WorldWideScience

Sample records for crystal box detector

  1. Design and performance of modularized NaI(Tl) detectors with rectangular crystal elements: An array of 49 and the Crystal Box

    International Nuclear Information System (INIS)

    Wilson, S.L.; Hofstadter, R.; Hughes, E.B.; Lin, Y.C.; Parks, R.; Rolfe, J.; Bolton, R.D.; Bowman, J.D.; Cooper, M.D.; Hoffman, C.M.; Hogan, G.E.; Mariam, F.G.; Mischke, R.E.; Nagle, D.E.; Piilonen, L.E.; Sandberg, V.D.; Sanders, G.H.; Werbeck, R.; Williams, R.A.; Frank, J.S.; Hallin, A.L.; Matis, H.S.; Sennhauser, U.; Wright, S.C.

    1988-01-01

    An array of 49 NaI(Tl) modules each 20 inch in depth and 2.5 inch x 2.5 inch in cross section has been constructed and its properties, especially energy resolution, explored for positrons in the range 20 MeV - 18 GeV. A subsequent much larger detector, the Crystal Box, has also been constructed from 396 modules of the same cross section, but mostly 12 inch in depth, and operated as a γ-ray and positron detector in a search for rare muon decays. The calibration procedure used for the Crystal Box and its characteristic resolutions in energy, impact point and time are described. (orig.)

  2. Search for rare muon and pion decay modes with the Crystal Box detector

    International Nuclear Information System (INIS)

    Hoffman, C.M.; Bolton, R.D.; Bowman, J.D.

    1986-01-01

    New experimental upper limits for the branching ratios of the lepton-family-number nonconserving decays μ + → e + γ and μ + → e + γγ are presented. A new determination of γ, the ratio of pion axial-vector to vector form factors, from radiative pion decay is also reported. These results are from data taken with the Crystal Box detector at LAMPF

  3. Search for rare muon and pion decay modes with the crystal box detector

    International Nuclear Information System (INIS)

    Piilonen, L.E.; Bolton, R.D.; Bowman, J.D.

    1986-01-01

    New experiental upper limits for the branching ratios of the lepton-family-number nonconserving decays μ + → e + γ and μ + → e + γγ are presented. A new determination of γ, the ratio of pion axial vector to vector form factors, from radiative pion decay is also reported. These results are from data taken with the Crystal Box detector at LAMPF. 11 refs., 7 figs

  4. Measuring Pu in a glove box using portable NaI and germanium detectors

    International Nuclear Information System (INIS)

    Hankins, D.E.

    1984-01-01

    A NaI crystal or germanium detector inside a portable lead shield can determine the amount of plutonium in a glove box. The number of counts required are defined and the locations outside the box where the detector needs to be positioned are given. The calculated accuracy for measuring the Pu when these locations are used is within +/-30% for most glove boxes. Other factors that may affect this accuracy, such as γ-ray absorption by glove-box materials, self-absorption by Pu, absorption by equipment in the glove box, and the limits of the counting equipment are also discussed

  5. Light box for investigation of characteristics of optoelectronics detectors

    Science.gov (United States)

    Szreder, Agnieszka; Mazikowski, Adam

    2017-09-01

    In this paper, a light box for investigation of characteristics of optoelectronic detectors is described. The light box consists of an illumination device, an optical power sensor and a mechanical enclosure. The illumination device is based on four types of high-power light emitting diodes (LED): white light, red, green and blue. The illumination level can be varied for each LED independently by the driver and is measured by optical power sensor. The mechanical enclosure provides stable mounting points for the illumination device, sensor and the examined detector and protects the system from external light, which would otherwise strongly influence the measurement results. Uniformity of illumination distribution provided by the light box for all colors is good, making the measurement results less dependent on the position of the examined detector. The response of optoelectronic detectors can be investigated using the developed light box for each LED separately or for any combination of up to four LED types. As the red, green and blue LEDs are rather narrow bandwidth sources, spectral response of different detectors can be examined for these wavelength ranges. The described light box can be used for different applications. Its primary use is in a student laboratory setup for investigation of characteristics of optoelectronic detectors. Moreover, it can also be used in various colorimetric or photographic applications. Finally, it will be used as a part of demonstrations from the fields of vision and color, performed during science fairs and outreach activities increasing awareness of optics and photonics.

  6. AstroBox2 – Detector for low-energy β-delayed particle detection

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, A., E-mail: ajsaasta@comp.tamu.edu [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Pollacco, E. [IRFU, CEA Saclay, Gif-sur-Yvette (France); Roeder, B.T.; Spiridon, A.; Daq, M. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Trache, L.; Pascovici, G. [National Institute of Physics and Nuclear Engineering, Bucharest-Magurele RO-077125 (Romania); De Oliveira, R. [CERN, Geneva (Switzerland); Rodrigues, M.R.D. [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05314-970, São Paulo, SP (Brazil); Tribble, R.E. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States)

    2016-06-01

    Efficient suppression of β-background is essential for studies of low-energy β-delayed charged particle decays of astrophysical interest. A promising method for such studies has been a micro pattern gas amplifier detector where the sample is implanted into the gas volume and the decays that follow are observed with high gain and signal to noise ratio. An upgraded version of the original AstroBox detector has been built and commissioned at Texas A&M University. Here a description of the new AstroBox2 detector is given, selected results from the commissioning tests are presented, and future perspectives discussed.

  7. A High Resolution Monolithic Crystal, DOI, MR Compatible, PET Detector. Final-Report

    International Nuclear Information System (INIS)

    Miyaoka, Robert S.

    2012-01-01

    The principle objective of this proposal is to develop a positron emission tomography (PET) detector with depth-of-interaction (DOI) positioning capability that will achieve state of the art spatial resolution and sensitivity performance for small animal PET imaging. When arranged in a ring or box detector geometry, the proposed detector module will support 15% absolute detection efficiency. The detector will also be compatible with operation in a MR scanner to support simultaneous multi-modality imaging. The detector design will utilize a thick, monolithic crystal scintillator readout by a two-dimensional array of silicon photomultiplier (SiPM) devices using a novel sensor on the entrance surface (SES) design. Our hypothesis is that our single-ended readout SES design will provide an effective DOI positioning performance equivalent to more expensive dual-ended readout techniques and at a significantly lower cost. Our monolithic crystal design will also lead to a significantly lower cost system. It is our goal to design a detector with state of the art performance but at a price point that is affordable so the technology can be disseminated to many laboratories. A second hypothesis is that using SiPM arrays, the detector will be able to operate in a MR scanner without any degradation in performance to support simultaneous PET/MR imaging. Having a co-registered MR image will assist in radiotracer localization and may also be used for partial volume corrections to improve radiotracer uptake quantitation. The far reaching goal of this research is to develop technology for medical research that will lead to improvements in human health care.

  8. Determination of a source in a box with two detectors. I. non-absorbing media

    CERN Document Server

    Presler, O; German, U; Leichter, Y; Alfassi, Z B

    2002-01-01

    It was found that the activity and the position of a radioactive point source (hot spot) in a large box containing low absorbing material can be measured accurately using two NaI(Tl) gamma-ray detectors at the opposite sides of the box i.e. at 180 deg. one to another. The harmonic mean of the count rates square roots measured with the two detectors was found to be independent of the hot spot position and depends only on the source activity, the box size and the gamma-rays energy. The activity of the radioactive point source can be calculated from the above-mentioned mean. The position of the point source can be calculated from the ratio of the two detectors count rates.

  9. Fabrication of radiation detector using PbI2 crystals

    International Nuclear Information System (INIS)

    Shoji, T.; Ohba, K.; Suehiro, T.; Hiratate, Y.

    1995-01-01

    Radiation detectors have been fabricated from lead iodide (PbI 2 ) crystals grown by two methods: zone melting and Bridgman methods. In response characteristics of the detector fabricated from crystals grown by the zone melting method, a photopeak for γ-rays from an 241 Am source (59.5 KeV) has been clearly observed with applied detector bias of 500 V at room temperature. The hole drift mobility is estimated to be about 5.5 cm 2 /Vs from measurement of pulse rise time for 5.48 MeV α-rays from 241 Am. By comparing the detector bias versus saturated peak position of the PbI 2 detector with that of CdTe detector, the average energy for producing electron-hole pairs is estimated to be about 8.4 eV for the PbI 2 crystal. A radiation detector fabricated from PbI 2 crystals grown by the Bridgman method, however, exhibited no response for γ-rays

  10. Testing 144- and 256-crystal BGO block detectors

    International Nuclear Information System (INIS)

    Rogers, J.G.; Nutt, R.; Andreaco, M.; Williams, C.W.

    1994-01-01

    New block detectors have been fabricated incorporating large numbers of small crystals. The authors evaluate and compare the performance of the new detectors with a standard 64-crystal block detector from Siemens-CTI. The new detectors demonstrate greatly improved imaging capability for 511 keV gamma rays. Future PET tomographs incorporating such detectors should produce substantially better volume images with little increase in tomograph manufacturing costs. The detectors will require a new type of automatic calibration procedure. Various such procedures have been tested and are discussed. A technique using higher energy gamma rays has shown special promise

  11. An arc detector for neutron crystal structure investigations

    Energy Technology Data Exchange (ETDEWEB)

    Habib, N [Reactor and Neutron Physics Dept., Nuclear Research Center. AEA, Cairo (Egypt)

    1997-12-31

    An arc detector for neutron structure investigations of powder crystals using time-of-flight technique is described. In order to enable the measurement of integral intensity from about 1/4 of the Debye-Scherrer ring and for simplicity reasons, the scattering angle 20-90 degree was chosen and a special arc collimator was built. The arc collimator-detector had a divergency of about 20 minutes of arc, and the distance between detector-sample was 64 cm. Four {sup 3} He detectors were fixed on the arc of the collimator. Both efficiency and space sensitivity of the detector were determined using a point neutron source. Results of measurements show that parameters of the arc detector are acceptable for high resolution crystal structure investigations. 6 figs.

  12. Improvement of crystal identification performance for a four-layer DOI detector composed of crystals segmented by laser processing

    Science.gov (United States)

    Mohammadi, Akram; Inadama, Naoko; Yoshida, Eiji; Nishikido, Fumihiko; Shimizu, Keiji; Yamaya, Taiga

    2017-09-01

    We have developed a four-layer depth of interaction (DOI) detector with single-side photon readout, in which segmented crystals with the patterned reflector insertion are separately identified by the Anger-type calculation. Optical conditions between segmented crystals, where there is no reflector, affect crystal identification ability. Our objective of this work was to improve crystal identification performance of the four-layer DOI detector that uses crystals segmented with a recently developed laser processing technique to include laser processed boundaries (LPBs). The detector consisted of 2 × 2 × 4mm3 LYSO crystals and a 4 × 4 array multianode photomultiplier tube (PMT) with 4.5 mm anode pitch. The 2D position map of the detector was calculated by the Anger calculation method. At first, influence of optical condition on crystal identification was evaluated for a one-layer detector consisting of a 2 × 2 crystal array with three different optical conditions between the crystals: crystals stuck together using room temperature vulcanized (RTV) rubber, crystals with air coupling and segmented crystals with LPBs. The crystal array with LPBs gave the shortest distance between crystal responses in the 2D position map compared with the crystal array coupled with RTV rubber or air due to the great amount of cross-talk between segmented crystals with LPBs. These results were used to find optical conditions offering the optimum distance between crystal responses in the 2D position map for the four-layer DOI detector. Crystal identification performance for the four-layer DOI detector consisting of an 8 × 8 array of crystals segmented with LPBs was examined and it was not acceptable for the crystals in the first layer. The crystal identification was improved for the first layer by changing the optical conditions between all 2 × 2 crystal arrays of the first layer to RTV coupling. More improvement was observed by combining different optical conditions between all

  13. Flexible X-ray detector based on sliced lead iodide crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hui; Gao, Xiuying [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China); Department of Materials Science, Sichuan University, Chengdu (China); Zhao, Beijun [Department of Materials Science, Sichuan University, Chengdu (China); Yang, Dingyu; Wangyang, Peihua; Zhu, Xinghua [College of Optoelectronic Technology, Chengdu University of Information Technology, Chengdu (China)

    2017-02-15

    A promising flexible X-ray detector based on inorganic semiconductor PbI{sub 2} crystal is reported. The sliced crystals mechanically cleaved from an as-grown PbI{sub 2} crystal act as the absorber directly converting the impinging X-ray photons to electron hole pairs. Due to the ductile feature of the PbI{sub 2} crystal, the detector can be operated under a highly curved state with the strain on the top surface up to 1.03% and still maintaining effective detection performance. The stable photocurrent and fast response were obtained with the detector repeated bending to a strain of 1.03% for 100 cycles. This work presents an approach for developing efficient and cost-effective PbI{sub 2}-based flexible X-ray detector. Photocurrent responses of the flexible PbI{sub 2} X-ray detector with the strain on the top surface up to 1.03% proposed in this work with the cross sectional structure and curved detector photograph as insets. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Microbiologically influenced corrosion in condenser water boxes at Crystal River-3

    International Nuclear Information System (INIS)

    Hayner, G.O.; Pope, D.H.; Crane, B.E.

    1988-01-01

    During the spring of 1986, several welds in the lower half of the condenser inlet water boxes at Crystal River-3 (CR-3) were found to be seeping seawater. The leakage produced red-brown and black-green colored deposits on the outside surface of the water boxes. The welds in affected areas were not uniformly attacked, and the severity of attack varied between water boxes; however, there were instances of attack on each type of pressure-retaining weld in the affected regions. Weld seepage was also seen on the outside of the inlet piping to the water boxes. A few small pin holes were seen in the base metal of the water boxes not associated with welds. In this paper the authors report the results of examinations performed at both the CR-3 site and at The Babcock and Wilcox Company Lynchburt Research Center (LRC). The inside of a water box and the exterior of the condenser inlet piping were visually inspected at the Cr-3 site. Nodules inside the water box were probed and examined. Parts of nodules were collected and microscopically examined for bacteria. Two corrosion-deposit samples removed from condenser instrument piping and the condenser inlet piping were chemically analyzed at the LRC. Four pipe samples removed from the condenser instrument piping were destructively examined at the LRC. This work included visual inspection, metallographic, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) examinations performed on selected locations of the piping samples

  15. Depth of interaction decoding of a continuous crystal detector module

    International Nuclear Information System (INIS)

    Ling, T; Lewellen, T K; Miyaoka, R S

    2007-01-01

    We present a clustering method to extract the depth of interaction (DOI) information from an 8 mm thick crystal version of our continuous miniature crystal element (cMiCE) small animal PET detector. This clustering method, based on the maximum-likelihood (ML) method, can effectively build look-up tables (LUT) for different DOI regions. Combined with our statistics-based positioning (SBP) method, which uses a LUT searching algorithm based on the ML method and two-dimensional mean-variance LUTs of light responses from each photomultiplier channel with respect to different gamma ray interaction positions, the position of interaction and DOI can be estimated simultaneously. Data simulated using DETECT2000 were used to help validate our approach. An experiment using our cMiCE detector was designed to evaluate the performance. Two and four DOI region clustering were applied to the simulated data. Two DOI regions were used for the experimental data. The misclassification rate for simulated data is about 3.5% for two DOI regions and 10.2% for four DOI regions. For the experimental data, the rate is estimated to be ∼25%. By using multi-DOI LUTs, we also observed improvement of the detector spatial resolution, especially for the corner region of the crystal. These results show that our ML clustering method is a consistent and reliable way to characterize DOI in a continuous crystal detector without requiring any modifications to the crystal or detector front end electronics. The ability to characterize the depth-dependent light response function from measured data is a major step forward in developing practical detectors with DOI positioning capability

  16. New scintillating media based on liquid crystals for particle detectors

    International Nuclear Information System (INIS)

    Barnik, M.I.; Yudin, S.G.; Vasil'chenko, V.G.; Golovkin, S.V.; Medvedkov, A.M.; Solovjev, A.S.

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors

  17. New scintillating media based on liquid crystals for particle detectors

    CERN Document Server

    Barnik, M I; Vasilchenko, V G; Golovkin, S V; Medvedkov, A M; Soloviev, A S

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors.

  18. A scintillating fibre detector for the Crystal Barrel experiment at ELSA

    International Nuclear Information System (INIS)

    Suft, G.; Anton, G.; Bogendoerfer, R.; Ehmanns, A.; Foesel, A.; Hoessl, J.; Kalinowsky, H.; Kueppersbusch, C.; Walther, D.

    2005-01-01

    A scintillating fibre detector with high spatial granularity was built for the Crystal Barrel experiment at ELSA (CB-ELSA) in Bonn. It consists of 513 scintillating fibres with 2mm in diameter, arranged in three layers with cylindrical geometry inside the Crystal Barrel detector surrounding the target cell. Two layers are wound in opposite directions, the third is parallel to the incident beam direction, resulting in an unambiguous hit reconstruction and a position resolution better than 1.6mm for charged particles. The read-out is done with 16-channel multi-anode photomultipliers. The detector was designed to cover the full angular acceptance of the Crystal Barrel detector with an angular range of 12 deg. ≤θ = 168 deg. and 0 deg. ≤φ≤360 deg. in the lab frame

  19. Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.

    Science.gov (United States)

    Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle

    2017-10-01

    The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  20. Experimental study on the CsI (Tl) crystal anti-compton detector in CDEX

    International Nuclear Information System (INIS)

    Liu Shukui; Yue Qian; Tang Changjian

    2012-01-01

    CDEX (China Dark matter Experiment) Collaboration will carry out direct search for dark matter with Ultra-Low Energy Threshold High Purity germanium (ULE-HPGe) detector at CJPL (China Jinping deep underground Laboratory). Before underground research, some experiments of the CsI (Tl) crystal Anti-Compton detector have been done on the ground, including light guide choice, wrapping material choice, height uniformity of CsI (Tl) crystal, side uniformity of CsI (Tl) crystal and the test results of all the crystals. Through the preliminary work on the ground, we have got some knowledge of the anti-compton detector and prepared for the underground experiment. (authors)

  1. Purification, crystallization and X-ray diffraction analysis of a novel ring-cleaving enzyme (BoxCC) from Burkholderia xenovorans LB400

    International Nuclear Information System (INIS)

    Bains, Jasleen; Boulanger, Martin J.

    2008-01-01

    Preliminary X-ray diffraction studies of a novel ring-cleaving enzyme from B. xenovorans LB400 encoded by the benzoate-oxidation (box) pathway. The assimilation of aromatic compounds by microbial species requires specialized enzymes to cleave the thermodynamically stable ring. In the recently discovered benzoate-oxidation (box) pathway in Burkholderia xenovorans LB400, this is accomplished by a novel dihydrodiol lyase (BoxC C ). Sequence analysis suggests that BoxC C is part of the crotonase superfamily but includes an additional uncharacterized region of approximately 115 residues that is predicted to mediate ring cleavage. Processing of X-ray diffraction data to 1.5 Å resolution revealed that BoxC C crystallized with two molecules in the asymmetric unit of the P2 1 2 1 2 1 space group, with a solvent content of 47% and a Matthews coefficient of 2.32 Å 3 Da −1 . Selenomethionine BoxC C has been purified and crystals are currently being refined for anomalous dispersion studies

  2. Development of TiBr semiconductor crystal for applications as radiation detector and photodetector

    International Nuclear Information System (INIS)

    Oliveira, Icimone Braga de

    2006-01-01

    In this work, Tlbr crystals were grown by the Bridgman method from zone melted materials. The influence of the purification efficiency and the crystalline surface quality on the crystal were studied, evaluating its performance as a radiation detector. Due to significant improvement in the purification and crystals growth, good results have been obtained for the developed detectors. The spectrometric performance of the Tlbr detector was evaluated by 241 Am (59 keV), 133 Ba (80 e 355 keV), 57 Co (122 keV), 22 Na (511 keV) and 137 Cs (662 keV) at room temperature. The best energy resolution results were obtained from purer detectors. Energy resolutions of 10 keV (16%), 12 keV (15%), 12 keV (10%), 28 keV (8%), 31 keV (6%) and 36 keV (5%) to 59, 80, 122, 355, 511 and 662 keV energies, respectively, were obtained. A study on the detection response at -20 deg C was also carried out, as well as the detector stability in function of the time. No significant difference was observed in the energy resolution between measurements at both temperatures. It was observed that the detector instability causes degradation of the spectroscopic characteristics during measurements at room temperature and the instability varies for each detector. This behavior was also verified by other authors. The viability to use the developed Tlbr crystal as a photodetector coupled to scintillators crystals was also studied in this work. Due to its quantum efficiency in the region from 350 to 500 nm, Tlbr shows to be a promising material to be used as a photodetector. As a possible application of this work, the development of a surgical probe has been initiated using the developed Tlbr crystal as the radiation detector of the probe. (author)

  3. Room temperature X- and gamma-ray detectors using thallium bromide crystals

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with wide band gap (2.68 eV) and high X- and gamma-ray stopping power. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using purified material. Two types of room temperature X- and gamma-ray detectors were fabricated from the TlBr crystals: TlBr detectors with high detection efficiency for positron annihilation gamma-ray (511 keV) detection and TlBr detectors with high-energy resolution for low-energy X-ray detection. The detector of the former type demonstrated energy resolution of 56 keV FWHM (11%) for 511 keV gamma-rays. Energy resolution of 1.81 keV FWHM for 5.9 keV was obtained from the detector of the latter type. In order to analyze noise characteristics of the detector-preamplifier assembly, the equivalent noise charge (ENC) was measured as a function of the amplifier shaping time for the high-resolution detector. This analysis shows that parallel white noise and 1/f noise were dominant noise sources in the detector...

  4. MCNP analysis and optimization of a triple crystal phoswich detector

    CERN Document Server

    Childress, N L

    2002-01-01

    Researchers at the University of Missouri-Columbia have designed a triple crystal phoswich detector that allows for simultaneous detection of alpha, beta, and gamma radiation. A ZnS:Ag layer detects alpha particles, a CaF sub 2 :Eu scintillator preferentially interacts with beta particles, and a NaI:Tl cell is used for gamma detection. The detector output is digitally collected, processed, and analyzed by a personal computer using custom software. Monte Carlo N-Particle version 4C simulations of this detector found that the phoswich design has inherent minimum energy limits of 250 keV E sub m sub a sub x for beta particles and 50 keV for gamma-rays. For a 2.54 cm thick NaI:Tl crystal, intrinsic gamma efficiency for photons ranges from a maximum of 80% at 100 keV to 26% for 2 MeV photons. Mischaracterized gamma events in the CaF sub 2 :Eu crystal above 175 keV can be corrected by subtracting 26+-4% of the total number of counts in the NaI:Tl crystal from the CaF sub 2 :Eu response. Beta induced events in the N...

  5. Development of the mercury iodide semiconductor crystal for application as a radiation detector

    International Nuclear Information System (INIS)

    Martins, Joao Francisco Trencher

    2011-01-01

    In this work, the establishment of a technique for HgI growth and preparation of crystals, for use as room temperature radiation semiconductor detectors is described. Three methods of crystal growth were studied while developing this work: physical vapor transport (PVT); saturated solution of HgI 2 , using two different solvents; (a) dimethyl sulfoxide (DMSO) and (b) acetone, and the Bridgman method. In order to evaluate the obtained crystals by the three methods, systematic measurements were carried out for determining the stoichiometry, structure, orientation, surface morphology and impurity of the crystal. The influence of these physical chemical properties on the crystals development was studied, evaluating their performance as radiation detectors. The X-ray diffractograms indicated that the crystals were, preferentially, oriented in the (001) e (101) directions with tetragonal structure for all crystals. Nevertheless, morphology with a smaller deformation level was observed for the crystal obtained by the PVT technique, comparing to other methods. Uniformity on the surface layer of the PVT crystal was detected, while clear incrustations of elements distinct from the crystal could be viewed on the DMSO crystal surface. The best results as to radiation response were found for the crystal grown by physical vapor transport. Significant improvement in the HgI z2 radiation detector performance was achieved for purer crystals, growing the crystal twice by PVT technique. (author)

  6. Miniaturized radiation detector with custom synthesized diamond crystal as sensor

    International Nuclear Information System (INIS)

    Grobbelaar, J.H.; Burns, R.C.; Nam, T.L.; Keddy, R.J.

    1991-01-01

    A miniaturized detector consisting of three custom built hybrid circuits, a counter and a miniature high voltage power supply was designed to operate with custom synthesized Type Ib diamond crystals as sensors. Thick-film technology was incorporated in the circuit design. With a crystal having a volume of approximately 10 mm 3 and containing approximately 60 ppm paramagnetic nitrogen, the detector was capable of measuring γ-ray dose-rates as low as 7.5 μ Gy h -1 . The response characteristic was linear up to 1 cGy h -1 . (orig.)

  7. Thermal neutron detectors based on complex oxide crystals

    CERN Document Server

    Ryzhikov, V; Volkov, V; Chernikov, V; Zelenskaya, O

    2002-01-01

    The ways of improvement of spectrometric quality of CWO and GSO crystals have been investigated with the aim of their application in thermal neutron detectors based on radiation capture reactions. The efficiency of the neutron detection by these crystals was measured, and the obtained data were compared with the results for sup 6 LiI(Tl) crystals. It is shown that the use of complex oxide crystals and neutron-absorption filters for spectrometry of thermal and resonance neutrons could be a promising method in combination with computer data processing. Numerical calculations are reported for spectra of gamma-quanta due to radiation capture of the neutrons. To compensate for the gamma-background lines, we used a crystal pair of heavy complex oxides with different sensitivity to neutrons.

  8. Nanosecond X-ray detector based on high resistivity ZnO single crystal semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaolong; He, Yongning, E-mail: yongning@mail.xjtu.edu.cn; Peng, Wenbo; Huang, Zhiyong; Qi, Xiaomeng; Pan, Zijian; Zhang, Wenting [School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Liang; Liu, Jinliang; Zhang, Zhongbing; Ouyang, Xiaoping [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-04-25

    The pulse radiation detectors are sorely needed in the fields of nuclear reaction monitoring, material analysis, astronomy study, spacecraft navigation, and space communication. In this work, we demonstrate a nanosecond X-ray detector based on ZnO single crystal semiconductor, which emerges as a promising compound-semiconductor radiation detection material for its high radiation tolerance and advanced large-size bulk crystal growth technique. The resistivity of the ZnO single crystal is as high as 10{sup 13} Ω cm due to the compensation of the donor defects (V{sub O}) and acceptor defects (V{sub Zn} and O{sub i}) after high temperature annealing in oxygen. The photoconductive X-ray detector was fabricated using the high resistivity ZnO single crystal. The rise time and fall time of the detector to a 10 ps pulse electron beam are 0.8 ns and 3.3 ns, respectively, indicating great potential for ultrafast X-ray detection applications.

  9. Fabrication of radiation detector using PbI{sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, T; Sakamoto, K; Ohba, K; Suehiro, T; Hiratate, Y [Tohoku Inst. of Tech., Sendai (Japan)

    1996-07-01

    In this paper, we will discuss the PbI{sub 2} radiation detector fabricated from a crystal grown by the zone melting method and by the vapor phase method, together with characteristics of the crystal obtained by a XPS analyzer. (J.P.N.)

  10. Pulse-height defect in single-crystal CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beliuskina, O.; Imai, N. [The University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Strekalovsky, A.O.; Aleksandrov, A.A.; Aleksandrova, I.A.; Ilich, S.; Kamanin, D.V.; Knyazheva, G.N.; Kuznetsova, E.A.; Mishinsky, G.V.; Pyatkov, Yu.V.; Strekalovsky, O.V.; Zhuchko, V.E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Devaraja, H.M. [Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Heinz, C. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Heinz, S. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Hofmann, S.; Kis, M.; Kozhuharov, C.; Maurer, J.; Traeger, M. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Pomorski, M. [CEA, LIST, Diamond Sensor Laboratory, CEA/Saclay, Gif-sur-Yvette (France)

    2017-02-15

    The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of {sup 252} Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed. (orig.)

  11. Holdup measurements of plutonium in glove box exhausts

    International Nuclear Information System (INIS)

    Glick, J.B.; Haas, F.X.; McKamy, J.N.; Garrett, A.G.

    1991-01-01

    A new measurement technique has been developed to quantify plutonium in process glove box exhausts. The technique implemented at Rocky Flats Plant utiltizes a shielded, collimated 0.5in. x 0.5in. bismuth germanate (BGO) gamma-ray detector. Pairs of measurements are made at one foot intervals along the duct. One measurement is made with the detector viewing the bottom of the duct with the detector crystal approximately 2 inches from the duct surface. The second measurement is made on the top of the exhaust pipe with the detector crystal 2 inches from the top of the duct. When the detector is placed in the bottom assay position, the area of the holdup material is assumed to extend beyond the detector field of view. The concentration of plutonium in g/cm 2 is obtained from this bottom measurement. The deposit width is determined from a model developed to relate the deposit width to the ratio of the count rates measured at the two positions, above and below the duct. Once a deposit width has been calculated, it is multiplied by the concentration determined from the bottom measurement to yield a mass- per-unit-length at the duct location. Total plutonium mass is then determined by multiplying the duct length by the average of the mass- per-unit length assays performed along the duct. The applicability of the technique is presented in a comparison of field measurement data to analysis results on material removed from the ducts. 3 refs., 3 figs., 1 tab

  12. Opto-box: Optical modules and mini-crate for ATLAS pixel and IBL detectors

    Directory of Open Access Journals (Sweden)

    Bertsche David

    2016-01-01

    Full Text Available The opto-box is a custom mini-crate for housing optical modules which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35×10x8 cm3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits, were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain. This conference proceeding is in support of the poster presented at the International Conference on New Frontiers in Physics (ICNFP 2015 [1].

  13. Fabrication of radiation detectors with HgI2 crystals grown from a solution

    International Nuclear Information System (INIS)

    Friant, Alain; Mellet, Jean; Saliou, Charles; Mohammed Brahim, Tayeb.

    1979-01-01

    Mercuric Iodide crystals grown from a solution of molecular complexes with dimethylsulfoxide have been evaluated as γ-ray and X-ray room temperature detectors. Compared with materials grown from the vapor phase these crystals are characterized by a larger size, a lower level of native defects, but a higher impurity level. Detector technology, X-ray and γ-ray (up to 662 keV) detection properties and characterization measurements (T.S.C., photoconductivity, photovoltaic effect) are described. The effect of light on crystal properties is briefly discussed [fr

  14. Study of Te Inclusions in CdMnTe Crystals for Nuclear Detector Applications

    International Nuclear Information System (INIS)

    Babalola, O.S.; Bolotnikov, A.; Groza, M.; Hossain, A.; Egarievwe, S.; James, R.; Burger, A.

    2009-01-01

    The concentration, size and spatial distribution of Te inclusions in the bulk of CdMnTe crystals mined from two batches of ingots were studied. An isolated planar layer decorated with Te inclusions was identified in CdMnTe crystals from the second ingot. The internal electric field of a CMT crystal was probed by infrared (IR) imaging employing Pockels electro-optic effect. The effect of an isolated plane of Te inclusions on the internal electric-field distribution within the CdMnTe crystal was studied. Space charge accumulation around the plane of Te inclusions was observed, which was found to be higher when the detector was reverse-biased. The effects of the plane of Te inclusions on the electric-field distribution within the CdMnTe crystal, and the quality of CdMnTe crystals for nuclear detector applications are discussed.

  15. Influence of the geometrical characteristics of an HpGe detector on its efficiency

    International Nuclear Information System (INIS)

    Vargas, M.J.; Timon, A.F.; Sanchez, D.P.

    2002-01-01

    Computer codes based on Monte Carlo calculations have been extensively developed for the computation of the efficiency in gamma-ray spectrometry. The errors in the specific parameters of the detector due to the lack of precise knowledge of its characteristics usually represent one of the most important sources of inaccuracy in this simulation technique. Influence of several detector parameters on the efficiency for a typical coaxial n-type HpGe detector is presented. Calculations of the full-energy peak efficiencies were performed by means of a Monte Carlo code in the range 122-1836 keV for several types of source configuration: point source, cellulose filter, and two different cylindrical boxes containing a solid matrix of SiO 2 . The detector parameters varied were the crystal diameter, crystal height, diameter of the internal core, and the position of the crystal with respect to the beryllium window. Significant deviations in the efficiency, depending on the source geometry and the photon energy, can be produced by varying only slightly some of the detector parameters. (author)

  16. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models.

    Science.gov (United States)

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L

    2016-02-07

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  17. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models

    International Nuclear Information System (INIS)

    Schellenberg, Graham; Goertzen, Andrew L; Stortz, Greg

    2016-01-01

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x–y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5–82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  18. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models

    Science.gov (United States)

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L.

    2016-02-01

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  19. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: y.sato@riken.jp [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Murakami, Hiroyuki [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho Toki-city, Gifu 509-5292 (Japan); Tsubota, Masakatsu [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-06-01

    We have fabricated a particle detector using single crystal diamond grown by chemical vapor deposition. The irradiation dose dependence of the output pulse height from the diamond detector was measured using 3 MeV protons. The pulse height of the output signals from the diamond detector decreases as the amount of irradiation increases at count rates of 1.6–8.9 kcps because of polarization effects inside the diamond crystal. The polarization effect can be cancelled by applying a reverse bias voltage, which restores the pulse heights. Additionally, the radiation hardness performance for MeV energy protons was compared with that of a silicon surface barrier detector.

  20. High performance detector head for PET and PET/MR with continuous crystals and SiPMs

    International Nuclear Information System (INIS)

    Llosá, G.; Barrillon, P.; Barrio, J.; Bisogni, M.G.; Cabello, J.; Del Guerra, A.; Etxebeste, A.; Gillam, J.E.; Lacasta, C.; Oliver, J.F.; Rafecas, M.; Solaz, C.; Stankova, V.; La Taille, C. de

    2013-01-01

    A high resolution PET detector head for small animal PET applications has been developed. The detector is composed of a 12mm×12mm continuous LYSO crystal coupled to a 64-channel monolithic SiPM matrix from FBK-irst. Crystal thicknesses of 5 mm and 10 mm have been tested, both yielding an intrinsic spatial resolution around 0.7 mm FWHM with a position determination algorithm that can also provide depth-of-interaction information. The detectors have been tested in a rotating system that makes it possible to acquire tomographic data and reconstruct images of 22 Na sources. An image reconstruction method specifically adapted for continuous crystals has been employed. The Full Width at Half Maximum measured from a point source reconstructed with ML–EM was 0.7 mm with the 5 mm crystal and 0.8 mm with the 10 mm crystal

  1. Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector

    Energy Technology Data Exchange (ETDEWEB)

    Menasce, D.; et al.

    2013-06-01

    We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was about 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke$-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.

  2. BiI{sub 3} single crystal for room-temperature gamma ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T., E-mail: saito.tatsuya125@canon.co.jp [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan); Iwasaki, T. [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan); Kurosawa, S.; Yoshikawa, A. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Den, T. [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan)

    2016-01-11

    BiI{sub 3} single crystals were grown by the physical vapor transport method. The repeated sublimation of the starting material reduced impurities in the BiI{sub 3} single crystal to sub-ppm levels. The detector was fabricated by depositing Au electrodes on both surfaces of the 100-μm-thick BiI{sub 3} single crystal platelet. The resistivity of the BiI{sub 3} single crystal was increased by post-annealing in an iodine atmosphere (ρ=1.6×10{sup 11} Ω cm). Pulse height spectroscopy measurements showed clear peaks in the energy spectrum of alpha particles or gamma rays. It was estimated that the mobility-lifetime product was μ{sub e}τ{sub e}=3.4–8.5×10{sup −6} cm{sup 2}/V and the electron–hole pair creation energy was 5.8 eV. Our results show that BiI{sub 3} single crystals are promising candidates for detectors used in radiographic imaging or gamma ray spectroscopy.

  3. Calibration of sodium iodide crystal (NaI) gamma ray detector

    International Nuclear Information System (INIS)

    Azwah Jaafar; Juhari Yusof

    2005-01-01

    Sodium Iodide crystal gamma ray detector are widely used to detect leak in the pipeline linkage study, the complete mixing substances in of industrial processes, to measure the river and stream discharges and other usage in estuary and coastal sediment studies. These instruments are more sensitive as compared to other types of counters like Geiger Muller or plastic scintillation component. This calibration is to ensure the correct voltage for each detector. The characteristics of detector are different from each other. Once the operating voltage (HV) is determined it can be used effectively to measure the radiation in the application of nuclear techniques. (Author)

  4. Results from the crystal ball detector at SPEAR

    International Nuclear Information System (INIS)

    Bloom, E.D.

    1979-11-01

    The Crystal Ball detector is a device particularly suited to the measurement of photons with energies lower than 1 GeV. The detector has as its principal component a 16 radiation length thick, highly segmented shell of NaI(Tl) surrounding cylindrical, proportional, and magnetostrictive spark chambers. The main Ball and various elements of the central chambers cover 94% of 4π sr. Segmented endcap NaI(Tl) detectors of 20 radiation lengths behind magneto strictive spark chambers supplement the main Ball. The Ball and endcaps close the solid angle for charged particle and photon detection to 98% of 4π sr. In addition, detectors of interspersed iron and proportional tubes provide for μ-π separation over 15% of 4π sr, about theta/sub CM/ = 90 0 . In this report preliminary results are presented from the data obtained. In particular, QED at E/sub CM/ = 6.5 GeV, R/sub hadron/ and related inclusive distributions, eta branching fractions at J/psi and psi'', and a detailed study of the psionium system are discussed

  5. The development of a single-crystal fiber-array scintillator area detector

    International Nuclear Information System (INIS)

    Loong, Chun; Vitt, Richard; Sayir, Ali; Sayir, Haluk

    2001-01-01

    The scientific output of a neutron instrument is directly proportional to the effectiveness of its detector system-coverage of scattering area, pixel resolution, counting efficiency, signal-to-noise ratio, life time and cost. The current neutron scintillator detectors employ mainly 6 Li-doped glass and ZnS, both of which present well-know limitations such as low light output, high gamma sensitivity in the case of 6 Li-glass and optical opacity in the case of ZnS. We aim to develop a position-sensitive, flight-time differentiable, efficient and cost-effective neutron detector system based on single-crystal scintillator fiber-arrays. The laser-heated melt modulation fiber growth technology developed at NASA provides the means to grow high-purity single-crystal fibers or rods of variable diameters (200 μm to 5 mm) and essentially unlimited length. Arrays of such fibers can be tailored to meet the requirements of pixel size, geometric configuration, and coverage area for a detector system. We report a plan in the growth and characterization of scintillators based on lithium silicates and boron aluminates using Ce as activator. (author)

  6. Choice of crystal surface finishing for a dual-ended readout depth-of-interaction (DOI) detector

    International Nuclear Information System (INIS)

    Fan, Peng; Ma, Tianyu; Liu, Yaqiang; Wang, Shi; Wei, Qingyang; Yao, Rutao

    2016-01-01

    The objective of this study was to choose the crystal surface finishing for a dual-ended readout (DER) DOI detector. Through Monte Carlo simulations and experimental studies, we evaluated 4 crystal surface finishing options as combinations of crystal surface polishing (diffuse or specular) and reflector (diffuse or specular) options on a DER detector. We also tested one linear and one logarithm DOI calculation algorithm. The figures of merit used were DOI resolution, DOI positioning error, and energy resolution. Both the simulation and experimental results show that (1) choosing a diffuse type in either surface polishing or reflector would improve DOI resolution but degrade energy resolution; (2) crystal surface finishing with a diffuse polishing combined with a specular reflector appears a favorable candidate with a good balance of DOI and energy resolution; and (3) the linear and logarithm DOI calculation algorithms show overall comparable DOI error, and the linear algorithm was better for photon interactions near the ends of the crystal while the logarithm algorithm was better near the center. These results provide useful guidance in DER DOI detector design in choosing the crystal surface finishing and DOI calculation methods. (paper)

  7. Custom synthesized diamond crystals as state of the art radiation detectors

    International Nuclear Information System (INIS)

    Keddy, R.J.; Nam, T.L.; Fallon, P.J.

    1990-01-01

    The fact that as a radiation detector, diamond is a stable, non-toxic and tissue equivalent (Z=6) material, makes it an ideal candidate for in vivo radiation dosimetry or the dosimetry of general radiation fields in environmental monitoring. Natural diamond crystals have the disadvantage, however, that no two crystals can be guaranteed to have the same response characteristics. This disadvantage can be overcome by synthesizing the crystals under controlled conditions and by using very selective chemistry. Such synthetic diamonds can be used as thermoluminescence dosimeters (TLDs) where they exhibit characteristics comparable to presently available commercial TLDs or they can be used as ionization chambers to produce either ionization currents or pulses where the small physical size of the diamond (1 mm 3 ) and possibilities of digital circuitry makes miniaturization an extremely attractive possibility. It has also been found that they can perform as scintillation detectors. This contribution describes aspects of the performance characteristics of such diamonds in all three modes. 24 refs., 14 figs

  8. Development of phonon and photon detectors for rare events searches using scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, Felix; Enss, Christian; Fleischmann, Andreas; Gastaldo, Loredana; Hassel, Clemens; Hendricks, Sebastian; Kempf, Sebastian [Kirchhoff-Institut fuer Physik, Universit at Heidelberg (Germany); Kim, Yong-Hamb [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Loidl, Martin; Navick, Xavier-Francois; Rodrigues, Matias [Commissariat a l' energie atomique, Saclay (France)

    2016-07-01

    The use of scintillating crystals in cryogenic experiments searching for neutrinoless double beta decay and for direct interaction of dark matter particles allows for an efficient background reduction due to particle discrimination. We develop phonon and photon detectors based on metallic magnetic calorimeters (MMCs) to perform simultaneous measurements of heat and light generated by the interaction of a particle in a scintillating crystal. As designed we expect for the phonon sensor an energy resolution of ΔE{sub FWHM}<100 eV and a signal rise time τ<200 μs whereas for the photon detector we expect ΔE{sub FWHM}<5 eV and τ<50 μs. We discuss the design and the fabrication of these detectors and present recent results.

  9. A region segmentation based algorithm for building a crystal position lookup table in a scintillation detector

    International Nuclear Information System (INIS)

    Wang Haipeng; Fan Xin; Yun Mingkai; Liu Shuangquan; Cao Xuexiang; Chai Pei; Shan Baoci

    2015-01-01

    In a scintillation detector, scintillation crystals are typically made into a 2-dimensional modular array. The location of incident gamma-ray needs be calibrated due to spatial response nonlinearity. Generally, position histograms-the characteristic flood response of scintillation detectors-are used for position calibration. In this paper, a position calibration method based on a crystal position lookup table which maps the inaccurate location calculated by Anger logic to the exact hitting crystal position has been proposed. Firstly, the position histogram is preprocessed, such as noise reduction and image enhancement. Then the processed position histogram is segmented into disconnected regions, and crystal marking points are labeled by finding the centroids of regions. Finally, crystal boundaries are determined and the crystal position lookup table is generated. The scheme is evaluated by the whole-body positron emission tomography (PET) scanner and breast dedicated single photon emission computed tomography scanner developed by the Institute of High Energy Physics, Chinese Academy of Sciences. The results demonstrate that the algorithm is accurate, efficient, robust and applicable to any configurations of scintillation detector. (authors)

  10. Experimental study of a depth-encoding PET detector inserting horizontal-striped glass between crystal layers

    Science.gov (United States)

    Yang, J.; Kim, K. B.; Choi, Y.; Kang, J.

    2018-04-01

    A depth-encoding positron emission tomography (PET) detector inserting a horizontal-striped glass between pixilated scintillation crystal layers was developed and experimentally evaluated. The detector consists of 2-layers of 4×4 LYSO array arranged with a 3.37 mm pitch. Horizontal-striped glasses with 1×4 array with different thickness of 3, 4 and 5 mm were inserted between top- and bottom-crystal layers. Bottom surface of bottom-layer was optically coupled to a 4×4 GAPD array. Sixteen output signals from DOI-PET detector were multiplexed by modified resistive charge division (RCD) networks and multiplexed signals were fed into custom-made charge-sensitive preamplifiers. The four amplified signals were digitized and recorded by the custom-made DAQ system based on FPGA. The four digitized outputs were post-processed and converted to flood histograms for each interaction event. Experimental results revealed that all crystal pixels were clearly identified on the 2D flood histogram without overlapping. Patterns of the 2D flood histogram were constituted with arrangements of [bottom–top–bottom–top–\\ldots–top–bottom–top–bottom] crystal responses in X-direction. These could be achieved by employing horizontal-striped glass that controlled the extent of light dispersion towards the X-direction in crystal layers for generation of a different position mapping for each layer and the modified RCD network that controls degree of charge sharing in readout electronics for reduction of identification error. This study demonstrated the proposed DOI-PET detector can extract the 3D γ-ray interaction position without considerable performance degradation of PET detector from the 2D flood histogram.

  11. Development of a large area, curved two-dimensional detector for single-crystal neutron diffraction studies

    International Nuclear Information System (INIS)

    Moon, Myung-Kook; Lee, Chang-Hee; Kim, Shin-Ae; Noda, Yukio

    2013-01-01

    A new type of two-dimensional curved position-sensitive neutron detector has been developed for a high-throughput single-crystal neutron diffractometer, which was designed to cover 110° horizontally and 56° vertically. The prototype curved detector covering 70° horizontally and 45° vertically was first developed to test the technical feasibility of the detector parameters, the internal anode and cathode structures for the curved shape, technical difficulties in the assembly procedure, and so on. Then, based on this experience, a full-scale curved detector with twice the active area of the prototype was fabricated with newly modified anode and cathode planes and optimized design parameters in terms of mechanical and electric properties. The detector was installed in a dedicated diffractometer at the ST3 beam port of the research reactor HANARO. In this paper, the fabrication and application of the prototype and a new larger-area curved position-sensitive neutron detector for single crystal diffraction is presented

  12. Ship Detection Using Transfer Learned Single Shot Multi Box Detector

    Directory of Open Access Journals (Sweden)

    Nie Gu-Hong

    2017-01-01

    Full Text Available Ship detection in satellite images is a challenging task. In this paper, we introduce a transfer learned Single Shot MultiBox Detector (SSD for ship detection. To this end, a state-of-the-art object detection model pre-trained from a large number of natural images was transfer learned for ship detection with limited labeled satellite images. To the best of our knowledge, this could be one of the first studies which introduce SSD into ship detection on satellite images. Experiments demonstrated that our method could achieve 87.9% AP at 47 FPS using NVIDIA TITAN X. In comparison with Faster R-CNN, 6.7% AP improvement could be achieved. Effects of the observation resolution has also been studied with the changing input sizes among 300 × 300, 600 × 600 and 900 × 900. It has been noted that the detection accuracy declined sharply with the decreasing resolution that is mainly caused by the missing small ships.

  13. Development of TiBr semiconductor crystal for applications as radiation detector and photodetector; Desenvolvimento do cristal semicondutor de brometo de talio para aplicacoes como detector de radiacao e fotodetector

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone Braga de

    2006-07-01

    In this work, Tlbr crystals were grown by the Bridgman method from zone melted materials. The influence of the purification efficiency and the crystalline surface quality on the crystal were studied, evaluating its performance as a radiation detector. Due to significant improvement in the purification and crystals growth, good results have been obtained for the developed detectors. The spectrometric performance of the Tlbr detector was evaluated by {sup 241}Am (59 keV), {sup 133}Ba (80 e 355 keV), {sup 57}Co (122 keV), {sup 22}Na (511 keV) and {sup 137} Cs (662 keV) at room temperature. The best energy resolution results were obtained from purer detectors. Energy resolutions of 10 keV (16%), 12 keV (15%), 12 keV (10%), 28 keV (8%), 31 keV (6%) and 36 keV (5%) to 59, 80, 122, 355, 511 and 662 keV energies, respectively, were obtained. A study on the detection response at -20 deg C was also carried out, as well as the detector stability in function of the time. No significant difference was observed in the energy resolution between measurements at both temperatures. It was observed that the detector instability causes degradation of the spectroscopic characteristics during measurements at room temperature and the instability varies for each detector. This behavior was also verified by other authors. The viability to use the developed Tlbr crystal as a photodetector coupled to scintillators crystals was also studied in this work. Due to its quantum efficiency in the region from 350 to 500 nm, Tlbr shows to be a promising material to be used as a photodetector. As a possible application of this work, the development of a surgical probe has been initiated using the developed Tlbr crystal as the radiation detector of the probe. (author)

  14. A new DOI detector design using discrete crystal array with depth-dependent reflector patterns and single-ended readout

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Jae; Lee, Chaeyeong [Department of Radiological Science, Yonsei University, Wonju 26493 (Korea, Republic of); Kang, Jihoon, E-mail: ray.jihoon.kang@gmail.com [Department of Biomedical Engineering, Chonnam National University, 50 Daehak-ro, Yeosu, Jeonnam 59626 (Korea, Republic of); Chung, Yong Hyun, E-mail: ychung@yonsei.ac.kr [Department of Radiological Science, Yonsei University, Wonju 26493 (Korea, Republic of)

    2017-01-21

    We developed a depth of interaction (DOI) positron emission tomography (PET) detector using depth-dependent reflector patterns in a discrete crystal array. Due to the different reflector patterns at depth, light distribution was changed relative to depth. As a preliminary experiment, we measured DOI detector module crystal identification performance. The crystal consisted of a 9×9 array of 2 mmx2 mmx20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals. The crystal array was optically coupled to a 64-channel position-sensitive photomultiplier tube with a 2 mmx2 mm anode size and an 18.1 mmx18.1 mm effective area. We obtained the flood image with an Anger-type calculation. DOI layers and 9×9 pixels were well distinguished in the obtained images. Preclinical PET scanners based on this detector design offer the prospect of high and uniform spatial resolution.

  15. A new DOI detector design using discrete crystal array with depth-dependent reflector patterns and single-ended readout

    International Nuclear Information System (INIS)

    Lee, Seung-Jae; Lee, Chaeyeong; Kang, Jihoon; Chung, Yong Hyun

    2017-01-01

    We developed a depth of interaction (DOI) positron emission tomography (PET) detector using depth-dependent reflector patterns in a discrete crystal array. Due to the different reflector patterns at depth, light distribution was changed relative to depth. As a preliminary experiment, we measured DOI detector module crystal identification performance. The crystal consisted of a 9×9 array of 2 mmx2 mmx20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals. The crystal array was optically coupled to a 64-channel position-sensitive photomultiplier tube with a 2 mmx2 mm anode size and an 18.1 mmx18.1 mm effective area. We obtained the flood image with an Anger-type calculation. DOI layers and 9×9 pixels were well distinguished in the obtained images. Preclinical PET scanners based on this detector design offer the prospect of high and uniform spatial resolution.

  16. Simulation study of a depth-encoding positron emission tomography detector inserting horizontal-striped glass between crystal layers

    Science.gov (United States)

    Kim, Kyu Bom; Choi, Yong; Kang, Jihoon

    2017-10-01

    This study introduces a depth-encoding positron emission tomography (PET) detector inserting a horizontal-striped glass between the pixilated scintillation crystal layers. This design allows light spreading so that scintillation photons can travel only through the X direction and allows alteration in the light distribution so that it can generate a unique pattern diagram of the two-dimensional (2-D) flood histogram that identifies depth position as well as X-Y position of γ-ray interaction. A Monte Carlo simulation was conducted for the assessment of the depth of interaction (DOI)-PET detector. The traced light distribution for each event was converted into the 2-D flood histogram. Light loss caused by inserting the horizontal-striped glass between the crystal layers was estimated. Applicable weighting factors were examined for each DOI-PET detector. No considerable degradation of light loss was observed. The flood histogram, without overlapping of each crystal position, can be generated for the DOI detector based on each crystal block by inserting the horizontal-striped glass with a thickness of >1 mm and the modified resistive charge division networks with applicable weighting factors. This study demonstrated that the proposed DOI-PET detector can extract the three-dimensional γ-ray interaction position without considerable performance degradations of the PET detector from the 2-D flood histogram.

  17. Characterization studies of Silicon Photomultipliers and crystals matrices for a novel time of flight PET detector

    CERN Document Server

    Auffray, Etiennette; Cortinovis, Daniele; Doroud, Katayoun; Garutti, Erika; Lecoq, Paul; Liu, Zheng; Martinez, Rosana; Paganoni, Marco; Pizzichemi, Marco; Silenzi, Alessandro; Xu, Chen; Zvolský, Milan

    2015-01-01

    This paper describes the characterization of crystal matrices and silicon photomultiplier arrays for a novel Positron Emission Tomography (PET) detector, namely the external plate of the EndoTOFPET-US system. The EndoTOFPET-US collaboration aims to integrate Time-Of-Flight PET with ultrasound endoscopy in a novel multimodal device, capable to support the development of new biomarkers for prostate and pancreatic tumors. The detector consists in two parts: a PET head mounted on an ultrasound probe and an external PET plate. The challenging goal of 1 mm spatial resolution for the PET image requires a detector with small crystal size, and therefore high channel density: 4096 LYSO crystals individually readout by Silicon Photomultipliers (SiPM) make up the external plate. The quality and properties of these components must be assessed before the assembly. The dark count rate, gain, breakdown voltage and correlated noise of the SiPMs are measured, while the LYSO crystals are evaluated in terms of light yield and en...

  18. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Daigle, Stephen [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Buckner, Matt [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Erikson, Luke E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Champagne, Art [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Cooper, Andrew [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Downen, Lori [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Keegan [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Sallaska, Anne [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  19. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris; Daigle, Stephen; Buckner, Matt [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Erikson, Luke E.; Runkle, Robert C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Stave, Sean C., E-mail: Sean.Stave@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Champagne, Arthur E.; Cooper, Andrew; Downen, Lori [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Glasgow, Brian D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kelly, Keegan; Sallaska, Anne [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2015-05-21

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the {sup 14}N(p,γ){sup 15}O{sup ⁎} reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  20. Time structure of ns duration bunches with single crystal diamond detector

    Energy Technology Data Exchange (ETDEWEB)

    Duenas, J.A., E-mail: jose.duenas@dfa.uhu.es [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Campus de El Carmen, 21071 Huelva (Spain); Ausset, P. [Institut de Physique Nucleaire d' Orsay (IPNO), Universite Paris-Sub 11, CNRS/IN2P3, 91406 Orsay Cedex (France); Berjillos, R. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Campus de El Carmen, 21071 Huelva (Spain); Gardes, D.; Junquera, T.; Lavergne, L. [Institut de Physique Nucleaire d' Orsay (IPNO), Universite Paris-Sub 11, CNRS/IN2P3, 91406 Orsay Cedex (France); Martel, I. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Campus de El Carmen, 21071 Huelva (Spain); Martinet, G.; Rauly, E.; Said, A. [Institut de Physique Nucleaire d' Orsay (IPNO), Universite Paris-Sub 11, CNRS/IN2P3, 91406 Orsay Cedex (France); Sanchez Benitez, A.M. [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Campus de El Carmen, 21071 Huelva (Spain); Semsoun, A.; Waast, B. [Institut de Physique Nucleaire d' Orsay (IPNO), Universite Paris-Sub 11, CNRS/IN2P3, 91406 Orsay Cedex (France)

    2011-06-11

    A single crystal diamond detector (SC-DD) has been used to obtain the time structure of bunches with lengths between 4 and 88 ns. This was achieved by setting an electronic chain based on a time-to-amplitude converter (TAC), which used the output of the diamond detector as the start of the time interval, and the accelerator RF as the stop. Moreover, the SC-DD not only provided the time information, but also the energy of the beam.

  1. Thermal and fast neutron dosimetry using artificial single crystal diamond detectors

    International Nuclear Information System (INIS)

    Angelone, M.; Pillon, M.; Prestopino, G.; Marinelli, Marco; Milani, E.; Verona, C.; Verona-Rinati, G.; Aielli, G.; Cardarelli, R.; Santonico, R.; Bedogni, R.; Esposito, A.

    2011-01-01

    In this work we propose the artificial Single Crystal Diamond (SCD) detector covered with a thin layer (0.5 μm/4 μm) of 6 LiF as a simultaneous thermal and fast neutron fluence monitor. Some interesting properties of the diamond response versus the neutron energy are evidenced thanks to Monte Carlo simulation using the MCNPX code which allows to propose the diamond detector also as an ambient dose equivalent (H∗(10)) monitor (REM counter).

  2. The crystal zero degree detector for ISR tagging at BES III

    Energy Technology Data Exchange (ETDEWEB)

    Denig, Achim; Redmer, Christoph [Johannes Gutenberg Universitaet Mainz (Germany); Koch, Leonard; Kuehn, Wolfgang; Lange, Soeren; Liang, Yutie; Wagner, Milan [Justus-Liebig-Universitaet Giessen (Germany); Collaboration: BESIII-Collaboration

    2016-07-01

    The BES III experiment at the BEPCII electron positron collider in Beijing is collecting data in the charm-τ mass region. Being strongly peaked towards small polar angles, photons from initial state radiation (ISR) are detected with limited efficiency. In order to increase the detection efficiency of these photons, we propose a small detector comprised of two arrays of scintillating crystals separated by a small gap to be placed in the very forward and backward region. The crystals will be read out by SiPMs and the signal will be digitized by a feature extracting flash ADC. This data stream is correlated with the BESIII trigger in realtime on FPGA based hardware. The detectors response has been simulated using GEANT4 and the energy resolution has been obtained. A beam test of a prototype has demonstrated the stably running of the DAQ.

