liquid phases. The feasibility of the approach is demonstrated with numerical examples of polycrystalline and (111) twin growth. We use a two-mode amplitude expansion to characterize analytically the free-energy landscape of the model, identifying parameter ranges where fcc is stable or metastable with respect to bcc. In addition, we derive analytical expressions for the elastic constants for both fcc and bcc. Those expressions show that a nonvanishing amplitude of [200] density waves is essential to obtain mechanically stable fcc crystals with a nonvanishing tetragonal shear modulus (C11-C12)/2. We determine the model parameters for specific materials by fitting the peak liquid structure factor properties and solid-density wave amplitudes following the approach developed for bcc [K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007)]. This procedure yields reasonable predictions of elastic constants for both bcc Fe and fcc Ni using input parameters from molecular dynamics simulations. The application of the model to two-dimensional square lattices is also briefly examined.

  15. Elasticity of Pyrope at High Pressures and Temperatures by Brillouin Scattering and X-ray Diffraction

    Science.gov (United States)

    Lu, C.; Mao, Z.; Lin, J.; Prakapenka, V.

    2011-12-01

    Iron-containing pyrope ((Fe,Mg)3Al2Si3O12)) is believed to be an abundant rock-forming mineral in the Earth's interior, ranging from the crust to the top of the lower mantle. Based on the pyrolite mineralogical model, pyrope accounts for 13% by volume in the upper mantle and 10% in the transition zone. Therefore, laboratory measurements on the elasticity of pyrope at relevant pressure and temperature conditions are critical in understanding the seismic images and in constraining the chemistry and mineralogy of the region. The elasticity of single-crystal pyrope has been studied up to 20 GPa at 300 K and up to 1100 K at 1 bar, yet it has never been investigated at simultaneous high pressure-temperature conditions. Thus, much of our knowledge of the upper mantle and transition zone seismic profiles largely relies on extrapolated experimental results or theoretical calculations. Here we have measured the single-crystal elasticity of garnet, ((Mg2.04Ca0.16Fe0.74)Al2.02(SiO4)3) up to 20 GPa and 750 K using combined Brillouin scattering and synchrontron X-ray diffraction in an externally-heated diamond anvil cell at GSECARS of the Advanced Photon Source, Argonne National Laboratory. We have derived full elastic constants (Cij) of the sample as a function of pressure and temperature at relevant conditions of the deep mantle. The temperature derivatives of the Cijs are similar to that at ambient pressure, indicating a minimal pressure effect. Together with the elasticity of other major mantle minerals, we have used a thermoelastic model to reconstruct the seismic velocity profile of the upper mantle and the transition zone and to reference the mineralogy of the regions.

  16. Elastic property of a high-field ordered state observed in PrFe{sub 4}P{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Y. [Graduate School of Engineering, Iwate University Morioka 020-8551 (Japan)], E-mail: yoshiki@iwate-u.ac.jp; Fujino, T.; Tanizawaa, T.; Nakamura, M. [Graduate School of Engineering, Iwate University Morioka 020-8551 (Japan); Sugawara, H. [Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770-8502 (Japan); Kikuchi, D.; Sato, H. [Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397 (Japan); Yoshizawa, M. [Graduate School of Engineering, Iwate University Morioka 020-8551 (Japan)

    2008-04-01

    We present experimental results of elastic constants as a function of temperature and magnetic field for understanding a newly discovered high-field (HF) phase, sharply located around the <111> direction of the magnetic field above 8 T, in the Pr-based heavy fermion system PrFe{sub 4}P{sub 12}. A clear upturn was observed in the elastic constants C{sub L}=(C{sub 11}+2C{sub 12}+4C{sub 44})/3 and C{sub T}=(C{sub 11}-C{sub 12}+C{sub 44})/3 below the HF ordered phase transition temperature, where C{sub L} and C{sub T} were measured by a longitudinal (L) sound wave propagating along the <111> direction and by a transverse (T) one along the <111> direction polarized to the <111> one, respectively. Furthermore, a remarkable elastic softening toward the transition temperature was observed in the temperature dependence of the C{sub L}, whereas no softening was observed in C{sub T}. These results indicate that the softening is most likely to be attributed to the bulk modulus (C{sub 11}+2C{sub 12})/3 or a change of crystal length along the <111> axis. Hence, a strain fluctuation with {gamma}{sub 1} symmetry or the crystal distortion along the <111> axis might be an important clue for the primary order parameter.

  17. Elastic and anelastic relaxations associated with phase transitions in EuTiO3

    Science.gov (United States)

    Spalek, Leszek J.; Saxena, Siddharth S.; Panagopoulos, Christos; Katsufuji, Takuro; Schiemer, Jason A.; Carpenter, Michael A.

    2014-08-01

    Elastic and anelastic properties of single crystal samples of EuTiO3 have been measured between 10 and 300 K by resonant ultrasound spectroscopy at frequencies in the vicinity of 1 MHz. Softening of the shear elastic constants C44 and 1/2(C11-C12) by ˜20-30% occurs with falling temperature in a narrow interval through the transition point, Tc=284 K, for the cubic-tetragonal transition. This is accounted for by classical coupling of macroscopic spontaneous strains with the tilt order parameter in the same manner as occurs in SrTiO3. A peak in the acoustic loss occurs a few degrees below Tc and is interpreted in terms of initially mobile ferroelastic twin walls, which rapidly become pinned with further lowering of temperature. This contrasts with the properties of twin walls in SrTiO3, which remain mobile down to at least 15 K. No further anomalies were observed that might be indicative of strain coupling to any additional phase transitions above 10 K. A slight anomaly in the shear elastic constants, independent of frequency and without any associated acoustic loss, was found at ˜140 K. It marks a change from elastic stiffening to softening with falling temperature and perhaps provides evidence for coupling between strain and local fluctuations of dipoles related to the incipient ferroelectric transition. An increase in acoustic loss below ˜80 K is attributed to the development of dynamical magnetic clustering ahead of the known antiferromagnetic ordering transition at ˜5.5 K. Detection of these elastic anomalies serves to emphasize that coupling of strain with tilting, ferroelectric, and magnetic order parameters is likely to be a permeating influence in determining the structure, stability, properties, and behavior of EuTiO3.

