WorldWideScience

Sample records for crystal annealing study

  1. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; and James, R.B.

    2010-08-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  2. Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix

    Directory of Open Access Journals (Sweden)

    Wan Zhenyu

    2011-01-01

    Full Text Available Abstract In this paper, a positive effect of rapid thermal annealing (RTA technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC matrix system. Amorphous Si-rich SiC layer has been deposited by co-sputtering in different Si concentrations (50 to approximately 80 v%. Si nanocrystals (Si-NC containing different grain sizes have been fabricated within the SiC matrix under two different annealing conditions: furnace annealing and RTA both at 1,100°C. HRTEM image clearly reveals both Si and SiC-NC formed in the films. Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation. Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

  3. Study of photoluminescence from annealed bulk-ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoneta, M.; Ohishi, M.; Saito, H. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Yoshino, K. [Department of Electrical and Electronic Engineering, Miyazaki University, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Honda, M. [Faculty of Science, Naruto University of Education, 748 Nakajima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2006-03-15

    We have investigated the influence of rapid thermal annealing on the photoluminescence of bulk-ZnO single crystal. As-grown ZnO wafer, illuminated by 325 nm ultraviolet light at 4.2 K, emitted the visible luminescence of pale green centered of 2.29 eV. The luminescence was observed by the anneal at the temperature range between 400 C and 1000 C, however, its intensity decreased with anneal temperature. The free-exciton and the 2.18 eV emission line were obtained by the anneal at 1200 C for 60 sec. From the X-ray diffraction and the surface morphology measurements, the improvement of the crystallinity of bulk-ZnO crystal were confirmed. We suggest that a rapid thermal annealing technique is convenience to improve the the quality of bul-ZnO single crystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Thermal annealing study of F center clusters in LiF single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Izerrouken, M., E-mail: izerrouken@yahoo.co [Centre de Recherche Nucleaire de Draria (CRND), BP 43, Sebbala, Draria, Alger (Algeria); Guerbous, L. [Centre de Recherche Nucleaire d' Alger (CRNA), 2 Bd Frantz Fanon, BP 399, Alger gare (Algeria); Meftah, A. [LRPCSI, Universite 20 Aout 55 route d' El-Hadaik, BP 26, 21000 Skikda (Algeria)

    2010-01-21

    The present work is devoted to study the thermal annealing process of F center clusters (F{sub n}) induced in LiF single crystal under high-dose gamma-rays and high reactor neutrons fluence irradiations. With heating under argon atmosphere, the F-type center aggregates and gives rise to a new absorption band at 500 nm attributed to Li colloids. The optical density associated with F{sub 2} center observed in gamma-ray irradiated LiF decreases with increasing annealing temperature and exhibits two distinct annealing processes with activation energies E{sub 1}=0.9+-0.3 eV and E{sub 2}=1.6+-0.5 eV. Also, it is clear from the results that the F{sub 3}{sup +} and F{sub 2} emission bands positions are affected by the irradiated dose. Reactor neutrons irradiation induces large Li colloids. These colloids persist even after annealing at 450 deg. C.

  5. Growth and annealing study of hydrogen-doped single diamond crystals under high pressure and high temperature

    Institute of Scientific and Technical Information of China (English)

    Li Yong; Jia Xiao-Peng; Hu Mei-Hua; Liu Xiao-Bing; Yan Bing-Min; Zhou Zhen-Xiang; Zhang Zhuang-Fei; Ma Hong-An

    2012-01-01

    A series of diamond crystals doped with hydrogen is successfully synthesized using LiH as the hydrogen source in a catalyst-carbon system at a pressure of 6.0 GPa and temperature ranging from 1255 ℃ to 1350 ℃.It is shown that the high temperature plays a key role in the incorporation of hydrogen atoms during diamond crystallization.Fourier transform infrared micro-spectroscopy reveals that most of the hydrogen atoms in the synthesized diamond are incorporated into the crystal structure as sp3-CH2-symmetric(2850 cm-1)and sp3 CH2-antisymmetric vibrations(2920 cm-1).The intensities of these peaks increase gradually with an increase in the content of the hydrogen source in the catalyst.The incorporation of hydrogen impurity leads to a significant shift towards higher frequencies of the Raman peak from 1332.06 cm-1 to 1333.05 cm-1 and gives rise to some compressive stress in the diamond crystal lattice.Furthermore,hydrogen to carbon bonds are evident in the annealed diamond,indicating that the bonds that remain throughout the annealing process and the vibration frequencies centred at 2850 and 2920 cm-1 have no observable shift.Therefore,we suggest that the spa C-H bond is rather stable in diamond crystals.

  6. Transient Crystallization of an Aromatic Polyetherimide: Effect of Annealing

    Science.gov (United States)

    1991-01-01

    on the annealing behavior of an aromatic polyetherimide ( Ultem 5001). Although crystallization from the melt did not occur, crystallinity was easily...in LARC-TPI. 10-’ 3 Ultem aromatic polyetherimide, first reported by Serfaty, 15 is an amorphous thermoplastic with the following structure for a...commercially available Ultem 1000. 0 0 0n Our studies have been carried out on Ultem 5001-based materials which is a new aro- matic polyetherimide with

  7. Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:alpha-BaB2O4 single crystal.

    Science.gov (United States)

    Xu, Jun; Zhao, Hengyu; Su, Liangbi; Yu, Jun; Zhou, Peng; Tang, Huili; Zheng, Lihe; Li, Hongjun

    2010-02-15

    The absorption, excitation, and ultrabroadband near-infrared luminescence spectra of Bismuth were investigated in H(2)-annealed and gamma-irradiated Bi:alpha-BaB(2)O(4)(alpha-BBO) single crystals, respectively. Energy-level diagrams of the near-infrared luminescent centers were fixed. The electronic transition energies of near-infrared active centers are basically consistent with the multiplets of free Bi(+) ions. The minor difference of the energy-level diagrams of Bi(+) ions in H(2)-annealed and gamma-irradiated Bi:alpha-BaB(2)O(4) crystals can be ascribed to the difference of the local lattice environments. The involved physical and chemical processes were discussed. The effect of Ar-, air-annealing and electron-irradiation on Bi:alpha-BaB(2)O(4) crystal were also investigated.

  8. Annealing Behavior of New Micro-defects in p-type Large-diameter CZ-Si Crystal

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    New types of defects in 15.24 cm diameter and 20.32 cm diameter Czochralski silicon crystals were found after SCI cleaning. Their annealing behavior was studied. It was suggested that these defects become larger during high temperature annealing and disappear by annealing at 1250℃.

  9. Ionization annealing of semiconductor crystals. Part two: the experiment

    Directory of Open Access Journals (Sweden)

    Garkavenko A. S.

    2014-12-01

    Full Text Available There is a conception that irradiation of semiconductor crystals with high energy electrons (300 keV results in a significant and irreversible deterioration of their electrical, optical and structural properties. Semiconductors are typically irradiated by low voltage electron accelerators with a continuous flow, the current density in such accelerators is 10–5—10–6 A/cm2, the energy — 0,3—1 MeV. All changes in the properties after such irradiation are resistant at room temperature, and marked properties recovery to baseline values is observed only after prolonged heating of the crystals to a high temperature. In contrast, the authors in their studies observe an improvement of the structural properties of semiconductor crystals (annealing of defects under irradiation with powerful (high current pulsed electron beams of high energy (E0 = 0,3–1 MeV, t = 0,1—10 ns, Ω = 1—10 Hz, j = 20—300 A/cm2. In their previous paper, the authors presented theoretical basis of this effect. This article describes an experimental study on the influence of high-current pulsed electron beams on the optical homogeneity of semiconductor GaAs and CdS crystals, confirming the theory put forward earlier.

  10. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Nyamhere, C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Highly rectifying Pd/ZnO contacts have been fabricated. Black-Right-Pointing-Pointer The rectification behaviour decrease with annealing temperature. Black-Right-Pointing-Pointer The surface donor concentration increases with increase in annealing temperature. Black-Right-Pointing-Pointer The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current-voltage (IV) and capacitance-voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at -1.5 V. An average barrier height of (0.77 {+-} 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 {+-} 0.03) eV after annealing at 550 Degree-Sign C. The reverse current has been measured as (2.10 {+-} 0.01) Multiplication-Sign 10{sup -10} A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 Degree-Sign C to (1.56 {+-} 0.01) Multiplication-Sign 10{sup -5} A. The depletion layer width measured at -2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 {mu}m after annealing at 200 Degree-Sign C to 0.24 {mu}m after annealing at 500 Degree-Sign C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 Multiplication-Sign 10{sup 15} cm{sup -3} at 200 Degree-Sign C to 6.06 Multiplication-Sign 10{sup 16} cm{sup -3} after annealing at 550 Degree-Sign C. This increase in the volume concentration has been explained as an effect of a conductive channel

  11. Annealing Effect on Photovoltages of Quartz Single Crystals

    Institute of Scientific and Technical Information of China (English)

    TIAN Lu; ZHAO Song-Qing; ZHAO Kun

    2010-01-01

    @@ We investigate the photovoltaic effects of quartz single crystals annealed at high temperatures in ambient atmosphere.The open-circuit photovoltages and surface morphologies strongly depend on the heating treatments.When the annealing temperature increases from room temperature to 900℃,the rms roughness of quartz single crystal wafers increases from 0.207 to 1.011 nm.In addition,the photovoltages decrease from 1.994#V at room temperature to 1.551 μ V after treated at 500℃,and then increase up to 9.8μV after annealed at 900℃.The inner mechanism of the present photovoltaic response and surface morphologies is discussed.

  12. Densification and crystallization of SnO{sub 2}:Sb sol-gel films using excimer laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Sandu, C.S.; Teodorescu, V.S.; Ghica, C.; Canut, B.; Blanchin, M.G.; Roger, J.A.; Brioude, A.; Bret, T.; Hoffmann, P.; Garapon, C

    2003-03-15

    We have successfully applied laser annealing to sol-gel deposited SnO{sub 2}:Sb thin films in order to achieve their crystallization. The as-deposited films are quasi-amorphous and electrically non-conductive. After laser annealing they crystallize and become conductive. This paper presents a comparative study of the laser annealed films and shows the influence of the irradiation parameters on the crystallization process and the electrical behavior of the films. Our results are quite promising in view of applying this kind of treatment to films deposited on thermally sensitive substrates (e.g. polymers)

  13. Tailoring the crystal structure of individual silicon nanowires by polarized laser annealing.

    Science.gov (United States)

    Chang, Chia-Chi; Chen, Haitian; Chen, Chun-Chung; Hung, Wei-Hsuan; Hsu, I-Kai; Theiss, Jesse; Zhou, Chongwu; Cronin, Stephen B

    2011-07-29

    We study the effect of polarized laser annealing on the crystalline structure of individual crystalline-amorphous core-shell silicon nanowires (NWs) using Raman spectroscopy. The crystalline fraction of the annealed spot increases dramatically from 0 to 0.93 with increasing incident laser power. We observe Raman lineshape narrowing and frequency hardening upon laser annealing due to the growth of the crystalline core, which is confirmed by high resolution transmission electron microscopy (HRTEM). The anti-Stokes:Stokes Raman intensity ratio is used to determine the local heating temperature caused by the intense focused laser, which exhibits a strong polarization dependence in Si NWs. The most efficient annealing occurs when the laser polarization is aligned along the axis of the NWs, which results in an amorphous-crystalline interface less than 0.5 µm in length. This paper demonstrates a new approach to control the crystal structure of NWs on the sub-micron length scale.

  14. The Influence of Crystal Annealing on Orientation Dependence of Nuclear Quadrupole Resonance in InSe

    Directory of Open Access Journals (Sweden)

    V.O. Khandozhko

    2013-10-01

    Full Text Available The dependence of the spectrum intensity on the orientation of crystallographic axes of anisotropic crystal with respect to the magnetic component vector of high-frequency field was studied using NQR method. The existence of residual intensity of the resonance spectrum while Н1c indicates the presence of defects in single crystal – blocks with small angle boundaries or other violations of atomic layers. Crystal annealing at the temperature of 550C is accompanied by improvment of quality of NQR resonance spectra and diffraction maxima at topograms.

  15. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zappettini, A.; Zambelli, N.; Benassi, G.; Calestani, D. [Istituto Materiali Elettronica e Magnetismo – Consiglio Nazionale delle Ricerche, Parma (Italy); Pavesi, M. [Istituto Materiali Elettronica e Magnetismo – Consiglio Nazionale delle Ricerche, Parma (Italy); Istituto di Fisica e Scienze della Terra, Università degli Studi di Parma, Parma (Italy)

    2014-06-23

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  16. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Maogao [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Zhong, Jiasong; Chen, Daqin [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

    2015-08-05

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y{sub 3}Al{sub 5}O{sub 12} single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application.

  17. Characterization of Annealed, Proton Exchange Optical Waveguides in Y-cut MgO∶LiNbO3 Crystal

    Institute of Scientific and Technical Information of China (English)

    CAO Xia; XIA Yuxing; YANG Yi; WANG Pinghe; CHEN Xianfeng

    2000-01-01

    It is reported the results of a systematic study on planar waveguides fabricated in Y-cut MgO∶LiNbO3 crystal. The index profile of the as-exchanged waveguide can be modeled as a step-like one. It is deduced the diffusion coefficient and the activation energy for the proton exchange process. The surface index increases Δne of around 0.127 after proton exchange can be reduced by post thermal annealing. The effects of the annealing on the index profile and guide depth were found not as fast as it does on a pure LiNbO3 crystal.

  18. Al-induced Lateral Crystallization of Amorphous Si Thin Films by Microwave Annealing

    Institute of Scientific and Technical Information of China (English)

    RAO Rui; XU Zhong-yang; ZENG Xiang-bing

    2002-01-01

    Al-induced lateral crystallization of amorphous silicon thin films by microwave annealing is investigated. The crystallized Si films are examined by optical microscopy , Raman spectroscopy, transmission electron microscopy and transmission electron diffraction micrography. After microwave annealing at 480 ℃ for 50 min,the amorphous Si is completely crystallized with large grains of main ( 111 ) orientation. The rate of lateral crystallization is 0.04μm/min. This process, labeled MILC-MA, not only lowers the temperature but also reduces the time of crystallization. The crystallization mechanism during microwave annealing and the electrical properties of polycrystalline Si thin films are analyzed. This MILC-MA process has potential applications in large area electronics.

  19. The Effects of Annealing Parameters on the Crystallization and Morphology of Cu(In,GaSe2 Absorber Layers Prepared by Annealing Stacked Metallic Precursors

    Directory of Open Access Journals (Sweden)

    Chia-Ho Huang

    2014-01-01

    Full Text Available CIGS films are prepared by single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor. The annealing processes were performed using various Ar pressures, heating rates, and soaking times. A higher Ar pressure is needed to fabricate highly crystalline CIGS films, as no extra Se-vapor source is supplied. As the heating rate increases, the surface morphologies of the CIGS films become looser and some cracks are observed. However, the influence of soaking time is insignificant and the selenization process only requires a short time when the precursors are selenized at a higher temperature with a lower heating rate and a higher Ar pressure. In this study, a dense chalcopyrite CIGS film with a thickness of about 1.5-1.6 μm, with large grains (~1.2 μm and no cracking or peeling is obtained after selenizing at a temperature of 550°C, an Ar pressure of 300 Torr, a heating rate of 60°C/min, and a soaking time of 20 min. By adequate design of the stacked precursor and controlling the annealing parameters, single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor is simplified for the fabrication of a fully crystallized chalcopyrite CIGS absorber layers with good crystallization and large grains.

  20. Effect of Vacuum Annealing on Superconductivity in Fe(Se,Te) Single Crystals

    OpenAIRE

    Komiya, Seiki; Hanawa, Masafumi; Tsukada, Ichiro; Maeda, Atsutaka

    2013-01-01

    The effect of vacuum annealing on superconductivity is investigated in Fe(Se,Te) single crystals. It is found that superconductivity is not enhanced by annealing under high vacuum (~ 10^(-3) Pa) or by annealing in a sealed evacuated quartz tube. In a moderate vacuum atmosphere (~ 1 Pa), iron oxide layers are found to show up on sample surfaces, which would draw excess Fe out of the crystal. Thus, it is suggested that remanent oxygen effectively works to remove excess Fe from the matrix of Fe(...

  1. Annealing crystallization and catalytic activity of ultrafine NiB amorphous alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Annealing crystallization of ultrafine NiB amorphous alloy prepared by the chemical reduction method was studied by DTA,XRD and XAFS techniques. The XRD and XAFS results have revealed that the crystallization process of ultrafine NiB amorphous alloy proceeds in two steps. First,ultrafine NiB amorphous alloy is crystallized to form metastable nanocrystalline Ni3B at an annealing temperature of 325℃. Second,the nanocrystalline Ni3B is further decom-posed into crystalline Ni at 380℃ or higher tempera ture,the local structure around Ni atoms in resultant product is similar to that in Ni foil. It was found that the catalytic ac-tivity of nanocrystalline Ni3B for benzene hydrogenation is much higher than that of ultrafine NiB amorphous alloy or crystalline Ni. The result indicates that the active sites of nanocrystalline Ni3B for benzene hydrogenation are com-posed of both Ni and B with proper geometry configuration.

  2. Annealing study of a bistable cluster defect

    Energy Technology Data Exchange (ETDEWEB)

    Junkes, Alexandra, E-mail: alexandra.junkes@desy.d [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Eckstein, Doris [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Pintilie, Ioana [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); NIMP Bucharest-Margurele (Romania); Makarenko, Leonid F. [Belarusian State University, Minsk (Belarus); Fretwurst, Eckhart [Institute for Experimental Physics, University of Hamburg, 22761 Hamburg (Germany)

    2010-01-11

    This work deals with the influence of neutron and proton induced cluster related defects on the properties of n-type silicon detectors. Defect concentrations were obtained by means of Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) technique, while the full depletion voltage and the reverse current were extracted from capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The annealing behaviour of the reverse current can be correlated with the annealing of the cluster related defect levels labeled E4a and E4b by making use of their bistability. This bistability was characterised by isochronal and isothermal annealing studies and it was found that the development with increasing annealing temperature is similar to that of divacancies. This supports the assumption that E4a and E4b are vacancy related defects. In addition we observe an influence of the disordered regions on the shape and height of the DLTS or TSC signals corresponding to point defects like the vacancy-oxygen complex.

  3. Growth and characterization of air annealing Mn-doped YAG:Ce single crystal for LED

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Zhong, Jiasong [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Zhao, Yinsheng [Pan Asia Technical Automotive Center Co. Ltd., Shanghai 201201 (China); Zhao, Binyu [College of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China); Dong, Yongjun [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800 (China); Zhang, Zhimin; Chen, Zhaoping; Liu, Bingfeng [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 (China)

    2012-11-25

    Highlights: Black-Right-Pointing-Pointer The YAG:Ce,Mn single crystal was well synthesized by the Czochralski (CZ) method. Black-Right-Pointing-Pointer The emission intensity of the sample has been influenced after annealing. Black-Right-Pointing-Pointer Annealed in the air at 1200 Degree-Sign C was the most optimal annealing condition. Black-Right-Pointing-Pointer The single crystal could be used in the white light LED which emitted by blue light. - Abstract: The growth of Mn-doped YAG:Ce (yttrium aluminum garnet doped cerium) single crystal by the Czochralski (CZ) method and the characterization of its spectroscopy and color-electric parameters are presented. The absorption spectra indicate that the crystal absorbed highly in the 300-500 nm wavelength range. The emission spectrum of the crystal consists of a peak around 538 nm when excited by 460 nm blue light, which prove the YAG:Ce,Mn single crystal could be used in the white light emitting doides (LED). The different charges of Mn ions have different luminescence properties, and the air annealing process for the single crystal would change the concentration of Mn ions with different charges, which could influence the emission intensity of the single crystal.

  4. Systematical investigation on the luminescence enhancement of PbWO4 crystals by doping and annealing

    CERN Document Server

    Huang, Yanlin

    2004-01-01

    PbWO4 crystal has been chosen for a scintillating detector at the Large Hadron Collider (LHC) in CERN due to its high density, short radiation length and fast decay time. Extensive investigations have been done around the world to improve the scintillation performance by annealing treatment and aliavalent ion doping in the crystals. The works in this report are focused on the enhancement of light yield in PbWO4 crystals by doping and annealing, and excellent scintillation performance still are kept for this material. The doping ions in the crystal include monovalent ions, trivalent ions and co-doping between different aliavalent ions. Many results were first report in the material. Meanwhile, the annealing mechanism and aliavalent ion doping mechanism from viewpoint of microstructure were also discussed. Besides, these results reveal also that PWO might have potential use in the PET material, even in the optoelectronic application.

  5. Effect of high temperature annealing on defects and optical properties of ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, M.; Wang, D.D.; Zou, B.; Chen, Z.Q. [Hubei Nuclear Solid Physics Key Laboratory, Department of Physics, Wuhan University, Wuhan 430072 (China); Kawasuso, A. [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Sekiguchi, T. [Advanced Electronic Materials Center, National Institute for Materials Science, Tsukuba 305-0044 (Japan)

    2012-11-15

    Hydrothermal grown ZnO single crystals were annealed in N{sub 2} or O{sub 2} between 900 and 1300 C. Positron lifetime measurements reveal a single lifetime in all the ZnO samples before and after annealing. The positron lifetime is about 181 ps after annealing at 900 C in either N{sub 2} or O{sub 2} atmosphere. However, increase of the positron lifetime is observed after further annealing the sample at higher temperatures up to 1300 C, and it has a faster increase in O{sub 2} ambient. Temperature dependence measurements show that the positron lifetime has very slight increase with temperature for the 900 C annealed sample, while it shows notable variation for the sample annealed at 1300 C. This implied that annealing at high temperature introduces additional defects. These defects are supposed to be Zn vacancy-related defects. Cathodoluminescence (CL) measurements indicates enhancement of both UV and green emission after annealing, and the enhancement of green emission is much stronger for the samples annealed in O{sub 2} ambient. The possible origin of green emission is tentatively discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Dynamics of metal-induced crystallization of ultrathin Ge films by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yuanxun; Huang, Shujuan; Shrestha, Santosh; Conibeer, Gavin [School of Photovoltaic and Renewable Energy Engineering, UNSW Australia, Sydney 2052 (Australia)

    2015-12-07

    Though Ge crystallization has been widely studied, few works investigate metal-induced crystallization of ultrathin Ge films. For 2 nm Ge films in oxide matrix, crystallization becomes challenging due to easy oxidation and low mobility of Ge atoms. Introducing metal atoms may alleviate these problems, but the functions and the behaviours of metal atoms need to be clarified. This paper investigates the crystallization dynamics of a multilayer structure 1.9 nm Ge/0.5 nm Al/1.5 nm Al{sub 2}O{sub 3} under rapid thermal annealing (RTA). The functions of metal atoms, like effective anti-oxidation, downshifting Raman peaks, and incapability to decrease crystallization temperature, are found and explained. The metal behaviours, such as inter-diffusion and defect generation, are supported with direct evidences, Al-Ge nanobicrystals, and Al cluster in Ge atoms. With these understandings, a two-step RTA process achieves high-quality 2 nm nanocrystal Ge films with Raman peak at 298 cm{sup −1} of FWHM 10.3 cm{sup −1} and atomic smooth interfaces.

  7. Comparative study of the performance of quantum annealing and simulated annealing.

    Science.gov (United States)

    Nishimori, Hidetoshi; Tsuda, Junichi; Knysh, Sergey

    2015-01-01

    Relations of simulated annealing and quantum annealing are studied by a mapping from the transition matrix of classical Markovian dynamics of the Ising model to a quantum Hamiltonian and vice versa. It is shown that these two operators, the transition matrix and the Hamiltonian, share the eigenvalue spectrum. Thus, if simulated annealing with slow temperature change does not encounter a difficulty caused by an exponentially long relaxation time at a first-order phase transition, the same is true for the corresponding process of quantum annealing in the adiabatic limit. One of the important differences between the classical-to-quantum mapping and the converse quantum-to-classical mapping is that the Markovian dynamics of a short-range Ising model is mapped to a short-range quantum system, but the converse mapping from a short-range quantum system to a classical one results in long-range interactions. This leads to a difference in efficiencies that simulated annealing can be efficiently simulated by quantum annealing but the converse is not necessarily true. We conclude that quantum annealing is easier to implement and is more flexible than simulated annealing. We also point out that the present mapping can be extended to accommodate explicit time dependence of temperature, which is used to justify the quantum-mechanical analysis of simulated annealing by Somma, Batista, and Ortiz. Additionally, an alternative method to solve the nonequilibrium dynamics of the one-dimensional Ising model is provided through the classical-to-quantum mapping.

  8. Effect of annealing and cobalt content on relaxation and crystallization behavior of zirconium based bulk metallic glasses

    Science.gov (United States)

    Dong, Yue; Wunderlich, Rainer; Fecht, Hans-Jörg

    2017-08-01

    The effects of annealing and cobalt content on relaxation and the crystallization process of Zr64Ni10Al7Cu19 bulk metallic glasses were investigated. β-relaxation occurs during annealing, leading to increased endotherm before crystallization. α-relaxation during high temperature annealing (higher than Tg) affects the crystallization process. The introduction of cobalt leads to an inhomogeneous amorphous structure and two-step crystallization due to the positive mixing enthalpy between cobalt and copper. Non-affine thermal strain arising from low temperature annealing of heterogeneous structure leads to a reduced endotherm phenomenon during relaxation on the DSC curves and a reduction in hardness.

  9. On crystallization of bisphenol-A polycarbonate thin films upon annealing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunhong; Li, Qichao; Mao, Wenfeng; Wang, Peng; He, Chunqing, E-mail: hecq@whu.edu.cn

    2015-10-16

    Crystallization of polycarbonate (PC) films as a function of annealing time has been investigated by various methods. A distinct diffraction peak at 17.56°, a sharp decrease of film thickness, an increase of refractive index and branch-type structures on the surface are found merely for the film after crystallization. Interestingly, positron annihilation parameters demonstrate fractional free-volumes in PC films vary significantly not only before crystallization but also at the early stage of annealing, which are not found by other methods. The results show that free-volumes in PC film must be increased remarkably before crystallization, which enables the occurrence of molecule rearrangement. - Highlights: • Fractional free-volume in PC film decreased of early stage of annealing. • Crystallization of PC film on Si substrate occurred after annealed for ∼48 hours. • Fractional free-volume in PC film increased remarkably before crystallization. • Positron diffusion length and S parameter revealed the variation of free volumes.

  10. Quality improvement of CdMnTe:In single crystals by an effective post-growth annealing

    Science.gov (United States)

    Yu, Pengfei; Xu, Yadong; Luan, Lijun; Du, Yuanyuan; Zheng, Jiahong; Li, Hui; Jie, Wanqi

    2016-10-01

    In this paper, an effective annealing method in which CdMnTe:In (CMT:In) single crystals were coated with CMT powders of the same composition was used to improve the crystal quality of CMT:In crystals. The results indicated that the density of Te inclusions decreased as the annealing time increased. The resistivity and IR transmittance of annealed CMT:In crystals were enhanced obviously. The resistivity of 120 h annealed crystal increased even two orders of magnitude. The reduction of full-width at-half-maximum (FWHM) and the increase of the intensity of X-ray rocking curve indicated an improvement of the crystal quality. PL measurements also showed the crystal quality improved after annealing. No characteristic peak of 241Am γ-ray could be observed in the detector fabricated with as-grown crystal. Remarkably, for the detector fabricated with annealed crystals, the peak of 241Am γ-ray appeared. And the energy resolution and μτ value were improved as the annealing time increased. Specially, 120 h annealed CMT:In crystal with 10.11% energy resolution and 1.20×10-3 cm2/V μτ value has the best detector performance.

  11. Annealing Induced Re-crystallization in CH3NH3PbI3-xClx for High Performance Perovskite Solar Cells

    Science.gov (United States)

    Yang, Yingguo; Feng, Shanglei; Li, Meng; Xu, Weidong; Yin, Guangzhi; Wang, Zhaokui; Sun, Baoquan; Gao, Xingyu

    2017-04-01

    Using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as hole conductor, a series of inverted planar CH3NH3PbI3-xClx perovskite solar cells (PSCs) were fabricated based on perovskite annealed by an improved time-temperature dependent (TTD) procedure in a flowing nitrogen atmosphere for different time. Only after an optimum annealing time, an optimized power conversion efficiency of 14.36% could be achieved. To understand their performance dependence on annealing time, an in situ real-time synchrotron-based grazing incidence X-ray diffraction (GIXRD) was used to monitor a step-by-step gradual structure transformation from distinct mainly organic-inorganic hybrid materials into highly ordered CH3NH3PbI3 crystal during annealing. However, a re-crystallization process of perovskite crystal was observed for the first time during such an annealing procedure, which helps to enhance the perovskite crystallization and preferential orientations. The present GIXRD findings could well explain the drops of the open circuit voltage (Voc) and the fill factor (FF) during the ramping of temperature as well as the optimized power conversion efficiency achieved after an optimum annealing time. Thus, the present study not only illustrates clearly the decisive roles of post-annealing in the formation of solution-processed perovskite to better understand its formation mechanism, but also demonstrates the crucial dependences of device performance on the perovskite microstructure in PSCs.

  12. Annealing Induced Re-crystallization in CH3NH3PbI3−xClx for High Performance Perovskite Solar Cells

    Science.gov (United States)

    Yang, Yingguo; Feng, Shanglei; Li, Meng; Xu, Weidong; Yin, Guangzhi; Wang, Zhaokui; Sun, Baoquan; Gao, Xingyu

    2017-01-01

    Using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as hole conductor, a series of inverted planar CH3NH3PbI3−xClx perovskite solar cells (PSCs) were fabricated based on perovskite annealed by an improved time-temperature dependent (TTD) procedure in a flowing nitrogen atmosphere for different time. Only after an optimum annealing time, an optimized power conversion efficiency of 14.36% could be achieved. To understand their performance dependence on annealing time, an in situ real-time synchrotron-based grazing incidence X-ray diffraction (GIXRD) was used to monitor a step-by-step gradual structure transformation from distinct mainly organic-inorganic hybrid materials into highly ordered CH3NH3PbI3 crystal during annealing. However, a re-crystallization process of perovskite crystal was observed for the first time during such an annealing procedure, which helps to enhance the perovskite crystallization and preferential orientations. The present GIXRD findings could well explain the drops of the open circuit voltage (Voc) and the fill factor (FF) during the ramping of temperature as well as the optimized power conversion efficiency achieved after an optimum annealing time. Thus, the present study not only illustrates clearly the decisive roles of post-annealing in the formation of solution-processed perovskite to better understand its formation mechanism, but also demonstrates the crucial dependences of device performance on the perovskite microstructure in PSCs. PMID:28429762

  13. Laser annealing study of PECVD deposited hydrogenated amorphous silicon carbon alloy films

    Science.gov (United States)

    Coscia, U.; Ambrosone, G.; Gesuele, F.; Grossi, V.; Parisi, V.; Schutzmann, S.; Basa, D. K.

    2007-12-01

    The influence of carbon content on the crystallization process has been investigated for the excimer laser annealed hydrogenated amorphous silicon carbon alloy films deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD) technique, using silane methane gas mixture diluted in helium, as well as for the hydrogenated microcrystalline silicon carbon alloy films prepared by PECVD from silane methane gas mixture highly diluted in hydrogen, for comparison. The study demonstrates clearly that the increase in the carbon content prevents the crystallization process in the hydrogen diluted samples while the crystallization process is enhanced in the laser annealing of amorphous samples because of the increase in the absorbed laser energy density that occurs for the amorphous films with the higher carbon content. This, in turn, facilitates the crystallization for the laser annealed samples with higher carbon content, resulting in the formation of SiC crystallites along with Si crystallites.

  14. In situ Crystallization of RF sputtered ITO thin films: A comparison with annealed samples

    Energy Technology Data Exchange (ETDEWEB)

    John, K. Aijo [Junior research Fellow, Sree Sankara College, Kalady, Ernakulam - 683 574, Kerala (India); Manju, T. [Assistant Professor, Department of Physics, Sree Sankara College, Kalady, Ernakulam - 683 574, Kerala (India)

    2014-01-28

    Tin doped Indium Oxide (ITO) is a wide band gap semiconductor with high conductivity and transparency in the visible region of the solar spectrum. One of the most popular and exploited applications of ITO is the realization of the transparent conductive layers needed for the electrodes of light sensitive devices, such as photovoltaic cells. The thermal energy for the crystallization of ITO films is very low (150°C). The crystallization can be achieved by the continuous energetic bombardment of the ions in the sputtering chamber without annealing or substrate heating. The accumulated energy will ensure the thermal energy necessary for the crystallization. With the help of sufficiently high sputtering power and sufficient duration, crystallized ITO films can be produced without annealing. In this report, a comparison of the conductivity and transparency of ITO films under two crystallization conditions ((1) crystallization of the sputtered films by annealing; (2) in situ crystallization of the films by providing high sputtering power and long sputtering duration) will be presented.

  15. a-Si:H crystallization from isothermal annealing and its dependence on the substrate used

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lopez, M., E-mail: marlonrl@yahoo.com.mx [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Orduna-Diaz, A.; Delgado-Macuil, R.; Gayou, V.L.; Bibbins-Martinez, M. [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Torres-Jacome, A.; Trevino-Palacios, C.G. [INAOE, Tonantzintla, Puebla, Pue. 72000 (Mexico)

    2010-10-25

    We present hydrogenated amorphous silicon (a-Si:H) films which were deposited on two different substrates (glass and mono-crystalline silicon) after an isothermal annealing treatment at 250 deg. C for up to 14 h. The annealed amorphous films were analyzed using atomic force microscopy, Raman and FTIR spectroscopy. Films deposited on glass substrate experienced an amorphous-crystalline phase transition after annealing because of the metal-induced crystallization effect, reaching approximately 70% conversion after 14 h of annealing. An absorption frequency of the TO-phonon mode that varies systematically with the substoichiometry of the silicon oxide in the 1046-1170 cm{sup -1} region was observed, revealing the reactivity of the film with the annealing time. For similar annealing time, films deposited on mono-crystalline silicon substrate remained mainly amorphous with minimal Si-crystalline formation. Therefore, the crystalline formations and the shape of the films surfaces depends on the annealing time as well as on the substrate employed during the deposition process of the a-Si:H film.