  3. Methodology optimization of the thallium bromide crystal preparation for application as a radiation detector

    International Nuclear Information System (INIS)

    Santos, Robinson Alves dos

    2012-01-01

    In this work, TlBr crystals have been purified and grown by the Repeated Bridgman method from commercial TlBr materials and characterized to be used as radiation detectors. To evaluate the purification efficiency, studies on the impurity concentration decrease were performed after each growth, analyzing the trace impurities by inductively coupled plasma mass spectroscopy (ICP-MS). A significant decrease of the concentration of impurities in function of the purification number was observed. The grown crystals presented good crystalline quality according to the results of the x-ray diffraction analysis. To evaluate the crystals to be used as a semiconductor detector, measurements of the resistivity and the pulse height under 241 Am gamma rays were carried out. The radiation response was strongly dependent on the crystal purity. The Repeated Bridgman technique showed to be effective to reduce the concentration of impurities and to improve the TlBr crystal quality to be used as a radiation semiconductor detector. A compartmental model was proposed to fit the concentration/segregation of impurities in function of the Bridgman growth step number. This compartmental model is defined by differential equations and can be used to calculate the rate of migration of impurities. It proved to be a useful tool in predicting the number of Bridgman growth repetitions necessary to achieve the desired impurity concentration. The difference of the impurity migration rates between the crystals grown, using salts from different origins, was significant. Therefore, the choice of the starting salt should be performed experimentally, regardless of the statement nominal purity. (author)

  4. Properties of a barium fluoride-TMAE-multiwire proportional chamber detector using a large single crystal

    International Nuclear Information System (INIS)

    Woody, C.L.; Petridou, C.I.; Smith, G.C.

    1985-01-01

    The properties of a detector consisting of a large barium fluoride crystal and a multiwire proportional chamber operating at low pressure with TMAE have been studied. Measurements of the time resolution, pulse width, energy resolution, photoelectron yield and the effective energy threshold were carried out in a test beam using minimum ionizing particles. Although the detector is sensitive to signals originating from an adsorbed layer of TMAE from the crystal surface, no indication of such a signal was observed. 7 refs., 6 figs

  5. A new hybrid photomultiplier tube as detector for scintillating crystals

    International Nuclear Information System (INIS)

    De Notaristefani, F.; Vittori, F.; Puertolas, D.

    2002-01-01

    In this work, we have attentively studied the performance of a new hybrid photomultiplier tube (HPMT) as detector for photons from scintillating crystals. The HPMT is equipped with a YAP window in order to improve light collection and increase measured light response from scintillating crystals. Several measurements have been performed on BGO, LSO, CsI(Tl) and NaI(Tl) planar crystals having three different surface treatments as well as on YAP : Ce and CsI(Tl) matrices. Such crystals have been coupled to two HPMTs, one equipped with a YAP window (Y-HPMT) and the other with a conventional quartz window (Q-HPMT). Measurements on crystals coupled to the Y-HPMT have shown a consistent improvement of the light response, thanks to the presence of the YAP window. Indeed, the light response measured with the Y-HPMT was on average equal to 1.5, 2.1 and 2.6 times that obtained with the Q-HPMT for planar crystals with white painted (diffusive), fine ground and polished rear surfaces, respectively. With regards to crystal matrices, we measured a light response increase of about 1.2 times

  6. Performance revaluation of a N-type coaxial HPGe detector with front edges crystal using MCNPX

    International Nuclear Information System (INIS)

    Azli, Tarek; Chaoui, Zine-El-Abidine

    2015-01-01

    The MCNPX code was used to determine the efficiency of a N-type HPGe detector after two decades of operation. Accounting for the roundedness of the crystal's front edges and an inhomogeneous description of the detector's dead layers were shown to achieve better agreement between measurements and simulation efficiency determination. The calculations were experimentally verified using point sources in the energy range from 50 keV to 1400 keV, and an overall uncertainty less than 2% was achieved. In order to use the detector for different matrices and geometries in radioactivity, the suggested model was validated by changing the counting geometry and by using multi-gamma disc sources. The introduced simulation approach permitted the revaluation of the performance of an HPGe detector in comparison of its initial condition, which is a useful tool for precise determination of the thickness of the inhomogeneous dead layer. - Highlights: • Monte Carlo (MCNPX) simulation of an HPGe detector performance after more than two decades in use. • Investigating influence of detector rounded front edges of crystal. • Achieving good matching between Monte Carlo simulation and experiments by inhomogeneous description of detector dead layers

  7. Growth of large detector crystals. CRADA final report

    International Nuclear Information System (INIS)

    Boatner, L.A.; Samuelson, S.

    1997-01-01

    In the course of a collaborative research effort between L.A. Boatner of Oak Ridge National Laboratory and Prof. Alex Lempicki of the Department of Chemistry of Boston University, a new highly efficient and very fast scintillator for the detection of gamma-rays was discovered. This new scintillator consists of a single crystal of lutetium orthophosphate (LuPO 4 ) to which a small percentage of trivalent cerium is added as an activator ion. The new lutetium orthophosphate-cerium scintillator was found to be superior in performance to bismuth germanium oxide--a material that is currently widely used as a gamma-ray detector in a variety of medical, scientific, and technical applications. Single crystals of LuPO 4 and related rare-earth orthophosphates had been grown for a number of years in the ORNL Solid State Division prior to the discovery of the efficient gamma-ray-scintillation response of LuPO 4 :Ce. The high-temperature-solvent (flux-growth) method used for the growth of these crystals was capable of producing crystals in sizes that were adequate for research purposes but that were inadequate for commercial-scale production and widespread application. The CRADA between ORNL and Deltronic Crystal Industries of Dover, NJ was undertaken for the purpose of investigating alternate approaches, such as top-seeded-solution growth, to the growth of LuPO 4 :Ce scintillator crystals in sizes significantly larger than those obtainable through the application of standard flux-growth methods and, therefore, suitable for commercial sales and applications

  8. Advanced crystal growth techniques for thallium bromide semiconductor radiation detectors

    Science.gov (United States)

    Datta, Amlan; Becla, Piotr; Guguschev, Christo; Motakef, Shariar

    2018-02-01

    Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. Currently, Travelling Molten Zone (TMZ) technique is widely used for growth of semiconductor-grade TlBr crystals. However, there are several challenges associated with this type of crystal growth process including lower yield, high thermal stress, and low crystal uniformity. To overcome these shortcomings of the current technique, several different crystal growth techniques have been implemented in this study. These include: Vertical Bridgman (VB), Physical Vapor Transport (PVT), Edge-defined Film-fed Growth (EFG), and Czochralski Growth (Cz). Techniques based on melt pulling (EFG and Cz) were demonstrated for the first time for semiconductor grade TlBr material. The viability of each process along with the associated challenges for TlBr growth has been discussed. The purity of the TlBr crystals along with its crystalline and electronic properties were analyzed and correlated with the growth techniques. Uncorrected 662 keV energy resolutions around 2% were obtained from 5 mm x 5 mm x 10 mm TlBr devices with virtual Frisch-grid configuration.

  9. Opto-Box

    CERN Document Server

    Bertsche, David; The ATLAS collaboration; Welch, Steven; Smith, Dale Shane; Che, Siinn; Gan, K.K.; Boyd, George Russell Jr

    2015-01-01

    The opto-box is a custom mini-crate for housing optical modules, which process and transfer optoelectronic data. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x10x8 cm^3. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits (ASICs), were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain.

  10. Detector characterization and first coincidence tests of a Compton telescope based on LaBr3 crystals and SiPMs

    International Nuclear Information System (INIS)

    Llosá, G.; Barrio, J.; Cabello, J.; Crespo, A.; Lacasta, C.; Rafecas, M.; Callier, S.; La Taille, C. de; Raux, L.

    2012-01-01

    A Compton telescope for dose monitoring in hadron therapy consisting of several layers of continuous LaBr 3 crystals coupled to silicon photomultiplier (SiPM) arrays is under development within the ENVISION project. In order to test the possibility of employing such detectors for the telescope, a detector head consisting of a continuous 16 mm×18 mm×5 mm LaBr 3 crystal coupled to a SiPM array has been assembled and characterized, employing the SPIROC1 ASIC as readout electronics. The best energy resolution obtained at 511 keV is 6.5% FWHM and the timing resolution is 3.1 ns FWHM. A position determination method for continuous crystals is being tested, with promising results. In addition, the detector has been operated in time coincidence with a second detector layer, to determine the coincidence capabilities of the system. The first tests are satisfactory, and encourage the development of larger detectors that will compose the telescope prototype.

  11. Performance revaluation of a N-type coaxial HPGe detector with front edges crystal using MCNPX.

    Science.gov (United States)

    Azli, Tarek; Chaoui, Zine-El-Abidine

    2015-03-01

    The MCNPX code was used to determine the efficiency of a N-type HPGe detector after two decades of operation. Accounting for the roundedness of the crystal`s front edges and an inhomogeneous description of the detector's dead layers were shown to achieve better agreement between measurements and simulation efficiency determination. The calculations were experimentally verified using point sources in the energy range from 50keV to 1400keV, and an overall uncertainty less than 2% was achieved. In order to use the detector for different matrices and geometries in radioactivity, the suggested model was validated by changing the counting geometry and by using multi-gamma disc sources. The introduced simulation approach permitted the revaluation of the performance of an HPGe detector in comparison of its initial condition, which is a useful tool for precise determination of the thickness of the inhomogeneous dead layer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Measurement of neutron detection efficiencies in NaI using the Crystal Ball detector

    Energy Technology Data Exchange (ETDEWEB)

    Stanislaus, T.D.S.; Koetke, D.D. E-mail: donald.koetke@valpo.edu; Allgower, C.; Bekrenev, V.; Benslama, K.; Berger, E.; Briscoe, W.J.; Clajus, M.; Comfort, J.R.; Craig, K.; Gibson, A.; Grosnick, D.; Huber, G.M.; Isenhower, D.; Kasprzyk, T.; Knecht, N.; Koulbardis, A.; Kozlenko, N.; Kruglov, S.; Kycia, T.; Lolos, G.J.; Lopatin, I.; Manley, D.M.; Manweiler, R.; Marusic, A.; McDonald, S.; Nefkens, B.M.K.; Olmsted, J.; Papandreou, Z.; Peaslee, D.; Peterson, R.J.; Phaisangittisakul, N.; Pulver, M.; Ramirez, A.F.; Sadler, M.; Shafi, A.; Slaus, I.; Spinka, H.; Starostin, A.; Staudenmaier, H.M.; Supek, I.; Thoms, J.; Tippens, W.B

    2001-04-21

    We report on a measurement of the neutron detection efficiency in NaI crystals in the Crystal Ball (CB) detector obtained from a study of {pi}{sup -}p{yields}{pi} degree sign n reactions at the Brookhaven National Laboratory AGS. A companion GEANT-based Monte Carlo study has been done to simulate these reactions in the CB, and a comparison with the data is provided.

  13. Fold distributions at clover, crystal and segment levels for segmented clover detectors

    International Nuclear Information System (INIS)

    Kshetri, R; Bhattacharya, P

    2014-01-01

    Fold distributions at clover, crystal and segment levels have been extracted for an array of segmented clover detectors for various gamma energies. A simple analysis of the results based on a model independant approach has been presented. For the first time, the clover fold distribution of an array and associated array addback factor have been extracted. We have calculated the percentages of the number of crystals and segments that fire for a full energy peak event

  14. Brief review of recent results from the Crystal Ball detector at SPEAR

    International Nuclear Information System (INIS)

    Bloom, E.D.

    1980-11-01

    Performance results are presented for the Crystal Ball detector at SPEAR. Topics covered include: inclusive photon spectra from J/psi and psi' decays; photon cascade decays of the psi'; three-γ decays of J/psi and psi'; and inclusive eta production

  15. Inter-crystal scatter identification for a depth-sensitive detector using support vector machine for small animal positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)]. E-mail: rush@nirs.go.jp; Kitamura, Keishi [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Kimura, Yuichi [Tokyo Metropolitan Institute of Gerontology, Nakamachi 1-1 Itabashi-ku, Tokyo 173-0022 (Japan); Nishikido, Fumihiko [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Shibuya, Kengo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yamaya, Taiga [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2007-02-01

    In a conventional positron emission tomography (PET) detector, detected events are projected onto a 2D position histogram by an Anger calculation for crystal identification. However, the measured histogram is affected by inter-crystal scatterings (ICS) which occur in the entire detector. Peaks which are projected for each crystal in the histogram are blurred, and this causes ICS mispositioning. A depth-of-interaction (DOI) detector has been developed for the small animal PET scanner jPET-RD. This DOI detector uses 32x32 crystals with four layers and a 256-channel multi-anode flat panel photomultiplier tube (FP-PMT) which was developed by Hamamatsu Photonics K.K. Each crystal element is 1.45x1.45x4.5 mm{sup 3}. The FP-PMT has a large detective area (49x49 mm{sup 2}) and a small anode pitch (3.04 mm). Therefore, the FP-PMT can extensively trace the behavior of incident {gamma} rays in the crystals including ICS event. We, therefore, propose a novel method for ICS estimation using a statistical pattern recognition algorithm based on a support vector machine (SVM). In this study, we applied the SVM for discriminating photoelectric events from ICS events generated from multiple-anode outputs. The SVM was trained by uniform irradiation events generated from a detector simulator using a Monte Carlo calculation. The success rate for ICS event identification is about 78% for non-training data. The SVM can achieve a true subtraction of ICS events from measured events, and it is also useful for random correction in PET.

  16. Inter-crystal scatter identification for a depth-sensitive detector using support vector machine for small animal positron emission tomography

    International Nuclear Information System (INIS)

    Yoshida, Eiji; Kitamura, Keishi; Kimura, Yuichi; Nishikido, Fumihiko; Shibuya, Kengo; Yamaya, Taiga; Murayama, Hideo

    2007-01-01

    In a conventional positron emission tomography (PET) detector, detected events are projected onto a 2D position histogram by an Anger calculation for crystal identification. However, the measured histogram is affected by inter-crystal scatterings (ICS) which occur in the entire detector. Peaks which are projected for each crystal in the histogram are blurred, and this causes ICS mispositioning. A depth-of-interaction (DOI) detector has been developed for the small animal PET scanner jPET-RD. This DOI detector uses 32x32 crystals with four layers and a 256-channel multi-anode flat panel photomultiplier tube (FP-PMT) which was developed by Hamamatsu Photonics K.K. Each crystal element is 1.45x1.45x4.5 mm 3 . The FP-PMT has a large detective area (49x49 mm 2 ) and a small anode pitch (3.04 mm). Therefore, the FP-PMT can extensively trace the behavior of incident γ rays in the crystals including ICS event. We, therefore, propose a novel method for ICS estimation using a statistical pattern recognition algorithm based on a support vector machine (SVM). In this study, we applied the SVM for discriminating photoelectric events from ICS events generated from multiple-anode outputs. The SVM was trained by uniform irradiation events generated from a detector simulator using a Monte Carlo calculation. The success rate for ICS event identification is about 78% for non-training data. The SVM can achieve a true subtraction of ICS events from measured events, and it is also useful for random correction in PET

  17. Opto-Box

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00377159; The ATLAS collaboration

    2016-01-01

    The opto-box is a custom mini-crate for housing optical modules, which process and transfer optoelectronic data. Many novel solutions were developed for the custom design and manufacturing. The system tightly integrates electrical, mechanical, and thermal functionality into a small package of size 35x10x8 cm$^{3}$. Special attention was given to ensure proper shielding, grounding, cooling, high reliability, and environmental tolerance. The custom modules, which incorporate Application Specific Integrated Circuits (ASICs), were developed through a cycle of rigorous testing and redesign. In total, fourteen opto-boxes have been installed and loaded with modules on the ATLAS detector. They are currently in operation as part of the LHC run 2 data read-out chain.

  18. Development of high-resolution gamma detector using sub-mm GAGG crystals coupled to TSV-MPPC array

    International Nuclear Information System (INIS)

    Lipovec, A.; Shimazoe, K.; Takahashi, H.

    2016-01-01

    In this study a high-resolution gamma detector based on an array of sub-millimeter Ce:GAGG (Cerium doped Gd 3 Al 2 Ga 3 O 12 ) crystals read out by an array of surface-mount type of TSV-MPPC was developed. MPPC sensor from Hamamatsu which has a 26 by 26 mm 2 detector area with 64 channels was used. One channel has a 3 by 3 mm 2 photosensitive area with 50 μ m pitch micro cells. MPPC sensor provides 576 mm 2 sensing area and was used to decode 48 by 48 array with 0.4 by 0.4 by 20 mm 3 Ce:GAGG crystals of 500 μ m pitch. The base of the detector with the crystal module was mounted to a read out board which consists of charge division circuit, thus allowing for a read out of four channels to identify the position of the incident event on the board. The read out signals were amplified using charge sensitive amplifiers. The four amplified signals were digitized and analyzed to produce a position sensitive event. For the performance analysis a 137 Cs source was used. The produced events were used for flood histogram and energy analysis. The effects of the glass thickness between the Ce:GAGG and MPPC were analyzed using the experimental flood diagrams and Geant4 simulations. The glass between the scintillator and the detector allows the spread of the light over different channels and is necessary if the channel's sensitive area is bigger than the scintillator's area. The initial results demonstrate that this detector module is promising and could be used for applications requiring compact and high-resolution detectors. Experimental results show that the detectors precision increases using glass guide thickness of 1.35 mm and 1.85 mm; however the precision using 2.5 mm are practically the same as if using 0.8 mm or 1.0 mm glass guide thicknesses. In addition, simulations using Geant4 indicate that the light becomes scarcer if thicker glass is used, thus reducing the ability to indicate which crystal was targeted. When 2.5 mm glass thickness is used, the scarce

  19. A triple-crystal phoswich detector with digital pulse shape discrimination for alpha/beta/gamma spectroscopy

    International Nuclear Information System (INIS)

    White, Travis L.; Miller, William H.

    1999-01-01

    Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2 (Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation

  20. High resolution detectors based on continuous crystals and SiPMs for small animal PET

    International Nuclear Information System (INIS)

    Cabello, J.; Barrillon, P.; Barrio, J.; Bisogni, M.G.; Del Guerra, A.; Lacasta, C.; Rafecas, M.; Saikouk, H.; Solaz, C.; Solevi, P.; La Taille, C. de; Llosá, G.

    2013-01-01

    Sensitivity and spatial resolution are the two main factors to maximize in emission imaging. The improvement of one factor deteriorates the other with pixelated crystals. In this work we combine SiPM matrices with monolithic crystals, using an accurate γ-ray interaction position determination algorithm that provides depth of interaction. Continuous crystals provide higher sensitivity than pixelated crystals, while an accurate interaction position determination does not degrade the spatial resolution. Monte Carlo simulations and experimental data show good agreement both demonstrating sub-millimetre intrinsic spatial resolution. A system consisting in two rotating detectors in coincidence is currently under operation already producing tomographic images

  1. Detector for failed fuel elements

    International Nuclear Information System (INIS)

    Ito, Masaru.

    1979-01-01

    Purpose: To provide automatic monitor for the separation or reactor water and sampling water, in a failed fuel element detector using a sipping chamber. Constitution: A positional detector for the exact mounting of a sipping chamber on a channel box and a level detector for the detection of complete discharge of cooling water in the sipping chamber are provided in the sipping chamber. The positional detector is contacted to the upper end of the channel box and operated when the sipping chamber is correctly mounted to the fuel assemblies. The level detector comprises a float and a limit switch and it is operated when the water in the sipping chamber is discharged by a predetermined amount. Isolation of reactor water and sampling water are automatically monitored by the signal from these two detectors. (Ikeda, J.)

  2. Comparison of modeled and measured performance of a GSO crystal as gamma detector

    International Nuclear Information System (INIS)

    Parno, D.S.; Friend, M.; Mamyan, V.; Benmokhtar, F.; Camsonne, A.; Franklin, G.B.; Paschke, K.; Quinn, B.

    2013-01-01

    We have modeled, tested, and installed a large, cerium-activated Gd 2 SiO 5 crystal scintillator for use as a detector of gamma rays. We present the measured detector response to two types of incident photons: nearly monochromatic photons up to 40 MeV, and photons from a continuous Compton backscattering spectrum up to 200 MeV. Our GEANT4 simulations, developed to determine the analyzing power of the Compton polarimeter in Hall A of Jefferson Lab, reproduce the measured spectra well

  3. Plutonium glove boxes - metrology and operational states

    International Nuclear Information System (INIS)

    Thyer, A.M.

    2001-01-01

    The main objective was to undertake a literature review in support of NII's ongoing work in improving safety in the nuclear industry to help define suitable standards of cleanliness for plutonium glove boxes. This is to cover the following areas: existing or proposed national/international standards relating to plutonium glove box cleanliness management; practicable metrology options for assessing the plutonium content of glove boxes; any available dose information relating to the operation of modern and 'old design'; current contamination levels of specific significance (i.e. any accepted level in decommissioning/waste terms, typical criticality limits (if available), any box plutonium loadings that are documented with corresponding operator doses etc.); and, techniques for the decontamination of plutonium glove boxes and their relative effectiveness. This should then form the basis of any further development work undertaken by the UK nuclear industry. Main recommendations are as follows: 1) No information could be found in open literature on acceptable levels of contamination in boxes and action levels for cleanup. If these are not available in closed publications the 2) Where possible, the decontamination methods identified should be tested and dose information recorded against each method to allow informed decisions on which is the optimum technique for a particular form of contamination. 3) Consideration should be given to utilisation of metrology options which have the lowest potential for exposure of operators. Preferred options, may be detection from the outside of boxes using hand-held or permanently located radiation detectors, or semi-intrusive methods such as air-ionisation readings which would require one-off installation of detectors in ductwork

  4. Shaped detector

    International Nuclear Information System (INIS)

    Carlson, R.W.

    1981-01-01

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier

  5. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    International Nuclear Information System (INIS)

    Kagan, Harris; Gan, K.K.; Kass, Richard

    2009-01-01

    Diamond was studied as a possible radiation hard technology for use in future high radiation environments. With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2013, all LHC experiments are planning for detector upgrades which require radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is installed in all LHC experiments. As a result, this material is now being discussed as an alternative sensor material for tracking very close to the interaction region of the super-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications.

  6. UV detectors based on epitaxial diamond films grown on single-crystal diamond substrates by vapor-phase synthesis

    International Nuclear Information System (INIS)

    Sharonov, G.V.; Petrov, S.A.; Bol'shakov, A.P.; Ral'chenko, V.G.; Kazyuchits, N.M.

    2010-01-01

    The prospects for use of CVD-technology for epitaxial growth of single-crystal diamond films of instrumental quality in UHF plasma for the production of optoelectronic devices are discussed. A technology for processing diamond single crystals that provides a perfect surface crystal structure with roughness less than 0,5 nm was developed. It was demonstrated that selective UV detectors based on synthetic single-crystal diamond substrates coated with single-crystal films can be produced. A criterion for selecting clean and structurally perfect single crystals of synthetic diamond was developed for the epitaxial growth technology. (authors)

  7. Single crystal diamond detectors grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Tuve, C.; Angelone, M.; Bellini, V.; Balducci, A.; Donato, M.G.; Faggio, G.; Marinelli, M.; Messina, G.; Milani, E.; Morgada, M.E.; Pillon, M.; Potenza, R.; Pucella, G.; Russo, G.; Santangelo, S.; Scoccia, M.; Sutera, C.; Tucciarone, A.; Verona-Rinati, G.

    2007-01-01

    The detection properties of heteropitaxial (polycrystalline, pCVD) and homoepitaxial (single crystal, scCVD) diamond films grown by microwave chemical vapor deposition (CVD) in the Laboratories of Roma 'Tor Vergata' University are reported. The pCVD diamond detectors were tested with α-particles from different sources and 12 C ions produced by 15MV Tandem accelerator at Southern National Laboratories (LNS) in Catania (Italy). pCVDs were also used to monitor 14MeV neutrons produced by the D-T plasma at Joint European Torus (JET), Culham, U.K. The limit of pCVDs is the poor energy resolution. To overcome this problem, we developed scCVD diamonds using the same reactor parameters that optimized pCVD diamonds. scCVD were grown on a low cost (100) HPHT single crystal substrate. A detector 110μm thick was tested under α-particles and under 14MeV neutron irradiation. The charge collection efficiency spectrum measured under irradiation with a triple α-particle source shows three clearly resolved peaks, with an energy resolution of about 1.1%. The measured spectra under neutron irradiation show a well separated C(n,α 0 ) 9 Be12 reaction peak with an energy spread of 0.5MeV for 14.8MeV neutrons and 0.3MeV for 14.1MeV neutrons, which are fully compatible with the energy spread of the incident neutron beams

  8. Comparison of modeled and measured performance of a GSO crystal as gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Parno, D.S., E-mail: dparno@uw.edu [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); University of Washington, Center for Experimental Nuclear Physics and Astrophysics and Department of Physics, Seattle, WA 98195 (United States); Friend, M. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Mamyan, V.; Benmokhtar, F. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); Camsonne, A. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Franklin, G.B. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States); Paschke, K. [University of Virginia, Department of Physics, Charlottesville, VA 22904 (United States); Quinn, B. [Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213 (United States)

    2013-11-11

    We have modeled, tested, and installed a large, cerium-activated Gd{sub 2}SiO{sub 5} crystal scintillator for use as a detector of gamma rays. We present the measured detector response to two types of incident photons: nearly monochromatic photons up to 40 MeV, and photons from a continuous Compton backscattering spectrum up to 200 MeV. Our GEANT4 simulations, developed to determine the analyzing power of the Compton polarimeter in Hall A of Jefferson Lab, reproduce the measured spectra well.

  9. Optimization of a large-area detector-block based on SiPM and pixelated LYSO crystal arrays.

    Science.gov (United States)

    Calva-Coraza, E; Alva-Sánchez, H; Murrieta-Rodríguez, T; Martínez-Dávalos, A; Rodríguez-Villafuerte, M

    2017-10-01

    We present the performance evaluation of a large-area detector module based on the ArrayC-60035-64P, an 8×8 array of tileable, 7.2mm pitch, silicon photomultipliers (SiPM) by SensL, covering a total area of 57.4mm×57.4mm. We characterized the ArrayC-60035-64P, operating at room temperature, using LYSO pixelated crystal arrays of different pitch sizes (1.075, 1.430, 1.683, 2.080 and 2.280mm) to determine the resolvable crystal size. After an optimization process, a 7mm thick coupling light guide was used for all crystal pitches. To identify the interaction position a 16-channel (8 columns, 8 rows) symmetric charge division (SCD) readout board together with a center-of-gravity algorithm was used. Based on this, we assembled the detector modules using a 40×40 LYSO, 1.43mm pitch array, covering the total detector area. Calibration was performed using a 137 Cs source resulting in excellent crystal maps with minor geometric distortion, a mean 4.1 peak-to-valley ratio and 9.6% mean energy resolution for 662keV photons in the central region. The resolvability index was calculated in the x and y directions with values under 0.42 in all cases. We show that these large area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, without processing a big number of signals, attaining excellent energy resolution and detector uniformity. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Design and performance of a modularized NaI(Tl) detector (the crystal ball prototype)

    International Nuclear Information System (INIS)

    Chan, Y.; Partridge, R.A.; Peck, C.W.

    1977-01-01

    A prototype NaI(Tl) detector (the Cluster of 54) of spherical geometry subtending a solid angle of 7.5 percent of 4π at its center, has recently been assembled and tested. This detector consisted of 54 close-packed but optically isolated NaI(Tl) modules and the associated electronic circuitry. The Cluster of 54 is the predecessor of an almost complete spherical detector, the Crystal Ball, which will cover 94 percent of 4π. The latter detector is now under construction and is especially designed for the study of γ-rays produced in electron-positron collisions at colliding beam facilities. The mechanical, optical, and electronic assembly of the prototype system is outlined. Cluster of 54 test data will be presented

  11. Report of the compact detector subgroup

    International Nuclear Information System (INIS)

    Kirkby, J.; Kondo, T.; Olsen, S.L.

    1988-01-01

    This report discusses different detector designs that are being proposed for Superconducting Super Collider experiments. The detectors discussed are: Higgs particle detector, Solid State Box detector, SMART detector, muon detection system, and forward detector. Also discussed are triggering strategies for these detectors, high field solenoids, barium fluoride option for EM calorimetry, radiation damage considerations, and cost estimates

  12. Crystal Collimation efficiency measured with the Medipix detector in SPS UA9 experiment.

    CERN Document Server

    Laface, E; Tlustos, L; Ippolito, V

    2010-01-01

    The UA9 experiment was performed in 6 MDs from May to November 2009 with the goal of studying the collimation properties of a crystal in the framework of a future exploitation in the LHC collimation system. An important parameter evaluated for the characterization of the crystal collimation is the efficiency of halo extraction when the crystal is in channeling mode. In this paper it is explained how this efficiency can be measured using a pixel detector, the Medipix, installed in the Roman Pot of UA9. The number of extracted particles counted by the Medipix is compared with the total number of circulating particles measured by the Beam Current Transformers (BCTs): from this comparison the efficiency of the system composed by the crystal, used in channeling mode, and a tungsten absorber is proved to be greater than 85%.

  13. Deep Cuboid Detection: Beyond 2D Bounding Boxes

    OpenAIRE

    Dwibedi, Debidatta; Malisiewicz, Tomasz; Badrinarayanan, Vijay; Rabinovich, Andrew

    2016-01-01

    We present a Deep Cuboid Detector which takes a consumer-quality RGB image of a cluttered scene and localizes all 3D cuboids (box-like objects). Contrary to classical approaches which fit a 3D model from low-level cues like corners, edges, and vanishing points, we propose an end-to-end deep learning system to detect cuboids across many semantic categories (e.g., ovens, shipping boxes, and furniture). We localize cuboids with a 2D bounding box, and simultaneously localize the cuboid's corners,...

  14. Instrumentations in x-ray plasma polarization spectroscopy. Crystal spectrometer, polarimeter and detectors for astronomical observations

    Energy Technology Data Exchange (ETDEWEB)

    Baronova, Elena O.; Stepanenko, Mikhail M. [RRC Kurchatov Institute, Nuclear Fusion Institute, Moscow (Russian Federation); Jakubowski, Lech [Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland); Tsunemi, Hiroshi [Osaka Univ., Graduate School of Science, Osaka (Japan)

    2002-08-01

    This report discusses the various problems which are encountered when a crystal spectrometer is used for the purpose of observing polarized x-ray lines. A polarimeter is proposed based on the novel idea of using two series of equivalent atomic planes in a single crystal. The present status of the astronomical x-ray detection techniques are described with emphasis on two dimensional detectors which are polarization sensitive. (author)

  15. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit

    Science.gov (United States)

    Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang

    2017-11-01

    Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.

  16. Time walk correction for TOF-PET detectors based on a monolithic scintillation crystal coupled to a photosensor array

    International Nuclear Information System (INIS)

    Vinke, R.; Loehner, H.; Schaart, D.R.; Dam, H.T. van; Seifert, S.; Beekman, F.J.; Dendooven, P.

    2010-01-01

    When optimizing the timing performance of a time-of-flight positron emission tomography (TOF-PET) detector based on a monolithic scintillation crystal coupled to a photosensor array, time walk as a function of annihilation photon interaction location inside the crystal needs to be considered. In order to determine the 3D spatial coordinates of the annihilation photon interaction location, a maximum likelihood estimation algorithm was developed, based on a detector characterization by a scan of a 511 keV photon beam across the front and one of the side surfaces of the crystal. The time walk effect was investigated using a 20 mmx20 mmx12 mm LYSO crystal coupled to a fast 4x4 multi-anode photomultiplier tube (MAPMT). In the plane parallel to the photosensor array, a spatial resolution of 2.4 mm FWHM is obtained. In the direction perpendicular to the MAPMT (depth-of-interaction, DOI), the resolution ranges from 2.3 mm FWHM near the MAPMT to 4 mm FWHM at a distance of 10 mm. These resolutions are uncorrected for the ∼1mm beam diameter. A coincidence timing resolution of 358 ps FWHM is obtained in coincidence with a BaF 2 detector. A time walk depending on the 3D annihilation photon interaction location is observed. Throughout the crystal, the time walk spans a range of 100 ps. Calibration of the time walk vs. interaction location allows an event-by-event correction of the time walk.

  17. Fast Detection of Airports on Remote Sensing Images with Single Shot MultiBox Detector

    Science.gov (United States)

    Xia, Fei; Li, HuiZhou

    2018-01-01

    This paper introduces a method for fast airport detection on remote sensing images (RSIs) using Single Shot MultiBox Detector (SSD). To our knowledge, this could be the first study which introduces an end-to-end detection model into airport detection on RSIs. Based on the common low-level features between natural images and RSIs, a convolution neural network trained on large amounts of natural images was transferred to tackle the airport detection problem with limited annotated data. To deal with the specific characteristics of RSIs, some related parameters in the SSD, such as the scales and layers, were modified for more accurate and rapider detection. The experiments show that the proposed method could achieve 83.5% Average Recall at 8 FPS on RSIs with the size of 1024*1024. In contrast to Faster R-CNN, an improvement on AP and speed could be obtained.

  18. Microstrip silicon detectors in a bent crystal based collimation system: The UA9 experiment

    International Nuclear Information System (INIS)

    Bolognini, D.

    2010-01-01

    In a hadron accelerator like Lhc, a collimation system needs to be developed to protect the accelerator itself from the beam loss damage, increasing the beam luminosity. At present, a classical robust multi-stage collimation system (based on amorphous jaws) allows to protect Lhc, but limits the luminosity to the 40% of the nominal value. In order to solve this problem, a series of low-impedance collimation systems is being developed for the second Lhc collimation phase: among these, a key role could be played by bent crystals. In a bent crystal, in fact, charged particles can be deviated in a given direction with a high efficiency, reducing the impedance and increasing the luminosity. After the satisfactory results on extracted beams, it was decided to test bent crystals on a circular accelerator (the Super Proton Synchrotron Sps at CERN): the UA9 experiment was born. In order to qualify the crystal behavior, a tracking system has been developed: the system is based on microstrip silicon detectors readout by self-triggering ASICs with a spatial resolution of the order of 5 μm; the system, completely remotely controlled and based on the optical fiber transmission, would be able to measure the beam halo phase space x - x 1 . This paper, after a brief introduction of the UA9 experiment, will describe the tracking system and the first results obtained in the commissioning phase and data takings with a detector prototype.

  19. Pilot tests of a PET detector using the TOF-PET ASIC based on monolithic crystals and SiPMs

    International Nuclear Information System (INIS)

    Aguilar, A.; González-Montoro, A.; González, A.J.; Hernández, L.; Monzó, J.M.; Benlloch, J.M.; Bugalho, R.; Ferramacho, L.

    2016-01-01

    In this work we show pilot tests of PET detector blocks using the TOF-PET ASIC, coupled to SiPM detector arrays and different crystal configurations. We have characterized the main ASIC features running calibration processes to compensate the time dispersion among the different ASIC/SiPM paths as well as for the time walk on the arrival of optical photons. The aim of this work is to use of LYSO monolithic crystals and explore their photon Depth of Interaction (DOI) capabilities, keeping good energy and spatial resolutions. First tests have been carried out with crystal arrays. Here we made it possible to reach a coincidence resolving times (CRT) of 370 ps FWHM, with energy resolutions better than 20% and resolving well 2 mm sized crystal elements. When using monolithic crystals, a single-pixel LYSO reference crystal helped to explore the CRT performance. We studied different strategies to provide the best timestamp determination in the monolithic scintillator. Times around 1 ns FWHM have been achieved in these pilot studies. In terms of spatial and energy resolution, values of about 3 mm and better than 30% were found, respectively. We have also demonstrated the capability of this system (monolithic and ASIC) to return accurate DOI information.

  20. Gamma camera system with composite solid state detector

    International Nuclear Information System (INIS)

    Gerber, M.S.; Miller, D.W.

    1977-01-01

    A composite solid-state detector is described for utilization within gamma cameras. The detector's formed of an array of detector crystals, the opposed surfaces of each of which are formed incorporating an impedance-derived configuration for determining one coordinate of the location of discrete impinging photons upon the detector. A combined read-out for all detectors within the composite array is achieved through a row and column interconnection of the impedance configurations. Utilizing the read-outs for respective sides of the discrete crystals, a resultant time-constant characteristic for the composite detector crystal array remains essentially that of individual crystal detectors

  1. Modelling a multi-crystal detector block for PET

    International Nuclear Information System (INIS)

    Carroll, L.R.; Nutt, R.; Casey, M.

    1985-01-01

    A simple mathematical model describes the performance of a modular detector ''block'' which is a key component in an advanced, high-resolution PET Scanner. Each block contains 32 small bismuth germanate (BGO) crystals coupled to four photomultiplier tubes (PMTs) through a coded light pipe. AT each PMT cathode the charge released for 511 keV coincidence events may be characterized as Poisson random variables in which the variance grows as the mean of the observed current. Given the light from BGO, one must; arrange the best coding - the distribution of light to the four PMTs, specify an optimum decoding scheme for choosing the correct crystal location from a noisy ensemble of PMT currents, and estimate the average probability of error. The statistical fluctuation or ''noise'' becomes decoupled from the ''signal'' and can be regarded as independent, additive components with zero mean and unit variance. Moreover, the envelope of the transformed noise distribution approximates very closely a normal (Gaussian) distribution with variance = 1. Specifying the coding and decoding strategy becomes a problem of signalling through a channel corrupted by additive, white, Gaussian noise; a classic problem long since solved within the context of Communication Engineering using geometry: i.e. distance, volume, angle, inner product, etc., in a linear space of higher dimension

  2. Thermal detection of single e-h pairs in a biased silicon crystal detector

    Science.gov (United States)

    Romani, R. K.; Brink, P. L.; Cabrera, B.; Cherry, M.; Howarth, T.; Kurinsky, N.; Moffatt, R. A.; Partridge, R.; Ponce, F.; Pyle, M.; Tomada, A.; Yellin, S.; Yen, J. J.; Young, B. A.

    2018-01-01

    We demonstrate that individual electron-hole pairs are resolved in a 1 cm2 by 4 mm thick silicon crystal (0.93 g) operated at ˜35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e- h+) pair in the crystal near the grid. The energy of the drifting charges is measured with a phonon sensor noise σ ˜0.09 e- h+ pair. The observed charge quantization is nearly identical for h+s or e-s transported across the crystal.

  3. Silicon drift detectors coupled to CsI(Tl) scintillators for spaceborne gamma-ray detectors

    International Nuclear Information System (INIS)

    Marisaldi, M.; Fiorini, C.; Labanti, C.; Longoni, A.; Perotti, F.; Rossi, E.; Soltau, H.

    2006-01-01

    Silicon Drift Detectors (SDDs), thanks to their peculiar low noise characteristics, have proven to be excellent photodetectors for CsI(Tl) scintillation light detection. Two basic detector configurations have been developed: either a single SDD or a monolithic array of SDDs coupled to a single CsI(Tl) crystal. A 16 independent detectors prototype is under construction, designed to work in conjunction with the MEGA Compton telescope prototype under development at MPE, Garching, Germany. A single SDD coupled to a CsI(Tl) crystal has also been tested as a monolithic detector with an extended energy range between 1.5 keV and 1 MeV. The SDD is used as a direct X-ray detector for low energy photons interacting in silicon and as a scintillation light photodetector for photons interacting in the crystal. The type of interaction is identified by means of pulse shape discrimination technique. Detectors based on an array of SDDs coupled to a single CsI(Tl) crystal have also been built. The readout of these detectors is based on the Anger camera technique, and submillimeter spatial resolution can be achieved. The two detectors' approaches and their applications will be described

  4. Effects of reflector and crystal surface on the performance of a depth-encoding PET detector with dual-ended readout

    International Nuclear Information System (INIS)

    Ren, Silin; Yang, Yongfeng; Cherry, Simon R.

    2014-01-01

    Purpose: Depth encoding detectors are required to improve the spatial resolution and spatial resolution uniformity of small animal positron emission tomography (PET) scanners, as well as dedicated breast and brain scanners. Depth of interaction (DOI) can be measured by using dual-ended readout of lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiodes. Inter-crystal reflectors and crystal surface treatments play important roles in determining the performance of dual-ended detectors. In this paper, the authors evaluated five LSO arrays made with three different intercrystal reflectors and with either polished or unpolished crystal surfaces. Methods: The crystal size in all arrays was 1.5 mm, which is typical of the detector size used in small animal and dedicated breast scanners. The LSO arrays were measured with dual-ended readout and were compared in terms of flood histogram, energy resolution, and DOI resolution performance. Results: The four arrays using enhanced specular reflector (ESR) and Toray reflector provided similar quality flood histograms and the array using Crystal Wrap reflector gave the worst flood histogram. The two arrays using ESR reflector provided the best energy resolution and the array using Crystal Wrap reflector yielded the worst energy resolution. All arrays except the polished ESR array provided good DOI resolution ranging from 1.9 mm to 2.9 mm. DOI resolution improved as the gradient in light collection efficiency with depth (GLCED) increased. The geometric mean energies were also calculated for these dual-ended readout detectors as an alternative to the conventional summed total energy. It was shown that the geometric mean energy is advantageous in that it provides more uniform photopeak amplitude at different depths for arrays with high GLCED, and is beneficial in event selection by allowing a fixed energy window independent of depth. A new method of DOI calculation that improved the linearity

  5. Scintillation crystal mounting apparatus

    International Nuclear Information System (INIS)

    Engdahl, L.W.; Deans, A.J.

    1982-01-01

    An improved detector head for a gamma camera is disclosed. The detector head includes a housing and a detector assembly mounted within the housing. Components of the detector assembly include a crystal sub-assembly, a phototube array, and a light pipe between the phototube array and crystal sub-assembly. The invention provides a unique structure for maintaining the phototubes in optical relationship with the light pipe and preventing the application of forces that would cause the camera's crystal to crack

  6. Performance simulation of BaBar DIRC bar boxes in TORCH

    Science.gov (United States)

    Föhl, K.; Brook, N.; Castillo García, L.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; van Dijk, M.

    2017-12-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  7. One-dimensional position sensitive detector based on photonic crystals

    International Nuclear Information System (INIS)

    Xi Feng; Qin Lan; Xue Lian; Duan Ying

    2013-01-01

    Position sensitive detectors (PSDs) are an important class of optical sensors which utilizes the lateral photovoltaic effect (LPVE). According to the operation principle of PSD, we demonstrate that LPVE can be enhanced by lengthening the lifetime of photo-generated carriers. A PSD based on photonic crystals (PCs) composed of MgF 2 and InP is proposed and designed. The transmittances of the defect PC and the reflectance of the perfect PC in the PSD are obtained with transfer matrix method. The theoretical research on the designed device shows that LPVE is enhanced by improving the transmittance of the defect PC and the reflectance of the perfect PC to lengthen the lifetime of photo-generated carriers. (authors)

  8. Solid-state cadmium telluride radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Yoji; Kitamoto, Hisashi; Hosomatsu, Haruo

    1984-09-01

    The growth of CdTe single crystal and its application to CdTe detector array was studied for X-ray computed tomography (XCT) equipment. A p-type CdTe single crystal with 10/sup 4/ ohm.cm specific resistivity was grown in a quartz ampoule under vapor pressure control of Cd in a vertical Bridgman furnace. An 18-element detector array was fabricated with this single crystal. The detector was operated with no bias and the sensitivity was confirmed to be between 2.8 x 10/sup -12/ and 14 x 10/sup -12/ A.h/(R.mm/sup 2/). Commercial CdTe single crystal was used to manufacture as 560-element detector array for XCT. Results show that CdTe detector is sensitive, linear and has high resolution.

  9. Development of crystals based in cesium iodide for application as radiation detectors

    International Nuclear Information System (INIS)

    Pereira, Maria da Conceicao Costa

    2006-01-01

    Inorganic scintillators with fast luminescence decay time, high density and high light output have been the object of studies for application in nuclear physics, high energy physics, nuclear tomography and other fields of science and engineering. Scintillation crystals based on cesium iodide (CsI) are matters with relatively low higroscopy, high atomic number, easy handling and low cost, characteristics that favor their use as radiation detectors. In this work, the growth of pure CsI crystals, CsI:Br and CsI:Pb, using the Bridgman technique, is described. The concentration of the bromine doping element (Br) was studied in the range of 1,5x10 -1 M to 10 -2 M and the lead (Pb) in the range of 10 -2 M to 5x10 -4 M. To evaluate the scintillators developed, systematic measurements were carried out for luminescence emission and luminescence decay time for gamma radiation, optical transmittance assays, Vickers micro-hardness assays, determination of the doping elements distribution along the grown crystals and analysis of crystals response to the gamma radiation in the energy range of 350 keV to 1330 keV and alpha particles from a 241 Am source, with energy of 5.54 MeV. It was obtained 13 ns to 19 ns for luminescence decay time for CsI:Br and CsI:Pb crystals. These results were very promising. The results obtained for micro-hardness showed a significant increase in function of the doping elements concentration, when compared to the pure CsI crystal, increasing consequently the mechanical resistance of the grown crystals. The validity of using these crystals as radiation sensors may be seen from the results of their response to gamma radiation and alpha particles. (author)

  10. submitter Performance simulation of BaBar DIRC bar boxes in TORCH

    CERN Document Server

    Föhl, K; Castillo García, L; Cussans, D; Forty, R; Frei, C; Gao, R; Gys, T; Harnew, N; Piedigrossi, D; Rademacker, J; Ros García, A; van Dijk, M

    2017-01-01

    TORCH is a large-area precision time-of-flight detector based on the DIRC principle. The DIRC bar boxes of the BaBar experiment at SLAC could possibly be reused to form a part of the TORCH detector time-of-flight wall area, proposed to provide positive particle identification of low momentum kaons in the LHCb experiment at CERN. For a potential integration of BaBar bar boxes into TORCH, new imaging readout optics are required. From the several designs of readout optics that have been considered, two are used in this paper to study the effect of BaBar bar optical imperfections on the detector reconstruction performance. The kaon-pion separation powers obtained from analysing simulated photon hit patterns show the performance reduction for a BaBar bar of non-square geometry compared to a perfectly rectangular cross section.

  11. Measurements on a prototype segmented Clover detector

    CERN Document Server

    Shepherd, S L; Cullen, D M; Appelbe, D E; Simpson, J; Gerl, J; Kaspar, M; Kleinböhl, A; Peter, I; Rejmund, M; Schaffner, H; Schlegel, C; France, G D

    1999-01-01

    The performance of a segmented Clover germanium detector has been measured. The segmented Clover detector is a composite germanium detector, consisting of four individual germanium crystals in the configuration of a four-leaf Clover, housed in a single cryostat. Each crystal is electrically segmented on its outer surface into four quadrants, with separate energy read-outs from nine crystal zones. Signals are also taken from the inner contact of each crystal. This effectively produces a detector with 16 active elements. One of the purposes of this segmentation is to improve the overall spectral resolution when detecting gamma radiation emitted following a nuclear reaction, by minimising Doppler broadening caused by the opening angle subtended by each detector element. Results of the tests with sources and in beam will be presented. The improved granularity of the detector also leads to an improved isolated hit probability compared with an unsegmented Clover detector. (author)

  12. Two high-mobility group box domains act together to underwind and kink DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Giraldo, R.; Acosta-Reyes, F. J. [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Malarkey, C. S. [University of Colorado School of Medicine, Aurora, CO 80045 (United States); Saperas, N. [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Churchill, M. E. A., E-mail: mair.churchill@ucdenver.edu [University of Colorado School of Medicine, Aurora, CO 80045 (United States); Campos, J. L., E-mail: mair.churchill@ucdenver.edu [Universitat Politecnica de Catalunya, 08028 Barcelona (Spain)

    2015-06-30

    The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A is thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA.

  13. Two high-mobility group box domains act together to underwind and kink DNA

    International Nuclear Information System (INIS)

    Sánchez-Giraldo, R.; Acosta-Reyes, F. J.; Malarkey, C. S.; Saperas, N.; Churchill, M. E. A.; Campos, J. L.

    2015-01-01

    The crystal structure of HMGB1 box A bound to an unmodified AT-rich DNA fragment is reported at a resolution of 2 Å. A new mode of DNA recognition for HMG box proteins is found in which two box A domains bind in an unusual configuration generating a highly kinked DNA structure. High-mobility group protein 1 (HMGB1) is an essential and ubiquitous DNA architectural factor that influences a myriad of cellular processes. HMGB1 contains two DNA-binding domains, box A and box B, which have little sequence specificity but have remarkable abilities to underwind and bend DNA. Although HMGB1 box A is thought to be responsible for the majority of HMGB1–DNA interactions with pre-bent or kinked DNA, little is known about how it recognizes unmodified DNA. Here, the crystal structure of HMGB1 box A bound to an AT-rich DNA fragment is reported at a resolution of 2 Å. Two box A domains of HMGB1 collaborate in an unusual configuration in which the Phe37 residues of both domains stack together and intercalate the same CG base pair, generating highly kinked DNA. This represents a novel mode of DNA recognition for HMGB proteins and reveals a mechanism by which structure-specific HMG boxes kink linear DNA

  14. An improved multicrystal 2-D BGO detector for PET

    International Nuclear Information System (INIS)

    Rogers, J.G.; Taylor, A.J.; Rahimi, M.F.; Nutt, R.; Andreaco, M.; Williams, C.W.

    1992-01-01

    In this paper, the authors evaluate and compare two new 2-D array detectors for PET. Both consist of an 8 x 8 array of small BGO crystals coupled to a 2 x 2 array of photomultiplier tubes. The depth of the crystals is 3 cm in one detector and 2 cm in the other. The 2 cm detector is obviously superior in terms of material costs, but is also superior in energy resolution per crystal, and in its ability to clearly identify the crystal containing the primary interaction. The authors present a flexible and robust algorithm for crystal identification in such array detectors. The prospect of obtaining still better spatial resolution from such block detectors, with increased numbers of crystals, is discussed

  15. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  16. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm{sup 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yamaya, Taiga; Mitsuhashi, Takayuki; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Matsumoto, Takahiro; Kawai, Hideyuki; Suga, Mikio [Chiba University, 1-33 Yayoicho, Inage-ku, Chiba 263-8522 (Japan); Watanabe, Mitsuo, E-mail: taiga@nirs.go.jp [Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu 434-8601 (Japan)

    2011-11-07

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm{sup 3} cubic crystals, in contrast to our previous development using 3.0 mm{sup 3} cubic crystals. The crystal block was composed of a 16 x 16 x 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 x 0.993 x 0.993 mm{sup 3} in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 x 4 array of MPPCs), each having a sensitive area of 3.0 x 3.0 mm{sup 2}, were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  17. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    International Nuclear Information System (INIS)

    Nederlof, Igor; Genderen, Eric van; Li, Yao-Wang; Abrahams, Jan Pieter

    2013-01-01

    An ultrasensitive Medipix2 detector allowed the collection of rotation electron-diffraction data from single three-dimensional protein nanocrystals for the first time. The data could be analysed using the standard X-ray crystallography programs MOSFLM and SCALA. When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e − Å −2 ), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins

  18. Measurement and optimization of the light collection uniformity in strongly tapered PWO crystals of the PANDA detector

    Science.gov (United States)

    Diehl, Stefan; Bremer, Daniel; Brinkmann, Kai-Thomas; Dormenev, Valery; Eissner, Tobias; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg; PANDA Collaboration

    2017-06-01

    The uniformity of the light collection is a crucial parameter for detectors based on inorganic scintillation crystals to guarantee a response proportional to the deposited energy. Especially in case of tapered crystals, like they are widely used to realize a 4π geometry of electromagnetic calorimeters (EMC) in high energy physics experiments, a strong non-uniformity is introduced by an additional focusing of the scintillation light due to the tapered geometry. The paper will discuss the determination and the reduction of the non-uniformity in strongly tapered lead tungstate crystals as used for the construction of the electromagnetic calorimeter of the PANDA detector at the future Facility for Antiproton and Ion Research (FAIR). Among different concepts for an uniformization a single de-polished lateral side face provided the optimum result with a remaining non-uniformity below 5% in good agreement with similar studies for the CMS ECAL at LHC. The impact on the achievable energy resolution in the energy regime of photons below 800 MeV is discussed in detail in comparison to GEANT4 simulations. The comparison of the response of two arrays with polished and de-polished crystals, respectively, shows in the latter case a significant improvement of the constant term of the parametrization of the energy resolution down to 0.5% accompanied by only very slight increase of the statistical term.

  19. Measurement and optimization of the light collection uniformity in strongly tapered PWO crystals of the PANDA detector

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Stefan; Bremer, Daniel; Brinkmann, Kai-Thomas; Dormenev, Valery; Eissner, Tobias; Novotny, Rainer W.; Rosenbaum, Christoph; Zaunick, Hans-Georg

    2017-06-11

    The uniformity of the light collection is a crucial parameter for detectors based on inorganic scintillation crystals to guarantee a response proportional to the deposited energy. Especially in case of tapered crystals, like they are widely used to realize a 4π geometry of electromagnetic calorimeters (EMC) in high energy physics experiments, a strong non-uniformity is introduced by an additional focusing of the scintillation light due to the tapered geometry. The paper will discuss the determination and the reduction of the non-uniformity in strongly tapered lead tungstate crystals as used for the construction of the electromagnetic calorimeter of the PANDA detector at the future Facility for Antiproton and Ion Research (FAIR). Among different concepts for an uniformization a single de-polished lateral side face provided the optimum result with a remaining non-uniformity below 5% in good agreement with similar studies for the CMS ECAL at LHC. The impact on the achievable energy resolution in the energy regime of photons below 800 MeV is discussed in detail in comparison to GEANT4 simulations. The comparison of the response of two arrays with polished and de-polished crystals, respectively, shows in the latter case a significant improvement of the constant term of the parametrization of the energy resolution down to 0.5% accompanied by only very slight increase of the statistical term.

  20. GPU-based optical propagation simulator of a laser-processed crystal block for the X'tal cube PET detector.

    Science.gov (United States)

    Ogata, Yuma; Ohnishi, Takashi; Moriya, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga; Haneishi, Hideaki

    2014-01-01

    The X'tal cube is a next-generation DOI detector for PET that we are developing to offer higher resolution and higher sensitivity than is available with present detectors. It is constructed from a cubic monolithic scintillation crystal and silicon photomultipliers which are coupled on various positions of the six surfaces of the cube. A laser-processing technique is applied to produce 3D optical boundaries composed of micro-cracks inside the monolithic scintillator crystal. The current configuration is based on an empirical trial of a laser-processed boundary. There is room to improve the spatial resolution by optimizing the setting of the laser-processed boundary. In fact, the laser-processing technique has high freedom in setting the parameters of the boundary such as size, pitch, and angle. Computer simulation can effectively optimize such parameters. In this study, to design optical characteristics properly for the laser-processed crystal, we developed a Monte Carlo simulator which can model arbitrary arrangements of laser-processed optical boundaries (LPBs). The optical characteristics of the LPBs were measured by use of a setup with a laser and a photo-diode, and then modeled in the simulator. The accuracy of the simulator was confirmed by comparison of position histograms obtained from the simulation and from experiments with a prototype detector composed of a cubic LYSO monolithic crystal with 6 × 6 × 6 segments and multi-pixel photon counters. Furthermore, the simulator was accelerated by parallel computing with general-purpose computing on a graphics processing unit. The calculation speed was about 400 times faster than that with a CPU.

  1. Scintillators and other particle optical detectors

    International Nuclear Information System (INIS)

    Chipaux, R.

    2011-01-01

    The author reports and comments his researcher career in the field of particle optical detectors. He addresses the cases of organic scintillators (scintillating fibers, liquid scintillators), inorganic scintillators (crystals for electromagnetic calorimetry, crystals for solar neutrino spectroscopy), and Cherenkov Effect detectors. He also reports his works on Cd Te detectors and their modelling

  2. Method and device for monitoring vibration of incore neutron detector guide tube

    International Nuclear Information System (INIS)

    Enomoto, Mitsuhiro; Naito, Norio; Oda, Akira.

    1978-01-01

    Purpose: To easily detect the vibration of an incore neutron detector guide tube and to prevent the occurrence of such accidents that the guide tube comes into contact with the fuel channel box arranged around the periphery thereof to break the channel box. Method: A neutron detector guide tube is disposed within a channel box, and the neutron detector is arranged at the center of the guide tube. Now, when the guide tube vibrates at an inherent number of vibration and a predetermined amplitude, the guide tube moves in the radial direction by the predetermined amplitude part to come into contact with the channel box. Upon this occasion, the detector similarity vibrates, and the output signal is varied by the predetermined neutron flux variation part. This output signal is sent to a comparator through an analyser, and compared with the output signal produced from a device wherein the result analysed at normal time, and the output signal is sent to an alarm device and an indicator, respectively. (Aizawa, K.)