  18. The optimal elastic flagellum

    Science.gov (United States)

    Spagnolie, Saverio E.; Lauga, Eric

    2010-03-01

    Motile eukaryotic cells propel themselves in viscous fluids by passing waves of bending deformation down their flagella. An infinitely long flagellum achieves a hydrodynamically optimal low-Reynolds number locomotion when the angle between its local tangent and the swimming direction remains constant along its length. Optimal flagella therefore adopt the shape of a helix in three dimensions (smooth) and that of a sawtooth in two dimensions (nonsmooth). Physically, biological organisms (or engineered microswimmers) must expend internal energy in order to produce the waves of deformation responsible for the motion. Here we propose a physically motivated derivation of the optimal flagellum shape. We determine analytically and numerically the shape of the flagellar wave which leads to the fastest swimming for a given appropriately defined energetic expenditure. Our novel approach is to define an energy which includes not only the work against the surrounding fluid, but also (1) the energy stored elastically in the bending of the flagellum, (2) the energy stored elastically in the internal sliding of the polymeric filaments which are responsible for the generation of the bending waves (microtubules), and (3) the viscous dissipation due to the presence of an internal fluid. This approach regularizes the optimal sawtooth shape for two-dimensional deformation at the expense of a small loss in hydrodynamic efficiency. The optimal waveforms of finite-size flagella are shown to depend on a competition between rotational motions and bending costs, and we observe a surprising bias toward half-integer wave numbers. Their final hydrodynamic efficiencies are above 6%, significantly larger than those of swimming cells, therefore indicating available room for further biological tuning.

  19. Magneto-elastic interactions in terbium

    DEFF Research Database (Denmark)

    Jensen, J.

    1971-01-01

    Making use of the Hamiltonian for linear magneto-elastic coupling which has been proposed by Callen and Callen, expressions are deduced for changes in the velocity of acoustic waves in a terbium crystal, due to ferromagnetic ordering and the application of an external magnetic field...

  20. Analysis of the carbon source for diamond crystal growth

    Institute of Scientific and Technical Information of China (English)

    LI Li; XU Bin; LI MuSen

    2008-01-01

    The lattice constants of diamond and graphite at high pressure and high temperature (HPHT) were calculated on the basis of linear expansion coefficient and elastic constant. According to the empirical electron theory of solids and molecules (EET), the valence electron structures (VESs) of diamond, graphite crystal and their common planes were calculated. The relationship between diamond and graphite structure was analyzed based on the boundary condition of the improved Thomas-Fermi-Dirac theory by Cheng (TFDC). It was found that the electron densities of common planes in graphite were not continuous with those of planes in diamond at the first order of approximation. The results show that during the course of diamond single crystal growth at HPHT with metal catalyst, the carbon sources forming diamond structure do not come from the graphite structure directly. The diamond growth mechanism was discussed from the viewpoint of valence electron structure.

  1. Temperature dependence of full set tensor properties of KTiOPO4 single crystal measured from one sample

    Science.gov (United States)

    Zhang, Yang; Tang, Liguo; Ji, Nianjing; Liu, Gang; Wang, Jiyang; Jiang, Huaidong; Cao, Wenwu

    2016-03-01

    The temperature dependence of the complete set of elastic, dielectric, and piezoelectric constants of KTiOPO4 single crystal has been measured from 20 °C to 150 °C. All 17 independent constants for the mm2 symmetry piezoelectric crystal were measured from one sample using extended resonance ultrasound spectroscopy (RUS), which guaranteed the self-consistency of the matrix data. The unique characteristics of the RUS method allowed the accomplishment of such a challenging task, which could not be done by any other existing methods. It was found that the elastic constants ( c11 E , c13 E , c22 E , and c33 E ) and piezoelectric constants ( d 15 , d 24 , and d 32 ) strongly depend on temperature, while other constants are only weakly temperature dependent in this temperature range. These as-grown single domain data allowed us to calculate the orientation dependence of elastic, dielectric, and piezoelectric properties of KTiOPO4, which are useful for finding the optimum cut for particular applications.

  2. Soft phononic crystals with deformation-independent band gaps

    Science.gov (United States)

    2017-01-01

    Soft phononic crystals have the advantages over their stiff counterparts of being flexible and reconfigurable. Normally, the band gaps of soft phononic crystals will be modified after deformation due to both geometric and constitutive nonlinearity. Indeed these are important properties that can be exploited to tune the dynamic properties of the material. However, in some instances, it may be that one wishes to deform the medium while retaining the band gap structure. A special class of soft phononic crystals is described here with band gaps that are independent or almost-independent of the imposed mechanical deformation, which enables the design of phononic crystals with robust performance. This remarkable behaviour originates from transformation elasticity theory, which leaves the wave equation and the eigenfrequencies invariant after deformation. The necessary condition to achieve such a property is that the Lagrangian elasticity tensor of the hyperelastic material should be constant, i.e. independent of deformation. It is demonstrated that incompressible neo-Hookean materials exhibit such a unique property. Semilinear materials also possess this property under special loading conditions. Phononic crystals composed of these two materials are studied theoretically and the predictions of invariance, or the manner in which the response deviates from invariance, are confirmed via numerical simulation. PMID:28484331

  3. Analytical solutions for elastic binary nanotubes of arbitrary chirality

    Science.gov (United States)

    Jiang, Lai; Guo, Wanlin

    2016-12-01

    Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young's modulus and Poisson's ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III-V and II-VI group elements.