  16. Anisotropic electrical resistivity and oxygen annealing effect on it in La2- xCaxCuO4 single crystals

    Science.gov (United States)

    Khan, M. K. R.; Mori, Yoshihiro; Tanaka, Isao; Kojima, Hironao

    1994-12-01

    The oxygen annealing effect on the temperature-dependent electrical resistivity has been studied in La 1.91Ca 0.09CuO 4- y single crystals grown by the TSFZ method. In as-grown crystals, semiconducting-like electrical conduction has been observed, both in the ab-plane and the c-axis at the non-superconducting state. The onset transition temperature Tc-onset was about 17.5 K. After annealing in oxygen, ϱ ab( T) becomes metallic and shows a resistivity minimum at a certain temperature Tmin that separates regions of metallic behavior at T> Tmin from semiconducting behavior at Thopping law (VRH) in non-metallic samples.

  17. Annealing as grown large volume CZT single crystals increased spectral resolution

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Longxia Li

    2008-03-19

    The spectroscopic performance of current large-volume Cadmium 10% Zinc Telluride, Cd{sub 0.9}Zn{sub 0.1}Te, (CZT) detectors is impaired by cumulative effect of tellurium precipitates (secondary phases) presented in CZT single-crystal grown by low-pressure Bridgman techniques(1). This statistical effect may limit the energy resolution of large-volume CZT detectors (typically 2-5% at 662 keV for 12-mm thick devices). The stochastic nature of the interaction prevents the use of any electronic or digital charge correction techniques without a significant reduction in the detector efficiency. This volume constraint hampers the utility of CZT since the detectors are inefficient at detecting photons >1MeV and/or in low fluency situations. During the project, seven runs CZT ingots have been grown, in these ingots the indium dopant concentrations have been changed in the range between 0.5ppm to 6ppm. The I-R mapping imaging method has been employed to study the Te-precipitates. The Teprecipitates in as-grown CZT wafers, and after annealing wafers have been systematically studied by using I-R mapping system (home installed, resolution of 1.5 {micro}m). We employed our I-R standard annealing CZT (Zn=4%) procedure or two-steps annealing into radiation CZT (Zn=10%), we achieved the 'non'-Te precipitates (size < 1 {micro}m) CZT n+-type with resistivity > 10{sup 9-10} {Omega}-cm. We believe that the Te-precipitates are the p-type defects, its reducing number causes the CZT became n+-type, therefore we varied or reduced the indium dapant concentration during the growth and changed the Te-precipitates size and density by using different Cd-temperature and different annealing procedures. We have made the comparisons among Te-precipitates size, density and Indium dopant concentrations, and we found that the CZT with smaller size of Te-precipitates is suitable for radiation uses but non-Te precipitates is impossible to be used in the radiation detectors, because the CZT

  18. Laser annealing and defect study of chalcogenide photovoltaic materials

    Science.gov (United States)

    Bhatia, Ashish

    Cu(In,Ga)Se2 (CIGSe), CuZnSn(S,Se)4(CZTSSe), etc., are the potential chalcogenide semiconductors being investigated for next-generation thin film photovoltaics (TFPV). While the champion cell efficiency of CIGSe has exceeded 20%, CZTSSe has crossed the 10% mark. This work investigates the effect of laser annealing on CISe films, and compares the electrical characteristics of CIGSe (chalcopyrite) and CZTSe (kesterite) solar cells. Chapter 1 through 3 provide a background on semiconductors and TFPV, properties of chalcopyrite and kesterite materials, and their characterization using deep level transient spectroscopy (DLTS) and thermal admittance spectroscopy (TAS). Chapter 4 investigates electrochemical deposition (nonvacuum synthesis) of CISe followed by continuous wave laser annealing (CWLA) using a 1064 nm laser. It is found that CWLA at ≈ 50 W/cm2 results in structural changes without melting and dewetting of the films. While Cu-poor samples show about 40% reduction in the full width at half maximum of the respective x-ray diffraction peaks, identically treated Cu-rich samples register more than 80% reduction. This study demonstrates that an entirely solid-phase laser annealing path exists for chalcopyrite phase formation and crystallization. Chapter 5 investigates the changes in defect populations after pulse laser annealing in submelting regime of electrochemically deposited and furnace annealed CISe films. DLTS on Schottky diodes reveal that the ionization energy of the dominant majority carrier defect state changes nonmonotonically from 215+/-10 meV for the reference sample, to 330+/-10 meV for samples irradiated at 20 and 30 mJ/cm2, and then back to 215+/-10 meV for samples irradiated at 40 mJ/cm2. A hypothesis involving competing processes of diffusion of Cu and laser-induced generation of In vacancies may explain this behavior. Chapter 6 compares the electrical characteristics of chalcopyrite and kesterite materials. Experiments reveal CZTSe cell has an

  19. Surface properties of annealed semiconducting β-Ga{sub 2}O{sub 3} (1 0 0) single crystals for epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Quezada, A., E-mail: andrea.navarro-quezada@jku.at [Leibniz Institut für Analytische Wissenschaften ISAS – e.V., Schwarzschildstr. 8, 12489 Berlin (Germany); Galazka, Z. [Leibniz Institut für Kristallzüchtung, Max-Born-Str. 2, 12489 Berlin (Germany); Alamé, S. [Leibniz Institut für Analytische Wissenschaften ISAS – e.V., Schwarzschildstr. 8, 12489 Berlin (Germany); Technische Universität Berlin, Institute of Solid State Physics, Hardenbergstr. 36, 10623 Berlin (Germany); Skuridina, D.; Vogt, P. [Technische Universität Berlin, Institute of Solid State Physics, Hardenbergstr. 36, 10623 Berlin (Germany); Esser, N. [Leibniz Institut für Analytische Wissenschaften ISAS – e.V., Schwarzschildstr. 8, 12489 Berlin (Germany)

    2015-09-15

    Highlights: • Epiready substrate surfaces of semiconducting β-Ga{sub 2}O{sub 3} are annealed and analyzed by photoelectron emission spectroscopy. • The surface carbon contamination is monitored as a function of annealing temperature up to 800 °C in ultra-high vacuum • Carbon can be eliminated up to 70% by annealing to 800 °C. • An increment in the surface valence band bending with annealing is observed associated to defects. - Abstract: We present a detailed study on the surface properties of conductive β-Ga{sub 2}O{sub 3} (1 0 0) single-crystal epiready substrates by means of photoelectron emission spectroscopy. The surface properties are studied prior and after annealing in ultra-high vacuum (UHV). We find that untreated substrates contain a significant amount of adsorbed carbon contaminations at the surface, which can be partly removed by annealing at 800 °C in UHV. Valence band photoemission evidences an upward band bending of about 0.5 eV that increases with annealing, revealing the presence of an electron depletion layer at the near-surface region responsible for the insulating behavior commonly observed for semiconductive β-Ga{sub 2}O{sub 3} single crystals. Our findings become crucial for epitaxial growth, as it is known that carbon modifies the electrical and structural properties of subsequent epitaxial layers.

  20. Flux-enhanced monochromator by ultrasound excitation of annealed Czochralski-grown silicon crystals

    CERN Document Server

    Koehler, S; Seitz, C; Magerl, A; Mashkina, E; Demin, A

    2003-01-01

    The neutron flux from monochromator crystals can be increased by ultrasound excitation or by strain fields. Rocking curves of both a perfect float-zone silicon crystal and an annealed Czochralski silicon crystal with oxygen precipitates were measured at various levels of ultrasound excitation on a cold-neutron backscattering spectrometer. We find that the effects of the dynamic strain field from the ultrasound and the static strain field from the defects are not additive. Rocking curves were also taken at different ultrasound frequencies near resonance of the crystal/ultrasound-transducer system with a time resolution of 1 min. Pronounced effects of crystal heating are observed, which render the conditions for maximum neutron reflectivity delicate. (orig.)

  1. Temperature distribution study in flash-annealed amorphous ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Moron, C. E-mail: cmoron@eui.upm.es; Garcia, A.; Carracedo, M.T

    2003-01-01

    Negative magnetrostrictive amorphous ribbons have been locally current annealed with currents from 1 to 8 A and annealing times from 14 ms to 200 s. In order to obtain information about the sample temperature during flash or current annealing, a study of the temperature dispersion during annealing in amorphous ribbons was made. The local temperature variation was obtained by measuring the local intensity of the infrared emission of the sample with a CCD liquid nitrogen cooled camera. A distribution of local temperature has been found in spite of the small dimension of the sample.

  2. Quantum coherence phenomenon in disordered Bi2SeTe2 topological single crystal: effect of annealing.

    Science.gov (United States)

    Amaladass, E P; Devidas, T R; Sharma, Shilpam; Mani, Awadhesh

    2017-05-04

    We report a comparative magnetotransport study on pristine and annealed Bi2SeTe2 single crystals. The pristine sample shows a metallic trend from 300 to 180 K, and an insulating behavior for T    2.5 T. Further, the quantum MR behaviours seen at low temperature gradually transform to classical B (2) dependent upon increasing the temperatures. In contrast, the annealed sample shows a WAL at small field superimposed on a parabolic feature for B  >  ±4 T at low temperatures (T    100 K. Hall measurements on both samples exhibit a nonlinear behavior at 4.2 K pointing to the existence of two types of carriers with different mobility. The annealed sample also shows a drastic decrease in mobility by one order of magnitude and a reduction in Ioffe-Regel parameter (k F l) by a factor of ~3. Disorder-induced localization of bulk carriers and its coexistence with localization-immune surface carriers at low T leads to WAL and WL. MR observed in the annealed sample can be attributed to the presence of both quantum-classical contribution and has been analysed using the Hikami-Larkin-Nagaoka (HLN) equation.

  3. The Insulator to Superconductor Transition in Ga-Doped Semiconductor Ge Single Crystal Induced by the Annealing Temperature

    Directory of Open Access Journals (Sweden)

    Y. B. Sun

    2015-01-01

    Full Text Available We have fabricated the heavily Ga-doped layer in Ge single crystal by the implantation and rapid thermal annealing method. The samples show a crossover from the insulating to the superconducting behavior as the annealing temperature increases. Transport measurements suggest that the superconductivity is from the heavily Ga-doped layer in Ge.

  4. Effects of Annealing Treatments on Luminescence and Scintillation Properties of Ce:Lu3Al5O12 Crystal Grown by Czochralski Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ce:Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air) and reducing atmosphere (H2+N2), respectively. Effects of annealing treatments on luminescence and scintillation properties of the crystals were investigated. The crystal annealed in air showed the highest luminescence intensity under blue light or vacuum ultraviolet excitation in comparison with that annealed in reducing flux or the as-grown crystal. Under X-ray excitation, crystal annealed in reducing atmosphere had the lowest light yield, and crystal annealed in air had the fastest decay time under 137Cs 662 keV γ-ray excitation. Different annealing treatments resulted in different luminescence and scintillation properties, which might related with oxygen vacancies or defect existing in the crystals.

  5. Control of crystal structure, morphology and optical properties of ceria films by post deposition annealing treatments

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, Asmaa, E-mail: asmaa.eltayeb2@mail.dcu.ie [School of Electronic Engineering, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); Vijayaraghavan, Rajani K. [School of Electronic Engineering, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); McCoy, Anthony P. [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Cullen, Joseph [School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); Daniels, Stephen [School of Electronic Engineering, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland); McGlynn, Enda [School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2016-03-31

    In this paper, the effects of post-deposition annealing temperature and atmosphere on the properties of pulsed DC magnetron sputtered ceria (CeO{sub 2}) thin films, including crystalline structure, grain size and shape and optical properties were investigated. Experimental results, obtained from X-ray diffraction (XRD), showed that the prepared films crystallised predominantly in the CeO{sub 2} cubic fluorite structure, although evidence of Ce{sub 2}O{sub 3} was also seen and this was quantified by a Rietveld refinement. The anneal temperature and oxygen content of the Ar/O{sub 2} annealing atmosphere both played important roles on the size and shape of the nanocrystals as determined by atomic force microscopy (AFM). The average grain size (determined by an AFM) as well as the out of plane coherence length (obtained from XRD) varied with increasing oxygen flow rate (OFR) in the annealing chamber. In addition, the shape of the grains seen in the AFM studies transformed from circular to triangular as the OFR was raised from 20 sccm to 30 sccm during an 800 °C thermal anneal. X-ray photoelectron spectroscopy was used to measure near-surface oxidation states of the thin-films with varying OFR in the annealing chamber. The bandgap energies were estimated from the ultra-violet and visible absorption spectra and low-temperature photoluminescence. An extracted bandgap value of 3.04 eV was determined for as-deposited CeO{sub 2} films and this value increased with increasing annealing temperatures. However, no difference was observed in bandgap energies with variation of annealing atmosphere. - Highlights: • Deposition of ceria thin films by pulsed DC magnetron sputtering • Effect of annealing temperature and gas ambient on film crystalline structure • Evidence for control of the film roughness and grain size and shape is achieved. • Investigation of the effect of post-deposition annealing on the film stoichiometry • Films showed blue shifts in bandgap energies

  6. Study of optical and dielectric properties of annealed ZnO nanoparticles in the terahertz regime

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-wei; Boon Kuan Woo; TIAN Zhen; HAN Jia-guang; CHEN Wei; ZHANG Wei-li

    2009-01-01

    The frequency-dependent optical and dielectric properties of annealed ZnO nanoparticles in the range of 0.1 to 0.9 THz are studied by using terahertz time-domain spectroscopy (THz-TDS). The refractive index, power absorption and complex dielectric constants are obtained and the experimental results are well fit with a simple effective medium theory in conjunc-tion with a pseudo-harmonic model. This study reveals that annealed ZnO nanoparticles exhibit the similar phonon response characteristics to the single ZnO crystal and other ZnO nanostructures, such as tetrapods and nanowires.

  7. Surface recrystallization of a Ni_3Al based single crystal superalloy at different annealing temperatures and blasting pressure

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The effects of annealing temperature and grit blasting pressure on the recrystallization behavior of a Ni3Al based single crystal superalloy were studied in this work. The results show that the precipitation of the Y-NiMo phase occurs at 900 and 1000 °C, which precedes recrystallization. The initial recrystallization temperature was between 1000 and 1100 °C. Cellular recrystallization was formed at 1100 and 1200 °C, which consisted of large columnar γ′ and fine γ + γ′. The dendrite arm closed to the interde...

  8. Subtleties in crystal structure solution from powder diffraction data using simulated annealing: ranitidine hydrochloride.

    Science.gov (United States)

    Huq, Ashfia; Stephens, P W

    2003-02-01

    Recent advances in crystallographic computing and availability of high-resolution diffraction data have made it relatively easy to solve crystal structures from powders that would have traditionally required single crystal samples. The success of direct space methods depends heavily on starting with an accurate molecular model. In this paper we address the applicability of using these methods in finding subtleties such as disorder in the molecular conformation that might not be known a priori. We use ranitidine HCl as our test sample as it is known to have a conformational disorder from single crystal structural work. We redetermine the structure from powder data using simulated annealing and show that the conformational disorder is clearly revealed by this method.

  9. Ga crystallization dynamics during annealing of self-assisted GaAs nanowires.

    Science.gov (United States)

    Scarpellini, David; Fedorov, Alexey; Somaschini, Claudio; Frigeri, Cesare; Bollani, Monica; Bietti, Sergio; Nöetzel, Richard; Sanguinetti, Stefano

    2017-01-27

    In As atmosphere, we analyzed the crystallization dynamics during post-growth annealing of Ga droplets residing at the top of self-assisted GaAs nanowires grown by molecular beam epitaxy. The final crystallization steps, fundamental to determining the top facet nanowire morphology, proceeded via a balance of Ga crystallization via vapor-liquid-solid and layer-by-layer growth around the droplet, promoted by Ga diffusion out of the droplet perimeter, As desorption, and diffusion dynamics. By controlling As flux and substrate temperature the transformation of Ga droplets into nanowire segments with a top surface flat and parallel to the substrate was achieved, thus opening the possibility to realize atomically sharp vertical heterostructures in III-As self-assisted nanowires through group III exchange.

  10. Lattice location of platinum ions implanted into single crystal zirconia and their annealing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D.X. [Royal Melbourne Inst. of Tech., VIC (Australia); Sood, D.K. [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research; Brown, I.G. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31

    Single crystal samples of (100) oriented cubic zirconia stabilised with 9.5 mol % yttria were implanted with platinum ions, using a metal vapour vacuum arc (MEVVA) high current ion implanter, to a nominal dose of 1x10{sup 17} ions/cm{sup 2}. The implanted samples were annealed isothermally in air ambient at 1200 deg C, from 1-24 hours. Rutherford Backscattering Spectrometry and Channeling (RBSC) of 2 MeV He ions are employed to determine depth distributions of ion damage, Pt ions and substitutionality of Pt ions before and after annealing. The damage behaviour, Pt migration and lattice location are discussed in terms of metastable phase formation and solid solubility considerations. 7 refs., 3 figs.

  11. Resistive switching behavior in single crystal SrTiO3 annealed by laser

    Science.gov (United States)

    Pan, Xinqiang; Shuai, Yao; Wu, Chuangui; Luo, Wenbo; Sun, Xiangyu; Yuan, Ye; Zhou, Shengqiang; Ou, Xin; Zhang, Wanli

    2016-12-01

    Single crystal SrTiO3 (STO) wafers were annealed by XeCl laser (λ = 308 nm) with different fluences of 0.4 J/cm2, 0.6 J/cm2 and 0.8 J/cm2, respectively. Ti/Pt electrodes were sputtered on the surface of STO wafer to form co-planar capacitor-like structures of Pt/Ti/STO/Ti/Pt. Current-Voltage measurements show that the leakage current is enhanced by increasing laser fluence. Resistive switching behavior is only observed in the sample annealed by laser with relatively high fluence after an electro-forming process. The X-ray photoelectron spectroscopy measurements indicate that the amount of oxygen vacancies increases with the increase of laser fluence. This work indicates resistive switching appears when enough oxygen vacancies are generated by the laser, which form conductive filaments under an external electric field.

  12. Effect of annealing temperatures on the secondary re-crystallization of extruded PM2000 steel bar.

    Science.gov (United States)

    Chen, C-L; Tatlock, G J; Jones, A R

    2009-03-01

    The ferritic oxide dispersion-strengthened alloy PM2000 is an ideal candidate for high-temperature applications as it contains uniform nano-oxide dispersoids, which act as pinning points to obstruct dislocation and grain boundary motion and therefore impart excellent creep resistance. The development of the microstructure during re-crystallization of oxide dispersion-strengthened alloys has been discussed by a number of authors, but the precise mechanism of secondary re-crystallization still remains uncertain. Hence, this work is aimed at investigating the re-crystallization behaviour of extruded PM2000 bar for different annealing temperatures, using electron backscatter diffraction, in particular, to determine grain orientations, grain boundary misorientation angles, etc. The results show that the as-extruded bar microstructure comprises both low-angle grain boundaries pinned by oxide particles and high-angle boundaries that will have inherent boundary mobility to allow boundary migration. In addition, dynamical re-crystallization was found in the outer region of the non-heat-treated PM2000 bar, which suggested that deformation heterogeneities can be introduced during thermo-mechanical processing that enhance the nucleation of re-crystallization. Subsequent heat treatments promote and stimulate secondary re-crystallization, giving rise to large grains with few sub-grain boundaries.

  13. Annealed Crystallization and Catalytic activity of Ultrafine NiB Amorphous Alloy

    Institute of Scientific and Technical Information of China (English)

    WEIShiqing; HUTiandou; 等

    2001-01-01

    A Ultrafine amorphous NiB alloy was prepared via chemical reduction method;Its structures during the crystallizatioin precess was characterized by such techniques as Differential thermal analysis (DTA),X-ray absorption fine structure (XAFS) and X-ray diffraction(XRD),and correlated to the catalytic properties for benzene hydrogenation.It was found that the crystallization of amorphous NiB alloy was carried out in two steps,as indicated by two exothermic peaks centered at 598 and 652K respectively.During the first step.two metastable crystalline phases,i.e.,Ni3B and a noaocrstalline Ni phase(Ni-rich NiB alloy),were formed.Further annealing at higher temperature of 652 K may result in the decomposition of crystalline Ni3B and aggregation of nanocrystalline Ni,the benzene hydrogenation is optimized around the annealing temperature of 623K.It most probably results from the maximum amount of active site on nanocrystalline Ni formed by thermal treatment at appropriate annealing temperature.

  14. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.; Yang, Mengjin; Kovarik, Libor; Holesinger, Terry; Al-Jassim, Mowafak M.; Zhu, Kai; Zhou, Weilie; Berry, J. J.

    2016-07-08

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapor results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 °C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 °C in ±25 °C steps (150-200 °C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.

  15. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.; Yang, Mengjin; Kovarik, Libor; Holesinger, Terry G.; Al-Jassim, Mowafak; Zhu, Kai; Zhou, Weilie; Berry, Joseph J.

    2016-07-08

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapor results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 degrees C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 degrees C in +/-25 degrees C steps (150-200 degrees C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.

  16. Annealed Crystallization of Ni-B and Ni-Ce-B Ultrafine Amorphous Alloys Studied by EXAFS%EXAFS研究Ni-B和Ni-Ce-B 超细非晶态合金的退火晶化

    Institute of Scientific and Technical Information of China (English)

    王晓光; 闫文胜; 钟文杰; 张新夷; 韦世强

    2001-01-01

    EXAFS technique was used to quantitatively determine the local structure evolutions of Ni-B and Ni-Ce-B ultrafine amorphous alloys prepared by chemical reduction during the annealed process. The results show that the average bond length Rj, coordination number N, thermal disorder factor σT and static disorder factor σS are 0.275 nm, 11.9, 0.006 9 nm, 0.034 nm; 0.215 nm, 2.7, 0.005 5 nm, 0.003 8 nm, and 0.276 nm, 12.4, 0.006 7 nm, 0.035 nm; 0.214 nm, 2.9, 0.005 8 nm, 0.004 2 nm for the Ni-Ni and Ni-B first neighbor shells of Ni-B and Ni-Ce-B ultrafine amorphous alloys, respectively. It is indicated that the σS of Ni-Ni shell is rather larger, about four or five times as large as that of σT, and one order larger than that of σS of Ni-B shell. Ni-B sample is crystallized after being annealed at 300 ℃, and its RNi—Ni as well as σS are 0.254 nm and 0.011 nm, respectively. However, the crystallization temperature of Ni-Ce-B sample increases about 100 ℃ due to the addition of 0.3% Ce element. The local structure around Ni atom for the Ni-B sample annealed at 500 ℃ is fully similar to that of Ni foil. For the Ni-Ce-B samples annealed at 500 ℃, the σS of Ni-Ni shell is 0.007 3 nm and the N of Ni-B shell is 1.2. It implies that the Ni lattice produced from the crystallization of Ni-Ce-B amorphous alloys is significantly distorted and the interaction between Ni and B atoms is strongly increased by the effect of Ce element.%采用同步辐射EXAFS技术定量地研究化学还原法制备的Ni-B 和Ni-Ce-B超细非晶态合金中Ni原子的局域环境结构随退火温度升高而产生的变化. 结果表明, 对于Ni-B和Ni-Ce-B超细非晶态合金初始样品: Ni-Ni最邻近配位壳层的平均键长RNi—Ni、 配位数N、 热无序σT、 结构无序σS分别为0.275 nm, 11.9, 0.006 9 nm, 0.034 nm; 0.276 nm, 12.4, 0.006 7 nm, 0.035 nm. Ni-B最邻近配位壳层的RNi—B, N, σT, σS分别为0.215 nm, 2.7, 0.005 5 nm, 0.003 8 nm; 0

  17. Experimental quantum annealing: case study involving the graph isomorphism problem.

    Science.gov (United States)

    Zick, Kenneth M; Shehab, Omar; French, Matthew

    2015-06-08

    Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N(2) to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers.

  18. Work function engineering of SnO single crystal microplates with thermal annealing.

    Science.gov (United States)

    Doh, Won Hui; Jeong, Wooseok; Lee, Hyunsoo; Park, Jonghyurk; Park, Jeong Young

    2016-08-19

    We synthesized black SnO single-crystal microplates via a sonochemical process and engineered the work function of the SnO microplates using thermal treatments. The as-synthesized SnO microplates have a wide (001) plane, as is clearly evident from TEM images and diffraction patterns. Surface potential measurements on the SnO microplates show that the work function changes as the annealing temperature increases. The TEM and XAS results after thermal treatments imply that the micro-sized SnO(001) single-crystals are stable up to about 400 °C in air, after which the surface starts to become locally oxidized. Consequently, the long-range ordering and lattice parameter of the SnO(001) single crystals started to change to make polycrystalline SnO2 at about 600 °C. These results demonstrate the ability to tune the work function of the microplates and suggest an intriguing way to engineer the electrical properties of nanostructures.

  19. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M. [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nyamhere, C. [Nelson Mandela Metropolitan University, Physics Department, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8{+-}0.3) meV that has been suggested as Zn{sub i} related and possibly H-complex related and (54.5{+-}0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X{sub Zn}. The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60 Multiplication-Sign 10{sup 17} cm{sup -3} at 200 Degree-Sign C to 4.37 Multiplication-Sign 10{sup 18} cm{sup -3} at 800 Degree-Sign C.

  20. Influence of secondary phases during annealing on re-crystallization of CuInSe{sub 2} electrodeposited films

    Energy Technology Data Exchange (ETDEWEB)

    Gobeaut, A. [Laboratoire de Reactivite et Chimie des Solides, 33 rue St Leu, 80039 Amiens (France); Laffont, L., E-mail: lydia.laffont@u-picardie.f [Laboratoire de Reactivite et Chimie des Solides, 33 rue St Leu, 80039 Amiens (France); Tarascon, J.-M. [Laboratoire de Reactivite et Chimie des Solides, 33 rue St Leu, 80039 Amiens (France); Parissi, L.; Kerrec, O. [Institut de Recherche et de Developpement de l' Energie Photovoltaique, 6 quai Watier, 78401 Chatou cedex (France)

    2009-06-01

    Electrodeposited CuInSe{sub 2} thin films are of potential importance, as light absorber material, in the next generation of photovoltaic cells as long as we can optimize their annealing process to obtain dense and highly crystalline films. The intent of this study was to gain a basic understanding of the key experimental parameters governing the structural-textural-composition evolution of thin films as function of the annealing temperature via X-ray diffraction, scanning/transmission electron microscopy and thermal analysis measurements. The crystallization of the electrodeposited CuInSe{sub 2} films, with the presence of Se and orthorhombic Cu{sub 2} {sub -} {sub x}Se (o-Cu{sub 2} {sub -} {sub x}Se) phases, occurs over two distinct temperature ranges, between 220 {sup o}C and 250 {sup o}C and beyond 520 {sup o}C. Such domains of temperature are consistent with the melting of elemental Se and the binary CuSe phase, respectively. The CuSe phase forming during annealing results from the reaction between the two secondary species o-Cu{sub 2} {sub -} {sub x}Se and Se (o-Cu{sub 2} {sub -} {sub x}Se + Se {yields} 2 CuSe) but can be decomposed into the cubic {beta}-Cu{sub 2} {sub -} {sub x}Se phase by slowing down the heating rate. Formation of liquid CuSe beyond 520{sup o}C seems to govern both the grain size of the films and the porosity of the substrate-CuInSe{sub 2} film interface. A simple model explaining the competitive interplay between the film crystallinity and the interface porosity is proposed, aiming at an improved protocol based on temperature range, which will enable to enhance the film crystalline nature while limiting the interface porosity.

  1. Dynamics of interstitial atoms and vacancies during the crystallization of amorphous Si and Ge films by flash lamp annealing

    Science.gov (United States)

    Matsuo, Naoto; Yoshioka, Naoki; Heya, Akira

    2017-08-01

    We examined the dynamics of interstitial atoms and vacancies in amorphous Si (a-Si) and a-Ge films crystallized by flash lamp annealing in consideration of the self-diffusion coefficients of Si and Ge. We found that the interstitial atoms play an important role in the liquid-phase crystallization (LPC) of a-Si films, whereas the vacancies are more important for the solid-phase crystallization (SPC) of a-Si films along with the LPC and SPC of a-Ge films. For Si, the crystal defect density of the film crystallized by LPC was higher than that of the film crystallized by SPC; the opposite result was achieved for Ge. This phenomenon is considered to be attributed to the existence of interstitial atoms introduced in Si. The thermodynamic calculated results related to the relationship between the point defect and SPC or LPC supported the crystallization mechanism.

  2. High-temperature annealing of proton irradiated beryllium - A dilatometry-based study

    Science.gov (United States)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit; Savkliyildiz, Ilyas

    2016-08-01

    Ssbnd 200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 1020 cm-2 peak fluence and irradiation temperatures in the range of 100-200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  3. Optical study of annealed cobalt–porous silicon nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bouzourâa, M.-B. [Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis (Tunisia); Rahmani, M., E-mail: rahmanimehdi79@yahoo.com [Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis (Tunisia); Zaïbi, M.-A. [Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis (Tunisia); Ecole Supérieure des Sciences et Techniques de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); Lorrain, N.; Hajji, L. [Université Européenne de Bretagne, CNRS FOTON-UMR 6082, 6 rue de Kérampont, BP 80518, 22305 Lannion, Cedex (France); Oueslati, M. [Unité de Nanomatériaux et Photonique, Faculté des Sciences de Tunis, Département de Physique, 2092 El Manar, Tunis (Tunisia)

    2013-11-15

    We report Raman and photoluminescence studies of cobalt–porous silicon nanocomposites (PS/Co). Cobalt was introduced in porous silicon (PS) by immersion method using CoCl{sub 2} aqueous solution. The presence of cobalt in PS matrix was identified by FTIR spectroscopy and EDX analyses. The Raman spectroscopy revealed the presence of Si bonded to cobalt oxide in PS/Co. We discuss also the Raman spectra of PS and PS/Co samples under different annealing temperatures ranging from room temperature (RT) to 600 °C. The optical properties of PS and PS/Co were studied by photoluminescence (PL). The highest PL intensity was observed for an immersion time of 60 min. For long duration, the deposited cobalt quantity acts as energy trap and promotes the non-radiative energy transfer; it is the autoextinction phenomenon. We have studied also the effect of the annealing temperature on the PL of both PS and PS/Co samples. For PS, the annealing process leads to a rapid oxidation of the Si nanocrystallites (nc-Si). In the case of PS/Co sample, two different mechanisms are proposed; one is the desorption of Si–H{sub x(x=2,3)} with the formation of cobalt oxide for annealing temperature less than 450 °C which causes the increasing of PL intensity and the stability of PL energy, the other mechanism is the transformation of the porous silicon to silica at high temperatures (≻450°C) which leads to the decreasing of the PL intensity and the blue shift of the PL curve. -- Highlights: • Introduction of cobalt ions into porous silicon (PS) layer using immersion method. • The Co ions influence the photoluminescence (PL) intensity of PS. • Annealing the PS/Co sample leads to an improvement of the PL intensity. • The increase of the PL is due to the formation of different cobalt oxides on the PS surface.

  4. Annealing behaviour and crystal structure of RF-sputtered Bi-substituted dysprosium iron-garnet films having excess co-sputtered Bi-oxide content

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M; Nur-E-Alam, M; Alameh, K [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027 (Australia); Premchander, P; Lee, Y T [Department of Information and Communications, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712 (Korea, Republic of); Kotov, V A [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 11 Mohovaya St, Moscow, 125009 (Russian Federation); Lee, Y P, E-mail: m.vasiliev@ecu.edu.au [Quantum Photonic Science Research Center, Department of Physics, Hanyang University, 133-791 (Korea, Republic of)

    2011-02-23

    We investigate the magneto-optic properties, crystal structure and annealing behaviour of nano-composite media with record-high magneto-optic quality exceeding the levels reported so far in sputtered iron-garnet films. Bi-substituted dysprosium-gallium iron-garnet films having excess bismuth oxide content are deposited using RF co-sputtering, and a range of garnet materials are crystallized using conventional oven-annealing processes. We report, for the first time ever, the results of optimization of thermal processing regimes for various high-performance magneto-optic iron-garnet compositions synthesized and describe the evolution of the optical and magneto-optical properties of garnet-Bi-oxide composite-material films occurring during the annealing processes. The crystallization temperature boundaries of the system (BiDy){sub 3}(FeGa){sub 5}O{sub 12} : Bi{sub 2}O{sub 3} are presented. We also report the results of x-ray diffraction and energy-dispersive x-ray spectroscopy studies of this recently developed class of high-performance magneto-optic composites. Our hypothesis of iron oxides being the cause of excess optical absorption in sputtered Bi-iron-garnet films is confirmed experimentally.

  5. Heterojunctions formed by annealing of GaSe and InSe layered crystals in zinc vapor

    OpenAIRE

    Kudrynskyi Z. R.; Kovalyuk Z. D.

    2012-01-01

    The article presents a method of creating heterojunc¬tions based on semiconductors with different lattice types. Substrates manufactured from GaSe and InSe layered crystals were annealed in Zn vapor. This way, n-ZnSe–p-GaSe and n-ZnSe–p-InSe heterojunctions were obtained. The obtained heterojunctions are photo¬sensitive in near and infrared spectral regions. This method opens up greate possibilities of producing heterostructures with a desired sensitivity band.

  6. Heterojunctions formed by annealing of GaSe and InSe layered crystals in zinc vapor

    Directory of Open Access Journals (Sweden)

    Kudrynskyi Z. R.