  3. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.; Nutt, R.; Digby, W.M.; Williams, C.W.; Andreaco, M.

    1993-01-01

    The authors initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25 C is excited with 511 keV photons, the authors measure a photodiode signal centered at 700 electrons (e - ) with noise of 375 e - fwhm. When a four crystal/photodiode module is excited with a collimated line source of 511 keV photons, the crystal of interaction is correctly identified 82% of the time. The misidentification rate can be greatly reduced and an 8 x 8 crystal/photodiode module constructed by using thicker depletion layer photodiodes or cooling to 0 C

  4. Crystals for krypton helium-alpha line emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Jeffrey A.; Haugh, Michael J.

    2018-04-17

    A system for reflecting and recording x-ray radiation from an x-ray emitting event to characterize the event. A crystal is aligned to receive radiation along a first path from an x-ray emitting event. Upon striking the crystal, the x-ray reflects from the crystal along a second path due to a reflection plane of the crystal defined by one of the following Miller indices: (9,7,3) or (11,3,3). Exemplary crystalline material is germanium. The x-rays are reflected to a detector aligned to receive reflected x-rays that are reflected from the crystal along the second path and the detector generates a detector signal in response to x-rays impacting the detector. The detector may include a CCD electronic detector, film plates, or any other detector type. A processor receives and processes the detector signal to generate reflection data representing the x-rays emitted from the x-ray emitting event.

  5. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nederlof, Igor; Genderen, Eric van; Li, Yao-Wang; Abrahams, Jan Pieter, E-mail: abrahams@chem.leidenuniv.nl [Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands)

    2013-07-01

    An ultrasensitive Medipix2 detector allowed the collection of rotation electron-diffraction data from single three-dimensional protein nanocrystals for the first time. The data could be analysed using the standard X-ray crystallography programs MOSFLM and SCALA. When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e{sup −} Å{sup −2}), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins.

  6. Silicon radiation detectors: materials and applications

    International Nuclear Information System (INIS)

    Walton, J.T.; Haller, E.E.

    1982-10-01

    Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed - one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented

  7. Lithium germanium detectors reactivation

    International Nuclear Information System (INIS)

    Nicolai, J.A.; Marti, G.V.; Riso, J.M.; Gimenez, C.R.

    1981-01-01

    A convenient method to regenerate the characteristics of damaged Ge(li) detectors, that has been applied in the authors' laboratory, is described. The procedure consists in warming-up the crystal in its cryostat to temperatures between 10 deg C and 30 deg C above room temperature, in order to clean its surface. Subsequent cooling down to liquid nitrogen temperature, followed by one or more clean-up drifting processes, are applied to the crystals. This paper summarizes the results obtained with several detectors; this method was applied successfully to 15 detectors more. (author) [es

  8. New thermal neutron solid-state electronic detector based on HgI2 crystals

    International Nuclear Information System (INIS)

    Melamud, M.; Burshtein, Z.

    1983-07-01

    We describe the development of a new solid-state electronic neutron detector, based on HgI 2 single crystals. Incident neutrons are absorbed in high neutron absorbing foils, such as cadmium or gadolinium, which are placed in front of a HgI 2 detector. Gamma rays, emitted as a result of the neutron absorbtion, are then absorbed in the HgI 2 , generating free charge carriers, which are collected by the electric field. The advantage of this system lies in it's manufacturing simplicity, low weight and small physical dimensions, compared to gas-filled conventional neutron detectors. The disadvantage is that the system does not discriminate between gamma rays and neutrons. A method to minimize this disadvantage is pointed out. It is as well possible to count neutrons by direct exposure of the HgI 2 to neutrons. The neutron-to-gamma transformation in that case takes place by the material nuclei themselves. This method, however, is impractical due to the interference of delayed radioactivity whose origin are 129 I nuclei. They are generated from 128 I by absorbing a neutron, and decay with a 25 min half lifetime involving gamma emissions. (author)

  9. Beam tests of lead tungstate crystal matrices and a silicon strip preshower detector for the CMS electromagnetic calorimeter

    CERN Document Server

    Auffray, Etiennette; Barney, D; Bassompierre, Gabriel; Benhammou, Ya; Blick, A M; Bloch, P; Bonamy, P; Bourotte, J; Buiron, L; Cavallari, F; Chipaux, Rémi; Cockerill, D J A; Dafinei, I; Davies, G; Depasse, P; Deiters, K; Diemoz, M; Dobrzynski, Ludwik; Donskov, S V; Mamouni, H E; Ercoli, C; Faure, J L; Felcini, Marta; Gautheron, F; Géléoc, M; Givernaud, Alain; Gninenko, S N; Godinovic, N; Graham, D J; Guillaud, J P; Guschin, E; Haguenauer, Maurice; Hillemanns, H; Hofer, H; Ille, B; Inyakin, A V; Jääskeläinen, S; Katchanov, V A; Kirn, T; Kloukinas, Kostas C; Korzhik, M V; Lassila-Perini, K M; Lebrun, P; Lecoq, P; Lecoeur, Gérard; Lecomte, P; Leonardi, E; Locci, E; Loos, R; Longo, E; MacKay, C K; Martin, E; Mendiburu, J P; Musienko, Yu V; Nédélec, P; Nessi-Tedaldi, F; Organtini, G; Paoletti, S; Pansart, J P; Peigneux, J P; Puljak, I; Qian, S; Reid, E; Renker, D; Rosowsky, A; Rosso, E; Rusack, R W; Rykaczewski, H; Schneegans, M; Seez, Christopher J; Semeniouk, I N; Shagin, P M; Sillou, D; Singovsky, A V; Sougonyaev, V; Soric, I; Verrecchia, P; Vialle, J P; Virdee, Tejinder S; Zhu, R Y

    1998-01-01

    Tests of lead tungstate crystal matrices carried out in high-energy electron beams in 1996, using new crystals, new APDs and an improved test set-up, confirm that an energy resolution of better than 0 .6% at 100 GeV can be obtained when the longitudinal uniformity of the struck crystal is adequate. Light loss measurements under low dose irradiation are reported. It is shown that there is no loss of energy resolution after irradiation and that the calibration change due to light loss can be tracked with a precision monitoring system. Finally, successuful tests with a preshower device, equipped wi th silicon strip detector readout, are described.

  10. SU-F-BRE-02: Characterization of a New Commercial Single Crystal Diamond Detector in Photon, Electron and Proton Beams

    International Nuclear Information System (INIS)

    Akino, Y; Das, I

    2014-01-01

    Purpose: Diamond detectors even with superior characteristics have become obsolete due to poor design, selection of crystal and cost. Recently, microDiamond using synthetic single crystal diamond detector (SCDD) is commercially available which is characterized in various radiation beams in this study. Methods: The characteristics of a commercial SCDD model 60019 (PTW) to a 6- and 15-MV photon beams, 6- and 20-MeV electron beams, and 208 MeV proton beams were investigated and compared to the pre-characterized detectors: TN31010 (0.125 cm 3 ) and TN30006 (pinpoint) ionization chambers (PTW), EDGE detector (Sun Nuclear Corp), and SFD Stereotactic Dosimetry Diode Detector (IBA). The depth-dose and profiles data were collected for various field sizes and depths. The dose linearity and dose rate dependency were also evaluated. To evaluate the effects of the preirradiation, the diamond detector which had not been irradiated on the day was set up in the water tank and the response to 100 MU was measured every 20 s. The temperature dependency was tested for the range of 4–60 °C. Angular dependency was evaluated in water phantom by rotating the SCDD. Results: For all radiation types and field sizes, the depth-dose data of the diamond chamber showed identical curve to those of ionization chambers. The profile of the diamond detector was very similar to those of the Edge and SFD detectors, although the 0.125 cm 3 and pinpoint chambers showed averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4–41°C. A dose of 900 cGy and 1200 cGy were needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. Conclusion: The type 60019 SCDD detector showed suitable characteristics for depth-dose and profile measurements for wide range of field sizes. However, at least 1000 cGy of pre-irradiation is needed for accurate measurements

  11. Detector Position Estimation for PET Scanners.

    Science.gov (United States)

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-06-11

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.

  12. Detector position estimation for PET scanners

    International Nuclear Information System (INIS)

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-01-01

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.

  13. INDIA: Photon multiplicity detector

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to

  14. INDIA: Photon multiplicity detector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-01-15

    Full text: The team of Indian scientists from Calcutta's Variable Energy Cyclotron Centre, Bhubaneswar Institute of Physics, Panjab (Chandigarh), Rajasthan (Jaipur) and Jammu in collaboration with GSI Darmstadt have contributed a large and highly granular preshower photon multiplicity detector (PMD) for the WA98 experiment at the CERN SPS proton synchrotron. This experiment studies high energy collisions of lead ions and will measure both charged particle and photon multiplicity in a large overlap region. The motivation for measuring photon multiplicity in ultra-relativistic heavy ion collisions stems from theoretical predictions of changes in the relative production of photons and charged particles in the phase transition of hadronic matter to quarkgluon plasma and its subsequent hadronization. The photon multiplicity detector consists of a matrix of scintillator pads placed in light-tight boxes and mounted behind the lead converter plates. The light from the scintillator pads is transported to the readout system using wavelength shifting (WLS) fibres. Developing on the team's earlier experience with a smaller version for the WA93 experiment (September 1991, page 16), several modifications were incorporated to improve light collection and transport. Use of improved WLS fibres, short WLS pieces to minimize self-absorption, and thermal splicing with long clear fibres were some of the important changes incorporated. Tests showed signficantly improved light collection. The scintillator pads were fabricated at all the five collaborating centres in India and the complicated assembly in the detector box modules carried out at the Variable Energy Cyclotron Centre, Calcutta. More than 400 lead converter plates were machined in Calcutta to rigorous tolerances of 0.2 mm. The assembled detector box modules and lead plates were shipped to CERN in spring 1994 for tests and installation. The WA98 PMD consists of over 50,000 scintillator pads of sizes varying from 15 to 25 mm

  15. Attenuation correction factors for cylindrical, disc and box geometry

    International Nuclear Information System (INIS)

    Agarwal, Chhavi; Poi, Sanhita; Mhatre, Amol; Goswami, A.; Gathibandhe, M.

    2009-01-01

    In the present study, attenuation correction factors have been experimentally determined for samples having cylindrical, disc and box geometry and compared with the attenuation correction factors calculated by Hybrid Monte Carlo (HMC) method [ C. Agarwal, S. Poi, A. Goswami, M. Gathibandhe, R.A. Agrawal, Nucl. Instr. and. Meth. A 597 (2008) 198] and with the near-field and far-field formulations available in literature. It has been observed that the near-field formulae, although said to be applicable at close sample-detector geometry, does not work at very close sample-detector configuration. The advantage of the HMC method is that it is found to be valid for all sample-detector geometries.

  16. Shock-resistant gamma-ray detector tube

    International Nuclear Information System (INIS)

    1979-01-01

    A simple durable scintillation detector is described which, it is claimed, offers a solution to the shock resistance problems encountered when gamma detectors are used for deep bore hole well logging or in space vehicles. The shock resistant detector consists of an elongate sodium iodide scintillation crystal and rigid metal container with a round glass optical window at one end of the container and a metal end closure cap at the opposite end. An elastic rubber compression pad is provided between the end cap and the scintillation crystal to bias the crystal axially toward the glass window. An extension transparent silicone rubber light pipe of substantial axial thickness permanently couples the optical window to the crystal while allowing substantial movement under high g forces. (U.K.)

  17. Monitoring Instrument for X-Ray Box

    CERN Document Server

    Cifuentes Ospina, Alberto; Kuehn, Susanne; Schaepe, Steffen; CERN. Geneva. EP Department

    2017-01-01

    A humidity and temperature readout instrument has been designed and implemented in order to monitor the X-Ray Box used for testing the silicon detectors prototypes of the ITk. The sensors are connected to an Arduino Mega board equipped with 16 analog inputs and a serial port to a computer. A user-friendly software has been also designed in order to give an easy access to all measurements.

  18. Optimization of decay kinetics of YAG:Ce single crystal scintillators for S(T)EM electron detectors

    Czech Academy of Sciences Publication Activity Database

    Schauer, Petr

    2011-01-01

    Roč. 269, č. 21 (2011), s. 2572-2577 ISSN 0168-583X R&D Projects: GA ČR GAP102/10/1410 Institutional research plan: CEZ:AV0Z20650511 Keywords : scintillation detector * electron microscope * cathodoluminescence * YAG:Ce single crystal scintillator * decay time * afterglow * kinetic model * SEM * STEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.211, year: 2011

  19. A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector

    International Nuclear Information System (INIS)

    Reginatto, Marcel; Araque, Jorge Guerrero; Nolte, Ralf; Zbořil, Miroslav; Zimbal, Andreas; Gagnon-Moisan, Francis

    2015-01-01

    Detectors made from artificial chemical vapor deposition (CVD) single crystal diamond are very promising candidates for applications where high resolution neutron spectrometry in very high neutron fluxes is required, for example in fusion research. We propose a Bayesian method to estimate the neutron response function of the detector for a continuous range of neutron energies (in our case, 10 MeV ≤ E n ≤ 16 MeV) based on a few measurements with quasi-monoenergetic neutrons. This method is needed because a complete set of measurements is not available and the alternative approach of using responses based on Monte Carlo calculations is not feasible. Our approach uses Bayesian signal-background separation techniques and radial basis function interpolation methods. We present the analysis of data measured at the PTB accelerator facility PIAF. The method is quite general and it can be applied to other particle detectors with similar characteristics

  20. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  1. Spectrometer for the analysis of radiation, emitted by an X-ray source, by means of an analyzer crystal and a rotating detector

    International Nuclear Information System (INIS)

    Guernet, J.; Boissel, P.

    1979-01-01

    The detector is kept tangential to the Rowland circle by means of a mechanical device. For this purpose the device is provided with a support plate for the detector which is fastened to a guiding arm and for which the angular position of the crystal is determined with the aid of a transmission gear having a transmission ratio of 2:1. (DG) [de

  2. Neutrons and the crystal ball experiments

    International Nuclear Information System (INIS)

    Alyea, J.; Grosnick, D.; Koetke, D.; Manweiler, R.; Spinka, H.; Stanislaus, S.

    1997-01-01

    The Crystal Ball detector, as originally constructed, consisted of a set of 672 optically-isolated NaI crystals, forming an approximately spherical shell and each crystal viewed by a photomultiplier, a charged-particle tracker within the NaI shell, and two endcaps to cover angles close to two colliding beams. The detector geometry subtends a solid angle of about 93% of 4π st (20 degree le θ le 160degree and 0degree le φ le 360degree) from the center. The Crystal Ball detector was used for two long series of experiments at the e + e - colliding beam accelerators SPEAR [1, 2, 3, 4] at SLAC and DORIS [5, 6, 7, 8] at DESY. A new set of measurements using the Crystal Ball detector is planned at the Brookhaven National Laboratory Alternating Gradient Synchrotrons (BNL AGS). These new experiments will use the 672 NaI crystals from the original detector, but neither the tracker nor endcaps. The ''Crystal Ball'' in this note will refer only to the set of NaI crystals. Initially, the reactions to be studied will include π - pr a rrow neutrals with pion beam momenta approximately400-750 MeV/c and K - pr a rrow neutrals with kaon beam momenta approximately600-750 MeV/c. Each of these reactions will include a neutron in the final state. whereas the fraction of e + e - interactions with neutrons at SLAC or DESY was quite small. Consequently, there is relatively little experience understanding the behavior of neutrons in the Crystal Ball

  3. Development of gallium arsenide gamma spectrometric detector

    International Nuclear Information System (INIS)

    Kobayashi, T.; Kuru, I.

    1975-03-01

    GaAs semiconductor material has been considered to be a suitable material for gamma-ray spectrometer operating at room temperature since it has a wid-band gap, larger than that of silicon and germanium. The basic objective of this work is to develop a GaAs gamma-ray spectrometric detector which could be used for gamma spectrometric measurement of uranium and plutonium in nuclear fuel safeguards. Liquid phase epitaxial techniques using iron (Fe) as dopant have been developed in making high purity GaAs crystals suitable for gamma-ray spectrometer operating at room temperature. Concentration of Fe in the epitaxial crystal was controlled by initial growth temperature. The best quality epitaxial crystal was obtained under the following conditions: starting temperature is about 800degC, the proportion of Fe to Ga solvent is 1 to 300. Carrier concentration of epitaxial crystals grown distributed in the ranges of 10 12 cm -3 to 10 14 cm -3 at room temperature. The thickness of the crystals ranged from 38 μm to 120 μm. Au-GaAs surface barrier detector was made of epitaxial crystal. Some of the detector were encapsulated in a can with a 50 μm Be window by welding a can to the detector holder. The detector with high energy resolution and good charge collecting characteristics was selected by alpha spectrometry at room temperature. Energy resolution of the detector for gamma-rays up to about 200 keV was very good at room temperature operation. The best energy resolutions taken with a GaAs detector were 3 keV (fwhm) and 3.8 keV for 241 Am 59.6 keV and 57 Co 122 keV, respectively, at room temperature. In order to study the applicability of the detector for nuclear safeguards, the measurements of 235 U gamma-ray spectrum have been carried out at room temperature. It was clarified that the gamma-ray spectrum of enriched U sample could be measured in high resolution with GaAs detector at room temperature, and that the content of 235 U in enriched U sources could be determined by

  4. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures

    Science.gov (United States)

    Kumar, Amit; Kumar, Arvind; Topkar, Anita; Das, D.

    2017-06-01

    Prototype single crystal diamond detectors with different types of metallization and post metallization treatment were fabricated for the applications requiring fast neutron measurements in the Indian Test Blanket Module (TBM) at the International Thermonuclear Experimental Reactor (ITER) Experiment. The detectors were characterized by leakage current measurements to ascertain that the leakage currents are low and breakdown voltages are higher than the voltage required for full charge collection. The detector response to charged particles was evaluated using a 238+239 Pu dual energy alpha source. The detectors showed an energy resolution of about 2% at 5.5 MeV. In order to study their suitability for the operation at higher temperatures, leakage current variation and alpha response were studied up to 300 °C. At 300 °C, peaks corresponding to 5.156 MeV and 5.499 MeV alphas could be separated and there was no significant degradation of energy resolution. Finally, the detector response to fast neutrons was evaluated using a Deuterium-Tritium (D-T) neutron generator. The observed spectrum showed peaks corresponding to various channels of n-C interactions with a clear isolated peak corresponding to 8.5 MeV alphas. The detectors also showed high sensitivity of 3.4×10-2 cps/n/(cm2 s)-4.5×10-2 cps/n/(cm2 s) and excellent linearity of response in terms of count rate at different neutron flux in the observed range of 3.2×105 n/(cm2 s) to 2.0×106 n/(cm2 s).

  5. The LiC detector toy program

    International Nuclear Information System (INIS)

    Regler, Meinhard; Valentan, Manfred; Fruehwirth, Rudolf

    2007-01-01

    This note describes the 'LiC Detector Toy' ('LiC' for Linear Collider) software tool which has been developed for detector design studies, aiming at investigating the resolution of reconstructed track parameters for the purpose of comparing and optimizing various detector setups. It consists of a simplified simulation of the detector measurements, taking into account multiple scattering, followed by full single track reconstruction using the Kalman filter. The tool is written in MATLAB and may be installed on a laptop. It can easily be used as a black-box tool by non-experts, but also adapted to individual needs

  6. Feasibility of a brain-dedicated PET-MRI system using four-layer DOI detectors integrated with an RF head coil

    International Nuclear Information System (INIS)

    Nishikido, F.; Obata, T.; Shimizu, K.; Suga, M.; Inadama, N.; Tachibana, A.; Yoshida, E.; Ito, H.; Yamaya, T.

    2014-01-01

    We are developing a PET-MRI system which consists of PET detectors integrated with the head coil of the MRI in order to realize high spatial resolution and high sensitivity in simultaneous measurements. In the PET-MRI system, the PET detectors which consist of a scintillator block, photo-detectors and front-end circuits with four-layer depth-of-interaction (DOI) encoding capability are placed close to the measured object. Therefore, the proposed system can achieve high sensitivity without degradation of spatial resolution at the edge of the field-of-view due to parallax error thanks to the four-layer DOI capability. In this paper, we fabricated a prototype system which consists of a prototype four-layer DOI-PET detector, a dummy PET detector and a prototype birdcage type head coil. Then we used the prototype system to evaluate the performance of the four-layer DOI-PET detector and the reciprocal influence between the PET detectors and MRI images. The prototype DOI-PET detector consists of six monolithic multi-pixel photon counter (MPPC) arrays (S11064-050P), a readout circuit board, two scintillator blocks and a copper shielding box. Each scintillator block consists of four layers of Lu 1.8 Gd 0.2 SiO 5 :Ce (LGSO) scintillators and reflectors are inserted between the scintillation crystals. The dummy detector has all these components except the two scintillator blocks. The head coil is dedicated to a 3.0 T MRI (MAGNETOM Verio, Siemens) and the two detectors are mounted in gaps between head coil elements. Energy resolution and crystal identification performance of the prototype four-layer DOI-PET detector were evaluated with and without MRI measurements by the gradient echo and spin echo methods. We identified crystal elements in all four layers from a 2D flood histogram and energy resolution of 15–18% was obtained for single crystal elements in simultaneous measurements. The difference between the average energy resolutions and photo-peak positions with and

  7. Open-field mouse brain PET: design optimisation and detector characterisation.

    Science.gov (United States)

    Kyme, Andre Z; Judenhofer, Martin S; Gong, Kuang; Bec, Julien; Selfridge, Aaron; Du, Junwei; Qi, Jinyi; Cherry, Simon R; Meikle, Steven R

    2017-07-13

    'Open-field' PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal's behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner. However, this approach of 'retro-fitting' motion compensation techniques to an existing system is limited by the inherent geometric and performance constraints of the system. The goal of this project is to develop a purpose-built PET scanner with geometry, motion tracking and imaging performance tailored and optimised for open-field imaging of the mouse brain. The design concept is a rail-based sliding tomograph which moves according to the animal's motion. Our specific aim in this work was to evaluate candidate scanner designs and characterise the performance of a depth-of-interaction detector module for the open-field system. We performed Monte Carlo simulations to estimate and compare the sensitivity and spatial resolution performance of four scanner geometries: a ring, parallel plate, and two box variants. Each system was based on a detector block consisting of a 23  ×  23 array of 0.785  ×  0.785  ×  20 mm 3 LSO crystals (overall dim. 19.6  ×  19.6  ×  20 mm). We found that a DoI resolution capability of 3 mm was necessary to achieve approximately uniform sub-millimetre spatial resolution throughout the FoV for all scanners except the parallel-plate geometry. With this DoI performance, the sensitivity advantage afforded by the box geometry with overlapping panels (16% peak absolute sensitivity, a 36% improvement over the ring design) suggests this unconventional design is best suited for

  8. Optimizing moderation of He-3 neutron detectors for shielded fission sources

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Lawrence B., E-mail: Lawrence_Rees@byu.edu [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Czirr, J. Bart, E-mail: czirr@juno.com [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)

    2012-11-01

    The response of a {sup 3}He neutron detector is highly dependent on the amount of moderator incorporated into the detector system. If there is too little moderation, neutrons will not react with the {sup 3}He. If there is too much moderation, neutrons will not reach the {sup 3}He. In applications for portal or border monitors where {sup 3}He detectors are used to interdict illicit importation of plutonium, the fission source is always shielded to some extent. Since the energy distribution of neutrons emitted from the source depends on the amount and type of shielding present, the optimum placement of moderating material around {sup 3}He tubes is a function of shielding. In this paper, we use Monte Carlo techniques to model the response of {sup 3}He tubes placed in polyethylene boxes for moderation. To model the shielded fission neutron source, we use a point {sup 252}Cf source placed in the center of polyethylene spheres of varying radius. Detector efficiency as a function of box geometry and shielding is explored. We find that increasing the amount of moderator behind and to the sides of the detector generally improves the detector response, but that incremental benefits are minimal if the thickness of the polyethylene moderator is greater than about 5-7 cm. The thickness of the moderator in front of the {sup 3}He tubes, however, is very important. For bare sources, about 4-5 cm of moderator is optimum, but as the shielding increases, the optimum thickness of this moderator decreases to 0.5-1 cm. Similar conclusions can be applied to polyethylene boxes employing two {sup 3}He tubes. Two-tube boxes with front moderators of non-uniform thickness may be useful for detecting neutrons over a wide energy range.

  9. Performance of thallium bromide semiconductor detectors produced by repeated Bridgman method

    International Nuclear Information System (INIS)

    Santos, Robinson Alves dos; Costa, Fabio Eduardo da; Martins, Joao Francisco Trencher; Hamada, Margarida M.

    2009-01-01

    TlBr crystals have been grown by the Repeated Bridgman method from commercial TlBr materials and characterized to be used as radiation detectors. We have shown that the Repeated Bridgman is effective to reduce the concentration of impurities in TlBr. It was observed that detectors fabricated from higher purity crystal exhibit significant improvement in performance compared to those produced from low purity crystals. However, problems still exist in TlBr detectors, due to the low charge carrier collection efficiency, which is probably caused by additional impurities or defects incorporated during crystal growth and detector fabrication processes. (author)

  10. Effect of refraction index and light sharing on detector element identification for 2D detector modules in Positron Emission Tomography

    International Nuclear Information System (INIS)

    Tornai, M.P.; Hoffman, E.J.; Cherry, S.R.

    1994-01-01

    Relationships among indices of refraction (n) of scintillation detectors, light sharing among discrete detector elements and accuracy of detector element identification in Positron Emission Tomography (PET) 2-D detector arrays were examined with theory and experiment. Mismatches between the index of refraction of scintillators and the glass of photomultipliers (PMT) were seen to lead to nonlinear relationships between crystal position and ratio (positioning) signals derived from PMTs. Insight is provided into the empirically derived use of light sharing among elements of the crystals in PET 2-D array detectors to compensate for this nonlinear response. ((orig.))

  11. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Kumar, Arvind; Topkar, Anita, E-mail: anita@barc.gov.in; Das, D.

    2017-06-21

    Prototype single crystal diamond detectors with different types of metallization and post metallization treatment were fabricated for the applications requiring fast neutron measurements in the Indian Test Blanket Module (TBM) at the International Thermonuclear Experimental Reactor (ITER) Experiment. The detectors were characterized by leakage current measurements to ascertain that the leakage currents are low and breakdown voltages are higher than the voltage required for full charge collection. The detector response to charged particles was evaluated using a {sup 238+239} Pu dual energy alpha source. The detectors showed an energy resolution of about 2% at 5.5 MeV. In order to study their suitability for the operation at higher temperatures, leakage current variation and alpha response were studied up to 300 °C. At 300 °C, peaks corresponding to 5.156 MeV and 5.499 MeV alphas could be separated and there was no significant degradation of energy resolution. Finally, the detector response to fast neutrons was evaluated using a Deuterium-Tritium (D-T) neutron generator. The observed spectrum showed peaks corresponding to various channels of n-C interactions with a clear isolated peak corresponding to ~8.5 MeV alphas. The detectors also showed high sensitivity of 3.4×10{sup −2} cps/n/(cm{sup 2} s)–4.5×10{sup −2} cps/n/(cm{sup 2} s) and excellent linearity of response in terms of count rate at different neutron flux in the observed range of 3.2×10{sup 5} n/(cm{sup 2} s) to 2.0×10{sup 6} n/(cm{sup 2} s).

  12. DNA Radiation Environments Program: Fall 1989 2-meter box experiments and analysis

    International Nuclear Information System (INIS)

    Santoro, R.T.

    1991-05-01

    This effort, sponsored by the Defense Nuclear Agency under the Radiation Environments Program, was carried out to obtain measured data for benchmarking MASH, the Monte Carlo Adjoint Code System. MASH was developed to replace the Vehicle Code System, VCS, that has been used by the Department of Defense and NATO for calculating neutron and gamma-ray radiation fields and shielding protection factors inside armored vehicles and structures from nuclear weapon radiation. Free-field data were obtained at distances of 170- and 400-meters from the APR while in-box measurements were made at 400 meters only. The box, included to obtain neutron and gamma-ray reduction factors, was a 2-meter cube configuration having 0.1016-m-thick steel walls. Calculated data were obtained using MASH by analysts from the Oak Ridge National Laboratory and Science Applications International Corporation. Calculated (C) results were compared with experimental (E) data in terms of C/E ratios. Free-field and in-box neutron kerma generally agreed within ±20%, although some C/E comparisons fell outside this range depending upon the detector against which the calculated data were compared. For those cases where the C/E ratio is marginal or unacceptable, problems in the detector systems were acknowledged to be principal cause of the discrepancy. Generally poor agreement (∼25-35%) was achieved among the C/E ratios for the free-field gamma-ray kerma at the 170- and 400-m locations while excellent (10%, or better) C/E values were obtained for the in-box conditions. The discrepancy for the free-field comparison was attributed to the failure by the analysts to include a tree line adjacent to the measurement site in the calculational geometry. C/E values for the neutron and gamma-ray reduction factors ranged from 1% to 23% depending on the detector. 4 refs., 2 figs., 14 tabs

  13. Development of a Single Detector Ring Micro Crystal Element Scanner: QuickPET II

    Directory of Open Access Journals (Sweden)

    Robert S. Miyaoka

    2005-04-01

    Full Text Available This article describes a single ring version of the micro crystal element scanner (MiCES and investigation of its spatial resolution imaging characteristics for mouse positron emission tomography (PET imaging. This single ring version of the MiCES system, referred to as QuickPET II, consists of 18 MiCE detector modules mounted as a single ring in a vertical gantry. The system has a 5.76-cm transverse field of view and a 1.98-cm axial field of view. In addition to the scanner and data acquisition system, we have developed an iterative reconstruction that includes a model of the system's detector response function. Evaluation images of line sources and mice have been acquired. Using filtered backprojection, the resolution for a reconstructed line source has been measured at 1.2 mm full width at half maximum. F-18-2-fluoro-2-deoxyglucose mouse PET images are provided. The result shows that QuickPET II has the imaging characteristics to support high-resolution, static mouse PET studies using 18-F labeled compounds.

  14. Improved spectrometric characteristics of thallium bromide nuclear radiation detectors

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with a high atomic number and wide band gap. In this study, nuclear radiation detectors have been fabricated from the TlBr crystals. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using the materials purified by many pass zone refining. The crystals were characterized by measuring the resistivity, the mobility-lifetime (mu tau) product and the energy required to create an electron-hole pair (the epsilon value). Improved energy resolution has been obtained by the TlBr radiation detectors. At room temperature the full-width at half-maximum (FWHM) for the 59.5, 122 and 662 keV gamma-ray photo peak obtained from the detectors were 3.3, 8.8 and 29.5 keV, respectively. By comparing the saturated peak position of the TlBr detector with that of the CdTe detector, the epsilon value has been estimated to be about 5.85 eV for the TlBr crystal.

  15. Scientific/Technical Report: Improvement in compensation and crystal growth of cadmium zinc telluride radiation detectors

    International Nuclear Information System (INIS)

    Kelvin G. Lynn; Kelly A. Jones

    2007-01-01

    Comparison of actual accomplishments with goals and objectives: (1) Growth of 12 ingots--Washington State University (WSU) more than met this goal for the project by growing 12 final ingots for the year. Nine of the twelve crystal growth ingots resolved gamma radiation at room temperature. The other three ingots where resistivity of ∼ 3 x 10 8 Ohm*cm for CG32a, CG36, and CG42 lower than expected, however none of these were tried with blocking contacts. All ingots were evaluated from tip to heel. In these three cases, the group III, dopant Aluminum (Al) was not detected to a level to compensate the Cd vacancies in the cadmium zinc telluride (CZT) thus the ingots were lower resistivity. The nine ingots that were successful radiation detectors averaged a bulk resistivity of 1.25 x 10 10 Ohm*cm and with a average μτ product for electrons of ∼ 2 x 10 -4 cm 2 /V with a 1/4 microsecond shaping time with samples ∼2 mm in thickness. (2) Attempt new compensations techniques--WSU also met this goal. Several doping schemes were attempted and investigated with various amounts of excess Tellurium added to the growth. The combination of Al and Erbium (Er) were first attempted for these ingots and subsequently CG34 was grown with Al, Er and Holmium. These compensation techniques produced radiation detectors and are currently under investigation. These growths were made with significant different doping levels to determine the affect of the dopants. CG43 was doped with Indium and Er. Indium was introduced instead of Al to determine if Indium is more soluble than Al for CZT and was less oxidized. This may decrease the amount of low resistivity ingots grown by doping with Indium instead of Al. (3) Grow large single crystals--Several changes in approach occurred in the crystal growth furnace. Steps were taken to maximize the crystal growth interface during growth by modifying liners, quartz, heat sinks, crucibles and various growth steps and temperature profiles. CG39 ingot

  16. Design of an ionization diffusion chamber detector

    International Nuclear Information System (INIS)

    Sugiarto, S.

    1976-01-01

    Prototype of an Ionization Diffusion Chamber detector has been made. It is a silindrical glass, 20 cm in diameter, 13,5 cm in height, air gas filled, operated at room pressure and room temperature at the top of this instrument while for the box temperature dry ice (CO 2 solid) temperature is used. This detector is ready for seeing alpha and beta particle tracks. (author)

  17. Energy resolution of the CdTe-XPAD detector:calibration and potential for Laue diffractionmeasurements on protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Medjoubi K.; Idir M.; Thompson, A.; Berar, J-F.; Clemens, J-C.; Delpierre, P.; Da Silva, P.; Dinkespiler, B.; Itie, J-P.; Legrand, P.; Menneglier, C.; Mercere, P.; Picca, F.; Samama J-P.

    2012-02-02

    The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.

  18. Gamma ray detecting device using dislocation-free crystal

    International Nuclear Information System (INIS)

    Vali, V.; Chang, D.B.

    1991-01-01

    This patent describes a γ-ray detector. It comprises: a dislocation-free single crystal having an input surface and a transmission surface at opposite ends thereof; an active shield surrounding the crystal and functioning as an anticoincidence counter; and γ-ray detector means disposed adjacent the transmission surface of the crystal for receiving and detecting γ-rays of a predetermined wavelength incident on the input surface of the crystal at a specific Bragg angle and transmitted through the crystal

  19. Synchrotron radiation and multichannel detectors in structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mokulskii, M

    1979-10-01

    A survey is presented of the development of multichannel synchrotron X radiation detectors for the structural analysis of crystals. Tests are currently under way of a 4-thousand-channel plane detector of soft X radiation. The detector consists of a multiwire proportional counter using argon and CO/sub 2/ as the working gases. The detector is coupled to a computer processing information and displaying the respective X-ray diffraction images on the monitor. The described equipment allows imaging, eg., the cross section of the elementary cell of a DNA crystal. A 16-thousand-channel detector exists in the present time and the building is envisaged of a detector with 65 thousand channels.

  20. Synchrotron radiation and multichannel detectors in structural analysis

    International Nuclear Information System (INIS)

    Mokulskij, M.

    1979-01-01

    A survey is presented of the development of multichannel synchrotron X radiation detectors for the structural analysis of crystals. Tests are currently under way of a 4-thousand-channel plane detector of soft X radiation. The detector consists of a multiwire proportional counter using argon and CO 2 as the working gases. The detector is coupled to a computer processing information and displaying the respective X-ray diffraction images on the monitor. The described equipment allows imaging, eg., the cross section of the elementary cell of a DNA crystal. A 16-thousand-channel detector exists in the present time and the building is envisaged of a detector with 65 thousand channels. (J.B.)

  1. Inorganic scintillators for detector systems physical principles and crystal engineering

    CERN Document Server

    Lecoq, Paul; Korzhik, Mikhail

    2017-01-01

    This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating...

  2. New developments in PET detector technology

    International Nuclear Information System (INIS)

    Niu Lingxin; Zhao Shujun; Zhang Bin; Liu Haojia

    2010-01-01

    The researches on PET detector are always active and innovative area. The research direction of PET detector includes improving performances of scintillator-based detectors, investigating new detectors suitable for multi-modality imaging (e.g. PET/CT and PET/MRI), meeting requirements of TOF and DOI technologies and boosting the development of the technologies. In this paper, new developments in PET detector technology about scintillation crystal, photodetector and semiconductor detector is introduced. (authors)

  3. A cadmium-zinc-telluride crystal array spectrometer

    International Nuclear Information System (INIS)

    McHugh, H. R.; Quam, W.; DeVore, T.; Vogle, R.; Weslowski, J.

    2003-01-01

    This paper describes a gamma detector employing an array of eight cadmium-zinc-telluride (CZT) crystals configured as a high resolution gamma ray spectrometer. This detector is part of a more complex instrument that identifies the isotope,displays this information, and records the gamma spectrum. Various alarms and other operator features are incorporated in this battery operated rugged instrument. The CZT detector is the key component of this instrument and will be described in detail in this paper. We have made extensive spectral measurements of the usual laboratory gamma sources, common medical isotopes, and various Special Nuclear Materials (SNM) with this detector. Some of these data will be presented as spectra. We will also present energy resolution and detection efficiency for the basic 8-crystal array. Additional data will also be presented for a 32-crystal array. The basic 8-crystal array development was completed two years ago, and the system electronic design has been imp roved recently. This has resulted in significantly improved noise performance. We expect to have a much smaller detector package, using 8 crystals, in a few months. This package will use flip-chip packaging to reduce the electronics physical size by a factor of 5

  4. Open-field mouse brain PET: design optimisation and detector characterisation

    Science.gov (United States)

    Kyme, Andre Z.; Judenhofer, Martin S.; Gong, Kuang; Bec, Julien; Selfridge, Aaron; Du, Junwei; Qi, Jinyi; Cherry, Simon R.; Meikle, Steven R.

    2017-08-01

    ‘Open-field’ PET, in which an animal is free to move within an enclosed space during imaging, is a very promising advance for neuroscientific research. It provides a key advantage over conventional imaging under anesthesia by enabling functional changes in the brain to be correlated with an animal’s behavioural response to environmental or pharmacologic stimuli. Previously we have demonstrated the feasibility of open-field imaging of rats using motion compensation techniques applied to a commercially available PET scanner. However, this approach of ‘retro-fitting’ motion compensation techniques to an existing system is limited by the inherent geometric and performance constraints of the system. The goal of this project is to develop a purpose-built PET scanner with geometry, motion tracking and imaging performance tailored and optimised for open-field imaging of the mouse brain. The design concept is a rail-based sliding tomograph which moves according to the animal’s motion. Our specific aim in this work was to evaluate candidate scanner designs and characterise the performance of a depth-of-interaction detector module for the open-field system. We performed Monte Carlo simulations to estimate and compare the sensitivity and spatial resolution performance of four scanner geometries: a ring, parallel plate, and two box variants. Each system was based on a detector block consisting of a 23  ×  23 array of 0.785  ×  0.785  ×  20 mm3 LSO crystals (overall dim. 19.6  ×  19.6  ×  20 mm). We found that a DoI resolution capability of 3 mm was necessary to achieve approximately uniform sub-millimetre spatial resolution throughout the FoV for all scanners except the parallel-plate geometry. With this DoI performance, the sensitivity advantage afforded by the box geometry with overlapping panels (16% peak absolute sensitivity, a 36% improvement over the ring design) suggests this unconventional design is best

  5. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Bird, F.; Aston, D.; Dasu, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Nagamine, T.; Pavel, T.; Muller, D.; Williams, S.; Bienz, T.; Dolinsky, S.; Solodov, E.; Coyle, P.; Cavalli-Sforza, M.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.

    1990-01-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. This paper reports on tests of these components, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating system and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, the authors report on the UV transmission of recirculated liquid freon and on the effects of CRID construction materials on electron lifetime

  6. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'vra, J.; Williams, S.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.; Whitaker, J.S.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Witherell, M.; Yellin, S.; D'Oliveira, A.; Johnson, R.A.; Martinez, J.L.; Meadows, B.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Baird, K.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Word, G.; Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.

    1991-02-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. We report on tests of these, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating system and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, we report on the UV transmission of recirculated liquid C 6 F 14 and on the effects of CRID construction materials on electron lifetime. 9 refs., 11 figs

  7. Component and system tests of the SLD Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Antilogus, P.; Aston, D.; Bienz, T.; Bird, F.; Dasu, S.; Dolinsky, S.; Dunwoodie, W.; Hallewell, G.; Kawahara, H.; Kwon, Y.; Leith, D.; Muller, D.; Nagamine, T.; Pavel, T.; Ratcliff, B.; Rensing, P.; Schultz, D.; Shapiro, S.; Simopoulos, C.; Solodov, E.; Toge, N.; Va'vra, J.; Williams, S.; Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Liu, X.; Williams, D.A.; Whitaker, J.S.; Wilson, R.J.; Bean, A.; Caldwell, D.; Duboscq, J.; Huber, J.; Lu, A.; Mathys, L.; McHugh, S.; Witherell, M.; Yellin, S.; d'Oliveira, A.; Johnson, R.A.; Martinez, J.; Meadows, B.; Nussbaum, M.; Santha, A.K.S.; Shoup, A.; Stockdale, I.; Jacques, P.; Kalelkar, M.; Plano, R.; Stamer, P.; Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.

    1990-10-01

    The components of the SLD barrel Cerenkov Ring Imaging Detector (CRID) are now built and are being installed. We report on tests of these components, including tests of the fiber optic calibration system, detailed studies of electron drift paths on production drift boxes and detectors, tests of the dynamic gating systems and its effect on drift path distortions due to space-charge, and a measurement of the electron lifetime in a production drift box. In addition, we report on the UV transmission of recirculated liquid freon and on the effects of CRID construction materials on electron lifetime. 16 refs., 12 figs

  8. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  9. Reactive chemically modified piezoelectric crystal detectors: A new class of high-selectivity sensors

    International Nuclear Information System (INIS)

    Fadeev, A.Yu.; Filatov, A.L.; Lisichkin, G.V.

    1994-01-01

    A great number of works have focused on the study of properties of modified piezoelectric quartz crystal detectors (PQCDs) coated with sorbing substrates and on applying sensors based on them for the analysis of diluted gas mixtures and solutions. This work offers a new class of gravemetric sensors characterized by a reversible chemical reaction that occurs on their surface. Silica films are proposed as a sorbing coating of quartz detectors, and a chemical modification of a surface is suggested for covalent fixation of the necessary compounds. PQCDs were chemically modified with reactive diene derivatives that can also act as dienophiles. Hexachlorocyclopentadiene (HCCPD, resonater I) and cyclopentadiene (CPD, resonator II) were fixed on a PQCD surface in several stages. After treatment with the resonaters, the PQCD in a CPD gas phase exhibited time dependent frequency shifts from 20-100 Hz. The results suggest that there is a reversible chemical reaction on the electrode surface of resonators I and II when they interact with CPD vapors. Therefore, PQCDs modified with reactive dienes were prepared for the first time and may be employed as selective sensors for CPD

  10. Fast CsI-phoswich detector

    International Nuclear Information System (INIS)

    Langenbrunner, J.R.

    1996-01-01

    An improved phoswich radiation detector used pure CsI crystal and a fast plastic scintillator and a single photomultiplier tube. The plastic is arranged to receive incident radiation, and that which passed through then strikes the CsI crystal. Scintillation light from both the plastic and CsI crystal are applied to the photomultiplier tube, with the light from the plastic passing through the crystal without absorption therein. Electronics are provided for analyzing the output of the photomultiplier tube to discriminate responses due to the plastic and the CsI crystal, through short gate and long gate integration, to produce results which are indicative of the characteristics of the different types of incident radiation, even in the presence of large amounts of radiation. The phoswich detector has excellent timing resolution. The scintillators of the CsI- phoswich were chosen for their fast risetimes, of about 3 ns for NE102A, and 30 ns for the pure CsI. 5 figs

  11. Sources, instrumentation and detectors for protein crystallography

    CERN Document Server

    Nave, C

    2001-01-01

    Some of the requirements for protein crystallography experiments on a synchrotron are described. Although data from different types of crystal are often collected without changing the X-ray beam properties, there are benefits if the incident beam is matched to a particular crystal and its diffraction pattern. These benefits are described with some examples. Radiation damage and other effects impose limits on the dose and dose rate on a protein crystal if the maximum amount of data is to be obtained. These limitations have possible consequences for the X-ray source required. Presently available commercial detector systems provide excellent data for protein crystallography but do not quite reach the specifications of the 'ideal' detector. In order to collect the most accurate data (e.g. for very weak anomalous scattering applications) detectors that produce near photon counting statistics over a wide dynamic range are required. It is possible that developments in 'pixel' detectors will allow these demanding exp...

  12. Crystal diffraction lens telescope for focusing nuclear gamma rays

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.; Graber, T.; Faiz, M.

    1996-08-01

    A crystal diffraction lens was constructed at Argonne National Laboratory for use as a telescope to focus nuclear gamma rays. It consisted of 600 single crystals of germanium arranged in 8 concentric rings. The mounted angle of each crystal was adjusted to intercept and diffract the incoming gamma rays with an accuracy of a few arc sec. The performance of the lens was tested in two ways. In one case, the gamma rays were focused on a single medium size germanium detector. In the second case, the gamma rays were focused on the central germanium detector of a 3 x 3 matrix of small germanium detectors. The efficiency, image concentration and image quality, and shape were measured. The tests performed with the 3 x 3 matrix detector system were particularly interesting. The wanted radiation was concentrated in the central detector. The 8 other detectors were used to detect the Compton scattered radiation, and their energy was summed with coincident events in the central detector. This resulted in a detector with the efficiency of a large detector (all 9 elements) and the background of a small detector (only the central element). The use of the 3 x 3 detector matrix makes it possible to tell if the source is off axis and, if so, to tell in which direction. The crystal lens acts very much like a simple convex lens for visible light. Thus if the source is off to the left then the image will focus off to the right illuminating the detector on the right side: telling one in which direction to point the telescope. Possible applications of this type of crystal lens to balloon and satellite experiments will be discussed

  13. Detector response restoration in image reconstruction of high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Liang, Z.

    1994-01-01

    A mathematical method was studied to model the detector response of high spatial-resolution positron emission tomography systems consisting of close-packed small crystals, and to restore the resolution deteriorated due to crystal penetration and/or nonuniform sampling across the field-of-view (FOV). The simulated detector system had 600 bismuth germanate crystals of 3.14 mm width and 30 mm length packed on a single ring of 60 cm diameter. The space between crystal was filled up with lead. Each crystal was in coincidence with 200 opposite crystals so that the FOV had a radius of 30 cm. The detector response was modeled based on the attenuating properties of the crystals and the septa, as well as the geometry of the detector system. The modeled detector-response function was used to restore the projections from the sinogram of the ring-detector system. The restored projections had a uniform sampling of 1.57 mm across the FOV. The crystal penetration and/or the nonuniform sampling were compensated in the projections. A penalized maximum-likelihood algorithm was employed to accomplish the restoration. The restored projections were then filtered and backprojected to reconstruct the image. A chest phantom with a few small circular ''cold'' objects located at the center and near the periphery of FOV was computer generated and used to test the restoration. The reconstructed images from the restored projections demonstrated resolution improvement off the FOV center, while preserving the resolution near the center

  14. Ultra compact spectrometer apparatus and method using photonic crystals

    Science.gov (United States)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)

    2009-01-01

    The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.

  15. CsI calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Aulchenko, V.M.; Bondar, A.E.; Erofeev, A.L.; Kovalenko, O.A.; Kozyrev, A.N.; Kuzmin, A.S.; Logashenko, I.B.; Razuvaev, G.P.; Ruban, A.A.; Shebalin, V.E.; Shwartz, B.A.; Talyshev, A.A.; Titov, V.M.; Yudin, Yu.V.; Epifanov, D.A.

    2015-01-01

    The VEPP-2000 e + e − collider has been operated at Budker Institute of Nuclear Physics since 2010. The experiments are performed with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon Calorimeter and crystal CsI calorimeter, and endcap calorimeter with BGO crystals. This paper describes the CsI calorimeter of the CMD-3 detector. The calorimeter design, its electronics and calibration procedures are discussed

  16. Characterization of 1.2×1.2 mm2 silicon photomultipliers with Ce:LYSO, Ce:GAGG, and Pr:LuAG scintillation crystals as detector modules for positron emission tomography

    Science.gov (United States)

    Omidvari, N.; Sharma, R.; Ganka, T. R.; Schneider, F. R.; Paul, S.; Ziegler, S. I.

    2017-04-01

    The design of a positron emission tomography (PET) scanner is specially challenging since it should not compromise high spatial resolution, high sensitivity, high count-rate capability, and good energy and time resolution. The geometrical design of the system alongside the characteristics of the individual PET detector modules contributes to the overall performance of the scanner. The detector performance is mainly influenced by the characteristics of the photo-detector and the scintillation crystal. Although silicon photomultipliers (SiPMs) have already proven to be promising photo-detectors for PET, their performance is highly influenced by micro-cell structure and production technology. Therefore, five types of SiPMs produced by KETEK with an active area size of 1.2 × 1.2 mm2 were characterized in this study. The SiPMs differed in the production technology and had micro-cell sizes of 25, 50, 75, and 100 μm. Performance of the SiPMs was evaluated in terms of their breakdown voltage, temperature sensitivity, dark count rate, and correlated noise probability. Subsequently, energy resolution and coincidence time resolution (CTR) of the SiPMs were measured with five types of crystals, including two Ce:LYSO, two Ce:GAGG, and one Pr:LuAG. Two crystals with a geometry of 1.5 × 1.5 × 6 mm3 were available from each type. The best CTR achieved was ~ 240 ps, which was obtained with the Ce:LYSO crystals coupled to the 50 μm SiPM produced with the trench technology. The best energy resolution for the 511 keV photo-peak was ~ 11% and was obtained with the same SiPM coupled to the Ce:GAGG crystals.

  17. The crystal zero degree detector at BESIII as a realistic high rate environment for evaluating PANDA data acquisition modules

    International Nuclear Information System (INIS)

    Werner, Marcel

    2015-03-01

    The BESIII experiment located in Beijing, China, is investigating physics in the energy region of the charm-quark via electron positron annihilation reactions. A small detector to be placed in the very forward/backward region around θ=0 at BESIII is foreseen to measure photons from the initial state. This is especially interesting, because it opens the door for various physics measurements over a wide range of energies, even below the experiment's designated energy threshold, which is fixed by the accelerator. This thesis is investigating the capabilities of a crystal zero degree detector (cZDD) consisting of PbWO 4 crystals placed in that region of BESIII. Detailed Geant4-based simulations have been performed, and the energy resolution of the detector has been determined to be σ/μ=0.06+0.025/√(E[GeV]). The determination of the center-of-mass energy √(s) isr after the emission of the photon is of great importance for the study of such events. Preliminary simulations estimated the resolution of the reconstructed √(s) isr using the cZDD information to be significantly better than 10 % for appropriate photon impacts on the detector. Such events can only be investigated, when data from the cZDD and other detectors of BESIII can be correlated. A fast and powerful Data Acquisition (DAQ) capable of performing event correlation in real time is needed. DAQ modules capable of performing real time event correlation are being developed for the PANDA experiment at the future FAIR facility in Darmstadt, Germany. Investigating these modules in a realistic high-rate environment such as provided at BESIII, offers a great opportunity to gain experience in real time event correlation before the start of PANDA. Developments for the cZDD's DAQ using prototype PANDA DAQ modules have been done and successfully tested in experiments with radioactive sources and a beamtest with 210 MeV electrons at the Mainz Microtron.

  18. Development of crystals based in cesium iodide for application as radiation detectors; Desenvolvimento de cristais baseados em iodeto de cesio para aplicacao como detectores de radiacao

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Maria da Conceicao Costa

    2006-07-01

    Inorganic scintillators with fast luminescence decay time, high density and high light output have been the object of studies for application in nuclear physics, high energy physics, nuclear tomography and other fields of science and engineering. Scintillation crystals based on cesium iodide (CsI) are matters with relatively low higroscopy, high atomic number, easy handling and low cost, characteristics that favor their use as radiation detectors. In this work, the growth of pure CsI crystals, CsI:Br and CsI:Pb, using the Bridgman technique, is described. The concentration of the bromine doping element (Br) was studied in the range of 1,5x10{sup -1} M to 10{sup -2} M and the lead (Pb) in the range of 10{sup -2} M to 5x10{sup -4} M. To evaluate the scintillators developed, systematic measurements were carried out for luminescence emission and luminescence decay time for gamma radiation, optical transmittance assays, Vickers micro-hardness assays, determination of the doping elements distribution along the grown crystals and analysis of crystals response to the gamma radiation in the energy range of 350 keV to 1330 keV and alpha particles from a {sup 241}Am source, with energy of 5.54 MeV. It was obtained 13 ns to 19 ns for luminescence decay time for CsI:Br and CsI:Pb crystals. These results were very promising. The results obtained for micro-hardness showed a significant increase in function of the doping elements concentration, when compared to the pure CsI crystal, increasing consequently the mechanical resistance of the grown crystals. The validity of using these crystals as radiation sensors may be seen from the results of their response to gamma radiation and alpha particles. (author)

  19. Pulse shaper for scintillation detectors with NaI(Tl) or CsI(Tl) crystals

    International Nuclear Information System (INIS)

    Novisov, B.S.; Maksimenko, A.S.; Baryshev, A.V.; Zhukov, A.V.

    1978-01-01

    The basic circuit of a signal shaper for scintillation detectors with NaI(Tl) and CsI(Tl) crystals is described. To increase amplitude resolution, it is suggested to integrate not the whole charge at the photomultiplier output, but a part of the charge during the initial 100 ns of the current pulse; the remaining part of the current signal is compensated directly at the photomultiplier anode by means of an electric circuit. The principal elements of the spectrometric signal shaper include an input transistor amplifier, a compensation circuit, a key element, a shaper amplifier of time pulses, a shaper of signal duration for controlling the key element, and an output spectrometric amplifier. This device, being used, one can shape pulses at durations of 100 ns and more. The shaper restoration time does not exceed 50 ns. When the shaper operates with NaI(Tl) crystals and at counting rate of 10 6 pulse/s, the amplitude resolution with and without the compensation circuit is 17% and 21% respectively

  20. Crystallization and preliminary X-ray diffraction analysis of the C-terminal domain of the human spliceosomal DExD/H-box protein hPrp22

    International Nuclear Information System (INIS)

    Kudlinzki, Denis; Nagel, Christian; Ficner, Ralf

    2009-01-01

    The cloning, purification and crystallization of the C-terminal domain of human hPrp22 are reported. This communication also contains data for the preliminary X-ray diffraction analysis. The Homo sapiens DExD/H-box protein hPrp22 is a crucial component of the eukaryotic pre-mRNA splicing machinery. Within the splicing cycle, it is involved in the ligation of exons and generation of the lariat and it additionally catalyzes the release of mature mRNA from the spliceosomal U5 snRNP. The yeast homologue of this protein, yPrp22, shows ATP-dependent RNA-helicase activity and is capable of unwinding RNA/RNA duplex molecules. A truncated construct coding for residues 950–1183 of human Prp22, comprising the structurally and functionally uncharacterized C-terminal domain, was cloned into an Escherichia coli expression vector. The protein was subsequently overproduced, purified and crystallized. The crystals obtained diffracted to 2.1 Å resolution, belonged to the tetragonal space group P4 1 2 1 2 or P4 3 2 1 2, with unit-cell parameters a = b = 78.2, c = 88.4 Å, and contained one molecule in the asymmetric unit

  1. Alpha contamination assessment for D ampersand D activities: Monitoring inside glove boxes and vessels

    International Nuclear Information System (INIS)

    Rawool-Sullivan, M.W.; Bolton, R.D.; Conaway, J.G.; MacArthur, D.W.

    1996-02-01

    We have developed a new approach to glove box monitoring that involves drawing air out of one glove port through a detection grid that collects ions created in the air inside the glove box by ionizing radiation, especially alpha radiation. The charge deposited on the detection grid by the ions is measured with a sensitive electrometer. The air can be circulated back to the glove box through the other glove port, preventing contamination from leaving the glove box and detector system. Initial experiments using a mock-up constructed of sheet metal indicate that this technology provides the measurement technique needed to perform a defensible, non-invasive measurement of alpha contamination inside glove boxes destined for waste disposal. This can result in an enormous cost savings if a given glove box can be shown to fall into the catagory of Low-Level Waste rather than Trans-Uranic Waste. Considering that hundreds of glove boxes contaminated with plutonium will be taken out of service at various nuclear facilities over the next few years, the potential cost savings associated with disposal as LLW rather than TRU waste are substantial

  2. New detector techniques

    CERN Document Server

    Iarocci, Enzo

    1994-03-14

    The intense R&D effort being carried out in view of LHC has given rise in a relatively short time to a wide spectrum of new detector concepts and technologies. Subject of the lectures will be some of the most interesting new ideas and developments, in the field of noble liquid, crystal and scintillating fiber trackers. The emphasis will be on the basic aspects of detector operation.