  4. Analytical solutions for elastic binary nanotubes of arbitrary chirality

    Science.gov (United States)

    Jiang, Lai; Guo, Wanlin

    2016-09-01

    Analytical solutions for the elastic properties of a variety of binary nanotubes with arbitrary chirality are obtained through the study of systematic molecular mechanics. This molecular mechanics model is first extended to chiral binary nanotubes by introducing an additional out-of-plane inversion term into the so-called stick-spiral model, which results from the polar bonds and the buckling of binary graphitic crystals. The closed-form expressions for the longitudinal and circumferential Young's modulus and Poisson's ratio of chiral binary nanotubes are derived as functions of the tube diameter. The obtained inversion force constants are negative for all types of binary nanotubes, and the predicted tube stiffness is lower than that by the former stick-spiral model without consideration of the inversion term, reflecting the softening effect of the buckling on the elastic properties of binary nanotubes. The obtained properties are shown to be comparable to available density functional theory calculated results and to be chirality and size sensitive. The developed model and explicit solutions provide a systematic understanding of the mechanical performance of binary nanotubes consisting of III-V and II-VI group elements.

  5. Determination of temperature dependences of material constants for lead-free (Na0.5K0.5)NbO3-Ba2NaNb5O15 piezoceramics by inverse method

    Science.gov (United States)

    Yoshida, Katsuya; Kakimoto, Ken-ichi; Weiß, Manuel; Rupitsch, Stefan J.; Lerch, Reinhard

    2016-10-01

    The enhancement of the piezoelectric, dielectric, and elastic properties of lead-free piezoceramics is essential to achieving a usable alternative to common lead-based piezoceramics. In this contribution, the temperature dependences of the material constants for 0.985(Na0.5K0.5)NbO3-0.015Ba2NaNb5O15 (NKN-1.5BNN) were characterized and compared with those of MnO-doped (Na0.5K0.5)NbO3 (NKN-Mn). The material constants were determined by the simulation-based inverse method. As a result, NKN-Mn and NKN-1.5BNN were found to show significant differences in the temperature behaviors of piezoelectric, elastic, and dielectric constants. In particular, for temperatures less than 40 °C, material constants that mainly affect shear mode vibration in NKN-1.5BNN gradually increased with increasing temperature, whereas those of NKN-Mn remained constant because of a different crystal structure. In addition, we explain the observed mechanical softness of NKN-1.5BNN in the shear direction on the basis of characteristic material constant relations, macroscopic (scanning electron microscopy), and crystal structure examinations (X-ray diffractometry).

  6. Prediction study of the elastic and thermodynamic properties of the newly discovered tetragonal SrPd 2Ge 2 phase

    Science.gov (United States)

    Ghebouli, M. A.; Bouhemadou, A.; Ghebouli, B.; Fatmi, M.; Bin-Omran, S.

    2011-07-01

    Density functional theory pseudo-potential plane-wave calculations are performed in order to predict the structural, elastic and thermodynamic properties of the newly discovered tetragonal intermetallic SrPd 2Ge 2. The computed equilibrium lattice constants and the internal parameter are in good agreement with the experimental findings. The effect of high pressure, up to 40 GPa, on the lattice constants shows that the contraction along the c axis is higher than along the a axis. The single-crystal elastic constants and related properties are calculated using the static finite strain technique. We predicted the bulk modulus, shear modulus, Young's modulus and Poisson's ratio for ideal polycrystalline SrPd 2Ge 2 aggregates, using the Voigt-Reuss-Hill approximations. We estimated the Debye temperature and minimum thermal conductivity of SrPd 2Ge 2 from the average sound velocity. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the primitive cell volume, bulk modulus, thermal expansion coefficient, heat capacity and Debye temperature are investigated. This is the first quantitative theoretical prediction of the elastic and thermodynamic properties of the SrPd 2Ge 2 compound, and it still awaits experimental confirmation.

  7. The structural, elastic, electronic and dynamical properties of chalcopyrite semiconductor BeGeAs{sub 2} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, Yasemin Oe. [Gazi University Teknikokullar, Department of Physics, Faculty of Sciences, Ankara (Turkey); Evecen, Meryem; Aldirmaz, Emine [Amasya University, Department of Physics, Faculty of Arts and Sciences, Amasya (Turkey)

    2017-01-15

    First-principles calculations for the structural, elastic, electronic and vibrational properties of BeGeAs{sub 2} with chalcopyrite structure have been reported in the frame work of the density functional theory. The calculated ground state properties are in good agreement with the available data. By considering the electronic band structure and electronic density of states calculation, it is found that this compound is a semiconductor which confirmed the previous work. Single-crystal elastic constants and related properties such as Young's modulus, Poisson ratio, shear modulus and bulk modulus have been predicted using the stress-finite strain technique. It can be seen from the calculated elastic constants that this compound is mechanically stable in the chalcopyrite structure. Pressure dependences of elastic constants and band gap are also reported. Finally, the phonon dispersion curves and total and partial density of states were calculated and discussed. The calculated phonon frequencies BeGeAs{sub 2} are positive, indicating the dynamical stability of the studied compound. (orig.)