    2012-12-01

    Full Text Available The article presents a method of creating heterojunc¬tions based on semiconductors with different lattice types. Substrates manufactured from GaSe and InSe layered crystals were annealed in Zn vapor. This way, n-ZnSe–p-GaSe and n-ZnSe–p-InSe heterojunctions were obtained. The obtained heterojunctions are photo¬sensitive in near and infrared spectral regions. This method opens up greate possibilities of producing heterostructures with a desired sensitivity band.

  7. Study on the Evolution of Crystal Structure of Poly(-caprolactone)During Annealing Process%退火过程中聚己内酯片晶结构的演变

    Institute of Scientific and Technical Information of China (English)

    于翔; 王延伟; 顾彩红

    2013-01-01

    利用一维相关函数研究了退火过程对聚已内酯(PCL)片晶形态与结构的影响.根据广角X射线散射(WAXS)数据计算了PCL的质量结晶度Wc,进而求得其体积结量度Vc.对小角X射线散射(SAXS)谱线进行一维相关函数分析后得到了PCL的片晶长周期(Lp)和无定形层厚度(La),而后求得过渡层厚度(E).结果表明:PCL在较低温度(30℃)充分等温结晶后,延长等温结晶时间,其相对结晶度基本不变晶体发生明显的等温增厚现象;晶体在升温过程中,片晶首先发生退火增厚,部分无定形区与过渡区转变为晶区的一部分,晶区厚度(Lc)增大,La与E略有减小;随着温度的进一步提高,较薄的片晶首先熔融,从晶区中溢出后进入无定形区或过渡区,故Lc随之降低,La与E逐渐增大;量后所有片晶全部转变为无定形状态.%The effect of thermal annealing process on the lamellar morphology of poly(ε-caprolactone) was investigated by using simultaneous measurement of wide-angle/small-angle X-ray scattering (SAXS/WAXS) and one-dimensional correlation function (1DCF) analysis. On the basis of the weight fraction of crystallinity obtained from WAXS result, the volume fraction crystallinity (Vc(WAXS)) of PCL was calculated. The long period (LP) and thickness of the amorphous region (La) were obtained through the 1DCF analysis of SAXS profiles, and then the lamellar thickness of the transition zone between the crystalline and amorphous region (E) was deduced. The results show that: during the isothermal process of 30 ℃, the relative crystallinity of PCL is invariant basicly and the lamellar thickens. Alternatively, during the beginning of heating annealing process, PCL lamellar thickens with increase of the heating temperature, and La and E decrease slightly. And then the thinner PCL melts firstly and then overflows into amorphous region or transition region. Finally, the lamellar turns completely into amorphous state.

  8. Impact of thermal annealing on nonequilibrium carrier dynamics in single-crystal, freestanding GaAs mesostructures

    Science.gov (United States)

    Mikulics, M.; Hardtdegen, H.; Adam, R.; Grützmacher, D.; Gregušová, D.; Novák, J.; Kordoš, P.; Sofer, Z.; Serafini, J.; Zhang, J.; Sobolewski, Roman; Marso, M.

    2014-04-01

    We report on the impact of thermal annealing to carrier transport and transient, subpicosecond photoresponse of freestanding GaAs mesostructures. Our measurements included micro-photoluminescence and dark current and responsivity studies as well as optical femtosecond characterization. The fabricated GaAs mesostructures consisted of both mesowires and platelets that were integrated into coplanar striplines to form a photoconductive switch. We demonstrate that an optimized annealing process of our mesostructures, performed at 600 °C for 20 min, led to restoring bulklike properties of our freestanding devices. They exhibited dark currents below 600 pA at 10 V bias, responsivity of 0.2 A W-1 at 30 V, and mobility as high as 7300 cm2 V s-1. The annealed freestanding GaAs photodetectors were characterized by subpicosecond carrier relaxation dynamics with negligible trapping and a cutoff frequency of 1.3 THz. The latter characteristics make them excellent candidates for THz-bandwidth optoelectronics.

  9. Isothermal Cold Crystallization, Heat Resistance, and Tensile Performance of Polylactide/Thermoplastic Polyester Elastomer (PLA/TPEE Blends: Effects of Annealing and Reactive Compatibilizer

    Directory of Open Access Journals (Sweden)

    Sisi Wang

    2016-12-01

    Full Text Available The combined influences of crystallinity and reactive compatibilizer—a multifunctional epoxide (ADR—on morphology, tensile performance, and heat resistance of polylactide/thermoplastic polyester elastomer (PLA/TPEE (80/20 blends were investigated. Annealing involved an isothermal cold crystallization of PLA matrix was performed to increase crystallinity of the samples. First, isothermal cold crystallization kinetics were investigated using differential scanning calorimetry measurement. It was found that the addition of ADR decreased the crystallization rate of the samples. The maximum crystallinity of the annealed samples also decreased from 40% to 34% while ADR loading increased from zero to 1.0 phr. Furthermore, influence of crystallinity on mechanical performances of the PLA/TPEE sample was researched. The heat resistance of the sample showed a significant enhancement while increasing its crystallinity. Meanwhile, the tensile ductility of the crystallized PLA/TPEE sample became very poor due to the embrittlement with increased crystallinity and the incompatibility between PLA and TPEE. However, the annealed PLA/TPEE/ADR samples with high crystallinity kept a higher tensile ductility because ADR greatly improved the interfacial compatibility. Differences in tensile fracture behaviors of the quenched and annealed PLA/TPEE samples with and without ADR were discussed in detail. At last, crystallized PLA/TPEE/ADR blends with excellent heat resistance and high tensile ductility were obtained by annealing and reactive compatibilization.

  10. The effect of furnace annealing and surface crystallization on the anisotropy, {delta}E and magnetoimpedance effects in Fe{sub 71}Cr{sub 7}Si{sub 9}B{sub 13} amorphous wires

    Energy Technology Data Exchange (ETDEWEB)

    Bayri, N; Kolat, V S; Atalay, F E; Atalay, S [Physics Department, Science and Arts Faculty, Inonu University, 44069 Malatya (Turkey)

    2004-11-21

    The dependence of the magnetization loops, coercivity, anisotropy constant, {delta}E and magnetoimpedance (MI) effects in positively magnetostrictive Fe{sub 71}Cr{sub 7}Si{sub 9}B{sub 13} amorphous wires on annealing conditions were studied. Samples were annealed at temperatures of 440 deg. C and 460 deg. C for durations between 0.3 and 300 min. The results indicate that progressive annealing first leads to relief of internal stresses and annealing of wires at 460 deg. C for 60 min produces the minimum coercivity of about 1 A m{sup -1}. Further annealing increases the coercivity and anisotropy, due to partial crystallization at the surface. It was found that the anisotropy changes its direction to the circumferential direction with the surface crystallization. The maximum change in Young's modulus was measured to be about 75% in a partly surface crystalline sample. It was observed that the magnitude of the MI effect of the stress relieved sample could exceed 200% at 1 MHz.

  11. Neutron Scattering Study of Low Energy Magnetic Excitation in superconducting Te-vapor annealed under-doped FeTeSe

    Science.gov (United States)

    Xu, Zhijun; Yi, Ming; Xu, Guangyong; Shneeloch, J. A.; Matsuda, Masaaki; Chi, Songxue; Gu, Genda; Tranquada, J. M.; Birgeneau, R. J.

    To study the interplay between magnetism and superconductivity, we have performed neutron scattering and magnetization measurements on a Te vapor annealed single crystal Fe1 +yTe0.8Se0.2 (Tc~13K) sample. Te vapor annealed process is found to reduce/remove the excess Fe in the as-grown sample and make the under-doped originally non-superconducting sample become good superconducting sample. Our neutron scattering studies show both spin gap and spin resonance found in the Te vapor annealed superconducting sample. Comparing to commensurate spin resonance in as-grown optimal-doped sample, the spin resonance of Te annealed sample only shows up at the clearly incommensurate positions. The temperature and energy dependence of low energy magnetic excitations are also measured in the sample. This work is supported by the Office of Basic Energy Sciences, DOE.

  12. Reduction in number of crystal defects in a p+Si diffusion layer by germanium and boron cryogenic implantation combined with sub-melt laser spike annealing

    Science.gov (United States)

    Murakoshi, Atsushi; Harada, Tsubasa; Miyano, Kiyotaka; Harakawa, Hideaki; Aoyama, Tomonori; Yamashita, Hirofumi; Kohyama, Yusuke

    2017-09-01

    To reduce the number of crystal defects in a p+Si diffusion layer by a low-thermal-budget annealing process, we have examined crystal recovery in the amorphous layer formed by the cryogenic implantation of germanium and boron combined with sub-melt laser spike annealing (LSA). The cryogenic implantation at -150 °C is very effective in suppressing vacancy clustering, which is advantageous for rapid crystal recovery during annealing. The crystallinity after LSA is shown to be very high and comparable to that after rapid thermal annealing (RTA) owing to the cryogenic implantation, although LSA is a low-thermal-budget annealing process that can suppress boron diffusion effectively. It is also shown that in the p+Si diffusion layer, there is high contact resistance due to the incomplete formation of a metal silicide contact, which originates from insufficient outdiffusion of surface contaminants such as fluorine. To widely utilize the marked reduction in the number of crystal defects, sufficient removal of surface contaminants will be required in the low-thermal-budget process.

  13. Effects of post-annealing and cobalt co-doping on superconducting properties of (Ca,Pr)Fe2As2 single crystals

    Science.gov (United States)

    Okada, T.; Ogino, H.; Yakita, H.; Yamamoto, A.; Kishio, K.; Shimoyama, J.

    2014-10-01

    In order to clarify the origin of anomalous superconductivity in (Ca,RE)Fe2As2 system, Pr doped and Pr,Co co-doped CaFe2As2 single crystals were grown by the FeAs flux method. These samples showed two-step superconducting transition with Tc1 = 25-42 K, and Tc2 < 16 K, suggesting that (Ca,RE)Fe2As2 system has two superconducting components. Post-annealing performed for these crystals in evacuated quartz ampoules at various temperatures revealed that post-annealing at ∼400 °C increased the c-axis length for all samples. This indicates that as-grown crystals have a certain level of strain, which is released by post-annealing at ∼400 °C. Superconducting properties also changed dramatically by post-annealing. After annealing at 400 °C, some of the co-doped samples showed large superconducting volume fraction corresponding to the perfect diamagnetism below Tc2 and high Jc values of 104-105 A cm-2 at 2 K in low field, indicating the bulk superconductivity of (Ca,RE)Fe2As2 phase occurred below Tc2. On the contrary, the superconducting volume fraction above Tc2 was always very small, suggesting that 40 K-class superconductivity observed in this system is originating in the local superconductivity in the crystal.

  14. Effects of annealing conditions on crystallization of the CZTS absorber and photovoltaic properties of Cu(Zn,Sn)(S,Se){sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Duy-Cuong, E-mail: cuong.nguyenduy@hust.edu.vn [Nano Optoelectronics Laboratory, Advanced Institute for Science and Technology, Hanoi University of Science and Technology, No.1 Dai Co Viet, Hai Ba Trung, Hanoi (Viet Nam); Ito, Seigo [Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); Dung, Dang Viet Anh [School of Chemical Engineering, Hanoi University of Science and Technology, No.1 Dai Co Viet, Hai Ba Trung, Hanoi (Viet Nam)

    2015-05-25

    Highlights: • CZTS films annealed under H{sub 2}S and Se ambient showed a different characterization. • The crystallizing temperature of CZTS films annealed under H{sub 2}S is higher than Se ambient. • Cell parameters of CZTS solar cells annealed Se ambient is better than H{sub 2}S ambient. • 4.94% efficiency of CZTSSe solar cells annealed under Se ambient was obtained. - Abstract: Cu(Zn,Sn)S{sub 2} (CZTS) nanoparticles were synthesized by hot-injection method. Cu(Zn,Sn)(S,Se){sub 2} (CZTSSe) solar cells were fabricated by printing method using CZTS nanocrystallites on molybdenum/glass substrate. The effects of annealing conditions such as temperature and ambient gas on microstructure and photovoltaic properties were investigated. CZTS films annealed in H{sub 2}S ambient shows low crystallinity, being peeled off easily, and poor photovoltaic characteristics, namely, the parameters of the best cell are short-circuit current density (J{sub SC}) of 4.8 mA/cm{sup 2}, open-circuit voltage (V{sub OC}) of 0.59 V, fill factor (FF) of 0.39, and conversion efficiency (η) of 1.12%. Meanwhile, CZTS films annealed under Se vapor shows high crystallinity and high cell performance: the parameters of the best cell are J{sub SC} = 26.2 mA/cm{sup 2}, V{sub OC} = 0.39, FF = 0.48, and η = 4.94%.

  15. Effect of the ion-beam bombardment and annealing temperature on sol-gel derived yttrium aluminum oxide film as liquid crystal alignment layer

    Science.gov (United States)

    Jeong, Hae-Chang; Heo, Gi-Seok; Kim, Eun-Mi; Lee, Ju Hwan; Han, Jeong-Min; Seo, Dae-Shik

    2017-02-01

    We demonstrated a homogeneous liquid-crystal (LC) alignment state on yttrium aluminum oxide (YAlO) films, where the alignment was induced by ion-beam (IB) irradiation. Topographical analysis was performed by atomic force microscopy as a function of annealing temperature. Higher annealing temperatures yielded a smoother surface, accompanied by reduced light scattering. Transparency in the visible region increased on the surface fabricated at higher annealing temperatures. LC alignment mechanism was determined by X-ray diffraction (XRD) analysis. Moreover, IB-irradiated YAlO films annealed at temperatures greater than 200 °C exhibited good thermal stability and low capacitance-voltage hysteresis. The IB-irradiated YAlO films are suitable as alternative alignment layers in advanced LC display applications.

  16. High temperature annealing studies of strontium ion implanted glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Odutemowo, O.S., E-mail: u12052613@tuks.co.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Malherbe, J.B.; Prinsloo, L.; Langa, D.F. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Wendler, E. [Institut für Festkörperphysik, Friedrich-Schiller University, Jena (Germany)

    2016-03-15

    Glassy carbon samples were implanted with 200 keV strontium ions to a fluence of 2 × 10{sup 16} ions/cm{sup 2} at room temperature. Analysis with Raman spectroscopy showed that ion bombardment amorphises the glassy carbon structure. Partial recovery of the glassy carbon structure was achieved after the implanted sample was vacuum annealed at 900 °C for 1 h. Annealing the strontium ion bombarded sample at 2000 °C for 5 h resulted in recovery of the glassy carbon substrate with the intensity of the D peak becoming lower than that of the pristine glassy carbon. Rutherford backscattering spectroscopy (RBS) showed that the implanted strontium diffused towards the surface of the glassy carbon after annealing the sample at 900 °C. This diffusion was also accompanied by loss of the implanted strontium. Comparison between the as-implanted and 900 °C depth profiles showed that less than 30% of the strontium was retained in the glassy carbon after heat treatment at 900 °C. The RBS profile after annealing at 2000 °C indicated that no strontium ions were retained after heat treatment at this temperature.

  17. High temperature annealing studies of strontium ion implanted glassy carbon

    Science.gov (United States)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L.; Langa, D. F.; Wendler, E.

    2016-03-01

    Glassy carbon samples were implanted with 200 keV strontium ions to a fluence of 2 × 1016 ions/cm2 at room temperature. Analysis with Raman spectroscopy showed that ion bombardment amorphises the glassy carbon structure. Partial recovery of the glassy carbon structure was achieved after the implanted sample was vacuum annealed at 900 °C for 1 h. Annealing the strontium ion bombarded sample at 2000 °C for 5 h resulted in recovery of the glassy carbon substrate with the intensity of the D peak becoming lower than that of the pristine glassy carbon. Rutherford backscattering spectroscopy (RBS) showed that the implanted strontium diffused towards the surface of the glassy carbon after annealing the sample at 900 °C. This diffusion was also accompanied by loss of the implanted strontium. Comparison between the as-implanted and 900 °C depth profiles showed that less than 30% of the strontium was retained in the glassy carbon after heat treatment at 900 °C. The RBS profile after annealing at 2000 °C indicated that no strontium ions were retained after heat treatment at this temperature.

  18. DLTS studies of low-temperature annealing in lithium-doped silicon. [Si:Li

    Energy Technology Data Exchange (ETDEWEB)

    Brilliantov, N.V.; Zverev, V.V. (Dept. of Physics, Moscow State Univ. (Russia)); Rudenko, A.I.; Shcherbakov, Yu.V. (Inst. of Physics and Engineering, Moscow (Russia))

    1992-03-16

    DLTS studies of annealing kinetics are carried out for 1 MeV electron irradiated lithium-doped silicon p-n solar cells. The results obtained show that during low-temperature annealing Li atoms actively interact with radiation defects, transforming them into complexes with low recombination properties. New deep levels (E{sub c} -0.36 eV) and E{sub v} +0.30 eV), associated with lithium-containing complexes are observed. A multistage annealing model for annealing of radiation defects is proposed. An explanation of the annealing kinetics as well as the identification of the new deep levels is given on the base of the model. (orig.).

  19. Isothermal Cold Crystallization, Heat Resistance, and Tensile Performance of Polylactide/Thermoplastic Polyester Elastomer (PLA/TPEE) Blends: Effects of Annealing and Reactive Compatibilizer

    OpenAIRE

    Sisi Wang; Sujuan Pang; Lisha Pan; Nai Xu; Tan Li

    2016-01-01

    The combined influences of crystallinity and reactive compatibilizer—a multifunctional epoxide (ADR)—on morphology, tensile performance, and heat resistance of polylactide/thermoplastic polyester elastomer (PLA/TPEE) (80/20) blends were investigated. Annealing involved an isothermal cold crystallization of PLA matrix was performed to increase crystallinity of the samples. First, isothermal cold crystallization kinetics were investigated using differential scanning calorimetry measurement. It ...

  20. Sensitivity study on hydraulic well testing inversion using simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shinsuke; Najita, J.; Karasaki, Kenzi

    1997-11-01

    For environmental remediation, management of nuclear waste disposal, or geothermal reservoir engineering, it is very important to evaluate the permeabilities, spacing, and sizes of the subsurface fractures which control ground water flow. Cluster variable aperture (CVA) simulated annealing has been used as an inversion technique to construct fluid flow models of fractured formations based on transient pressure data from hydraulic tests. A two-dimensional fracture network system is represented as a filled regular lattice of fracture elements. The algorithm iteratively changes an aperture of cluster of fracture elements, which are chosen randomly from a list of discrete apertures, to improve the match to observed pressure transients. The size of the clusters is held constant throughout the iterations. Sensitivity studies using simple fracture models with eight wells show that, in general, it is necessary to conduct interference tests using at least three different wells as pumping well in order to reconstruct the fracture network with a transmissivity contrast of one order of magnitude, particularly when the cluster size is not known a priori. Because hydraulic inversion is inherently non-unique, it is important to utilize additional information. The authors investigated the relationship between the scale of heterogeneity and the optimum cluster size (and its shape) to enhance the reliability and convergence of the inversion. It appears that the cluster size corresponding to about 20--40 % of the practical range of the spatial correlation is optimal. Inversion results of the Raymond test site data are also presented and the practical range of spatial correlation is evaluated to be about 5--10 m from the optimal cluster size in the inversion.

  1. Effect of Thermal Annealing on the Characteristics of Phosphorus-Implanted ZnO Crystals

    Science.gov (United States)

    Jeong, T. S.; Yu, J. H.; Mo, H. S.; Kim, T. S.; Lim, K. Y.; Youn, C. J.; Hong, K. J.; Kim, H. S.

    2014-07-01

    A P-doped ZnO surface layer on undoped ZnO wafers was prepared by phosphorus (P) ion implantation. Hall effect measurement revealed p-type conduction in such layers annealed at 800°C. This indicates that acceptor levels are present in P-doped ZnO, even though the ZnO is still n-type. Micro-Raman scattering in - z( xy) z geometry was conducted on P-implanted ZnO. The E {2/high} mode shift observed toward the high-energy region was related to compressive stress as a result of P-ion implantation. This compressive stress led to the appearance of an A 1(LO) peak, which is an inactive mode. This A 1(LO) peak relaxed during thermal annealing in ambient oxygen at temperatures higher than 700°C. The P2p3/2 peak observed at 135.6 eV by x-ray photoelectron spectroscopy is associated with chemical bond formation leading to 2(P2O5) molecules. This indicates that implanted P ions substituted Zn sites in the ZnO layer. In photoluminescence spectroscopy, the P-related peaks observed at energies ranging between 3.1 and 3.5 eV originated from (A0, X) emission, because of PZn-2VZn complexes acting as shallow acceptors. The acceptor level was observed to be 126.9 meV above the valence band edge. Observation of this P-related emission indicates that ion implantation results in acceptor levels in the P-doped ZnO layer. This suggests that the P2O5 bonds are responsible for the p-type activity of P-implanted ZnO.

  2. Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Ma, Wen [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Yildiz, Bilge [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States)

    2016-08-21

    During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction rates of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.

  3. CDF Run II Silicon Vertex Detector Annealing Study

    CERN Document Server

    Stancari, M; Behari, S; Christian, D; Di Ruzza, B; Jindariani, S; Junk, T R; Mattson, M; Mitra, A; Mondragon, M N; Sukhanov, A

    2013-01-01

    Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron collider delivered 12~fb$^{-1}$ of $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV to the Collider Detector at Fermilab (CDF). During that time, the CDF silicon vertex detector was subject to radiation doses of up to 12 Mrad. After the end of operations, the silicon detector was annealed for 24 days at $18^{\\circ}$C. In this paper, we present a measurement of the change in the bias currents for a subset of sensors during the annealing period. We also introduce a novel method for monitoring the depletion voltage throughout the annealing period. The observed bias current evolution can be characterized by a falling exponential term with time constant $\\tau_I=17.88\\pm0.36$(stat.)$\\pm0.25$(syst.) days. We observe an average decrease of $(27\\pm3)\\%$ in the depletion voltage, whose evolution can similarly be described by an exponential time constant of $\\tau_V=6.21\\pm0.21$ days. These results are consistent with the Ham...

  4. Crystal structure and photoluminescence correlations in white emitting nanocrystalline ZrO{sub 2}:Eu{sup 3+} phosphor: Effect of doping and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Dhiren Meetei, S. [Department of Physics, Manipur University, Canchipur, Imphal 795003 (India); Dorendrajit Singh, S., E-mail: dorendrajit@yahoo.co.in [Department of Physics, Manipur University, Canchipur, Imphal 795003 (India); Shanta Singh, N. [Department of Physics, Manipur University, Canchipur, Imphal 795003 (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ningthoujam, R.S., E-mail: rsn@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, M.; Gadkari, S.C. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tewari, R. [Material Science Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vatsa, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2012-02-15

    White emitting nanocrystalline ZrO{sub 2}:Eu{sup 3+} phosphors were synthesized by a simple precipitation route without using a capping agent. X-ray diffraction (XRD) study of ZrO{sub 2} and ZrO{sub 2}:Eu{sup 3+}samples revealed the presence of monoclinic and tetragonal phases. The monoclinic phase increases with increase in the annealing temperature while the tetragonal phase increases with increase in the concentration of Eu{sup 3+}. This can be attributed to the presence of oxygen vacancy evolved when Zr{sup 4+} is replaced by Eu{sup 3+}. Photoluminescence (PL) emission peaks of Eu{sup 3+} are observed at 591, 596, 606 and 613 nm on monitoring excitation wavelengths at 250, 286, 394 and 470 nm. The peaks at 591 and 606 nm were found to correlate with the tetragonal phase and those at 596 and 613 nm with the monoclinic phase. Intensities of these peaks are found to change as the crystal structure changes. The lifetime value corresponding to 591 nm peak increases with Eu{sup 3+} concentration at a particular heating temperature indicating increase of tetragonal phase with respect to monoclinic phase. The CIE co-ordinates of the doped samples were found to be close to that of white color (0.33, 0.33). The changes in the crystal structure of the doped samples due to doping and annealing did not affect the white color emission. - Highlights: Black-Right-Pointing-Pointer Both the tetragonal and monoclinic phases of ZrO{sub 2} are obtained. Black-Right-Pointing-Pointer With the increase of doping concentration, the presence of tetragonal phase increases. Black-Right-Pointing-Pointer Crystalline phase of ZrO{sub 2} changes to tetragonal phase with Eu{sup 3+} concentration ({<=}10%). Black-Right-Pointing-Pointer The samples give white emission.

  5. Low-temperature (˜180 °C) position-controlled lateral solid-phase crystallization of GeSn with laser-anneal seeding

    Science.gov (United States)

    Matsumura, Ryo; Chikita, Hironori; Kai, Yuki; Sadoh, Taizoh; Ikenoue, Hiroshi; Miyao, Masanobu

    2015-12-01

    To realize next-generation flexible thin-film devices, solid-phase crystallization (SPC) of amorphous germanium tin (GeSn) films on insulating substrates combined with seeds formed by laser annealing (LA) has been investigated. This technique enables the crystallization of GeSn at controlled positions at low temperature (˜180 °C) due to the determination of the starting points of crystallization by LA seeding and Sn-induced SPC enhancement. The GeSn crystals grown by SPC from LA seeds showed abnormal lateral profiles of substitutional Sn concentration. These lateral profiles are caused by the annealing time after crystallization being a function of distance from the LA seeds. This observation of a post-annealing effect also indicates that GeSn with a substitutional Sn concentration of up to ˜10% possesses high thermal stability. These results will facilitate the fabrication of next-generation thin-film devices on flexible plastic substrates with low softening temperatures (˜250 °C).

  6. Czochralski crystal growth: Modeling study

    Science.gov (United States)

    Dudukovic, M. P.; Ramachandran, P. A.; Srivastava, R. K.; Dorsey, D.

    1986-01-01

    The modeling study of Czochralski (Cz) crystal growth is reported. The approach was to relate in a quantitative manner, using models based on first priniciples, crystal quality to operating conditions and geometric variables. The finite element method is used for all calculations.

  7. Influence of air annealing temperature and time on the optical properties of Yb:YAG single crystal grown by HDS method

    Science.gov (United States)

    Nie, Ying; Liu, Yang; Zhao, Yequan; Zhang, Mingfu

    2015-08-01

    8 at.% Yb:YAG plate single crystal with the dimension of 170 mm × 150 mm × 30 mm was grown in vacuum by Horizontal Directional Solidification method. Aimed at blue-green color centers, annealing treatments of 15 mm × 15 mm × 1 mm samples from 900 °C to 1400 °C for 5 h and at 900 °C from 5 h to 40 h in air were conducted. The absorption spectra, emission spectra, fluorescence lifetime and X-ray photoelectron spectroscopy of samples under different annealing conditions were measured at room temperature, respectively. Annealing at above 1000 °C for 5 h or at 900 °C for 40 h made the blue-green color centers disappear and the samples turned to transparent. Absorption coefficients decreased in the 300 nm-800 nm wavelength range, emission intensities increased and emission bands broadened around 486 nm and 1029 nm with increasing temperature up to 1200 °C, then varied inversely. These values decreased or increased monotonically with increasing annealing time at 900 °C. The maximal increases of fluorescence lifetime were 62.3% and 64.7%, respectively. The calculated emission cross section of 1200 °C for 5 h was up to 4.4 × 10-20 cm2. In X-ray photoelectron spectroscopy, the concentrations of oxygen vacancies reduced from 1.28% down to absence by annealing. These experiments show that color centers are detrimental to the optical properties of HDS-Yb:YAG laser crystal and optimal annealing treatments should be conducted.

  8. Effects of post-annealing and cobalt co-doping on superconducting properties of (Ca,Pr)Fe{sub 2}As{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T., E-mail: 8781303601@mail.ecc.u-tokyo.ac.jp; Ogino, H.; Yakita, H.; Yamamoto, A.; Kishio, K.; Shimoyama, J.

    2014-10-15

    Highlights: • Post-annealing at 400 °C killed superconductivity for Co-free sample. • Pr,Co co-doped samples maintained superconductivity even after annealing. • Two-step superconducting transition was observed via magnetization measurement. • Bulk superconductivity of low-T{sub c} component was confirmed. • Superconducting volume fraction of high-T{sub c} component was always small. - Abstract: In order to clarify the origin of anomalous superconductivity in (Ca,RE)Fe{sub 2}As{sub 2} system, Pr doped and Pr,Co co-doped CaFe{sub 2}As{sub 2} single crystals were grown by the FeAs flux method. These samples showed two-step superconducting transition with T{sub c1} = 25–42 K, and T{sub c2} < 16 K, suggesting that (Ca,RE)Fe{sub 2}As{sub 2} system has two superconducting components. Post-annealing performed for these crystals in evacuated quartz ampoules at various temperatures revealed that post-annealing at ∼400 °C increased the c-axis length for all samples. This indicates that as-grown crystals have a certain level of strain, which is released by post-annealing at ∼400 °C. Superconducting properties also changed dramatically by post-annealing. After annealing at 400 °C, some of the co-doped samples showed large superconducting volume fraction corresponding to the perfect diamagnetism below T{sub c2} and high J{sub c} values of 10{sup 4}–10{sup 5} A cm{sup −2} at 2 K in low field, indicating the bulk superconductivity of (Ca,RE)Fe{sub 2}As{sub 2} phase occurred below T{sub c2}. On the contrary, the superconducting volume fraction above T{sub c2} was always very small, suggesting that 40 K-class superconductivity observed in this system is originating in the local superconductivity in the crystal.

  9. Annealing Studies of magnetic Czochralski silicon radiation detectors

    CERN Document Server

    Pellegrini, G; Fleta, C; Lozano, M; Rafí, J M; Ullán, M

    2005-01-01

    Silicon wafers grown by the Magnetic Czochralski (MCZ) method have been processed in form of pad diodes at Instituto de Microelectrónica de Barcelona (IMB-CNM) facilities. The n-type MCZ wafers were manufactured by Okmetic and they have a nominal resistivity of 1 kΩ cm. Diodes were characterized by reverse current and capacitance measurements before and after irradiations. The MCZ diodes were irradiated in a 24 GeV proton beam at CERN PS facilities and their annealing behavior with time was compared to that shown by oxygenated FZ diodes processed in the same way. FZ and MCZ diodes were irradiated up to fluences of 1016 p/cm2 which corresponds to the maximum fluence foreseen in the inner part of the future ATLAS upgrade in view of a Super-LHC with an increase in the luminosity.

  10. Annealing Behavior of Si1-xGex/Si Heterostructures

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The behavior of Si1-xGex/Si heterostructures under different annealing conditions has been studied. It is found that while RTA treatment diminishes the point defects, it introduces the misfit dislocations into Si1-xGex layers at same time. Higher annealing temperature will result in the propagation of misfit dislocations and then the total destruction of the crystal quality.

  11. High dopant activation of phosphorus in Ge crystal with high-temperature implantation and two-step microwave annealing

    Science.gov (United States)

    Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi

    2016-09-01

    In this letter, high-temperature ion implantation and low-temperature microwave annealing were employed to achieve high n-type active concentrations, approaching the solid solubility limit, in germanium. To use the characteristics of microwave annealing more effectively, a two-step microwave annealing process was employed. In the first annealing step, a high-power (1200 W; 425 °C) microwave was used to achieve solid-state epitaxial regrowth and to enhance microwave absorption. In the second annealing step, contrary to the usual process of thermal annealing with higher temperature, a lower-power (900 W; 375 °C) microwave process was used to achieve a low sheet resistance, 78Ω/◻, and a high carrier concentration, 1.025 × 1020 P/cm3, which is close to the solid solubility limit of 2 × 1020 P/cm3.

  12. Study of annealing effects on structural and sorption properties of low energy mechanically alloyed AB{sub 5}'s

    Energy Technology Data Exchange (ETDEWEB)

    Talaganis, B.A., E-mail: talaganb@ib.cnea.gov.a [Instituto Balseiro (UNCu) and CNEA, Av. Bustillo Km. 9.5 (R8402AGP), Bariloche, Rio Negro (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Esquivel, M.R. [Instituto Balseiro (UNCu) and CNEA, Av. Bustillo Km. 9.5 (R8402AGP), Bariloche, Rio Negro (Argentina); Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); C.R.U.B.-U.N.Co. Quintral 1250 (R8400FRF), Bariloche, Rio Negro (Argentina); Meyer, G. [Instituto Balseiro (UNCu) and CNEA, Av. Bustillo Km. 9.5 (R8402AGP), Bariloche, Rio Negro (Argentina); Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2010-04-16

    In this work, various AB{sub 5}'s were mechanically alloyed using a low energy mill until final or completion milling stages were reached. This process leaves micro- and nano-structured materials with highly distorted microstructures. Then, further annealing is needed to obtain an intermetallic suitable for hydrogen thermal compression process. After milling, the samples were annealed and analyzed by X-ray diffraction and Differential Scanning Calorimetry. Hydriding properties were studied using volumetric methods. After annealing at 200 {sup o}C for 24 h no changes occur in neither structural nor hydriding properties. For samples annealed at 400 {sup o}C, relaxation effects of the structure were observed. It occurs due to the release of strain produced by annealing on the microstructure. It leads to the improvements in both structural and hydriding properties. Strong recrystallization effect was present between 400 and 600 {sup o}C. At 600 {sup o}C, the main improvements were larger crystallite size, lower strain values and pressure-composition isotherms with well-defined plateaus. Despite this behavior, no evidence of crystallization was observed by Differential Scanning Calorimetry measurements from room temperature up to 500 {sup o}C. These topics, the amount of energy supplied during mechanical alloying and the correlation between the structural and sorption properties are discussed according to the governing mechanisms of recrystallization observed in each temperature range. From these results, an improved synthesis-thermal treatment method is outlined.

  13. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits—A comparative study

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver......-annealing kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted...