  3. Polycrystalline diamond detectors with three-dimensional electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)

    2015-10-01

    The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.

  4. The CRESST-III detector module

    Energy Technology Data Exchange (ETDEWEB)

    Wuestrich, Marc [Max-Planck-Institut f. Physik (Werner-Heisenberg-Institut) (Germany); Collaboration: CRESST-Collaboration

    2016-07-01

    The direct dark matter experiment CRESST uses scintillating calorimeters to detected WIMP induced nuclear scattering in CaWO{sub 4} single crystals. Equipped with transition edge sensors (TESs), these detectors can achieve detection thresholds well below 1 keV. The last physics run of CRESST-II proved the high potential of the experiment especially for small WIMP masses and triggered the development of a new detector module using much smaller CaWO{sub 4} main absorbers. The upcoming CRESST-III run will mainly be equipped with these newly developed modules, which combine a fully scintillating detector housing with an improved detection threshold (<100 keV). While many features of the new module were adapted from previous module designs in an improved way, also new features are implemented like instrumented sticks (iSticks) holding the crystals and optimized TES structures for phonon and light detectors. First tests above ground validated the improved performance of these detector modules and promise to explore new regions in the WIMP parameter space in the next CRESST-III run.

  5. Cryostat for an well logging probe using a semiconductor detector

    International Nuclear Information System (INIS)

    Tapphorn, R.M.

    1978-01-01

    This invention proposes to construct an well logging tool of the type comprising a semiconductor radiation detector devoid of the defects usually observed. This aim is attained by means of a cryostat to cool a semiconductor radiation detector in a restricted space where the temperature is high. It includes a long box dimensioned to pass through a bore hole, a cryogenic chamber housed in the box, a vacuum chamber thermally insulating the cryogenic chamber and placed around it, a semiconductor radiation detector housed in the vacuum chamber in thermal contact with the cryogenic chamber and an active vacuum pump fitted in the box and connected to the vacuum chamber to maintain a vacuum in it. In an improved version, the vacuum pump is fitted outside the cryostat so that it operates independently of the temperature conditions in the cryostat. If the pump needs to be cooled to reduce the gas discharge, it can be fitted inside the cryostat and connected to the cryogenic chamber or a second cryostat can also be provided to cool the pump. The vacuum pump is designed to maintain the vacuum in the thermal insulation vacuum chamber at a desired figure, preferably 10 -4 Torr or under, in order to preserve the integrity of the thermal insulation layer around the cryogenic chamber and thereby extending the efficient operating period of the detector. The cryogenic material used is preferably of fusion resistant type such as Freon 22 [fr

  6. Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease

    Science.gov (United States)

    Foudray, Angela Marie Klohs

    Detecting, quantifying and visualizing biochemical mechanism in a living system without perturbing function is the goal of the instrument and algorithms designed in this thesis. Biochemical mechanisms of cells have long been known to be dependent on the signals they receive from their environment. Studying biological processes of cells in-vitro can vastly distort their function, since you are removing them from their natural chemical signaling environment. Mice have become the biological system of choice for various areas of biomedical research due to their genetic and physiological similarities with humans, the relatively low cost of their care, and their quick breeding cycle. Drug development and efficacy assessment along with disease detection, management, and mechanism research all have benefited from the use of small animal models of human disease. A high resolution, high sensitivity, three-dimensional (3D) positioning positron emission tomography (PET) detector system was designed through device characterization and Monte Carlo simulation. Position-sensitive avalanche photodiodes (PSAPDs) were characterized in various packaging configurations; coupled to various configurations of lutetium oxyorthosilicate (LSO) scintillation crystals. Forty novelly packaged final design devices were constructed and characterized, each providing characteristics superior to commercially available scintillation detectors used in small animal imaging systems: ˜1mm crystal identification, 14-15% of 511 keV energy resolution, and averaging 1.9 to 5.6 ns coincidence time resolution. A closed-cornered box-shaped detector configuration was found to provide optimal photon sensitivity (˜10.5% in the central plane) using dual LSO-PSAPD scintillation detector modules and Monte Carlo simulation. Standard figures of merit were used to determine optimal system acquisition parameters. A realistic model for constituent devices was developed for understanding the signals reported by the

  7. Fabrication of double-sided thallium bromide strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hitomi, Keitaro, E-mail: keitaro.hitomi@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Nagano, Nobumichi [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Onodera, Toshiyuki [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, Sendai 982-8577 (Japan); Kim, Seong-Yun; Ito, Tatsuya; Ishii, Keizo [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2016-07-01

    Double-sided strip detectors were fabricated from thallium bromide (TlBr) crystals grown by the traveling-molten zone method using zone-purified materials. The detectors had three 3.4-mm-long strips with 1-mm widths and a surrounding electrode placed orthogonally on opposite surfaces of the crystals at approximately 6.5×6.5 mm{sup 2} in area and 5 mm in thickness. Excellent charge transport properties for both electrons and holes were observed from the TlBr crystals. The mobility-lifetime products for electrons and holes in the detector were measured to be ~3×10{sup −3} cm{sup 2}/V and ~1×10{sup −3} cm{sup 2}/V, respectively. The {sup 137}Cs spectra corresponding to the gamma-ray interaction position were obtained from the detector. An energy resolution of 3.4% of full width at half maximum for 662-keV gamma rays was obtained from one “pixel” (an intersection of the strips) of the detector at room temperature.

  8. Miniature quartz crystal-resonator-based thermogravimetric detector.

    Science.gov (United States)

    Sai, N; Tagawa, Y; Sohgawa, M; Abe, T

    2014-09-01

    In this work, a new design for a microheater combined with a quartz crystal microbalance (QCM) array for thermogravimetric analysis is presented. Each QCM consists of two electrodes to excite thickness-shear-mode vibrations and one microheater to increase the temperature on the crystal backside. In addition, all the electrode pads are patterned on the crystal backside, making the design of the QCM compact and user-friendly. Finally, the proposed QCM array was employed to separate ethanol from methanol. This was successfully achieved via thermal desorption spectra calculated by differentiating the frequency changes.

  9. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko; Tashima, Hideaki [National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Chiba University, Chiba (Japan); Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan)

    2015-05-18

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  10. Imaging performance of a full-ring prototype PET-MRI system based on four-layer DOI-PET detectors integrated with a RF coil

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tashima, Hideaki; Suga, Mikio; Inadama, Naoko; Eiji, Yoshida; Obata, Takayuki; Yamaya, Taiga

    2015-01-01

    We are developing a PET system integrated with a birdcage RF-coil for PET-MRI in order to realize both high sensitivity and high spatial resolution of the PET image by using the 4-layered depth-of-interaction (DOI) PET detector. We constructed a full-ring prototype system and evaluated performances, especially imaging performance, of the prototype system in simultaneous measurement. The prototype system consists of eight four-layer DOI-PET detectors and a prototype birdcage RF-coil developed for the proposed system. The PET detectors consist of six monolithic multi-pixel photon counter array (S11064-050P), a readout circuit, fourlayer DOI scintillator arrays and a shielding box made of 35 μm thick copper foil. The crystal array consists of 2.0 mm x 2.0 mm x 5.0 mm LYSO crystals arranged in 38 x 6 x 4 layer. The RF-coil has eight coil elements and the eight PET detectors are positioned at each element gap. The diameter of the RF-coil elements is 261 mm. We conducted performance tests of the prototype system with a 3.0 T MRI (MAGNETOM Verio). Only the PET detectors, the RF-coil and the cables were in an MRI room during measurements. A data acquisition system and power supplies for the MPPCs and preamplifiers were outside the MRI room and connected to all the detectors through a penetration panel. As a result, the spatial resolutions of a Na-22 point source in the PET image were lower than 1.6 mm in whole the FOV due to the DOI capability. In addition, the influence of the simultaneous measurements on the PET performance is negligible. On the other hand, the SNR of the phantom image in the magnitude images was degraded from 259.7 to 209.4 due to noise contamination from the power supplies.

  11. Whole body detectors for clinical applications

    International Nuclear Information System (INIS)

    Silar, J.

    The requirements are presented on the parameters of whole-body detectors suitable for clinical retention assays and the detector-patient configuration described. A whole-body detector was developed with an axial configuration of two pairs of large-volume scintillation detectors with NaI(Tl) crystals. One pair is placed under the bed, the other above the bed on which the patient is being examined. The axes of the crystals are located at a distance of 90 cm apart. The field of vision of the detector is described for the application of a 137 Cs source in the air and in a 24 cm layer of water. The positive characteristics of the detector are listed as being homogeneous sensitivity, energy resolution, long-term stability of signal pulse amplitude and average pulse rate in the integral mode. The results obtained show that the detector may be used to evaluate the level of contamination of persons by gamma emitters within the region of approximately 800 Bq to 74 MBq. The error in converting the number of signal pulses in the integral mode does not exceed 50% for gamma emitters with a photon energy above 30O keV. (J.B.)

  12. Cellular automaton-based position sensitive detector equalization

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando, Nestor [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)], E-mail: nesferjo@upvnet.upv.es; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M. [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  13. Cellular automaton-based position sensitive detector equalization

    International Nuclear Information System (INIS)

    Ferrando, Nestor; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M.

    2009-01-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  14. Characterization of 1.2×1.2 mm2 silicon photomultipliers with Ce:LYSO, Ce:GAGG, and Pr:LuAG scintillation crystals as detector modules for positron emission tomography

    International Nuclear Information System (INIS)

    Omidvari, N.; Sharma, R.; Schneider, F.R.; Ziegler, S.I.; Ganka, T.R.; Paul, S.

    2017-01-01

    The design of a positron emission tomography (PET) scanner is specially challenging since it should not compromise high spatial resolution, high sensitivity, high count-rate capability, and good energy and time resolution. The geometrical design of the system alongside the characteristics of the individual PET detector modules contributes to the overall performance of the scanner. The detector performance is mainly influenced by the characteristics of the photo-detector and the scintillation crystal. Although silicon photomultipliers (SiPMs) have already proven to be promising photo-detectors for PET, their performance is highly influenced by micro-cell structure and production technology. Therefore, five types of SiPMs produced by KETEK with an active area size of 1.2 × 1.2 mm 2 were characterized in this study. The SiPMs differed in the production technology and had micro-cell sizes of 25, 50, 75, and 100 μm. Performance of the SiPMs was evaluated in terms of their breakdown voltage, temperature sensitivity, dark count rate, and correlated noise probability. Subsequently, energy resolution and coincidence time resolution (CTR) of the SiPMs were measured with five types of crystals, including two Ce:LYSO, two Ce:GAGG, and one Pr:LuAG. Two crystals with a geometry of 1.5 × 1.5 × 6 mm 3 were available from each type. The best CTR achieved was ∼ 240 ps, which was obtained with the Ce:LYSO crystals coupled to the 50 μm SiPM produced with the trench technology. The best energy resolution for the 511 keV photo-peak was ∼ 11% and was obtained with the same SiPM coupled to the Ce:GAGG crystals.

  15. Detector frontier: Theoretical expectations and dreams

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1992-01-01

    The new large detector systems are certain to shed new light on many aspects of nuclear structure. Some of these areas for future studies are discussed. In this contribution the author concentrates on several aspects of nuclear spectroscopy, that will be accessible by modern detector systems (e.g., γ-ray crystal balls or new-generation particle detectors)

  16. Crystals in the LHC

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    Bent crystals can be used to deflect charged particle beams. Their use in high-energy accelerators has been investigated for almost 40 years. Recently, a bent crystal was irradiated for the first time in the HiRadMat facility with an extreme particle flux, which crystals would have to withstand in the LHC. The results were very encouraging and confirmed that this technology could play a major role in increasing the beam collimation performance in future upgrades of the machine.   UA9 bent crystal tested with a laser. Charged particles interacting with a bent crystal can be trapped in channelling states and deflected by the atomic planes of the crystal lattice (see box). The use of bent crystals for beam manipulation in particle accelerators is a concept that has been well-assessed. Over the last three decades, a large number of experimental findings have contributed to furthering our knowledge and improving our ability to control crystal-particle interactions. In modern hadron colliders, su...

  17. Testing the Ge Detectors for the MAJORANA DEMONSTRATOR

    Science.gov (United States)

    Xu, W.; Abgrall, N.; Aguayo, E.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y.-D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, D. G.; Poon, A. W. P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Yakushev, E.; Young, A. R.; Yu, C.-H.; Yumatov, V.

    High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this talk, we will present our measurements that characterize the HPGe crystals. We will also discuss the our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.

  18. Dual concentric crystal low energy photon detector

    Science.gov (United States)

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  19. The X'tal cube PET detector with a monolithic crystal processed by the 3D sub-surface laser engraving technique: Performance comparison with glued crystal elements

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Hirano, Yoshiyuki; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601 (Japan); Murayama, Hideo; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2013-09-21

    The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from six sides of the crystal block. The X'tal cube is composed of a 3D crystal block with isotropic segments. Each face of the 3D crystal block is covered with a 4×4 array of multi-pixel photon counters (MPPCs). Previously, in order to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving technique to a monolithic crystal block instead of gluing segmented small crystals. A dense arrangement of multiple micro-cracks carved by the laser beam works efficiently as a scattering wall for the scintillation photons. The X'tal cube with the laser-processed block showed excellent performance with respect to crystal identification and energy resolution. In this work, for characteristics comparison between the laser-processed block and the conventional segmented array block, we made the laser-processed block and two types of segmented array blocks, one with air gaps and the other with glued segmented small crystals. All crystal blocks had 3D grids of 2 mm pitch. The 4×4 MPPC arrays were optically coupled to each surface of the crystal block. When performance was evaluated using a uniform irradiation of 511 keV, we found that the X'tal cubes with the laser-processed block could easily achieve 2 mm{sup 3} uniform crystal identification. Also, the average energy resolution of each 3D grid was 11.1±0.7%. On the other hand, the glued segmented array block had a pinched distribution and crystals could not be separated clearly. The segmented array block with air gaps had satisfactory crystal identification performance; however, the laser-processed block had higher crystal identification performance. Also, the energy resolution of the laser-processed block was better than for the segmented array blocks. In summary, we found the laser-processed X'tal cube had

  20. Semiconductor crystal high resolution imager

    Science.gov (United States)

    Levin, Craig S. (Inventor); Matteson, James (Inventor)

    2011-01-01

    A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).

  1. Energy spectra analysis of the four-layer DOI detector for the brain PET scanner: jPET-D4

    International Nuclear Information System (INIS)

    Yoshida, Eiji; Kitamura, Keishi; Tsuda, Tomoaki; Shibuya, Kengo; Yamaya, Taiga; Inadama, Naoko; Hasegawa, Tomoyuki; Murayama, Hideo

    2006-01-01

    A depth of interaction (DOI) detector is being developed for the brain PET scanner, jPET-D4. We introduce a light output correction procedure to compensate for variations among the crystal elements in the DOI detector. Under uniform irradiation with 511 keV gamma rays, we estimate the light output of each crystal element by identifying each crystal element, and generate a look-up table (LUT) for light output correction. We evaluate the energy resolution of all crystal elements. The energy resolution of 16% is achieved after light output correction for all crystal elements. The DOI detector can correct light output variations that are related to the DOI. We analyze the crystal position dependence of the energy spectra due to inter-crystal scattering among the multiple crystal elements in the DOI detector. It is highly possible that gamma rays interacting with central crystal elements in the crystal array are absorbed by surrounding crystal elements and the Compton part of the energy spectrum is decreased. Inter-crystal scattering has less impact on the energy resolution of the DOI detector

  2. Investigation of the optimal detector arrangement for the helmet-chin PET – A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Abdella M., E-mail: abdellanur@gmail.com; Tashima, Hideaki; Yoshida, Eiji; Yamaya, Taiga, E-mail: yamaya.taiga@qst.go.jp

    2017-06-21

    High sensitivity and high spatial resolution dedicated brain PET scanners are in high demand for early diagnosis of neurodegenerative diseases and studies of brain functions. To meet the demand, we have proposed the helmet-chin PET geometry which has a helmet detector and a chin detector. Our first prototype scanner used 54 4-layer depth-of-interaction (DOI) detectors. The helmet detector of the scanner had three detector rings with different radii arranged on a surface of a hemisphere (with a radius of 126.5 mm) and a top cover detector. Therefore, in this study, for our next development, we propose a spherical arrangement, in which the central axis of each detector points toward the center of the hemisphere, and we optimize the size of the detector crystal block to be arranged on the helmet detector. We simulate the spherical arrangement with the optimized crystal block size and compare its imaging performance with the multi-ring arrangement, which has a similar detector arrangement to that of our first prototype. We conduct Monte Carlo simulation to model the scanners having the 4-layer DOI detectors which consist of LYSO crystals. A dead space of 2 mm is assumed on each side of the crystal blocks such as for wrapping. The size of the crystal block is varied from 4×4 mm{sup 2} to 54×54 mm{sup 2} while fixing the thickness of the crystal block to 20 mm. We find that the crystal block sized at 42×42 mm{sup 2} has the highest sensitivity for a hemispherical phantom. The comparison of the two arrangements with the optimized crystal blocks show that, for the same number of crystal blocks, the spherical arrangement has 17% higher sensitivity for the hemispherical phantom than the multi-ring arrangement. We conclude that the helmet-chin PET with the spherical arrangement constructed from the crystal block sized at 42×42×20 mm{sup 3} has better imaging performance especially at the upper part of the brain compared to the multi-ring arrangement while keeping similar

  3. Comparative study of mean value of 111 and mean value of 100 crystals and capacitance measurements on Si strip detectors in CSM

    International Nuclear Information System (INIS)

    Albergo, S.

    1999-01-01

    For the construction of the silicon microstrip detectors for the tracker of CMS experiment, two different substrate choices were investigated. A high-resistivity substrate with mean value of 111 crystal orientation and a low-resistivity one with mean value of 100 Dirac ket vector crystal orientation. The interstrip and backplane capacitances were measured before and after the exposure to radiation in a range of strip pitches from 60 μm to 240 μm and for values of the width-pitch ratio between 0.1 and 0.5

  4. A mower detector to judge soil sorting

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Johnson, N.R.

    1995-01-01

    Thermo Nuclear Services (TNS) has developed a mower detector as an inexpensive and fast means for deciding potential value of soil sorting for cleanup. It is a shielded detector box on wheels pushed over the ground (as a person mows grass) at 30 ft/min with gamma-ray counts recorded every 0.25 sec. It mirror images detection by the TNS transportable sorter system which conveys soil at 30 ft/min and toggles a gate to send soil on separate paths based on counts. The mower detector shows if contamination is variable and suitable for sorting, and by unique calibration sources, it indicates detection sensitivity. The mower detector has been used to characterize some soil at Department of Energy sites in New Jersey and South Carolina

  5. A mower detector to judge soil sorting

    Energy Technology Data Exchange (ETDEWEB)

    Bramlitt, E.T.; Johnson, N.R. [Thermo Nuclear Services, Inc., Albuquerque, NM (United States)

    1995-12-31

    Thermo Nuclear Services (TNS) has developed a mower detector as an inexpensive and fast means for deciding potential value of soil sorting for cleanup. It is a shielded detector box on wheels pushed over the ground (as a person mows grass) at 30 ft/min with gamma-ray counts recorded every 0.25 sec. It mirror images detection by the TNS transportable sorter system which conveys soil at 30 ft/min and toggles a gate to send soil on separate paths based on counts. The mower detector shows if contamination is variable and suitable for sorting, and by unique calibration sources, it indicates detection sensitivity. The mower detector has been used to characterize some soil at Department of Energy sites in New Jersey and South Carolina.

  6. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography

    Science.gov (United States)

    Habte, F.; Foudray, A. M. K.; Olcott, P. D.; Levin, C. S.

    2007-07-01

    We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (oriented 'edge-on' with respect to incoming 511 keV annihilation photons and arranged to form a compact FOV with detectors very close to, or in contact with, the subject tissues. In this paper, we used Monte Carlo simulation to study various factors that limit the photon sensitivity of a high-resolution PET system dedicated to small animal imaging. To optimize the photon sensitivity, we studied several possible system geometries for a fixed 8 cm transaxial and 8 cm axial FOV. We found that using rectangular-shaped detectors arranged into a cylindrical geometry does not yield the best photon sensitivity. This is due to the fact that forming rectangular-shaped detectors into a ring produces significant wedge-shaped inter-module gaps, through which Compton-scattered photons in the detector can escape. This effect limits the center point source photon sensitivity to 8% photon sensitivity for the LSO-PSAPD box configuration and >15% for CZT box geometry, using a 350-650 keV energy window setting. These simulation results compare well with analytical estimations. The trend is different for a clinical whole-body PET system that uses conventional LSO-PMT block detectors with larger crystal elements. Simulations predict roughly the same sensitivity for both box and cylindrical detector configurations. This results from the fact that a large system diameter (>80 cm) results in relatively small inter-module gaps in clinical whole-body PET. In addition, the relatively large block

  7. Analysis of laser-generated plasma ionizing radiation by synthetic single crystal diamond detectors

    Czech Academy of Sciences Publication Activity Database

    Marinelli, M.; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Cutroneo, M.; Torrisi, L.; Margarone, Daniele; Velyhan, Andriy; Krása, Josef; Krouský, Eduard

    2013-01-01

    Roč. 272, May (2013), s. 104-108 ISSN 0169-4332 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE.2.3.20.0087; GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OPVK 3 Laser Zdroj(XE) CZ.1.07/2.3.00/20.0279; OP VK 2 LaserGen(XE) CZ.1.07/2.3.00/20.0087; 7FP LASERLAB-EUROPE(XE) 228334 Program:EE; FP7 Institutional support: RVO:68378271 Keywords : single crystal diamond * diamond detector * laser-generated plasma * ionizing radiation * time-of-fight spectrometer Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.538, year: 2013

  8. Resonance formation in γγ-collisions - as observed with the Crystal Ball detector

    International Nuclear Information System (INIS)

    Bienlein, J.K.

    1991-01-01

    Analysis of two-photon reactions with the Crystal Ball detector at the DORIS-II e + e - storage ring (E beam = 5 GeV) resulted in a complete set of data on γγ-formation of mesons. The data are best represented by their helicity matrix elements. For isoscalar mesons the mixing of non-strange and strange quark constituents can be derived. A highly efficient selection of the channel γγ → π 0 π 0 yielded 7000 events with (M(π 0 π 0 ) > 800 MeV/c 2 . A partial wave decomposition became possible and showed under the f 2 (1270) a scalar meson resonance f 0 (1250) with 4.0 standard deviations. In the same analysis 23 events of γγ → ηη have been found. (orig.)

  9. Determination of surface recombination velocity and bulk lifetime in detector grade silicon and germanium crystals

    International Nuclear Information System (INIS)

    Derhacobian, N.; Fine, P.; Walton, J.T.; Wong, Y.K.; Rossington, C.S.; Luke, P.N.

    1993-10-01

    Utility of a noncontact photoconductive decay (PCD) technique is demonstrated in measuring bulk lifetime, τ B , and surface recombination velocity, S, in detector grade silicon and germanium crystals. We show that the simple analytical equations which relate the observed effective lifetimes in PCD transients to τ B and S have a limited range of applicability. The noncontact PCD technique is used to determine the effect of several surface treatments on the observed effective lifetimes in Si and Ge. A degradation of the effective lifetime in Si is reported as result of the growth of a thin layer of native oxide at room temperature under atmospheric conditions

  10. Hanging drop crystal growth apparatus

    Science.gov (United States)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  11. Solid state detector module

    International Nuclear Information System (INIS)

    Hoffman, D. M.

    1985-01-01

    A solid state detector in which each scintillator is optimally configured and coupled with its associated sensing diode in a way which exploits light piping effects to enhance efficiency, and at the same time provide a detector which is modular in nature. To achieve light piping, the scintillator crystal is oriented such that its sides conform with the crystal cleavage plane, and the sides are highly polished. An array of tungsten collimator plates define the individual channels. Multi-channel scintillator/diode modules are mounted behind and in registry with the plurality of collimator plates. A plurality of scintillators are bonded together after coating the surfaces thereof to minimize optical crosstalk. After lapping the face of the scintillator module, it is then bonded to a diode module with individual scintillators in registration with individual diodes. The module is then positioned in the detector array with collimator plates at the junctions between the scintillators

  12. The system of the designing for PET detectors

    International Nuclear Information System (INIS)

    Fang Zongliang

    2006-01-01

    PET stands for Positron Emission Tomography, a new nuclear medicine imaging device. PET detector is the key of PET. This paper introduces a system of the designing for PET detector. The system can be used to design various PET detector. A PET detector BLOCK with 8 x 8 crystals has been designed and built by this system. (authors)

  13. SuperCDMS Underground Detector Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.; Orrell, John L.

    2018-03-01

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discovery of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.

  14. Performance evaluation of BGO block detectors used in positron emission tomography and a coincidence system

    International Nuclear Information System (INIS)

    Kim, J. H.; Choi, Y.; Lim, K. C.; Lee, M. Y.; Woo, S. K.; Lee, K. H.; Kim, S. E.; Choi, Y. S.; Kim, B. T.

    1999-01-01

    We investigated the basic performances of the BGO block detectors, which is used in the GE Advance positron emission tomography. The block detector is composed of 36 small BGO crystals coupled to two 2-channel photomultiplier tubes. In this study, we measured the crystal map and the intrinsic energy resolution of the detector. The coincidence signals between the detectors were also obtained using F-18. The intrinsic energy resolution of the block detector was 69% FWHM at 140 keV and 33% FWHM at 511 keV. High quality crystal map and the coincidence signals between the detectors were successfully obtained. The timing resolution of the detectors are being measured. The results of this study demonstrate the feasibility of developing high performance positron emission tomography

  15. Systematic identification of crystallization kinetics within a generic modelling framework

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli Bin; Meisler, Kresten Troelstrup; Gernaey, Krist

    2012-01-01

    A systematic development of constitutive models within a generic modelling framework has been developed for use in design, analysis and simulation of crystallization operations. The framework contains a tool for model identification connected with a generic crystallizer modelling tool-box, a tool...

  16. The CMS crystal calorimeter

    CERN Document Server

    Lustermann, W

    2004-01-01

    The measurement of the energy of electrons and photons with very high accuracy is of primary importance far the study of many physics processes at the Large Hadron Collider (LHC), in particular for the search of the Higgs Boson. The CMS experiment will use a crystal calorimeter with pointing geometry, almost covering 4p, as it offers a very good energy resolution. It is divided into a barrel composed of 61200 lead tungstate crystals, two end-caps with 14648 crystals and a pre-shower detector in front of the end-cap. The challenges of the calorimeter design arise from the high radiation environment, the 4 Tesla magnetic eld, the high bunch crossing rate of 40 MHz and the large dynamic range, requiring the development of fast, radiation hard crystals, photo-detectors and readout electronics. An overview of the construction and design of the calorimeter will be presented, with emphasis on some of the details required to meet the demanding performance goals. 19 Refs.

  17. Response function of a p type - HPGe detector

    International Nuclear Information System (INIS)

    Lopez-Pino, Neivy; Cabral, Fatima Padilla; D'Alessandro, Katia; Maidana, Nora Lia; Vanin, Vito Roberto

    2011-01-01

    The response function of a HPGe detector depends on Ge crystal dimensions and dead layers thicknesses; most of them are not given by the manufacturers or change with detector damage from neutrons or contact with the atmosphere and therefore must be experimentally determined. The response function is obtained by a Monte-Carlo simulation procedure based on the Ge crystal characteristics. In this work, a p-type coaxial HPGe detector with 30% efficiency, manufactured in 1989, was investigated. The crystal radius and length and the inner hole dimensions were obtained scanning the capsule both in the radial and axial directions using 4 mm collimated beams from 137 Cs, 207 Bi point sources placed on a x-y table in steps of 2,00 mm. These dimensions were estimated comparing the experimental peak areas with those obtained by simulation using several hole configurations. In a similar procedure, the frontal dead layer thickness was determined using 2 mm collimated beams of the 59 keV gamma-rays from 241 Am and 81 keV from 133 Ba sources hitting the detector at 90 deg and 45 deg with respect to the capsule surface. The Monte Carlo detector model included, besides the crystal, hole and capsules sizes, the Ge dead-layers. The obtained spectra were folded with a gaussian resolution function to account for electronic noise. The comparison of simulated and experimental response functions for 4 mm collimated beams of 60 Co, 137 Cs, and 207 Bi points sources placed at distances of 7, 11 and 17 cm from the detector end cap showed relative deviations of about 10% in general and below 10% in the peak. The frontal dead layer thickness determined by our procedure was different from that specified by the detector manufacturer. (author)

  18. Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms

    NARCIS (Netherlands)

    Bianchi, E.; Doppelbauer, G.; Filion, L.C.; Dijkstra, M.; Kahl, G.

    2012-01-01

    We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the

  19. Department of Detectors and Nuclear Electronics - Overview

    International Nuclear Information System (INIS)

    Guzik, Z.

    2006-01-01

    I(Tl) crystal as the gamma detector for the EURITRACK project at the borders. Finally, in the third project, guided by the High Energy Physics Department, we contribute to development of the recoil detector for COMPASS experiment at CERN working together with Photonis Company in France on a developing of new large diameter photomultipliers with enhanced timing capabilities. The Department was involved in scientific collaborations with a number of international centers, such as CERN, Royal Institute of Technology and Karolinska Institute in Stockholm, FZR Rossendorf, IKF Juelich, GSI Darmstadt, INFN Padova, CEA Saclay and Cadarache, IRB Zagreb, and companies as Saint-Gobain, Scionix in Holland, Photonis in France, Target in Germany and Siemens (former CTI) in USA. Additionally collaboration with IAEA in Vienna concerning monitoring of State borders was continued. Several scientific contracts were realized for the European industry. The collaboration with High Energy Physics Department of our Institute was focused on LHCb experiment in CERN. Our contribution was to design basic hardware modules concerning overall control of the experiment apparatus. In 2005 the final versions of all of those modules were released and mass production was started. In total there will be used 28 of Readout Supervisors (ODIN), 4 TFC Switches (THOR), 6 Throttle Switches (MUNIN) and 48 Throttle OR's (HUGIN). Our works on development of new generation State of the Art PCI based and USB based multi-channel analysers is very promising. Our USB based device in the form of autonomous miniature screened box was refined and finalized. More than 20 copies of it were sold all around the world. New project concerning new features of the device (Ethernet and wireless interfacing) is under investigation. In the field of semiconductor detectors, besides continuation of previous works, activities concentrated on ion implantation (using TITAN implanter) for production of new type semiconductor radiation detectors

  20. Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields

    Energy Technology Data Exchange (ETDEWEB)

    Livingstone, Jayde, E-mail: Jayde.Livingstone@synchrotron.org.au; Häusermann, Daniel [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168 (Australia); Stevenson, Andrew W. [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and CSIRO Manufacturing, Clayton South, Victoria 3169 (Australia); Butler, Duncan J. [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia); Adam, Jean-François [Equipe d’accueil Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, European Synchrotron Radiation Facility - ID17, Grenoble 38043, France and Centre Hospitalier Universitaire de Grenoble, Grenoble 38043 (France)

    2016-07-15

    Purpose: Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy. Methods: Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence of the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30–120 keV. The dose-rate dependence was measured in the range 1–700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters. Results: The detector exhibits an energy dependence; however, beam quality correction factors (k{sub Q}) have been measured for energies in the range 30–120 keV. The k{sub Q} factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1–700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic film data

  1. Comparative structural analysis of human DEAD-box RNA helicases.

    Science.gov (United States)

    Schütz, Patrick; Karlberg, Tobias; van den Berg, Susanne; Collins, Ruairi; Lehtiö, Lari; Högbom, Martin; Holmberg-Schiavone, Lovisa; Tempel, Wolfram; Park, Hee-Won; Hammarström, Martin; Moche, Martin; Thorsell, Ann-Gerd; Schüler, Herwig

    2010-09-30

    DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.

  2. Comparative structural analysis of human DEAD-box RNA helicases.

    Directory of Open Access Journals (Sweden)

    Patrick Schütz

    2010-09-01

    Full Text Available DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.

  3. Monte Carlo simulation of a four-layer DOI detector with relative offset in animal PET

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Hwang, Ji Yeon; Baek, Cheol-Ha; Lee, Seung-Jae; Ito, Mikiko; Lee, Jae Sung; Hong, Seong Jong

    2011-01-01

    We have built a four-layer detector to obtain depth of interaction (DOI) information in which all four layers have a relative offset of half a crystal pitch with each other. The main characteristics of the detector, especially the energy and spatial resolutions, strongly depend on the crystal surface treatments. As a part of the development of an animal PET, we have investigated the effect of crystal surface treatment on detector performances using Monte Carlo simulations in order to optimize the surface conditions of crystals composing a four-layer detector. The proposed detector consists of four LYSO layers with crystal dimensions of 1.5x1.5x7.0 and 1.5x1.5x5.0 mm 3 . A simulation tool (DETECT2000) was used and validated against the experimental results; flood images were acquired by a prototype module. Flood images were simulated by varying the surface treatment of the crystals. The optimal surface conditions of the four-layer crystals were derived for a small animal PET with a view towards achieving high sensitivity, as well as high and uniform radial resolution.

  4. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Eric, E-mail: eberg@ucdavis.edu; Roncali, Emilie; Du, Junwei; Cherry, Simon R. [Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616 (United States); Kapusta, Maciej [Molecular Imaging, Siemens Healthcare, Knoxville, Tennessee 37932 (United States)

    2016-02-15

    Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals.

  5. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography

    International Nuclear Information System (INIS)

    Berg, Eric; Roncali, Emilie; Du, Junwei; Cherry, Simon R.; Kapusta, Maciej

    2016-01-01

    Purpose: In support of a project to build a total-body PET scanner with an axial field-of-view of 2 m, the authors are developing simple, cost-effective block detectors with combined time-of-flight (TOF) and depth-of-interaction (DOI) capabilities. Methods: This work focuses on investigating the potential of phosphor-coated crystals with conventional PMT-based block detector readout to provide DOI information while preserving timing resolution. The authors explored a variety of phosphor-coating configurations with single crystals and crystal arrays. Several pulse shape discrimination techniques were investigated, including decay time, delayed charge integration (DCI), and average signal shapes. Results: Pulse shape discrimination based on DCI provided the lowest DOI positioning error: 2 mm DOI positioning error was obtained with single phosphor-coated crystals while 3–3.5 mm DOI error was measured with the block detector module. Minimal timing resolution degradation was observed with single phosphor-coated crystals compared to uncoated crystals, and a timing resolution of 442 ps was obtained with phosphor-coated crystals in the block detector compared to 404 ps without phosphor coating. Flood maps showed a slight degradation in crystal resolvability with phosphor-coated crystals; however, all crystals could be resolved. Energy resolution was degraded by 3%–7% with phosphor-coated crystals compared to uncoated crystals. Conclusions: These results demonstrate the feasibility of obtaining TOF–DOI capabilities with simple block detector readout using phosphor-coated crystals

  6. A high-speed data-collection system for large-unit-cell crystals using an imaging plate as a detector

    International Nuclear Information System (INIS)

    Sato, Mamoru; Yamamoto, Masaki; Imada, Katsumi; Katsube, Yukiteru; Tanaka, Nobuo; Higashi, Tsuneyuki

    1992-01-01

    A high-speed data-collection system for large-unit-cell crystals is presented, using the Fuji Imaging Plate as an X-ray detector and a rotating-anode generator as the X-ray source. It is an automatic data-acquisition system that requires almost no manual intervention. The quality of data collected on the system is discussed. Merging R values ranged from 0.04 to 0.05. Compared with a four-circle diffractometer, data reproducibility was better, isomorphous/anomalous Patterson maps were almost identical in quality and data from a small-molecule crystal, cytidine, were of almost the same quality. Protein structures were refinable using the data measured on the system, the final crystallographic R value of the 2.2 A 3-isopropylmalate dehydrogenase structure being 0.185 and that of the 1.88 A Flammulina veltipes agglutinin structure being 0.199. (orig.)

  7. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    Science.gov (United States)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  8. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharov, Ivan [GSI, Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino, Turin (Italy); INFN, Torino, Turin (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany); Collaboration: PANDA-Collaboration

    2013-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro-mechanical device and a new arrangement of the crystals is needed. This poster shows the ongoing development of the germanium detectors. Test measurements of a single crystal prototype with an improved cooling concept are shown. Thermal simulations for a triple crystal detector are presented. Aditionally studies of the optimization of the detector arrangement inside the PANDA barrel spectrometer are shown. Finally the status on digital pulse shape analysis is presented which will be necessary to deal with high counting rates and to recover the high original energy resolution in case of neutron damage.

  9. Growth of a New Ternary BON Crystal on Si(100) by Plasma-Assisted MOCVD and Study on the Effects of Fed Gas and Growth Temperature

    Science.gov (United States)

    Chen, G. C.; Lee, S.-B.; Boo, J.-H.

    A new ternary BOxNy crystal was grown on Si(100) substrate at 500°C by low-frequency (100 kHz) radio-frequency (rf) derived plasma-assisted MOCVD with an organoborate precursor. The as-grown deposits were characterized by SEM, TED, XPS, XRD, AFM and FT-IR. The experimental results showed that BOxNy crystal was apt to be formed at N-rich atmosphere and high temperature. The decrease of hydrogen flux in fed gases was of benefit to form BON crystal structure. The crystal structure of BOxNy was as similar to that of H3BO3 in this study.

  10. Virtual Box

    DEFF Research Database (Denmark)

    Davis, Hilary; Skov, Mikael B.; Stougaard, Malthe

    2007-01-01

    . This paper reports on the design, implementation and initial evaluation of Virtual Box. Virtual Box attempts to create a physical and engaging context in order to support reciprocal interactions with expressive content. An implemented version of Virtual Box is evaluated in a location-aware environment...

  11. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharova, Jasmina; Kojouharov, Ivan [GSI Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino (Italy); INFN, Torino (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany)

    2014-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro mechanical device and a new arrangement of the crystals is needed. This presentation shows the progress in the development of the germanium detectors. First results of in-beam measurements at COSY with a new electro mechanically cooled single crystal prototype are presented. Digital pulse shape analysis is used to disentangle pile up events due to the high event rate. This analysis technique also allows to recover the high original energy resolution in case of neutron damage. Finally the status of the new triple crystal detector prototype is given.

  12. Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors

    Science.gov (United States)

    Margarone, D.; Krása, J.; Giuffrida, L.; Picciotto, A.; Torrisi, L.; Nowak, T.; Musumeci, P.; Velyhan, A.; Prokůpek, J.; Láska, L.; Mocek, T.; Ullschmied, J.; Rus, B.

    2011-05-01

    Multi-MeV beams of light ions have been produced using the 300 picosecond, kJ-class iodine laser, operating at the Prague Asterix Laser System facility in Prague. Real-time ion diagnostics have been performed by the use of various time-of-flight (TOF) detectors: ion collectors (ICs) with and without absorber thin films, new prototypes of single-crystal diamond and silicon carbide detectors, and an electrostatic ion mass spectrometer (IEA). In order to suppress the long photopeak induced by soft X-rays and to avoid the overlap with the signal from ultrafast particles, the ICs have been shielded with Al foil filters. The application of large-bandgap semiconductor detectors (>3 eV) ensured cutting of the plasma-emitted visible and soft-UV radiation and enhancing the sensitivity to the very fast proton/ion beams. Employing the IEA spectrometer, various ion species and charge states in the expanding laser-plasma have been determined. Processing of the experimental data based on the TOF technique, including estimation of the plasma fast proton maximum and peak energy, ion beam currents and total charge, total number of fast protons, as well as deconvolution processes, ion stopping power, and ion/photon transmission calculations for the different metallic filters used, are reported.

  13. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance

    Science.gov (United States)

    Jia, Changchao; Zhang, Xiao; Yang, Ping

    2018-02-01

    Hollow TiO2 hierarchical boxes with suitable anatase and rutile ratios were designed for photocatalysis. The unique hierarchical structure was fabricated via a Topotactic synthetic method. CaTiO3 cubes were acted as the sacrificial templates to create TiO2 hollow hierarchical boxes with well-defined phase distribution. The phase composition of the hollow TiO2 hierarchical boxes is similar to that of TiO2 P25 nanoparticles (∼80% anatase, and 20% rutile). Compared with nanaoparticles, TiO2 hollow boxes with hierarchical structures exhibited an excellent performance in the photocatalytic degradation of methylene blue organic pollutant. Quantificationally, the degradation rate of the hollow boxes is higher than that of TiO2 P25 nanoparticles by a factor of 2.7. This is ascribed that hollow structure provide an opportunity for using incident light more efficiently. The surface hierarchical and well-organized porous structures are beneficial to supply more active sites and enough transport channels for reactant molecules. The boxes consist of single crystal anatase and rutile combined well with each other, which gives photon-generated carriers transfer efficiently.

  14. Collection of scintillation light from small BGO crystals

    International Nuclear Information System (INIS)

    Cherry, S.R.; Shao, Y.; Tornai, M.P.; Siegel, S.; Ricci, A.R.; Phelps, M.E.

    1995-01-01

    The authors propose to develop a high resolution positron emission tomography (PET) detector designed for animal imaging. The detector consists of a 2-D array of small bismuth germanate (BGO) crystals coupled via optical fibers to a multi-channel photomultiplier tube (MC-PMT). Though this approach offers several advantages over the conventional BGO block design, it does require that a sufficient number of scintillation photons be transported from the crystal, down the fiber and into the PMT. In this study the authors use simulations and experimental data to determine how to maximize the signal reaching the PMT. This involves investigating factors such as crystal geometry, crystal surface treatment, the use of reflectors, choice of optical fiber, coupling of crystals to the optical fiber and optical fiber properties. Their results indicate that using 2 x 2 x 10 mm BGO crystals coupled to 30 cm of clad optical fiber, roughly 50 photoelectrons are produced at the PMT photocathode for a 511 keV interaction. This is sufficient to clearly visualize the photopeak and provide adequate timing resolution for PET. Based on these encouraging results, a prototype detector will now be constructed

  15. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  16. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  17. Position-sensitive superconductor detectors

    International Nuclear Information System (INIS)

    Kurakado, M.; Taniguchi, K.

    2016-01-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  18. Detector calibration measurements in CRESST

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany)]. E-mail: westphal@ph.tum.de; Coppi, C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Feilitzsch, F. von [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Isaila, C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Jagemann, T. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut I, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany); Jochum, J. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut I, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany); Koenig, J. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Lachenmaier, T. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Lanfranchi, J.-C. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Potzel, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Rau, W. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Stark, M. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); Wernicke, D. [Technische Universitaet Muenchen, Physik Department E15, James-Franck-Strasse, D-85748 Garching (Germany); VeriCold Technologies GmbH, Bahnhofstrasse 21, D-85737 Ismaning (Germany)

    2006-04-15

    The CRESST dark matter experiment uses the simultaneous measurement of the scintillation light and the heat signal of a CaWO{sub 4} crystal to discriminate between background electron recoil and nuclear recoil events. At the Technical University of Munich calibration measurements have been performed to characterize the detectors. These measurements include the determination of the light output and scintillation time constants of CaWO{sub 4} at temperatures below 50 mK. The setup used in these measurements consist of a CaWO{sub 4} crystal, which is mounted in a reflective housing together with a silicon light detector carrying an Ir/Au transition edge sensor (TES) evaporated directly onto it.

  19. Performance characteristics needed for protein crystal diffraction x-ray detectors

    International Nuclear Information System (INIS)

    Westbrook, E. M.

    1999-01-01

    During the 1990's, macromolecular crystallography became progressively more dependent on synchrotrons X-ray sources for diffraction data collection. Detectors of this diffraction data at synchrotrons beamlines have evolved over the decade, from film to image phosphor plates, and then to CCD systems. These changes have been driven by the data quality and quantity improvements each newer detector technology provided. The improvements have been significant. It is likely that newer detector technologies will be adopted at synchrotron beamlines for crystallographic diffraction data collection in the future, but these technologies will have to compete with existing CCD detector systems which are already excellent and are getting incrementally better in terms of size, speed, efficiency, and resolving power. Detector development for this application at synchrotrons must concentrate on making systems which are bigger and faster than CCDs and which can capture weak data more efficiently. And there is a need for excellent detectors which are less expensive than CCD systems

  20. Development of an MR-compatible DOI-PET detector module

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyang [Department of Electrical Engineering, Tsinghua University, Beijing (China); Key Laboratory of Particle and Radiation Imaging, Ministry of Education (Tsinghua University), Beijing (China); Wang, Shi; Xu, Tianpeng; Gao, Yunpeng; Liu, Yaqiang; Ma, Tianyu [Department of Engineering Physics, Tsinghua University, Beijing (China); Key Laboratory of Particle and Radiation Imaging, Ministry of Education (Tsinghua University), Beijing (China)

    2015-05-18

    Silicon Photomultiplier (SiPM) is a promising sensor for MR-compatible PET systems. In this paper, we developed a compact 2-layer DOI-PET detector. The top layer is a 15×15 LYSO array, and the crystal size is 2x2x7mm{sup 3}. The bottom layer is a 16×16 array with the same size crystals. There is half-crystal offset between two layers in both transverse directions. The detector is coupled to an 8×8 SiPM array (MicroFB-30035-SMT, Sensl). Sixty-four channels of SiPMs are read out by an ASIC chip with in-chip multiplexing resistor networks in the form of two position and one energy analog signals, and are then converted to wave-form digital signals with 80 MHz 12-bit ADC chips. The energy is calculated by averaging the 3 points around the peak of the pulse. Flood images with two 22Na point sources irradiated on the top and at the bottom of the detector module were acquired. The results show that the detector module achieves good crystal identification capability in both layers with an average energy resolution of 17.1% at 511 keV.

  1. Development of an MR-compatible DOI-PET detector module

    International Nuclear Information System (INIS)

    Wei, Qingyang; Wang, Shi; Xu, Tianpeng; Gao, Yunpeng; Liu, Yaqiang; Ma, Tianyu

    2015-01-01

    Silicon Photomultiplier (SiPM) is a promising sensor for MR-compatible PET systems. In this paper, we developed a compact 2-layer DOI-PET detector. The top layer is a 15×15 LYSO array, and the crystal size is 2x2x7mm 3 . The bottom layer is a 16×16 array with the same size crystals. There is half-crystal offset between two layers in both transverse directions. The detector is coupled to an 8×8 SiPM array (MicroFB-30035-SMT, Sensl). Sixty-four channels of SiPMs are read out by an ASIC chip with in-chip multiplexing resistor networks in the form of two position and one energy analog signals, and are then converted to wave-form digital signals with 80 MHz 12-bit ADC chips. The energy is calculated by averaging the 3 points around the peak of the pulse. Flood images with two 22Na point sources irradiated on the top and at the bottom of the detector module were acquired. The results show that the detector module achieves good crystal identification capability in both layers with an average energy resolution of 17.1% at 511 keV.

  2. Energy calibration of the barrel calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Anisenkov, A.V.; Aulchenko, V.M.; Bashtovoy, N.S.; Bondar, A.E.; Grebenuk, A.A.; Epifanov, D.A.; Epshteyn, L.B.; Erofeev, A.L.; Kovalenko, O.A.; Kozyrev, A.N.; Kuzmin, A.S.; Mikhailov, K.Yu.; Logashenko, I.B.; Razuvaev, G.P.; Ruban, A.A.; Shebalin, V.E.; Shwartz, B.A.; Talyshev, A.A.; Titov, V.M.; Yudin, Yu.V.

    2017-01-01

    The VEPP-2000 e + e − collider has been operated in the Budker Institute of Nuclear Physics since 2010. Experiments are carried out with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon calorimeter and crystal CsI calorimeter, and end cap calorimeter with BGO crystals. This paper describes the procedures of the energy calibration of the combined barrel calorimeter of the CMD-3 detector.

  3. Mercuric iodide semiconductor detectors encapsulated in polymeric resin

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao F. Trencher; Santos, Robinson A. dos; Ferraz, Caue de M.; Oliveira, Adriano S.; Velo, Alexandre F.; Mesquita, Carlos H. de; Hamada, Margarida M., E-mail: mmhamada@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Disch, Christian; Fiederle, Michael [Albert-Ludwigs Universität Freiburg - UniFreibrug, Freiburg Materials Research Center - FMF, Freiburg (Germany)

    2015-07-01

    The development of new semiconductor radiation detectors always finds many setback factors, such as: high concentration of impurities in the start materials, poor long term stability, the surface oxidation and other difficulties discussed extensively in the literature, that limit their use. In this work was studied, the application of a coating resin on HgI2 detectors, in order to protect the semiconductor crystal reactions from atmospheric gases and to isolate electrically the surface of the crystals. Four polymeric resins were analyzed: Resin 1: 50% - 100%Heptane, 10% - 25% methylcyclohexane, <1% cyclohexane; Resin 2: 25% - 50% ethanol, 25% - 50% acetone, <2,5% ethylacetate; Resin 3: 50% - 100% methylacetate, 5% - 10% n-butylacetate; Resin 4: 50% - 100% ethyl-2-cyanacrylat. The influence of the polymeric resin type used on the spectroscopic performance of the HgI{sub 2} semiconductor detector is, clearly, demonstrated. The better result was found for the detector encapsulated with Resin 3. An increase of up to 26 times at the stability time was observed for the detectors encapsulated compared to that non-encapsulated detector. (author)

  4. Detector materials: germanium and silicon

    International Nuclear Information System (INIS)

    Haller, E.E.

    1981-11-01

    This article is a summary of a short course lecture given in conjunction with the 1981 Nuclear Science Symposium. The basic physical properties of elemental semiconductors are reviewed. The interaction of energetic radiation with matter is discussed in order to develop a feeling for the appropriate semiconductor detector dimensions. The extremely low net dopant concentrations which are required are derived directly from the detector dimensions. A survey of the more recent techniques which have been developed for the analysis of detector grade semiconductor single crystals is presented

  5. Focusing of a new germanium counter type : the composite detector. Uses of the TREFLE detector in the EUROGAM multidetector

    International Nuclear Information System (INIS)

    Han, L.

    1995-05-01

    The aim of this thesis is the development of new types of germanium detectors: the composite detectors. Two types of prototypes are then conceived: the stacked planar detector (EDP) and the assembly of coaxial diodes (TREFLE). They are designed for the multidetector EUROGAM destined to the research of nuclear structure at high angular momentum. The four planar diodes of EDP detector were of 7 cm diameter and of 15 to 20 mm thick. The difference between the calculated and measured photopic efficiency is observed. The importance of surface channel induces a weak resistance of neutron damages. The sputtering method for the surface treatment reducing the germanium dead layer as well as a rule of selection concerning the impurity concentration and the thickness of crystal is helpful for the later production of germanium detector. The CLOVER detector consist of for mean size crystals in the same cryostat. The photopic efficiency is much larger than that of the greatest monocrystal detector. And the granulation of composite detector allowed the Doppler broadening correction of gamma ray observed in the nuclear reaction where the recoil velocity is very high. This new type of detector enable the linear polarization measurement of gamma ray. Twenty-four CLOVER detector are actually mounted in the EUROGAM array. The characteristics measured in source as well as in beam, reported in this thesis, meet exactly the charge account. (author). 47 refs., 61 figs., 18 tabs

  6. Depth of interaction calibration for PET detectors with dual-ended readout by PSAPDs

    International Nuclear Information System (INIS)

    Yang Yongfeng; Qi Jinyi; Wu Yibao; St James, Sara; Cherry, Simon R; Farrell, Richard; Dokhale, Purushottam A; Shah, Kanai S

    2009-01-01

    Many laboratories develop depth-encoding detectors to improve the trade-off between spatial resolution and sensitivity in positron emission tomography (PET) scanners. One challenge in implementing these detectors is the need to calibrate the depth of interaction (DOI) response for the large numbers of detector elements in a scanner. In this work, we evaluate two different methods, a linear detector calibration and a linear crystal calibration, for determining DOI calibration parameters. Both methods can use measurements from any source distribution and location, or even the intrinsic lutetium oxyorthosilicate (LSO) background activity, and are therefore well suited for use in a depth-encoding PET scanner. The methods were evaluated by measuring detector and crystal DOI responses for all eight detectors in a prototype depth-encoding PET scanner. The detectors utilize dual-ended readout of LSO scintillator arrays with position-sensitive avalanche photodiodes (PSAPDs). The LSO arrays have 7 x 7 elements, with a crystal size of 0.92 x 0.92 x 20 mm 3 and pitch of 1.0 mm. The arrays are read out by two 8 x 8 mm 2 area PSAPDs placed at opposite ends of the arrays. DOI is measured by the ratio of the amplitude of the total energy signals measured by the two PSAPDs. Small variations were observed in the DOI responses of different crystals within an array as well as DOI responses for different arrays. A slightly nonlinear dependence of the DOI ratio on depth was observed and the nonlinearity was larger for the corner and edge crystals. The DOI calibration parameters were obtained from the DOI responses measured in a singles mode. The average error between the calibrated DOI and the known DOI was 0.8 mm if a linear detector DOI calibration was used and 0.5 mm if a linear crystal DOI calibration was used. A line source phantom and a hot rod phantom were scanned on the prototype PET scanner. DOI measurement significantly improved the image spatial resolution no matter which DOI

  7. Four-layer depth-of-interaction PET detector for high resolution PET using a multi-pixel S8550 avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko, E-mail: funis@nirs.go.j [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Inadama, Naoko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Oda, Ichiro [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Shibuya, Kengo; Yoshida, Eiji; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Murayama, Hideo [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2010-09-21

    Avalanche photodiodes (APDs) are being used as photodetectors in positron emission tomography (PET) because they have many advantages over photomultipliers (PMTs) typically used in PET detectors. We have developed a PET detector that consists of a multi-pixel APD and a 6x6x4 array of 1.46x1.46 mm{sup 2}x4.5 m LYSO crystals for a small animal PET scanner. The detector can identify four-layer depth of interaction (DOI) with a position-sensitive APD coupled to the backside of a crystal array by just an optimized reflector arrangement. Since scintillation lights are shared among many pixels by the method, weaker signals in APD pixels far from the interacting crystals are affected by noise. To evaluate the performance of the four-layer DOI detector with the APD and the influence of electrical noise on our method, we constructed a prototype DOI detector and tested its performance. We found, except for crystal elements on the edge of the crystal array, all crystal elements could be identified from the 2D position histogram. An energy resolution of 16.9% was obtained for the whole crystal array of the APD detector. The results of noise dependence of detector performances indicated that the DOI detector using the APD could achieve sufficient performance even when using application-specific integrated circuits.

  8. Four-layer depth-of-interaction PET detector for high resolution PET using a multi-pixel S8550 avalanche photodiode

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Inadama, Naoko; Oda, Ichiro; Shibuya, Kengo; Yoshida, Eiji; Yamaya, Taiga; Kitamura, Keishi; Murayama, Hideo

    2010-01-01

    Avalanche photodiodes (APDs) are being used as photodetectors in positron emission tomography (PET) because they have many advantages over photomultipliers (PMTs) typically used in PET detectors. We have developed a PET detector that consists of a multi-pixel APD and a 6x6x4 array of 1.46x1.46 mm 2 x4.5 m LYSO crystals for a small animal PET scanner. The detector can identify four-layer depth of interaction (DOI) with a position-sensitive APD coupled to the backside of a crystal array by just an optimized reflector arrangement. Since scintillation lights are shared among many pixels by the method, weaker signals in APD pixels far from the interacting crystals are affected by noise. To evaluate the performance of the four-layer DOI detector with the APD and the influence of electrical noise on our method, we constructed a prototype DOI detector and tested its performance. We found, except for crystal elements on the edge of the crystal array, all crystal elements could be identified from the 2D position histogram. An energy resolution of 16.9% was obtained for the whole crystal array of the APD detector. The results of noise dependence of detector performances indicated that the DOI detector using the APD could achieve sufficient performance even when using application-specific integrated circuits.

  9. Shock-resistant scintillation detector

    International Nuclear Information System (INIS)

    Novak, W.P.

    1979-01-01

    A unique scintillation detector unit is disclosed which employs a special light transfer and reflector means that encases and protects the scintillator crystal against high g forces. The light transfer means comprises a flexible silicon rubber optical material bonded between the crystal and the optical window and having an axial thickness sufficient to allow the scintillator to move axially inside the container under high g forces without destroying the bonds. The reflector means comprises a soft elastic silicone rubber sleeve having a multiplicity of closely arranged tapered protrusions radiating toward and engaging the periphery of the scintillator crystal to cushion shocks effectively and having a reflective material, such as aluminum oxide powder, in the spaces between the protrusions. The reflector means provides improved shock absorption because of the uniform support and cushioning action of the protrusions and also provides the detector with high efficiency. The silicon rubber composition is specially compounded to include a large amount of aluminum oxide which enables the rubber to function effectively as a light reflector

  10. Vapor Growth of Mercuric Iodide Tetragonal Prismatic Crystals

    Science.gov (United States)

    2013-03-01

    placed inside a copper Faraday cage to minimize electronic noise. The measurement system consisted of an amplifier, an oscilloscope, a multi-channel...analyzer (MCA), a high voltage supply, a pulse generator, and a personal computer, all positioned outside the Faraday cage . Gamma- ray sources (241Am...measurement using a HgI2 Frisch collar detector. (a) The detector box and amplifier were placed inside a Faraday cage . (b) Details of the detec- tor

  11. First Compton telescope prototype based on continuous LaBr3-SiPM detectors

    International Nuclear Information System (INIS)

    Llosá, G.; Cabello, J.; Callier, S.; Gillam, J.E.; Lacasta, C.; Rafecas, M.; Raux, L.; Solaz, C.; Stankova, V.; La Taille, C. de; Trovato, M.; Barrio, J.