  8. ELASTIC CHARACTERIZATION OF Eucalyptus citriodora WOOD

    Directory of Open Access Journals (Sweden)

    Adriano Wagner Ballarin

    2003-01-01

    Full Text Available This paper contributed to the elastic characterization of Eucalyptus citriodora grown inBrazil, considering an orthotropic model and evaluating its most important elastic constants.Considering this as a reference work to establish basic elastic ratios — several important elasticconstants of Brazilian woods were not determined yet - the experimental set-up utilized one tree of 65years old from plantations of “Horto Florestal Navarro de Andrade”, at Rio Claro-SP, Brazil. All theexperimental procedures attended NBR 7190/97 – Brazilian Code for wooden structures –withconventional tension and compression tests. Results showed statistical identity between compressionand tension modulus of elasticity. The relation observed between longitudinal and radial modulus ofelasticity was 10 (EL/ER ≈ 10 and same relation, considering shear modulus (modulus of rigidity was20 (EL/GLR ≈ 20. These results, associated with Poisson’s ratios herein determined, allow theoreticalmodeling of wood mechanical behavior in structures.

  9. Optical study of the molecular alignment in a nematic liquid crystal in an oblique magnetic field

    OpenAIRE

    Oldano, C.; Miraldi, E.; Strigazzi, A.; Taverna Valabrega, P.; Trossi, L.

    1984-01-01

    The light intensity I transmitted through a homeotropically oriented nematic liquid crystal slab held between crossed polarizers, as a function of the angle θH of an applied magnetic field, is calculated for oblique light incidence. The presence of singular points in the I vs. θ H curve which are related to the elastic constants of the liquid crystal is demonstrated One of these points, found here for the first time, for small angles of incidence depends only on the ratio K33/Χ a, and allows ...

  10. Estimation of In vivo Cancellous Bone Elasticity

    Science.gov (United States)

    Otani, Takahiko; Mano, Isao; Tsujimoto, Toshiyuki; Yamamoto, Tadahito; Teshima, Ryota; Naka, Hiroshi

    2009-07-01

    The effect of decreasing bone density (a symptom of osteoporosis) is greater for cancellous bone than for dense cortical bone, because cancellous bone is metabolically more active. Therefore, the bone density or bone mineral density of cancellous bone is generally used to estimate the onset of osteoporosis. Elasticity or elastic constant is a fundamental mechanical parameter and is directly related to the mechanical strength of bone. Accordingly, elasticity is a preferable parameter for assessing fracture risk. A novel ultrasonic bone densitometer LD-100 has been developed to determine the mass density and elasticity of cancellous bone with a spatial resolution comparable to that of peripheral quantitative computed tomography. Bone density and bone elasticity are evaluated using ultrasonic parameters based on fast and slow waves in cancellous bone by modeling the ultrasonic wave propagation path. Elasticity is deduced from the measured bone density and the propagation speed of the fast wave. Thus, the elasticity of cancellous bone is approximately expressed by a cubic equation of bone density.

  11. Quasi-elastic neutron scattering studies of protein dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rorschach, H.E.

    1993-05-25

    Results that shed new light on the study of protein dynamics were obtained by quasi-elastic neutron scattering. The triple axis instrument H-9 supplied by the cold source was used to perform a detailed study of the quasi-elastic spectrum and the Debye-Waller factor for trypsin in powder form, in solution, and in crystals. A preliminary study of myoglobin crystals was also done. A new way to view the results of quasi-elastic scattering experiments is sketched, and the data on trypsin are presented and analyze according to this new picture.

  12. Atomistic simulation of shocks in single crystal and polycrystalline Ta

    Science.gov (United States)

    Bringa, E. M.; Higginbotham, A.; Park, N.; Tang, Y.; Suggit, M.; Mogni, G.; Ruestes, C. J.; Hawreliak, J.; Erhart, P.; Meyers, M. A.; Wark, J. S.

    2011-06-01

    Non-equilibrium molecular dynamics (MD) simulations of shocks in Ta single crystals and polycrystals were carried out using up to 360 million atoms. Several EAM and FS type potentials were tested up to 150 GPa, with varying success reproducing the Hugoniot and the behavior of elastic constants under pressure. Phonon modes were studied to exclude possible plasticity nucleation by soft-phonon modes, as observed in MD simulations of Cu crystals. The effect of loading rise time in the resulting microstructure was studied for ramps up to 0.2 ns long. Dislocation activity was not observed in single crystals, unless there were defects acting as dislocation sources above a certain pressure. E.M.B. was funded by CONICET, Agencia Nacional de Ciencia y Tecnología (PICT2008-1325), and a Royal Society International Joint Project award.

  13. Nematic liquid crystals on sinusoidal channels: the zigzag instability

    Science.gov (United States)

    Silvestre, Nuno M.; Romero-Enrique, Jose M.; Telo da Gama, Margarida M.

    2017-01-01

    Substrates which are chemically or topographically patterned induce a variety of liquid crystal textures. The response of the liquid crystal to competing surface orientations, typical of patterned substrates, is determined by the anisotropy of the elastic constants and the interplay of the relevant lengths scales, such as the correlation length and the surface geometrical parameters. Transitions between different textures, usually with different symmetries, may occur under a wide range of conditions. We use the Landau-de Gennes free energy to investigate the texture of nematics in sinusoidal channels with parallel anchoring bounded by nematic-air interfaces that favour perpendicular (hometropic) anchoring. In micron size channels 5CB was observed to exhibit a non-trivial texture characterized by a disclination line, within the channel, which is broken into a zigzag pattern. Our calculations reveal that when the elastic anisotropy of the nematic does not favour twist distortions the defect is a straight disclination line that runs along the channel, which breaks into a zigzag pattern with a characteristic period, when the twist elastic constant becomes sufficiently small when compared to the splay and bend constants. The transition occurs through a twist instability that drives the defect line to rotate from its original position. The interplay between the energetically favourable twist distortions that induce the defect rotation and the liquid crystal anchoring at the surfaces leads to the zigzag pattern. We investigate in detail the dependence of the periodicity of the zigzag pattern on the geometrical parameters of the sinusoidal channels, which in line with the experimental results is found to be non-linear.