  14. Annealing behavior of impurities and defects in keV Er-implanted ZnO bulk single crystals

    Science.gov (United States)

    Jia, Chuan-Lei; Zhang, Tong

    2013-06-01

    We have investigated the effect of implantation and annealing temperatures on crystalline quality, disorder recovery and dopant distribution in ZnO bombarded with Er ions using Rutherford backscattering/channeling spectrometry. The channeling results indicate that the damage retains a low level in as-implanted samples due to the dynamic annealing effect during implantation at 600 °C. It is also found that the implantation disorder is well recovered when the samples are annealed at 1000 °C for 30 min. The results also demonstrate that many Er ions diffuse towards the surface during the whole annealing program. In particular, Er is distributed almost randomly after annealing at 1000 °C for 30 min.

  15. Correlation of annealing time with crystal structure, composition, and electronic properties of CH3NH3PbI3-xClx mixed-halide perovskite films.

    Science.gov (United States)

    Ralaiarisoa, Maryline; Busby, Yan; Frisch, Johannes; Salzmann, Ingo; Pireaux, Jean-Jacques; Koch, Norbert

    2016-12-21

    Using 3D imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS) complemented by grazing-incidence X-ray diffraction (GIXRD), we spatially resolve changes in both the composition and structure of CH3NH3I3-xClx perovskite films on conducting polymer substrates at different annealing stages, in particular, before and after complete perovskite crystallization. The early stage of annealing is characterized by phase separation throughout the entire film into domains with perovskite and domains with a dominating chloride-rich phase. After sufficiently long annealing, one single perovskite phase of homogeneous composition on the (lateral) micrometer scale is observed, along with pronounced film texture. This composition evolution is accompanied by diffusion of chloride from the perovskite layer towards the conducting polymer substrate, and even accumulation there. Photoelectron spectroscopy analysis further shows that perovskite films become increasingly n-type with annealing time and upon full conversion, which correlates with the change of film composition. Our results accentuate the importance of chloride for the formation of crystalline and textured films, which are crucial for enhancing the PV performance of perovskite-based solar cells.

  16. Study of Annealing Effects on Ag2O Nanoparticles Generated by Electrochemical Spark Process

    Science.gov (United States)

    Singh, Purushottam Kumar; Bishwakarma, Harish; Shubham; Das, Alok Kumar

    2017-10-01

    We describe a green process for the generation of silver oxide (Ag2O) nanoparticles from silver material through an electrochemical spark (discharge) process. The annealing operation was carried out on the produced nanoparticles to observe changes in the particle morphology and different properties. Ag2O nanoparticles were characterized by x-ray diffraction analysis, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, field emission scanning electron microscopy, energy-dispersive x-ray (EDX) spectroscopy and high-resolution transmission electron microscopy. With the rise in annealing temperature, the average crystal size of Ag2O nanoparticles was increased proportionally and the shape was also changed. Plate-type structures were attained with high annealing temperatures. The EDX result confirmed the presence of silver and oxygen atoms. The band gap of the nanoparticle samples, which were produced by direct current and pulsating direct current, was noted to be 1.6 eV and 1.9 eV, respectively.

  17. Study of annealing effects in In–Sb bilayer thin films

    Indian Academy of Sciences (India)

    R K Mangal; Y K Vijay

    2007-04-01

    The thin films of In–Sb having different thicknesses of antimony keeping constant thickness of indium was deposited by thermal evaporation method on ITO coated conducting glass substrates at room temperature and a pressure of 10-5 torr. The samples were annealed for 1 h at 433 K at a pressure of 10-5 torr. The optical transmission spectra of as deposited and annealed films have been carried out at room temperature. The variation in optical band gap with thickness was also observed. Rutherford back scattering and X-ray diffraction analysis confirms mixing of bilayer system. The transverse – characteristic shows mixing effect after annealing at 433 K for 1 h. This study confirms mixing of bilayer structure of semiconductor thin films.

  18. Magnetic tunneling junctions with permalloy electrodes: a study of barrier, thermal annealing, and interlayer coupling

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaoyong E-mail: xiaoyong_liu@brown.edu; Ren Cong; Ritchie, Lance; Schrag, B.D.; Xiao Gang; Li Laifeng

    2003-11-01

    Magnetic properties of Ni{sub 81}Fe{sub 19}/Al{sub 2}O{sub 3}/Ni{sub 81}Fe{sub 19} tunneling junctions are studied for different Al thicknesses and plasma oxidation times. A maximal magnetoresistance of 34% is obtained with Al thickness of 20 A. Magnetometry reveals large exchange bias fields ({approx}400 Oe) over a wide range of barrier thicknesses, indicating junctions of high quality. Transport measurements conducted on junctions before and after thermal annealing show a dramatic improvement in barrier quality after annealing. Interlayer coupling fields have been measured as a function of barrier thickness for different oxidation times.

  19. Study on fine annealing process of the large-aperture K9 glasses

    Science.gov (United States)

    Gang, Wang; Bin, Liu Yi; Zheng, Li Li; Hui, Zhang; Lei, Xie; Min, Qiu Fu; Ping, Ma; Yao, Yan Ding

    2016-10-01

    Study on fine annealing process of the large-aperture K9 glasses was carried out in the report. The process parameters of glass placed way, fan speed and design of the cavity for keeping temperature uniformity were attained. By the fine annealing experiment, the stress distribution was improved evidently. The stress changed from Irregular distribution to consistency symmetric distribution and the stress max was reduced. The surface profile accuracy of the large-aperture K9 glasses was controlled steadily during CNC polishing.

  20. In operandi observation of dynamic annealing: A case study of boron in germanium nanowire devices

    Energy Technology Data Exchange (ETDEWEB)

    Koleśnik-Gray, Maria M.; Krstić, Vojislav, E-mail: vojislav.krstic@fau.de [Department of Physics, Chair for Applied Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen (Germany); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), and AMBER at CRANN, Trinity College Dublin, College Green, Dublin 2 (Ireland); School of Physics, Trinity College Dublin, College Green, Dublin 2 (Ireland); Sorger, Christian; Weber, Heiko B. [Department of Physics, Chair for Applied Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058 Erlangen (Germany); Biswas, Subhajit; Holmes, Justin D. [Materials Chemistry and Analysis Group, Department of Chemistry, Tyndall Institute, University College Cork, Cork (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), and AMBER at CRANN, Trinity College Dublin, College Green, Dublin 2 (Ireland)

    2015-06-08

    We report on the implantation of boron in individual, electrically contacted germanium nanowires with varying diameter and present a technique that monitors the electrical properties of a single device during implantation of ions. This method gives improved access to study the dynamic annealing ability of the nanowire at room temperature promoted by its quasi-one-dimensional confinement. Based on electrical data, we find that the dopant activation efficiency is nontrivially diameter dependent. As the diameter decreases, a transition from a pronounced dynamic-annealing to a radiation-damage dominated regime is observed.

  1. CdCl{sub 2} activation treatment: A comprehensive study by monitoring the annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bing Lei; Rimmaudo, Ivan; Salavei, Andrei [LAPS-Laboratory for Applied Physics, Department of Computer Science, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona (Italy); Piccinelli, Fabio [Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Di Mare, Simone [LAPS-Laboratory for Applied Physics, Department of Computer Science, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona (Italy); Menossi, Daniele; Bosio, Alessio; Romeo, Nicola [Physics and Earth Science Department, University of Parma, V.le G.P. Usberti 7A, 43124 (Italy); Romeo, Alessandro, E-mail: alessandro.romeo@univr.it [LAPS-Laboratory for Applied Physics, Department of Computer Science, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona (Italy)

    2015-05-01

    CdTe thin film solar cells have demonstrated high scalability, high efficiency and low cost fabrication process. One of the key factors for the achievements of this technology is the transformation of the absorber layer by an activation treatment where chlorine reacts with CdTe in a controlled atmosphere or in air, improving the electrical properties of the absorber and enhancing the intermixing of the CdS/CdTe layers. With this work we study the activation process by analyzing the CdCl{sub 2} treatment made by wet deposition with different annealing temperatures from 310 °C up to 410 °C in air keeping the same CdCl{sub 2} concentration in methanol solution. In this way the whole dynamic of the chemical reaction from the minimum activation energy is analyzed. Activated CdTe layers have been analyzed by means of X-ray diffraction and atomic force microscopy. Finished devices with efficiencies from 8% for the low temperature annealing up to more than 14% for the high temperature ones have been thoroughly analyzed by current-voltage, capacitance-voltage and drive-level capacitance profiling techniques. The best performance has been achieved with an annealing temperature of 395 °C. - Highlights: • CdCl{sub 2} treatment with 6 different annealing temperatures has been studied. • The amount and the nature of defects change drastically with temperature. • Jsc is proportional to annealing temperature and to grain size. • Efficiency increases with annealing temperature until a threshold is reached.

  2. Studies of growth, microstructure, Raman spectroscopy and annealing effect of pulsed laser deposited Ca-doped NBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Palai, R [Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Romans, E J [Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Martin, R W [Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Docherty, F T [Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL (United Kingdom); Maas, P [Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom); Pegrum, C M [Department of Physics, University of Strathclyde, Glasgow, G4 0NG (United Kingdom)

    2005-01-07

    Superconducting thin films of Nd{sub 1-x}Ca{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (x = 0.03 and 0.08) have been grown on single crystal SrTiO{sub 3} substrates by pulsed laser deposition. The statistical methods of Experimental Design and regression analysis were used to optimize the film properties and to understand the correlation between the growth parameters and film properties. The orientation of the films was investigated by x-ray diffraction. The surface morphology of the films was examined by atomic force microscopy and scanning tunnelling microscopy. Qualitative and quantitative elemental analyses of the films were carried out using electron probe microanalysis. Micro-Raman spectroscopy was used to study the oxygen sublattice vibrations of the films. The effect of annealing on the superconducting transition temperature of the patterned films was also studied.

  3. Synthesis of β-Ga{sub 2}O{sub 3} microstructures with efficient photocatalytic activity by annealing of GaSe single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Filippo, Emanuela, E-mail: emanuela.filippo@unisalento.it [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 (Italy); Tepore, Marco [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 (Italy); Baldassarre, Francesca; Siciliano, Tiziana; Micocci, Goacchino [Department of Cultural Heritage, University of Salento, Lecce I-73100 (Italy); Quarta, Gianluca; Calcagnile, Lucio [Department of Engineering for Innovation, University of Salento, Monteroni Street, Lecce I-73100 (Italy); Tepore, Antonio [Department of Cultural Heritage, University of Salento, Lecce I-73100 (Italy)

    2015-05-30

    Graphical abstract: - Highlights: • Novel β-Ga{sub 2}O{sub 3} microstructures were achieved through annealing of GaSe single crystal. • Micro-flowers and leaves were characterized through XRD, SEM and Raman spectroscopy. • A possible growth mechanism was proposed. • Photocatalytic performance was evaluated. - Abstract: The synthesis of new β-Ga{sub 2}O{sub 3} microstructures was achieved through rapid annealing of GaSe single crystal at 850 °C in oxygen–ammonia co-flow for 30–120 min duration. The obtained micro-flowers and micro-leaves were carefully characterized through X-ray diffraction, scanning electron microscopy and Raman spectroscopy. SEM images demonstrated that the product consisted of flower-shaped microstructures, which as time elapsed evolved into leaves-like dendritic microstructures. These microstructures started off directly from oxidized single crystal. A possible growth mechanism was also proposed. Experimental results evidenced that synthesized microstructures exhibited good photocatalytic activity, better than commercial TiO{sub 2} powder (Degussa P25)

  4. Influence of photoexcitation on the EPR spectra of Mo5+ in Li2Zn2(MoO4)3: Ce3+,Cu2+ crystals annealed in a CO2 atmosphere

    Science.gov (United States)

    Ryadun, A. A.; Nadolinny, V. A.; Pavlyuk, A. A.; Trifonov, V. A.

    2013-04-01

    The influence of recovery annealing in a CO2 atmosphere at 700°C on the properties of Li2Zn2(MoO4)3 crystals doped with cerium and copper ions has been studied. The EPR investigation of Li2Zn2(MoO4)3 crystals annealed in a CO2 atmosphere has revealed that the annealing leads to the formation of oxygen vacancies in positions adjacent to the oxygen octahedron of lithium, M3, and the oxygen tetrahedron of molybdenum, Mo1. In this case, the charge state of molybdenum becomes Mo5+ and appears in the EPR spectra in the form of one magnetically nonequivalent position. The analysis of the angular dependence of the EPR spectrum of Mo5+ made it possible to calculate the spectral parameters g ∥ = 1.862, g ⊥ = 1.933, A ∥ = 71.8 G, and A ⊥ = 34.1 G. The cross relaxation on the hyperfine structure from the molybdenum isotope 97Mo is found in the EPR spectra. The photoexcitation of Li2Zn2(MoO4)3 crystal doped with cerium ions leads to the saturation of the EPR spectrum of Mo5+ and to the formation of the hyperfine structure from one lithium ion with a hyperfine structure constant of 14 G. For Li2Zn2(MoO4)3 crystals doped with copper ions, a very weak EPR spectrum of Mo5+ is observed in the initial crystals. As a result of the photoexcitation, an increase in the intensity of this spectrum by an order of magnitude and manifestation of the EPR spectrum of Cu2+ ions take place. It is assumed that such a behavior of the EPR spectra of molybdenum ions in Li2Zn2(MoO4)3 crystals doped with cerium and copper ions under photoexcitation is caused by different positions of the energy levels of cerium and copper ions with respect to the energy level of the molybdenum ion.

  5. Study on Optical Properties of Tin Oxide Thin Film at Different Annealing Temperature

    Directory of Open Access Journals (Sweden)

    Saturi Baco

    2012-07-01

    Full Text Available Tin Oxide (SnO2 thin film is one of the important transparent conducting oxides (TCOs and applied in various fields such as in solar cells, optoelectronic devices, heat mirror, gas sensors, etc due to its electrical and optical transparency in visible light spectrum. In this paper, we presented the optical properties of tin oxide thin film at four different annealing temperatures (373 K, 437 K, 573 K and 673 K prepared by radio frequency sputtering technique. The optical characteristic of these films was investigated using the UV-VIS 3101-PC Spectrophotometer. From this study, all samples exhibit high transmittance more than 70% in the visible light spectrum. Sample annealed at 473 K shows the maximum transmittance which is 87%. Refractive index, n were in the range of 2.33 – 2.80 at  = 550 nm and enhanced with the annealing temperature. However the extinction of coefficient, k was found to be very small. The optical band-edge absorption coefficients were found in the range of 104 – 105cm-1. The energy gap value was decreased with increasing annealing temperature and the type of photon transition was allowed direct transition.

  6. Effect of isochronal annealing on phase transformation studies of iron oxide nanoparticles

    Indian Academy of Sciences (India)

    Anjali J Deotale; R V Nandedkar; A K Sinha; Anuj Upadhyay; Puspen Mondal; A K Srivastava; S K Deb

    2015-06-01

    The effect of isochronal annealing on the phase transformation in iron oxide nanoparticles is reported in this work. Iron oxide nanoparticles were successfully synthesized using an ash supported technique followed by annealing for 2 h at various temperatures between 300 and 700° C. It was observed using X-ray diffraction (XRD) and transmission electron microscopy (TEM) that as-grown samples have mixed phases of crystalline haematite (α-Fe2O3) and a minor phase of either maghemite (-Fe2O3) or magnetite (Fe3O4). On annealing, the minor phase transforms gradually to haematite. The phase transformation is complete at annealing temperature of 442° C as confirmed by differential scanning calorimetric (DSC) analysis. The unresolved phases in XRD were further analysed and confirmed to be maghemite from the X-ray absorption near edge structure (XANES) studies. The magnetic measurements showed that at room temperature nano--Fe2O3 is weak ferromagnetic, and its magnetization is larger than the bulk value. The mixed phase sample shows higher value of magnetization because of the presence of ferromagnetic -Fe2O3 phase.

  7. Crystallization study of amorphous sputtered NiTi bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam, E-mail: mmohri@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-15

    The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure of the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.

  8. Topographic changes in Ni-5at.%W substrate after annealing under conditions of buffer layer crystallization

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Grivel, Jean-Claude

    2012-01-01

    twin boundaries. Average groove widths increased for all boundary types. Despite the observed changes in the extent of grain boundary grooving, the mean surface roughness was almost identical before and after the additional annealing. © 2012 Published by Elsevier B.V. Selection and/or peer-review under...

  9. Nano-crystallization in ZnO-doped In{sub 2}O{sub 3} thin films via excimer laser annealing for thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Mami N., E-mail: f-mami@ms.naist.jp; Ishikawa, Yasuaki; Bermundo, Juan Paolo Soria; Uraoka, Yukiharu [Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Ishihara, Ryoichi; Cingel, Johan van der; Mofrad, Mohammad R. T. [Delft University of Technology, Feldmannweg 17, P.O. Box 5053, 2600 GB Delft (Netherlands); Kawashima, Emi; Tomai, Shigekazu; Yano, Koki [Idemitsu Kosan Co., Ltd., 1280 Kami-izumi, Sodegaura, Chiba, 299-0293 (Japan)

    2016-06-15

    In a previous work, we reported the high field effect mobility of ZnO-doped In{sub 2}O{sub 3} (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  10. Nano-crystallization in ZnO-doped In2O3 thin films via excimer laser annealing for thin-film transistors

    Science.gov (United States)

    Fujii, Mami N.; Ishikawa, Yasuaki; Ishihara, Ryoichi; van der Cingel, Johan; Mofrad, Mohammad R. T.; Bermundo, Juan Paolo Soria; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki; Uraoka, Yukiharu

    2016-06-01

    In a previous work, we reported the high field effect mobility of ZnO-doped In2O3 (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  11. CCE measurements and annealing studies on proton-irradiated p-type MCz silicon diodes

    CERN Document Server

    Hoedlmoser, H; Köhler, M; Nordlund, H

    2007-01-01

    Magnetic Czochralski (MCz) silicon has recently been investigated for the development of radiation tolerant detectors for future high-luminosity HEP experiments. A study of p-type MCz Silicon diodes irradiated with protons up to a fluence of has been performed by means of Charge Collection Efficiency (CCE) measurements as well as standard CV/IV characterizations. The changes of CCE, full depletion voltage and leakage current as a function of fluence are reported. A subsequent annealing study of the irradiated detectors shows an increase in effective doping concentration and a decrease in the leakage current, whereas the CCE remains basically unchanged. Two different series of detectors have been compared differing in the implantation dose of p-spray isolation as well as effective doping concentration (Neff) of the p-type bulk presumably due to a difference in thermal donor (TD) activation during processing. The series with the higher concentration of TDs shows a delayed reverse annealing of Neff after irradia...

  12. Study of annealing and orientation effects on physical properties of PLA based nanocomposite films

    OpenAIRE

    Cammarano, Sara

    2010-01-01

    PLA-sepiolite and PLA-halloysite nanocomposites prepared by melt blending were systematically characterized in terms of mechanical, thermal and barrier properties. Annealing and unidirectional stretching techniques were used with the aim to improve matrix performances of nanocomposite based films; a preliminary study on the production of PLA-halloysite composites via film blowing has been also considered. Addition of unmodified clays did not significantly alter PLA properties mainly b...

  13. Annealing effect on thermodynamic and physical properties of mesoporous silicon: A simulation and nitrogen sorption study

    Science.gov (United States)

    Kumar, Pushpendra; Huber, Patrick

    2016-04-01

    Discovery of porous silicon formation in silicon substrate in 1956 while electro-polishing crystalline Si in hydrofluoric acid (HF), has triggered large scale investigations of porous silicon formation and their changes in physical and chemical properties with thermal and chemical treatment. A nitrogen sorption study is used to investigate the effect of thermal annealing on electrochemically etched mesoporous silicon (PS). The PS was thermally annealed from 200˚C to 800˚C for 1 hr in the presence of air. It was shown that the pore diameter and porosity of PS vary with annealing temperature. The experimentally obtained adsorption / desorption isotherms show hysteresis typical for capillary condensation in porous materials. A simulation study based on Saam and Cole model was performed and compared with experimentally observed sorption isotherms to study the physics behind of hysteresis formation. We discuss the shape of the hysteresis loops in the framework of the morphology of the layers. The different behavior of adsorption and desorption of nitrogen in PS with pore diameter was discussed in terms of concave menisci formation inside the pore space, which was shown to related with the induced pressure in varying the pore diameter from 7.2 nm to 3.4 nm.

  14. ESR studies of high-energy phosphorus-ion implanted synthetic diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isoya, J. [University of Library and Information Science, Tsukuba, Ibaraki (Japan); Kanda, H.; Morita, Y.; Ohshima, T.

    1997-03-01

    Phosphorus is among potential n-type dopants in diamond. High pressure synthetic diamond crystals of type IIa implanted with high energy (9-18 MeV) phosphorus ions have been studied by using electron spin resonance (ESR) technique. The intensity and the linewidth of the ESR signal attributed to the dangling bond of the amorphous phase varied with the implantation dose, suggesting the nature of the amorphization varies with the dose. The ESR signals of point defects have been observed in the low dose as-implanted crystals and in the high dose crystals annealed at high temperature and at high pressure. (author)

  15. Studies of defects and annealing behavior of silicon irradiated with 70 MeV {sup 56}Fe ions

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, S.K. [Department of Physics, University of Mumbai, Vidyanagari Campus, Mumbai 400 098 (India)]. E-mail: skdubey@physics.mu.ac.in; Yadav, A.D. [Department of Physics, University of Mumbai, Vidyanagari Campus, Mumbai 400 098 (India); Kamalapurkar, B.K. [Department of Physics, University of Mumbai, Vidyanagari Campus, Mumbai 400 098 (India); Gundu Rao, T.K. [Regional Sophisticated Instrumentation Centre, Indian Institute of Technology, Mumbai 400 076 (India); Gokhale, M. [Tata Institute of Fundamental Research, Mumbai 400 005 (India); Mohanty, T. [Nuclear Science Centre, New Delhi 110 067 (India); Kanjilal, D. [Nuclear Science Centre, New Delhi 110 067 (India)

    2006-03-15

    The effects of 70 MeV irradiation of iron ions in p-type silicon at fluences between 1 x 10{sup 12} and 5 x 10{sup 14} ions cm{sup -2} were investigated by high resolution X-ray diffraction (HRXRD), electron spin resonance (ESR) and current-voltage measurements. The irradiated samples were isochronally annealed in nitrogen ambient up to 973 K for 2 min using the rapid thermal annealing (RTA) system. The screw dislocation density of the annealed sample (5 x 10{sup 14} ions cm{sup -2}) estimated at each stage of annealing from the broadening of the HRXRD peak was observed to change from 8.70 x 10{sup 7} to 1.58 x 10{sup 7} cm{sup -2} with increasing temperatures. The strain and stress parameters estimated at each stage of annealing using the FWHM of {omega}-scan clearly indicate relative trend towards the un-irradiated silicon sample. The electron spin resonance studies indicate the presence of the dangling bond state of silicon (Si{identical_to}Si) and complex defects. The annealing at 873 K was found to be sufficient for complete removal of the defect centers induced due to irradiation. The I-V studies performed on the irradiated samples before and after annealing indicate that the defects created as a consequence of irradiation trap the charge carriers.

  16. Nanocrystalline magnetic materials obtained by flash annealing

    Directory of Open Access Journals (Sweden)

    R.K. Murakami

    1999-04-01

    Full Text Available The aim of the present work was to produce enhanced-remanence nanocrystalline magnetic material by crystallizing amorphous or partially amorphous Pr4.5Fe77B18.5 alloys by the flash annealing process, also known as the dc-Joule heating process, and to determine the optimal conditions for obtaining good magnetic coupling between the magnetic phases present in this material. Ribbons of Pr4.5Fe77B18.5 were produced by melt spinning and then annealed for 10-30 s at temperatures 500 - 640 °C by passing current through the sample to develop the enhanced-remanence nanocrystalline magnetic material. These materials were studied by X-ray diffraction, differential thermal analysis and magnetic measurements. Coercivity increases of up to 15% were systematically observed in relation to furnace-annealed material. Two different samples were carefully examined: (i a sample annealed at 600 °C which showed the highest coercive field Hc and remanence ratio Mr/Ms and (ii a sample annealed at 520 °C which showed phase separation in the second quadrant demagnetization curve. Our results are in agreement with other studies which show that flash annealing improves the magnetic properties of some amorphous ferromagnetic ribbons.

  17. In-situ X-ray diffraction studies of time and thickness dependence of crystallization of amorphous TiO{sub 2} thin films and stress evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kuzel, R., E-mail: kuzel@karlov.mff.cuni.c [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, 121 16 Praha 2 (Czech Republic); Nichtova, L.; Matej, Z. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, 121 16 Praha 2 (Czech Republic); Musil, J. [Department of Physics, Faculty of Applied Sciences, University of West Bohemia in Pilsen, Pilsen (Czech Republic)

    2010-12-30

    Remarkable properties of titanium dioxide films such as hydrophilicity or photocatalytic activity depend largely on their phase composition, microstructure and in particular on the crystallinity. By in-situ X-ray diffraction studies of isochronal and isothermal annealing of amorphous films with different thickness at different temperatures it was found that the crystallization process can be quite well described by the Johnson-Mehl-Avrami-Kolmogorov formula modified by the introduction of crystallization onset. This and other parameters of the formula strongly depend on the film thickness. For thickness below about 500 nm the crystallization is very slow. Simultaneously, the appearance and increase of tensile stresses with the annealing time were observed and these stresses were confirmed by detailed studies by both total pattern fitting and sin{sup 2{psi}} method on post-annealed samples. The stresses rapidly increase with decreasing thickness of the films. It seems that there is a strong correlation between the stresses and crystallization onset and/or crystallization rate. Tensile stresses that are generated during crystallization further inhibit crystallization and cause significant thickness dependence of the crystallization. The temperature and time dependence of microstructure of crystallized amorphous films differ significantly from those obtained for as-deposited nanocrystalline films or nanocrystalline powders. During annealing, quite large crystallites are formed quickly with the preferred orientation (001) that is suppressed with the proceeding time.

  18. Annealing effect on the crystal structure and exchange bias in Heusler Ni{sub 45.5}Mn{sub 43.0}In{sub 11.5} alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    González-Legarreta, L. [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Rosa, W.O. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 Urca., 22290-180 Rio de Janeiro, RJ (Brazil); García, J. [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Ipatov, M.; Nazmunnahar, M. [Department of Materials Physics, Faculty of Chemistry, University of the Basque Country, 20018 San Sebastian (Spain); Escoda, L.; Suñol, J.J. [Department of Physics, Campus Montilivi s/n, University of Girona, 17071 Girona (Spain); Prida, V.M. [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain); Sommer, R.L. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 Urca., 22290-180 Rio de Janeiro, RJ (Brazil); González, J. [Department of Materials Physics, Faculty of Chemistry, University of the Basque Country, 20018 San Sebastian (Spain); Leoni, M. [Department of Material Engineering and Industrial Technologies, University of Trento, Via Mesiano 77, I-38123 Trento (Italy); Hernando, B., E-mail: grande@uniovi.es [Department of Physics, University of Oviedo, Calvo Sotelo s/n, 33007 Oviedo (Spain)

    2014-01-05

    Highlights: • Preparation of Ni–Mn–In Heusler alloys by melt spinning technique in ribbon shape. • Short annealing effects on the crystal structure, microstructure and magnetic properties. • Influence of annealing on the martensitic transformation. • Enhancement of the exchange bias effect. -- Abstract: A Heusler Ni{sub 45.5}Mn{sub 43.0}In{sub 11.5} alloy has been prepared by arc melting and produced in a ribbon shape by rapid solidification using melt spinning technique. Structural properties have been investigated, at different temperatures, by using X-ray diffraction. Austenite is the stable phase at room temperature with a L2{sub 1} cubic crystal structure. Exchange bias effect was observed after field cooling by means of hysteresis loop measurements. At 5 K, hysteresis loop shifts along the axis of the applied magnetic field and that shift magnitude decreases significantly with increasing temperature. A piece of ribbon was annealed at 973 K during 10 min in order to investigate the influence of annealing on crystal structure and magnetic properties. After annealing, a martensitic phase with a monoclinic 10M structure at room temperature is observed. The onset of the martensitic phase transformation shifts to 365 K, temperatures associated with both martensitic and reverse transitions do not change noticeably under an applied magnetic field up to 30 kOe, and a drastic decrease on magnetization is observed in comparison with the as-quenched ribbon meanwhile the exchange bias effect is enhanced.

  19. Significantly enhanced magnetic properties of a powder of amorphous Fe70MnxMo3Cr4-6W8-10Si4-5B3-5 particles achieved by annealing treatments below the crystallization temperature

    Science.gov (United States)

    Zhang, Jiliang; Zheng, Zhigang; Shek, Chan Hung

    2014-06-01

    Annealing treatments below crystallization temperature were conducted on commercial Fe70MnxMo3Cr4-6W8-10Si4-5B3-5 (x = balance) amorphous powder. It was found that such treatment could significantly improve the soft magnetic properties of the powder especially at a higher frequency. Saturation magnetization increased to a maximum and hysteresis loop decreased to a minimum after the powder was annealed at 800 K for 30 min. Magnetic force microscopy observation indicated that the size of domain structure was not changed but the phase contrast became obvious after annealing. The enhancements of soft magnetic properties were explained in terms of structural relaxation and nanocrystallization as well as the Bethe-Slater curve. Moreover, a characteristic frequency at which the a.c. susceptibility exhibits a drastic change is found and that frequency changes with the annealing treatment.

  20. Study of growth time and post annealing effect on the performance of ZnO nanorods ultraviolet photodetector

    Science.gov (United States)

    Shasti, M.; Dariani, R. S.

    2017-02-01

    In this paper, Zinc Oxide nanorods with different thicknesses are grown on a glass substrate by a hydrothermal method to fabricate an ultraviolet photodetector. The sample is post annealed in an argon environment as an annealing process can have a positive effect on the photodetector performance. The morphology, crystalline structure, and optical properties of ZnO nanorods (NRs) are investigated by SEM, XRD, UV-Visible spectrometer, and PL spectra. The goal of this study is to investigate the effect of both growth time and post annealing on enhancement of photoresponse of the ZnO NR photodetector. Measurements indicate that the sample with higher thickness exhibits a higher photocurrent and photoresponsivity. Also, with post annealing, an increase in photocurrent and photoresponsivity is observed due to decreasing defect levels.

  1. Structural, Morphological, and Electron Transport Studies of Annealing Dependent In2O3 Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    S. Mahalingam

    2015-01-01

    Full Text Available Indium oxide (In2O3 thin films annealed at various annealing temperatures were prepared by using spin-coating method for dye-sensitized solar cells (DSSCs. The objective of this research is to enhance the photovoltaic conversion efficiency in In2O3 thin films by finding the optimum annealing temperature and also to study the reason for high and low performance in the annealed In2O3 thin films. The structural and morphological characteristics of In2O3 thin films were studied via XRD patterns, atomic force microscopy (AFM, field-emission scanning electron microscopy (FESEM, EDX sampling, and transmission electron microscopy (TEM. The annealing treatment modified the nanostructures of the In2O3 thin films viewed through FESEM images. The In2O3-450°C-based DSSC exhibited better photovoltaic performance than the other annealed thin films of 1.54%. The electron properties were studied by electrochemical impedance spectroscopy (EIS unit. The In2O3-450°C thin films provide larger diffusion rate, low recombination effect, and longer electron lifetime, thus enhancing the performance of DSSC.

  2. Effect of nucleation agent and annealing on crystallization of polylactic acid%成核改性对聚乳酸结晶行为的影响

    Institute of Scientific and Technical Information of China (English)

    文豪; 李仲昀; 王冬; 张竞; 邹俊

    2014-01-01

    PLA/NA composites were prepared by melt blending of PPA-Zn ,TMC-328 and TMP-3000 , which served as nucleation agents respectively ,with polylactic acid (PLA) .The effect of nucleation a-gent on the crystallization properties of PLA was investigated by the different scanning calorimetry (DSC) ,polarized optical microscopy (POM ) ,X-ray diffraction (XRD) and heat distortion tempera-ture (HDT) tester .The results indicate that nucleation effects of PPA-Zn and TMC-328 on PLA are better than that of TMP-3000 .The two nucleation agents can significantly improve the crystallization rate and crystallinity of PLA with the half crystallization time (t1/2) of PPA-Zn system and TMC-328 system at 0 .27 min and 0 .28 min ,respectively .POM observation finds that the crystal morphology of PLA/PPA-Zn composite and PLA/TMC-328 composite are acicular crystal and dentritic crystal . XRD results show that the crystal structure of PLA/PPA-Zn composite and PLA/TMC-328 composite areαform .After annealing at 110 ℃ for 60 s ,the HDT of PLA/TMC-328 composite and PLA/PPA-Zn composite can reach 121 .1 ℃ and 127 .1 ℃ ,respectively .%选用 PPA-Zn、TMC-328和 TMP-3000为成核剂(NA),分别与聚乳酸(PLA)熔融共混,改性制备成PL A/N A复合材料,通过差示扫描量热分析、偏光显微观察、X射线衍射、动态热力学分析和热变形温度测试研究PLA/NA材料的结晶行为、动态热力学性能和耐热性能。结果表明,3种成核剂中,PPA-Zn和 TMC-328更能提高PLA结晶度、储能模量和热变形温度,PLA/PPA-Zn和PLA/TMC-328半结晶时间分别为0.27 min和0.28 min ,晶体形貌分别为针状晶和枝状晶,为α晶型,初始储能模量分别为3.921 GPa和4.486 GPa ,110℃退火60 s结晶后的热变形温度分为127.1℃和121.1℃。

  3. Defect evolution during annealing of deformed FeSi alloys studied by positron annihilation spectroscopy

    Science.gov (United States)

    Mostafa, K. M.; Cámara, F. González; Petrov, Roumen; Calvillo, P. Rodríguez; De Grave, E.; Segers, D.; Houbaert, Y.