    2013-01-01

    A first prototype of a Compton camera based on continuous scintillator crystals coupled to silicon photomultiplier (SiPM) arrays has been successfully developed and operated. The prototype is made of two detector planes. The first detector is made of a continuous 16×18×5 mm 3 LaBr 3 crystal coupled to a 16-elements SiPM array. The elements have a size of 3×3 mm 3 in a 4.5×4.05 mm 2 pitch. The second detector, selected by availability, consists of a continuous 16×18×5 mm 3 LYSO crystal coupled to a similar SiPM array. The SPIROC1 ASIC is employed in the readout electronics. Data have been taken with a 22 Na source placed at different positions and images have been reconstructed with the simulated one-pass list-mode (SOPL) algorithm. Detector development for the construction of a second prototype with three detector planes is underway. LaBr 3 crystals of 32×36 mm 2 size and 5/10 mm thickness have been acquired and tested with a PMT. The resolution obtained is 3.5% FWHM at 511 keV. Each crystal will be coupled to four MPPC arrays. Different options are being tested for the prototype readout

  12. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout.

    Science.gov (United States)

    Bläckberg, L; El Fakhri, G; Sabet, H

    2017-10-19

    A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the laser induced optical barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to  >42%, and for rough interfaces  >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically

  13. Modeling of Pixelated Detector in SPECT Pinhole Reconstruction.

    Science.gov (United States)

    Feng, Bing; Zeng, Gengsheng L

    2014-04-10

    A challenge for the pixelated detector is that the detector response of a gamma-ray photon varies with the incident angle and the incident location within a crystal. The normalization map obtained by measuring the flood of a point-source at a large distance can lead to artifacts in reconstructed images. In this work, we investigated a method of generating normalization maps by ray-tracing through the pixelated detector based on the imaging geometry and the photo-peak energy for the specific isotope. The normalization is defined for each pinhole as the normalized detector response for a point-source placed at the focal point of the pinhole. Ray-tracing is used to generate the ideal flood image for a point-source. Each crystal pitch area on the back of the detector is divided into 60 × 60 sub-pixels. Lines are obtained by connecting between a point-source and the centers of sub-pixels inside each crystal pitch area. For each line ray-tracing starts from the entrance point at the detector face and ends at the center of a sub-pixel on the back of the detector. Only the attenuation by NaI(Tl) crystals along each ray is assumed to contribute directly to the flood image. The attenuation by the silica (SiO 2 ) reflector is also included in the ray-tracing. To calculate the normalization for a pinhole, we need to calculate the ideal flood for a point-source at 360 mm distance (where the point-source was placed for the regular flood measurement) and the ideal flood image for the point-source at the pinhole focal point, together with the flood measurement at 360 mm distance. The normalizations are incorporated in the iterative OSEM reconstruction as a component of the projection matrix. Applications to single-pinhole and multi-pinhole imaging showed that this method greatly reduced the reconstruction artifacts.

  14. Performance of CdZnTe coplanar-grid gamma-ray detectors

    International Nuclear Information System (INIS)

    Luke, P.N.; Eissler, E.E.

    1995-11-01

    CdZnTe crystals grown using the high-pressure Bridgman method exhibit many properties that are desirable for radiation detector fabrication, such as high resistivity, stable operation, relative ease of processing, and the availability of large volume crystals. However, as is common with other compound semi-conductor materials, currently available CdZnTe crystals have poor charge transport characteristics. This seriously the spectral performance of detectors, especially in gamma-ray detection. The coplanar-grid detection technique was recently developed to address such charge collection problems. This technique was first demonstrated using a 5 mm cube CdZnTe detector, and a dramatic improvement in spectral response has been achieved. These early results verified the effectiveness of this technique and suggested that large-volume gamma-ray detectors with high energy resolution can be realized. To further the development of such detectors, it is important to understand the various factors that affect detector performance. The purpose of this paper is to examine the effects of material properties on the spectral performance of CdZnTe coplanar-grid detectors. Theoretical spectral response is to show the level of performance that can be achieved given the typical carrier mobility-lifetime (μτ) properties of present-day materials. Nonuniformity in the charge transport properties of the material, which could limit the energy resolution of the detectors, has been studied experimentally and some of the results are presented here

  15. Discovery Mondays: crystals and particles for medicine

    CERN Multimedia

    2003-01-01

    Question: what are as heavy as lead, as clear as glass, and appear as tiny specks in a doctor's scanner but large as life in a physicist's detector? Answer: the crystals you will be able to observe in all their facets on 1 September at the start of a new season of Discovery Mondays at Microcosm. Come along and meet the CERN physicists who use crystals not only in their detectors but also in the latest generation of scanners. Four workshops will be organised, each devoted to a different medical imaging technique. The first workshop will be run by a physicist from the Crystal Clear collaboration, who will present her collaboration's special breed of crystals, which emit light when they are traversed by high-energy particles, and explain to you these crystals' role in Positron Emission Tomographs. The second workshop will focus on an imaging technique known as the Compton Camera, also based on scintillating crystals. Crystals worth looking at and admiring. Come to the next Discovery Monday to find out how they ...

  16. Characteristics of NaI detector in positron imaging device HEADTOME employing circular ring array

    International Nuclear Information System (INIS)

    Miura, Shuichi; Kanno, Iwao; Aizawa, Yasuo; Murakami, Matsutaro; Uemura, Kazuo

    1984-01-01

    In positron emission computed tomographs employing circular ring arrays of detectors, the performance of the imaging device has been specified ultimately by the characteristics of the detector. The responses of NaI detector were studied when detecting positron annihilation photon (511 keV). The study was mainly by using the NaI detector used in hybrid emission computed tomography (CT) ''HEADTOME'' we had developed. A series of measurements were carried out positioning two detectors with 40 cm distance and scanning 22 Na point source in water. Both detectors was inclined from 0 0 through 30 0 to change incident angle of positron annihilation toward crystal face. Energy window was set from 100 to 700 keV. The results were presented as follows; 1 Shortening the crystal length from 7 to 5 cm made sensitivity decrease about 10% and resolution deteriorate about 1 mm (FWHM). 2 As the results of varying the width of the crystal, 20 mm width was optimal at any incident angle. 3 The lead septum between the detectors was the thickness of 4 mm enough to reject multiple detector interactions (crosstalk). 4 Beam mask which was made of lead in order to improve spatial resolution and placed on crystal face worked effectively for incident angles from 0 0 to 15 0 but degraded uniformity of spatial resolution from 0 0 to through 30 0 . (author)

  17. Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system

    Energy Technology Data Exchange (ETDEWEB)

    Mancosu, Pietro; Reggiori, Giacomo, E-mail: giacomo.reggiori@humanitas.it; Stravato, Antonella; Gaudino, Anna; Lobefalo, Francesca; Palumbo, Valentina; Tomatis, Stefano [Physics Service of Radiation Oncology Department, Clinical and Research Center, Rozzano, Milan 20098 (Italy); Navarria, Piera; Ascolese, Anna; Scorsetti, Marta [Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan 20089 (Italy); Picozzi, Piero [Neurosurgery Department, Humanitas Clinical and Research Center, Rozzano, Milan 20089 (Italy); Marinelli, Marco; Verona-Rinati, Gianluca [Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma 00133 (Italy)

    2015-09-15

    Purpose: To evaluate the new commercial PTW-60019 synthetic single-crystal microDiamond detector (PTW, Freiburg, Germany) for relative dosimetry measurements on a clinical Leksell Gamma Knife Perfexion radiosurgery system. Methods: Detector output ratios (DORs) for 4 and 8 mm beams were measured using a microDiamond (PTW-60019), a stereotactic unshielded diode [IBA stereotactic field detector (SFD)], a shielded diode (IBA photon field detector), and GafChromic EBT3 films. Both parallel and transversal acquisition directions were considered for PTW-60019 measurements. Measured DORs were compared to the new output factor reference values for Gamma Knife Perfexion (0.814 and 0.900 for 4 and 8 mm, respectively). Profiles in the three directions were also measured for the 4 mm beam to evaluate full width at half maximum (FWHM) and penumbra and to compare them with the corresponding Leksell GammaPlan profiles. Results: FWHM and penumbra for PTW-60019 differed from the calculated values by less than 0.2 and 0.3 mm, for the parallel and transversal acquisitions, respectively. GafChromic films showed FWHM and penumbra within 0.1 mm. The output ratio obtained with the PTW-60019 for the 4 mm field was 1.6% greater in transverse direction compared to the nominal value. Comparable differences up to 0.8% and 1.0% for, respectively, GafChromic films and SFD were found. Conclusions: The microDiamond PTW-60019 is a suitable detector for commissioning and routine use of Gamma Knife with good agreement of both DORs and profiles in the three directions.

  18. Evaluation of a synthetic single-crystal diamond detector for relative dosimetry on the Leksell Gamma Knife Perfexion radiosurgery system

    International Nuclear Information System (INIS)

    Mancosu, Pietro; Reggiori, Giacomo; Stravato, Antonella; Gaudino, Anna; Lobefalo, Francesca; Palumbo, Valentina; Tomatis, Stefano; Navarria, Piera; Ascolese, Anna; Scorsetti, Marta; Picozzi, Piero; Marinelli, Marco; Verona-Rinati, Gianluca

    2015-01-01

    Purpose: To evaluate the new commercial PTW-60019 synthetic single-crystal microDiamond detector (PTW, Freiburg, Germany) for relative dosimetry measurements on a clinical Leksell Gamma Knife Perfexion radiosurgery system. Methods: Detector output ratios (DORs) for 4 and 8 mm beams were measured using a microDiamond (PTW-60019), a stereotactic unshielded diode [IBA stereotactic field detector (SFD)], a shielded diode (IBA photon field detector), and GafChromic EBT3 films. Both parallel and transversal acquisition directions were considered for PTW-60019 measurements. Measured DORs were compared to the new output factor reference values for Gamma Knife Perfexion (0.814 and 0.900 for 4 and 8 mm, respectively). Profiles in the three directions were also measured for the 4 mm beam to evaluate full width at half maximum (FWHM) and penumbra and to compare them with the corresponding Leksell GammaPlan profiles. Results: FWHM and penumbra for PTW-60019 differed from the calculated values by less than 0.2 and 0.3 mm, for the parallel and transversal acquisitions, respectively. GafChromic films showed FWHM and penumbra within 0.1 mm. The output ratio obtained with the PTW-60019 for the 4 mm field was 1.6% greater in transverse direction compared to the nominal value. Comparable differences up to 0.8% and 1.0% for, respectively, GafChromic films and SFD were found. Conclusions: The microDiamond PTW-60019 is a suitable detector for commissioning and routine use of Gamma Knife with good agreement of both DORs and profiles in the three directions

  19. Scintillation light detectors with Neganov-Luke amplification

    Energy Technology Data Exchange (ETDEWEB)

    Isaila, C. [Physik Department E15, Technische Universitaet Muenchen, James Franck Strasse, 85748 Garching (Germany)]. E-mail: cisaila@ph.tum.de; Boslau, O. [Ketek GmbH, Gustav Heinemann Ring 125, 81739 Munich (Germany); Coppi, C. [Physik Department E15, Technische Universitaet Muenchen, James Franck Strasse, 85748 Garching (Germany); Feilitzsch, F. von [Physik Department E15, Technische Universitaet Muenchen, James Franck Strasse, 85748 Garching (Germany); Goldstrass, P. [Ketek GmbH, Gustav Heinemann Ring 125, 81739 Munich (Germany); Jagemann, T. [Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 14, 72076 Tuebingen (Germany); Jochum, J. [Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 14, 72076 Tuebingen (Germany); Kemmer, J. [Ketek GmbH, Gustav Heinemann Ring 125, 81739 Munich (Germany); Lachenmaier, T. [Physik Department E15, Technische Universitaet Muenchen, James Franck Strasse, 85748 Garching (Germany); Lanfranchi, J.-C. [Physik Department E15, Technische Universitaet Muenchen, James Franck Strasse, 85748 Garching (Germany); Pahlke, A. [Ketek GmbH, Gustav Heinemann Ring 125, 81739 Munich (Germany); Potzel, W. [Physik Department E15, Technische Universitaet Muenchen, James Franck Strasse, 85748 Garching (Germany); Rau, W. [Physik Department E15, Technische Universitaet Muenchen, James Franck Strasse, 85748 Garching (Germany); Stark, M. [Physik Department E15, Technische Universitaet Muenchen, James Franck Strasse, 85748 Garching (Germany); Wernicke, D. [Physik Department E15, Technische Universitaet Muenchen, James Franck Strasse, 85748 Garching (Germany); VeriCold Technologies GmbH, Bahnhofstrasse 21, 85737 Ismaning (Germany); Westphal, W. [Physik Department E15, Technische Universitaet Muenchen, James Franck Strasse, 85748 Garching (Germany)

    2006-04-15

    For an active suppression of the gamma and electron background in the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) dark matter experiment both phonons and scintillation light generated in a CaWO{sub 4} crystal are detected simultaneously. The phonon signal is read out by a transition edge sensor (TES) on the CaWO{sub 4} crystal. For light detection a silicon absorber equipped with a TES is employed. An efficient background discrimination requires very sensitive light detectors. The threshold can be improved by applying an electric field to the silicon crystal leading to an amplification of the thermal signal due to the Neganov-Luke effect. Measurements showing the improved sensitivity of the light detectors as well as future steps for reducing the observed extra noise will be presented.

  20. Scintillation light detectors with Neganov Luke amplification

    Science.gov (United States)

    Isaila, C.; Boslau, O.; Coppi, C.; Feilitzsch, F. v.; Goldstraß, P.; Jagemann, T.; Jochum, J.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.-C.; Pahlke, A.; Potzel, W.; Rau, W.; Stark, M.; Wernicke, D.; Westphal, W.

    2006-04-01

    For an active suppression of the gamma and electron background in the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) dark matter experiment both phonons and scintillation light generated in a CaWO 4 crystal are detected simultaneously. The phonon signal is read out by a transition edge sensor (TES) on the CaWO 4 crystal. For light detection a silicon absorber equipped with a TES is employed. An efficient background discrimination requires very sensitive light detectors. The threshold can be improved by applying an electric field to the silicon crystal leading to an amplification of the thermal signal due to the Neganov-Luke effect. Measurements showing the improved sensitivity of the light detectors as well as future steps for reducing the observed extra noise will be presented.

  1. Scintillation light detectors with Neganov-Luke amplification

    International Nuclear Information System (INIS)

    Isaila, C.; Boslau, O.; Coppi, C.; Feilitzsch, F. von; Goldstrass, P.; Jagemann, T.; Jochum, J.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.-C.; Pahlke, A.; Potzel, W.; Rau, W.; Stark, M.; Wernicke, D.; Westphal, W.

    2006-01-01

    For an active suppression of the gamma and electron background in the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) dark matter experiment both phonons and scintillation light generated in a CaWO 4 crystal are detected simultaneously. The phonon signal is read out by a transition edge sensor (TES) on the CaWO 4 crystal. For light detection a silicon absorber equipped with a TES is employed. An efficient background discrimination requires very sensitive light detectors. The threshold can be improved by applying an electric field to the silicon crystal leading to an amplification of the thermal signal due to the Neganov-Luke effect. Measurements showing the improved sensitivity of the light detectors as well as future steps for reducing the observed extra noise will be presented

  2. 46 CFR 111.81-1 - Outlet boxes and junction boxes; general.

    Science.gov (United States)

    2010-10-01

    ... fixture, wiring device, or similar item, including each separately installed connection and junction box... used. (d) As appropriate, each outlet-box or junction-box installation must meet the following...

  3. Status and problems of semiconductor detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Goulding, F.S.; Haller, E.E.; Pehl, R.H.

    1981-03-01

    A brief review is given of the types of silicon and germanium detectors used or presently being developed for nuclear experiments. Large-area silicon and germanium detector telescopes for use in long-range particle detection and identification are emphasized. Large area position-sensitive detectors are also described. Some results are presented regarding radiation damage and damage repair by annealing. Evidence is also presented for the importance of producing large area silicon crystals of adequate quality to reduce trapping problems to negligible proportions

  4. Status and problems of semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Walton, J.T.; Goulding, F.S.; Haller, E.E.; Pehl, R.H.

    1981-03-01

    A brief review is given of the types of silicon and germanium detectors used or presently being developed for nuclear experiments. Large-area silicon and germanium detector telescopes for use in long-range particle detection and identification are emphasized. Large area position-sensitive detectors are also described. Some results are presented regarding radiation damage and damage repair by annealing. Evidence is also presented for the importance of producing large area silicon crystals of adequate quality to reduce trapping problems to negligible proportions.

  5. High-purity germanium crystal growing

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.

    1982-10-01

    The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10 10 cm - 3 and be essentially free of charge trapping defects. Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions. The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers

  6. Characterization of highly multiplexed monolithic PET / gamma camera detector modules

    Science.gov (United States)

    Pierce, L. A.; Pedemonte, S.; DeWitt, D.; MacDonald, L.; Hunter, W. C. J.; Van Leemput, K.; Miyaoka, R.

    2018-04-01

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A 50 × 50 × 10 mm3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer–Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  7. Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.

    Science.gov (United States)

    Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard

    2012-06-07

    We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems.

  8. Crystal ball single event display

    International Nuclear Information System (INIS)

    Grosnick, D.; Gibson, A.; Allgower, C.; Alyea, J.; Argonne National Lab., IL

    1997-01-01

    The Single Event Display (SED) is a routine that is designed to provide information graphically about a triggered event within the Crystal Ball. The SED is written entirely in FORTRAN and uses the CERN-based HICZ graphing package. The primary display shows the amount of energy deposited in each of the NaI crystals on a Mercator-like projection of the crystals. Ten different shades and colors correspond to varying amounts of energy deposited within a crystal. Information about energy clusters is displayed on the crystal map by outlining in red the thirteen (or twelve) crystals contained within a cluster and assigning each cluster a number. Additional information about energy clusters is provided in a series of boxes containing useful data about the energy distribution among the crystals within the cluster. Other information shown on the event display include the event trigger type and data about π o 's and η's formed from pairs of clusters as found by the analyzer. A description of the major features is given, along with some information on how to install the SED into the analyzer

  9. The Cosmic Ray Tracking (CRT) detector system

    International Nuclear Information System (INIS)

    Bernloehr, K.; Gamp, S.; Hermann, G.; Hofmann, W.; Kihm, T.; Knoeppler, J.; Leffers, G.; Matheis, V.; Panter, M.; Trunk, U.; Ulrich, M.; Wolf, T.; Zink, R.; Heintze, J.

    1996-01-01

    The Cosmic Ray Tracking (CRT) project represents a study on the use of tracking detectors of the time projection chamber type to detect secondary cosmic ray particles in extensive air showers. In reconstructing the arrival direction of the primary cosmic ray particles, the CRT detectors take advantage of the angular correlation of secondary particles with the cosmic rays leading to these air showers. In this paper, the detector hardware including the custom-designed electronics system is described in detail. A CRT detector module provides an active area of 2.5 m 2 and allows to measure track directions with a precision of 0.4 circle . It consists of two circular drift chambers of 1.8 m diameter with six sense wires each, and a 10 cm thick iron plate between the two chambers. Each detector has a local electronics box with a readout, trigger, and monitoring system. The detectors can distinguish penetrating muons from other types of charged secondaries. A large detector array could be used to search for γ-ray point sources at energies above several TeV and for studies of the cosmic-ray composition. Ten detectors are in operation at the site of the HEGRA air shower array. (orig.)

  10. The GlueX DIRC detector

    Science.gov (United States)

    Barbosa, F.; Bessuille, J.; Chudakov, E.; Dzhygadlo, R.; Fanelli, C.; Frye, J.; Hardin, J.; Kelsey, J.; Patsyuk, M.; Schwarz, C.; Schwiening, J.; Stevens, J.; Shepherd, M.; Whitlatch, T.; Williams, M.

    2017-12-01

    The GlueX DIRC (Detection of Internally Reflected Cherenkov light) detector is being developed to upgrade the particle identification capabilities in the forward region of the GlueX experiment at Jefferson Lab. The GlueX DIRC will utilize four existing decommissioned BaBar DIRC bar boxes, which will be oriented to form a plane roughly 4 m away from the fixed target of the experiment. A new photon camera has been designed that is based on the SuperB FDIRC prototype. The full GlueX DIRC system will consist of two such cameras, with the first planned to be built and installed in 2017. We present the current status of the design and R&D, along with the future plans of the GlueX DIRC detector.

  11. SYNTHESIS AND CRYSTAL STRUCTURE OF AN OXORHENIUM(V ...

    African Journals Online (AJOL)

    a

    2007 Chemical Society of Ethiopia. ______ ... 1Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port .... Details of the crystal data are given in Table 1, with selected bond lengths and angles in Table 2.

  12. Initial characterization of a BGO-photodiode detector for high resolution positron emission tomography

    International Nuclear Information System (INIS)

    Derenzo, S.E.

    1983-11-01

    Spatial resolution in positron emission tomography is currently limited by the resolution of the detectors. This work presents the initial characterization of a detector design using small bismuth germanate (BGO) crystals individually coupled to silicon photodiodes (SPDs) for crystal identification, and coupled in groups to phototubes (PMTs) for coincidence timing. A 3 mm x 3 mm x 3 mm BGO crystal coupled only to an SPD can achieve a 511 keV photopeak resolution of 8.7% FWHM at -150 0 C, using a pulse peaking time of 10 μs. When two 3 mm x 3 mm x 15 mm BGO crystals are coupled individually to SPDs and also coupled to a common 14 mm diam PMT, the SPDs detect the 511 keV photopeak with a resolution of 30% FWHM at -76 0 C. In coincidence with an opposing 3 mm wide BGO crystal, the SPDs are able to identify the crystal of interaction with good signal-to-noise ratio, and the detector pair resolution is 2 mm FWHM. 32 references, 7 figures, 3 tables

  13. LIGHT INDUCED TELLURIUM ENRICHMENT ON CDZNTE CRYSTAL SURFACES DETECTED BY RAMAN SPECTROSCOPY

    International Nuclear Information System (INIS)

    Hawkins, S; Eliel Villa-Aleman, E; Martine Duff, M; Douglas Hunter, D

    2007-01-01

    Synthetic CdZnTe or 'CZT' crystals can be grown under controlled conditions to produce high quality crystals to be used as room temperature radiation detectors. Even the best crystal growth methods result in defects, such as tellurium secondary phases, that affect the crystal's performance. In this study, CZT crystals were analyzed by micro Raman spectroscopy. The growth of Te rich areas on the surface was induced by low powered lasers. The growth was observed versus time with low power Raman scattering and was observed immediately under higher power conditions. The detector response was also measured after induced Te enrichment

  14. Structural and functional analysis of the human spliceosomal DEAD-box helicase Prp28

    Energy Technology Data Exchange (ETDEWEB)

    Möhlmann, Sina [Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen (Germany); Mathew, Rebecca [Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen (Germany); Neumann, Piotr; Schmitt, Andreas [Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen (Germany); Lührmann, Reinhard [Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen (Germany); Ficner, Ralf, E-mail: rficner@uni-goettingen.de [Georg-August-University Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen (Germany)

    2014-06-01

    The crystal structure of the helicase domain of the human spliceosomal DEAD-box protein Prp28 was solved by SAD. The binding of ADP and ATP by Prp28 was studied biochemically and analysed with regard to the crystal structure. The DEAD-box protein Prp28 is essential for pre-mRNA splicing as it plays a key role in the formation of an active spliceosome. Prp28 participates in the release of the U1 snRNP from the 5′-splice site during association of the U5·U4/U6 tri-snRNP, which is a crucial step in the transition from a pre-catalytic spliceosome to an activated spliceosome. Here, it is demonstrated that the purified helicase domain of human Prp28 (hPrp28ΔN) binds ADP, whereas binding of ATP and ATPase activity could not be detected. ATP binding could not be observed for purified full-length hPrp28 either, but within an assembled spliceosomal complex hPrp28 gains ATP-binding activity. In order to understand the structural basis for the ATP-binding deficiency of isolated hPrp28, the crystal structure of hPrp28ΔN was determined at 2.0 Å resolution. In the crystal the helicase domain adopts a wide-open conformation, as the two RecA-like domains are extraordinarily displaced from the productive ATPase conformation. Binding of ATP is hindered by a closed conformation of the P-loop, which occupies the space required for the γ-phosphate of ATP.

  15. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  16. Crystal growth and characterization of europium doped lithium strontium iodide scintillator as an ionizing radiation detector

    Science.gov (United States)

    Uba, Samuel

    High performance detectors used in the detection of ionizing radiation is critical to nuclear nonproliferation applications and other radiation detectors applications. In this research we grew and tested Europium doped Lithium Strontium Iodide compound. A mixture of lithium iodide, strontium iodide and europium iodide was used as the starting materials for this research. Congruent melting and freezing temperature of the synthesized compound was determined by differential scanning calorimetry (DSC) using a Setaram Labsys Evo DSC-DTA instrument. The melting temperatures were recorded at 390.35°C, 407.59°C and freezing temperature was recorded at 322.84°C from a graph of heat flow plotted against temperature. The synthesized material was used as the charge for the vertical Bridgeman growth, and a 6.5 cm and 7.7cm length boule were grown in a multi-zone transparent Mullen furnace. A scintillating detector of thickness 2.53mm was fabricated by mechanical lapping in mineral oil, and scintillating response and timing were obtained to a cesium source using CS-137 isotope. An energy resolution (FWHM over peak position) of 12.1% was observed for the 662keV full absorption peak. Optical absorption in the UV-Vis wavelength range was recorded for the grown crystal using a U-2900 UV/VIS Spectrophotometer. Absorption peaks were recorded at 194nm, 273nm, and 344nm from the absorbance spectrum, various optical parameters such as absorption coefficient, extinction coefficient, refractive index, and optical loss were derived. The optical band gap energy was calculated using Tauc relation expression at 1.79eV.

  17. Automation of the Characterization of High Purity Germanium Detectors

    Science.gov (United States)

    Dugger, Charles ``Chip''

    2014-09-01

    Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of the detectors must be characterized. A robotic arm is being tested for future calibration of HPGe detectors. The arm will hold a source at locations relative to the crystal while data is acquired. Several radioactive sources of varying energy levels will be used to determine the characteristics of the crystal. In this poster, I will present our work with the robot, as well as the characterization of data we took with an underground HPGe detector at the WIPP facility in Carlsbad, NM (2013). Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of

  18. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  19. Radiation hardness of undoped BGO crystals

    International Nuclear Information System (INIS)

    Sahu, S.K.; Peng, K.C.; Huang, H.C.; Wang, C.H.; Chang, Y.H.; Hou, W.S.; Ueno, K.; Chou, F.I.; Wei, Y.Y.

    1997-01-01

    We measured the radiation hardness of undoped BGO crystals from two different manufacturers. Such crystals are proposed to be used in a small-angle calorimeter of the BELLE detector of the KEK B-factory. Transparency and scintillation light output of the crystals were monitored to see the effect of radiation damage. The crystals show considerable radiation hardness up to 10.2 Mrad equivalent dose, which is much higher than the maximum expected dosage of 500 krad per year of running at BELLE. (orig.)

  20. A depth-of-interaction PET detector using mutual gain-equalized silicon photomultiplier

    International Nuclear Information System (INIS)

    Xi, W.; Weisenberger, A.G.; Dong, H.; Kross, Brian; Lee, S.; McKisson, J.; Zorn, Carl

    2012-01-01

    We developed a prototype high resolution, high efficiency depth-encoding detector for PET applications based on dual-ended readout of LYSO array with two silicon photomultipliers (SiPMs). Flood images, energy resolution, and depth-of-interaction (DOI) resolution were measured for a LYSO array - 0.7 mm in crystal pitch and 10 mm in thickness - with four unpolished parallel sides. Flood images were obtained such that individual crystal element in the array is resolved. The energy resolution of the entire array was measured to be 33%, while individual crystal pixel elements utilizing the signal from both sides ranged from 23.3% to 27%. By applying a mutual-gain equalization method, a DOI resolution of 2 mm for the crystal array was obtained in the experiments while simulations indicate ∼1 mm DOI resolution could possibly be achieved. The experimental DOI resolution can be further improved by obtaining revised detector supporting electronics with better energy resolutions. This study provides a detailed detector calibration and DOI response characterization of the dual-ended readout SiPM-based PET detectors, which will be important in the design and calibration of a PET scanner in the future.

  1. Multi detector input and function generator for polarized neutron experiments

    International Nuclear Information System (INIS)

    De Blois, J.; Beunes, A.J.H.; Ende, P. v.d.; Osterholt, E.A.; Rekveldt, M.T.; Schipper, M.N.; Velthuis, S.G.E. te

    1998-01-01

    In this paper a VME module is described for static or stroboscopic measurements with a neutron scattering instrument, consisting essentially of a series of up to 64 3 He neutron detectors around a sample environment. Each detector is provided with an amplifier and a discriminator to separate the neutrons from noise. To reduce the wiring, the discriminator outputs are connected to the module by coding boxes. Two 16-inputs to one-output coding boxes generate serial output codes on a fiber optic connection. This basically fast connection reduces the dead time introduced by the coding, and the influence of environmental noise. With stroboscopic measurements a periodic function is used to affect the sample surrounded by a field coil. Each detected neutron is labeled with a data label containing the detector number and the time of detection with respect to a time reference. The data time base can be programmed on a linear or a nonlinear scale. An external source or an attribute of the periodic function may generate the time reference pulse. A 12-bit DAC connected to the output of an 8 K, 16-bits memory, where the pattern of the current has been stored before, generates the function. The function memory is scanned by the programmable function time base. Attributes are set by the four remaining bits of the memory. One separate detector input connects a monitor detector in the neutron beam with a 32-bit counter/timer that provides measuring on a preset count, preset time or preset frame. (orig.)

  2. Top-seed solution growth and characterization of AlSb single crystals for gamma-ray detectors. Final report, 1 October 1994 - 30 September 1995

    International Nuclear Information System (INIS)

    Witt, A.F.; Becla, P.; Counterman, C.; DiFrancesco, J.; Landahl, G.; Morse, K.; Sanchez, J.

    1996-01-01

    The ultimate objective of the conducted research is to ascertain the potential of AlSb (in single crystal form) for application as γ-detector material operating at room temperature. To this end approaches to crystal growth were to be developed which permit control of growth parameters affecting critical application specific properties of AlSb. The research was focused on exploration of the effectiveness of the Czochralski method and on the development of methods and procedures leading to AlSb crystals with low free carrier concentration and a high mobility-lifetime product. Conventional melt growth of AlSb by the Czochralski technique (from stoichiometric charges) generally yielded material with high net carrier concentrations and low mobility-lifetime products. Significant improvement in crystal properties was achieved, when operating with non-stoichiometric melts, containing Sb in excess at levels of 3 to 10 mol%, further improvements were obtained when changing ambient argon pressure from atmospheric to 300 psi, and using high purity alumina crucibles which were inductively heated with a graphite susceptor CVD coated with silicon-carbide. Initial efforts to reduce evaporative loss of Sb through application of the LEC technique (liquid encapsulated Czochralski) with conventional encapsulants (B 2 O 3 , LiF, CaF 2 ) failed because of their interaction with the crucible and the AlSb melt. Compensation techniques (based on extrinsic doping) were found to lead to the desired reduction of free carriers in AlSb. Such material, however, exhibits a significant decrease of charge carrier mobility and lifetime. Early termination of this research program prevented optimization of critical materials properties in AlSb and precluded at this time a realistic assessment of the potential of this material for solid state detector applications

  3. Development of a detector-counter for teaching purposes in nuclear instrumentation

    International Nuclear Information System (INIS)

    Costa, Fabio E. da; Hamada, Margarida M.; Pereira, Maria Conceicao C. Pereira; Mesquita, Carlos H.

    2000-01-01

    A detector system constituted of a monochannel analyzer with digital counter, amplifier, charge sensitive preamplifier and CsI(Tl) scintillator detector coupled to photodiode PIN was developed to gamma radiation detection. The crystal was grown by Bridgman Method. The crystal luminescence spectra has good match with the photodiode efficiency spectrum. The combination CsI(Tl)- photodiode made at possible to obtain a compact and rugged detector, insensitive to magnetic fields and may be operated at low voltages. This detector system has a baseline for 1 MeV and 2 MeV selected by the use, with two discriminators (inferior and superior) for advancements 10 or 20 KeV division. The system showed good energy linearity in the range from 122 to 1440 KeV. (author)

  4. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Kutcher, Susan W [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Palsoz, Witold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Berding, Martha [SRI International, Menlo Park, CA (United States); Burger, Arnold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States)

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  5. Characteristics and performance of thin LaBr3(Ce) crystal for X-ray astronomy

    Science.gov (United States)

    Manchanda, R. K.

    Lanthanum Bromide crystal is the latest among the family of the scintillation counters and has an advantage over conventional room temperature detectors. It has a high atomic number, high light yield, and fast decay time compared to NaI(Tl) crystal and therefore, the energy resolution, of LaBr3 detector is superior and it has higher detection efficiency. In recent past, laboratory studies have been generally made using thick crystal geometry (1.5×1.5-inch and 2×2-inch). Similarly, simulation studies are also in progress for the use of LaBr3 detectors in the ground based high energy physics experiments. The detector background counting rate of LaBr3 crystal is affected by the internal radioactivity and is due to naturally occurring radioisotopes 138La and 227Ac, similar to the sodium Iodide detector which is affected by the iodine isotopes. We have developed a new detector using thin lanthanum bromide crystal (3×30-mm) for use in X-ray astronomy. The instrument was launched in high altitude balloon flight on Dec. 21, 2007, which reached a ceiling altitude of 4.3 mbs. A background counting rate of 1.6 ×10-2 ct cm-2 s-1 keV-1 sr-1 was observed at the ceiling altitude. This paper describes the details of the electronics hardware, energy resolution and the background characteristics of the detector at ceiling altitude

  6. Air tight electrical box

    Energy Technology Data Exchange (ETDEWEB)

    Pringle, C.G.

    1990-08-14

    An air-impervious electrical box to facilitate air sealing a house comprises an integral, rigid box body having a continuous flange, integral with the body, circumscribing and outwardly extending from the sides of the body. This flange is rearwardly positioned behind the front edges of the sides of the body a predetermined distance so that the electrical box may be secured to framing by nailing through the flange. Drywall is then secured to the frame on top of and adjecent to the flange. Such box eliminates the necessity for solid backing and minimizes passage of air through the box and space between the drywall and the box.

  7. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    Science.gov (United States)

    Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.

    2010-01-01

    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.

  8. A simulation to model position encoding multicrystal PET detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, G; Moisan, C; Rogers, J G

    1995-05-01

    We have developed a simulation to model position encoding multicrystal detectors for positron emission tomography. The simulation is designed to treat the interactions of energetic photons in a scintillator, the geometry of the multicrystal array, as well as the propagation and detection of individual scintillation photons. The simulation is tested with a model of the EXACT HR PLUS block detector manufactured by Siemens-CTI. Position and energy responses derived from the simulation are compared to measured ones. Line-spread-functions, for four columns of crystals, are reproduced with an accuracy of {+-}0.5 mm. The crystal-by-crystal photopeak pulse heights and FWHMs are also predicted within a range of {+-}14%, and {sub -6}{sup +9}% respectively. (author). 21 refs., 2 tabs., 7 figs.

  9. Local polarization phenomena in In-doped CdTe x-ray detector arrays

    International Nuclear Information System (INIS)

    Sato, Toshiyuki; Sato, Kenji; Ishida, Shinichiro; Kiri, Motosada; Hirooka, Megumi; Yamada, Masayoshi; Kanamori, Hitoshi

    1995-01-01

    Local polarization phenomena have been studied in detector arrays with the detector element size of 500 microm x 500 microm, which are fabricated from high-resistivity In-doped CdTe crystals grown by the vertical Bridgman technique. It has been found for the first time that a polarization effect, which is characterized by a progressive decrease of the pulse counting rate with increasing photon fluence, strongly depends on the detector elements, that is, the portion of crystals used. The influence of several parameters, such as the applied electric field strength, time, and temperature, on this local polarization effect is also investigated. From the photoluminescence measurements of the inhomogeneity of In dopant, it is concluded that the local polarization effect observed here originates from a deep level associated with In dopant in CdTe crystals

  10. ZnO nanodisk based UV detectors with printed electrodes.

    Science.gov (United States)

    Alenezi, Mohammad R; Alshammari, Abdullah S; Alzanki, Talal H; Jarowski, Peter; Henley, Simon John; Silva, S Ravi P

    2014-04-08

    The fabrication of highly functional materials for practical devices requires a deep understanding of the association between morphological and structural properties and applications. A controlled hydrothermal method to produce single crystal ZnO hexagonal nanodisks, nanorings, and nanoroses using a mixed solution of zinc sulfate (ZnSO4) and hexamethylenetetramine (HMTA) without the need of catalysts, substrates, or templates at low temperature (75 °C) is introduced. Metal-semiconductor-metal (MSM) ultraviolet (UV) detectors were fabricated based on individual and multiple single-crystal zinc oxide (ZnO) hexagonal nanodisks. High quality single crystal individual nanodisk devices were fabricated with inkjet-printed silver electrodes. The detectors fabricated show record photoresponsivity (3300 A/W) and external quantum efficiency (1.2 × 10(4)), which we attribute to the absence of grain boundaries in the single crystal ZnO nanodisk and the polarity of its exposed surface.

  11. Intelligent trigger processor for the crystal box

    International Nuclear Information System (INIS)

    Sanders, G.H.; Butler, H.S.; Cooper, M.D.

    1981-01-01

    A large solid angle modular NaI(Tl) detector with 432 phototubes and 88 trigger scintillators is being used to search simultaneously for three lepton flavor changing decays of muon. A beam of up to 10 6 muons stopping per second with a 6% duty factor would yield up to 1000 triggers per second from random triple coincidences. A reduction of the trigger rate to 10 Hz is required from a hardwired primary trigger processor described in this paper. Further reduction to < 1 Hz is achieved by a microprocessor based secondary trigger processor. The primary trigger hardware imposes voter coincidence logic, stringent timing requirements, and a non-adjacency requirement in the trigger scintillators defined by hardwired circuits. Sophisticated geometric requirements are imposed by a PROM-based matrix logic, and energy and vector-momentum cuts are imposed by a hardwired processor using LSI flash ADC's and digital arithmetic loci. The secondary trigger employs four satellite microprocessors to do a sparse data scan, multiplex the data acquisition channels and apply additional event filtering

  12. Design and development of 1 mm resolution PET detectors with position-sensitive PMTs

    CERN Document Server

    Shao, Y; Chatziioannou, A F

    2002-01-01

    We report our investigation of a positron emission tomography (PET) detector with 1 m spatial resolution. The prototype detector consists of a 9x9 array of 1x1x10 mm sup 3 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to Hamamatsu R5900-M64 or R5900-C12 position sensitive PMT by either optical fibers or an optical fiber bundle. With a 511 eV gamma source, the intrinsic spatial resolution of this detector was measured to be 0.92 mm. All crystals were well resolved in the flood source histogram. The measured energy and coincidence timing resolutions were around 26% and 4 ns, respectively, demonstrating that sufficient light can be extracted from these small crystals for PET applications.

  13. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  14. Polycrystalline scintillators for large area detectors in HEP experiments

    Science.gov (United States)

    Dosovitskiy, G.; Fedorov, A.; Karpyuk, P.; Kuznetsova, D.; Mikhlin, A.; Kozlov, D.; Dosovitskiy, A.; Korjik, M.

    2017-06-01

    After significant increase of the accelerator luminosity throughout the High Luminosity phase of LHC, charged hadrons and neutrons with fluences higher than 1014 p/cm2 per year in the largest pseudo-rapidity regions of the detectors will cause increased radiation damage of materials. Increasing activation of the experimental equipment will make periodical maintenance and replacement of detector components difficult. Therefore, the selected materials for new detectors should be tolerant to radiation damage. Y3Al5O12:Ce (YAG:Ce) crystal was found to be one of the most radiation hard scintillation materials. However, production of YAG:Ce in a single crystalline form is costly, because crystal growth is performed at temperature near 1900°C with a very low rate of transformation of a raw material into a crystal. We propose translucent YAG:Ce ceramics as an alternative cheaper solution. Ceramic samples were sintered up to density ~98% of the theoretical value and were translucent. The samples have demonstrated light yield of 2200 phot./MeV under 662 keV γ-quanta, which gives the expected response to minimum ionizing particle around 3000 phot. for 2 mm thick plate. Scintillation light yield, registered under surface layer excitation with α-particles, was 50-70% higher than for the reference single crystal YAG:Ce.

  15. Background suppression in TeO2 bolometers with Neganov-Luke amplified cryogenic light detectors

    International Nuclear Information System (INIS)

    Willers, Michael

    2015-01-01

    Cryogenic detectors based on non-scintillating TeO 2 crystals are used in the search for the neutrinoless double beta decay, presently one of the most important fields of research in neutrino and astroparticle physics. Within this work, the application of Neganov-Luke amplified cryogenic light detectors for the background suppression in TeO 2 crystals is investigated. Alpha-induced background events can be discriminated from signal-like electron/gamma events via the detection of Cherenkov radiation produced by highly energetic electrons within the TeO 2 crystal. Using Neganov-Luke light detectors, it could be shown for the first time that a highly efficient event-by-event discrimination between alpha and electron/gamma-induced events can be achieved.

  16. An edge-readout, multilayer detector for positron emission tomography.

    Science.gov (United States)

    Li, Xin; Ruiz-Gonzalez, Maria; Furenlid, Lars R

    2018-04-10

    We present a novel gamma-ray-detector design based on total internal reflection (TIR) of scintillation photons within a crystal that addresses many limitations of traditional PET detectors. Our approach has appealing features, including submillimeter lateral resolution, DOI positioning from layer thickness, and excellent energy resolution. The design places light sensors on the edges of a stack of scintillator slabs separated by small air gaps and exploits the phenomenon that more than 80% of scintillation light emitted during a gamma-ray event reaches the edges of a thin crystal with polished faces due to TIR. Gamma-ray stopping power is achieved by stacking multiple layers, and DOI is determined by which layer the gamma ray interacts in. The concept of edge readouts of a thin slab was verified by Monte Carlo simulation of scintillation light transport. An LYSO crystal of dimensions 50.8 mm × 50.8 mm × 3.0 mm was modeled with five rectangular SiPMs placed along each edge face. The mean-detector-response functions (MDRFs) were calculated by simulating signals from 511 keV gamma-ray interactions in a grid of locations. Simulations were carried out to study the influence of choice of scintillator material and dimensions, gamma-ray photon energies, introduction of laser or mechanically induced optical barriers (LIOBs, MIOBs), and refractive indices of optical-coupling media and SiPM windows. We also analyzed timing performance including influence of gamma-ray interaction position and presence of optical barriers. We also modeled and built a prototype detector, a 27.4 mm × 27.4 mm × 3.0 mm CsI(Tl) crystal with 4 SiPMs per edge to experimentally validate the results predicted by the simulations. The prototype detector used CsI(Tl) crystals from Proteus outfitted with 16 Hamamatsu model S13360-6050PE MPPCs read out by an AiT-16-channel readout. The MDRFs were measured by scanning the detector with a collimated beam of 662-keV photons from a 137 Cs

  17. Measurement of Radon concentration in groundwater by technique of nuclear track detector

    International Nuclear Information System (INIS)

    Trinh Van Giap; Nguyen Manh Hung; Dang Duc Nhan

    2000-01-01

    A method for measuring radon concentration in groundwater using nuclear track detector LR-115 stripping is reported. The radon-monitoring device in groundwater is a small box with two pieces of nuclear track detector and all these materials is placed in a plastic bag made by polyethylene. It is very suitable to measure radon concentration in groundwater well in long term. Alpha tracks produced by radon and it daughter on nuclear track detector is counted automatically by spark counting method. The paper also presents some results of radon concentration in some groundwater well and mineral water sources. (author)

  18. Thermoelectric single-photon detector

    International Nuclear Information System (INIS)

    Kuzanyan, A A; Petrosyan, V A; Kuzanyan, A S

    2012-01-01

    The ability to detect a single photon is the ultimate level of sensitivity in the measurement of optical radiation. Sensors capable of detecting single photons and determining their energy have many scientific and technological applications. Kondo-enhanced Seebeck effect cryogenic detectors are based on thermoelectric heat-to-voltage conversion and voltage readout. We evaluate the prospects of CeB 6 and (La,Ce)B 6 hexaboride crystals for their application as a sensitive element in this type of detectors. We conclude that such detectors can register a single UV photon, have a fast count rate (up to 45 MHz) and a high spectral resolution of 0.1 eV. We calculate the electric potential generated along the thermoelectric sensor upon registering a UV single photon.

  19. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  20. PICsIT a position sensitive detector for space applications

    CERN Document Server

    Labanti, C; Ferriani, S; Ferro, G; Malaguti, G; Mauri, A; Rossi, E; Schiavone, F; Stephen, J B; Traci, A; Visparelli, D

    2002-01-01

    Pixellated Imaging CsI Telescope (PICsIT) is the high energy detector plane of Imager on Board INTEGRAL Satellite (IBIS), one of the main instruments on board the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite that will be launched in the year 2001. It consists of 4096 CsI(Tl) individual detector elements and operates in the energy range from 120 to 10,000 keV. PICsIT is made up of 8 identical modules, each housing 512 scintillating crystals coupled to PIN photodiodes (PD). Each crystal, 30 mm long and with a cross-section of 8.55x8.55 mm sup 2 , is wrapped with a white diffusing coating and then inserted into an aluminium crate. In order to have a compact design, two electronic boards, mounted directly below the crystal/PD assembly, host both the Analogue and Digital Front-End Electronics (FEE). The behaviour of the read-out FEE has a direct impact on the performance of the whole detector in terms of lower energy threshold, energy resolution and event time tagging. Due to the great numb...

  1. Development and characterization of the lead iodide semiconductor detector; Desenvolvimento e caracterizacao do detector semicondutor de iodeto de chumbo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Icimone Braga de

    2001-07-01

    A methodology for purification and growth of PbI{sub 2} crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ({sup 241}Am) alpha particle and ({sup 241}Am, {sup 57}Co, {sup 133}Ba and {sup 137}Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for {sup 241} Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI{sub 2} crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  2. Design and R&D of RICH detectors for EIC experiments

    Science.gov (United States)

    Del Dotto, A.; Wong, C.-P.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Brooks, W.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; He, X.; van Hecke, H.; Horn, T.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stein, H.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A.; Toh, J.; Towell, C.; Towell, R.; Tsang, T.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-12-01

    An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C2F6 gas in a mirror-focused configuration. We present the simulations of the two detectors and their estimated performance.

  3. Position-Sensitive Detector with Depth-of-Interaction Determination for Small Animal PET

    CERN Document Server

    Fedorov, A; Kholmetsky, A L; Korzhik, M V; Lecoq, P; Lobko, A S; Missevitch, O V; Tkatchev, A

    2002-01-01

    Crystal arrays made of LSO and LuAP crystals 2x2x10 mm pixels were manufactured for evaluation of detector with depth-of-interaction (DOI) determination capability intended for small animal positron emission tomograph. Position-sensitive LSO/LuAP phoswich DOI detector based on crystal 8x8 arrays and HAMAMATSU R5900-00-M64 position-sensitive multi-anode photomultiplier tube was developed and evaluated. Time resolution was found to be not worse than 1.0 ns FWHM for both layers, and spatial resolution mean value was 1.5 mm FWHM for the center of field-of-view.

  4. Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization

    Science.gov (United States)

    Zaiour, A.; Ayoub, M.; Hamié, A.; Fawaz, A.; Hage-ali, M.

    High purity crystal with controllable electrical properties, however, control of the electrical properties of CdTe has not yet been fully achieved. Using the refined Cd and Te as starting materials, extremely high-purity CdTe single crystals were prepared by the traditional vertical THM. The nature of the defects involved in the transitions was studied by analyzing the position of the energy levels by TSC method. The resolution of 4.2 keV (FWHM) confirms the high quality and stability of the detectors: TSC spectrum was in coherence with detectors spectrum with a horizontal plate between 0.2 and 0.6 eV. The enhancement in resolution of detectors with a full width at half- maximum (less than 0.31 meV), lead to confirm that the combination of vacuum distillation and zone refining was very effective to obtain more purified CdTe single crystals for photovoltaic or nuclear detectors with better physical properties.

  5. Crystal Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Braverman, Joshua B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-09-26

    Stand-off detection is one of the most important radiation detection capabilities for arms control and the control of illicit nuclear materials. For long range passive detection one requires a large detector and a means of “seeing through” the naturally occurring and varying background radiation, i.e. imaging. Arguably, Compton imaging is the best approach over much of the emission band suitable for long range detection. It provides not only imaging, but more information about the direction of incidence of each detected gamma-ray than the alternate approach of coded-aperture imaging. The directional information allows one to reduce the background and hence improve the sensitivity of a measurement. However, to make an efficient Compton imager requires localizing and measuring the simultaneous energy depositions when gamma-rays Compton scatter and are subsequently captured within a single, large detector volume. This concept has been demonstrated in semi-conductor detectors (HPGe, CZT, Si) but at ~ $1k/cm3 these materials are too expensive to build the large systems needed for standoff detection. Scintillator detectors, such as NaI(Tl), are two orders of magnitude less expensive and possess the energy resolution required to make such an imager. However, they do not currently have the ability to localize closely spaced, simultaneous energy depositions in a single large crystal. In this project we are applying a new technique that should, for the first time ever, allow cubic-millimeter event localization in a bulk scintillator crystal.

  6. Impact of event positioning algorithm on performance of a whole-body PET scanner using one-to-one coupled detectors

    Science.gov (United States)

    Surti, S.; Karp, J. S.

    2018-03-01

    The advent of silicon photomultipliers (SiPMs) has introduced the possibility of increased detector performance in commercial whole-body PET scanners. The primary advantage of these photodetectors is the ability to couple a single SiPM channel directly to a single pixel of PET scintillator that is typically 4 mm wide (one-to-one coupled detector design). We performed simulation studies to evaluate the impact of three different event positioning algorithms in such detectors: (i) a weighted energy centroid positioning (Anger logic), (ii) identifying the crystal with maximum energy deposition (1st max crystal), and (iii) identifying the crystal with the second highest energy deposition (2nd max crystal). Detector simulations performed with LSO crystals indicate reduced positioning errors when using the 2nd max crystal positioning algorithm. These studies are performed over a range of crystal cross-sections varying from 1  ×  1 mm2 to 4  ×  4 mm2 as well as crystal thickness of 1 cm to 3 cm. System simulations were performed for a whole-body PET scanner (85 cm ring diameter) with a long axial FOV (70 cm long) and show an improvement in reconstructed spatial resolution for a point source when using the 2nd max crystal positioning algorithm. Finally, we observe a 30-40% gain in contrast recovery coefficient values for 1 and 0.5 cm diameter spheres when using the 2nd max crystal positioning algorithm compared to the 1st max crystal positioning algorithm. These results show that there is an advantage to implementing the 2nd max crystal positioning algorithm in a new generation of PET scanners using one-to-one coupled detector design with lutetium based crystals, including LSO, LYSO or scintillators that have similar density and effective atomic number as LSO.

  7. Monte Carlo simulation experiments on box-type radon dosimeter

    International Nuclear Information System (INIS)

    Jamil, Khalid; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-01-01

    Epidemiological studies show that inhalation of radon gas ( 222 Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the 222 Rn concentrations (Bq/m 3 ) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η int ) and alpha hit efficiency (η hit ). The η int depends upon only on the dimensions of the dosimeter and η hit depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper explains that how radon

  8. Monte Carlo simulation experiments on box-type radon dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Khalid, E-mail: kjamil@comsats.edu.pk; Kamran, Muhammad; Illahi, Ahsan; Manzoor, Shahid

    2014-11-11

    Epidemiological studies show that inhalation of radon gas ({sup 222}Rn) may be carcinogenic especially to mine workers, people living in closed indoor energy conserved environments and underground dwellers. It is, therefore, of paramount importance to measure the {sup 222}Rn concentrations (Bq/m{sup 3}) in indoors environments. For this purpose, box-type passive radon dosimeters employing ion track detector like CR-39 are widely used. Fraction of the number of radon alphas emitted in the volume of the box type dosimeter resulting in latent track formation on CR-39 is the latent track registration efficiency. Latent track registration efficiency is ultimately required to evaluate the radon concentration which consequently determines the effective dose and the radiological hazards. In this research, Monte Carlo simulation experiments were carried out to study the alpha latent track registration efficiency for box type radon dosimeter as a function of dosimeter’s dimensions and range of alpha particles in air. Two different self developed Monte Carlo simulation techniques were employed namely: (a) Surface ratio (SURA) method and (b) Ray hitting (RAHI) method. Monte Carlo simulation experiments revealed that there are two types of efficiencies i.e. intrinsic efficiency (η{sub int}) and alpha hit efficiency (η{sub hit}). The η{sub int} depends upon only on the dimensions of the dosimeter and η{sub hit} depends both upon dimensions of the dosimeter and range of the alpha particles. The total latent track registration efficiency is the product of both intrinsic and hit efficiencies. It has been concluded that if diagonal length of box type dosimeter is kept smaller than the range of alpha particle then hit efficiency is achieved as 100%. Nevertheless the intrinsic efficiency keeps playing its role. The Monte Carlo simulation experimental results have been found helpful to understand the intricate track registration mechanisms in the box type dosimeter. This paper

  9. A first principle approach for clover detector

    Science.gov (United States)

    Kshetri, R.

    2012-08-01

    A simple model based on probability flow arguments has been presented for understanding the clover germanium detector. Using basic concepts of absorption and scattering of gamma-rays, the operation of the clover detector has been described in terms of six probability amplitudes and a parameter. Instead of using an empirical method or simulation, this work presents the first attempt to calculate the peak-to-total and peak-to-background ratios of the clover detector using experimental data of relative single crystal efficiency and addback factor as an input. A unique feature of our approach is that these ratios could be calculated for energies where their direct measurement is impossible due to absence of a radioactive source having single monoenergetic gamma-ray of that energy. Results for four gamma-ray energies (Eγ = 1.408, 3.907, 7.029 and 10.430 MeV) have been discussed. Agreement between experimental data and analysis results has been observed. The present approach could describe clover-type detectors as well. As an example, the nine element detector has been considered. We have demonstrated that our formalism can describe both finite and infinite interactions of γ-rays with the clover crystals. The work presented in this paper follows similar philosophy as presented in a recent paper (R. Kshetri, JInst 2012 7 P04008), which deals with modeling of encapsulated type composite detectors like miniball, cluster and SPI (Spectrometer for INTEGRAL satellite).

  10. A first principle approach for clover detector

    International Nuclear Information System (INIS)

    Kshetri, R

    2012-01-01

    A simple model based on probability flow arguments has been presented for understanding the clover germanium detector. Using basic concepts of absorption and scattering of gamma-rays, the operation of the clover detector has been described in terms of six probability amplitudes and a parameter. Instead of using an empirical method or simulation, this work presents the first attempt to calculate the peak-to-total and peak-to-background ratios of the clover detector using experimental data of relative single crystal efficiency and addback factor as an input. A unique feature of our approach is that these ratios could be calculated for energies where their direct measurement is impossible due to absence of a radioactive source having single monoenergetic gamma-ray of that energy. Results for four gamma-ray energies (E γ = 1.408, 3.907, 7.029 and 10.430 MeV) have been discussed. Agreement between experimental data and analysis results has been observed. The present approach could describe clover-type detectors as well. As an example, the nine element detector has been considered. We have demonstrated that our formalism can describe both finite and infinite interactions of γ-rays with the clover crystals. The work presented in this paper follows similar philosophy as presented in a recent paper (R. Kshetri, JInst 2012 7 P04008), which deals with modeling of encapsulated type composite detectors like miniball, cluster and SPI (Spectrometer for INTEGRAL satellite).

  11. Studies on the target detector of the LAND experiment

    International Nuclear Information System (INIS)

    Zinser, M.