  14. Phase diagram of elastic spheres.

    Science.gov (United States)

    Athanasopoulou, L; Ziherl, P

    2017-02-15

    Experiments show that polymeric nanoparticles often self-assemble into several non-close-packed lattices in addition to the face-centered cubic lattice. Here, we explore theoretically the possibility that the observed phase sequences may be associated with the softness of the particles, which are modeled as elastic spheres interacting upon contact. The spheres are described by two finite-deformation theories of elasticity, the modified Saint-Venant-Kirchhoff model and the neo-Hookean model. We determine the range of indentations where the repulsion between the spheres is pairwise additive and agrees with the Hertz theory. By computing the elastic energies of nine trial crystal lattices at densities far beyond the Hertzian range, we construct the phase diagram and find the face- and body-centered cubic lattices as well as the A15 lattice and the simple hexagonal lattice, with the last two being stable at large densities where the spheres are completely faceted. These results are qualitatively consistent with observations, suggesting that deformability may indeed be viewed as a generic property that determines the phase behavior in nanocolloidal suspensions.

  15. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  16. Analysis of Nematic Liquid Crystals with Disclination Lines

    CERN Document Server

    Bauman, P; Phillips, D

    2011-01-01

    We investigate the structure of nematic liquid crystal thin films described by the Landau--de Gennes tensor-valued order parameter with Dirichlet boundary conditions of nonzero degree. We prove that as the elasticity constant goes to zero a limiting uniaxial texture forms with disclination lines corresponding to a finite number of defects, all of degree 1/2 or all of degree -1/2. We also state a result on the limiting behavior of minimizers of the Chern-Simons-Higgs model without magnetic field that follows from a similar proof.

  17. Determination of elastic modulus in nickel alloy from ultrasonic measurements

    Indian Academy of Sciences (India)

    Nikhat Parveen; G V S Murthy

    2011-04-01

    Elastic constants relate technological, structural and safety aspects to various materials phenomena and to their fundamental interatomic forces. Hence, they are of fundamental importance in almost all engineering applications. Thus its determination is of utmost importance. The aim of the present investigation is to study the behaviour of elastic constants and the variation on heat treatment in a nickel base super alloy Nimonic 263 by ultrasonic velocity measurements. From the present study it is evident that the elastic moduli of the material are very sensitive to any minor compositional changes, resulting due to the formation of intermetallic phases on heat treatment and can be effectively monitored by ultrasonic.

  18. Cosmological Constant, Fine Structure Constant and Beyond

    CERN Document Server

    Wei, Hao; Li, Hong-Yu; Xue, Dong-Ze

    2016-01-01

    In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view it from an interacting vacuum energy perspective. We propose two types of models to describe the evolutions of $\\Lambda$ and $\\alpha$. Then, we consider the observational constraints on these models, by using the 293 $\\Delta\\alpha/\\alpha$ data from the absorption systems in the spectra of distant quasars, and the data of type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillation (BAO). We find that the model parameters can be tightly constrained to the narrow ranges of ${\\cal O}(10^{-5})$ t...

  19. Yielding elastic tethers stabilize robust cell adhesion.

    Directory of Open Access Journals (Sweden)

    Matt J Whitfield

    2014-12-01

    Full Text Available Many bacteria and eukaryotic cells express adhesive proteins at the end of tethers that elongate reversibly at constant or near constant force, which we refer to as yielding elasticity. Here we address the function of yielding elastic adhesive tethers with Escherichia coli bacteria as a model for cell adhesion, using a combination of experiments and simulations. The adhesive bond kinetics and tether elasticity was modeled in the simulations with realistic biophysical models that were fit to new and previously published single molecule force spectroscopy data. The simulations were validated by comparison to experiments measuring the adhesive behavior of E. coli in flowing fluid. Analysis of the simulations demonstrated that yielding elasticity is required for the bacteria to remain bound in high and variable flow conditions, because it allows the force to be distributed evenly between multiple bonds. In contrast, strain-hardening and linear elastic tethers concentrate force on the most vulnerable bonds, which leads to failure of the entire adhesive contact. Load distribution is especially important to noncovalent receptor-ligand bonds, because they become exponentially shorter lived at higher force above a critical force, even if they form catch bonds. The advantage of yielding is likely to extend to any blood cells or pathogens adhering in flow, or to any situation where bonds are stretched unequally due to surface roughness, unequal native bond lengths, or conditions that act to unzip the bonds.

  20. Membrane elastic properties and cell function.

    Directory of Open Access Journals (Sweden)

    Bruno Pontes

    Full Text Available Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  1. Elastically Decoupling Dark Matter

    CERN Document Server

    Kuflik, Eric; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2015-01-01

    We present a novel dark matter candidate, an Elastically Decoupling Relic (ELDER), which is a cold thermal relic whose present abundance is determined by the cross-section of its elastic scattering on Standard Model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross-section with electrons, photons and/or neutrinos in the $10^{-3}-1$ fb range.

  2. Elastically Decoupling Dark Matter.

    Science.gov (United States)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  3. ElasticSearch cookbook

    CERN Document Server

    Paro, Alberto

    2013-01-01

    Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java

  4. Light yield of an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin

    Science.gov (United States)

    Liu, Jing; Yamashita, Masaki; Soma, Arun Kumar

    2017-01-01

    A light yield of 20 . 4 +/- 0 . 8 photoelectrons/keV was achieved with an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin. This is by far the largest in the world achieved with CsI crystals. An energy threshold that is several times lower than the current dark matter experiments utilizing CsI(Tl) crystals may be achievable using this technique. Together with novel CsI crystal purification methods, the technique may be used to improve the sensitivities of dark matter and coherent elastic neutrino-nucleus scattering experiments. Also measured were the scintillation light decay constants of the undoped CsI crystal at both room temperature and 77 Kelvin. The results are consistent with those in the literature. This work was supported by NSF PHY-1506036, USA and Grant-in-Aid (B) Project No. 26800122, MEXT, Japan.