    2011-04-01

    High silicon steel is widely used in electrical appliances. Alloying iron with silicon improves its magnetic performance. A silicon content up to 6.5 wt. % gives excellent magnetic properties such as high saturation magnetization, near zero magnetostriction and low iron loss in high frequencies. Their workability is greatly reduced by the appearance of ordered structures, namely B2 and D03, as soon as the Si content becomes higher than 3.5 wt. %. This limits the mass production by conventional rolling to this maximum percentage of Si. In this work a series of FeSi (7.5 wt. % Si) samples with different degrees of deformation are investigated with positron annihilation spectroscopy and optical microscopy (OM). The influence of annealing on the concentration of defects of different deformed FeSi alloys has been investigated by positron annihilation lifetime spectroscopy and Doppler broadening of the annihilation radiation. OM is used to investigate the microstructure of deformed samples before and after annealing. The values of the S parameter present a decrease for all studied FeSi alloys with the increase of the annealing temperature, being attributed to a decrease of the concentration of defects. A sudden increase of the S-parameter value at 600 °C was observed for all samples, which could be related to the change of the ordering of the FeSi alloys at that temperature. At 700 °C, the values of the S parameter decreased drastically and starting from 900 °C, they became constant. The microstructures of the alloys, investigated by OM, show that recrystallization is completed at 900 °C and the samples are mainly free of defects, which is in agreement with the positron annihilation lifetime data.

  4. Optimizing Crystal Volume for Neutron Diffraction Studies

    Science.gov (United States)

    Snell, E. H.

    2003-01-01

    For structural studies with neutron diffraction more intense neutron sources, improved sensitivity detector and larger volume crystals are all means by which the science is being advanced to enable studies on a wider range of samples. We have chosen a simplistic approach using a well understood crystallization method, with minimal amounts of sample and using design of experiment techniques to maximize the crystal volume all for minimum effort. Examples of the application are given.

  5. From globules to crystals: a spectral study of poly(2-isopropyl-2-oxazoline) crystallization in hot water.

    Science.gov (United States)

    Sun, Shengtong; Wu, Peiyi

    2015-12-28

    One easy strategy to comprehend the complex folding/crystallization behaviors of proteins is to study the self-assembly process of their synthetic polymeric analogues with similar properties owing to their simple structures and easy access to molecular design. Poly(2-isopropyl-2-oxazoline) (PIPOZ) is often regarded as an ideal pseudopeptide with similar two-step crystallization behavior to proteins, whose aqueous solution experiences successive lower critical solution temperature (LCST)-type liquid-liquid phase separation upon heating and irreversible crystallization when annealed above LCST for several hours. In this paper, by microscopic observations, IR and Raman spectroscopy in combination with 2D correlation analysis, we show that the second step of PIPOZ crystallization in hot water can be further divided into two apparent stages, i.e., nucleation and crystal growth, and perfect crystalline PIPOZ chains are found to only develop in the second stage. While all the groups exhibit changes in initial nucleation, only methylene groups on the backbone participate in the crystal growth stage. During nucleation, a group motion transfer is found from the side chain to the backbone, and nucleation is assumed to be mainly driven by the cleavage of bridging C=O···D-O-D···O=C hydrogen bonds followed by chain arrangement due to amide dipolar orientation. Nevertheless, during crystal growth, a further chain ordering process occurs resulting in the final formation of crystalline PIPOZ chains with partial trans conformation of backbones and alternative side chains on the two sides. The underlying crystallization mechanism of PIPOZ in hot water we present here may provide very useful information for understanding the crystallization of biomacromolecules in biological systems.

  6. GISAXS in the study of supramolecular and hybrid liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ungar, G; Liu, F; Zeng, X B [Department of Engineering Materials, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Glettner, B; Prehm, M; Kieffer, R; Tschierske, C [Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle/Saale (Germany)

    2010-10-01

    The use of grazing incidence small and intermediate angle X-ray scattering in the study of structure and alignment of thermotropic liquid crystals is illustrated on selected examples. These include columnar LC phases of a star-shaped mesogen, several honeycomb phases of T-shaped and X-shaped bolaamphiphilic LCs, and gold nanoparticles coated with mesogenic ligands. Sharp Bragg reflections from systems with 2-d and 3-d periodicities are obtained through annealing. Due to nearly perfect surface alignment in most cases, indexing of complex diffraction patterns is facilitated. Honeycomb cells with deformed hexagonal cross-sections, as well as kagome lattice, are shown. The tilt of the reciprocal lattice is shown to help establish the correct structure in the case of the stretched hexagonal honeycombs and the rhombohedral arrays of ordered strings of gold nanoparticles.

  7. In situ study of annealing-induced strain relaxation in diamond nanoparticles using Bragg coherent diffraction imaging

    Directory of Open Access Journals (Sweden)

    S. O. Hruszkewycz

    2017-02-01

    Full Text Available We observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8×10−4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified with ensemble Raman measurements.

  8. Nanoscale coherent intergrowthlike defects in a crystal of La1.9Ca1.1Cu2O6 +δ made superconducting by high-pressure oxygen annealing

    Science.gov (United States)

    Hu, Hefei; Zhu, Yimei; Shi, Xiaoya; Li, Qiang; Zhong, Ruidan; Schneeloch, John A.; Gu, Genda; Tranquada, John M.; Billinge, Simon J. L.

    2014-10-01

    Superconductivity with Tc=53.5 K has been induced in a large La1.9Ca1.1Cu2O6 (La-2126) single crystal by annealing in a high partial pressure of oxygen at 1200 °C. Using transmission electron microscopy techniques, we show that a secondary Ca-doped La2CuO4 (La-214) phase, not present in the as-grown crystal, appears as a coherent intergrowthlike defect as a consequence of the annealing. A corresponding secondary superconducting transition near 13 K is evident in the magnetization measurement. Electron energy-loss spectroscopy reveals a pre-edge peak at the O-K edge in the superconducting La-2126 phase, which is absent in the as-grown crystal, confirming the hole doping by interstitial oxygen.

  9. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zujun, E-mail: wangzujun@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Ma, Yingwu [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China); Liu, Jing [School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan (China); Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an (China)

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  10. Interferometric Studies for the Annealing Effects on the Necking Deformation along Polypropylene Fibers

    Directory of Open Access Journals (Sweden)

    T.Z.N. Sokkar

    2007-07-01

    Full Text Available An automated multiple-beam Fizeau fringes in transmission technique was used with a fiber-drawing device to detect necking deformation along polypropylene (PP fibers axis under different conditions of annealing process. The refractive indices, refractive index profiles and crystallinity were calculated along the annealed PP fibers at different draw ratios. The annealing temperature controls the propagation of necking deformation along PP fibers axis that stretched at low draw ratios (D< 2. The necking deformations along PP fibers axis due to fast drawing process could be avoided when PP fibers were annealed at the temperature of 120oC. Microinterferograms are given for illustrations.

  11. Crystal study and econometric model

    Science.gov (United States)

    1975-01-01

    An econometric model was developed that can be used to predict demand and supply figures for crystals over a time horizon roughly concurrent with that of NASA's Space Shuttle Program - that is, 1975 through 1990. The model includes an equation to predict the impact on investment in the crystal-growing industry. Actually, two models are presented. The first is a theoretical model which follows rather strictly the standard theoretical economic concepts involved in supply and demand analysis, and a modified version of the model was developed which, though not quite as theoretically sound, was testable utilizing existing data sources.

  12. Crystallization and spectroscopic studies of manganese malonate

    Indian Academy of Sciences (India)

    Varghese Mathew; Jochan Joseph; Sabu Jacob; K E Abraham

    2010-08-01

    The preparation of manganese malonate crystals by gel method and its spectroscopic studies are reported. X-ray diffraction (XRD) pattern reveals the crystalline nature. The FTIR and FT Raman spectra of the crystals are recorded and the vibrational assignments are given with possible explanations. Diffuse reflectance spectroscopy (DRS) is used to measure the bandgap (g) of the material.

  13. A study of annealing stages in commercial pure Cu using mechanical measurements and positron annihilation lifetime technique

    Energy Technology Data Exchange (ETDEWEB)

    Bishay, I.K. [Solid State Physics Department, National Research Centre, Dokki, Cairo (Egypt); Aly, E. Hassan, E-mail: emad_h_ali@yahoo.com [Department of Physics, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566 (Egypt); Saadallah, F.A. [Solid State Physics Department, National Research Centre, Dokki, Cairo (Egypt)

    2010-06-25

    Mechanical property measurements, positron annihilation lifetime (PAL) measurements and metallographic observations, have been performed to study the isochronal annealing of commercial pure Cu in the temperature range from 25 up to 850 deg. C. A positive correlation has been found between positron lifetime ({tau}) and both the tensile strain ({Delta}L/L{sub 0}) and Vicker's microhardness (H{sub v}). This correlation shows the presence of three annealing stages in commercial pure Cu which are attributed to recovery, recrystallization, and grain growth. These different stages were studied by both pure tensile and combined torsion-tension deformation for samples pre-annealed at the different annealing stages. Plastic instability behavior is observed in the case of combined torsion-tension deformation. It is observed that the onset and disappearance of this instability depend on some parameters such as mode of deformation, applied axial tensile stress and pre-annealing temperature. The activation energy is found to be 0.5 eV for the recovery stage which is attributed to the energy for dislocation annihilation by glide or cross-slip. The recrystallization stage is a multi-energy stage (1.35, 1.6, and 1.71 eV) which is attributed to lattice diffusion or boundary diffusion.

  14. Mapping fullerene crystallization in a photovoltaic blend: an electron tomography study

    Science.gov (United States)

    Bäcke, Olof; Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R.; Müller, Christian; Olsson, Eva

    2015-04-01

    The formation of fullerene crystals represents a major degradation pathway of polymer/fullerene bulk-heterojunction thin films that inexorably deteriorates their photovoltaic performance. Currently no tools exist that reveal the origin of fullerene crystal formation vertically through the film. Here, we show that electron tomography can be used to study nucleation and growth of fullerene crystals. A model bulk-heterojunction blend based on a thiophene-quinoxaline copolymer and a fullerene derivative is examined after controlled annealing above the glass transition temperature. We image a number of fullerene nanocrystals, ranging in size from 70 to 400 nanometers, and observe that their center is located close to the free-surface of spin-coated films. The results show that the nucleation of fullerene crystals predominately occurs in the upper part of the films. Moreover, electron tomography reveals that the nucleation is preceded by more pronounced phase separation of the blend components.

  15. X-ray perfection study of Verneuil-grown SrTiO 3 crystals

    Science.gov (United States)

    Yoshimura, J.; Sakamoto, T.; Usui, S.; Kimura, S.

    1998-07-01

    Dislocations, subgrain textures and other long-range strains in Verneuil-grown SrTiO 3 crystals, used widely as a substrate for growing high- Tc superconducting thin films, have been studied by reflection and transmission X-ray topography to characterize the crystal in regard to structural perfection. It was found that dislocations are nearly aligned along the directions and most of them are of pure edge type, presumably as a property of annealed crystals with simple cubic lattice. This entire dislocation alignment causes a strong long-range distortion about the [0 0 1] axis in anisotropic (1 1 0)-oriented crystal plates. Burgers vectors both of and types were observed. It was also found that the surfaces of some samples were finished highly strain-free as well as optically flat by the mechanochemical polishing.

  16. Comparative study of size dependent four-point probe sheet resistance measurement on laser annealed ultra-shallow junctions

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Lin, Rong; Hansen, Torben Mikael;

    2008-01-01

    In this comparative study, the authors demonstrate the relationship/correlation between macroscopic and microscopic four-point sheet resistance measurements on laser annealed ultra-shallow junctions (USJs). Microfabricated cantilever four-point probes with probe pitch ranging from 1.5 to 500 mu m...... have been used to characterize the sheet resistance uniformity of millisecond laser annealed USJs. They verify, both experimentally and theoretically, that the probe pitch of a four-point probe can strongly affect the measured sheet resistance. Such effect arises from the sensitivity (or "spot size......") of an in-line four-point probe. Their study shows the benefit of the spatial resolution of the micro four-point probe technique to characterize stitching effects resulting from the laser annealing process....

  17. Chemical and physical studies of type 3 chondrites. VII - Annealing studies of the Dhajala H3.8 chondrite and the thermal history of chondrules and chondrites

    Science.gov (United States)

    Keck, B. D.; Guimon, R. K.; Sears, D. W. G.

    1986-01-01

    Samples of the Dhajala meteorite were annealed at 600-1000 C for 1, 2, 10, 20 and 100 h and their thermoluminescence (TL) properties were measured. After annealing at less than 900 deg, the TL sensitivity decreased by a factor of two; at higher temperatures, it fell by an order of magnitude. Data indicate that the annealing treatment caused the low-temperature feldspar in Dhajala to be converted to feldspar of a high-temperature (disordered) form. Low-temperature feldspar was found in the meteorite's TL-sensitive chondrules which comprised about 20 percent of those separated. It is suggested that these chondrules suffered greater crystallization of their mesostasis than the other chondrules, and equilibrated to lower temperatures. Based on TL data, there appears to be no relationship between post-metamorphic cooling rate and petrologic type for the 3.5-3.9 chondrites.

  18. Nanosecond optical transmission studies of laser annealing in ion-implanted silicon-on-sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.C.; Lo, H.W.; Aydinli, A.; Trott, G.J.; Compaan, A. (Kansas State Univ., Manhattan (USA). Dept. of Physics); Hale, E.B. (Missouri Univ., Rolla (USA). Dept. of Physics)

    1983-06-01

    Time-resolved optical transmission has been studied using 633 and 514 nm CW probes on ion-implantation-amorphized silicon-on-sapphire during annealing by a 10 nsec, approximately 1 J/cm/sup 2/ pulse at either 532 nm or 485 nm. As recrystallization sets in the transmitted signal at 514 nm rises by approximately 10/sup 3/ in approximately 60 nsec and provides a measure of regrowth velocity. Beyond 200 nsec the much slower transmission rise is used to provide an estimate of the Si cooling rate. The difference in transmission observed between initially crystalline and initially amorphous Si provide an estimate of the latent heat of recrystallization of the amorphous phase.

  19. Post Deposition Annealing Effects on Optical, Electrical and Morphological Studies of ZnTTBPc Thin Films

    Directory of Open Access Journals (Sweden)

    B. R. Rejitha

    2012-01-01

    Full Text Available Phthalocyanines (Pcs act as efficient absorbants of photons in the visible region, specifically between 600 and 700 nm. It will produce an excited triplet state. In this paper we report the annealing effects of optical, electrical and surface morphological properties of thermal evaporated Zinc-tetra-tert-butyl-29H, 31H phthalocyanine (ZnTTBPc thin films. The optical transmittance measurements were done in the visible region (400-800 nm and, films were found to be absorbing in nature. From spectral data the absorption coefficient α, dielectric constant ε and the extinction coefficient k were evaluated and, results discussed. Also the optical band gap of the material was estimated. The activation energies were measured. Scanning electron microscopic studies was carried out to determine surface uniformity of films.

  20. In Situ XRD Studies of the Process Dynamics During Annealing in Cold-Rolled Copper

    Science.gov (United States)

    Dey, Santu; Gayathri, N.; Bhattacharya, M.; Mukherjee, P.

    2016-09-01

    The dynamics of the release of stored energy during annealing along two different crystallographic planes, i.e., {111} and {220}, in deformed copper have been investigated using in situ X-ray diffraction measurements at 458 K and 473 K (185 °C and 200 °C). The study has been carried out on 50 and 80 pct cold-rolled Cu sheets. The microstructures of the rolled samples have been characterized using optical microscopy and electron backscattered diffraction measurements. The microstructural parameters were evaluated from the X-ray diffractogram using the Scherrer equation and the modified Rietveld method. The stored energy along different planes was determined using the modified Stibitz formula from the X-ray peak broadening, and the bulk stored energy was evaluated using differential scanning calorimetry. The process dynamics of recovery and recrystallization as observed through the release of stored energy have been modeled as the second-order and first-order processes, respectively.

  1. Spectroscopic ellipsometry studies of as-prepared and annealed CdS:O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khalilova, Khuraman; Hasanov, Ilham; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, 1143 Baku (Azerbaijan); Shim, YongGu [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Asaba, Ryo; Wakita, Kazuki [Department of Electronics and Computer Engineering, Chiba Institute of Technology, Chiba 275-0016 (Japan)

    2015-06-15

    Cadmium sulfide thin films on soda lime substrates were obtained by rf-magnetron sputtering in argon-oxygen atmosphere. As-prepared and vacuum annealed films were then studied by spectroscopic ellipsometry at room temperature over photon energy range from 0.5 to 6 eV. The obtained ellipsometric data were treated using optical dispersion models based on Gaussian type oscillators. Dielectric function of oxygen-free films, as well as those obtained under 3% of O/Ar partial pressure was reliably restored. At the same time, dielectric function obtained for 5% CdS:O can be regarded only as an average over several materials since our XPS examination disclosed presence of several compounds in thin films deposited at O/Ar ratios higher than 3%. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Effect of annealing on the thermal properties of poly (lactic acid)/starch blends.

    Science.gov (United States)

    Lv, Shanshan; Gu, Jiyou; Cao, Jun; Tan, Haiyan; Zhang, Yanhua

    2015-03-01

    A comparative study of the thermal behavior of PLA/starch blends annealed at different temperatures has been conducted. Annealing was found to be beneficial to weaken and even eliminate the enthalpy relaxation near Tg. The degree of crystallinity was evaluated by means of DSC, and the results showed that the crystallinity of the samples increased as the annealing temperatures were increased. It was observed that, during the annealing process, the disorder α (α') crystal modification tended to transform into the order α crystal modification. All of the PLA/starch blends showed a double melting behavior. With the increase of annealing temperatures, the lower Tm1 increased, while the Tm2 showed no evident change. The XRD patterns also showed that annealing was beneficial to the samples to form higher crystallinity. The TGA results indicated that the annealed samples did not show any higher thermal stability than the virgin samples. The activation energy calculated by the Flynn-Wall-Ozawa method at lower conversion degrees confirmed that the annealing slightly slowed the degradation. The activation energy did not show any dependence on the conversion degree, which indicated that there existed a complex degradation process of the PLA/starch blends. The average activation energy did not show obvious differences, indicating that the annealing treatment had little influence on the degradation activation energy.

  3. Influence of in situ annealing on carrier dynamics in InGaAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Xu, Zhangcheng; Zhang, Yating; Hvam, Jørn Märcher

    2007-01-01

    The carrier dynamics in in situ annealed InGaAs quantum dots (QDs) is studied by various photoluminescence (PL) techniques. An enhancement in the PL intensity for the annealed QDs is observed only when pumping takes place below the GaAs band gap, indicating that the crystal quality of the QDs...

  4. Theoretical study of annealed proton-exchanged Nd $LiNbO_{3}$ channel waveguide lasers with variational method

    CERN Document Server

    De Long Zhang; Yuan Guo Xie; Guilan, Ding; Yuming, Cui; Cai He Chen

    2001-01-01

    The controllable fabrication parameters, including anneal time, initial exchange time, channel width, dependences of TM/sub 00/ mode size, corresponding effective refractive index, effective pump area, and coupling efficiency between pump and laser modes in z-cut annealed proton-exchanged (APE) Nd:LiNbO/sub 3/ channel waveguide lasers were studied by using variational method. The effect of channel width on the surface index increment and the waveguide depth was taken into account. The features of mode size and effective refractive index were summarized, discussed, and compared with previously published experimental results. The effective pump area, which is directly proportional to threshold pump power, increases strongly, slightly, and very slightly with the increase of anneal time, channel width, and initial exchange time, respectively. However, the coupling efficiency, which is directly proportional to slope efficiency, remains constant (around 0.82) no matter what changes made to these parameters. The var...

  5. Positron annihilation study of 4H-SiC by Ge{sup +} implantation and subsequent thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Yu, R.S., E-mail: yursh@ihep.ac.cn [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China); Maekawa, M.; Kawasuso, A. [Japan Atomic Energy Agency, Advanced Science Research Center, Watanuki 1233, Takasaki, Gunma 370-1292 (Japan); Wang, B.Y.; Wei, L. [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Lu, Beijing 100049 (China)

    2012-01-01

    Positron annihilation in 800 keV Ge{sup +} implanted hexagonal SiC was studied by thermal annealing at temperatures ranging from 800 to 1400 Degree-Sign C. The variation in Doppler broadening S values as a function of the incident positron energy suggests a broad distribution in the depth of vacancy defects in the implanted samples. Increasing the annealing temperature triggers the accumulation of vacancies into vacancy clusters. After annealing at 1400 Degree-Sign C, defects in the deep region of SiC are eliminated, and Ge precipitation is believed to appear in the sample at the same time. Though Ge has a much more negative positron affinity than SiC, positron annihilation coincidence Doppler broadening measurement reveals that a preferential trapping of positrons in Ge seems impossible.

  6. Study of phosphorus implanted and annealed silicon by electrical measurements and ion channeling technique

    CERN Document Server

    Hadjersi, T; Zilabdi, M; Benazzouz, C

    2002-01-01

    We investigated the effect of annealing temperature on the electrical activation of phosphorus implanted into silicon. The measurements performed using spreading resistance, four-point probe and ion channeling techniques have allowed us to establish the existence of two domains of variation of the electrical activation (350-700 deg. C) and (800-1100 deg. C). The presence of reverse annealing and the annihilation of defects have been put in a prominent position in the first temperature range. It has been shown that in order to achieve a complete electrical activation, the annealing temperature must belong to the second domain (800-1100 deg. C).

  7. Valence-band electronic structure of Zn3P2 as a function of annealing as studied by synchrotron radiation photoemission

    Science.gov (United States)

    Nelson, Art J.; Kazmerski, L. L.; Engelhardt, Mike; Hochst, Hartmut

    1990-02-01

    Ultraviolet photoemission (UPS) utilizing synchrotron radiation has been used to characterize changes in the valence-band electronic structure of crystalline Zn3P2 as a function of annealing temperature. The Zn3P2 crystal was etched in bromine-methanol prior to analysis and annealing was performed in vacuum at 300 and 350 °C after sputter cleaning. The UPS spectra for the virgin material are qualitatively similar to the photoemission results for various II-VI Zn compound semiconductors and a comparison of the Zn 3d binding energies with respect to the valence band maximum is presented. The results for the virgin material and the 300 °C anneal are further compared with the theoretically predicted band structure of Zn3P2 as determined by a pseudopotential energy band calculation. Loss of phosphorus from the surface and the presence of elemental zinc on the surface after the 350 °C anneal is evident.

  8. HAFNIUM IMPLANTED IN IRON .1. LATTICE LOCATION AND ANNEALING BEHAVIOR

    NARCIS (Netherlands)

    DEBAKKER, JMGJ; PLEITER, F; SMULDERS, PJM

    1993-01-01

    Perturbed angular correlation, Rutherford backscattering and channelling experiments were conducted to study the lattice location and annealing behaviour of 110 keV hafnium ions implanted into iron single crystals. It was found that a fraction of 11-25% of the implanted hafnium atoms are located at

  9. Hafnium implanted in iron 1. Lattice location and annealing behavior

    NARCIS (Netherlands)

    de Bakker, J.M.G.J.; Pleiter, F; Smulders, P.J M

    1993-01-01

    Perturbed angular correlation, Rutherford backscattering and channelling experiments were conducted to study the lattice location and annealing behaviour of 110 keV hafnium ions implanted into iron single crystals. It was found that a fraction of 11-25% of the implanted hafnium atoms are located at

  10. Hafnium implanted in iron 1. Lattice location and annealing behavior

    NARCIS (Netherlands)

    de Bakker, J.M.G.J.; Pleiter, F; Smulders, P.J M

    1993-01-01

    Perturbed angular correlation, Rutherford backscattering and channelling experiments were conducted to study the lattice location and annealing behaviour of 110 keV hafnium ions implanted into iron single crystals. It was found that a fraction of 11-25% of the implanted hafnium atoms are located at

  11. Synthesis and annealing study of RF sputtered ZnO thin film

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shushant Kumar, E-mail: singhshushant86@gmail.com; Sharma, Himanshu [Department of Physics, Malaviya National Institute of Technology, Jaipur, JLN Marg, Malaviya Nagar, Jaipur-302017 (India); Singhal, R. [Department of Physics and Materials Research Centre, Malaviya National Institute of Technology Jaipur, JLN Marg, Malaviya Nagar, Jaipur-302017 (India); Kumar, V. V. Siva; Avasthi, D. K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi-110067 (India)

    2016-05-23

    In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structure of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.

  12. Synthesis and annealing study of RF sputtered ZnO thin film

    Science.gov (United States)

    Singh, Shushant Kumar; Sharma, Himanshu; Singhal, R.; Kumar, V. V. Siva; Avasthi, D. K.

    2016-05-01

    In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structure of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.

  13. Study of damage formation and annealing of implanted III-nitride semiconductors for optoelectronic devices

    Science.gov (United States)

    Faye, D. Nd.; Fialho, M.; Magalhães, S.; Alves, E.; Ben Sedrine, N.; Rodrigues, J.; Correia, M. R.; Monteiro, T.; Boćkowski, M.; Hoffmann, V.; Weyers, M.; Lorenz, K.

    2016-07-01

    An n-GaN/n-AlGaN/p-GaN light emitting diode (LED) structure was implanted with Eu ions. High temperature high pressure annealing at 1400 °C efficiently decreases implantation damage and optically activates the Eu ions. However, the electrical properties of the p-n junction deteriorate possibly due to the formation of conducting paths along dislocations during the extreme annealing conditions.

  14. Study of annealing effects in Al–Sb bilayer thin films

    Indian Academy of Sciences (India)

    R K Mangal; B Tripathi; M Singh; Y K Vijay

    2007-02-01

    In this paper, we present preparation and characterization of Al–Sb bilayer thin films. Thin films of thicknesses, 3000/1000 Å and 3000/1500 Å, were obtained by the thermal evaporation (resistive heating) method. Vacuum annealing and rapid thermal annealing methods were used to mix bilayer thin film structure. Results obtained from optical band gap data and Rutherford back scattering spectrometry showed mixing of Al–Sb bilayer system.

  15. Study of damage formation and annealing of implanted III-nitride semiconductors for optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Faye, D. Nd.; Fialho, M.; Magalhães, S.; Alves, E. [IPFN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS (Portugal); Ben Sedrine, N.; Rodrigues, J.; Correia, M.R.; Monteiro, T. [Departamento de Física e I3N, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Boćkowski, M. [Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw (Poland); Hoffmann, V.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin (Germany); Lorenz, K., E-mail: lorenz@ctn.tecnico.ulisboa.pt [IPFN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS (Portugal)

    2016-07-15

    An n-GaN/n-AlGaN/p-GaN light emitting diode (LED) structure was implanted with Eu ions. High temperature high pressure annealing at 1400 °C efficiently decreases implantation damage and optically activates the Eu ions. However, the electrical properties of the p–n junction deteriorate possibly due to the formation of conducting paths along dislocations during the extreme annealing conditions.

  16. Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends

    CSIR Research Space (South Africa)

    Motaung, DE

    2013-02-01

    Full Text Available of Materials Science Feb 2013/ vol. 48(4), pp 1763-1778 Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends David E. Motaung • Gerald F. Malgas • Steven S. Nkosi • Gugu H. Mhlongo • Bonex W. Mwakikunga • Thomas...

  17. Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study

    Directory of Open Access Journals (Sweden)

    Ana Pimentel

    2016-04-01

    Full Text Available The present work reports the influence of zinc oxide (ZnO seed layer annealing temperature on structural, optical and electrical properties of ZnO nanorod arrays, synthesized by hydrothermal method assisted by microwave radiation, to be used as UV sensors. The ZnO seed layer was produced using the spin-coating method and several annealing temperatures, ranging from 100 to 500 °C, have been tested. X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM and spectrophotometry measurements have been used to investigate the structure, morphology, and optical properties variations of the produced ZnO nanorod arrays regarding the seed layer annealing temperatures employed. After the growth of ZnO nanorod arrays, the whole structure was tested as UV sensors, showing an increase in the sensitivity with the increase of seed layer annealing temperature. The UV sensor response of ZnO nanorod arrays produced with the seed layer annealed temperature of 500 °C was 50 times superior to the ones produced with a seed layer annealed at 100 °C.

  18. Microhardness studies of sulfamic acid single crystal

    Science.gov (United States)

    Santhosh Kumar, A.; Joseph, Cyriac; Paulose, Reshmi; R, Rajesh; Joseph, Georgekutty; Louis, Godfrey

    2015-02-01

    Vicker's microhardness study of (100), (010) and (001) faces of a non-linear optical crystal sulfamic acid have been reported. Single crystals of sulfamic acid have been grown by slow evaporation method. The load dependence of the Vickers microhardness of sulfamic acid crystal were investigated and analyzed from the stand point of various theoretical models. Crystal samples in a, b and c-axes exhibit reverse indentation effect which is best described by Meyer's law, Hays-Kendall's approach and proportional specimen resistance (PSR) models. The negative values of load dependent quantities in Hays-Kendall's approach and PSR model suggest that the origin of indentation size effect is associated with the process of relaxation of indentation stresses.

  19. Surface morphology study on CdZnTe crystals by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, M.; George, M.A.; Burger, A.; Collins, W.E.; Silberman, E. [Fisk Univ., Nashville, TN (United States)

    1993-03-01

    The study of the crystal surface morphology of CdZnTe is important for the understanding of the fundamentals of crystal growth in order to improve the crystal quality which is essential in applications such as substrates for epitaxy or performance of devices, i.e., room temperature nuclear spectrometers. We present a first atomic force microscopy study on CdZnTe. Cleaved (110) surfaces were imaged in the ambient and an atomic layer step structure was revealed. The effects of thermal annealing on the atomic steps together with Te precipitation along these steps are discussed in terms of deformation due to stress relief and the diffusion of tellurium precipitates. 12 refs., 3 figs.

  20. Isothermal crystallization kinetics of Poly (lactic acid) studied by ultrafast chip calorimeter

    Science.gov (United States)

    Jiang, Jing; Jiang, Wei; Huang, Zijie; Zhou, Dongshan; Xue, Gi

    2012-02-01

    Poly (lactic acid) (PLA) is a biocompatible, biodegradable polymer which has attracted much attention. The crystallization ability, as one of the most factors influencing the physical properties of the biomaterials such as thermal, mechanical, and biodegradable properties, has been widely studied mainly by differential scanning calorimeters. However, although the crystallization of PLA is relatively slow, it's difficult to avoid the crystallization from the nuclei or the structure reorganization of the metastable crystalline formed during the annealing process when we use the normal DSC with the heating rate on the level of tens of K/min. With the chip calorimeter whose scanning rate can go up to 1000 K/s, we can avoid the structure reorganization of metastable crystalline during the heating. In this case we annealed the PLA sample in the 80-120^oC temperature range and found the relationship between the onset the melting temperature Tm and crystallization temperature Tc is Tm= 0.53Tc+ 213.5 and the equilibrium melting temperature is Tm,f =179.6^oC.

  1. Study of diffusion of Ag in Cu single crystals

    CERN Document Server

    Wang, R

    2002-01-01

    4.0 MeV sup 7 Li sup + sup + RBS and AES were used for investigations of thermal diffusion of Ag in Cu single crystals. The annealing of samples was carried out in vacuum in the temperature range from 498 to 613 K. The element depth concentration profiles transformed from RBS spectra indicate that the diffusion of Ag into Cu is a typical volume diffusion. The Arrhenius parameters corresponding to the diffusion were obtained.

  2. Laboratory studies of crystal growth in magma

    Science.gov (United States)

    Hammer, J. E.; Welsch, B. T.; First, E.; Shea, T.

    2012-12-01

    The proportions, compositions, and interrelationships among crystalline phases and glasses in volcanic rocks cryptically record pre-eruptive intensive conditions, the timing of changes in crystallization environment, and the devolatilization history of eruptive ascent. These parameters are recognized as important monitoring tools at active volcanoes and interpreting geologic events at prehistoric and remote eruptions, thus motivating our attempts to understand the information preserved in crystals through an experimental appoach. We are performing laboratory experiments in mafic, felsic, and intermediate composition magmas to study the mechanisms of crystal growth in thermochemical environments relevant to volcanic environments. We target features common to natural crystals in igneous rocks for our experimental studies of rapid crystal growth phenomena: (1) Surface curvature. Do curved interfaces and spongy cores represent evidence of dissolution (i.e., are they corrosion features), or do they record the transition from dendritic to polyhedral morphology? (2) Trapped melt inclusions. Do trapped liquids represent bulk (i.e., far-field) liquids, boundary layer liquids, or something intermediate, depending on individual species diffusivity? What sequence of crystal growth rates leads to preservation of sealed melt inclusions? (3) Subgrain boundaries. Natural phenocrysts commonly exhibit tabular subgrain regions distinguished by small angle lattice misorientations or "dislocation lamellae" and undulatory extinction. Might these crystal defects be produced as dendrites undergo ripening? (4) Clusters. Contacting clusters of polymineralic crystals are the building blocks of cumulates, and are ubiquitous features of mafic volcanic rocks. Are plagioclase and clinopyroxene aligned crystallographically, suggesting an epitaxial (surface energy) relationship? (5) Log-normal size distribution. What synthetic cooling histories produce "natural" distributions of crystal sizes, and

  3. Study on Crystallization of Titanium Silicalite (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    Lin Min; Zhu Bin; Shu Xingtian; Wang Xieqing

    2008-01-01

    In order to investigate the rules on preparation of titanium silicalite (TS-1) the 1H→13C CP/MAS NMR spectrometers were applied to track the function of template TPAOH in the process of crystal lization of titanium silicalite.The research results revealed that at the initial stage of crystallization the TPA+ ions acting as the template could predominantly absorb the polymers of negatively charged silicatitania sol and the interactions between silica sol and titania sol could gradually lead to the formation of tiny crystal nuclei that could slowly grow up to form molecular sieves.Upon investigating the course of crystallization of titanium silicalite the 1H→13C CP/MAS NMR spectrometers were applied to effectively enhance the resolution of 29Si signals in the titanium silicalite.Study results have shown that during the formation of tiny crystal nuclei upon interaction between titania sol and silica sol the influence of titania sol on the silica sol was insignificant.However,when tiny crystal nuclei broke out into molecular sieves the titania sol could enter the zeolite framework that could apparently impose an enhanced effect on the silica sol.