    1991-09-01

    In the framework of this diploma thesis the target detector of the LAND experiment was for the first time taken into operation. The target detector consists of 48 BaF 2 crystals and 36 plastic scintillators. The BaF 2 detectors shall be mainly applied to the measurements of Γ quanta from giant resonance excitations and transitions in exotic nuclei. The plastic scintillators serve for the determination of the multiplicity of the charged particles emitted in a reaction. The electronics of the target detector were for the first experiment of the LAND collaboration on the electromagnetic excitation in peripheral heavy ion reactions at near-relativistic energies together constructed and tested. In the following for the BaF 2 crystals calibration measurements with two γ sources and for the plastic scintillators with a β preparate were performed. The evaluation of the measurements was performed on a VAX station of the Mainz University, on which a by the LAND collaboration modified version of the analysis program PAW was installed. The analysis of the plastic scintillators yields a bad energy resolution of at least 0.6. For the BaF 2 detectors PAW was extended by a comand, which allows a semi-automatic performation of the calibration. The results obtained by this procedure are consistent with calibrations, which were performed independently on this in the collaboration. By the new routine it is possible to perform the energy calibration of the BaF 2 crystals fastly and efficiently. The resolution of the BaF 2 detectors lies around 10%. By this experiments on the giant-resonance excitation and first studies on γ transitions with exotic nuclei are performable. (orig./HSI) [de

  12. Light-Induced Tellurium Enrichment on CdZnTe Crystal Surfaces Detected by Raman Spectroscopy

    International Nuclear Information System (INIS)

    Hawkins, Samantha A.; Villa-Aleman, Eliel; Duff, Martine C.; Hunter, Doug B.; Burger, Arnold; Groza, Michael; Buliga, Vladimir; Black, David R.

    2008-01-01

    CdZnTe (CZT) crystals can be grown under controlled conditions to produce high-quality crystals to be used as room-temperature radiation detectors. Even the best crystal growth methods result in defects, such as tellurium secondary phases, that affect the crystal's performance. In this study, CZT crystals were analyzed by micro-Raman spectroscopy. The growth of Te rich areas on the surface was induced by low-power lasers. The growth was observed versus time with low-power Raman scattering and was observed immediately under higher-power conditions. The detector response was also measured after induced Te enrichment.

  13. A Single Tower Configuration of the Modular Gamma Box Counter System - 13392

    Energy Technology Data Exchange (ETDEWEB)

    Morris, K.; Nakazawa, D.; Francalangia, J.; Gonzalez, H. [Canberra Industries Inc., 800 Research Parkway, Meriden, CT, 06450 (United States)

    2013-07-01

    Canberra's Standard Gamma Box Counter System is designed to perform accurate quantitative assays of gamma emitting nuclides for a wide range of large containers including B-25 crates and ISO shipping containers. Using a modular building-block approach, the system offers tremendous flexibility for a variety of measurement situations with wide ranges of sample activities and throughput requirements, as well as the opportunity to modify the configuration for other applications at a later date. The typical configuration consists of two opposing towers each equipped with two high purity germanium detectors, and an automated container trolley. This paper presents a modified configuration, consisting of a single tower placed inside a measurement trailer with three detector assemblies, allowing for additional vertical segmentation as well as a viewing a container outside the trailer through the trailer wall. An automatic liquid nitrogen fill system is supplied for each of the detectors. The use of a forklift to move the container for horizontal segmentation is accommodated by creating an additional operational and calibration set-up in the NDA 2000 software to allow for the operator to rotate the container and assay the opposite side, achieving the same sensitivity as a comparable two-tower system. This Segmented Gamma Box Counter System retains the core technologies and design features of the standard configuration. The detector assemblies are shielded to minimize interference from environmental and plant background, and are collimated to provide segmentation of the container. The assembly positions can also be modified in height and distance from the container. The ISOCS calibration software provides for a flexible approach to providing the calibrations for a variety of measurement geometries. The NDA 2000 software provides seamless operation with the current configuration, handling the data acquisition and analysis. In this paper, an overview of this system is

  14. A detector system for two-dimensional, position-sensitive detection of neutrons and gamma quanta

    International Nuclear Information System (INIS)

    Scholz, A.

    1988-08-01

    While the well-known Anger Camera utilizes a large number of photomultiplier tubes, which are arranged in a regular array behind a scintillation crystal, the new detector system makes use of electron optics to transfer the scintillation image of a large scintillation crystal (Li-6-glass) onto a small position detector. Because of this, only few photodetectors are required for position readout, associated with only a small number of amplifier chains and a very simple position reconstruction algorithm. The reduced complexity of the readout electronics ultimately leads to an improved maintainability and reliability of the detector system. A prototype of the new detector system was built and tested. After giving an overview on already known and realized detector configurations, the basic considerations, which led to the final detector design, will be explained. Different methods of detector readout and position determination are discussed. Measurement results which were obtained with the prototype detector system are presented and explained by means of simulation calculations. (orig./HP) [de

  15. Characterization of dual layer phoswich detector performance for small animal PET using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Choi, Yong; Cho, Gyuseong; Choe, Yearn Seong; Lee, Kyung-Han; Kim, Byung-Tae

    2004-01-01

    A positron emission tomograph dedicated to small animal imaging should have high spatial resolution and sensitivity, and dual layer scintillators have been developed for this purpose. In this study, simulations were performed to optimize the order and the length of each crystal of a dual layer phoswich detector, and to evaluate the possibility of measuring signals from each layer of the phoswich detector. A simulation tool GATE was used to estimate the sensitivity and resolution of a small PET scanner. The proposed scanner is based on dual layer phoswich detector modules arranged in a ring of 10 cm diameter. Each module is composed of 8 x 8 arrays of phoswich detectors consisting of LSO and LuYAP with a 2 mm x 2 mm sensitive area coupled to a Hamamatsu R7600-00-M64 PSPMT. The length of the front layer of the phoswich detector varied from 0 to 10 mm at 1 mm intervals, and the total length (LSO + LuYAP) was fixed at 20 mm. The order of the crystal layers of the phoswich detector was also changed. Radial resolutions were kept below 3.4 mm and 3.7 mm over 8 cm FOV, and sensitivities were 7.4% and 8.0% for LSO 5 mm-LuYAP 15 mm, and LuYAP 6 mm-LSO 14 mm phoswich detectors, respectively. Whereas, high and uniform resolutions were achieved by using the LSO front layer, higher sensitivities were obtained by changing the crystal order. The feasibilities for applying crystal identification methods to phoswich detectors consisting of LSO and LuYAP were investigated using simulation and experimentally derived measurements of the light outputs from each layer of the phoswich detector. In this study, the optimal order and lengths of the dual layer phoswich detector were derived in order to achieve high sensitivity and high and uniform radial resolution

  16. A study on the growth of compound semiconductor single crystal by TOM technique

    International Nuclear Information System (INIS)

    Kim, H.C.; Kwon, S.I.; Chung, M.K.; Chang, J.S.

    1981-01-01

    This paper describes the merit of the HgI 2 single crystals obtained by solution growth, 2- and 3-region temperature growth, and temperature oscillation growth for soft γ-ray detectors which can be operated at room temperature. Special efforts are put on the design, construction, and operation of the TOM (Temperature Oscillation Method) single crystal growing furnace. Experimental results show that HgI 2 detectors fabricated by vapour phase growth method usually exhibit sufficient enough detector characteristics for soft γ-ray spectrometry. However, further investigation should be carried out to eliminate detector deterioration due to polarization effect. (author)

  17. Encapsulated scintillation detector

    International Nuclear Information System (INIS)

    Toepke, I.L.

    1982-01-01

    A scintillation detector crystal is encapsulated in a hermetically sealed housing having a glass window. The window may be mounted in a ring by a compression seal formed during cooling of the ring and window after heating. The window may be chemically bonded to the ring with or without a compression seal. The ring is welded to the housing along thin weld flanges to reduce the amount of weld heat which must be applied. A thin section is provided to resist the flow of welding heat to the seal between the ring and the window thereby forming a thermal barrier. The thin section may be provided by a groove cut partially through the wall of the ring. A layer of PTFE between the tubular body and the crystal minimizes friction created by thermal expansion. Spring washers urge the crystal towards the window. (author)

  18. HgI{sub 2} detector fabrication; Construccion de detectores de HgI{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.; Perez, J. M.

    1996-07-01

    The aim of the present work is to describe the steps followed to fabricate an ionizing radiation detector based on synthetic mercuric iodide monocrystal layers. Firstly, the crystalline orientation method has been describe, which is needed before the layer cutting perpendicularly to the (001) crystallographic. It is also defined the proceeding to crystal face finishing by a mechanical polishing and subsequent chemical etching. then, the metal electrode deposition and the view connection has been explained. Finally, the technique followed to encapsulate the detector with a polymeric thin film deposition has been described. (Author) 10 refs.

  19. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yiping; Sun, Xishan [University of Texas MD Anderson Cancer Center (United States); Lou, Kai [Rice University (United States)

    2015-05-18

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  20. Development of compact DOI-measurable PET detectors for simultaneous PET/MR Imaging

    International Nuclear Information System (INIS)

    Shao, Yiping; Sun, Xishan; Lou, Kai

    2015-01-01

    It is critically needed yet challenging to develop compact PET detectors with high sensitivity and uniform, high imaging resolution for improving the performance of simultaneous PET/MR imaging, particularly for an integrated/inserted small-bore system. Using the latest “edge-less” SiPM arrays for DOI measurement using the design of dual-ended-scintillator readout, we developed several compact PET detectors suited for PET/MR imaging. Each detector consists of one LYSO array with each end coupled to a SiPM array. Multiple detectors can be seamlessly tiled together along all sides to form a large detector panel. Detectors with 1.5x1.5 and 2.0x2.0 mm crystals at 20 or 30 mm lengths were studied. Readout of individual SiPM or capacitor-based signal multiplexing was used to transfer 3D interaction position-coded analog signals through flexible-print-circuit cables to dedicated ASIC frontend electronics to output digital timing pulses that encode interaction information. These digital pulses can be transferred to, through standard LVDS cables, and decoded by a FPGA-based data acquisition positioned outside the MRI scanner for coincidence event selection. Initial detector performance measurement shows excellent crystal identification even with 30 mm long crystals, ~18% and 2.8 ns energy and timing resolutions, and around 2-3 mm DOI resolution. A large size detector panel can be scaled up with these modular detectors and different PET systems can be flexibly configured with the scalable readout electronics and data acquisition, providing an important design advantage for different system and application requirements. It is expected that standard shielding of detectors, electronics and signal transfer lines can be applied for simultaneous PET/MR imaging applications, with desired DOI measurement capability to enhance the PET performance and image quality.

  1. Precision machining and polishing of scintillating crystals for large calorimeters and hodoscopes

    International Nuclear Information System (INIS)

    Wuest, C.R.; Fuchs, B.A.; Holdener, F.R.; Heck, J.L. Jr.

    1994-04-01

    New machining and polishing techniques have been developed for large scintillating crystal arrays such as the Barium Fluoride Electromagnetic Calorimeter for the GEM Detector at SSCL, the Crystal Clear Collaboration's cerium fluoride or lead tungstenate calorimeter at the proposed LHC and CERN, the PHENIX Detector at RHIC (barium fluoride), and the cesium iodide Calorimeter for the BaBar Detector at PEP-2 B Factory at SLAC. The machining and polishing methods to be presented in this paper provide crystalline surfaces without sub-surface damage or deformation as verified by Rutherford Back-scattering (RBS) analysis. Surface roughness of about 10--20 angstroms and sub-micron mechanical tolerances have been demonstrated on large barium fluoride crystal samples. Mass production techniques have also been developed for machining the proper angled surfaces and polishing up to five 50 cm long crystals at one time. These techniques utilize kinematic mount technology developed at LLNL to allow precision machining and polishing of complex surfaces. They will present this technology along with detailed surface studies of barium fluoride and cerium fluoride crystals polished with this technique

  2. A new kind of metal detector based on chaotic oscillator

    Science.gov (United States)

    Hu, Wenjing

    2017-12-01

    The sensitivity of a metal detector greatly depends on the identification ability to weak signals from the probe. In order to improve the sensitivity of metal detectors, this paper applies the Duffing chaotic oscillator to metal detectors based on its characteristic which is very sensitive to weak periodic signals. To make a suitable Duffing system for detectors, this paper computes two Lyapunov characteristics exponents of the Duffing oscillator, which help to obtain the threshold of the Duffing system in the critical state accurately and give quantitative criteria for chaos. Meanwhile, a corresponding simulation model of the chaotic oscillator is made by the Simulink tool box of Matlab. Simulation results shows that Duffing oscillator is very sensitive to sinusoidal signals in high frequency cases. And experimental results show that the measurable diameter of metal particles is about 1.5mm. It indicates that this new method can feasibly and effectively improve the metal detector sensitivity.

  3. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET

    Science.gov (United States)

    Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph

    2018-04-01

    This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.

  4. Medical and Safety Reforms in Boxing

    Science.gov (United States)

    Jordan, Barry D.

    1988-01-01

    The continued existence of boxing as an accepted sport in civilized society has been long debated. The position of the American Medical Association (AMA) has evolved from promoting increased safety and medical reform to recommending total abolition of both amateur and professional boxing. In response to the AMA opposition to boxing, the boxing community has attempted to increase the safeguards in amateur and professional boxing. The United States of America Amateur Boxing Federation, which is the national regulatory agency for all amateur boxing in the United States, has taken several actions to prevent the occurrence of acute brain injury and is currently conducting epidemiologic studies to assess the long-term neuropsychologic consequences of amateur boxing. In professional boxing, state regulatory agencies such as the New York State Athletic Commission have introduced several medical interventions to prevent and reduce neurologic injury. The lack of a national regulatory agency to govern professional boxing has stimulated the formation of the Association of Boxing Commissions and potential legislation for the federal regulation of professional boxing by a federally chartered organization called the United States Boxing Commission. The AMA's opposition to boxing and the medical and safety reforms implemented by the proponents of boxing are discussed. PMID:3385788

  5. SiliPET: An ultra high resolution design of a small animal PET scanner based on double sided silicon strip detector stacks

    International Nuclear Information System (INIS)

    Zavattini, G.; Cesca, N.; Di Domenico, G.; Moretti, E.; Sabba, N.

    2006-01-01

    We investigated the capabilities of a small animal PET scanner, named SiliPET, based on four stacks of double sided silicon strips detectors. Each stack consists of 40 silicon detectors with dimension 60x60x1mm 3 . These are arranged to form a box 5x5x6cm 3 with minor sides opened; the box represents the maximal FOV of the scanner. The performance parameters of SiliPET scanner have been estimated, giving an intrinsic spatial resolution of 0.52mm and a sensitivity of 5.1% at the center of the system

  6. The influence of anisotropic electron drift velocity on the signal shapes of closed-end HPGe detectors

    CERN Document Server

    Mihailescu, L; Lieder, R M; Brands, H; Jaeger, H

    2000-01-01

    This study is concerned with the anisotropy of the electron drift velocity in germanium crystals at high electric fields and low temperature, and its influence on the charge collection process in n-type, high-purity germanium (HPGe) detectors of closed-end, coaxial geometry. The electron trajectories inside HPGe detectors are simulated using a phenomenological model to calculate the dependence of the drift velocity on the angle between the electric field and the crystal orientation. The resulting induced currents and pulse shapes for a given detector geometry and preamplifier bandwidth are compared to experiment. Experimentally, the dependence of the pulse shapes on the conductivity anisotropy in closed-end HPGe detectors was observed. The experimental data on pulse shapes were obtained by sampling preamplifier signals of an encapsulated, hexaconical EUROBALL detector, which was irradiated by collimated sup 2 sup 2 Na and sup 2 sup 4 sup 1 Am sources. The crystal orientation was measured by neutron reflection...

  7. Glove box

    International Nuclear Information System (INIS)

    Morita, Atsushi

    1990-01-01

    Wire rope earthquake proof supports having sufficient vibration transmitting and attenuating property are disposed between a fixed floor and the bottom of a glove box in order to improve earthquake proofness of the glove box. The vertical weight of the glove box is supported by support legs slidable on the surface of the fixed floor. The wire rope earthquake-proof supports when undergoing a load, cause stretching and rolling against the external force such as earthquakes, and provide flexible spring support and cause a great damping due to friction with strands. Further, the vertical weight is always supported by the support legs and, when a horizontal weight is applied, the glove box slides on the fixed floor freely with slidable members. In this way, stress concentration generated at joint portions of columns and beams can be moderated greatly and earthquake proofness can be improved. Further, quality control and maintenance for the device is almost unnecessary owing to excellent fatigue-resistant characteristics of the wire rope earthquake proof supports. (N.H.)

  8. Characterization of segmented large volume, high purity germanium detectors

    International Nuclear Information System (INIS)

    Bruyneel, B.

    2006-01-01

    γ-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple γ-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by γ-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics. The results are

  9. Characterization of segmented large volume, high purity germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2006-07-01

    {gamma}-ray tracking in future HPGe arrays like AGATA will rely on pulse shape analysis (PSA) of multiple {gamma}-interactions. For this purpose, a simple and fast procedure was developed which enabled the first full characterization of a segmented large volume HPGe detector. An analytical model for the hole mobility in a Ge crystal lattice was developed to describe the hole drift anisotropy with experimental velocity values along the crystal axis as parameters. The new model is based on the drifted Maxwellian hole distribution in Ge. It is verified by reproducing successfully experimental longitudinal hole anisotropy data. A comparison between electron and hole mobility shows large differences for the longitudinal and tangential velocity anisotropy as a function of the electrical field orientation. Measurements on a 12 fold segmented, n-type, large volume, irregular shaped HPGe detector were performed in order to determine the parameters of anisotropic mobility for electrons and holes as charge carriers created by {gamma}-ray interactions. To characterize the electron mobility the complete outer detector surface was scanned in small steps employing photopeak interactions at 60 keV. A precise measurement of the hole drift anisotropy was performed with 356 keV rays. The drift velocity anisotropy and crystal geometry cause considerable rise time differences in pulse shapes depending on the position of the spatial charge carrier creation. Pulse shapes of direct and transient signals are reproduced by weighting potential calculations with high precision. The measured angular dependence of rise times is caused by the anisotropic mobility, crystal geometry, changing field strength and space charge effects. Preamplified signals were processed employing digital spectroscopy electronics. Response functions, crosstalk contributions and averaging procedures were taken into account implying novel methods due to the segmentation of the Ge-crystal and the digital electronics

  10. Growth and fabrication of large size sodium iodide crystal scintillator

    International Nuclear Information System (INIS)

    Sabharwal, S.C.; Karandikar, S.C.; Mirza, T.; Ghosh, B.; Deshpande, R.Y.

    1979-01-01

    The growth of 80 - 135 mm dia. Sodium iodide crystals activated with thallium is described in the present report. The growth is effected in a glazed porcelain crucible in a protective ambient of dry nitrogen. The technical details of the equipment developed have been fully described. The results of measurements on the rate of growth of crystal and the optimization of different growth parameters are reported. The dependence of various factors upon the performance characteristics of the scintillator detectors made using these crystals is also discussed. The energy resolution obtained for a typical detector of dimensions 76 mm dia x 76 mm ht. is 10 percent. (auth.)

  11. Semiconductor detectors in the low countries

    CERN Document Server

    Heijne, Erik H M

    2003-01-01

    Several milestones in the development of semiconductor radiation imaging detectors are attributed to scientists from the Low Countries, the Netherlands and Belgium, and a few historical details will be highlighted. The very first usable semiconductor nuclear detector was made in Utrecht, around 1943, in the form of an AgCl crystal. The earliest large-scale application of monolithic, double- sided silicon strip detectors was in the BOL experiment around 1968 at IKO, now NIKHEF, in Amsterdam. The technology developed and patented by Philips and IKO was adapted by the author and coworkers in 1980 to produce the first silicon microstrip detector used for the reconstruction of events in a CERN fixed target experiment. An avalanche of developments then led to worldwide use of silicon microstrip detectors in elementary particle physics, motivated by the capability to reconstruct particles with lifetime similar to 10**- **1**2s, which decay on sub-millimeter scale. The intensive activity in silicon detector R&D c...

  12. Performance of an AGATA asymmetric detector

    Energy Technology Data Exchange (ETDEWEB)

    Boston, A.J. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)], E-mail: ajboston@liv.ac.uk; Dimmock, M.R.; Unsworth, C.; Boston, H.C.; Cooper, R.J.; Grint, A.N.; Harkness, L.J. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Jones, M.; Nolan, P.J.; Oxley, D.C. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Slee, M. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2009-06-01

    High-resolution gamma-ray detectors based on high-purity germanium crystals (HPGe) are one of the key workhorses of experimental nuclear science. The technical development of such detector technology has been dramatic in recent years. Large volume, high-granularity, electrically segmented HPGe detectors have been realised and a methodology to improve position sensitivity using pulse-shape analysis coupled with the novel technique of gamma-ray tracking has been developed. Collaborations have been established in Europe (Advanced GAmma Tracking Array (AGATA)) [J. Simpson, Acta Phys. Pol. B 36 (2005) 1383] and the USA (GRETA/GRETINA) [C.W. Beausang, Nucl. Instr. and Meth. B 204 (2003)] to build gamma-ray tracking spectrometers. This paper discusses the performance of the first AGATA asymmetric detector that has been tested at the University of Liverpool. The use of a fully digital data acquisition system has allowed detector charge pulse shapes from a selection of well-defined photon interaction positions to be analysed, yielding important information on the position sensitivity of the detector.

  13. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  14. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    Science.gov (United States)

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  15. Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle.

    Science.gov (United States)

    Xue, Song; Wang, Ruiying; Yang, Fangping; Terns, Rebecca M; Terns, Michael P; Zhang, Xinxin; Maxwell, E Stuart; Li, Hong

    2010-09-24

    Box C/D small nucleolar and Cajal body ribonucleoprotein particles (sno/scaRNPs) direct site-specific 2'-O-methylation of ribosomal and spliceosomal RNAs and are critical for gene expression. Here we report crystal structures of an archaeal box C/D RNP containing three core proteins (fibrillarin, Nop56/58, and L7Ae) and a half-mer box C/D guide RNA paired with a substrate RNA. The structure reveals a guide-substrate RNA duplex orientation imposed by a composite protein surface and the conserved GAEK motif of Nop56/58. Molecular modeling supports a dual C/D RNP structure that closely mimics that recently visualized by electron microscopy. The substrate-bound dual RNP model predicts an asymmetric protein distribution between the RNP that binds and methylates the substrate RNA. The predicted asymmetric nature of the holoenzyme is consistent with previous biochemical data on RNP assembly and provides a simple solution for accommodating base-pairing between the C/D guide RNA and large ribosomal and spliceosomal substrate RNAs. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Timing performance measurements of Si-PM-based LGSO phoswich detectors

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Okumura, Satoshi; Yeom, Jung Yeol

    2016-01-01

    Since the timing resolution was significantly improved using silicon photomultipliers (Si-PMs) combined with fast scintillators, we expect that phoswich detectors will be used in future TOF-PET systems. However, no practical phoswich detector has been proposed for TOF-PET detectors. We conducted timing performance measurements of phoswich detectors comprised of two types of Ce-doped LGSO scintillators with different decay times coupled to Si-PMs and digitized the output signals using a high bandwidth digital oscilloscope. We prepared three types of LGSOs (LGSO-fast, LGSO-standard, and LGSO-slow) with different Ce concentrations. After measuring the decay time, the energy performance, and the timing performance of each LGSO, we conducted pulse shape analysis and timing resolution measurements for two versions of phoswich LGSOs: LGSO-standard/LGSO-fast and LGSO-slow/LGSO-fast combinations. The pulse shape spectra for a 10-mm-long crystal LGSO-slow/LGSO-fast combination showed good separation of the front and back crystals with a peak-to-valley ratio of 2.0. The timing resolutions for the 20-mm-long crystal LGSO-slow/LGSO-fast combination were ~300 ps FWHM. The timing resolutions for the phoswich LGSOs were slightly inferior than that measured with the individual LGSO fast, but the acquired timing resolution for the phoswich configuration, ~300 ps with a LGSO-slow/LGSO-fast combination, is adequate for TOF-PET systems. We conclude that LGSO phoswich detectors are promising for TOF-DOI-PET systems.

  17. Bento Boxes

    Science.gov (United States)

    Hasio, Cindy

    2010-01-01

    Bento boxes are common objects in Japanese culture, designed to hold enough lunch for one person. They have individual compartments and sometimes multiple tiers for rice, vegetables, and other side dishes. They are made of materials ranging from wood, cloth, aluminum, or plastic. In general, the greater the number of foods, the better the box is…

  18. A depth-encoding PET detector that uses light sharing and single-ended readout with silicon photomultipliers

    Science.gov (United States)

    Kuang, Zhonghua; Yang, Qian; Wang, Xiaohui; Fu, Xin; Ren, Ning; Sang, Ziru; Wu, San; Zheng, Yunfei; Zhang, Xianming; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng

    2018-02-01

    Detectors with depth-encoding capability and good timing resolution are required to develop high-performance whole-body or total-body PET scanners. In this work, depth-encoding PET detectors that use light sharing between two discrete crystals and single-ended readout with silicon photomultipliers (SiPMs) were manufactured and evaluated. The detectors consisted of two unpolished 3  ×  3  ×  20 mm3 LYSO crystals with different coupling materials between them and were read out by Hamamatsu 3  ×  3 mm2 SiPMs with one-to-one coupling. The ratio of the energy of one SiPM to the total energy of two SiPMs was used to measure the depth of interaction (DOI). Detectors with different coupling materials in-between the crystals were measured in the singles mode in an effort to obtain detectors that can provide good DOI resolution. The DOI resolution and energy resolution of three types of detector were measured and the timing resolution was measured for the detector with the best DOI and energy resolution. The optimum detector, with 5 mm optical glue, a 9 mm triangular ESR and a 6 mm rectangular ESR in-between the unpolished crystals, provides a DOI resolution of 2.65 mm, an energy resolution of 10.0% and a timing resolution of 427 ps for events of E  >  400 keV. The detectors simultaneously provide good DOI and timing resolution, and show great promise for the development of high-performance whole-body and total-body PET scanners.

  19. HgI2 detector fabrication

    International Nuclear Information System (INIS)

    Gonzalez, M.; Perez, J. M.

    1996-01-01

    The aim of the present work is to describe the steps followed to fabricate an ionizing radiation detector based on synthetic mercuric iodide monocrystal layers. Firstly, the crystalline orientation method has been describe, which is needed before the layer cutting perpendicularly to the (001) crystallographic. It is also defined the proceeding to crystal face finishing by a mechanical polishing and subsequent chemical etching. then, the metal electrode deposition and the view connection has been explained. Finally, the technique followed to encapsulate the detector with a polymeric thin film deposition has been described. (Author) 10 refs

  20. HgI2 detector fabrication

    International Nuclear Information System (INIS)

    Gonzalez, M.; Perez, J.M.

    1996-01-01

    The aim of the present work is to describe the steps followed to fabricate an ionizing radiation detector based on synthetic mercuric iodide monocrystal layers. Firstly, the crystalline orientation method has been describe, which is needed before the layer cutting perpendicullarly to the (001) crystallographyc. It is also defined the proceeding to crystal face finishing by a mechanical polishing and subsequent chemical etching. Then, the metal electrode deposition and the wire connection has been explained. Finally, the technique followed to encapsulate the detector with a polimeric thin film deposition has been described

  1. Energy resolution of a four-layer depth of interaction detector block for small animal PET

    International Nuclear Information System (INIS)

    Tsuda, Tomoaki; Kawai, Hideyuki; Orita, Narimichi; Murayama, Hideo; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga; Omura, Tomohide

    2004-01-01

    We are now planning to develop a positron emission tomograph dedicated to small animals such as rats and mice which meets the demand for higher sensitivity. We proposed a new depth of interaction (DOI) detector arrangement to obtain DOI information by using a four-layer detector with all the same crystal elements. In this DOI detector, we control the behavior of scintillation photons by inserting the reflectors between crystal elements so that the DOI information of four layers can be extracted from one two-dimensional (2D) position histogram made by Anger-type calculation. In this work, we evaluate the energy resolution of this four-layer DOI detector. (author)

  2. MUON DETECTORS: DT

    CERN Multimedia

    Marco Dallavalle

    2012-01-01

      Although the year 2012 is the third year without access to the chambers and the Front-End electronics, the fraction of good channels is still very high at 99.1% thanks also to the constant care provided by the on-site operation team. The downtime caused to CMS as a consequence of DT failures is to-date <2%. The intervention on the LV power supplies, which required a large number of CAEN modules (137 A3050, 13 A3100, and 3 MAO) to be removed from the detector, reworked and tested during this Year-End Technical Stop, can now, after a few months of stable operation of the LV, be declared to have solved once-and-for-all the persistent problem with the overheating LV Anderson connectors. Another piece of very good news is that measurements of the noise from single-hit rate outside the drift-time box as a function of the LHC luminosity show that the noise rate and distribution are consistent with expectations of the simulations in the Muon TDR, which have guided the detector design and constru...

  3. Glove box adaptation, installation and commissioning of an assembled modular type atomic absorption unit with GF atomizer

    International Nuclear Information System (INIS)

    Gupta, Santosh Kumar; Thulasidas, S.K.; Goyal, Neelam; Godbole, S.V.

    2013-09-01

    The report describes glove box adaptation of an in-house developed AAS unit with GF as atomization source for determination of trace metallic elements in Pu bearing samples. In order to replace the old Varian Techtron GF-AAS which was utilized for analysis of Pu bearing samples for the last thirty seven years, and as of late was giving too many practical problems, a new GF-AAS was designed and reassembled. The original compact flame AAS unit available with M/s. Thermo Fisher India Pvt. Ltd, Nashik, was converted into separated modular unit viz. Hollow Cathode Lamp unit, Atomizer unit and Monochromator - Detector - Readout unit. In addition, these modular units were modified with respect to their dimensions so as to enable their use with existing glove box facility developed earlier in 1980 for glove box incorporation. These units were separated from each other at their factory site so as to enable us to incorporate atomizer unit alone in the glove box. Glove box adapted GF-AAS is essential for Radiochemistry Division to provide analytical services to Chemical Quality Control of Pu bearing nuclear and related materials and also as an analytical support to the R and D activities of the Radiochemistry Division, BARC. (author)

  4. Manufacturing Techniques of Ge(Li) Gamma radiation detectors

    International Nuclear Information System (INIS)

    Marti, G.V.; Gimenez, C.R.

    1981-01-01

    A method is shown, to make detectors of germanium-lithium with a size up to 50 cu cm. A detailed description of the techniques used in the different stages of the process is shown as well as the results attained with several detectors. Resolutions of 2,7 and 5,5 keV and efficiencies between 3 and 8% for an energy of 1,33 MeV have been attained. An attempt was made to relate said parameters with the difficulties found during the fabrication of the detectors and the features of the original material, with the purpose to set criterions that allow to acknowledge the crystals more easily compensatable, and when finished would yield the best resolution and efficiency. A summary of the most important features and construction details is given showing some spectrum of the best crystals. Finally the results attained are discussed and some of the conclusions are extracted. (V.B.) [es

  5. Recent Advances in Diamond Detectors

    CERN Document Server

    Trischuk, W.

    2008-01-01

    With the commissioning of the LHC expected in 2009, and the LHC upgrades expected in 2012, ATLAS and CMS are planning for detector upgrades for their innermost layers requiring radiation hard technologies. Chemical Vapor Deposition (CVD) diamond has been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of BaBar, Belle and CDF and is now planned for all LHC experiments. This material is now being considered as an alternate sensor for use very close to the interaction region of the super LHC where the most extreme radiation conditions will exist. Recently the RD42 collaboration constructed, irradiated and tested polycrystalline and single-crystal chemical vapor deposition diamond sensors to the highest fluences available. We present beam test results of chemical vapor deposition diamond up to fluences of 1.8 x 10^16 protons/cm^2 showing that both polycrystalline and single-crystal chemical vapor deposition diamonds follow a single damage curve allowing one t...

  6. Development and characterization of the lead iodide semiconductor detector

    International Nuclear Information System (INIS)

    Oliveira, Icimone Braga de

    2001-01-01

    A methodology for purification and growth of PbI 2 crystal as well as for its characterization as a room temperature radiation detector was developed in this work. Commercial salts were purified using the zone refining method and, for the purified material growth, the Bridgman method was used. To calculate the purification efficiency, studies of the decrease impurities concentrations were made in the salts and in three sections of the materials purified, using the neutron activation analysis technique. The results showed that the impurities segregate preferentially in the ingot final section. A significant decrease of the impurities concentration in function of the purification pass number was observed. The grown crystals presented good crystalline quality according to the results of the X-ray diffraction analysis. To evaluate the crystal as a semiconductor detector, measurements of dark leakage current, resistivity and the response of ( 241 Am) alpha particle and ( 241 Am, 57 Co, 133 Ba and 137 Cs) gamma rays were carried out. The radiation response is strongly dependent on the crystals purity. The crystals purified with 500 passes exhibited energy resolution of 10% for 241 Am alpha particle and the gamma rays resolution was compatible with the literature. The photosensibility of the PbI 2 crystal found in the wavelength from 400 to 600 nm range suggests an another application at this crystal as a photodetector to be coupled to scintillators. (author)

  7. The Milano-Gran Sasso double beta decay experiment: toward a 20-crystal array

    International Nuclear Information System (INIS)

    Alessandrello, A.; Brofferio, C.; Bucci, C.; Cremonesi, O.; Fiorini, E.; Giuliani, A.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; Zanotti, L.

    1996-01-01

    TeO 2 thermal detectors are being used by the Milano group to search for neutrinoless double beta decay of 130 Te. An upper limit for neutrinoless decay half life of 2.1 x 10 22 yr at 90% CL obtained with a 334 g TeO 2 detector has been previously reported. To improve the sensitivity of the experiment an array of twenty 340 g TeO 2 crystals will be realised in the next future. As a first step toward the realisation of that experiment a 4 crystal detector has been tested in the Gran Sasso refrigerator. Detector performances, data acquisition and analysis are discussed. (orig.)

  8. Characterization of gypsum crystals exposed to a high CO2 concentration fog using x-ray

    International Nuclear Information System (INIS)

    Carreño-Márquez, I. J. A.; Castillo-Sandoval, I.; Esparza-Ponce, H. E.; Fuentes-Cobas, L.; Montero-Cabrera, M. E.

    2015-01-01

    In Chihuahua State, a little town called Naica has the largest gypsum single crystals in the world. The growth of these structures has been described as a long and stable process developed over thousands of years. Due to the change in the environmental conditions, these crystals could suffer alterations on their surface. In this project we study the cause of possible deterioration of the giant crystals and intend to suggest measures for their preservation. For this sake, our first experiment consists on several gypsum crystals that have been subjected in a climate chamber to a fog at high CO 2 concentration and 51 °C for a period of time of six months, extracting two crystals every 15 days. Then the crystals have been characterized through Grazing Incidence X-Ray Diffraction using a diffractometer PanAlytical X’PertPro with two different detectors; Xe-filled proportional detector and a Pixel 3D detector. The results were compared to determine which technique is the most suitable to study the degradation of gypsum single crystals. In the two cases, we have identified only the gypsum phase, but with different crystal plane orientations

  9. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology

    International Nuclear Information System (INIS)

    Akselrod, M.S.; Fomenko, V.V.; Bartz, J.A.; Haslett, T.L.

    2014-01-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. The first table-top automatic FNTD neutron dosimetry system was successfully tested for LLD, linearity and ability to measure neutrons in mixed neutron-photon fields satisfying US and ISO standards. This new neutron dosimetry system provides advantages over other technologies including environmental stability of the detector material, wide range of detectable neutron energies and doses, detector re-readability and re-usability and all-optical readout. A new adaptive image processing algorithm reliably removes false-positive tracks associated with surface and bulk crystal imperfections. (authors)

  10. Intrinsic spatial resolution evaluation of the X'tal cube PET detector based on a 3D crystal block segmented by laser processing.

    Science.gov (United States)

    Yoshida, Eiji; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko; Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo; Murayama, Hideo; Yamaya, Taiga

    2013-01-01

    The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from the six sides of a crystal block. The X'tal cube is composed of the 3D crystal block with isotropic resolution and arrays of multi-pixel photon counters (MPPCs). In this study, to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving (SSLE) technique to a monolithic crystal block instead of gluing segmented small crystals. The SSLE technique provided micro-crack walls which carve a groove into a monolithic scintillator block. Using the fabricated X'tal cube, we evaluated its intrinsic spatial resolution to show a proof of concept of isotropic resolution. The 3D grids of 2 mm pitch were fabricated into an 18 × 18 × 18 mm(3) monolithic lutetium yttrium orthosilicate (LYSO) crystal by the SSLE technique. 4 × 4 MPPCs were optically coupled to each surface of the crystal block. The X'tal cube was uniformly irradiated by (22)Na gamma rays, and all of the 3D grids on the 3D position histogram were separated clearly by an Anger-type calculation from the 96-channel MPPC signals. Response functions of the X'tal cube were measured by scanning with a (22)Na point source. The gamma-ray beam with a 1.0 mm slit was scanned in 0.25 mm steps by positioning of the X'tal cube at vertical and 45° incident angles. The average FWHM resolution at both incident angles was 2.1 mm. Therefore, we confirmed the isotropic spatial resolution performance of the X'tal cube.

  11. Dual-Energy Semiconductor Detector of X-rays and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Brodyn, M.S.

    2014-03-01

    Full Text Available Analysis of the major types of ionizing radiation detectors, their advantages and disadvantages are presented. Application of ZnSe-based semiconductor detector in high temperature environment is substantiated. Different forms of ZnSe-based detector samples and double-crystal scheme for registration of X- and gamma rays in a broad energy range were used . Based on the manufactured simulator device, the study sustains the feasibility of the gamma quanta recording by a high-resistance ZnSe-based detector operating in a perpulse mode.

  12. Hydrogen concentration and distribution in high-purity germanium crystals

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.; Luke, P.N.

    1981-10-01

    High-purity germanium crystals used for making nuclear radiation detectors are usually grown in a hydrogen ambient from a melt contained in a high-purity silica crucible. The benefits and problems encountered in using a hydrogen ambient are reviewed. A hydrogen concentration of about 2 x 10 15 cm -3 has been determined by growing crystals in hydrogen spiked with tritium and counting the tritium β-decays in detectors made from these crystals. Annealing studies show that the hydrogen is strongly bound, either to defects or as H 2 with a dissociation energy > 3 eV. This is lowered to 1.8 eV when copper is present. Etching defects in dislocation-free crystals grown in hydrogen have been found by etch stripping to have a density of about 1 x 10 7 cm -3 and are estimated to contain 10 8 H atoms each

  13. Four-layer DOI PET detectors using a multi-pixel photon counter array and the light sharing method

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko, E-mail: funis@nirs.go.jp; Inadama, Naoko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga

    2013-11-21

    Silicon photomultipliers (SiPMs) provide many advantages for PET detectors, such as their high internal gain, high photon detection efficiency and insensitivity to magnetic fields. The number of detectable scintillation photons of SiPMs, however, is limited by the number of microcells. Therefore, pulse height of PET detectors using SiPMs is saturated when large numbers of scintillation photons enter the SiPM pixels. On the other hand, we previously presented a depth-of-interaction (DOI) encoding method that is based on the light sharing method. Since our encoding method detects scintillation photons with multiple readout pixels, the saturation effect can be suppressed. We constructed two prototype four-layer DOI detectors using a SiPM array and evaluated their performances. The two prototype detectors consisted of four layers of a 6×6 array of Lu{sub 2(1−x)}Y{sub 2x}SiO{sub 5} (LYSO) crystals and a SiPM (multi-pixel photon detector, MPPC, Hamamatsu Photonics K.K.) array of 4×4 pixels. The size of each LYSO crystal element was 1.46 mm×1.46 mm×4.5 mm and all surfaces of the crystal elements were chemically etched. We used two types of MPPCs. The first one had 3600 microcells and high photon detection efficiency (PDE). The other one had 14,400 microcells and lower PDE. In the evaluation experiment, all the crystals of the detector using the MPPC which had the high PDE were clearly identified. The respective energy and timing resolutions of lower than 15% and 1.0 ns were achieved for each crystal element. No saturation of output signals was observed in the 511 keV energy region due to suppression of the saturation effect by detecting scintillation photons with several MPPC pixels by the light sharing method. -- Highlights: •We constructed and evaluated four-layer DOI detectors by the light sharing method using a MPPC array. •The detectors using two types of the MPPC array were compared. •The energy and timing resolutions of lower than 15% and 1.0 ns were

  14. Four-layer DOI PET detectors using a multi-pixel photon counter array and the light sharing method

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Inadama, Naoko; Yoshida, Eiji; Murayama, Hideo; Yamaya, Taiga

    2013-01-01

    Silicon photomultipliers (SiPMs) provide many advantages for PET detectors, such as their high internal gain, high photon detection efficiency and insensitivity to magnetic fields. The number of detectable scintillation photons of SiPMs, however, is limited by the number of microcells. Therefore, pulse height of PET detectors using SiPMs is saturated when large numbers of scintillation photons enter the SiPM pixels. On the other hand, we previously presented a depth-of-interaction (DOI) encoding method that is based on the light sharing method. Since our encoding method detects scintillation photons with multiple readout pixels, the saturation effect can be suppressed. We constructed two prototype four-layer DOI detectors using a SiPM array and evaluated their performances. The two prototype detectors consisted of four layers of a 6×6 array of Lu 2(1−x) Y 2x SiO 5 (LYSO) crystals and a SiPM (multi-pixel photon detector, MPPC, Hamamatsu Photonics K.K.) array of 4×4 pixels. The size of each LYSO crystal element was 1.46 mm×1.46 mm×4.5 mm and all surfaces of the crystal elements were chemically etched. We used two types of MPPCs. The first one had 3600 microcells and high photon detection efficiency (PDE). The other one had 14,400 microcells and lower PDE. In the evaluation experiment, all the crystals of the detector using the MPPC which had the high PDE were clearly identified. The respective energy and timing resolutions of lower than 15% and 1.0 ns were achieved for each crystal element. No saturation of output signals was observed in the 511 keV energy region due to suppression of the saturation effect by detecting scintillation photons with several MPPC pixels by the light sharing method. -- Highlights: •We constructed and evaluated four-layer DOI detectors by the light sharing method using a MPPC array. •The detectors using two types of the MPPC array were compared. •The energy and timing resolutions of lower than 15% and 1.0 ns were achieved for

  15. Performance updating of CdZnTe strip-drift detectors

    DEFF Research Database (Denmark)

    Shorohov, M.; Tsirkunova, I.; Loupilov, A.

    2007-01-01

    59.6 and 662 keV correspondingly. Recently, significant progress was done in CdZnTe crystals growth technology. In the present paper we present preliminary result of performance updating of CdZnTe strip-drift detectors based on crystal of 10 x 10 x 6 mm 3 produced by Yinnel Tech company. Results...

  16. Crystals of Janus colloids at various interaction ranges

    Energy Technology Data Exchange (ETDEWEB)

    Preisler, Z. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy); Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Vissers, T. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy); SUPA and School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); Smallenburg, F. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy); Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Sciortino, F. [Dipartimento di Fisica, Università di Roma “Sapienza,” Piazzale Aldo Moro 5, 00185 Roma (Italy)

    2016-08-14

    We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete with the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.

  17. Crystals of Janus colloids at various interaction ranges

    International Nuclear Information System (INIS)

    Preisler, Z.; Vissers, T.; Smallenburg, F.; Sciortino, F.

    2016-01-01

    We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete with the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.

  18. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  19. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.; Whittaker, J.W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal

  20. Diodes based on semi-insulating CdTe crystals with Mo/MoO{sub x} contacts for X- and γ-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maslyanchuk, O.; Kulchynsky, V.; Solovan, M. [Chernivtsi National University, Chernivtsi (Ukraine); Gnatyuk, V. [Institute of Semiconductor Physics, NAS of Ukraine, Kyiv (Ukraine); Potiriadis, C. [Greek Atomic Energy Commission, Attiki (Greece); Kaissas, I. [Greek Atomic Energy Commission, Attiki (Greece); Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki (Greece); Brus, V. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany)

    2017-03-15

    This paper reports on the possible applications of molybdenum oxide (Mo/MoO{sub x}) contacts in combination with semi-insulating CdTe crystals. The electrical contacts to p-type Cl-doped CdTe crystals were formed by the deposition of molybdenum oxide and pure molybdenum thin films by the DC reactive magnetron sputtering. Electrical properties of the prepared Mo-MoO{sub x}/p-CdTe/MoO{sub x}-Mo surface-barrier structures were investigated at different temperatures. It is shown that the rapid growth of the reverse current with increasing bias voltage higher than 10 V is caused by the space-charge limited currents. Spectrometric properties of the Mo-MoO{sub x}/p-CdTe/MoO{sub x}-Mo structures have been also analyzed. It is revealed that the developed heterojunction has shown promising characteristics for its practical application in X- and γ-ray radiation detector fabrication. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Observations on dual-ended readout of 100 mm long LYSO crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ur-Rehman, Fazal, E-mail: Fazal@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); McIntosh, Bryan [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); Goertzen, Andrew L. [Department of Physics and Astronomy, University of Manitoba, Winnipeg (Canada); Department of Radiology, University of Manitoba, Winnipeg (Canada)

    2011-10-01

    We are investigating using dual-ended readout of axially oriented long thin scintillator crystals in detectors for a compact geometry, small ring diameter animal PET system. The axial position of interaction is determined from the light sharing between two photodetectors at opposite ends of the crystal. We examine the light output, energy resolution and axial spatial resolution of 1.5-5x2x100 mm{sup 3} polished LYSO crystals by irradiating with an electronically collimated beam of 511 keV photons oriented perpendicular to the long axis and read out at either end by position sensitive photomultiplier tubes (PSPMTs). Three reflector materials, namely Teflon, 3 M enhanced specular reflector (ESR) and black paint are examined for the 2x2x100 mm{sup 3} crystal size. The light output increases and energy resolution improves with the crystal cross-section. Generally, the spatial resolution worsens with increase in crystal cross-section. For the 2x2x100 mm{sup 3} crystal size, the mean energy resolutions of the photopeak over the nine irradiation positions were 14.4{+-}0.4%, 16.0{+-}1.2% and 28.3{+-}2.1% with mean spatial resolutions of 7.0{+-}1.0, 9.4{+-}3.3 and 26.0{+-}5.0 mm using ESR, Teflon and black paint, respectively. ESR reflector gave the best light output, energy and axial spatial resolutions. These characterization results of PSPMT-based dual-ended long LYSO crystals will be useful in the design of detector modules for a highly compact geometry preclinical PET system using this detector technology.

  2. Changes in position and quality of preferred nest box: effects on nest box use by laying hens

    DEFF Research Database (Denmark)

    Riber, Anja Brinch; Nielsen, Birte L.

    2013-01-01

    Using laying hens, we investigated whether position of a nest box, both within the pen and relative to other nest boxes, influenced the preference for a nest box, and how a sudden and marked change to the preferred box influenced the use of nest boxes by the hens. Groups (n=12) of 15 Isa Warren...... hens were housed in pens, each with five identical nest boxes in different positions: Two single (in a corner or not) and a triplet of nest boxes (one of which in a corner). The use of nest boxes was determined by the number of eggs laid daily in each box. Three experiments, each lasting 10 days, were...... carried out. First, the undisturbed use of each of the nest box types was investigated, and a strong preference (Peggs laid there. Second, each of the hen groups was moved to another pen allocated at random, and where...

  3. Properties of silver chloride track detectors

    International Nuclear Information System (INIS)

    Dmitriev, V.D.; Kocherov, N.P.; Novikova, N.R.; Perfilov, N.A.

    1976-01-01

    The experiments on preparation of silver chloride track detectors and their properties are described. The results of X-ray structural analysis and data on sensitivity to charged particles and actinic light of silver chloride crystals, doped with several elements, are presented. (orig.) [de

  4. [Boxing: traumatology and prevention].

    Science.gov (United States)

    Cabanis, Emmanuel-Alain; Iba-Zizen, Marie-Thérèse; Perez, Georges; Senegas, Xavier; Furgoni, Julien; Pineau, Jean-Claude; Louquet, Jean-Louis; Henrion, Roger

    2010-10-01

    In 1986, a surgeon who, as an amateur boxer himself was concerned with boxers' health, approached a pioneering Parisian neuroimaging unit. Thus began a study in close cooperation with the French Boxing Federation, spanning 25 years. In a first series of 52 volunteer boxers (13 amateurs and 39 professionals), during which MRI gradually replaced computed tomography, ten risk factors were identified, which notably included boxing style: only one of 40 "stylists" with a good boxing technique had cortical atrophy (4.5 %), compared to 15 % of "sloggers". Changes to the French Boxing Federation rules placed the accent on medical prevention. The second series, of 247 boxers (81 amateurs and 266 professionals), showed a clear improvement, as lesions were suspected in 14 individuals, of which only 4 (1.35 %) were probably due to boxing. The third and fourth series were part of a protocol called "Brain-Boxing-Ageing", which included 76 boxers (11 having suffered KOs) and 120 MRI scans, with reproducible CT and MRI acquisitions (9 sequences with 1.5 T then 3 T, and CT). MRI anomalies secondary to boxing were found in 11 % of amateurs and 38 % of professionals (atrophy, high vascular T2 signal areas, 2 cases of post-KO subdural bleeding). CT revealed sinus damage in 13 % of the amateurs and 19 % of the professionals. The risk of acute and chronic facial and brain damage was underline, along with detailed precautionary measures (organization of bouts, role of the referee and ringside doctor, and application of French Boxing Federation rules).

  5. Recent state of CdTe-based radiation detectors

    International Nuclear Information System (INIS)

    Ohno, R.

    2004-01-01

    Recent state for development of CdTe-based radiation detectors is reviewed. The progress of the technologies such as the crystal growth of CdTe and CdZnTe, the deposition of electrodes on the crystal, the design of read out ASIC, and the bonding between crystal and ASIC, opened the way for the development of imaging devices for practical uses. A X-ray imager for non destructive inspections and a gamma ray imager for small animal radioisotope experiments or nuclear medicine are presented as examples. (author)

  6. Estimation of position resolution for DOI-PET detector using diameter 0.2 mm WLS fibers [ANIMMA--2015-IO-x5

    International Nuclear Information System (INIS)

    Kaneko, Naomi; Ito, H.; Han, S.; Kawai, H.; Kodama, S.; Kobayashi, A.; Tabata, M.; Kamada, K.; Shoji, Y.; Yoshikawa, A.

    2015-01-01

    We have been developing a submillimeter resolution and low-cost DOI-PET detector using wavelength shifting fibers (WLSF), scintillating crystal plates and MPPCs (Hamamatsu Photonics). Conventional design of DOI-PET detectors had approximately mm 3 of resolution by using some scintillating blocks with a volume of 1 mm 3 , which detects gamma-ray. They are expensive due to difficulties in processing scintillating crystals and a large number of photo-detectors, and these technologies are likely to reach the limit of the resolution. Development of a lower cost DOI-PET detector with higher resolution is challenging to popularize the PET diagnosis. We propose two type of PET detector. One is a whole body PET system, and the other is a PET system for brain or small animals. Each PET system consists 6 blocks. The former consists of 6 layers of crystal plates with 300 mm x 300 mm x 4 mm. The latter consists of 16 crystal layers, forming 4 x 4 crystal arrays. The size of the crystal plate is 40 mm x 40 mm x 1 mm. Wavelength shifting fiber (WLSF) sheets are attached to above and up and down side of crystal planes. The whole PET system has 8 MPPCs attached on each side. For the brain PET detector, 9 WLSF fibers are attached on the each side. The expected position resolution would be less than 1 mm at the former system. We have performed an experimental performance estimation for the system component using 22 Na radioactive source. We achieved a collection efficiency of 10% using the WLSF sheet and Ce:Gd 3 (Al,Ga) 5 O 12 (GAGG) crystals at 511 keV. The linear relationship between reconstruction position and incident position was obtained, and a resolution of 0.7 mm (FWHM) for x-axis of DOI by the WLSF readout was achieved. (authors)

  7. A BGO detector for Positron Emission Profiling in catalysts

    International Nuclear Information System (INIS)

    Mangnus, A.V.G.; Cunningham, R.H.; Santen, R.A. van; Voigt, M.J.A. de

    1995-01-01

    As part of a project to study the reaction kinetics in catalysts, a detector system has been designed and built. The detector will measure in one dimension the activity distribution of positron emitters in catalyst reactors under operational conditions as a function of time. The detector consists of two arrays of ten BGO crystals each and has the flexibility to measure with high sensitivity the activity profile in various reactor sizes; the position resolution that can be reached is 3 mm. (orig.)

  8. Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Yamaya, Taiga

    2014-11-01

    In a conventional PET scanner, coincidence events are measured with a limited energy window for detection of photoelectric events in order to reject Compton scatter events that occur in a patient, but Compton scatter events caused in detector crystals are also rejected. Scatter events within the patient causes scatter coincidences, but inter crystal scattering (ICS) events have useful information for determining an activity distribution. Some researchers have reported the feasibility of PET scanners based on a Compton camera for tracing ICS into the detector. However, these scanners require expensive semiconductor detectors for high-energy resolution. In the Anger-type block detector, single photons interacting with multiple detectors can be obtained for each interacting position and complete information can be gotten just as for photoelectric events in the single detector. ICS events in the single detector have been used to get coincidence, but single photons interacting with multiple detectors have not been used to get coincidence. In this work, we evaluated effect of sensitivity improvement using Compton kinetics in several types of DOI-PET scanners. The proposed method promises to improve the sensitivity using coincidence events of single photons interacting with multiple detectors, which are identified as the first interaction (FI). FI estimation accuracy can be improved to determine FI validity from the correlation between Compton scatter angles calculated on the coincidence line-of-response. We simulated an animal PET scanner consisting of 42 detectors. Each detector block consists of three types of scintillator crystals (LSO, GSO and GAGG). After the simulation, coincidence events are added as information for several depth-of-interaction (DOI) resolutions. From the simulation results, we concluded the proposed method promises to improve the sensitivity considerably when effective atomic number of a scintillator is low. Also, we showed that FI estimate

  9. The data acquisition system for a SPECT with cylindrical detector

    International Nuclear Information System (INIS)

    Jin Yongjie; Liu Yinong; Li Yuanjing

    1995-01-01

    The data acquisition and position estimation system has been developed for a multi-crystal SPECT with modular cylindrical detector. The electronics screen photon energy determines the detector module stricken by incident photon. The relevant PMT outputs are digitized and passed onto a Pentium PC. Then PMT gain normalization, detector bar identification, energy correction, event coordinates calculation and linearity correction are real-time performed by the PC. The system has been employed in clinical brain imaging

  10. High precision thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V.; Schaknowski, N.A.; Smith, G.C.; Yu, B. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    Two-dimensional position sensitive detectors are indispensable in neutron diffraction experiments for determination of molecular and crystal structures in biology, solid-state physics and polymer chemistry. Some performance characteristics of these detectors are elementary and obvious, such as the position resolution, number of resolution elements, neutron detection efficiency, counting rate and sensitivity to gamma-ray background. High performance detectors are distinguished by more subtle characteristics such as the stability of the response (efficiency) versus position, stability of the recorded neutron positions, dynamic range, blooming or halo effects. While relatively few of them are needed around the world, these high performance devices are sophisticated and fairly complex, their development requires very specialized efforts. In this context, we describe here a program of detector development, based on {sup 3}He filled proportional chambers, which has been underway for some years at the Brookhaven National Laboratory. Fundamental approaches and practical considerations are outlined that have resulted in a series of high performance detectors with the best known position resolution, position stability, uniformity of response and reliability over time, for devices of this type.

  11. Naturally occurring 32 Si and low-background silicon dark matter detectors

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  12. Naturally occurring 32Si and low-background silicon dark matter detectors

    Science.gov (United States)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon "ore" and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  13. Infrared detectors for Earth observation

    Science.gov (United States)

    Barnes, K.; Davis, R. P.; Knowles, P.; Shorrocks, N.

    2016-05-01

    IASI (Infrared Atmospheric Sounding Interferometer), developed by CNES and launched since 2006 on the Metop satellites, is established as a major source of data for atmospheric science and weather prediction. The next generation - IASI NG - is a French national contribution to the Eumetsat Polar System Second Generation on board of the Metop second generation satellites and is under development by Airbus Defence and Space for CNES. The mission aim is to achieve twice the performance of the original IASI instrument in terms of sensitivity and spectral resolution. In turn, this places very demanding requirements on the infrared detectors for the new instrument. Selex ES in Southampton has been selected for the development of the infrared detector set for the IASI-NG instruments. The wide spectral range, 3.6 to 15.5 microns, is covered in four bands, each served by a dedicated detector design, with a common 4 x 4 array format of 1.3 mm square macropixels. Three of the bands up to 8.7 microns employ photovoltaic MCT (mercury cadmium telluride) technology and the very long wave band employs photoconductive MCT, in common with the approach taken between Airbus and Selex ES for the SEVIRI instrument on Second Generation Meteosat. For the photovoltaic detectors, the MCT crystal growth of heterojunction photodiodes is by the MOVPE technique (metal organic vapour phase epitaxy). Novel approaches have been taken to hardening the photovoltaic macropixels against localised crystal defects, and integrating transimpedance amplifiers for each macropixel into a full-custom silicon read out chip, which incorporates radiation hard design.