  5. Light yield of an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin

    CERN Document Server

    Liu, Jing; Soma, Arun Kumar

    2016-01-01

    A light yield of 20.4 $\\pm$ 0.8 photoelectrons/keV was achieved with an undoped CsI crystal coupled directly to a photomultiplier tube at 77 Kelvin. This is by far the largest yield in the world achieved with CsI crystals. An energy threshold that is several times lower than the current dark matter experiments utilizing CsI(Tl) crystals may be achievable using this technique. Together with novel CsI crystal purification methods, the technique may be used to improve the sensitivities of dark matter and coherent elastic neutrino-nucleus scattering experiments. Also measured were the scintillation light decay constants of the undoped CsI crystal at both room temperature and 77 Kelvin. The results are consistent with those in the literature.

  6. First-principles study of structural stabilities, elastic and electronic properties of transition metal monocarbides (TMCs) and mononitrides (TMNs)

    Energy Technology Data Exchange (ETDEWEB)

    Rached, H.; Rached, D.; Benalia, S. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Reshak, A.H., E-mail: maalidph@yahoo.co.uk [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Rabah, M. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière (LPQ3M), université de Mascara, Mascara 29000 (Algeria); Bin Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2013-12-16

    The structural stabilities, elastic and electronic properties of 5d transition metal mononitrides (TMNs) XN with (X = Ir, Os, Re, W and Ta) and 5d transition metal monocarbides (TMCs) XC with (X = Ir, Os, Re and Ta) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the local density approximation (LDA) for the exchange correlation functional. The ground state quantities such as the lattice parameter, bulks modulus and its pressure derivatives for the six considered crystal structures, Rock-salt (B1), CsCl (B2), zinc-blend (B3), Wurtzite (B4), NiAs (B8{sub 1}) and the tungsten carbides (B{sub h}) are calculated. The elastic constants of TMNs and TMCs compounds in its different stable phases are determined by using the total energy variation with strain technique. The elastic modulus for polycrystalline materials, shear modulus (G), Young's modulus (E), and Poisson's ratio (ν) are calculated. The Debye temperature (θ{sub D}) and sound velocities (v{sub m}) were also derived from the obtained elastic modulus. The analysis of the hardness of the herein studied compounds classifies OsN – (B4 et B8{sub 1}), ReN – (B8{sub 1}), WN – (B8{sub 1}) and OsC – (B8{sub 1}) as superhard materials. Our results for the band structure and densities of states (DOS), show that TMNs and TMCs compounds in theirs energetically and mechanically stable phase has metallic characteristic with strong covalent nature Metal–Nonmetal elements. - Highlights: • Structural stabilities, elastic, electronic properties of 5d TMNs XN are investigated. • 5d TMCs XC with (X = Ir, Os, Re and Ta) were investigated. • The ground state properties for the six considered crystal structure are calculated. • The elastic constants of TMNs and TMCs in its different stable phases are determined. • The elastic modulus for polycrystalline materials, G, E, and ν are calculated.

  7. Three-dimensional treatment of nonequilibrium dynamics and higher order elasticity

    Science.gov (United States)

    Lott, Martin; Payan, Cédric; Garnier, Vincent; Vu, Quang A.; Eiras, Jesús N.; Remillieux, Marcel C.; Le Bas, Pierre-Yves; Ulrich, T. J.

    2016-04-01

    This letter presents a three-dimensional model to describe the complex behavior of nonlinear mesoscopic elastic materials such as rocks and concrete. Assuming isotropy and geometric contraction of principal stress axes under dynamic loading, the expression of elastic wave velocity is derived, based on the second-order elastic constants ( λ , μ ) , third-order elastic constants (l, m, n), and a parameter α of nonclassical nonlinear elasticity resulting from conditioning. We demonstrate that both softening and recovering of the elastic properties under dynamic loading is an isotropic effect related to the strain tensor. The measurement of the conditioning is achieved using three polarized waves. The model allows the evaluation of the third-order elastic constants uncoupled from conditioning and viscoelastic effects. The values obtained are similar to those reported in the literature using quasi-static loading.

  8. Elasticity limits structural superlubricity in large contacts

    Science.gov (United States)

    Sharp, Tristan A.; Pastewka, Lars; Robbins, Mark O.

    2016-03-01

    Geometrically imposed force cancellations lead to ultralow friction between rigid incommensurate crystalline asperities. Elastic deformations may avert this cancellation but are difficult to treat analytically in finite and three-dimensional systems. We use atomic-scale simulations to show that elasticity affects the friction only after the contact radius a exceeds a characteristic length set by the core width of interfacial dislocations bcore. As a increases past bcore, the frictional stress for both incommensurate and commensurate surfaces decreases to a constant value. This plateau corresponds to a Peierls stress that drops exponentially with increasing bcore but remains finite.

  9. On the income elasticity of the value of travel time

    DEFF Research Database (Denmark)

    Börjesson, Maria; Fosgerau, Mogens; Algers, Staffan

    2012-01-01

    Transport infrastructure is long-term and in appraisal it is necessary to value travel time savings for future years. This requires knowing how the value of time (VTT) will develop over time as incomes grow. This paper investigates if the cross-sectional income elasticity of the VTT is equal...... to inter-temporal income elasticity. The study is based on two identical stated choice experiments conducted with a 13 year interval. Results indicate that the relationship between income and the VTT in the cross-section has remained unchanged over time. As a consequence, the inter-temporal income...... elasticity of the VTT can be predicted based on cross-sectional income elasticity. However, the income elasticity of the VTT is not a constant but increases with income. For this reason, the average income elasticity of the VTT in the cross-sections has increased between the two survey years and can...