  4. Annealing effects and DLTS study on NPN silicon bipolar junction transistors irradiated by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chaoming; Li, Xingji, E-mail: lxj0218@hit.edu.cn; Yang, Jianqun; Rui, Erming

    2014-01-21

    Isochronal anneal sequences have been carried out on 3DG112 silicon NPN bipolar junction transistors (BJTs) irradiated with 20 MeV bromine (Br) heavy ions. The Gummel curve is utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. We find that the base current (I{sub B}) decreases with the increasing annealing temperature, while the collector current (I{sub C}) remains invariable. The current gain varies slightly, when the annealing temperature (T{sub A}) is lower than 400 K, while varies rapidly at T{sub A}<450 K, and the current gain of the 3DG112 BJT annealing at 700 K almost restore to that of the pre-radiation transistor. Deep level transient spectroscopy (DLTS) data is used to assign the relative magnitude of each of the important defects. Based on the in situ electrical measurement and DLTS spectra, it is clear that the V{sub 2}(−/0)+V-P traps are the main contribution to the degradation of current gain after the 20 MeV Br ions irradiation. The V{sub 2}(−/0)+V-P peak has many of the characteristics expected for the current gain degradation.

  5. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, R.; Pagan, V.R.; Kabulski, A.; Kuchibhatla, S.; Harman, J.; Kasarla, K.R.; Rodak, L.E.; Hensel, J.P.; Famouri, P.; Korakakis, D.

    2008-01-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE-grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  6. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    R. Farrell; V. R. Pagan; A. Kabulski; Sridhar Kuchibhatl; J. Harman; K. R. Kasarla; L. E. Rodak; P. Famouri; J. Peter Hensel; D. Korakakis

    2008-05-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  7. Positron annihilation spectroscopy study on annealing effect of CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianjian; Wang, Jiaheng; Yang, Wei; Zhu, Zhejie; Wu, Yichu, E-mail: ycwu@whu.edu.cn [School of Physics and Technology, Hubei Key Laboratory of Nuclear Solid State Physics, Wuhan University (WHU), Wuhan (China)

    2016-03-15

    The microstructure and defects of CuO nanoparticles under isochronal annealing were investigated by positron annihilation spectroscopy (PAS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD and SEM results indicated that the average grain sizes of CuO nanoparticles grew slowly below 800 °C, and then increased rapidly with the annealing temperature from 800 to 1000 °C. Positron lifetime analysis exhibited that positrons were mainly annihilated in mono-vacancies (V{sub Cu}, V{sub O}) and vacancy clusters when annealing from 200 to 800 °C. Furthermore, W-S plot of Doppler broadening spectra at different annealing temperatures found that the (W, S) points distributed on two different defect species, which suggested that V{sup −}{sub Cu} - V{sup +}{sub O} complexes were produced when the grains grew to bigger size after annealing above 800 °C, and positrons might annihilate at these complexes. (author)

  8. Studies on the Properties of ZnO Crystal Plane Grown by the Innovated Hydrothermal Method

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-Hao; CHEN Da-Gui; LI Wei; HUANG Jia-Kui; WANG Guo-Hong; LIN Zhang; HUANG Feng

    2008-01-01

    ZnO single crystals were grown by the innovated hydrothermal method. The crystal surfaces were polished, and then studied by atom force microscope (AFM) and wet-chemical etching (WCE). It was found that the Zn polar plane was smoother than O polar plane under the same polishing conditions. The etch pit density of Zn polar plane is 4.3×103 cm-2,which is consistent with the previous report, while the density of etch pit of O polar plane is more than 103 cm-2. After annealing treatment, the density of etch pit of Zn plane reduces to 5.8×102 cm-2 and is superior to the current report. This investigation reveals that the high quality ZnO single crystals with fine Zn polar plane can be obtained by the innovated hydrothermal method.

  9. Comparison study on the annealing behaviors of dispersion strengthened copper alloys with different nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The hardness measurement, optical microscopy (OM), and transmission electron microscopy (TEM) microstructure observation on the annealing behaviors of Cu-Al2O3 (2.25 vol.% and 0.54 vol.% A12O3) and Cu-0.52vol.%Nb alloys were carried out. The results show that with the increase of annealing temperature, the hardness of Cu-A12O3 alloys decreases slowly. No change of the fiber structure formed by cold rolling in the Cu-2.25vol.%A12O3 alloy is observed even after annealing at 900℃, and the higher dislocation density can still be observed by TEM. Less combination of fiber formed by cold rolling and subgrains are observed in the Cu-0.54vol.%A12O3 alloy annealed at 900℃. With the increase of annealing temperature, the hardness of the Cu-0.52vol.%Nb alloy exhibits a general decreasing trend, and its falling rate is higher than that of the Cu-A12O3 alloys, indicating that its ability of resistance to softening at elevated temperature is weaker than that of the Cu-Al2O3 alloys. However, when annealed at a temperature of 300-400 ℃, probably owing to the precipitation strengthening of niobium, the hardness of the Cu-0.52vol.%Nb alloy arises slightly. The fibers formed by cold rolling become un-clear and un-straight and have less combination, and considerably more subgrains are observed by TEM.

  10. Annealing effects and DLTS study on NPN silicon bipolar junction transistors irradiated by heavy ions

    Science.gov (United States)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Rui, Erming

    2014-01-01

    Isochronal anneal sequences have been carried out on 3DG112 silicon NPN bipolar junction transistors (BJTs) irradiated with 20 MeV bromine (Br) heavy ions. The Gummel curve is utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. We find that the base current (IB) decreases with the increasing annealing temperature, while the collector current (IC) remains invariable. The current gain varies slightly, when the annealing temperature (TA) is lower than 400 K, while varies rapidly at TAtransistor. Deep level transient spectroscopy (DLTS) data is used to assign the relative magnitude of each of the important defects. Based on the in situ electrical measurement and DLTS spectra, it is clear that the V2(-/0)+V-P traps are the main contribution to the degradation of current gain after the 20 MeV Br ions irradiation. The V2(-/0)+V-P peak has many of the characteristics expected for the current gain degradation.

  11. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.

    2014-01-01

    The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP–β, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scat...

  12. A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach.

    Science.gov (United States)

    Corazza, S; Mündermann, L; Chaudhari, A M; Demattio, T; Cobelli, C; Andriacchi, T P

    2006-06-01

    Human motion capture is frequently used to study musculoskeletal biomechanics and clinical problems, as well as to provide realistic animation for the entertainment industry. The most popular technique for human motion capture uses markers placed on the skin, despite some important drawbacks including the impediment to the motion by the presence of skin markers and relative movement between the skin where the markers are placed and the underlying bone. The latter makes it difficult to estimate the motion of the underlying bone, which is the variable of interest for biomechanical and clinical applications. A model-based markerless motion capture system is presented in this study, which does not require the placement of any markers on the subject's body. The described method is based on visual hull reconstruction and an a priori model of the subject. A custom version of adapted fast simulated annealing has been developed to match the model to the visual hull. The tracking capability and a quantitative validation of the method were evaluated in a virtual environment for a complete gait cycle. The obtained mean errors, for an entire gait cycle, for knee and hip flexion are respectively 1.5 degrees (+/-3.9 degrees ) and 2.0 degrees (+/-3.0 degrees ), while for knee and hip adduction they are respectively 2.0 degrees (+/-2.3 degrees ) and 1.1 degrees (+/-1.7 degrees ). Results for the ankle and shoulder joints are also presented. Experimental results captured in a gait laboratory with a real subject are also shown to demonstrate the effectiveness and potential of the presented method in a clinical environment.

  13. Systematic hardness studies on lithium niobate crystals

    Indian Academy of Sciences (India)

    K G Subhadra; K Kishan Rao; D B Sirdeshmukh

    2000-04-01

    In view of discrepancies in the available information on the hardness of lithium niobate, a systematic study of the hardness has been carried out. Measurements have been made on two pure lithium niobate crystals with different growth origins, and a Fe-doped sample. The problem of load variation of hardness is examined in detail. The true hardness of LiNbO3 is found to be 630 ± 30 kg/mm2. The Fe-doped crystal has a larger hardness of 750 ± 50 kg/mm2.

  14. Study of Nd:YAG laser annealing of electroless Ni-P film on spiegel-iron plate by Taguchi method and grey system theory

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.L. [Department of Materials Science and Engineering, National Formosa University, 64, Wunhua Road, Huwei, Yunlin 632, Taiwan (China); Chien, W.T.; Jiang, M.H. [Department of Mechanical Engineering, National Pingtung University of Science and Technology, 1, Shuehfu Road, Neipu, Pingtung 912, Taiwan (China); Chen, W.J., E-mail: chenwjau@yuntech.edu.t [Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan (China)

    2010-04-09

    An electroless Ni-P film was first deposited on a spiegel-iron plate and then annealed by an Nd:YAG pulsed wave laser. In order to obtain the optimal laser annealing parameters for maximizing the hardness and minimizing the surface roughness of electroless Ni-P films, the Taguchi method and grey system theory were used to analyze the experimental data. The electroless Ni-P film was also characterized by scanning electron microscopy for the morphology, and transmission electron microscopy for the microstructure and crystal structure. The results showed that the hardness and the surface roughness of electroless Ni-P films can be, at the same time, improved to 50.8% and 68%, respectively, by the laser annealing with the optimal parameters.

  15. Fabrication of electrodeposited Ni-Cu/Cu multilayered films and study of their nanostructures before and after annealing

    Directory of Open Access Journals (Sweden)

    I Kazeminezhad

    2008-07-01

    Full Text Available  In this work electrodeposited Ni-Cu/Cu metallic multilayered films with different thicknesses of Ni and Cu were prepared on (100 polycrystalline Cu substrates. The nanostructure of the multilayers was studied using XRD. The existence of satellite peaks in the XRD patterns showed that the multilayered films have superlattice structures. The difference between the intensity of ML(200 and ML(111 peaks showed that the multilayers have a strong texture of (100 as their substrate structures which confirms the epitaxial growth. The morphology of the films was studied by SEM. The SEM images showed that the surface of the films is rough. The samples were also analyzed using EDX and the results showed that the real content of Ni is less than its nominal content this refers to the current efficiency which is less than unity due to hydrogen evolution. In the second stage of the work some identical samples which have the highest order of satellite peaks were electrodeposited. The samples were annealed at different temperatures and times. Their structures were then studied by XRD. The XRD patterns of the annealed samples showed that if the temperature and time of annealing increase, the satellite peaks begin to disappear. It means by increasing these two parameters, the sharpness of the bilayer interface decreases and the multilayered structure tends to become alloy structure. The morphology of the samples was also studied by SEM. The SEM images showed that the surface of the annealed films becomes approximately uniform due to the diffusion of Ni and Cu atoms to Cu and Ni layers, respectively.

  16. Effects of hydrothermal annealing on characteristics of CuInS2 thin films by SILAR method

    Science.gov (United States)

    Shi, Yong; Xue, Fanghong; Li, Chunyan; Zhao, Qidong; Qu, Zhenping; Li, Xinyong

    2012-07-01

    CuInS2 thin films have been deposited by successive ionic layer absorption and reaction (SILAR) method, then annealed in a Na2S solution (denoted as hydrothermal annealing) at 200 °C for different time. The effect of hydrothermal annealing on the properties of the films was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and optical absorption spectroscopy. The XRD, TEM and SEM results indicate that well-crystallized CuInS2 films could be obtained after annealing in 0.1 mol/L Na2S solution for 1.5 h. The annealed CuInS2 films were slightly S-rich and the direct band gap varied from 1.32 to 1.58 eV as the annealing time increased from 0.5 h to 2 h.

  17. Picosecond and nanosecond laser annealing and simulation of amorphous silicon thin films for solar cell applications

    Science.gov (United States)

    Theodorakos, I.; Zergioti, I.; Vamvakas, V.; Tsoukalas, D.; Raptis, Y. S.

    2014-01-01

    In this work, a picosecond diode pumped solid state laser and a nanosecond Nd:YAG laser have been used for the annealing and the partial nano-crystallization of an amorphous silicon layer. These experiments were conducted as an alternative/complementary to plasma-enhanced chemical vapor deposition method for fabrication of micromorph tandem solar cell. The laser experimental work was combined with simulations of the annealing process, in terms of temperature distribution evolution, in order to predetermine the optimum annealing conditions. The annealed material was studied, as a function of several annealing parameters (wavelength, pulse duration, fluence), as far as it concerns its structural properties, by X-ray diffraction, SEM, and micro-Raman techniques.

  18. Propagating self-sustained annealing of radiation-induced interstitial complexes

    Science.gov (United States)

    Bokov, P. M.; Selyshchev, P. A.

    2016-02-01

    A propagating self-sustained annealing of radiation induced defects as a result of thermal-concentration instability is studied. The defects that are considered in the model are complexes. Each of them consists of one atom of impunity and of one interstitial atom. Crystal with defects has extra energy which is transformed into heat during defect annealing. Simulation of the auto-wave of annealing has been performed. The front and the speed of the auto-wave have been obtained. It is shown that annealing occurs in a narrow region of time and space. There are two kinds of such annealing behaviour. In the first case the speed of the auto-wave oscillates near its constant mean value and the front of temperature oscillates in a complex way. In the second case the speed of propagation is constant and fronts of temperature and concentration look like sigmoid functions.

  19. Magnetoimpedance studies on laser and microwave annealed Fe{sub 66}Ni{sub 7}si{sub 7}B{sub 20} ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kotagiri, Ganesh [Advanced Magnetic Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Ramarao, S.D. [Microwave Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Markandeyulu, G., E-mail: mark@iitm.ac.in [Advanced Magnetic Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2015-05-15

    Magnetoimpedance (MI) has been investigated in the laser and microwave annealed Fe{sub 66}Ni{sub 7}Si{sub 7}B{sub 20} ribbons. The largest MI [(MI){sub m}] values of the ribbons annealed using laser with energies of 150, 200 and 250 mJ/pulse (mJp) are 25% (at 7 MHz), 30% (at 5 MHz) and 21% (at 7 MHz) respectively. The effect of domain wall pinning on MI was observed as field insensitive regions in the MI profiles in the ribbon annealed using 150 mJp energy. Flower shaped grains in amorphous matrix in the ribbon annealed with 200 mJp energy are responsible for highest (MI){sub m} due to the least anisotropy. In the ribbons annealed for 40, 45 and 50 min at 400 °C using microwaves, (MI){sub m} values are 35% (at 5 MHz), 46% (at 6 MHz) and 29% (at 7 MHz) respectively. The large DC conductivity and the least anisotropy (smallest H{sub k} values) in the ribbon microwave annealed for 45 min at 400 °C resulted in (MI){sub m} reaching its highest value in the ribbons investigated. - Highlights: • Magnetoimpedance studied on Fe{sub 66}Ni{sub 7}Si{sub 7}B{sub 20} ribbons annealed using laser/microwaves. • Domain wall pinning observed in the ribbon annealed with 150 mJ/pulse of laser. • Flower shaped grains observed in the ribbon annealed with 200 mJ/pulse of laser. • Large magnetoimpedance and least anisotropy observed in the above ribbon. • Microwave annealed ribbons exhibited conductivity-magnetoimpedance correlation.

  20. Thermoluminescence and EPR studies on natural petalite crystals

    Energy Technology Data Exchange (ETDEWEB)

    Souza, S.O.; Chubaci, J.F.D.; Watanabe, S. [Department of Nuclear Physics, Institute of Physics, University of Sao Paulo, Sao Paulo, SP (Brazil); Christopher Selvin, P. [NGM College, Pollachi, Tamil Nadu (India); Sastry, M.D. [Bhabha Atomic Research Center, Bombay (India)

    2002-07-07

    Thermally stimulated luminescence of natural mineral petalite (LiAlSi{sub 4}O{sub 10}) crystals was investigated and the possible electron/hole traps responsible for thermoluminescence (TL) emission were identified using optical absorption and electron paramagnetic resonance (EPR) measurements. The glow curves for natural samples, obtained with a heating rate of 4C s{sup -1}, show two glow peaks at 160 deg. C and 330 deg. C. Pre-annealed and subsequently irradiated samples give rise to three glow peaks at 175 deg. C, 340 deg. C and 435 deg. C. An isochronal thermal study established correlation between the first glow peak and Ti{sup 3+}-like trap centre and E'{sub 1}-centre and Al-O{sup -}-Al-like recombination centres. The second TL peak at 340 deg. C may be related to the E{sub 1}' centres formed on irradiation. A mechanism for the observed TL is suggested. (author)

  1. Influence of etching and annealing on evolution of surface structure of metallic glass

    Science.gov (United States)

    Ushakov, Ivan V.; Feodorov, Victor A.; Permyakova, Inga J.

    2004-04-01

    Evolution of surface structure of metallic glass subjected to etching was investigated. The changes of surface structure of metallic glass 82K3XCP after chemical etching and different modes of annealing were studied. Samples of metallic glass were etched in solutions of sulphurous acid with different concentration. Corrosion-resistance was determined. The dependence of corrosion rate on acid concentration was found. Characteristic concentric circumferences on the etching surface were investigated. Their formation mechanism is discussed. Crystallization on surface stimulated by both acid and annealing was examined. The formation of first dendrites on surface of annealed metallic glass and their evolution were investigated.

  2. Studies on forming gas annealing treated BiFeO3 thin films and capacitors

    Science.gov (United States)

    Lee, Chia-Ching; Wu, Lin-Jung; Wu, Jenn-Ming

    2007-11-01

    The structure and electric properties of BiFeO3(BFO )/BaPbO3(BPO) and Pt/BFO/BPO capacitors with forming gas annealing (FGA) treatment were investigated. X-ray diffraction patterns indicated that the annealing did not affect the structure and phase of BFO films. A degraded electric property was obtained in FGA-treated Pt/BFO/BPO films. It can be attributed to the formation of reduction and incomplete reduction of Bi+3 of BFO. Retention and fatigue properties were obtained in FGA-treated BPO/BFO/BPO capacitors. The normalized Pr loss was 22.8% after applying a voltage above 2Vc (coercive voltage) with 1011cycles. The retention behavior within 30000s is governed by the logarithmic time dependence.

  3. CEMS study of defect annealing in Fe implanted AlN

    Science.gov (United States)

    Bharuth-Ram, K.; Geburt, S.; Ronning, C.; Masenda, H.; Naidoo, D.

    2016-12-01

    An AlN thin film grown on sapphire substrate was implanted with 45 keV 57Fe and 56Fe ions at several energies to achieve a homogeneous concentration profile of approximately 2.6 at.%. in the AlN film. Conversion electron Mössbauer Spectroscopy data were collected after annealing the sample up to 900 °C. The spectra were fitted with three components, a single line attributed to small Fe clusters, and two quadrupole split doublets attributed to Fe substituting Al in the wurtzite AlN lattice and to Fe located in implantation induced lattice damage. The damage component shows significant decrease on annealing up to 900 °C, accompanied by corresponding increases in the singlet component and the substitutional Fe.

  4. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies

    Science.gov (United States)

    Wang, Tong; Su, Wen; Fu, Yingyi; Hu, Jingbo

    2016-12-01

    In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments' characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm-2 mM-1 with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.

  5. Thin film design using simulated annealing and study of the filter robustness

    Science.gov (United States)

    Boudet, Thierry; Chaton, Patrick

    1996-08-01

    Modern optical components require sophisticated coatings with tough specifications and the design of optical multilayers has become a key activity of most laboratories and factories. A synthesis technique based on the simulated annealing algorithm is presented here. In this stochastic minimization, no starting solution is required, only the materials and technological constraints need to be specified. Moreover, the algorithm will always reach the final result. As simulated annealing is a stochastic algorithm, a great amount of state transitions is needed in order to reach a global minimum of the merit function used to evaluate the difference between the optical target and the calculated filter. Anyway the computing time remains reasonable on a work-station. A few examples will show the performances of our program. It also has to be pointed out that no refinement is needed at the end of the annealing because the solution is already highly optimized. Nowadays the design of robust filters with low sensitivity to technological variations remains a key factor for manufacturers. This is why we have established some criteria that quantify the robustness of the stacks. It also enables comparison of multilayers synthesized by different methods and corresponding to the same target.

  6. Annealing studies of cluster defects in ion-implanted silicon using high resolution DLTS

    Energy Technology Data Exchange (ETDEWEB)

    Gad, M.A. [Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield S1 1WB (United Kingdom); Evans-Freeman, J.H. [Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield S1 1WB (United Kingdom)]. E-mail: j.evans-freeman@shu.ac.uk

    2006-12-15

    High resolution Laplace deep level transient spectroscopy (LDLTS) has been applied to investigate the annealing behaviour of small cluster defects in n-type Si. The Si was implanted with either Ge or Si, with energies 1500 keV and 850 keV respectively, and doses of 1 x 10{sup 10} cm{sup -2}. The low dose ensured that there was a minimum of carrier removal due to deep defect states after implantation. Defect states in the as-implanted samples were attributed to VO pairs, divacancies and very small interstitial cluster defects, after detailed depth profiling. LDLTS of Ge{sup +} and Si{sup +} implanted silicon shows that there are three closely spaced deep levels associated with these clusters, with energies in the region of E {sub c}-400 meV. Samples were then isochronally annealed in very small temperature intervals up to 560 K, in situ in our high temperature measurement cryostat, and the LDLTS re-examined as a function of annealing temperature. A new deeper energy level emerges as the cluster-related signal reduces, and it is suggested that this new trap is a major recombination centre, by comparison with current-voltage data.

  7. Annealing studies of cluster defects in ion-implanted silicon using high resolution DLTS

    Science.gov (United States)

    Gad, M. A.; Evans-Freeman, J. H.

    2006-12-01

    High resolution Laplace deep level transient spectroscopy (LDLTS) has been applied to investigate the annealing behaviour of small cluster defects in n-type Si. The Si was implanted with either Ge or Si, with energies 1500 keV and 850 keV respectively, and doses of 1 × 10 10 cm -2. The low dose ensured that there was a minimum of carrier removal due to deep defect states after implantation. Defect states in the as-implanted samples were attributed to VO pairs, divacancies and very small interstitial cluster defects, after detailed depth profiling. LDLTS of Ge + and Si + implanted silicon shows that there are three closely spaced deep levels associated with these clusters, with energies in the region of Ec-400 meV. Samples were then isochronally annealed in very small temperature intervals up to 560 K, in situ in our high temperature measurement cryostat, and the LDLTS re-examined as a function of annealing temperature. A new deeper energy level emerges as the cluster-related signal reduces, and it is suggested that this new trap is a major recombination centre, by comparison with current-voltage data.

  8. A study of RHIC crystal collimation

    CERN Document Server

    Trbojevic, D; Harrison, M; Parker, B; Thompson, P; Stevens, A; Mokhov, N V; Drozhdin, A I

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) will experience increasing longitudinal and transverse heavy ion emittances, mostly due to intra-beam scattering (IBS). The experiments in RHIC are expected to not only have reduced luminosities due to IBS but also an unwanted beam halo. Primary betatron collimators will be used to remove the large amplitude particles. The efficiency of the primary collimator in RHIC depends very much on the alignment of the jaws which needs to be within few micro-radians for the best conditions. As proposed by V. Biryukov bent crystals could be used to improve the efficiency of an existing collimation system by installing them upstream of the collimator jaws. Bent crystals have been successfully used in SPS, Protvino and Fermilab for extraction of the beam particles channeled through them. This study examines possible improvements of the primary collimator system for heavy ions at RHIC by use of bent crystals. Bent crystals will reduce the collimator jaws alignment requirement and w...

  9. A study of optical and ESR radiation-induced absorptions in TeO2 single crystals

    Science.gov (United States)

    Kappers, L. A.; Gilliam, O. R.; Bartram, R. H.; Földv&Ári, I.; Watterich, A.

    Gamma-ray and 1.5-MeV electron irradiations are employed in the temperature range 25-175°C to produce radiation effects in undoped paratellurite (α-TeO2) single crystals. Optical absorption and ESR techniques are used to study the growth and annealing of point defects, and spectroscopic observations by these two methods are compared. Pulseannealing experiments are reported over the range 100-500°C. The TeO2 crystal shows much more susceptibility to radiation damage at the higher irradiation temperatures.

  10. In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities

    Science.gov (United States)

    Lan, Si; Wei, Xiaoya; Zhou, Jie; Lu, Zhaoping; Wu, Xuelian; Feygenson, Mikhail; Neuefeind, Jörg; Wang, Xun-Li

    2014-11-01

    In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr56Cu36Al8, an average glass former, follows continuous nucleation and growth, while that of Zr46Cu46Al8, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.

  11. In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Si; Wei, Xiaoya; Wu, Xuelian; Wang, Xun-Li, E-mail: xlwang@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Ave., Kowloon (Hong Kong); Zhou, Jie; Lu, Zhaoping [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing (China); Feygenson, Mikhail; Neuefeind, Jörg [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-11-17

    In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr{sub 56}Cu{sub 36}Al{sub 8}, an average glass former, follows continuous nucleation and growth, while that of Zr{sub 46}Cu{sub 46}Al{sub 8}, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.

  12. Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis

    Science.gov (United States)

    Krumeich, Frank; Waser, Oliver; Pratsinis, Sotiris E.

    2016-10-01

    The thermal behavior of core-shell carbon-coated lithium iron phosphate (LiFePO4-C) nanoparticles made by flame spray pyrolysis (FSP) during annealing was investigated by in-situ transmission electron microscopy (TEM), in-situ X-ray powder diffraction (XRD) as well as ex-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Crystallization of the initially glassy LiFePO4-C nanoparticles starts at quite low temperatures (T=400 °C), forming single crystals inside the confinement of the carbon shell. Upon increasing the temperature to T≥700 °C, LiFePO4 starts to diffuse through the carbon shell resulting in cavities inside the mostly intact carbon shell. By increasing the temperature further to T≥800 °C, the initial core-shell morphology converts into open carbon shells (flakes and cenospheres) and bulky LiFePO4 particles (diameter in the range 300-400 nm), in agreement with ex-situ experiments.

  13. Raman scattering study of glass crystallization kinetics

    Science.gov (United States)

    Balkanski, M.; Haro, E.; Espinosa, G. P.; Phillips, J. C.

    1984-08-01

    Laser induced glass-crystalline transition is studied by light scattering. Three significant effects are observed depending on the incident laser energy density: (i) Spectral band narrowing indicating cluster enlargement constitutes a precursor effect, (ii) an intensity increase effect indicates a rapid rise of the density of clusters attaining microcrystalline size and (iii) a dynamical reversal effect indicative of glass-crystalline instability. Cluster volume and crystallization appear as separate but related threshold phenomena.

  14. Studying Crystal Growth With the Peltier Effect

    Science.gov (United States)

    Larsen, David J., Jr.; Dressler, B.; Silberstein, R. P.; Poit, W. J.

    1986-01-01

    Peltier interface demarcation (PID) shown useful as aid in studying heat and mass transfer during growth of crystals from molten material. In PID, two dissimilar "metals" solid and liquid phases of same material. Current pulse passed through unidirectionally solidifying sample to create rapid Peltier thermal disturbance at liquid/solid interface. Disturbance, measured by thermocouple stationed along path of solidification at or near interface, provides information about position and shape of interface.

  15. Low temperature magnetothermoelectric effect and magnetoresistance in Te vapor annealed Bi2Te3.

    Science.gov (United States)

    Hor, Y S; Qu, D; Ong, N P; Cava, R J

    2010-09-22

    The electrical properties of single crystals of p-type Bi(2)Te(3) are shown to be tuned by annealing as-grown crystals in elemental Te vapor at temperatures in the range of 400-420 °C. While as-grown nominally stoichiometric Bi(2)Te(3) has p-type conductivity below room temperature, Te vapor annealed Bi(2)Te(3) shows a cross over from p- to n-type behavior. The temperature dependent resistivity of the Te annealed crystals shows a characteristic broad peak near 100 K. Applied magnetic fields give rise to a large low temperature magnetothermoelectric effect in the Te annealed samples and enhance the low temperature peak in the resistivity. Further, Te annealed Bi(2)Te(3) shows a large positive magnetoresistance, ∼ 200% at 2 K, and ∼ 15% at room temperature. The annealing procedure described can be employed to optimize the properties of Bi(2)Te(3) for study as a topological insulator.

  16. Coordination Hydrothermal Interconnection Java-Bali Using Simulated Annealing

    Science.gov (United States)

    Wicaksono, B.; Abdullah, A. G.; Saputra, W. S.

    2016-04-01

    Hydrothermal power plant coordination aims to minimize the total cost of operating system that is represented by fuel costand constraints during optimization. To perform the optimization, there are several methods that can be used. Simulated Annealing (SA) is a method that can be used to solve the optimization problems. This method was inspired by annealing or cooling process in the manufacture of materials composed of crystals. The basic principle of hydrothermal power plant coordination includes the use of hydro power plants to support basic load while thermal power plants were used to support the remaining load. This study used two hydro power plant units and six thermal power plant units with 25 buses by calculating transmission losses and considering power limits in each power plant unit aided by MATLAB software during the process. Hydrothermal power plant coordination using simulated annealing plants showed that a total cost of generation for 24 hours is 13,288,508.01.

  17. An electron microscopy study of microstructural evolution during in-situ annealing of heavily deformed nickel

    DEFF Research Database (Denmark)

    Zhang, Yubin; Yu, Tianbo; Mishin, Oleg

    2017-01-01

    The microstructure of heavily deformed pure nickel processed by accumulative roll bonding to a von Mises strain of 6.4 has been investigated using both transmission electron microscopy and transmission Kikuchi diffraction in a scanning electron microscope. By monitoring the microstructure in one...... region during in-situ annealing in a transmission electron microscope, it is found that 9% of all triple junctions present in this region have migrated over more than 40 nm. Junctions formed by three high angle boundaries are observed to be more prone to motion during recovery than any other junctions...

  18. Studies on the annealing and antibacterial properties of the silver-embedded aluminum/silica nanospheres

    Science.gov (United States)

    Pan, Ko-Ying; Chien, Chia-Hung; Pu, Ying-Chih; Liu, Chia-Ming; Hsu, Yung-Jung; Yeh, Jien-Wei; Shih, Han C.

    2014-06-01

    Substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by sol-gel technique. After various annealing temperatures, the surface mechanisms of each sample were analyzed using scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The chemical durability examinations and antibacterial tests of each sample were also carried out for the confirmation of its practical usage. Based on the result of the above analyses, the silver-embedded aluminum/silica nanospheres are eligible for fabricating antibacterial utensils.

  19. Study of Grain Growth of CZTS Nanoparticles Annealed in Sulfur Atmosphere

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Crovetto, Andrea; Hansen, Ole

    2014-01-01

    The kesterite material, Cu2ZnSn(SxSe1-x)4 (CZTS), is very promising as absorber material in future thin filmsolar cells. The elements are abundant, the material has a high absorption coefficient, and the pure sulfideCZTS is non-toxic. These properties make CZTS a potential candidate also for larg...... of the structure soda lime glass (SLG)/Mo/CZTSSe/CdS/ZnO:Al/Ag has been built, and our preliminary results show a power conversion efficiency of 1.41% for the nanoparticles annealed inselenium....

  20. Compositional study of vacuum annealed Al doped ZnO thin films obtained by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Shantheyanda, B. P.; Todi, V. O.; Sundaram, K. B.; Vijayakumar, A.; Oladeji, I. [Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32816 (United States); Planar Energy Inc., 653 W. Michigan St., Orlando, Florida 32805 (United States)

    2011-09-15

    Aluminum doped zinc oxide (AZO) thin films were obtained by RF magnetron sputtering. The effects of deposition parameters such as power, gas flow conditions, and substrate heating have been studied. Deposited and annealed films were characterized for composition as well as microstructure using x ray photoelectron spectroscopy and x ray diffraction. Films produced were polycrystalline in nature. Surface imaging and roughness studies were carried out using SEM and AFM, respectively. Columnar grain growth was predominantly observed. Optical and electrical properties were evaluated for transparent conducting oxide applications. Processing conditions were optimized to obtain highly transparent AZO films with a low resistivity value of 6.67 x 10{sup -4}{Omega} cm.

  1. CRYSTALLIZATION AND MELTING OF NYLON 610

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Differential scanning calorimetry was used to study the crystallization and melting of nylon 610. For nylon 610 crystallized from the melt state (260℃), the overall rate of bulk crystallization can be described by a simple Avrami equation with Avrami exponent n≈2, independent of crystallization temperature. With the experimentally obtained Tm0 (235℃~255℃) of nylon 610, the fold surface free energy σe was determined to be 35~38 erg/cm2. The effects of annealing temperature and time on the melting of quenched nylon 610 were also investigated. For nylon 610 quenched at room temperature there is only one DSC endotherm peak DSC scans on annealed samples exhibited an endotherm peak at approximately 10℃ above the annealing temperature. The size and position of the endothermic peak is strongly related to annealing temperature and time. An additional third melting was observed when quenched nylon 610 was annealed at high temperature for a sufficiently long residence time. The existence of the third melting peak suggests that more than one kind of distribution of lamella thickness may occur when quenched nylon610 is annealed. The implications of these results in terms of crystal thickening mechanism were discussed.

  2. Agglomeration and Sintering in Annealed FePt Nanoparticle Assemblies Studied by Small Angle Neutron Scattering and X-Ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, T.