  14. Crystallization of isoelectrically homogeneous cholera toxin

    International Nuclear Information System (INIS)

    Spangler, B.D.; Westbrook, E.M.

    1989-01-01

    Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. The authors have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. They have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by their procedure readily forms large single crystals. The crystal form has been described previously. They have recorded data from native crystals of cholera toxin to 3.0-angstrom resolution with our electronic area detectors. With these data, they have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. They are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits

  15. Fabrication and characterization of surface barrier detector from commercial silicon substrate

    International Nuclear Information System (INIS)

    Costa, Fabio Eduardo da; Silva, Julio Batista Rodrigues da

    2015-01-01

    This work used 5 silicon substrates, n-type with resistivity between 500-20,000 Ω.cm, with 12 mm diameter and 1 mm thickness, from Wacker - Chemitronic, Germany. To produce the surface barrier detectors, the substrates were first cleaned, then, they were etched with HNO 3 solution. After this, a deposition of suitable materials on the crystal was made, to produce the desired population inversion of the crystal characteristics. The substrates received a 10 mm diameter gold contact in one of the surfaces and a 5 mm diameter aluminum in the other. The curves I x V and the energy spectra for 28 keV and 59 keV, for each of the produced detectors, were measured. From the 5 substrates, 4 of them resulted in detectors and one did not present even diode characteristics. The results showed that the procedures used are suitable to produce detectors with this type of silicon substrates. (author)

  16. MO-A-BRD-01: An Investigation of the Dynamic Response of a Novel Acousto-Optic Liquid Crystal Detector for Full-Field Transmission Ultrasound Breast Imaging

    International Nuclear Information System (INIS)

    Rosenfield, J.R.; La Riviere, P.J.; Sandhu, J.S.

    2014-01-01

    Purpose: To characterize the dynamic response of a novel acousto-optic (AO) liquid crystal detector for high-resolution transmission ultrasound breast imaging. Transient and steady-state lesion contrast were investigated to identify optimal transducer settings for our prototype imaging system consistent with the FDA limits of 1 W/cm 2 and 50 J/cm 2 on the incident acoustic intensity and the transmitted acoustic energy flux density. Methods: We have developed a full-field transmission ultrasound breast imaging system that uses monochromatic plane-wave illumination to acquire projection images of the compressed breast. The acoustic intensity transmitted through the breast is converted into a visual image by a proprietary liquid crystal detector operating on the basis of the AO effect. The dynamic response of the AO detector in the absence of an imaged breast was recorded by a CCD camera as a function of the acoustic field intensity and the detector exposure time. Additionally, a stereotactic needle biopsy breast phantom was used to investigate the change in opaque lesion contrast with increasing exposure time for a range of incident acoustic field intensities. Results: Using transducer voltages between 0.3 V and 0.8 V and exposure times of 3 minutes, a unique one-to-one mapping of incident acoustic intensity to steady-state optical brightness in the AO detector was observed. A transfer curve mapping acoustic intensity to steady-state optical brightness shows a high-contrast region analogous to the linear portion of the Hurter-Driffield curves of radiography. Using transducer voltages between 1 V and 1.75 V and exposure times of 90 s, the lesion contrast study demonstrated increasing lesion contrast with increasing breast exposure time and acoustic field intensity. Lesion-to-background contrast on the order of 0.80 was observed. Conclusion: Maximal lesion contrast in our prototype system can be obtained using the highest acoustic field intensity and the longest breast

  17. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)], E-mail: funis@nirs.go.jp; Tsuda, Tomoaki [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Takahashi, Kei [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Science and Technology, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba-shi, Chiba 263-8522 (Japan); Ohmura, Atsushi [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm.

  18. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tsuda, Tomoaki; Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga; Kitamura, Keishi; Takahashi, Kei; Ohmura, Atsushi; Murayama, Hideo

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm

  19. Epitaxial Ge-crystal arrays for X-ray detection

    International Nuclear Information System (INIS)

    Kreiliger, T; Falub, C V; Müller, E; Känel, H von; Isa, F; Isella, G; Chrastina, D; Bergamaschini, R; Marzegalli, A; Miglio, L; Kaufmann, R; Niedermann, P; Neels, A; Dommann, A; Meduňa, M

    2014-01-01

    Monolithic integration of an X-ray absorber layer on a Si CMOS chip might be a potentially attractive way to improve detector performance at acceptable costs. In practice this requires, however, the epitaxial growth of highly mismatched layers on a Si-substrate, both in terms of lattice parameters and thermal expansion coefficients. The generation of extended crystal defects, wafer bowing and layer cracking have so far made it impossible to put the simple concept into practice. Here we present a way in which the difficulties of fabricating very thick, defect-free epitaxial layers may be overcome. It consists of an array of densely packed, three-dimensional Ge-crystals on a patterned Si(001) substrate. The finite gap between neighboring micron-sized crystals prevents layer cracking and substrate bowing, while extended defects are driven to the crystal sidewalls. We show that the Ge-crystals are indeed defect-free, despite the lattice misfit of 4.2%. The electrical characteristics of individual Ge/Si heterojunction diodes are obtained from in-situ measurements inside a scanning electron microscope. The fabrication of monolithically integrated detectors is shown to be compatible with Si-CMOS processing

  20. Polarization effect of CdZnTe imaging detector based on high energy γ source

    International Nuclear Information System (INIS)

    Li Miao; Xiao Shali; Wang Xi; Shen Min; Zhang Liuqiang; Cao Yulin; Chen Yuxiao

    2011-01-01

    The inner electric potential distribution of CdZnTe detector was derived by applying poisson equation with the first type boundary condition, and the polarization effect of CdZnTe pixellated detector for imaging 137 Cs γ source was investigated. The results of numerical calculation and experiment indicate that electric potential distribution is mainly influenced by applied bias for low charge density in CdZnTe crystal and, in turn, there is linear relationship between electric potential distribution and applied bias that induces uniform electric field under low irradiated flux. However, the electric potential appears polarization phenomenon, and the electric field in CdZnTe crystal is distorted when CdZnTe detector is under high irradiated flux. Consequently, charge carriers in CdZnTe crystal drift towards the edge pixels of irradiated region, and hence, the shut-off central pixels are surrounded by a ring of low counting pixels. The polarization effect indeed deteriorates the performance of CdZnTe detector severely and the event counts of edge pixels for irradiated region reduce about 70%. (authors)

  1. Long-term stability of the Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Amaral, Pedro; Bruyndonckx, Peter; Carrico, Bruno; Ferreira, Miguel; Luyten, Joan; Moura, Rui; Ortigao, Catarina; Rodrigues, Pedro; Silva, Jose C. da; Trindade, Andreia; Varela, Joao

    2007-01-01

    Experimental evaluation of the imaging system Clear-PEM for positron emission mammography, under development within the framework of the crystal clear collaboration at CERN, is presented in terms of its long-term stability. The detector modules and experimental setup are described. Time evolution results of signal yield, energy resolution, depth-of-interaction and inter-channel crosstalk for a reference detector module are reported

  2. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array

    International Nuclear Information System (INIS)

    Song, Tae Yong; Wu Heyu; Komarov, Sergey; Tai, Yuan-Chuan; Siegel, Stefan B

    2010-01-01

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm 3 and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and ±5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when ±10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  3. A phoswich detector design for improved spatial sampling in PET

    Science.gov (United States)

    Thiessen, Jonathan D.; Koschan, Merry A.; Melcher, Charles L.; Meng, Fang; Schellenberg, Graham; Goertzen, Andrew L.

    2018-02-01

    Block detector designs, utilizing a pixelated scintillator array coupled to a photosensor array in a light-sharing design, are commonly used for positron emission tomography (PET) imaging applications. In practice, the spatial sampling of these designs is limited by the crystal pitch, which must be large enough for individual crystals to be resolved in the detector flood image. Replacing the conventional 2D scintillator array with an array of phoswich elements, each consisting of an optically coupled side-by-side scintillator pair, may improve spatial sampling in one direction of the array without requiring resolving smaller crystal elements. To test the feasibility of this design, a 4 × 4 phoswich array was constructed, with each phoswich element consisting of two optically coupled, 3 . 17 × 1 . 58 × 10mm3 LSO crystals co-doped with cerium and calcium. The amount of calcium doping was varied to create a 'fast' LSO crystal with decay time of 32.9 ns and a 'slow' LSO crystal with decay time of 41.2 ns. Using a Hamamatsu R8900U-00-C12 position-sensitive photomultiplier tube (PS-PMT) and a CAEN V1720 250 MS/s waveform digitizer, we were able to show effective discrimination of the fast and slow LSO crystals in the phoswich array. Although a side-by-side phoswich array is feasible, reflections at the crystal boundary due to a mismatch between the refractive index of the optical adhesive (n = 1 . 5) and LSO (n = 1 . 82) caused it to behave optically as an 8 × 4 array rather than a 4 × 4 array. Direct coupling of each phoswich element to individual photodetector elements may be necessary with the current phoswich array design. Alternatively, in order to implement this phoswich design with a conventional light sharing PET block detector, a high refractive index optical adhesive is necessary to closely match the refractive index of LSO.

  4. Microclimate boxes for panel paintings

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1998-01-01

    The use of microclimate boxes to protect vulnerable panel paintings is, therefore, not a new phenomenon of the past two or three decades. Rather, it has been a concern for conservators and curators to protect these objects of art at home and in transit since the end of the nineteenth century....... The increased number of travelling exhibitions in recent years has heightened the need to protect paintings during circulation (Thomson 1961; Mecklenburg 1991). The use and design of microclimate boxes have been evolving since 1892. These boxes may be divided into three broad groups: those using an active...... buffer material to stabilize the internal RH, a more recent box containing no added buffer material, and, in recent times, boxes with an altered gas content. Another concern is the appearance (aesthetics) of the box....

  5. Full energy peak efficiency of composite detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, Ritesh

    2015-01-01

    Experiments involving radioactive beams demand high detection efficiencies. One of the ways to obtain high detection efficiency without deteriorating the energy resolution or timing characteristics is the use of composite detectors which are composed of standard HPGe crystals arranged in a compact way. Two simplest composite detectors are the clover and cluster detectors. The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) comprises of 16 large volume, 32-fold segmented HPGe clover detectors, where each detector is shielded by a 20-fold segmented escape suppression shield (ESS)

  6. Computational studies of BEGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Salathe, Marco [Max Planck Institut fuer Kernphysik, Heidelberg (Germany)

    2013-07-01

    The GERDA experiment searches for the neutrinoless double beta decay within the active volume of germanium detectors. Simulations of the physical processes within such detectors are vital to gain a better understanding of the measurements. The simulation procedure follows three steps: First it calculates the electric potential, next it simulates the electron and hole drift within the germanium crystal and finally it generates a corresponding signal. The GERDA collaboration recently characterized newly produced Broad Energy Germanium Detectors (BEGe) in the HADES underground laboratory in Mol, Belgium. A new pulse shape simulation library was established to examine the results of these measurements. The library has also proven to be a very powerful tool for other applications such as detector optimisation studies. The pulse shape library is based on ADL 3.0 (B. Bruyneel, B. Birkenbach, http://www.ikp.uni-koeln.de/research/agata/download.php) and m3dcr (D. Radford, http://radware.phy.ornl.gov/MJ/m3dcr).

  7. TIGRESS highly-segmented high-purity germanium clover detector

    Science.gov (United States)

    Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.

    2005-05-01

    The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.

  8. Boxing-related head injuries.

    Science.gov (United States)

    Jayarao, Mayur; Chin, Lawrence S; Cantu, Robert C

    2010-10-01

    Fatalities in boxing are most often due to traumatic brain injury that occurs in the ring. In the past 30 years, significant improvements in ringside and medical equipment, safety, and regulations have resulted in a dramatic reduction in the fatality rate. Nonetheless, the rate of boxing-related head injuries, particularly concussions, remains unknown, due in large part to its variability in clinical presentation. Furthermore, the significance of repeat concussions sustained when boxing is just now being understood. In this article, we identify the clinical manifestations, pathophysiology, and management of boxing-related head injuries, and discuss preventive strategies to reduce head injuries sustained by boxers.

  9. Stabilized thallium bromide radiation detectors and methods of making the same

    Science.gov (United States)

    Leao, Cedric Rocha; Lordi, Vincenzo

    2015-11-24

    According to one embodiment, a crystal includes thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants. According to another embodiment, a system includes a monolithic crystal including thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants; and a detector configured to detect a signal response of the crystal.

  10. High energy proton-induced radioactivity in HgI2 crystals

    International Nuclear Information System (INIS)

    Porras, E.; Ferrero, J.L.; Sanchez, F.; Ruiz, J.A.; Lei, F.

    1995-01-01

    Mercuric iodide (HgI 2 ) semiconductor crystals are generating a lot of interest as room temperature solid state detectors for hard X-ray astronomy observations. For these applications one of the most important background sources is the cosmic proton induced radioactivity in the detector material. In order to study this background noise contribution a 1x1x1 cm HgI 2 crystal was irradiated with high energy protons. The resulting long-lived unstable isotopes and their production rates have been identified and compared with Monte Carlo simulations. ((orig.))

  11. HEROICA: A fast screening facility for the characterization of germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Andreotti, Erica [Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen (Germany); Collaboration: GERDA Collaboration

    2013-08-08

    In the course of 2012, a facility for the fast screening of germanium detectors called HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) has been installed at the HADES underground laboratory in the premises of the Belgian Nuclear Research Centre SCK•CEN, in Mol (Belgium). The facility allows performing a complete characterization of the critical germanium detectors' operational parameters with a rate of about two detectors per week.

  12. Exergaming boxing versus heavy-bag boxing: are these equipotent for individuals with spinal cord injury?

    Science.gov (United States)

    Mat Rosly, Maziah; Mat Rosly, Hadi; Hasnan, Nazirah; Davis, Glen M; Husain, Ruby

    2017-08-01

    Current strategies for increased physical activity and exercise in individuals with spinal cord injury (SCI) face many challenges with regards to maintaining their continuity of participation. Barriers cited often include problems with accessing facilities, mundane, monotonous or boring exercises and expensive equipment that is often not adapted for wheelchair users. To compare the physiological responses and user preferences between conventional heavy-bag boxing against a novel form of video game boxing, known as exergaming boxing. Cross-sectional study. Exercise laboratory setting in a university medical center. Seventeen participants with SCI were recruited, of which sixteen were male and only one female. Their mean age was 35.6±10.2 years. All of them performed a 15-minute physical exercise session of exergaming and heavy-bag boxing in a sitting position. The study assessed physiological responses in terms of oxygen consumption, metabolic equivalent (MET) and energy expenditure between exergaming and heavy-bag boxing derived from open-circuit spirometry. Participants also rated their perceived exertion using Borg's category-ratio ratings of perceived exertion. Both exergaming (MET: 4.3±1.0) and heavy-bag boxing (MET: 4.4±1.0) achieved moderate exercise intensities in these participants with SCI. Paired t-test revealed no significant differences (P>0.05, Cohen's d: 0.02-0.49) in the physiological or perceived exertional responses between the two modalities of boxing. Post session user survey reported all the participants found exergaming boxing more enjoyable. Exergaming boxing, was able to produce equipotent physiological responses as conventional heavy-bag boxing. The intensity of both exercise modalities achieved recommended intensities for health and fitness benefits. Exergaming boxing have the potential to provide an enjoyable, self-competitive environment for moderate-vigorous exercise even at the comfort of their homes.

  13. A 90 element CdTe array detector

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Y.; Onozuka, A.; Ohmori, M. (Nippon Mining Co. Ltd., Toda, Saitama (Japan). Electronic Material and Components Labs.); Funaki, M. (Nippon Mining Co. Ltd., Toda, Saitama (Japan). Materials Development Research Labs.)

    1992-11-15

    The fabrication of a CdTe array radiation detector and its radiation detection characteristics are described. In order to obtain high efficiency of charge collection and realize uniform detection sensitivity, current-voltage characteristics with the combination of large and small barrier height contacts and three kinds of CdTe crystals have been investigated. It was found that the Schottky barrier height of electroless Pt deposition was 0.97 eV, which effectively suppressed electron injection. By using the crystal grown by the travelling heater method with a Cl concentration of 2 ppm, carrier lifetimes for electrons and holes of 1.0 and 0.5 [mu]s, respectively, were achieved. A 90 element array detector exhibited an energy resolution as low as 4.5 keV and a count rate variation of less than 5% for 60 keV [gamma]-rays. (orig.).

  14. A 90 element CdTe array detector

    Science.gov (United States)

    Iwase, Y.; Funaki, M.; Onozuka, A.; Ohmori, M.

    1992-11-01

    The fabrication of a CdTe array radiation detector and its radiation detection characteristics are described. In order to obtain high efficiency of charge collection and realize uniform detection sensitivity, current-voltage characteristics with the combination of large and small barrier height contacts and three kinds of CdTe crystals have been investigated. It was found that the Schottky barrier height of electroless Pt deposition was 0.97 eV, which effectively suppressed electron injection. By using the crystal grown by the travelling heater method with a Cl concentration of 2 ppm, carrier lifetimes for electrons and holes of 1.0 and 0.5 μs, respectively, were achieved. A 90 element array detector exhibited an energy resolution as low as 4.5 keV and a count rate variation of less than 5% for 60 keV γ-rays.

  15. LHCb Scintillating Fiber detector front end electronics design and quality assurance

    Science.gov (United States)

    Vink, W. E. W.; Pellegrino, A.; Ietswaard, G. C. M.; Verkooijen, J. C.; Carneiro, U.; Massefferi, A.

    2017-03-01

    The on-detector electronics of the LHCb Scintillating Fiber Detector consists of multiple PCBs assembled in a unit called Read Out Box, capable of reading out 2048 channels with an output rate of 70 Gbps. There are three types of boards: PACIFIC, Clusterization and Master Board. The Pacific Boards host PACIFIC ASICs, with pre-amplifier and comparator stages producing two bits of data per channel. A cluster-finding algorithm is then run in an FPGA on the Clusterization Board. The Master Board distributes fast and slow control, and power. We describe the design, production and test of prototype PCBs.

  16. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    Science.gov (United States)

    Bolotnikov, Aleskey E [South Setauket, NY; James, Ralph B [Ridge, NY

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  17. Single crystal spectrometer FOX at KENS

    International Nuclear Information System (INIS)

    Takahashi, M.

    2001-01-01

    Single crystal spectrometer FOX installed at H1 thermal neutron line on KENS has been renewed recently for the measurement of very weak scattering. We have installed a multidetector system of 36 linearly placed 3 He detectors with collimators instead of former four-circle diffractometer and scintillator detectors. Though the system is quite simple, a large two-dimensional reciprocal space is observed effectively with high S/N rate on new FOX. (author)

  18. Assessment of MicroDiamond PTW 60019 detector and its comparison with other detectors for relative dosimetry in small radiosurgery fields of the Leksell gamma knife perfexion

    International Nuclear Information System (INIS)

    Novotny, J. Jr.; Kozubikova, P.; Pastykova, V.; Pipek, J.; Bhatnagar, J. P.; Huq, M. S.; Veselsky, T.

    2014-01-01

    Measurement of relative output factors (ROF) for the Leksell Gamma Knife (LGK) is not a trivial task due to strict demands of an accurate set up and small size of measured radiosurgery fields. The purpose of this study was to perform an assessment of a new synthetic single crystal MicroDiamond PTW 60019 detector (volume 0.004 mm 3 ) for measurement of ROFs for 4 mm and 8 mm collimators for the LGK Perfexion. Small sensitive volume of this detector, near water equivalence and low energy dependence make it an attractive candidate for small field dosimetry. Results obtained in this study were compared with results measured by broad variety of different detectors and also Monte Carlo (MC) simulation. MicroDiamond detector connected to PTW UNIDOS electrometer was positioned in ELEKTA spherical phantom and pre-irradiated to dose of 5 Gy. Measurements were performed in two different detector positions: 1) parallel with table axis, 2) orthogonal to table axis. Electrometer timer of 1 min was used to measure subsequently signal from 16 mm, 8 mm and 4 mm beams. Altogether ten measurements were performed for each of three collimator sizes. Results from MicroDiamond were compared with those obtained from various types of detectors used in the past by authors for measurement of LGK ROFs. New synthetic single crystal MicroDiamond PTW 60019 detector appears to be a very promising detector for relative output factor measurements in very small radiosurgery fields. (authors)

  19. Invariant box-parameterization of neutrino oscillations

    International Nuclear Information System (INIS)

    Weiler, Thomas J.; Wagner, DJ

    1998-01-01

    The model-independent 'box' parameterization of neutrino oscillations is examined. The invariant boxes are the classical amplitudes of the individual oscillating terms. Being observables, the boxes are independent of the choice of parameterization of the mixing matrix. Emphasis is placed on the relations among the box parameters due to mixing-matrix unitarity, and on the reduction of the number of boxes to the minimum basis set. Using the box algebra, we show that CP-violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. General analyses of neutrino oscillations among n≥3 flavors can readily determine the boxes, which can then be manipulated to yield magnitudes of mixing matrix elements

  20. Direct photon-counting scintillation detector readout using an SSPM

    International Nuclear Information System (INIS)

    Stapels, Christopher J.; Squillante, Michael R.; Lawrence, William G.; Augustine, Frank L.; Christian, James F.

    2007-01-01

    Gamma-ray detector technologies, capable of providing adequate energy information, use photomultiplier tubes (PMTs) or silicon avalanche photodiodes to detect the light pulse from a scintillation crystal. A new approach to detect the light from scintillation materials is to use an array of small photon counting detectors, or a 'detector-on-a-chip' based on a novel 'Solid-state Photomultiplier' (SSPM) concept. A CMOS SSPM coupled to a scintillation crystal uses an array of CMOS Geiger photodiode (GPD) pixels to collect light and produce a signal proportional to the energy of the radiation. Each pixel acts as a binary photon detector, but the summed output is an analog representation of the total photon intensity. We have successfully fabricated arrays of GPD pixels in a CMOS environment, which makes possible the production of miniaturized arrays integrated with the detector electronics in a small silicon chip. This detector technology allows for a substantial cost reduction while preserving the energy resolution needed for radiological measurements. In this work, we compare designs for the SSPM detector. One pixel design achieves maximum detection efficiency (DE) for 632-nm photons approaching 30% with a room temperature dark count rate (DCR) of less than 1 kHz for a 30-μm-diameter pixel. We characterize after pulsing and optical cross talk and discuss their effects on the performance of the SSPM. For 30-μm diameter, passively quenched CMOS GPD pixels, modeling suggests that a pixel spacing of approximately 90 μm optimizes the SSPM performance with respect to DE and cross talk

  1. First-aid boxes - Reminder

    CERN Multimedia

    GS Department

    2010-01-01

    With a view to ensuring optimum use of the first-aid boxes on the CERN site, we should like to remind you of various changes introduced in March 2009: The TSO of the buildings concerned is responsible for the first-aid boxes, including checking their contents.   First-aid boxes may be restocked ONLY at the CERN stores (SCEM No. 54.99.80). This is no longer possible at the Infirmary. The associated cost is charged to the Departments.   First-aid boxes should be used only for mild injuries. All other cases should be referred to the Medical Service Infirmary (Bldg. 57 – ground-floor, tel. 73802) between 8.00 a.m. and 5.30 p.m. or to the Fire and Rescue Service (tel. 74444). N.B.: This information does not apply to the red emergency first-aid boxes in the underground areas or to the emergency kits for use in the event of being splashed with hydrofluoric acid.

  2. Golden Jubilee photos: A New Class of Detectors

    CERN Multimedia

    2004-01-01

    In the 1960s, detection in particle physics mainly meant examining millions of photographs from bubble chambers or spark chambers. This was slow, labour intensive and not suitable for studies into rare phenomena, so there was a bottleneck that could have affected further progress in high energy physics. The transistor revolution triggered new ideas. While a camera could detect a spark, a detector wire connected to an amplifier could detect a much smaller effect. In 1968, Georges Charpak developed the 'multiwire proportional chamber', a gas-filled box with a large number of parallel detector wires, each connected to individual amplifiers. Linked to a computer, it could achieve a counting rate a thousand times better than existing techniques - without a camera in sight. Today practically every experiment in particle physics uses some type of track detector that is based on the principle of the multiwire proportional chamber. The technology is also used in many other fields using ionising radiation such as biol...

  3. Observations on dual-ended readout of 100 mm long LYSO crystals

    International Nuclear Information System (INIS)

    Ur-Rehman, Fazal; McIntosh, Bryan; Goertzen, Andrew L.

    2011-01-01

    We are investigating using dual-ended readout of axially oriented long thin scintillator crystals in detectors for a compact geometry, small ring diameter animal PET system. The axial position of interaction is determined from the light sharing between two photodetectors at opposite ends of the crystal. We examine the light output, energy resolution and axial spatial resolution of 1.5-5x2x100 mm 3 polished LYSO crystals by irradiating with an electronically collimated beam of 511 keV photons oriented perpendicular to the long axis and read out at either end by position sensitive photomultiplier tubes (PSPMTs). Three reflector materials, namely Teflon, 3 M enhanced specular reflector (ESR) and black paint are examined for the 2x2x100 mm 3 crystal size. The light output increases and energy resolution improves with the crystal cross-section. Generally, the spatial resolution worsens with increase in crystal cross-section. For the 2x2x100 mm 3 crystal size, the mean energy resolutions of the photopeak over the nine irradiation positions were 14.4±0.4%, 16.0±1.2% and 28.3±2.1% with mean spatial resolutions of 7.0±1.0, 9.4±3.3 and 26.0±5.0 mm using ESR, Teflon and black paint, respectively. ESR reflector gave the best light output, energy and axial spatial resolutions. These characterization results of PSPMT-based dual-ended long LYSO crystals will be useful in the design of detector modules for a highly compact geometry preclinical PET system using this detector technology.

  4. Development of a compact 25-channel preamplifier module for Si-pad detectors of the BARC-CPDA

    International Nuclear Information System (INIS)

    Inkar, A.; John, Bency; Vind, R.P.; Kinage, L.; Jangale, R.V.; Biswas, D.C.; Nayak, B.K.

    2011-01-01

    The BARC Charged Particle Detector Array modules use indigenously developed Si pad detectors as their first element. Total number of charge sensitive pre-amplifiers required for the Si-pad detectors is 250. One of the main ideas here is a layout of five pre-amplifiers connected with one Si-pad detector (called a bank of preamplifiers). In the present work, a 25-channel pre-amplifier module that can cater to 5 independent Si-pad detectors, or a five-bank module, has been developed. This module uses pre-amp hybrid chips A1422H from CAEN S.p.A. and is housed in a double width NIM standard box. The module has been tested for performance using proton and ''7Li beams from FOTIA facility, Trombay

  5. Strengthened electric field technique implemented on CZT detectors

    International Nuclear Information System (INIS)

    Fu, Jianqiang; Li, Yulan; Zhang, Lan; Du, Yingshuai; Yang, Yigang; Liu, Yinong; Niu, Libo; Jiang, Hao; Liu, Yilin; Li, Jun; Zhang, Wei; Liu, Yanqing; Li, Yuanjing

    2015-01-01

    This paper presents the development of a simple electrode structure which only requires a simple readout and is suitable for a large cube CZT crystal, such as a 10×10×10 mm 3 crystal. A technique named the strengthened electric field (SEF) is investigated in detail and implemented to improve the performance of the detector. Signal processing was also studied to demonstrate its feasibility to further improve the detector’s performance. A SEF line anode (SEFLA) prototype and an SEF point anode (SEFPA) prototype were designed, fabricated and tested. Experimental results demonstrated the effectiveness of the SEF technique. The SEFLA detector achieved an energy resolution of 1.6% (FWHM)@662 keV with 4.0 keV noise (FWHM) and SEFPA 1.8% with 5.0 keV noise. Cathode signal is used to do both the rejection and the correction in the SEFLA prototype. At the cost of detection efficiency, the low energy tail is reduced, while the energy resolution and the P/C ratio are further improved. Possible improvements of the detectors are discussed

  6. A BaF2-BGO detector for high-energy gamma rays

    International Nuclear Information System (INIS)

    Bargholtz, C.; Ritzen, B.; Tegner, P.E.

    1989-01-01

    A scintillation detector has been developed for gamma rays with energy between a few hundred keV and approximately 100 MeV. The detector comprises a BaF 2 and a BGO crystal giving it good timing properties and a reasonably good energy resolution in combination with compact size. (orig.)

  7. CCD[charge-coupled device]-based synchrotron x-ray detector for protein crystallography: Performance projected from an experiment

    International Nuclear Information System (INIS)

    Strauss, M.G.; Naday, I.; Sherman, I.S.; Kraimer, M.R.; Westbrook, E.M.

    1986-01-01

    The intense x radiation from a synchrotron source could, with a suitable detector, provide a complete set of diffraction images from a protein crystal before the crystal is damaged by radiation (2 to 3 min). An area detector consisting of a 40 mm dia. x-ray fluorescing phosphor, coupled with an image intensifier and lens to a CCD image sensor, was developed to determine the effectiveness of such a detector in protein crystallography. The detector was used in an experiment with a rotating anode x-ray generator. Diffraction patterns from a lysozyme crystal obtained with this detector are compared to those obtained with film. The two images appear to be virtually identical. The flux of 10 4 x-ray photons/s was observed on the detector at the rotating anode generator. At the 6-GeV synchrotron being designed at Argonne, the flux on an 80 x 80 mm 2 detector is expected to be >10 9 photons/s. The projected design of such a synchrotron detector shows that a diffraction-peak count >10 6 could be obtained in ∼0.5 s. With an additional ∼0.5 s readout time of a 512 x 512 pixel CCD, the data acquisition time per frame would be ∼1 s so that ninety 1 0 diffraction images could be obtained, with approximately 1% precision, in less than 3 min

  8. Repackaging SRS Black Box TRU Waste

    International Nuclear Information System (INIS)

    Swale, D. J.; Stone, K.A.; Milner, T. N.

    2006-01-01

    Historically, large items of TRU Waste, which were too large to be packaged in drums for disposal have been packaged in various sizes of custom made plywood boxes at the Savannah River Site (SRS), for many years. These boxes were subsequently packaged into large steel ''Black Boxes'' for storage at SRS, pending availability of Characterization and Certification capability, to facilitate disposal of larger items of TRU Waste. There are approximately 107 Black Boxes in inventory at SRS, each measuring some 18' x 12' x 7', and weighing up to 45,000 lbs. These Black Boxes have been stored since the early 1980s. The project to repackage this waste into Standard Large Boxes (SLBs), Standard Waste Boxes (SWB) and Ten Drum Overpacks (TDOP), for subsequent characterization and WIPP disposal, commenced in FY04. To date, 10 Black Boxes have been repackaged, resulting in 40 SLB-2's, and 37 B25 overpack boxes, these B25's will be overpacked in SLB-2's prior to shipping to WIPP. This paper will describe experience to date from this project

  9. A time projection chamber for the crystal barrel experiment at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Schaab, Dimitri; Ball, Markus; Beck, Reinhard; Ketzer, Bernhard [HISKP, Bonn University (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2015-07-01

    The CBELSA/TAPS experiment focuses on baryon spectroscopy by photoproduction processes off nucleons. For this purpose the experiment consists of an inner detector and an outer detector. The outer Crystal Barrel detector mainly measures photons from the decaying resonance. For charged particle identification and in order to obtain their direction, the Inner Detector consists of three layers of scintillating fibers. This inner detector will be replaced by a Time Projection Chamber (TPC). It offers improved track reconstruction capabilities, a robust pattern recognition and, if operated in a magnetic field, an excellent momentum resolution. Moreover, one obtains a particle identification of charged particles via the specific energy loss. A TPC has been developed for the FOPI experiment which also fits to the Crystal Barrel dimensions. It operates in continuous mode using Gas Electron Multipliers (GEM) as pre-amplification stage. For the TPC detector the calibration of the detector is crucial since parameters such as drift velocity or field inhomogenities have a direct impact on the detector performance. For the CBELSA TPC a calibration system is planned, which is based on the T2K calibration system. Here, the photoelectric effect is used to release electrons at well-known positions on the cathode, which drift towards the readout plane and show the integrated spatial distortions.

  10. Effects of packaging SrI{sub 2}(Eu) scintillator crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, Benjamin W., E-mail: sturm1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Cherepy, Nerine J.; Drury, Owen B.; Thelin, Peter A.; Fisher, Scott E.; Payne, Stephen A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Burger, Arnold [Fisk University, Nashville, TN 37201 (United States); Boatner, Lynn A.; Ramey, Joanne O. [Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Shah, Kanai S.; Hawrami, Rastgo [Radiation Monitoring Devices, Watertown, MA 02472 (United States)

    2011-10-01

    Recent renewed emphasis placed on gamma-ray detectors for national security purposes has motivated researchers to identify and develop new scintillator materials capable of high energy resolution and growable to large sizes. We have discovered that SrI{sub 2}(Eu) has many desirable properties for gamma-ray detection and spectroscopy, including high light yield of {approx}90,000 photons/MeV and excellent light yield proportionality. We have measured <2.7% FWHM at 662 keV with small detectors (<1 cm{sup 3}) in direct contact with a photomultiplier tube, and {approx}3% resolution at 662 keV is obtained for 1 in.{sup 3} crystals. Due to the hygroscopic nature of SrI{sub 2}(Eu), similar to NaI(Tl), proper packaging is required for field use. This work describes a systematic study performed to determine the key factors in the packaging process to optimize performance. These factors include proper polishing of the surface, the geometry of the crystal, reflector materials and windows. A technique based on use of a collimated {sup 137}Cs source was developed to examine light collection uniformity. Employing this technique, we found that when the crystal is packaged properly, the variation in the pulse height at 662 keV from events near the bottom of the crystal compared to those near the top of the crystal could be reduced to <1%. This paper describes the design and engineering of our detector package in order to improve energy resolution of 1 in.{sup 3}-scale SrI{sub 2}(Eu) crystals.

  11. Spent-fuel characterization with small CZT detectors

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, R. [European Commission, Joint Research Centre, Ispra, 21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: Reinhard.Berndt@jrc.it; Mortreau, P. [European Commission, Joint Research Centre, Ispra, 21020 Ispra (Va) (Italy)

    2006-08-01

    CdTe detectors may be utilised as miniature instruments for the measurement of gamma spectra in safeguards applications [R. Arlt, V. Gryshchuk, P. Sumah, Nucl. Instr. and Meth. A 428 (1999) 127]. This is applicable for measurements both to fresh fuel and irradiated nuclear fuel. The spectrum analysis, however, is more complicated than with Ge detectors. Some reasons are: the peaks are asymmetric, the peak/Compton ratio is low, peak parameters depend on the count rate and on the properties of individual detector crystals. We developed a spectrum-unfolding code for spectra obtained with CdTe detectors. The code makes use of a series of pattern spectra of the individual instrument. It is applied to fission-product spectra and allows the coarse characterisation of the spent fuel in safeguards inspections.

  12. Spent-fuel characterization with small CZT detectors

    International Nuclear Information System (INIS)

    Berndt, R.; Mortreau, P.

    2006-01-01

    CdTe detectors may be utilised as miniature instruments for the measurement of gamma spectra in safeguards applications [R. Arlt, V. Gryshchuk, P. Sumah, Nucl. Instr. and Meth. A 428 (1999) 127]. This is applicable for measurements both to fresh fuel and irradiated nuclear fuel. The spectrum analysis, however, is more complicated than with Ge detectors. Some reasons are: the peaks are asymmetric, the peak/Compton ratio is low, peak parameters depend on the count rate and on the properties of individual detector crystals. We developed a spectrum-unfolding code for spectra obtained with CdTe detectors. The code makes use of a series of pattern spectra of the individual instrument. It is applied to fission-product spectra and allows the coarse characterisation of the spent fuel in safeguards inspections

  13. Invariant box parameterization of neutrino oscillations

    International Nuclear Information System (INIS)

    Weiler, T.J.; Wagner, D.

    1998-01-01

    The model-independent 'box' parameterization of neutrino oscillations is examined. The invariant boxes are the classical amplitudes of the individual oscillating terms. Being observables, the boxes are independent of the choice of parameterization of the mixing matrix. Emphasis is placed on the relations among the box parameters due to mixing matrix unitarity, and on the reduction of the number of boxes to the minimum basis set. Using the box algebra, we show that CP-violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. General analyses of neutrino oscillations among n≥3 flavors can readily determine the boxes, which can then be manipulated to yield magnitudes of mixing matrix elements. copyright 1998 American Institute of Physics

  14. Single-crystal neutron diffraction at the Australian Replacement Research Reactor

    International Nuclear Information System (INIS)

    Klooster, W.T.

    2001-01-01

    The purpose of the workshop was to: identify the future needs and opportunities for single-crystal neutron diffraction, and specify instrument requirements. important number of experiments. The conclusion of the workshop deliberation was that Australia has a diverse community of users of single-crystal neutron diffraction. A (quasi)-Laue image-plate diffractometer allows the fastest throughput by far, but would exclude an important number of experiments. Most of these could be covered by the additional possibility to locate the image-plate detector on a monochromatic beam. Therefore it was recommend both a white thermal beam and a monochromatic beam (λ= 1 to 2.4 Angstroms) for an image-plate detector. At little additional cost the existing 2TanA instrument could be located semi-permanently on the same monochromatic beam, thus offering three quite different types of single-crystal instruments. Small improvements could be made to the 2TanA instrument to cater for the remaining experiments not suited to an image-plate diffractometer: exchange of the Eulerian cradle for an automated tilt goniometer for extremely bulky sample environment (cryomagnets, large pressure cells), optional larger area detector, analyser crystal. It was recommended that an Instrument Advisory Team will be assembled, and will help in specifying, designing and commissioning the instrument

  15. Box-particle intensity filter

    OpenAIRE

    Schikora, Marek; Gning, Amadou; Mihaylova, Lyudmila; Cremers, Daniel; Koch, Wofgang; Streit, Roy

    2012-01-01

    This paper develops a novel approach for multi-target tracking, called box-particle intensity filter (box-iFilter). The approach is able to cope with unknown clutter, false alarms and estimates the unknown number of targets. Furthermore, it is capable of dealing with three sources of uncertainty: stochastic, set-theoretic and data association uncertainty. The box-iFilter reduces the number of particles significantly, which improves the runtime considerably. The low particle number enables thi...

  16. Crystal Growth of New Radiation Detector Materials in Microgravity, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — RMD proposes to conduct a series of crystal growth experiments on the International Space Station in the SUBSA furnace inside the MSG glovebox to grow crystals of...

  17. submitter A new method for depth of interaction determination in PET detectors

    CERN Document Server

    Pizzichemi, M; Niknejad, T; Liu, Z; Lecoq, P; Tavernier, S; Varela, J; Paganoni, M; Auffray, E

    2016-01-01

    A new method for obtaining depth of interaction (DOI) information in PET detectors is presented in this study, based on sharing and redirection of scintillation light among multiple detectors, together with attenuation of light over the length of the crystals. The aim is to obtain continuous DOI encoding with single side readout, and at the same time without the need for one-toone coupling between scintillators and detectors, allowing the development of a PET scanner with good spatial, energy and timing resolutions while keeping the complexity of the system low. A prototype module has been produced and characterized to test the proposed method, coupling a LYSO scintillator matrix to a commercial SiPMs array. Excellent crystal separation is obtained for all the scintillators in the array, light loss due to depolishing is found to be negligible, energy resolution is shown to be on average 12.7% FWHM. The mean DOI resolution achieved is 4.1mm FWHM on a 15mm long crystal and preliminary coincidence time resolutio...

  18. Molecular cloning and characterization of an F-box family gene CarF-box1 from chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Jia, Yuying; Gu, Hanyan; Wang, Xiansheng; Chen, Quanjia; Shi, Shubing; Zhang, Jusong; Ma, Lin; Zhang, Hua; Ma, Hao

    2012-03-01

    F-box protein family has been found to play important roles in plant development and abiotic stress responses via the ubiquitin pathway. In this study, an F-box gene CarF-box1 (for Cicer arietinum F-box gene 1, Genbank accession no. GU247510) was isolated based on a cDNA library constructed with chickpea seedling leaves treated by polyethylene glycol. CarF-box1 encoded a putative protein with 345 amino acids and contained no intron within genomic DNA sequence. CarF-box1 is a KFB-type F-box protein, having a conserved F-box domain in the N-terminus and a Kelch repeat domain in the C-terminus. CarF-box1 was localized in the nucleus. CarF-box1 exhibited organ-specific expression and showed different expression patterns during seed development and germination processes, especially strongly expressed in the blooming flowers. In the leaves, CarF-box1 could be significantly induced by drought stress and slightly induced by IAA treatment, while in the roots, CarF-box1 could be strongly induced by drought, salinity and methyl jasmonate stresses. Our results suggest that CarF-box1 encodes an F-box protein and may be involved in various plant developmental processes and abiotic stress responses.

  19. LORINE: Neutron emission Locator by SOI detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hamrita, H.; Kondrasovs, V.; Borbotte, J. M.; Normand, S. [CEA, LIST, Laboratoire Capteurs et Architectures Electronique, F-91191 Gif-sur-Yvette Cedex (France); Saurel, N. [CEA, DAM, VALDUC, F-21120 Is sur Tille (France)

    2009-07-01

    The aim of this work is to develop a fast Neutron Emission Locator based on silicon on Insulator detector (LORINE). This locator can be used in the presence of significant flux of gamma radiation. LORINE was developed to locate areas containing a significant amount of actinide during the dismantling operations of equipment. From the results obtained in laboratory, we have proposed the prototype of neutron emission locator as follows: the developed design consists of 5 SOI (Silicon-on-insulator) detectors (1*1 cm{sup 2}) with their charge preamplifiers and their respective converters. All are installed on 5 faces of a boron polyethylene cube (5*5*5 cm{sup 3}). This cube plays the role of neutron shielding between the several detectors. The design must be so compact for use in glove boxes. An electronic card based on micro-controller has been made to control sensors and to send the necessary information to the computer. Location of fast neutron sources does not yet exist in a so compact design and it can be operated in the presence of very important gamma radiation flux

  20. Silicon photomultipliers for positron emission tomography detectors with depth of interaction encoding capability

    International Nuclear Information System (INIS)

    Taghibakhsh, Farhad; Reznik, Alla; Rowlands, John A.

    2011-01-01

    Silicon photomultipliers (SiPMs) are receiving increasing attention in the field of positron emission tomography (PET) detectors. Compared to photomultiplier tubes, they offer novel detector configurations for the extraction of depth of interaction (DOI) information, or enable emerging medical imaging modalities such as simultaneous PET-magnetic resonant imaging (MRI). In this article, we used 2x2x20 mm 3 LYSO scintillator crystals coupled to SiPMs on both ends (dual-ended readout configuration) to evaluate the detector performance for DOI-PET applications. We investigated the effect of scintillator crystal surface finishing on sensitivity and resolution of DOI, as well as on energy and timing resolution. Measurements indicate DOI sensitivity and resolution of 7.1% mm -1 and 2.1±0.6 mm for saw-cut, and 1.3% mm -1 and 9.0±1.5 mm, for polished scintillator crystals, respectively. Energy resolution varies from 19% when DOI is in the center, to 15% with DOI at either end of the saw-cut crystal, while it remains constant at ∼14% for polished scintillators. Based on our results we conclude that 2x2x20 mm 3 saw-cut (without any special side wall polishing) LYSO crystals coupled to 2x2 mm 2 silicon photomultipliers are optimal for isotropic 2 mm resolution DOI-PET applications.

  1. A flexible system to capture sample vials in a storage box - the box vial scanner.

    Science.gov (United States)

    Nowakowski, Steven E; Kressin, Kenneth R; Deick, Steven D

    2009-01-01

    Tracking sample vials in a research environment is a critical task and doing so efficiently can have a large impact on productivity, especially in high volume laboratories. There are several challenges to automating the capture process, including the variety of containers used to store samples. We developed a fast and robust system to capture the location of sample vials being placed in storage that allows the laboratories the flexibility to use sample containers of varying dimensions. With a single scan, this device captures the box identifier, the vial identifier and the location of each vial within a freezer storage box. The sample vials are tracked through a barcode label affixed to the cap while the boxes are tracked by a barcode label on the side of the box. Scanning units are placed at the point of use and forward data to a sever application for processing the scanned data. Scanning units consist of an industrial barcode reader mounted in a fixture positioning the box for scanning and providing lighting during the scan. The server application transforms the scan data into a list of storage locations holding vial identifiers. The list is then transferred to the laboratory database. The box vial scanner captures the IDs and location information for an entire box of sample vials into the laboratory database in a single scan. The system accommodates a wide variety of vials sizes by inserting risers under the sample box and a variety of storage box layouts are supported via the processing algorithm on the server.

  2. Dimension measuring method for channel box

    International Nuclear Information System (INIS)

    Jo, Hiroto.

    1995-01-01

    The device of the present invention concerns detection of a channel box for spent fuel assemblies of a BWR type reactor, which measures a cross sectional shape and dimension of the channel box to check deformation amount such as expansion. That is, a customary fuel exchanger and a dimension measuring device are used. The lower end of the channel box is measured by a distance sensor of the dimension measuring device when it is aligned with a position of the distance sensor. The channel box is lowered at the same time while detecting axial position data of the fuel exchanger. The position of the channel box in an axial direction is detected based on axial position data of the fuel exchanger. The lower end of the channel box can accurately be recognized by the detection of both of them. Subsequent deformation measurement for the channel box at accurate axial positions is enabled. In addition, since the axial position data of the fuel exchanger per se are detected, an axial profile of the channel box can be measured even if a lifting speed of the channel box is varied on every region. (I.S.)

  3. The Karlsruhe 4π barium fluoride detector

    International Nuclear Information System (INIS)

    Wisshak, K.; Guber, K.; Kaeppeler, F.; Krisch, J.; Mueller, H.; Rupp, G.; Voss, F.

    1989-12-01

    A new experimental approach has been implemented for accurate measurements of neutron capture cross sections in the energy range from 5 to 200 keV. The Karlsruhe 4π Barium Fluoride Detector consists of 42 crystals shaped as hexagonal and pentagonal truncated pyramids forming a spherical shell with 10 cm inner radius and 15 cm thickness. All crystals are supplied with reflector and photomultiplier, thus representing independent gamma-ray detectors. Each detector module covers the same solid angle with respect to a gamma-ray source located in the centre. The energy resolution of the 4π detector is 14% at 662 keV and 7% at 2.5 MeV gamma-ray energy, the overall time reslution is 500 ps and the peak efficiency 90% at 1 MeV. The detector allows to register capture cascades with 95% probability above a threshold energy of 2.5 MeV in the sum energy spectrum. Neutrons are produced via the 7 Li(p,n) 7 Be reaction using the pulsed proton beam of a Van de Graaff accelerator. The neutron spectrum can be taylored according to the experimental requirements in an energy range from 5 to 200 keV by choosing appropriate proton energies. A collimated neutron beam is passing through the detector and hits the sample in the centre. The energy of captured neutrons is determined via time of flight, the primary flight path being 77 cm. The combination of short primary flight path, a 10 cm inner radius of the spherical BaF 2 shell, and the low capture cross section of barium allows to discriminate background due to capture of sample scattered neutrons in the scintillator by time of flight, leaving part of the neutron energy range completely undisturbed. (orig./HSI) [de

  4. Cation-π interactions: computational analyses of the aromatic box motif and the fluorination strategy for experimental evaluation.

    Science.gov (United States)

    Davis, Matthew R; Dougherty, Dennis A

    2015-11-21

    Cation-π interactions are common in biological systems, and many structural studies have revealed the aromatic box as a common motif. With the aim of understanding the nature of the aromatic box, several computational methods were evaluated for their ability to reproduce experimental cation-π binding energies. We find the DFT method M06 with the 6-31G(d,p) basis set performs best of several methods tested. The binding of benzene to a number of different cations (sodium, potassium, ammonium, tetramethylammonium, and guanidinium) was studied. In addition, the binding of the organic cations NH4(+) and NMe4(+) to ab initio generated aromatic boxes as well as examples of aromatic boxes from protein crystal structures were investigated. These data, along with a study of the distance dependence of the cation-π interaction, indicate that multiple aromatic residues can meaningfully contribute to cation binding, even with displacements of more than an angstrom from the optimal cation-π interaction. Progressive fluorination of benzene and indole was studied as well, and binding energies obtained were used to reaffirm the validity of the "fluorination strategy" to study cation-π interactions in vivo.

  5. Reference detectors for low flux optical radiation measurements

    International Nuclear Information System (INIS)

    Bellouati-Ghazi, Amal

    2003-01-01

    The parametric down conversion of photons generated in a non-linear crystal gives rise to two correlated photons. Associated to a System of counting of coincidences, this phenomenon makes possible the quantum efficiency measurements of detectors working on photon counting levels, without using neither sources nor detectors of references. This new method was developed at BNMINM with the aim to realize new standards detectors in the field of weak flows. It allows the determination of quantum efficiency with a relative uncertainty of 1,1%. A comparison with the IENGF (Italy) bearing on the quantum determination of efficiency of one of BNM-FNM detectors made possible to confront the exactitude of the measuring equipment. This detector was also made the object of a comparison with the French reference of radiometry, the cryogenic radiometer, the results were in agreement with uncertainties of measurements. (author) [fr

  6. Mammography imaging studies using a laue crystal analyzer

    International Nuclear Information System (INIS)

    Chapman, D.; Thomlinson, W.; Arfelli, F.

    1995-01-01

    Synchrotron based mammography imaging experiments have been performed with monochromatic x-rays in which a laue crystal placed after the object being imaged has been used to split the beam transmitted through the object. The X27C R ampersand D beamline at the National Synchrotron Light Source was used with the white beam monochromatized by a double crystal Si(111) monochromator tuned to 18 keV. The imaging beam was a thin horizontal line approximately 0.5 mm high by 100 mm wide. Images were acquired in line scan mode with the phantom and detector both scanned together. The detector for these experiments was an image plate. A thin Si(l11) laue analyzer was used to diffract a portion of the beam transmitted through the phantom before the image plate detector. This ''scatter free'' diffracted beam was then recorded on the image plate during the phantom scan. Since the thin laue crystal also transmitted a fraction of the incident beam, this beam was also simultaneously recorded on the image plate. The imaging results are interpreted in terms of an x-ray schliere or refractive index inhomogeneities. The analyzer images taken at various points in the rocking curve will be presented

  7. Detector block based on arrays of 144 SiPMs and monolithic scintillators: A performance study

    International Nuclear Information System (INIS)

    González, A.J.; Conde, P.; Iborra, A.; Aguilar, A.; Bellido, P.; García-Olcina, R.; Hernández, L.; Moliner, L.; Rigla, J.P.; Rodríguez-Álvarez, M.J.; Sánchez, F.; Seimetz, M.; Soriano, A.; Torres, J.; Vidal, L.F.; Benlloch, J.M.

    2015-01-01

    We have developed a detector block composed by a monolithic LYSO scintillator coupled to a custom made 12×12 SiPMs array. The design is mainly focused to applications such as Positron Emission Tomography. The readout electronics is based on 3 identical and scalable Application Specific Integrated Circuits (ASIC). We have determined the main performance of the detector block namely spatial, energy, and time resolution but also the system capability to determine the photon depth of interaction, for different crystal surface treatments. Intrinsic detector spatial resolution values as good as 1.7 mm FWHM and energies of 15% for black painted crystals were measured

  8. Assembly and evaluation of a pyroelectric detector bonded to vertically aligned multiwalled carbon nanotubes over thin silicon.

    Science.gov (United States)

    Theocharous, E; Theocharous, S P; Lehman, J H

    2013-11-20

    A novel pyroelectric detector consisting of a vertically aligned nanotube array on thin silicon (VANTA/Si) bonded to a 60 μm thick crystal of LiTaO₃ has been fabricated. The performance of the VANTA/Si-coated pyroelectric detector was evaluated using National Physical Laboratory's (NPL's) detector-characterization facilities. The relative spectral responsivity of the detector was found to be spectrally flat in the 0.8-24 μm wavelength range, in agreement with directional-hemispherical reflectance measurements of witness samples of the VANTA. The spatial uniformity of response of the test detector exhibited good uniformity, although the nonuniformity increased with increasing modulation frequency. The nonuniformity may be assigned either to the dimensions of the VANTA or the continuity of the bond between the VANTA/Si coating and the pyroelectric crystal substrate. The test detector exhibited a small superlinear response, which is similar to that of pyroelectric detectors coated with good quality gold-black coatings.

  9. Advantages of CaF2 over ZnS in an α-particle scintillation detector

    International Nuclear Information System (INIS)

    Sabol, B.; Schery, S.D.

    1981-01-01

    Results are reported for using a europium-activated calcium fluoride (CaF 2 ) scintillation crystal as a α-particle detector in a two-filter monitor of atmospheric radon. CaF 2 detectors are cheaper and can cover a larger surface area than the higher-resolution solid-state detectors. Compared to ZnS scintillators, the energy resolution for CaF 2 is improved from 3.0 MeV to 1.1 MeV for 4.7 MeV α-particles; however the light output from CaF 2 is considerably lower. It is concluded that a thin CaF 2 crystal is a cost-effective method of improving energy and time resolutions for the two-filter monitor. (U.K.)

  10. Influence of Impurities on the Radiation Response of the TlBr Semiconductor Crystal

    Directory of Open Access Journals (Sweden)

    Robinson Alves dos Santos

    2017-01-01

    Full Text Available Two commercially available TlBr salts were used as the raw material for crystal growths to be used as radiation detectors. Previously, TlBr salts were purified once, twice, and three times by the repeated Bridgman method. The purification efficiency was evaluated by inductively coupled plasma mass spectroscopy (ICP-MS, after each purification process. A compartmental model was proposed to fit the impurity concentration as a function of the repetition number of the Bridgman growths, as well as determine the segregation coefficients of impurities in the crystals. The crystalline structure, the stoichiometry, and the surface morphology of the crystals were evaluated, systematically, for the crystals grown with different purification numbers. To evaluate the crystal as a radiation semiconductor detector, measurements of its resistivity and gamma-ray spectroscopy were carried out, using 241Am and 133Ba sources. A significant improvement of the radiation response was observed in function of the crystal purity.

  11. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  12. CsI(Tl)-photodiode detectors for gamma-ray spectroscopy

    CERN Document Server

    Fioretto, E; Viesti, G; Cinausero, M; Zuin, L; Fabris, D; Lunardon, M; Nebbia, G; Prete, G

    2000-01-01

    We report on the performances of CsI(Tl)-photodiode detectors for gamma-ray spectroscopy applications. Light output yield and energy resolution have been measured for different crystals and read-out configurations.

  13. Field study of alpha characterization of a D ampersand D site using long-range alpha detectors

    International Nuclear Information System (INIS)

    Rawool-Sullivan, M.W.; Allander, K.S.; Bounds, J.A.; Koster, J.E.; MacArthur, D.W.; Sprouse, L.L.; Stout, D.; Vaccarella, J.A.; Vu, T.Q.

    1994-01-01

    A successful and cost-effective D ampersand D effort relies upon an accurate, real-time, in situ, and non-destructive method of characterization of contamination both before and after the decontamination process. Detector systems based on long-range alpha detection (LRAD) technology meet these criteria. Currently, LANL is in the process of investigating, designing, or building various surface monitors, various pipe monitors, and glove-box monitors. This paper describes the field studies conducted using detectors based on LRAD technology

  14. Characterization of highly multiplexed monolithic PET / gamma camera detector modules

    DEFF Research Database (Denmark)

    Pierce, L. A.; Pedemonte, Stefano; Dewitt, Sharon

    2018-01-01

    tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize...... and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge...... the detector response. New methods are developed to reject scattered events and perform depthestimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution...

  15. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications.

    Science.gov (United States)

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O'Sullivan, Andrew W; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-09-11

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4 × 4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16 × 16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92 × 0.92 × 3 mm 3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8 × 16.8 mm 2 . Thirty-two such blocks will be arranged in a 4 × 8 array with 1 mm gaps to form a panel detector with detection area around 7 cm × 14 cm in the full-size detector. The flood histogram acquired with Ge-68 source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, +/-0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.

  16. CMS Industries awarded gold, crystal

    CERN Multimedia

    2006-01-01

    The CMS collaboration honoured 10 of its top suppliers in the seventh annual awards ceremony The representatives of the firms that recieved the CMS Gold and Crystal Awards stand with their awards after the ceremony. The seventh annual CMS Awards ceremony was held on Monday 13 March to recognize the industries that have made substantial contributions to the construction of the collaboration's detector. Nine international firms received Gold Awards, and General Tecnica of Italy received the prestigious Crystal Award. Representatives from the companies attended the ceremony during the plenary session of CMS week. 'The role of CERN, its machines and experiments, beyond particle physics is to push the development of equipment technologies related to high-energy physics,'said CMS Awards Coordinator Domenico Campi. 'All of these industries must go beyond the technologies that are currently available.' Without the involvement of good companies over the years, the construction of the CMS detector wouldn't be possible...