  10. Structural, electronic, and elastic properties of CuFeS2: first-principles study

    Science.gov (United States)

    Zhou, Meng; Gao, Xiang; Cheng, Yan; Chen, Xiangrong; Cai, Lingcang

    2015-03-01

    The structural, electronic, and elastic properties of CuFeS2 have been investigated by using the generalized gradient approximation (GGA), GGA + U (on-site Coulomb repulsion energy), the local density approximation (LDA), and the LDA + U approach in the frame of density functional theory. It is shown that when the GGA + U formalism is selected with a U value of 3 eV for the 3d state of Fe, the calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA + U calculations indicate that CuFeS2 is a semiconductor with a band gap of 0.552 eV and with a magnetic moment of 3.64 µB per Fe atom, which are well consistent with the experimental results. Combined with the density of states, the band structure characteristics of CuFeS2 have been analyzed and their origins have been specified, which reveals a hybridization existing between Fe-3d, Cu-3s, and S-3p, respectively. The charge and Mulliken population analyses indicate that CuFeS2 is a covalent crystal. Moreover, the calculated elastic constants prove that CuFeS2 is mechanically stable but anisotropic. The bulk modulus obtained from elastic constants is 87.1 GPa, which agrees well with the experimental value of 91 ± 15 GPa and better than the theoretical bulk modulus 74 GPa obtained from GGA method by Lazewski et al. The obtained shear modulus and Debye temperature are 21.0 GPa and 287 K, respectively, and the latter accords well with the available experimental value. It is expected that our work can provide useful information to further investigate CuFeS2 from both the experimental and theoretical sides.

  11. Density functional calculations of elastic properties of portlandite, Ca(OH)(2)

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund

    2005-01-01

    The elastic constants of portlandite, Ca(OH)(2), are calculated by use of density functional theory. A lattice optimization of an infinite (periodic boundary conditions) lattice is performed on which strains are applied. The elastic constants are extracted by minimizing Hooke's law of linear...

  12. Structural, elastic and thermodynamic properties of tetragonal and orthorhombic polymorphs of Sr2GeN2: an ab initio investigation

    Science.gov (United States)

    Bedjaoui, A.; Bouhemadou, A.; Bin-Omran, S.

    2016-04-01

    The structural, elastic and thermodynamic properties of the α (tetragonal) and β (orthorhombic) polymorphs of the Sr2GeN2 compound have been examined in detail using ab initio density functional theory pseudopotential plane-wave calculations. Apart the structural properties at the ambient conditions, all present reported results are predicted for the first time. The calculated equilibrium lattice parameters and inter-atomic bond-lengths of the considered polymorphs are in good agreement with the available experimental data. It is found that α-Sr2GeN2 is energetically more stable than β-Sr2GeN2. The two examined polymorphs are very similar in their crystal structures and have almost identical local environments. The single-crystal and polycrystalline elastic parameters and related properties - including elastic constants, bulk, shear and Young's moduli, Poisson's ratio, anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature - have been predicted. Temperature and pressure dependence of some macroscopic properties - including the unit-cell volume, bulk modulus, volume thermal expansion coefficient, heat capacity and Debye temperature - have been evaluated using ab initio calculations combined with the quasi-harmonic Debye model.

  13. Elastic anisotropy and low-temperature thermal expansion in the shape memory alloy Cu-Al-Zn.

    Science.gov (United States)

    Kuruvilla, Santhosh Potharay; Menon, C S

    2008-04-01

    Cu-based shape memory alloys are known for their technologically important pseudo-elastic and shapememory properties, which are intimately associated with the martensitic transformation. A combination of deformation theory and finite-strain elasticity theory has been employed to arrive at the expressions for higher order elastic constants of Cu-Al-Zn based on Keating's approach. The second- and third-order elastic constants are in good agreement with the measurements. The aggregate elastic properties like bulk modulus, pressure derivatives, mode Grüneisen parameters of the elastic waves, low temperature limit of thermal expansion, and the Anderson-Grüneisen parameter are also presented.

  14. On a class of inverse electrostatic and elasticity problems

    OpenAIRE

    Artemev, Andrei; Parnovski, Leonid; Polterovich, Iosif

    2012-01-01

    We study the inverse electrostatic and elasticity problems associated with Poisson and Navier equations. The uniqueness of solutions of these problems is proved for piecewise constant electric charge and internal stress distributions having a checkered structure: they are constant on rectangular blocks. Such distributions appear naturally in practical applications. We also discuss computational challenges arising in the numerical implementation of our method.

  15. High temperature and pressure effects on the elastic properties of B2 intermetallics AgRE

    OpenAIRE

    Liu Lili; Wu Xiaozhi; Li Weiguo; Wang Rui; Liu Qing

    2015-01-01

    The high temperature and pressure effects on the elastic properties of the AgRE (RE=Sc, Tm, Er, Dy, Tb) intermetallic compounds with B2 structure have been performed from first principle calculations. For the temperature range 0-1000 K, the second order elastic constants for all the AgRE intermetallic compounds follow a normal behavior: they decrease with increasing temperature. The pressure dependence of the second order elastic constants has been investigated on the ...