    2005-01-03

    In this work we give a detailed account of the use of small angle neutron scattering to study the properties of polymer mediated, self assembled nanoparticle arrays as a function of annealing temperature. The results from neutron scattering are compared with those obtained from x-ray diffraction. Both techniques show that particle size increases with annealing temperatures of 580 C and above. They also show that the distribution of particle diameters is significant and increases with annealing temperature. The complementary nature of the two measurements allows a comprehensive structural model of the assemblies to be developed in terms of particle sintering and agglomeration. To realize the potential of nanoparticle assemblies as a monodispersed data storage medium the problem of particle separation necessary to avoid sintering and agglomeration during annealing must be addressed.

  3. Flash-lamp annealing of ZnO-layers on copper–indium–gallium–sulphide layers: A spectroscopic ellipsometry study

    Energy Technology Data Exchange (ETDEWEB)

    Reck, J., E-mail: reck@out-ev.de [OUT e.V., Köpenicker Str. 325, Haus 201, 12555 Berlin (Germany); Seeger, S.; Weise, M.; Mientus, R. [OUT e.V., Köpenicker Str. 325, Haus 201, 12555 Berlin (Germany); Schulte, J. [Helmholtz Zentrum Berlin, 14109 Berlin (Germany); Ellmer, K., E-mail: ellmer@helmholtz-berlin.de [Helmholtz Zentrum Berlin, 14109 Berlin (Germany)

    2014-11-28

    Polycrystalline copper–indium–(gallium)–sulphide (CI(G)Su) absorbers were analysed by spectroscopic ellipsometry (SE) with special emphasis on the optical band gap energy. Rough CI(G)Su absorber films grown by reactive magnetron sputtering were peeled off from molybdenum coated glass substrates. The smooth back side of CI(G)Su absorbers was suited for the SE analysis. Furthermore, these samples were covered with a thin zinc oxide (ZnO) layer and heat-treated with a commercial xenon flash lamp annealing system (FLA) as well as by thermal annealing in an argon atmosphere. The effect of zinc on CI(G)Su absorber films was studied by secondary ion mass spectrometry depth profiling as well as by SE analysis. The optical modelling of spectral Stokes parameters was performed by using a multilayer approach over a spectral range from 1.5 to 4.3 eV. Spectral absorption coefficients were calculated in every process stage, i.e. (i) peeled samples, (ii) ZnO deposition, (iii) FLA treatment and (iv) etching of the ZnO. Special emphasis was given to the shift of the optical band gap due to the various treatments. While the SE analysis was quite sensitive to the change of optical band gaps due to a varying gallium content in the CI(G)Su absorber layers, a significant shift of the optical band gap due to increasing zinc content was not detectable. - Highlights: • Optical functions of CuIn(Ga)S{sub 2} absorbers are studied by spectroscopic ellipsometry. • Flash lamp annealing realises shallow zinc-profiles in absorber layers. • The method is sensitive for optical band gap shifts regarding gallium or zinc doping. • A band gap shift due to doping with zinc additional to gallium was not detectable.

  4. Study of effect of quenching and deformation on KCl: Gd3+ crystals by using conductivity measurements

    Indian Academy of Sciences (India)

    G Saibabu; A Ramachandra Reddy; D Srikanth

    2004-10-01

    The study of ionic conductivity vs reciprocal temperature of pure KCl and KCl crystal doped with 0.1, 0.3 and 0.5 mole% gadolinium has been carried out in as grown, quenched from elevated temperatures (100, 350 and 500°C) and annealed at various timings i.e. 2–3 h and deformed by different percentages. The plots exhibit three well-known regions, II, III and IV (extrinsic regions). The intrinsic region I was not observed in the plots as the conductivity measurements were taken up to 575°C. From the analysis of these plots, activation energies for the migration of cation vacancy and the association of gadolinium ion with cation vacancy in the lattice of KCl crystals are calculated. These values are compared with previously reported values. Further, an attempt is made to explain the existence of oxidation state of gadolinium ion in + 3 state rather than in + 2 state as reported earlier. The variation in conductivity with effect of concentration of impurity ion, quenching and annealing and deformation with various percentages are explained on the basis of formation of impurity vacancy dipoles, vacancy – vacancy pairs (which appear in the form of precipitation), storage of cation vacancies in the form of defects, introduction of fresh dislocations, etc.

  5. Investigation of the annealing effects on the structural and optoelectronic properties of RF-sputtered ZnO films studied by the Drude-Lorentz model

    Science.gov (United States)

    García-Méndez, Manuel; Bedoya-Calle, Álvaro; Segura, Ricardo Rangel; Coello, Víctor

    2015-09-01

    Zinc oxide films were deposited on glass substrates by RF reactive magnetron sputtering and post-annealed in vacuum at 100, 200, and 300 ºC. Structural and optical properties of films were obtained using X-ray diffraction and UV-visible spectroscopy. Optical parameters were extracted from transmittance curves using the single-oscillator Drude-Lorentz model. The evolution of the optical and structural properties of films with the annealing process was investigated. The films crystallized into the hexagonal würzite lattice structure, with preferential growth along the c-axis [0002]. The results indicate that the crystalline quality of films improved with annealing, whereas transparency was reduced from 90 to 80 % at 300 ºC. With post-annealing, the absorption edge shifted to the red, while the optical band gap decreased from to eV because of the Burstein-Moss effect. Calculated values of plasma frequency, fall within the IR range and decrease with temperature, from rad/s () to rad/s ().

  6. Valence-band electronic structure of Zn sub 3 P sub 2 as a function of annealing as studied by synchrotron radiation photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J.; Kazmerski, L.L. (Solar Energy Research Institute, 1617 Cole Boulevard, Golden, Colorado 80401 (US)); Engelhardt, M.; Hochst, H. (Synchrotron Radiation Center, University of Wisconsin-Madison, 3731 Schneider Drive, Stoughton, Wisconsin 53589 (US))

    1990-02-01

    Ultraviolet photoemission (UPS) utilizing synchrotron radiation has been used to characterize changes in the valence-band electronic structure of crystalline Zn{sub 3}P{sub 2} as a function of annealing temperature. The Zn{sub 3}P{sub 2} crystal was etched in bromine-methanol prior to analysis and annealing was performed in vacuum at 300 and 350 {degree}C after sputter cleaning. The UPS spectra for the virgin material are qualitatively similar to the photoemission results for various II-VI Zn compound semiconductors and a comparison of the Zn 3{ital d} binding energies with respect to the valence band maximum is presented. The results for the virgin material and the 300 {degree}C anneal are further compared with the theoretically predicted band structure of Zn{sub 3}P{sub 2} as determined by a pseudopotential energy band calculation. Loss of phosphorus from the surface and the presence of elemental zinc on the surface after the 350 {degree}C anneal is evident.

  7. Laser annealing of silicon surface defects for photovoltaic applications

    Science.gov (United States)

    Sun, Zeming; Gupta, Mool C.

    2016-10-01

    High power lasers are increasingly used for low cost fabrication of solar cell devices. High power laser processes generate crystal defects, which lower the cell efficiency. This study examines the effect of low power laser annealing for the removal of high power laser induced surface defects. The laser annealing behavior is demonstrated by the significant decrease of photoluminescence generated from dislocation-induced defects and the increase of band-to-band emission. This annealing effect is further confirmed by the X-ray diffraction peak reversal. The dislocation density is quantified by observing etch pits under the scanning electron microscope (SEM). For as-melted samples, the dislocation density is decreased to as low as 1.01 × 106 cm- 2 after laser annealing, resulting in an excellent surface carrier lifetime of 920 μs that is comparable to the value of 1240 μs for the silicon starting wafer. For severely defective samples, the dislocation density is decreased by 4 times and the surface carrier lifetime is increased by 5 times after laser annealing.

  8. Study of the electrical, thermal and chemical properties of Pd ohmic contacts to p-type 4H-SiC: dependence on annealing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kassamakova, L.; Kakanakov, R. [Inst. of Appl. Phys., Plovdiv (Bulgaria). BAS; Nordell, N.; Savage, S. [Industrial Microelectronics Center, Kista (Sweden); Kakanakova-Georgieva, A.; Marinova, Ts. [Inst. of General and Inorganic Chemistry, BAS, Sofia (Bulgaria)

    1999-07-30

    The electrical and chemical properties of Pd ohmic contacts to p-type 4H-SiC, together with their thermal stability, have been studied in the annealing temperature range 600 - 700 C. The ohmic behaviour of as-deposited and annealed contacts has been checked from I - V characteristics and the contact resistivity has been determined by the linear TLM method in order to determine the electrical properties and the thermal stability. An ohmic behaviour was established after annealing at 600 C, while the lowest contact resistivity 5.5 x 10{sup -5} {omega}cm{sup 2} was obtained at 700 C. The contact structure, before and after annealing, was investigated using X-ray photoelectron spectroscopy depth analysis. As-deposited Pd films form an abrupt and chemically inert Pd/SiC interface. Annealing causes the formation of palladium silicide. After formation at 600 C the contact structure consists of unreacted Pd and Pd{sub 3}Si. During annealing at 700 C. Pd and SiC react completely and a mixture of Pd{sub 3}Si, Pd{sub 2}Si and C in a graphite state is found in the contact layer. The examination of the thermal stability shows that after a 100 h heating at 500 C, only the contacts annealed at 700 C did not suffer from a change in resistivity. This can be explained by a more complete reaction between the Pd contact layer and the SiC substrate at this higher annealing temperature. (orig.)

  9. Orthoconic liquid crystals--a case study.

    Science.gov (United States)

    Lagerwall, Sven T

    2014-06-01

    Since the early investigations on liquid crystals it was realized how the confining surfaces often determine the textures and even properties of the material. This influence is particularly complex and important for chiral materials. When we come to chiral smectics the surfaces may have dramatic effects. These are illustrated on the ferroelectric liquid crystals; they then again increase in importance for the antiferroelectric liquid crystals where the most recent example is given by the orthoconic liquid crystals.

  10. A study of the annealing and mechanical behaviour of electrodeposited Cu-Ni multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pickup, C.J.

    1997-08-01

    The mechanical strength of electrodeposited Cu-Ni multilayers is known to vary with deposition wavelength. Since layered coatings are harder and more resistant to wear and abrasion than non-layered coatings, this technique is of industrial interest. Optimisation of the process requires a better understanding of the strengthening mechanisms and the microstructural changes which affect such mechanisms. The work presented in this thesis presents the characterisation a series of Cu-Ni multilayers, covering a wide range of thicknesses of the individual layers in the multilayer, using X-ray diffraction, cross-section TEM, hardness testing and tensile testing. Further, the effects of high temperature annealing on interdiffusion and on changes in internal stresses are documented. (au). 176 refs.

  11. Effect of Annealing Treatment on Erosion-Corrosion of Zr-Based Bulk Metallic Glass in Saline-Sand Slurry

    Science.gov (United States)

    Ji, Xiulin; Shan, Yiping; Chen, Yueyue; Wang, Hui

    2016-06-01

    Bulk metallic glass (BMG) may be a good candidate to solve the erosion-corrosion (E-C) problems of marine pumps in sand-containing seawater. Since annealing treatment is an effective way to improve plasticity of BMGs, the effect of annealing treatment on E-C wear of Zr-based BMG in saline-sand slurry was investigated. All of the annealed BMG samples were crystallized and the quantity of (Zr, Cu) phase increased but that of Al4Cu9 phase decreased with the increase of annealing temperature from 360 to 480 °C. Accordingly, annealing treatment enhances plasticity of the as-cast BMG at the cost of hardness and corrosion resistance. Moreover, 480 °C annealed BMG sample possesses the highest hardness and the lowest corrosion current density in all of the annealed BMG samples. Using a slurry pot erosion tester, the E-C wear of the as-cast and annealed BMG samples was studied under different impingement angles, impact velocities, and concentrations in saline-sand slurry. With the improvement of plasticity, 480 °C annealed BMG sample exhibits the best E-C wear resistance under high impingement angle, high impact velocity, and high sand concentration.

  12. Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning

    Science.gov (United States)

    Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    2016-08-01

    An increase in the efficiency of sampling from Boltzmann distributions would have a significant impact on deep learning and other machine-learning applications. Recently, quantum annealers have been proposed as a potential candidate to speed up this task, but several limitations still bar these state-of-the-art technologies from being used effectively. One of the main limitations is that, while the device may indeed sample from a Boltzmann-like distribution, quantum dynamical arguments suggest it will do so with an instance-dependent effective temperature, different from its physical temperature. Unless this unknown temperature can be unveiled, it might not be possible to effectively use a quantum annealer for Boltzmann sampling. In this work, we propose a strategy to overcome this challenge with a simple effective-temperature estimation algorithm. We provide a systematic study assessing the impact of the effective temperatures in the learning of a special class of a restricted Boltzmann machine embedded on quantum hardware, which can serve as a building block for deep-learning architectures. We also provide a comparison to k -step contrastive divergence (CD-k ) with k up to 100. Although assuming a suitable fixed effective temperature also allows us to outperform one-step contrastive divergence (CD-1), only when using an instance-dependent effective temperature do we find a performance close to that of CD-100 for the case studied here.

  13. Studies on crystal growth and physical properties of 2-amino-5-chloropyridine single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Suthan, T. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Mahadevan, C.K. [Physics Research Centre, S.T. Hindu College, Nagercoil 629 002 (India); Bhagavannarayana, G. [C.G.C. Section, National Physical Laboratory, New Delhi 110 012 (India)

    2011-09-15

    Graphical abstract: 2-Amino-5-chloropyridine single crystal. Highlights: {yields} 2-Amino-5-chloropyridine single crystals grown by slow evaporation technique. {yields} Use acetone as solvent. {yields} Grown crystal conformed by XRD and FTIR. {yields} HRXRD, optical, thermal, dielectric and mechanical studies were analyzed. - Abstract: Organic 2-amino-5-chloropyridine single crystals have been grown by slow evaporation technique successfully. The grown crystal was confirmed by single and powder X-ray diffraction studies. The presence of functional groups was identified by Fourier transform infrared (FTIR) study. High resolution X-ray diffraction (HRXRD) analysis indicates the crystalline perfection of the grown crystal. UV-Vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the results indicate an increase in dielectric and conductivity parameters with the increase of temperature at all frequencies. The Vicker's hardness study reveals that the grown crystal is in soft nature.

  14. A comparative study of annealing of waxy, normal and high-amylose maize starches: the role of amylose molecules.

    Science.gov (United States)

    Wang, Shujun; Wang, Jinrong; Yu, Jinglin; Wang, Shuo

    2014-12-01

    The effect of annealing on starch structure and functionality of three maize starches (waxy, normal and high-amylose) was investigated, with the aim of understanding the role of amylose molecules during starch annealing. Amylose content, granular morphology and crystallinity of maize starches were little affected by annealing treatment. Annealing treatment did not alter the swelling power of waxy maize starch, but reduced the swelling power of normal and high-amylose maize starches. The thermal transition temperatures were increased, and the temperature range was decreased, but the enthalpy change was not affected greatly. The pasting viscosities of normal and waxy maize starches were decreased significantly, with the pasting temperature being little affected. The in vitro digestibility of three maize starches was not affected significantly by annealing treatment. Our results demonstrated that amylose molecules play an important role in the structural reorganization of starch granules during annealing treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. 1-(2-furoyl)-3,3-(diphenyl)thiourea: spectroscopic characterization and structural study from X-ray powder diffraction using simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Estevez H, O.; Duque, J. [Universidad de La Habana, Instituto de Ciencia y Tecnologia de Materiales, 10400 La Habana (Cuba); Rodriguez H, J. [UNAM, Instituto de Investigaciones en Materiales, 04510 Mexico D. F. (Mexico); Yee M, H., E-mail: oestevezh@yahoo.com [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, 07738 Mexico D. F. (Mexico)

    2015-07-01

    1-Furoyl-3,3-diphenylthiourea (FDFT) was synthesized, and characterized by Ftir, {sup 1}H and {sup 13}C NMR and ab initio X-ray powder structure analysis. FDFT crystallizes in the monoclinic space group P2{sub 1} with a = 12.691(1), b = 6.026(2), c = 11.861(1) A, β = 117.95(2) and V = 801.5(3) A{sup 3}. The crystal structure has been determined from laboratory X-ray powder diffraction data using direct space global optimization strategy (simulated annealing) followed by the Rietveld refinement. The thiourea group makes a dihedral angle of 73.8(6) with the furoyl group. In the crystal structure, molecules are linked by van der Waals interactions, forming one-dimensional chains along the a axis. (Author)

  16. Characterisation Studies of the Structure and Properties of As-Deposited and Annealed Pulsed Magnetron Sputtered Titania Coatings

    Directory of Open Access Journals (Sweden)

    John A. Ridealgh

    2013-09-01

    Full Text Available Titanium dioxide thin films are durable, chemically stable, have a high refractive index and good electro/photochemical proprieties. Consequently, they are widely used as anti-reflective layers in optical devices and large area glazing products, dielectric layers in microelectronic devices and photo catalytic layers in self-cleaning surfaces. Titania coatings may have amorphous or crystalline structures, where three crystalline phases of TiO2 can be obtained: anatase, rutile and brookite, although the latter is rarely found. It is known, however, that the structure of TiO2 coatings is sensitive to deposition conditions and can also be modified by post-deposition heat treatments. In this study, titania coatings have been deposited onto soda-lime glass substrates by reactive sputtering from a metallic target. The magnetron was driven in mid-frequency pulsed DC mode. The as-deposited coatings were analysed by micro Raman spectroscopy, X-ray diffraction (XRD, atomic force microscopy (AFM and scanning electron microscopy (SEM. Selected coatings were annealed at temperatures in the range 200–700 °C and re-analysed. Whilst there was weak evidence of a nanocrystallinity in the as-deposited films, it was observed that these largely amorphous low temperature structures converted into strongly crystalline structures at annealing temperatures above 400 °C.

  17. Study of the effect of H implantation and annealing on LiTaO{sub 3} surface blistering

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Changdong; Lu, Fei, E-mail: lufei@sdu.edu.cn; Ma, Yujie

    2015-01-01

    Highlights: • The effect of hydrogen ion implantation fluence on modification of the Z-cut LiTaO{sub 3} surface morphology and the evolution of blistering during annealing were experimentally analyzed. • RBS/Channeling and ERD were used to examine ion-induced structural and compositional changes in the samples. • The Föoppl-von Karman theory was introduced to calculate the critical internal pressure and stress to induce surface blistering. • Gibbs free energy and critical radius are introduced to explain the blister shrink and rupture observed in the experiment. - Abstract: LiTaO{sub 3} samples are implanted by 120 keV hydrogen ion with different fluences at room temperature. H{sup +} concentration and distribution is detected using Elastic recoil detection. Experimental results show that the threshold fluence for blistering in LiTaO{sub 3} surface is 6 × 10{sup 16} ion/cm{sup 2}. Surface blistering phenomenon is studied by using optical microscopy, Rutherford back scattering spectrometry, transmission electron microscopy and atomic force microscopy. Bubble growing and surface blister’s dependence on annealing process is observed and analyzed. The critical internal pressure and stress of surface blistering in H{sup +}-implanted LiTaO{sub 3} is derived based on theoretical model and experimental results. Gibbs free energy and cavity critical radius are introduced to explain the blister shrink and rupture observed in the experiment.

  18. Density functional study of the initial stage of the anneal of a thin Co film on Si

    Energy Technology Data Exchange (ETDEWEB)

    Horsfield, Andrew P.; Fujitani, Hideaki

    2001-06-15

    Plane-wave pseudopotential calculations are performed to study the initial stages of an anneal of a thin Co film/Si couple. Preliminary calculations provide Co{sub x}Si{sub 1{minus}x} structures and formation energies that are in reasonable agreement with experiment. The early stages of the anneal are then investigated from two viewpoints: starting from Co{sub 2}Si, and working backward in time; starting from bulk Si with low concentrations of Co, and working forward in time. The latter viewpoint indicates that the barrier to the growth of Co{sub 2}Si is the formation of isolated Co interstitials. Once formed, they diffuse quickly and find it energetically favorable to form clusters. These clusters then bring about a reconstruction of the lattice. The former viewpoint suggests that an intermediate structure consisting of equal numbers of Co and Si atoms exists that can transform either into Co{sub 2}Si by the addition of Co interstitials, or into CoSi by shearing. This provides an explanation of the simultaneous growth of CoSi and Co{sub 2}Si.

  19. Photoconductivity and dielectric studies of potassium pentaborate crystal (KB5)

    Indian Academy of Sciences (India)

    V Joseph; S Gunasekaran; V Santhanam

    2003-06-01

    Single crystal of potassium pentaborate (KB5) has been grown by solution growth technique. FTIR and laser Raman measurements are carried out to make a qualitative analysis on KB5 crystal. Dielectric behaviour of the KB5 crystal has been studied in the microwave region using K-band microwave bench equipped with the Gunn Oscillator guided with rectangular wave-guide. To confirm the suitability of this crystal as electro optic device, its dielectric behaviour with the change of frequency has also been investigated. Photoconductivity studies were also carried out on this material. It was interesting to observe that the KB5 crystal exhibited negative photoconductivity.

  20. Damage properties in ion-implanted YbVO4 crystals using RBS/Channeling study

    Science.gov (United States)

    Jia, Chuan-Lei; Wei, Zhi-Ning

    2014-03-01

    YbVO4 crystals are implanted with 3.0 MeV Ni ions and 600 keV H ions with fluences of 2.0-10.0×1014 cm-2 and 6.0×1016 cm-2, respectively. In addition, post-implantation thermal annealing is performed at selected temperatures. The disorder induced by implantation and the effect of the annealing on the recovery of the crystal lattice are investigated by RBS/Channeling measurements with the help of simulation code RUMP.

  1. Annealing induced changes in the structure, optical and electrical properties of GeTiO{sub 2} nanostructured films

    Energy Technology Data Exchange (ETDEWEB)

    Stavarache, Ionel; Lepadatu, Ana-Maria; Teodorescu, Valentin Serban; Galca, Aurelian Catalin; Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro

    2014-08-01

    The GeTiO{sub 2} amorphous films were deposited by magnetron sputtering and subsequently annealed at 400, 550, 600 and 700 °C for nanostructuring. The structure of annealed films was investigated by X-ray diffraction and transmission electron microscopy. The transmittance spectra of all annealed GeTiO{sub 2} films were measured and simulated by using Bruggeman effective medium approximation considering components of TiO{sub 2} anatase, crystalline Ge, GeO{sub 2} and voids determined from the structure investigations. The electrical behavior of 400, 600 and 700 °C annealed films was studied by measuring current–voltage characteristics. We found that by increasing the annealing temperature the films thickness decreases from 330 nm (as-deposited films) to 290 nm (700 °C annealed films). The 400 °C annealed films are amorphous, while all the others annealed at higher temperatures are crystallized (X-ray diffraction and transmission electron microscopy). In the 550 and 600 °C annealed films we found the (TiGe)O{sub 2} rutile structure which is formed by starting from the GeO{sub 2} tetragonal structure with high Ti content. Additionally, these films contain TiO{sub 2} anatase structure and cubic Ge nanocrystals. At 700 °C annealing temperature, a surface layer of GeO{sub 2} tetragonal nanocrystals is formed by Ge diffusion and a part of Ge is lost. The experimental transmittance spectra indicate a broadening of the transparency range by increasing the annealing temperature, and the simulated ones also indicate this behavior with the decrease of Ge content, the experimental and simulated spectra being in good agreement. Also, the increase of annealing temperature produces an increase of electrical conductivity.

  2. Studies on growth, crystal structure and characterization of novel organic nicotinium trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, P.V. [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Rajesh, N.P., E-mail: rajeshnp@hotmail.com [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam 603 110 (India); Sundar, J. Kalyana; Natarajan, S. [Department of Physics, Madurai Kamaraj University, Madurai 625 021 (India); Vinitha, G. [Department of Physics, Crescent Engineering College, Chennai 600 048 (India)

    2011-09-15

    Highlights: {yields} Good quality crystals of nicotinium trifluoroacetate in monoclinic system were grown for first time. {yields} Nicotinium trifluoroacetate crystal exhibits third order nonlinear optical properties. {yields} The optical spectrum of nicotinium trifluoroacetate crystal reveals the wide transmission in the entire range with cutoff wavelength at 286 nm. {yields} Nicotinium trifluoroacetate is a low dielectric constant material. - Abstract: An organic material, nicotinium trifluoroacetate (NTF) was synthesized and single crystals in monoclinic system were grown from aqueous solution for the first time. Its solubility and metastable zone width were estimated. The crystal structure of NTF was analyzed to reveal the molecular arrangements and the formation of hydrogen bonds in the crystal. High-resolution X-ray diffraction rocking curve measurements were performed to analyze the structural perfection of the grown crystals. Functional groups in NTF were identified by Fourier transform infrared spectral analysis. Thermal behaviour and stability of NTF were studied by thermogravimetric and differential thermal analysis and differential scanning calorimetry. Mechanical and dielectric properties of NTF crystals were analyzed. Optical studies reveal that NTF crystals are transparent in the wavelength range 286-1100 nm. The third order nonlinear optical parameters of NTF were derived by the Z-scan technique.

  3. Crystallization kinetics in glassy GexSe100 - x

    OpenAIRE

    Goel, S.; Tripathi, S.K.; Kumar, A

    1990-01-01

    Crystallization kinetics of glassy GexSe100 - x system is studied using isothermal technique, i.e., by studying amorphous to crystalline transformation during isothermal annealing at various temperatures between glass transition and melting temperature. DC conductivity is taken a characteristic quantity to measure the extent of crystallization during crystallization process. To calculate the activation energy of crystallization and the order parameter, the data is fitted to the Avrami's equat...

  4. Study on Multi-stream Heat Exchanger Network Synthesis with Parallel Genetic/Simulated Annealing Algorithm

    Institute of Scientific and Technical Information of China (English)

    魏关锋; 姚平经; LUOXing; ROETZELWilfried

    2004-01-01

    The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.

  5. Nanocomposite Nd-Fe-Ti-B magnets produced by melt spinning and flash annealing

    Science.gov (United States)

    Hosokawa, Akihide; Takagi, Kenta; Kuriiwa, Takahiro

    2017-10-01

    We have attempted to fabricate a nanocomposite Nd-Fe-Ti-B magnet. Flash-lamp rapid annealing treatments were performed for melt-spun ribbons to obtain the α-Fe/Nd2Fe14B composite microstructure, and the evolution of magnetic properties by the annealing was studied by vibration sample magnetometer (VSM). It was found that the magnetic properties were improved by relatively short-time annealing at the temperatures near the crystallization temperature. Further higher-temperature and longer annealing treatments resulted in deterioration of the magnetic properties. For the selected samples, recoil curves were measured to analyze the spring-back behaviors. Transmission electron microscopy (TEM) was performed to investigate the microstructural factors for the deterioration of the magnetic properties. The relation between the variation of the magnetic properties (coercivity, saturation magnetization and recoil permeability) and the microstructural factors were discussed.

  6. Microfabrication and Performance of Annealed NiTi Shape Memory Thin Films by Sputtering for Microdevice Applications

    Institute of Scientific and Technical Information of China (English)

    GONG Feng-fei.

    2004-01-01

    The microfabrication and performance NiTi shape memory thin films for microdevice applications were studied by microfabrication processes, which were compatible with those of microelectronics fabrication processes. The sputter-deposition conditions, patterning process, and annealing conditions were investigated. The B2 crystal structures of the thin films can be obtained by annealing at 525℃ for 30min. The results from x-ray photoemission spectroscopy indicated that the atomic concentration in the surface of the annealed thin films with preferred structures is comparable with those of the as-deposited films.

  7. Defect annealing in Mn/Fe-implanted TiO2(rutile)

    CERN Document Server

    Gunnlaugsson, H P; Masenda, H; Mølholt, T E; Johnston, K; Bharuth-Ram, K; Gislason, H; Langouche, G; Naidoo, D; Ólafsson, S; Svane, A; Weyer, G

    2014-01-01

    A study of the annealing processes and charge state of dilute Fe in rutile TiO2 single crystals was performed in the temperature range 143-662 K, utilizing online 57Fe emission Mossbauer spectroscopy following low concentrations ( 350 K.

  8. Influence of annealing temperature on ZnO thin films grown by dual ion beam sputtering

    Indian Academy of Sciences (India)

    Sushil Kumar Pandey; Saurabh Kumar Pandey; Vishnu Awasthi; Ashish Kumar; Uday P Deshpande; Mukul Gupta; Shaibal Mukherjee

    2014-08-01

    We have investigated the influence of in situ annealing on the optical, electrical, structural and morphological properties of ZnO thin films prepared on -type Si(100) substrates by dual ion beam sputtering deposition (DIBSD) system. X-ray diffraction (XRD) measurements showed that all ZnO films have (002) preferred orientation. Full-width at half-maximum (FWHM) of XRD from the (002) crystal plane was observed to reach to a minimum value of 0.139° from ZnO film, annealed at 600 °C. Photoluminescence (PL) measurements demonstrated sharp near-band-edge emission (NBE) at ∼ 380 nm along with broad deep level emissions (DLEs) at room temperature. Moreover, when the annealing temperature was increased from 400 to 600 °C, the ratio of NBE peak intensity to DLE peak intensity initially increased, however, it reduced at further increase in annealing temperature. In electrical characterization as well, when annealing temperature was increased from 400 to 600 °C, room temperature electron mobility enhanced from 6.534 to 13.326 cm2/V s, and then reduced with subsequent increase in temperature. Therefore, 600 °C annealing temperature produced good-quality ZnO film, suitable for optoelectronic devices fabrication. X-ray photoelectron spectroscopy (XPS) study revealed the presence of oxygen interstitials and vacancies point defects in ZnO film annealed at 400 °C.

  9. [Spectral analysis of the effect of annealing on CdTe polycrystalline film].

    Science.gov (United States)

    Wang, Wen-Wu; Zheng, Jia-Gui; Feng, Liang-Huan; Cai, Ya-Ping; Lei, Zhi; Zhang, Jing-Quan; Li, Bing; Li, Wei; Wu, Li-Li

    2010-03-01

    Polycrystalline CdTe thin films were prepared by close-spaced sublimation (CCS) and were annealed in different condition. The thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy(XPS). The content distribution and valence state of all elements after annealing were studied. All results show that the as-deposited CdTe thin films are in a cubic phase and have the preferred orientation in (111) direction. After annealing, the peak intensity of (111), (220), (311) grows and the crystal grains grow up, while the crystal boundary decreases. So the compound probabilities of current carrier decrease, therefore shunt resistance and drain current are improved. From detailed analysis of X-ray photoelectron data, it is proposed that tellurium oxides present and its content reduces with depth increasing and that there are TeCl2O building blocks.

  10. A study of PbTiO sub 3 crystallization in pure and composite nanopowders prepared by the sol-gel technique

    CERN Document Server

    Cernansky, M; Kral, K; Krupkova, R

    2002-01-01

    In this investigation the crystallization of PbTiO sub 3 upon annealing of pure nanopowders and PbTiO sub 3 -SiO sub 2 (1:1 v/v) nanocomposite powders prepared by the sol-gel technique was studied. Using x-ray diffraction phase analysis, the start of PbTiO sub 3 crystallization in pure PbTiO sub 3 powders was detected at 400 sup o C. Distinct crystallization of PbTiO sub 3 in PbTiO sub 3 -SiO sub 2 nanocomposites starts at 700 sup o C, whereas SiO sub 2 remains amorphous. There are indications that an interface interaction between the PbTiO sub 3 and the SiO sub 2 phase plays an important role in hindering the crystallization of PbTiO sub 3. The particle size (size of coherently scattering regions) was estimated from the broadening of the x-ray diffraction line profiles. The average size of PbTiO sub 3 nanocrystallites increases with temperature and time of annealing, the influence of temperature being more significant than that of the annealing time. Differential scanning calorimetry confirmed the results of...

  11. Quantum annealing with manufactured spins.

    Science.gov (United States)

    Johnson, M W; Amin, M H S; Gildert, S; Lanting, T; Hamze, F; Dickson, N; Harris, R; Berkley, A J; Johansson, J; Bunyk, P; Chapple, E M; Enderud, C; Hilton, J P; Karimi, K; Ladizinsky, E; Ladizinsky, N; Oh, T; Perminov, I; Rich, C; Thom, M C; Tolkacheva, E; Truncik, C J S; Uchaikin, S; Wang, J; Wilson, B; Rose, G

    2011-05-12

    Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin-spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.

  12. The Development of a Heated-Stage Optical Microscope for ZBLAN Microgravity Crystallization Studies

    Science.gov (United States)

    Torres, Anthony; Barr, Reuben

    2016-08-01

    A heated-stage optical microscope has been developed for in-situ crystallization observation of ZBLAN glass. Traditional crystallization studies on most materials, including ZBLAN, are completed following high temperature heat treatment. The modern heated-stage microscope developed in this study permits high temperature sample microscopy data to be collected in real time. The heated stage has a high-end temperature limit of 520 ∘C with a heating ramp rate of 2.2 ∘C/second. The stage was also fitted with liquid nitrogen for rapid cooling and sample annealing up to -190 ∘C. The stage was customized to fit a Keyence VHX-2000 digital microscope with a magnification range of 100X-1000X. The microscope also has the ability to image samples using Differential Interference Contrasts (DIC) microscopy, which is used to elucidate key crystalline features not apparent with traditional optical microscopy. Additionally, the experiment was constructed to be operated on a microgravity parabolic aircraft to study the effects of microgravity on the crystallization of ZBLAN.