  17. Calculated Absolute Detection Efficiencies of Cylindrical Nal (Tl) Scintillation Crystals for Aqueous Spherical Sources

    Energy Technology Data Exchange (ETDEWEB)

    Strindehag, O; Tollander, B

    1968-08-15

    Calculated values of the absolute total detection efficiencies of cylindrical scintillation crystals viewing spherical sources of various sizes are presented. The calculation is carried out for 2 x 2 inch and 3 x 3 inch Nal(Tl) crystals and for sources which have the radii 1/4, 1/2, 3/4 and 1 times the crystal radius. Source-detector distances of 5-20 cm and gamma energies in the range 0.1 - 5 MeV are considered. The correction factor for absorption in the sample container wall and in the detector housing is derived and calculated for a practical case.

  18. LYSO crystal testing for an EDM polarimeter

    Science.gov (United States)

    Müller, F.; Keshelashvili, I.; Mchedlishvili, D.; JEDI Collaboration

    2017-11-01

    Four detector modules, built from three different LYSO crystals and two different types of light sensors (PMTs and SiPM arrays), have been tested with a deuteron beam from 100 MeV - 270 MeV at the COSY accelerator facility for the srEDM project at the Forschungszentrum Jülich in Germany. The detector modules were arranged in a cluster hand mounted on a positioning table. The deuteron beam was targeted at the center of each individual crystal for data analysis. The signals were digitized using a 14 bit, 250 MS/s flash ADC. Further, the energy spectra were calibrated using the known beam energies from the accelerator. From the calibrated spectra, the energy resolution was calculated. A resolution of 3% for the low energies and down to 1% for the high energy of 270 MeV was achieved. A deuteron reconstruction efficiency of almost 100% for low energies and around 70% for high energies was achieved. The SiPM light sensor showed a very good performance and will be used for the next generation of detector modules.

  19. Characterisation of a LSO scintillation crystal for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Elftmann, Robert; Grunau, Jan; Kulkarni, Shrinivasrao; Martin, Cesar; Wimmer-Schweingruber, Robert F. [IEAP, Christian-Albrechts-Universitaet Kiel (Germany)

    2013-07-01

    Inorganic scintillation crystals coupled with semiconductor detectors are often used in space applications as gamma ray detectors or high energy particle calorimeters. Currently BGO (Bi{sub 4}Ge{sub 3}O{sub 12}) is widely used for this purpose because of its high stopping power, the non hygroscopy and its ruggedness, which is favorable in space applications. Cerium doped LSO (Lu{sub 2}SiO{sub 5}) offers the same benefits with higher light output capabilites and a shorter decay time. In this work a cerium doped LSO scintillation crystal coupled with a photo diode is investigated. The light yield and resolution studies for two different radioactive sources, {sup 207}Bi and {sup 60}Co, are presented. To increase the light collection and consequently the energy resolution, scintillation crystals are wrapped in highly reflective material. The increase in light collection depending on the amount of layers for the LSO crystal along with investigations of quenching effects with alpha particles and the background spectrum, which arises from radioactive cerium isotopes, are also included in this work.

  20. Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, T. E-mail: tosiyuki@smail.tohtech.ac.jp; Hitomi, K.; Shoji, T.; Hiratate, Y

    2004-06-01

    Recently, pixellated semiconductor detectors exhibit high-energy resolution, which have been studied actively and fabricated from CdTe, CZT and HgI{sub 2}. Thallium bromide (TlBr) is a compound semiconductor characterized with its high atomic numbers (Tl=81, Br=35) and high density (7.56 g/cm{sup 3}). Thus, TlBr exhibits higher photon stopping power than other semiconductor materials used for radiation detector fabrication such as CdTe, CZT and HgI{sub 2}. The wide band gap of TlBr (2.68 eV) permits the detectors low-noise operation at around room temperature. Our studies made an effort to fabricate pixellated TlBr detectors had sufficient detection efficiency and good charge collection efficiency. In this study, pixellated TlBr detectors were fabricated from the crystals purified by the multipass zone-refining method and grown by the horizontal traveling molten zone (TMZ) method. The TlBr detector has a continuous cathode over one crystal surface and 3x3 pixellated anodes (0.57x0.57 mm{sup 2} each) surrounded by a guard ring on the opposite surface. The electrodes were realized by vacuum evaporation of palladium through a shadow mask. Typical thickness of the detector was 2 mm. Spectrometric performance of the TlBr detectors was tested by irradiating them with {sup 241}Am (59.5 keV), {sup 57}Co (122 keV) and {sup 137}Cs (662 keV) gamma-ray sources at temperature of -20 deg. C. Energy resolutions (FWHM) were measured to be 4.0, 6.0 and 9.7 keV for 59.5, 122 and 662 keV gamma-rays, respectively.

  1. Calorimetry at the CMD-3 Detector

    CERN Document Server

    Razuvaev, G P; Anisenkov, A V; Aulchenko, V M; Bashtavoy, N S; Epifanov, D A; Epshteyn, L B; Erofeev, A L; Grebenuk, A A; Grigoriev, D N; Kazanin, V F; Kovalenko, O A; Kozyrev, A N; Kuzmenko, A E; Kuzmin, A S; Logashenko, I B; Mikhailov, K Yu; Okhapkin, V S; Ruban, A A; Shebalin, V E; Shwartz, B A; Talyshev, A A; Titov, V M; Yudin, Yu V

    2017-01-01

    The general purpose detector CMD-3 has been collecting data since 2010 in an energy range 0.32–2 GeV at the e+e- collider VEPP-2000 at the Budeker Institute of Nuclear Physics. The detector physics program includes the study of the e+e- annihilation into hadrons. To supply high registration efficiency for neutral particles the CMD-3 has an electromagnetic calorimeter consisted of three subsystems: BGO endcap calorimeter and barrel one with an inner part based on LXe and outer on CsI crystals. The main parameters of calorimeters, cluster reconstruction and calibration procedures with performance results are described.

  2. The CLEO RICH detector

    International Nuclear Information System (INIS)

    Artuso, M.; Ayad, R.; Bukin, K.; Efimov, A.; Boulahouache, C.; Dambasuren, E.; Kopp, S.; Li, Ji; Majumder, G.; Menaa, N.; Mountain, R.; Schuh, S.; Skwarnicki, T.; Stone, S.; Viehhauser, G.; Wang, J.C.; Coan, T.E.; Fadeyev, V.; Maravin, Y.; Volobouev, I.; Ye, J.; Anderson, S.; Kubota, Y.; Smith, A.

    2005-01-01

    We describe the design, construction and performance of a Ring Imaging Cherenkov Detector (RICH) constructed to identify charged particles in the CLEO experiment. Cherenkov radiation occurs in LiF crystals, both planar and ones with a novel 'sawtooth'-shaped exit surface. Photons in the wavelength interval 135-165nm are detected using multi-wire chambers filled with a mixture of methane gas and triethylamine vapor. Excellent π/K separation is demonstrated

  3. Response of CZT drift-strip detector to X- and gamma rays

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Gerward, Leif

    2001-01-01

    The drift-strip method for improving the energy response of a CdZnTe (CZT) detector to hard X- and gamma rays is discussed. Results for a 10 x 10 x 3 mm(3) detector crystal demonstrate a remarkable improvement of the energy resolution. The full width at half maximum (FWHM) is 2.18 keV (3.6%), 2...

  4. Measurements of streaming neutrons on nuclear ship 'Mutsu' by a two-detector-method

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Yamazaki, Hiroshi; Ryufuku, Hiroshi.

    1976-01-01

    Streaming neutrons escaping through an air gap located between the pressure vessel and the primary shield of the Nuclear Ship ''Mutsu'' were measured by applying the two-detector-method. The two detectors consisted of a single BF 3 counter provided alternatively with different covering arrangements - (a) 3mm thick steel tube + layers of polyethylene sheeting with total thickness of 30mm + 1mm thick Cd plate and (b) same covering as (a) + polyethylene boxing 20mm thick. In order to derive from the count rates obtained with the detectors described above the absolute values of neutron flux and dose equivalent rate, the detectors were calibrated in laboratory by comparison with a reference detector system in neutron field created around a 252 Cf source and TCA, a light-water moderated critical assembly. The conversion from measured counts to neutron flux and neutron dose equivalent rate was estimated to incur errors of +-15 and +-40%, respectively. (auth.)

  5. Heart Rate and Liking During "Kinect Boxing" Versus "Wii Boxing": The Potential for Enjoyable Vigorous Physical Activity Videogames.

    Science.gov (United States)

    Sanders, Gabriel J; Peacock, Corey A; Barkley, Jacob E; Gish, Brian; Brock, Scott; Volpenhein, Josh

    2015-08-01

    Nintendo(®) (Kyoto, Japan) "Wii™ Sports Boxing" ("Wii Boxing") and Xbox(®) (Microsoft, Redmond, WA) "Kinect(®) Sports Boxing" ("Kinect Boxing") are both boxing simulation videogames that are available for two different active videogame (AVG) systems. Although these AVGs are similar, the style of gameplay required is different (i.e., upper body only versus total body movements) and may alter physical activity intensity and one's preference for playing one game over the other. AVGs that elicit the greatest physiologic challenge and are preferred by users should be identified in an effort to enhance the efficacy of physical activity interventions and programs that include AVGs. The mean heart rate (HRmean) and peak heart rate (HRpeak) for 27 adults (22.7±4.2 years old) were recorded during four 10-minute conditions: seated rest, treadmill walking at 3 miles/hour, "Wii Boxing," and "Kinect Boxing." Upon completion of all four conditions, participants indicated which condition they preferred, and HRmean and HRpeak were calculated as a percentage of age-predicted maximum heart rate to classify physical activity intensity for the three activity conditions (treadmill, "Wii Boxing," and "Kinect Boxing"). "Kinect Boxing" significantly (P<0.001) increased percentage HRmean (64.1±1.6 percent of age-predicted maximum) and percentage HRpeak (76.5±1.9 percent) above all other conditions: Wii HRmean, 53.0±1.2 percent; Wii HRpeak, 61.8±1.5 percent; treadmill HRmean, 52.4±1.2 percent; treadmill HRpeak, 55.2±2.2 percent. Percentage HRpeak for "Kinect Boxing" was great enough to be considered a vigorous-intensity physical activity. There was no difference (P=0.55) in percentage HRmean between "Wii Boxing" and treadmill walking. Participants also preferred "Kinect Boxing" (P<0.001; n=26) to all other conditions ("Wii Boxing," n=1; treadmill n=0). "Kinect Boxing" was the most preferred and the only condition that was physiologically challenging enough to be classified as a

  6. The use of GaSe semiconductor detectors for monitoring high energy muon beams

    CERN Document Server

    Mancini, A M; Murri, R; Quirini, A; Rizzo, A; Vasanelli, L

    1976-01-01

    GaSe semiconductor detectors have been successfully tested during one year for monitoring muon beams in the GeV range in the neutrino experiment at CERN. Their performances are comparable with those of commercial Si surface barrier detectors for this particular application. Crystal growth, detector fabrication and characterization are briefly described. Various advantages (cost, ruggedness, resistance to radiation damage, manufacturing simplicity, etc.) are discussed. (8 refs).

  7. Single-crystal diffraction instrument TriCS at SINQ

    Science.gov (United States)

    Schefer, J.; Könnecke, M.; Murasik, A.; Czopnik, A.; Strässle, Th; Keller, P.; Schlumpf, N.

    2000-03-01

    The single-crystal diffractometer TriCS at the Swiss Continuous Spallation Source (SINQ) is presently in the commissioning phase. A two-dimensional wire detector produced by EMBL was delivered in March 1999. The instrument is presently tested with a single detector. First measurements on magnetic structures have been performed. The instrument is remotely controlled using JAVA-based software and a UNIX DEC-α host computer.

  8. High-speed single-crystal television diffractometer (software)

    International Nuclear Information System (INIS)

    Thomas, D.J.

    1982-01-01

    Area-detector diffractometers make possible almost ideal diffraction experiments. Until recently the performance of such instruments has been limited in practice by the available software. This general account discusses an unconventional way of indexing a lattice which is more appropriate for the calculations needed with normal-beam rotation geometry, and asserts the need to perform a continuous 'real-time' adaptive refinement to monitor the condition of the crystal and the detector. (orig.)

  9. Conception and characterization of a virtual coplanar grid for a 11×11 pixelated CZT detector

    Energy Technology Data Exchange (ETDEWEB)

    Espagnet, Romain; Frezza, Andrea [Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec city, QC, Canada G1R 0A6 (Canada); Martin, Jean-Pierre; Hamel, Louis-André [Department of Physics, Université de Montréal, C.P. 6128 Montréal QC, Canada H3C 3J7 (Canada); Després, Philippe, E-mail: philippe.despres@phy.ulaval.ca [Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec city, QC, Canada G1R 0A6 (Canada); Department of Radiation Oncology and Research Center of CHU de Québec - Université Laval, Quebec city, QC Canada G1R 2J6 (Canada)

    2017-07-11

    Due to the low mobility of holes in CZT, commercially available detectors with a relatively large volume typically use a pixelated anode structure. They are mostly used in imaging applications and often require a dense electronic readout scheme. These large volume detectors are also interesting for high-sensitivity applications and a CZT-based blood gamma counter was developed from a 20×20×15 mm{sup 3} crystal available commercially and having a 11×11 pixelated readout scheme. A method is proposed here to reduce the number of channels required to use the crystal in a high-sensitivity counting application, dedicated to pharmacokinetic modelling in PET and SPECT. Inspired by a classic coplanar anode, an implementation of a virtual coplanar grid was done by connecting the 121 pixels of the detector to form intercalated bands. The layout, the front-end electronics and the characterization of the detector in this 2-channel anode geometry is presented. The coefficients required to compensate for electron trapping in CZT were determined experimentally to improve the performance. The resulting virtual coplanar detector has an intrinsic efficiency of 34% and an energy resolution of 8% at 662 keV. The detector's response was linear between 80 keV and 1372 keV. This suggests that large CZT crystals offer an excellent alternative to scintillation detectors for some applications, especially those where high-sensitivity and compactness are required.

  10. TT detector description and implementation of the survey measurements

    CERN Document Server

    Salzmann, C

    2008-01-01

    The TT geometry in the software has been updated to comply with the latest technical drawings. The main difference is in the description of the beam pipe insulation, where the amount of material has increased from $7.5\\%$ to $15.4\\%$ of $X_0$. Mother volumes are added to decrease the CPU consumption and finally several scans are made to compare the material budget between the DC06 geometry and the new 2008 geometry. In addition, the survey measurements of the TT detector have been analysed. These measurements can be subdivided into surveys of the detector box, photogrammetry of the balconies and metrology of the half-modules. The offsets with the nominal geometry are implemented in the alignment condition database.

  11. Construction and testing of the SLD Cerenkov ring imaging detector

    International Nuclear Information System (INIS)

    Cavalli-Sforza, M.; Coyle, P.; Coyne, D.; Gagnon, P.; Williams, D.A.; Abe, K.; Hasegawa, K.; Suekane, F.; Yuta, H.

    1990-01-01

    The authors report on the construction of the Cherenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC Linear Collider and the testing of its components. The authors include results from testing the drift boxes, liquid radiator trays, and mirrors for the barrel CRID. The authors also discuss development of the support systems essential for the operation of the CRID: gas and liquid recirculator systems and monitoring

  12. The three-box paradox revisited

    International Nuclear Information System (INIS)

    Ravon, Tamar; Vaidman, Lev

    2007-01-01

    The classical three-box paradox of Kirkpatrick (2003 J. Phys. A: Math. Gen. 36 4891) is compared to the original quantum three-box paradox of Aharonov and Vaidman (1991 J. Phys. A: Math. Gen. 24 2315). It is argued that the quantum three-box experiment is a 'quantum paradox' in the sense that it is an example of a classical task which cannot be accomplished using classical means, but can be accomplished using quantum devices. It is shown that Kirkpatrick's card game is analogous to a different game with a particle in three boxes which does not contain paradoxical features

  13. Optimization of LSO/LuYAP phoswich detector for small animal PET

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Choi, Yong; Chung, Yong Hyun; Devroede, Olivier; Krieguer, Magalie; Bruyndonckx, Peter; Tavernier, Stefaan

    2007-01-01

    LSO/LuYAP phoswich detectors for small animal PET were developed to measure the depth of interaction (DOI), and to improve the spatial resolution at the edge of the field of view (FOV). The aim of this study was to optimize the optical coupling conditions between the crystal and photomultiplier tube (PMT) to maximize the light-collection efficiency, and to develop a method for rejecting scatter events by applying an equal energy window in each crystal layer. The light yields of the phoswich detector were estimated by changing the refractive index of the optical coupling material using a DETECT simulation. The accuracy of the DOI measurement on the phoswich detector, using an optical coupling material with the optimal light yield, were evaluated experimentally and compared with the air condition. The energy window for the photopeak events cannot be applied properly because the light outputs of LSO and LuYAP are different. The LSO/LuYAP photopeaks need to be superposed in order to effectively discriminate the scattered events by applying an equal energy window. The photopeaks of the LSO and LuYAP can be superposed by inserting a reflecting material between the crystals. The optimal coverage ratio of the inserting material was derived from a DETECT simulation, and its performance was investigated. In the simulation result, optimal refractive index of the optical coupling material was 1.7. The average DOI measurement errors of the LSO/LuYAP were 0.6%/3.4% and 4.9%/41.4% in the phoswich detector with and without an optical coupling material, respectively. The photopeaks of the LSO and LuYAP were superposed by covering 75% of the contact surface between the crystals with white Teflon. The DOI measurement errors of the LSO/LuYAP were 0.2%/2.4%. In this study, the optimal condition of the optical coupling material inserted between the crystal and PMT was derived to improve the accuracy of DOI measurement, and a photopeak superposition method of the LSO and LuYAP was

  14. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    Science.gov (United States)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  15. Development of a time projection chamber for Crystal Ball at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Oliver; Wolfes, Martin; Gradl, Wolfgang [Mainz Univ. (Germany). Inst. fuer Kernphysik; Collaboration: A2-Collaboration

    2013-07-01

    The Crystal Ball Collaboration uses energy tagged bremstrahlung photons produced from the MAMI electron beam to study photo-induced reactions on nucleons and nuclei. The Crystal Ball/TAPS 4π calorimeter setup is optimized for the detection of neutral final states. Charged particles are identified and measured by the inner detector system including a two layer MWPC. The increased rate of charged particles in current and future experiments exceeds the rate capability of these MWPCs. We are developing a small Time Projection Chamber with triple GEM readout meeting the stringent space requirements of the Crystal Ball experiment. This new tracking detector will feature higher rate capabilities and allows better track reconstruction. % A small GEM-TPC prototype has successfully been tested in the MAMI electron beam, showing good first results on rate capability and track reconstruction. Additional simulation studies on track resolution, detector geometry and acceptance are done to optimize the design. This poster gives an overview of the current status of the project and present the latest results.

  16. IMPROVED, FAVORABLE FOR ENVIRONMENT POLYURETHANE COLD-BOX-PROCESS (COLD BOX «HUTTENES-ALBERTUS» .

    Directory of Open Access Journals (Sweden)

    A. Sergini

    2005-01-01

    Full Text Available The results of the laboratory and industrial investigations, the purpose of which is improvement of the classical Cold-box-process, i.e. the process of the slugs hardening in cold boxes, are presented.

  17. Reconciling White-Box and Black-Box Perspectives on Behavioral Self-adaptation

    DEFF Research Database (Denmark)

    Bruni, Roberto; Corradini, Andrea; Gadducci, Fabio

    2015-01-01

    This paper proposes to reconcile two perspectives on behavioral adaptation commonly taken at different stages of the engineering of autonomic computing systems. Requirements engineering activities often take a black-box perspective: A system is considered to be adaptive with respect to an environ......This paper proposes to reconcile two perspectives on behavioral adaptation commonly taken at different stages of the engineering of autonomic computing systems. Requirements engineering activities often take a black-box perspective: A system is considered to be adaptive with respect...... to an environment whenever the system is able to satisfy its goals irrespectively of the environment perturbations. Modeling and programming engineering activities often take a white-box perspective: A system is equipped with suitable adaptation mechanisms and its behavior is classified as adaptive depending...

  18. Characterisation of cerium-doped lanthanum bromide scintillation detector

    International Nuclear Information System (INIS)

    Etim, I. P.; Obu, J. A.; Ushie, J. O.

    2011-01-01

    LaBr 3 (Ce) crystals is one of the new scintillating detectors that has been developed in recent years which has proven to be superior to other scintillating materials in terms of resolution and efficiency. The energy resolution, intrinsic photo peak, total intrinsic and total absolute efficiency of this detector have been measured for a 25mm x 25mm Brillance T M 380 LaBr 3 (Ce) detector. The energy dependence of the resolution has been studied with a variety of gamma ray sources with variable energy range (122KeV-1408KeV). LaBr 3 (Ce) detector shows an excellent energy resolution of 2.6% (FWHM) at 662KeV photons ( 137 Cs source) at room temperature. A full-energy peak efficiency of 90.1-4.3% has been obtained for the 122 - 1408KeV energy range for a source-detector distance of 150mm.

  19. The performance of prototype position-sensitive neutron detectors on SXD at ISIS

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1989-02-01

    The performance of two position-sensitive neutron detector designed for use on the single crystal diffractometer (SXD) at ISIS is assessed. The two detectors examined were the Anger camera 6 Li-glass scintillator PSD and a prototype fibre-optic encoded PSD based on 6 Li-doped ZnS plastic scintillator. The latter detector is found to be both simpler to fabricate and to produce better results on the evidence to date. A summary of some of the expected science from SXD and the performance of the detectors with respect to this is also given. (author)

  20. Perancangan Prototipe Receiver Beacon Black Box Locator Acoustic 37,5 kHz Pingers

    Directory of Open Access Journals (Sweden)

    RUSTAMAJI RUSTAMAJI

    2016-01-01

    When an aircraft caught in an accident and crashes into the water, its location can be detected using a device called a receiver beacon black box locator acoustic (pingers receiver. The pingers receiver functioned as a reciever signal with 37,5 kHz ± 1 kHz frequency from trnasmitter pingers or Underwater Locator Beacon (ULB which is on air plane black blox. In this research made design pingers receiver composed of a series of  Band Pass Filter (BPF, envelope detector, audio amplifier, and loud speaker. The signal of 37,5 kHz ± 1 kHz  frequency sent by pingers transmitter will bereceived by pingers receiver, after which the signal will be processed by the Band Pass Filter (BPF circuit before being detected by envelope detector for take back the signal information which like pulse signal with 10ms width and 1 second interval as pingers signal tha can  be to  be heard by human ear. Based on the  design that  was made, the signal ouput generated by the prototype has a 14 ms width with 1 second interval. Keywords: pingers receiver, band pass filter (BPF, envelope detector, loud speaker.

  1. Decommissioning a small glove box

    International Nuclear Information System (INIS)

    Bond, R.D.; McSherry, K.

    1985-11-01

    An account is given of dismantling a fuel fabrication glove box using simple tooling. The fissile content of the box was first measured by several non-destructive techniques. After cleaning, the box was dismantled using hand tools and finally packed for disposal. A record of operator radiation doses, the time taken for each stage of the operation and packing information is given. (author)

  2. Growth of mercuric iodide single crystals from dimethylsulfoxide

    International Nuclear Information System (INIS)

    Carlston, R.C.

    1976-01-01

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI 2 ) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI 2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc

  3. Characterization of HPGe detectors using Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hedman, A., E-mail: Angelica.Hedman@foi.se [Swedish Defence Research Agency, Division of CBRN Defence and Security, SE-90182 Umeå (Sweden); Umeå University, Department of Radiation Sciences, Radiation Physics, SE-90187 Umeå (Sweden); Bahar Gogani, J.; Granström, M. [Swedish Defence Research Agency, Division of CBRN Defence and Security, SE-90182 Umeå (Sweden); Johansson, L.; Andersson, J.S. [Umeå University, Department of Radiation Sciences, Radiation Physics, SE-90187 Umeå (Sweden); Ramebäck, H. [Swedish Defence Research Agency, Division of CBRN Defence and Security, SE-90182 Umeå (Sweden); Chalmers University of Technology, Department of Chemical and Biological Engineering, Nuclear Chemistry, SE-41296 Göteborg (Sweden)

    2015-06-11

    Computed Tomography (CT) high-resolution imaging have been used to investigate if there is a significant change in the crystal-to-window distance, i.e. the air gap thickness, in a small n-type detector cooled to 77 K, and in a medium sized p-type HPGe detector when cooled to 100 K. The findings were compared to detector dimension data made available by the manufacturer. The air gap thickness increased by (0.38±0.07) mm for the n-type detector and by (0.40±0.15) mm for the p-type detector when the detectors were cooled to 77 resp. 100 K compared to at room temperature. Monte Carlo calculations indicate that these differences have a significant impact on the efficiency in close geometries (<5 cm). In the energy range of 40–700 keV with a source placed directly on endcap, the change in detector efficiency with temperature is 1.9–2.9% for the n-type detector and 0.3–2.1% for the p-type detector. The measured air gap thickness when cooling the detector was 1.1 mm thicker than manufacturer data for the n-type detector and 0.2 mm thicker for the p-type detector. In the energy range of 40–700 keV and with a source on endcap, this result in a change in detector efficiency of 5.2–7.1% for the n-type detector and 0.2–1.0% for the p-type detector, i.e. the detector efficiency is overestimated using data available by the manufacturer.

  4. Response function of semiconductor detectors, Ge and Si(Li); Funcao resposta de detectores semicondutores, Ge e Si(Li)

    Energy Technology Data Exchange (ETDEWEB)

    Zevallos Chavez, Juan Yury

    2003-07-01

    The Response Function (RF) for Ge and Si(Li) semiconductor detectors was obtained. The RF was calculated for five detectors, four Hp Ge with active volumes of 89 cm{sup 3} , 50 cm{sup 3} , 8 cm{sup 3} and 5 cm{sup 3}, and one Si(Li) with 0.143 cm{sup 3} of active volume. The interval of energy studied ranged from 6 keV up to 1.5 MeV. Two kinds of studies were done in this work. The first one was the RF dependence with the detection geometry. Here the calculation of the RF for a geometry named as simple and an extrapolation of that RF, were both done. The extrapolation process analyzed both, spectra obtained with a shielding geometry and spectra where the source-detector distance was modified. The second one was the RF dependence with the detection electronics. This study was done varying the shaping time of the pulse in the detection electronics. The purpose was to verify the effect of the ballistic deficit in the resolution of the detector. This effect was not observed. The RF components that describe the region of the total absorption of the energy of the incident photons, and the partial absorption of this energy, were both treated. In particular, empirical functions were proposed for the treatment of both, the multiple scattering originated in the detector (crystal), and the photon scattering originated in materials of the neighborhood of the crystal. Another study involving Monte Carlo simulations was also done in order to comprehend the photon scattering structures produced in an iron shield. A deconvolution method is suggested, for spectra related to scattered radiation in order to assess the dose delivered to the scatterer. (author)

  5. Development of a 3D CZT detector prototype for Laue Lens telescope

    DEFF Research Database (Denmark)

    Caroli, Ezio; Auricchio, Natalia; Del Sordo, Stefano

    2010-01-01

    We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (~19×8 mm2 area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode...

  6. Design report for shielded glove box

    International Nuclear Information System (INIS)

    Ku, J. H.; Lee, J. C.; Seo, K. S.; Bang, K. S.; Lee, D. W.; Kim, J. H.; Min, D. K.; Park, S. W.

    1999-05-01

    For the examination of spent fuels and high radioactive specimens using a specially equipped scanning electron microscope, a shielded glove box was designed and constructed at PIE facility of KAERI. This glove box consisted of shielding walls, containment box, lead glasses, manipulators, gloves, ventilation systems, doors, hot-cell specimen cask adapter, etc. It was emphasized that both the easy operation and radiation safety are important factors in the shielded glove box were installed also considered as a important factor to build the basic concept of the assembling. Two sliding doors and one hinge-type door were installed for the easy installation, operation and maintenance of scanning electron microscope. Containment box which confines the radioactive material into the box consisted of reinforced transparent glasses, aluminum frames and stainless steel plate liner. Therefore everything beyond the containment box can be seen through the lead glass which installed at the front shielding wall. All shielding walls and doors were introduced separately into the room and assembled by bolting. (author). 3 refs., 5 tabs., 18 figs

  7. The FLARES project: An innovative detector technology for rare events searches

    Energy Technology Data Exchange (ETDEWEB)

    Capelli, S., E-mail: capelli@mib.infn.it [Dipatimento di Fisica, Università di Milano Bicocca, piazza della Scienza 3, 20126 Milano (Italy); INFN Sezione di Milano Bicocca, piazza della Scienza 3, 20126 Milano (Italy); Baldazzi, G. [Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); INFN Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Beretta, M. [Dipatimento di Fisica, Università di Milano Bicocca, piazza della Scienza 3, 20126 Milano (Italy); INFN Sezione di Milano Bicocca, piazza della Scienza 3, 20126 Milano (Italy); Bonvicini, V. [Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Roberto Cozzi 55, 20126 Milano (Italy); Campana, R. [Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); INFN Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Evangelista, Y. [INAF - IAPS, Via del Fosso del Cavaliere 100, I-00133, Roma (Italy); INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Fasoli, M. [INFN Sezione di Milano Bicocca, piazza della Scienza 3, 20126 Milano (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Roberto Cozzi 55, 20126 Milano (Italy); Feroci, M. [INAF - IAPS, Via del Fosso del Cavaliere 100, I-00133, Roma (Italy); INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Fuschino, F. [INFN Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Gironi, L. [Dipatimento di Fisica, Università di Milano Bicocca, piazza della Scienza 3, 20126 Milano (Italy); INFN Sezione di Milano Bicocca, piazza della Scienza 3, 20126 Milano (Italy); and others

    2017-02-11

    FLARES is an innovative project in the field of rare events searches, such as the search for the neutrinoless double beta decay. It aims at demonstrating the high potential of a technique that combines ultra-pure scintillating crystals with arrays of high performance silicon drift detectors, operated at about 120 K, to reach a 1% level energy resolution. The proposed technique will combine in a single device all the demanding features needed by an ideal experiment looking for rare events. The performance of a first production of matrices of silicon drift detectors as well as first measurements of the low temperature light yield of a selection of high purity scintillating crystals will be presented and discussed.

  8. Cadmium Manganese Telluride (Cd1-xMnxTe): A potential material for room-temperature radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, A.; Cui, Y.; Bolotnikov, A.; Camarda, G.; Yang, G.; Kim, K-H.; Gul, R.; Xu, L.; Li, L.; Mycielski, A.; and James, R.B.

    2010-07-11

    Cadmium Manganese Telluride (CdMnTe) recently emerged as a promising material for room-temperature X- and gamma-ray detectors. It offers several potential advantages over CdZnTe. Among them is its optimal tunable band gap ranging from 1.7-2.2 eV, and its relatively low (< 50%) content of Mn compared to that of Zn in CdZnTe that assures this favorable band-gap range. Another important asset is the segregation coefficient of Mn in CdTe that is approximately unity compared to 1.35 for Zn in CdZnTe, so ensuring the homogenous distribution of Mn throughout the ingot; hence, a large-volume stoichiometric yield is attained. However, some materials issues primarily related to the growth process impede the production of large, defect-free single crystals. The high bond-ionicity of CdMnTe entails a higher propensity to crystallize into a hexagonal structure rather than to adopt the expected zinc-blend structure, which is likely to generate twins in the crystals. In addition, bulk defects generate in the as-grown crystals due to the dearth of high-purity Mn, which yields a low-resistivity material. In this presentation, we report on our observations of such material defects in current CdMnTe materials, and our evaluation of its potential as an alternative detector material to the well-known CdZnTe detectors. We characterized the bulk defects of several indium- and vanadium-doped Cd1-xMnxTe crystals by using several advanced techniques, viz., micro-scale mapping, white-beam x-ray diffraction/reflection topography, and chemical etching. Thereafter, we fabricated some detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results indicate that CdMnTe materials could well prove to become a viable alternative in the near future.

  9. Analysis of the effects of pair production for the suppressed clover detector

    International Nuclear Information System (INIS)

    Kshetri, R.

    2014-01-01

    Full energy peak, single escape peak and double escape peak areas have been extracted for an escape suppressed clover detector. Results have been obtained for the single crystal and addback modes of operation as well as the active and passive suppression cases at several gamma energies. We have compared the ratio of single escape peak areas in addback mode with that of single crystal mode to study if the single escape peak gains or loses counts due to addback mode. Detailed analysis has been performed for quantifying the advantages of using addback mode and active suppression. Comparison is made for different types of clover detectors with different volumes

  10. Box-particle probability hypothesis density filtering

    OpenAIRE

    Schikora, M.; Gning, A.; Mihaylova, L.; Cremers, D.; Koch, W.

    2014-01-01

    This paper develops a novel approach for multitarget tracking, called box-particle probability hypothesis density filter (box-PHD filter). The approach is able to track multiple targets and estimates the unknown number of targets. Furthermore, it is capable of dealing with three sources of uncertainty: stochastic, set-theoretic, and data association uncertainty. The box-PHD filter reduces the number of particles significantly, which improves the runtime considerably. The small number of box-p...

  11. Scalable Background-Limited Polarization-Sensitive Detectors for mm-wave Applications

    Science.gov (United States)

    Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Colazo, Felipe A.; Crowe, Erik; Denis, Kevin L.; Essinger-Hileman, Tom; Marriage, Tobias A.; hide

    2014-01-01

    We report on the status and development of polarization-sensitive detectors for millimeter-wave applications. The detectors are fabricated on single-crystal silicon, which functions as a low-loss dielectric substrate for the microwave circuitry as well as the supporting membrane for the Transition-Edge Sensor (TES) bolometers. The orthomode transducer (OMT) is realized as a symmetric structure and on-chip filters are employed to define the detection bandwidth. A hybridized integrated enclosure reduces the high-frequency THz mode set that can couple to the TES bolometers. An implementation of the detector architecture at Q-band achieves 90% efficiency in each polarization. The design is scalable in both frequency coverage, 30-300 GHz, and in number of detectors with uniform characteristics. Hence, the detectors are desirable for ground-based or space-borne instruments that require large arrays of efficient background-limited cryogenic detectors.

  12. Characterization of an in-vacuum PILATUS 1M detector.

    Science.gov (United States)

    Wernecke, Jan; Gollwitzer, Christian; Müller, Peter; Krumrey, Michael

    2014-05-01

    A dedicated in-vacuum X-ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four-crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small-angle X-ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing-incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.

  13. Characterization and quality control of avalanche photodiode arrays for the Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Abreu, Conceicao; Amaral, Pedro; Carrico, Bruno; Ferreira, Miguel; Luyten, Joan; Moura, Rui; Ortigao, Catarina; Rato, Pedro; Varela, Joao

    2007-01-01

    Clear-PEM is a Positron Emission Mammography (PEM) prototype being developed in the framework of the Crystal Clear Collaboration at CERN. This device is a dedicated PET camera for mammography, based on LYSO:Ce scintillator crystals, Avalanche PhotoDiodes (APD) and a fast, low-noise electronics readout system, designed to examine both the breast and the axillary lymph node areas, and aiming at the detection of tumors down to 2 mm in diameter. The prototype has two planar detector heads, each composed of 96 detector modules. The Clear-PEM detector module is composed of a matrix of 32 identical 2x2x20 mm 3 LYSO:Ce crystals read at both ends by Hamamatsu S8550 APD arrays (4x8) for Depth-of-Interaction (DoI) capability. The APD arrays were characterized by the measurement of gain and dark current as a function of bias voltage, under controlled temperature conditions. Two independent setups were used. The full set of 398 APD arrays followed a well-defined quality control (QC) protocol, aiming at the rejection of arrays not complying within defined specifications. From a total of 398 arrays, only 2 (0.5%) were rejected, reassuring the trust in these detectors for prototype assembly and future developments

  14. Semiconductor detectors in the low countries

    International Nuclear Information System (INIS)

    Heijne, Erik H.M.

    2003-01-01

    Several milestones in the development of semiconductor radiation imaging detectors are attributed to scientists from the Low Countries, the Netherlands and Belgium, and a few historical details will be highlighted. The very first usable semiconductor nuclear detector was made in Utrecht, around 1943, in the form of an AgCl crystal. The earliest large-scale application of monolithic, double-sided silicon strip detectors was in the BOL experiment around 1968 at IKO, now NIKHEF, in Amsterdam. The technology developed and patented by Philips and IKO was adapted by the author and coworkers in 1980 to produce the first silicon microstrip detector used for the reconstruction of events in a CERN fixed target experiment. An avalanche of developments then led to worldwide use of silicon microstrip detectors in elementary particle physics, motivated by the capability to reconstruct particles with lifetime ∼10 -12 s, which decay on sub-millimeter scale. The intensive activity in silicon detector R and D culminated in 1991 in the construction of fine-grained 2D monolithic and hybrid pixel detectors that incorporate sophisticated electronic functions in each microscopic detection element, with typical dimensions of 25-100 μm. Besides being a powerful high intensity tracker for particle physics, this device can also be designed as a new X-ray imager, which allows selective counting of individual photons in each pixel at MHz frequency

  15. Channel box dimension measuring method

    International Nuclear Information System (INIS)

    Oshima, Hirotake; Jo, Hiroto.

    1994-01-01

    The present invention provides a method for measuring the entire length of a channel box of a fuel assembly of a BWR type reactor. Namely, four sensors are used as one set that generate ultrasonic waves from oblique upper portion, oblique lower portion, upper portion and lower portion of the channel box respectively. The distances between the four sensors and each of the portions of the channel box are measured respectively for both of a reference member and a member to be measured. The entire length of the channel box is measured by calculating the measured values and the angles of the obliquely disposed sensors according to a predetermined formula. According to the method of the present invention, the inclination of the channel box to be measured can be corrected. In addition, accuracy of the measurement is improved and the measuring time is saved as well as the measuring device and operation can be simplified. (I.S.)

  16. Development of twin Ge detector for high energy photon measurement and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Shigetome, Yoshiaki; Harada, Hideo [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-03-01

    Prototype twin HPGe detector composed of two large HPGe crystals was developed to obtain better detection efficiency ({epsilon}) and P/T ratio, which was required for high energy photon spectroscopy. In this work, the performances of the twin HPGe detector were evaluated by computer simulation employing EGS4 code. (author)

  17. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  18. The SLD Cerenkov Ring Imaging Detector: Progress report

    International Nuclear Information System (INIS)

    Ashford, V.; Bienz, T.; Bird, F.

    1986-10-01

    We describe test beam results from a prototype Cerenkov Ring Imaging Detector (CRID) for the SLD experiment at the SLAC Linear Collider (SLC). The system includes both liquid and gas radiators, a long drift box containing gaseous TMAE and a proportional wire chamber with charge division readout. Measurements of the multiplicity and detection resolution of Cerenkov photons, from both radiators are presented. Various design aspects of a new engineering prototype, currently under construction, are discussed and recent R and D results relevant to this effort are reported

  19. DUMAND-II (Deep Underwater Muon and Neutrino Detector) PROGRESS Report

    OpenAIRE

    Young, Kenneth K.

    1994-01-01

    The DUMAND-II detector will search for astronomical sources of high energy neutrinos. Successful deployment of the basic infrastructure, including the shore cable, the underwater junction box, and an environmental module was accomplished in December, 1993. One optical module string was also deployed and operated, logging data for about 10 hours. The underwater cable was connected to the shore station where we were able to successfully exercise system controls and log further environmental dat...

  20. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  1. Characterising laser beams with liquid crystal displays

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2016-09-01

    Full Text Available the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD...

  2. Development of hybrid low-pressure MSGC neutron detectors

    International Nuclear Information System (INIS)

    Gebauer, B.; Alimov, S.S.; Klimov, A.Yu.; Levchanovski, F.V.; Litvinenko, E.I.; Nikiforov, A.S.; Prikhodko, V.I.; Richter, G.; Rogov, V.; Schulz, Ch.; Shashkin, V.I.; Wilhelm, M.; Wilpert, Th.

    2004-01-01

    For very high rate and resolution time-resolved experiments at next generation pulsed spallation neutron sources like ESS large-area hybrid low-pressure micro-strip gas chamber detectors are being developed. Due to their thin composite converter foil and exponential gas multiplication commencing at the converter surfaces the detectors are free of parallax, and according to detailed modeling the very high transverse and longitudinal localization accuracies in the conversion and gas multiplication processes allow position and time resolutions of ∼100 μm and 8 cps. This will open up novel applications based on time-of-flight (TOF) and single-event detection with very high dynamic range, replacing integrating CCD and image plate detectors, e.g. in radiography/tomography, TOF Laue diffraction, single crystal diffraction and focusing low-Q SANS. In this conference report new results concerning the technical realization of this detector system are reported in conjunction with a brief summary of the detector principle and with reference to earlier results

  3. Design and evaluation of a SiPM-based large-area detector module for positron emission imaging

    Science.gov (United States)

    Alva-Sánchez, H.; Murrieta-Rodríguez, T.; Calva-Coraza, E.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.

    2018-03-01

    The design and evaluation of a large-area detector module for positron emission imaging applications, is presented. The module features a SensL ArrayC-60035-64P-PCB solid state detector (8×8 array of tileable silicon photomultipliers by SensL, 7.2 mm pitch) covering a total area of 57.4×57.4 mm2. The detector module was formed using a pixelated array of 40×40 lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystal elements with 1.43 mm pitch. A 7 mm thick coupling light guide was used to allow light sharing between adjacent SiPM. A 16-channel symmetric charge division (SCD) readout board was designed to multiplex the number of signals from 64 to 16 (8 columns and 8 rows) and a center-of-gravity algorithm to identify the position. Data acquisition and digitization was accomplished using a custom-made system based on FPGAs boards. Crystal maps were obtained using 18F-positron sources and Voronoi diagrams were used to correct for geometric distortions and to generate a non-uniformity correction matrix. All measurements were taken at a controlled room temperature of 22oC. The crystal maps showed minor distortion, 90% of the 1600 total crystal elements could be identified, a mean peak-to-valley ratio of 4.3 was obtained and a 10.8% mean energy resolution for 511 keV annihilation photons was determined. The performance of the detector using our own readout board was compared to that using two different commercially readout boards using the same detector module arrangement. We show that these large-area SiPM arrays, combined with a 16-channel SCD readout board, can offer high spatial resolution, excellent energy resolution and detector uniformity and thus, can be used for positron emission imaging applications.

  4. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.; Pichler, B. J. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen (Germany); Mantlik, F. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany and Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076 Tübingen (Germany); Lorenz, E. [Max Planck Institute for Physics, Föhringer Ring 6, 80805 München (Germany); Renker, D. [Department of Physics, Technische Universität München, 85748 Garching (Germany)

    2014-08-15

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90

  5. Laminated Amorphous Silicon Neutron Detector (pre-print)

    International Nuclear Information System (INIS)

    McHugh, Harry; Branz, Howard; Stradins, Paul; Xu, Yueqin

    2009-01-01

    An internal R and D project was conducted at the Special Technologies Laboratory (STL) of National Security Technologies, LLC (NSTec), to determine the feasibility of developing a multi-layer boron-10 based thermal neutron detector using the amorphous silicon (AS) technology currently employed in the manufacture of liquid crystal displays. The boron-10 neutron reaction produces an alpha that can be readily detected. A single layer detector, limited to an approximately 2-micron-thick layer of boron, has a theoretical sensitivity of about 3%; hence a thin multi-layer device with high sensitivity can theoretically be manufactured from single layer detectors. Working with National Renewable Energy Laboratory (NREL), an AS PiN diode alpha detector was developed and tested. The PiN diode was deposited on a boron-10 coated substrate. Testing confirmed that the neutron sensitivity was nearly equal to the theoretical value of 3%. However, adhesion problems with the boron-10 coating prevented successful development of a prototype detector. Future efforts will include boron deposition work and development of integrated AS signal processing circuitry.

  6. Development of radiation detectors based on KMgF3:Tb nano crystals synthesized by microwave

    International Nuclear Information System (INIS)

    Herrero C, R.; Villicana M, M.; Garcia S, L.; Custodio C, M. A.; Gonzalez M, P. R.; Mendoza A, D.

    2015-10-01

    The development of new thermoluminescent (Tl) materials of the size of KMgF 3 :Tb nano crystals by microwave technique is a new alternative for obtaining new radiation detectors (dosimeters) for environmental dosimetry, personal, clinical, research and industry. This technique requires the preparation of the precursors of magnesium trifluoro acetates Mg(CF 3 COO) 2 and potassium K(CF 3 COO), finally the synthesis of KMgF 3 :Tb is realized via microwave. The synthesis was carried out in a microwave reactor mono wave 300 Anton-Paar. Trifluoro acetates are introduced into the reactor at a ratio of 1:1 mmol under inert atmosphere. The product was collected for centrifugation, washed several times with ethanol and dried at 60 degrees C for 10 h. The KMgF 3 obtained without doping and doped with Tb +3 ions were subjected to heat treatment at high temperatures for different lengths of time for their sensitization, the samples treated at 700 degrees C were those showing better Tl signal to be irradiated with gammas of 60 Co. The characterization of the obtained materials was carried out by X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  7. Amorphous selenium based detectors for medical imaging applications

    Science.gov (United States)

    Mandal, Krishna C.; Kang, Sung H.; Choi, Michael; Jellison, Gerald E., Jr.

    2006-08-01

    We have developed and characterized large volume amorphous (a-) selenium (Se) stabilized alloys for room temperature medical imaging devices and high-energy physics detectors. The synthesis and preparation of well-defined and high quality a-Se (B, As, Cl) alloy materials have been conducted using a specially designed alloying reactor at EIC and installed in an argon atmosphere glove box. The alloy composition has been precisely controlled and optimized to ensure good device performance. The synthesis of large volume boron (B) doped (natural and isotopic 10B) a-Se (As, Cl) alloys has been carried out by thoroughly mixing vacuum distilled and zone-refined (ZR) Se with previously synthesized Se-As master alloys, Se-Cl master alloys and B. The synthesized a-Se (B, As, Cl) alloys have been characterized by x-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infra-red spectroscopy (FTIR), x-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectroscopy (ICP-MS), and detector testing. The a- Se alloys have shown high promise for x-ray detectors with its high dark resistivity (10 10-10 13 Ωcm), good charge transport properties, and cost-effective large area scalability. Details of various steps about detector fabrication and testing of these imaging devices are also presented.

  8. Crystal Ball results on tau decays

    International Nuclear Information System (INIS)

    Lowe, S.T.

    1987-10-01

    This report reviews measurements and upper limit determinations for a number of exclusive 1-prong tau decay modes using the Crystal Ball detector. These results are important input to the apparent discrepancy between the topological and sum-of-exclusive branching fractions in 1-prong tau decays

  9. Characterization of CZT detectors for the ASIM mission

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Skogseide, Y

    2008-01-01

    The National Space Institute, Technical University of Denmark is responsible for the selection and characterization of the CZT detector crystals for the X and gamma -ray instrument MXGS onboard ESA’s Atmospheric Space Interaction Monitor (ASIM) mission. The Modular X- and Gamma ray Sensor (MXGS) ...

  10. Spectrometry of X-ray beams using Cadmium and Zinc Teluride detector

    International Nuclear Information System (INIS)

    Becker, Paulo Henriques Bastos

    1997-06-01

    Determination of X-ray spectra to be utilized for medical diagnostics is a complementary process to the development of procedures to be applied to the quality control of radiodiagnostics X-ray equipment. Until some years ago, that was only possible using Germanium or Silicon detectors. Both have an excellent resolution in this energy range, but present also some restrictions as there are high costs and the necessity of operating them at temperature of liquid Nitrogen, which is not always available at the measurement's place. Room temperature detectors like Cadmium Telluride and Mercury Iodine don't have these restrictions. They, however, have a lower resolution and incomplete collection of the charges produced by their interaction with radiation. With technological advance of crystal growth in general and new techniques like cooling the crystal with a Peltier cell and rise time discrimination circuits, today Cadmium Telluride detectors show a resolution very close to that from Germanium detectors. This work relates to the routine use of Cadmium and Zinc Telluride detectors for measuring X-ray spectra in loco of diagnostic X-ray units. It characterizes the properties of a commercially available detector and offers a model for stripping the measured pulse height distribution. It was also developed a collimator to allow the direct measurement of the beam. The model developed and the constructed set-up were applied to two X-ray tubes and the achieved spectra compared with some spectra available from the literature. (author)

  11. Evaluation of detector efficiency through GUPIXWIN H value

    Science.gov (United States)

    Fernandes, F.; Niekraszewicz, L. A. B.; Amaral, L.; Dias, J. F.

    2018-02-01

    In this work we explore the capabilities of the GUPIXWIN software to introduce a simple and straightforward way to obtain the efficiency of X-ray detectors commonly used in PIXE (Particle-Induced X-ray Emission) experiments. To that end, all geometrical parameters of the experimental setup including details of the detector used to detect X-rays must be well known in order to calculate the solid angle subtended by the detector's crystal. The solid angle is calculated through a Monte Carlo program developed by Taylor and co-workers which is included in the GUPIXWIN software package. The H values are obtained from a set of experiments using standards. The results for the intrinsic efficiency of a Si(Li) detector are in good agreement with those obtained from Monte Carlo calculations and are compatible with a simple exponential law.

  12. Innovations in Los Alamos alpha box design

    International Nuclear Information System (INIS)

    Ledbetter, J.M.; Dowler, K.E.; Cook, J.H.

    1985-01-01

    Destructive examinations of irradiated fuel pins containing plutonium fuel must be performed in shielded hot cells with strict provisions for containing the plutonium. Alpha boxes provide containment for the plutonium, toxic fission products, and other hazardous highly radioactive materials. The alpha box contains windows for viewing and a variety of transfer systems specially designed to allow transfers in and out of the alpha box without spread of the hazardous materials that are contained in the box. Alpha boxes have been in use in the Wing 9 hot cells at Los Alamos National Laboratory for more than 20 years. Features of the newly designed alpha boxes are presented

  13. Use of thick HgI2 detectors as intelligent spectrometers

    International Nuclear Information System (INIS)

    Olmos, P.; Garcia-Belmonte, G.; Perez, J.M.; Diaz, J.C.

    1990-01-01

    Mercuric iodide is a very attractive material to detect ionizing radiation due to its high stopping power and wide energy gap, which allows the use of a small and compact detector at room temperature. However, the spectroscopic performances of these detectors are poor in comparisons with other more popular semiconductors with better transport characteristics. This effect becomes dramatic when thick crystals are used. The partial charge-collection method is reported to be the most suitable one for enhancing the energy resolution achieved with thick detectors. A Monte Carlo simulation of the behavior of the model and its dependence with crystals and electronic parameters is presented, giving operating rules that optimize the system performance in each situation. Specially designed hardware has been developed to extract the maximum information of the charge pulse produced by photon-detector interaction, according with the results of the simulation. As a final step, an automatic isotope-identification process, based on the use of neutral networks, is performed, the identification being the true output of the whole system. Due to the strong dependence of this output on the free hardware parameters, an adaptive network is designed to act on these parameters in such a way that the system converges automatically to the best identification. (orig.)

  14. Monte Carlo simulation of the X-ray response of a germanium microstrip detector with energy and position resolution

    CERN Document Server

    Rossi, G; Fajardo, P; Morse, J

    1999-01-01

    We present Monte Carlo computer simulations of the X-ray response of a micro-strip germanium detector over the energy range 30-100 keV. The detector consists of a linear array of lithographically defined 150 mu m wide strips on a high purity monolithic germanium crystal of 6 mm thickness. The simulation code is divided into two parts. We first consider a 10 mu m wide X-ray beam striking the detector surface at normal incidence and compute the interaction processes possible for each photon. Photon scattering and absorption inside the detector crystal are simulated using the EGS4 code with the LSCAT extension for low energies. A history of events is created of the deposited energies which is read by the second part of the code which computes the energy histogram for each detector strip. Appropriate algorithms are introduced to account for lateral charge spreading occurring during charge carrier drift to the detector surface, and Fano and preamplifier electronic noise contributions. Computed spectra for differen...

  15. The Forward Endcap of the Electromagnetic Calorimeter for the PANDA Detector at FAIR

    International Nuclear Information System (INIS)

    Albrecht, Malte

    2015-01-01

    The versatile 4π-detector PANDA will be built at the Facility for Antiproton and Ion Research (FAIR), an accelerator complex, currently under construction near Darmstadt, Germany. A cooled antiproton beam in a momentum range of 1.5 – 15GeV/c will be provided by the High Energy Storage Ring (HESR). All measurements at PANDA rely on an excellent performance of the detector with respect to tracking, particle identification and energy measurement. The electromagnetic calorimeter (EMC) of the PANDA detector will be equipped with 15744 PbWO 4 crystals (PWO-II), which will be operated at a temperature of – 25° C in order to increase the light output. The design of the forward endcap of the EMC has been finalized. The crystals will be read out with Large Area Avalanche Photo Diodes (LAAPDs) in the outer regions and with Vacuum Photo Tetrodes (VPTTs) in the innermost part. Production of photosensor units utilizing charge integrating preamplifiers has begun. A prototype comprised of 216 PbWO4 crystals has been built and tested at various accelerators (CERN SPS, ELSA/Bonn, MAMI/Mainz), where the crystals have been exposed to electron and photon beams of 25MeV up to 15GeV. The results of these test measurements regarding the energy and position resolution are presented

  16. A multicrystal two dimensional BGO detector system for positron emission tomography

    International Nuclear Information System (INIS)

    Casey, M.E.; Nutt, R.

    1986-01-01

    This paper presents a discussion of a new multicrystal detector system as it is implemented in Positron Emission Tomography. The system consists of a 32 x 8 matrix of BGO crystals, a tuned light pipe, and four photomultipliers. The electronics that decodes the position consists of fast preamps, gated integrators, and level comparators. This detector represents a major development toward reducing the cost of PET

  17. GATE simulation of a LYSO-based SPECT imager: Validation and detector optimization

    International Nuclear Information System (INIS)

    Li, Suying; Zhang, Qiushi; Xie, Zhaoheng; Liu, Qi; Xu, Baixuan; Yang, Kun; Li, Changhui; Ren, Qiushi

    2015-01-01

    This paper presents a small animal SPECT system that is based on cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal, position sensitive photomultiplier tubes (PSPMTs) and parallel hole collimator. Spatial resolution test and animal experiment were performed to demonstrate the imaging performance of the detector. Preliminary results indicated a spatial resolution of 2.5 mm at FWHM that cannot meet our design requirement. Therefore, we simulated this gamma camera using GATE (GEANT 4 Application for Tomographic Emission) aiming to make detector spatial resolution less than 2 mm. First, the GATE simulation process was validated through comparison between simulated and experimental data. This also indicates the accuracy and effectiveness of GATE simulation for LYSO-based gamma camera. Then the different detector sampling methods (crystal size with 1.5, and 1 mm) and collimator design (collimator height with 30, 34.8, 38, and 43 mm) were studied to figure out an optimized parameter set. Detector sensitivity changes were also focused on with different parameters set that generated different spatial resolution results. Tradeoff curves of spatial resolution and sensitivity were plotted to determine the optimal collimator height with different sampling methods. Simulation results show that scintillation crystal size of 1 mm and collimator height of 38 mm, which can generate a spatial resolution of ∼1.8 mm and sensitivity of ∼0.065 cps/kBq, can be an ideal configuration for our SPECT imager design

  18. Complementarity in the Einstein-Bohr photon box

    NARCIS (Netherlands)

    Dieks, D.G.B.J.; Lam, S

    2008-01-01

    The Bohr-Einstein photon box thought experiment is a forerunner of the EPR experiment: a packet of radiation escapes from a box, and the box-plus-radiation state remains entangled. Hence, a measurement on the box makes a difference for the state of the far-away radiation long after its escape. This

  19. nGEM fast neutron detectors for beam diagnostics

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Cavenago, M.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Pietropaolo, A.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2013-01-01

    Fast neutron detectors with a sub-millimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. A nGEM detector has been developed for the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a triple GEM gaseous detector equipped with polypropylene and polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a nGEM detector at the ISIS spallation source on the VESUVIO beam line. Beam profiles (σ x =14.35 mm, σ y =15.75 mm), nGEM counting efficiency (around 10 -4 for 3 MeV n <15 MeV), detector stability (≈4.5%) and the effect of filtering the beam with different type of materials were successfully measured. The x beam profile was compared to the one measured by a single crystal diamond detector. Finally, the efficiency of the detector was simulated exploiting the GEANT4 tool

  20. New design of a quasi-monolithic detector module with DOI capability for small animal pet

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Lee, Seung-Jae; Baek, Cheol-Ha; Choi, Yong

    2008-01-01

    We report a new design of a detector module with depth of interaction (DOI) based on a quasi-monolithic LSO crystal, a multi-channel sensor, and maximum-likelihood position-estimation (MLPE) algorithm. Light transport and detection were modeled in a quasi-monolithic crystal using DETECT2000 code, with lookup tables (LUTs) built by simulation. Events were well separated by applying the MLPE method within 2.0 mm spatial resolution in both trans-axial and DOI directions. These results demonstrate that the proposed detector provides dependable positioning capability for small animal positron emission tomography (PET)