  16. Immense elastic nonlinearities at the demixing transition of aqueous PNIPAM solutions

    OpenAIRE

    Philipp, Martine; Müller, Ulrich; Aleksandrova, Ralitsa; Sanctuary, Roland; Müller-Buschbaum, P.; Krüger, Jan-Kristian

    2013-01-01

    Elastic nonlinearities are particularly relevant for soft materials because of their inherently small linear elasticity. Nonlinear elastic properties may even take over the leading role for the transformation at mechanical instabilities accompanying many phase transitions in soft matter. Because of inherent experimental difficulties, only little is known about third order (nonlinear) elastic constants within liquids, gels and polymers. Here we show that a key concept to access thi...

  17. ElasticSearch cookbook

    CERN Document Server

    Paro, Alberto

    2015-01-01

    If you are a developer who implements ElasticSearch in your web applications and want to sharpen your understanding of the core elements and applications, this is the book for you. It is assumed that you've got working knowledge of JSON and, if you want to extend ElasticSearch, of Java and related technologies.

  18. First principles studies of elastic, electronic and optical properties of chalcopyrite semiconductor ZnSnP{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, S. [Gazi University, Department of Physics, Teknikokullar, 06500, Ankara (Turkey); Ciftci, Y.O., E-mail: yasemin@gazi.edu.tr [Gazi University, Department of Physics, Teknikokullar, 06500, Ankara (Turkey); Colakoglu, K. [Gazi University, Department of Physics, Teknikokullar, 06500, Ankara (Turkey); Korozlu, N. [Erzincan University, Department of Physics, Basbaglar, 24100, Erzincan (Turkey)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer We have examined elastic, electronic and optic properties of ZnSnP{sub 2}. Black-Right-Pointing-Pointer All calculations are calculated in chalco pyrite (BCT) crsytal structures. Black-Right-Pointing-Pointer The calculated elastic constants satisfy mechanical stability conditions. - Abstract: The structural, elastic, electronic and optical properties of ZnSnP{sub 2} were investigated using first principles plane-wave pseudopotential method within local density approximation (LDA). The results on the basic physical parameters, such as the lattice constant, bulk modulus, pressure derivative of bulk modulus, Zener anisotropy factor, Poisson's ratio, Young's modulus and isotropic shear modulus were presented. Band structures and density of states were calculated and it was found that the crystal is a semiconductor with a direct energy band gap of about 1.06 eV for ZnSnP{sub 2}. We have analysed the basic optical properties, such as dielectric function refractive index, extinction coefficient, the absorption coefficient, optical reflectivity and electron energy loss spectrum in the energy range 0-20 eV. The obtained results are in agreement with the available experimental and other theoretical values.

  19. Katoite under pressure: an ab initio investigation of its structural, elastic and vibrational properties sheds light on the phase transition.

    Science.gov (United States)

    Erba, Alessandro; Navarrete-López, Alejandra M; Lacivita, Valentina; D'Arco, Philippe; Zicovich-Wilson, Claudio M

    2015-01-28

    The evolution under pressures up to 65 GPa of structural, elastic and vibrational properties of the katoite hydrogarnet, Ca3Al2(OH)12, is investigated with an ab initio simulation performed at the B3LYP level of theory, by using all-electron basis sets with the Crystal periodic program. The high-symmetry Ia3d phase of katoite, stable under ambient conditions, is shown to be destabilized, as pressure increases, by interactions involving hydrogen atoms and their neighbors which weaken the hydrogen bonding network of the structure. The corresponding thermodynamical instability is revealed by anomalous deviations from regularity of its elastic constants and by numerous imaginary phonon frequencies, up to 50 GPa. Interestingly, as pressure is further increased above 50 GPa, the Ia3d structure is shown to become stable again (all positive phonon frequencies and regular elastic constants). However, present calculations suggest that, above about 15 GPa and up to at least 65 GPa, a phase of I4[combining macron]3d symmetry (a non-centrosymmetric subgroup of Ia3d) becomes more stable than the Ia3d one, being characterized by strengthened hydrogen bonds. At low-pressures (between about 5 GPa and 15 GPa), both phases show some instabilities (more so for I4[combining macron]3d than for Ia3d), thus suggesting either the existence of a third phase or a possible phase transition of second order.

  20. A strategic approach to physico-chemical analysis of bis (thiourea) lead chloride - A reliable semi-organic nonlinear optical crystal

    Science.gov (United States)

    Rajagopalan, N. R.; Krishnamoorthy, P.; Jayamoorthy, K.

    2017-03-01

    Good quality crystals of bis thiourea lead chloride (BTLC) have been grown by slow evaporation method from aqueous solution. Orthorhombic structure and Pna21 space group of the crystals have been identified by single crystal X-ray diffraction. Studies on nucleation kinetics of grown BTLC has been carried out from which meta-stable zone width, induction period, free energy change, critical radius, critical number and growth rate have been calculated. The experimental values of interfacial surface energy for the crystal growth process have been compared with theoretical models. Ultra violet transmittance studies resulted in a high transmittance and wide band gap energy suggested the required optical transparency of the crystal. The second harmonic generation (SHG) and phase matching nature of the crystal have been justified by Kurtz-Perry method. The SHG nature of the crystal has been further attested by the higher values of theoretical hyper polarizability. The dielectric nature of the crystals at different temperatures with varying frequencies has been thoroughly studied. The activation energy values of the electrical process have been calculated from ac conductivity study. Solid state parameters including valence electron plasma energy, Penn gap, Fermi energy and polarisability have been unveiled by theoretical approach and correlated with the crystal's SHG efficiency. The values of hardness number, elastic stiffness constant, Meyer's Index, minimum level of indentation load, load dependent constant, fracture toughness, brittleness index and corrected hardness obtained from Vicker's hardness test clearly showed that the BTLC crystal has good mechanical stability required for NLO device fabrication.