  13. Comparative study of hydrothermal treatment and thermal annealing effects on the properties of electrodeposited micro-columnar ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lupan, O., E-mail: oleg-lupan@chimie-paristech.fr [Laboratoire d' Electrochimie, Chimie des Interfaces et Modelisation pour l' Energie (LECIME), UMR 7575 CNRS, Chimie ParisTech-ENSCP, 11 rue P. et M. Curie, 75231 Paris cedex 05 (France); Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Blvd., Chisinau, MD-2004, Republic of Moldova (Moldova, Republic of); Pauporte, T., E-mail: thierry-pauporte@chimie-paristech.fr [Laboratoire d' Electrochimie, Chimie des Interfaces et Modelisation pour l' Energie (LECIME), UMR 7575 CNRS, Chimie ParisTech-ENSCP, 11 rue P. et M. Curie, 75231 Paris cedex 05 (France); Tiginyanu, I.M.; Ursaki, V.V. [Institute of Electronic Engineering and Industrial Technologies, Institute of Applied Physics, Academy of Sciences of Moldova, 5, Academiei str, MD-2028, Chisinau, Republic of Moldova (Moldova, Republic of); Sontea, V. [Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Blvd., Chisinau, MD-2004, Republic of Moldova (Moldova, Republic of); Ono, L.K.; Cuenya, B. Roldan; Chow, L. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816 (United States)

    2011-09-01

    We report a comparison of the role played by different sample treatments, namely, a low-temperature hydrothermal treatment by hot H{sub 2}O vapor in an autoclave versus thermal annealing in air on the properties of ZnO films grown by electrochemical deposition (ECD). Scanning electron microscopy studies reveal a homogeneous micro-columnar morphology and changes in the film surface for the two different treatments. It is found that post-growth hydrothermal treatments of ECD ZnO films at 150 deg. C under an aqueous environment enhance their structural and optical properties (photoluminescence, transmission, Raman spectra, etc.) similar to thermal annealing in air at higher temperatures (> 200 deg. C). The modifications of the structural and optical properties of ZnO samples after thermal annealing in air in the temperature range of 150-600 deg. C are discussed. The removal of chlorine from the films by the hydrothermal treatment was evidenced which could be the main reason for the improvement of the film quality. The observation of the enhanced photoluminescence peak at 380 nm demonstrates the superior properties of the hydrothermally treated ZnO films as compared to the films annealed in air ambient at the same or higher temperature. This post-growth hydrothermal treatment would be useful for the realization of high performance optoelectronic devices on flexible supports which might not withstand at high temperature annealing treatments.

  14. Study of structure and spectroscopy of water-hydroxide ion clusters: A combined simulated annealing and DFT-based approach

    Indian Academy of Sciences (India)

    Satyajit Guha; Soumya Ganguly Neogi; Pinaki Chaudhury

    2014-05-01

    In this paper, we explore the use of stochastic optimizer, namely simulated annealing (SA) followed by density function theory (DFT)-based strategy for evaluating the structure and infrared spectroscopy of (H2O) OH− clusters where = 1-6. We have shown that the use of SA can generate both global and local structures of these cluster systems.We also perform a DFT calculation, using the optimized coordinate obtained from SA as input and extract the IR spectra of these systems. Finally, we compare our results with available theoretical and experimental data. There is a close correspondence between the computed frequencies from our theoretical study and available experimental data. To further aid in understanding the details of the hydrogen bonds formed, we performed atoms in molecules calculation on all the global minimum structures to evaluate relevant electron densities and critical points.

  15. Studies of laser crystal growth. 1. Production of crystal growth furnaces and operating results

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Akira; Sasuga, Tsuneo; Arisawa, Takashi; Takuma, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Anzai, Yutaka; Katsurayama, Masamichi; Yamazaki, Takafumi; Yamagishi, Kiyoshi

    1997-10-01

    Table top short pulse Peta-watt laser system is the most promising light source to drive studying high energy field physics in advance photon research. To achieve high efficiency laser oscillation in stable condition, it is required to pull out the best performance from laser crystals as the gain medium. Therefore, we have conducted cooperative investigation with Mitsui Mining and Smelting Co., LTD. to create large ideal laser crystals by improved growth methods which solve several problems in usual growth techniques. This report describes specifications, results of operation, and improvements in two different types of growth furnaces which make homogeneous doped concentration along growth direction of Nd:YAG laser crystal and large fluoride laser crystals with a wide band gap, respectively. It also describes the first four results of crystals such as YAG, Nd:YAG, YLF, and LBO grown by these furnaces. (author)

  16. Study on effect of annealing conditions on structural, magnetic and superconducting properties of MgB{sub 2} bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Phaneendra, Konduru, E-mail: phaneendra-50@yahoo.com; Asokan, K., E-mail: phaneendra-50@yahoo.com; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, Vasanth Kung, New Delhi-110067 (India); Awana, V. P. S. [Quantum Phenomena and Applications, National Physical Laboratory, K S Krishnan Marg, New Delhi-110012 (India); Sastry, S. Sreehari [Dept. of Physics, Acharya Nagarjuna University, Guntur-522510 (India)

    2014-04-24

    Effect of annealing conditions on structural, magnetic and superconducting properties of Magnesium Diboride (MgB{sub 2}) bulk superconductor samples prepared by solid state route method are compared. The samples are made by taking Magnesium and Boron powders in stoichiometric ratio, grounded well and pelletized at pressure of about 10Tonnes. These pellets are annealed in both Argon and vacuum environment separately up to 800°c for two hours. Both the samples show clear superconducting transition at Tc ∼ 38 k. This is further conformed by AC/DC magnetization (M-T), Resistivity [ρ (T, H)] measurements under magnetic field up to 14 Tesla as well. Rietveld refinement of X-ray diffraction of both samples conformed the MgB{sub 2} phase formation with P6/mmm space group symmetry. Scanning Electron Microscopy images of the surface revile more agglomeration of grains in case of Argon annealed samples. This result in more critical current density (J{sub c}) of Argon annealed samples than vacuum annealed one calculated from Bean's critical state model. This high Jc is explained in terms of more inter grain connectivity for Argon annealed sample than vacuum annealed sample.

  17. Study on effect of annealing conditions on structural, magnetic and superconducting properties of MgB2 bulk samples

    Science.gov (United States)

    Phaneendra, Konduru; Asokan, K.; Awana, V. P. S.; Sastry, S. Sreehari; Kanjilal, D.

    2014-04-01

    Effect of annealing conditions on structural, magnetic and superconducting properties of Magnesium Diboride (MgB2) bulk superconductor samples prepared by solid state route method are compared. The samples are made by taking Magnesium and Boron powders in stoichiometric ratio, grounded well and pelletized at pressure of about 10Tonnes. These pellets are annealed in both Argon and vacuum environment separately up to 800°c for two hours. Both the samples show clear superconducting transition at Tc ˜ 38 k. This is further conformed by AC/DC magnetization (M-T), Resistivity [ρ (T, H)] measurements under magnetic field up to 14 Tesla as well. Rietveld refinement of X-ray diffraction of both samples conformed the MgB2 phase formation with P6/mmm space group symmetry. Scanning Electron Microscopy images of the surface revile more agglomeration of grains in case of Argon annealed samples. This result in more critical current density (Jc) of Argon annealed samples than vacuum annealed one calculated from Bean's critical state model. This high Jc is explained in terms of more inter grain connectivity for Argon annealed sample than vacuum annealed sample.

  18. Crystallization and crystallographic studies of kallistatin

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Fang; Zhou, Aiwu; Wei, Zhenquan, E-mail: weizhq@gmail.com [Shanghai Jiaotong University School of Medicine (Room 1006, Building 2, No 280, South Chongqing Road), Shanghai 200025, People’s Republic of (China)

    2015-08-25

    The crystallization of human kallistatin in the relaxed conformation is reported. Kallistatin is a serine protease inhibitor (serpin) which specifically inhibits human tissue kallikrein; however, its inhibitory activity is inhibited by heparin. In order to elucidate the underlying mechanism, recombinant human kallistatin was prepared in Escherichia coli and the protein was crystallized by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.9 Å resolution. The crystals were found to belong to space group P6{sub 1}, with unit-cell parameters a = 113.51, b = 113.51, c = 76.17 Å. Initial analysis indicated that the crystallized kallistatin was in a relaxed conformation, with its reactive-centre loop inserted in the central β-sheet.

  19. Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stavarache, Ionel; Lepadatu, Ana-Maria [National Institute of Materials Physics, Magurele 077125 (Romania); Stoica, Toma [Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, D-52425 Jülich (Germany); Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro [National Institute of Materials Physics, Magurele 077125 (Romania); Academy of Romanian Scientists, Bucuresti 050094 (Romania)

    2013-11-15

    Ge–SiO{sub 2} films with high Ge/Si atomic ratio of about 1.86 were obtained by co-sputtering of Ge and SiO{sub 2} targets and subsequently annealed at different temperatures between 600 and 1000 °C in a conventional furnace in order to show how the annealing process influences the film morphology concerning the Ge nanocrystal and/or amorphous nanoparticle formation and to study their electrical behaviour. Atomic force microscopy (AFM) imaging, Raman spectroscopy and electrical conductance measurements were performed in order to find out the annealing effect on the film surface morphology, as well as the Ge nanoparticle formation in correlation with the hopping conductivity of the films. AFM images show that the films annealed at 600 and 700 °C present a granular surface with particle height of about 15 nm, while those annealed at higher temperatures have smoother surface. The Raman investigations evidence Ge nanocrystals (including small ones) coexisting with amorphous Ge in the films annealed at 600 °C and show that almost all Ge is crystallized in the films annealed at 700 °C. The annealing at 800 °C disadvantages the Ge nanocrystal formation due to the strong Ge diffusion. This transition in Ge nanocrystals formation process by annealing temperature increase from 700 to 800 °C revealed by AFM and Raman spectroscopy measurements corresponds to a change in the electrical transport mechanism. Thus, in the 700 °C annealed films, the current depends on temperature according to a T{sup −1/2} law which is typical for a tunnelling mechanism between neighbour Ge nanocrystals. In the 800 °C annealed films, the current–temperature characteristic has a T{sup −1/4} dependence showing a hopping mechanism within an electronic band of localized states related to diffused Ge in SiO{sub 2}.

  20. Crystal structure of defect-containing semiconductor nanocrystals. An X-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Buljan, Maja [Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni; Institut Rudjer Boskovic, Zagreb (Croatia); Desnica, Uros V.; Radic, Nikola [Institut Rudjer Boskovic, Zagreb (Croatia); Drazic, Goran [Institut Jozef Stefan, Ljubljana (Slovenia); Matej, Zdenek; Vales, Vaclav; Holy, Vaclav [Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni

    2009-08-15

    Defects of crystal structure in semiconductor nanocrystals embedded in an amorphous matrix are studied by X-ray diffraction and a full-profile analysis of the diffraction curves based on the Debye formula. A new theoretical model is proposed, describing the diffraction from randomly distributed intrinsic and extrinsic stacking faults and twin blocks in the nanocrystals. The application of the model to full-profile analysis of experimental diffraction curves enables the determination of the concentrations of individual defect types in the nanocrystals. The method has been applied for the investigation of selforganized Ge nanocrystals in an SiO{sub 2} matrix, and the dependence of the structure quality of the nanocrystals on their deposition and annealing parameters was obtained. (orig.)

  1. Fundamental Ice Crystal Accretion Physics Studies

    Science.gov (United States)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  2. PENGARUH TEMPERATUR ANNEALING PADA SIFAT LISTRIK FILM TIPIS ZINC OKSIDA DOPING ALUMINIUM OKSIDA

    Directory of Open Access Journals (Sweden)

    S Sugianto

    2017-03-01

    Full Text Available Penumbuhan film tipis zinc oksida di-doping aluminium oksida dengan variasi temperatur annealing menggunakan metode dc magnetron sputtering telah berhasil dilakukan. Pengaruh variasi temperature annealing pada struktur dan sifat listrik film tipis telah dipelajari dengan menggunakan XRD dan I-V meter. Berdasarkan karakterisasi XRD, film tipis yang dihasilkan memiliki struktur wurtzite dengan orientasi yang dominan adalah (002. Penambahan temperatur annealing pada proses penumbuhan meningkatkan intensitas orientasi (002. Selanjutnya analisis sifat listrik menggunakan I-V meter. Film tipis zinc oksida di-doping Al  pada temperatur annealing 300°C memiliki nilai resitivitas yang optimum yaitu 2,89 x 102  Wcm. Hal tersebut konsisten dengan hasil XRD yang menyatakan bahwa film tipis zinc oksida yang di doping  dengan  aluminium oksida pada temperature 300°C memiliki ukuran kristal yang semakin besar, kompak dan homogen.Growth of zinc oxide doped aluminum oxide thin film with annealing temperature variation using dc magnetron sputtering method has been done. Effect of annealing temperature variations on the structure and electrical properties of thin films has studied using XRD and I-V meter. According to XRD characterization, thin film was obtained has wurtzite structure with dominant orientation is (002. Increasing of annealing temperature on the growth process was increased the intensity of orientation (002. Furthermore, the electrical properties were measured using I-V meter.  Zinc oxide doped Al thin film shows the optimum resistivity around of 2.89 x 102 Wcm when the annealing temperature of 300 °C. This is consistent with XRD results which is the Zinc oxide doped aluminum oxide thin has a crystal size is getting bigger, dense, and homogeneous at annealing temperature 300°C.

  3. Designing Robust Process Analytical Technology (PAT) Systems for Crystallization Processes: A Potassium Dichromate Crystallization Case Study

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli Bin; Sin, Gürkan

    2013-01-01

    The objective of this study is to test and validate a Process Analytical Technology (PAT) system design on a potassium dichromate crystallization process in the presence of input uncertainties using uncertainty and sensitivity analysis. To this end a systematic framework for managing uncertainties...... in the nucleation and crystal growth parameters affect the product-process performances (e.g. crystal size distribution (CSD)). Analysis of the proposed PAT system design (closedloop), on the other hand, shows that the effect of the input uncertainties on the outputs (product quality) is minimized, and the target...

  4. Blue thermoluminescence emission of annealed lithium rich aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Correcher, V.; Rodriguez-Lazcano, Y., E-mail: v.correcher@ciemat.e [CIEMAT, Madrid (Spain); Garcia-Guinea, J.; Crespo-Feo, E. [Museo Nacional de Ciencias Naturales, Madrid (Spain)

    2010-09-15

    The blue thermoluminescence (TL) emission of different thermally annealed {beta}-eucryptite (LiAlSiO{sub 4}), virgilite-petalite (LiAlSi{sub 5}O{sub 12}) and virgilite-petalite-bikitaite (LiAlSi{sub 10}O{sub 22}) mixed crystals have been studied. The observed changes in the TL glow curves could be linked to simultaneous processes taking place in the lithium aluminosilicate lattice structure (phase transitions, consecutive breaking linking of bonds, alkali self-diffusion, redox reactions, etc). The stability of the TL signal after four months of storage performed at RT under red light, shows big differences between annealed (12 hours at 1200 deg C) and non-annealed samples. The fading process in non-annealed samples can be fitted to a first-order decay mathematical expression; however preheated samples could not be reasonably fitted due to the highly dispersion detected. The changes observed in the X-ray diffractograms are in the intensity of the peaks that denote modifications in the degree of crystallinity and, in addition, there are some differences in the appearance of new peaks that could suppose new phases (e.g. b-spodumene). (author)

  5. Annealing effects of chemically synthesized FePt nanocrystal films

    Science.gov (United States)

    Hyun, Changbae; Lee, Doh C.

    2005-03-01

    Chemically synthesized FePt nanocrystals can exhibit room temperature ferromagnetism after being annealed at temperatures above ˜500^oC[1]. The thermal annealing changes the crystal structure from face-centered cubic to the hard magnetic face-centered tetragonal phase. In thick nanocrystal films, the coercivity can be quite large, however, the coercivity of thin films has been found to decrease significantly with decreasing thickness, even losing the room temperature ferromagnetism in some cases[2]. In order to help determine how the microscopic magnetic structure in these thin films evolves with film thickness, we studied using magnetic force microscopy (MFM), under external applied fields, films consisting of 4 to 15 nanocrystal monolayers. We cast smooth films of 4 nm diameter FePt nanocrystals and annealed them at temperatures ranging from 400 to 650^oC, acquiring MFM images as a function of annealing temperature. Thin FePt films showed lower coercivity than thick films. To help interpret the MFM images, complementary magnetic and structural data was obtained using SQUID magnetometry, x-ray diffraction, and transmission electron microscopy (TEM). [1] S. Sun et al., Science 287, 1989 (2000). [2] G. A. Held et al., Journal of Applied Physics 95, 1481 (2004)

  6. Combined in situ small and wide angle X-ray scattering studies of TiO2 nano-particle annealing to 1023 K

    DEFF Research Database (Denmark)

    Kehres, Jan; Andreasen, Jens Wenzel; Krebs, Frederik C

    2010-01-01

    Combined in situ small- and wide-angle X-ray scattering (SAXS/WAXS) studies were performed in a recently developed laboratory setup to investigate the dynamical properties of dry oleic acid-capped titanium dioxide nanorods during annealing in an inert gas stream in a temperature interval of 298-1...

  7. Comparative study on the effect of annealing treatments on RTL mechanism in natural quartz from different origins

    Energy Technology Data Exchange (ETDEWEB)

    Mebhah, D., E-mail: mebhahd@yahoo.f [Centre de Recherche Nucleaire d' Alger, 2 Bd, Frantz Fanon, BP 399 (Algeria); Imatoukene, D.; Lounis-Mokrani, Z. [Centre de Recherche Nucleaire d' Alger, 2 Bd, Frantz Fanon, BP 399 (Algeria); Kechouane, M. [Faculte de Physique, USTHB, BP 32 El Alia (Algeria)

    2009-12-15

    The behaviour of trap centres and luminescence centres has been investigated for fired and unfired natural quartz from bricks and sediments irradiated at 100 Gy and annealed at different temperatures in the range 350-700 deg. C. The annealing treatment affects thermoluminescence (TL) glow curve as various changes were observed. The higher sensitization occurred for an annealing in the region 550-600 deg. C. At this annealing temperature, it has been observed the emergence of two peaks arising at 96 and 180 deg. C. At lower annealing temperatures, these peaks are overlapped by the peaks localized at 90 and 195 deg. C, respectively. Concerning the fired quartz, the higher sensitization occurred for an annealing in the region 500-550 deg. C for peak temperature around 200 deg. C and an unusual desensitization for the peak temperature around 100 deg. C. The behaviour of the two types of quartz is analyzed regarding to their kinetic parameters and luminescence emission and compared to literature data.

  8. Spectroscopic, thermal and structural studies on manganous malate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J., E-mail: smartlabindia@gmail.com; Lincy, A., E-mail: lincymaria@gmail.com; Mahalakshmi, V.; Saban, K. V. [Smart Materials Analytic Research and Technology (SMART), Department of Physics, St. Berchmans College (India)

    2013-01-15

    Prismatic crystals of manganous malate have been prepared by controlled ionic diffusion in hydrosilica gel. The structure was elucidated using single crystal X-ray diffraction. The crystals are orthorhombic with space group Pbca. Vibrations of the functional groups were identified by the FTIR spectrum. Thermogravimetric and differential thermal analyses (TG-DTA) were carried out to explore the thermal decomposition pattern of the material. Structural information derived from FTIR and TG-DTA studies is in conformity with the single crystal XRD data.

  9. Structural and mechanical studies of cadmium manganese thiocyanate crystal

    Science.gov (United States)

    Manikandan, M. R.; Vijayaprasath, G.; babu, G. Anandha; Bhagavannarayan, G.; Vijayan, N.; Ravi, G.

    2012-06-01

    Single crystals of cadmium manganese thiocyanate (CMTC) have been synthesized successfully and grown by slow evaporation method. The structural perfection of the grown crystals has been analyzed by High resolution X-ray diffraction (HRXRD), which shows the crystalline perfection of the grown crystal is quite good. Optical behavior was assessed by UV-Vis analysis and found that no absorption in the UV visible region and it may be useful for second harmonic applications. The mechanical hardness of the grown crystals was studied and Vicker's microhardness, Stiffness constant was calculated.

  10. Structural transformation of NANOPERM-type metallic glasses followed in situ by synchrotron radiation during thermal annealing in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Procházka, V., E-mail: v.prochazka@upol.cz [Department of Experimental Physics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Vrba, V.; Smrčka, D. [Department of Experimental Physics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Rüffer, R. [ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9 (France); Matúš, P. [Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 842 15 Bratislava (Slovakia); Mašláň, M. [Department of Experimental Physics, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Miglierini, M.B. [Institute of Nuclear and Physical Engineering, Slovak University of Technology, 812 19 Bratislava (Slovakia); Regional Centre of Advanced Technologies and Materials, Palacký University, 17. listopadu 12, 771 46 Olomouc (Czech Republic)

    2015-07-25

    Highlights: • On-fly inspection of structural transformations during magnetic annealing. • Crystallization starts by ∼100 K earlier during magnetic annealing. • Potential for modification of the material properties using magnetic field. • The whole crystallization process was followed with high time resolution. - Abstract: Kinetics of the crystallization process of Fe–Mo–Cu–B-type metallic glass is studied to fine details during heat treatment under weak external magnetic field (0.652 T). Structural arrangement as well as magnetic microstructure is followed on-fly using sophisticated method of in situ nuclear forward scattering (NFS) of synchrotron radiation. The latter provides both quantitative (relative fractions) and qualitative (hyperfine magnetic fields) temperature dependencies of all structurally different samples’ components. They belong to the amorphous residual matrix, the newly formed nanocrystalline grains, and to their surfaces, respectively. The onset of crystallization during in-field magnetic annealing starts ∼100 K earlier than that in zero field.

  11. Identifying, studying and making good use of macromolecular crystals

    Energy Technology Data Exchange (ETDEWEB)

    Calero, Guillermo [University of Pittsburgh Medical School, Pittsburgh, PA 15261 (United States); Cohen, Aina E. [SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025 (United States); Luft, Joseph R. [Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States); Newman, Janet [CSIRO Collaborative Crystallisation Centre, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Snell, Edward H., E-mail: esnell@hwi.buffalo.edu [Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States); University of Pittsburgh Medical School, Pittsburgh, PA 15261 (United States)

    2014-07-25

    As technology advances, the crystal volume that can be used to collect useful X-ray diffraction data decreases. The technologies available to detect and study growing crystals beyond the optical resolution limit and methods to successfully place the crystal into the X-ray beam are discussed. Structural biology has contributed tremendous knowledge to the understanding of life on the molecular scale. The Protein Data Bank, a depository of this structural knowledge, currently contains over 100 000 protein structures, with the majority stemming from X-ray crystallography. As the name might suggest, crystallography requires crystals. As detectors become more sensitive and X-ray sources more intense, the notion of a crystal is gradually changing from one large enough to embellish expensive jewellery to objects that have external dimensions of the order of the wavelength of visible light. Identifying these crystals is a prerequisite to their study. This paper discusses developments in identifying these crystals during crystallization screening and distinguishing them from other potential outcomes. The practical aspects of ensuring that once a crystal is identified it can then be positioned in the X-ray beam for data collection are also addressed.

  12. Ellipsometric studies of ErMnO3 single crystals

    DEFF Research Database (Denmark)

    Babonas, G.-J.; Grivel, Jean-Claude; Reza, A.

    2007-01-01

    Ellipsometric studies of ErMnO3 single crystals have been carried out in the spectral range of 1-5 eV by means of photometric ellipsometers. Experimental ellipsometric data were analysed in the uniaxial crystal model. For the first time, the components of dielectric function of ErMnO3 were...

  13. An automatic system for crystal growth studies at constant supersaturation

    Science.gov (United States)

    March, J. G.; Costa-Bauzá, A.; Grases, F.; Söhnel, O.

    1992-01-01

    An automatic system for growing crystals from seeded supersaturated solutions at constant supersaturation is described. Control of burettes and data acquisition are controlled by computer. The system was tested with a study of the calcium oxalate kinetics of crystal growth. PMID:18924950

  14. A STUDY ON THE CRYSTALLIZATION KINETICS OF NYLON 1010

    Institute of Scientific and Technical Information of China (English)

    CHEN Shouxi

    1997-01-01

    The kinetic behavior of isothermal and nonisothermal crystallization of nylon-1010has been studied by means of dilatometry and differential scanning calorimetry, respectively. The isothermal and nonisothermal process can be described by Avrami equation and Ozawa equation, respectively. From the experimental results the kinetic parameters of crystallization and crystalline mechanism for isothermal and nonisothermal measurements are discussed.

  15. Ellipsometric studies of ErMnO3 single crystals

    DEFF Research Database (Denmark)

    Babonas, G.-J.; Grivel, Jean-Claude; Reza, A.;

    2007-01-01

    Ellipsometric studies of ErMnO3 single crystals have been carried out in the spectral range of 1-5 eV by means of photometric ellipsometers. Experimental ellipsometric data were analysed in the uniaxial crystal model. For the first time, the components of dielectric function of ErMnO3 were...

  16. Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ and in situ transmission electron microscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Ghica, C; Nistor, L C [National Institute of Materials Physics, Atomistilor 105 bis, 077125 Magurele-Bucharest (Romania); Vizireanu, S; Dinescu, G, E-mail: cghica@infim.ro [National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, 077125 Magurele-Bucharest (Romania)

    2011-07-27

    The smart-cut(TM) process is based on inducing and processing structural defects below the free surface of semiconductor wafers. The necessary defects are currently induced by implantation of light elements such as hydrogen or helium. An alternative softer way to induce shallow subsurface defects is by RF-plasma hydrogenation. To facilitate the smart-cut process, the wafers containing the induced defects need to be subjected to an appropriate thermal treatment. In our experiments, (0 0 1) Si wafers are submitted to 200 and 50 W hydrogen RF-plasma and are subsequently annealed. The samples are studied by transmission electron microscopy (TEM), before and after annealing. The plasma-introduced defects are {l_brace}1 1 1{r_brace} and {l_brace}1 0 0{r_brace} planar-like defects and nanocavities, all of them involving hydrogen. Many nanocavities are aligned into strings almost parallel to the wafer surface. The annealing is performed either by furnace thermal treatment at 550 deg. C, or by in situ heating in the electron microscope at 450, 650 and 800 deg. C during the TEM observations. The TEM microstructural studies indicate a partial healing of the planar defects and a size increase of the nanometric cavities by a coalescence process of the small neighbouring nanocavities. By annealing, the lined up nanometric voids forming chains in the as-hydrogenated sample coalesced into well-defined cracks, mostly parallel to the wafer surface.

  17. Comparison of 10-year clinical wear of annealed and remelted highly cross-linked polyethylene: A propensity-matched cohort study.

    Science.gov (United States)

    Hamai, Satoshi; Nakashima, Yasuharu; Mashima, Naohiko; Yamamoto, Takuaki; Kamada, Tomomi; Motomura, Goro; Imai, Hiroshi; Fukushi, Jun-Ichi; Miura, Hiromasa; Iwamoto, Yukihide

    2016-06-01

    No previous studies comparing the clinical wear rates of the two different kinds of cross-linked ultra-high-molecular-weight polyethylene (XLPE), annealed and remelted, are available. We compared the creep and steady wear rates of 36 matched pairs (72 hips in total) adjusting for baseline characteristics with propensity score matching techniques. Zirconia femoral heads with 26-mm diameter were used in all cases. The femoral-head cup penetration was measured digitally on radiographs. Significantly greater creep (p=0.006) was detected in the remelted (0.234mm) than annealed (0.159mm) XLPE. However, no significant difference (p=0.19) was found between the steady wear rates (0.003 and 0.008mm/year, respectively) of the annealed and remelted XLPE. Multiple regression analyses showed that remelted XLPE is significant independent variable (p0.05) on the steady wear rates. No patients exhibited above the osteolysis threshold of 0.1mm/year, progressive radiolucencies, osteolysis, or polyethylene fracture. This propensity-matched cohort study document no significant difference in wear resistant performances of annealed and remelted XLPE over an average period of 10 years.

  18. Studying Microstructure in Molecular Crystals With Nanoindentation

    DEFF Research Database (Denmark)

    Mishra, Manish Kumar; Desiraju, Gautam R; Ramamurty, Upadrasta;

    2014-01-01

    Intergrowth polymorphism refers to the existence of distinct structural domains within a single crystal of a compound. The phenomenon is exhibited by form II of the active pharmaceutical ingredient felodipine, and the associated microstructure is a significant feature of the compound's structural...

  19. Influence of Annealing and UV Irradiation on Hydrophilicity of Ag-TiO Nanostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Fanming Meng

    2012-01-01

    Full Text Available Ag-TiO2 nanostructured thin films with silver content of 5 vol% have been deposited on silicon, glass, and quartz substrates by RF magnetron sputtering and annealed in ambient air at 900°C for 15, 30, 60, 90, and 120 min. Their crystal structure, surface morphology, and hydrophilicity have been characterized by X-ray diffractometer, atomic force microscope, and water contact angle apparatus, respectively. The influence of annealing time and UV irradiation time on hydrophilic property of Ag-TiO2 thin films have been studied in detail. It is shown that annealing time influences crystal structure of Ag-TiO2 thin films. The unannealed film is amorphous and shows poor hydrophilicity. With the increase of annealing time from 15 to 120 min, the grain-size slowly increases and tends to uniformity. A suitable annealing time can significantly enhance the hydrophilic behavior of Ag-TiO2 films. Water contact angle decreases with the increase of irradiation time. The mechanism of hydrophilicity has been proposed and can be attributed to the increase of oxygen anion radicals O2− and reactive center of surface Ti3+.

  20. Thermal annealing effects on ultra-violet luminescence properties of Gd doped AlN

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Takashi; Ishizu, Yuta; Tsuji, Kazuma; Harada, Yukihiro [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Chigi, Yoshitaka; Nishimoto, Tetsuro; Tanaka, Hiroyuki; Kobayashi, Mikihiro [YUMEX INC., 400 Itoda, Yumesaki, Himeji, Hyogo 671-2114 (Japan); Ishihara, Tsuguo; Izumi, Hirokazu [Hyogo Prefectural Institute of Technology, 3-1-12 Yukihira, Suma, Kobe 654-0037 (Japan)

    2015-04-28

    We studied energy transfer from AlN to doped Gd{sup 3+} ions as a function of the post-thermal annealing temperature. Gd-doped AlN thin films were deposited on fused-silica substrates using a reactive radio-frequency magnetron sputtering technique. The film is a c-axis oriented polycrystal. The intra-orbital electron transition in Gd{sup 3+} showed an atomically sharp luminescence at 3.9 eV (318 nm). The photoluminescence (PL) excitation spectrum exhibited a resonant peak, indicating efficient energy transfer from the host AlN crystal to Gd{sup 3+} ions. The PL intensity increases approximately ten times by thermal annealing. The PL decay lifetime becomes long with annealing, and mid-gap luminescence relating to the crystal defects in AlN was also found to be reduced by annealing. These results suggest that energy dissipation of excited carriers in AlN was suppressed by annealing, and the efficiency of energy transfer into Gd{sup 3+} was improved.

  1. Thermodynamic and Kinetic Study of Crystallization Reaction of Fe/Dy Multilayers Form Amorphous State

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To give further insight into the behavior of Fe/Dy multilayers in the crystallization from as-deposited amorphous state, free energy diagram of Fe/Dy system was constructed based on Miedema semiempirical theory. It is shown that the crystallization of amorphous films is controlled by both thermodynamic and kinetic conditions. The calculated free energies of crystalline Fe and Dy are significantly lower than those in the amorphous states, which provide thermodynamic driving force for crystallization. During annealing, the kinetic phase evolution of the multilayers is controlled by free energy barrier of nucleation and critical-size of new phase nucleus. Thus it explains the experimental results that Fe crystallites formed first followed by Dy grains, whereas crystalline Fe-Dy intermetallic compounds were not observed during annealing at moderate temperatures.

  2. Phosphoric acid purification by suspension melt crystallization: Parametric study of the crystallization and sweating steps

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Baoming; Li, Jun; Qi, Yabing; Jia, Xuhong; Luo, Jianhong [Department of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2012-10-15

    In order to purify phosphoric acid, the suspension melt crystallization process was studied. The suspension crystallization experiments were carried out with 80, 84 and 88 wt% phosphoric acid melt at the cooling rates of 0.05, 0.1 and 0.2 K/min, respectively. Sweating experiments were executed for various crystals obtained in suspension crystallization step. The purification effects of the sweating parameters including sweating time, initial inclusion amount and initial impurity content were studied. The inclusion fraction increases with the increase in cooling rate. The inclusion fraction of the crystals which were formed with feed concentration of 84 wt% phosphoric acid melt is lowest among the three feed concentrations. Different impurities have different purification performances during sweating. High inclusion amount and low impurity concentration favor the purification of H{sub 3}PO{sub 4}.0.5H{sub 2}O crystals during sweating. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Enhancement of below gap transmission of InAs single crystal via suppression of native defects

    Science.gov (United States)

    Shen, Guiying; Zhao, Youwen; Dong, Zhiyuan; Liu, Jingming; Xie, Hui; Bai, Yongbiao; Chen, Xiaoyu

    2017-03-01

    As-grown and annealed undoped n type InAs single crystals have been studied by Hall effect measurement, infrared transmission (IR) spectroscopy, photoluminescence spectroscopy (PL) and glow discharge mass spectroscopy (GDMS). After annealing, below-gap infrared transmittance of the InAs single crystal increases significantly with the annihilation of a 0.383 eV PL peak related defect. Mechanism of the transmission enhancement and the attribution of the defect is discussed based on the experimental results.

  4. Study on magnetization reversal behavior for annealed Nd2Fe14B/α-Fe nancomposite alloys

    Institute of Scientific and Technical Information of China (English)

    张朋越; 泮敏翔; 葛洪良; 岳明; 刘卫强

    2013-01-01

    Effect of thermal annealing on the magnetization reversal behavior ofα-Fe/Nd2Fe14B alloys was investigated. A drastic in-crease of the remanence Mr from 0.67 up to 0.87 T and remanence ratio Mr/Ms from 0.66 up to 0.76, respectively, was observed in theα-Fe/Nd2Fe14B alloys annealed at 610 oC as compared with the as-quenched sample. Whereas the further annealing at 680 oC resulted in a strong increase of the corecivity Hc as high as 491 kA/m but a slight decrease in Mr. The analysis result of the magnetization re-versal behavior showed that the maximum value of the integrated recoil loop area about 1.58 kJ/m3 was obtained in theα-Fe/Nd2Fe14B alloys at the annealing temperature of 610 oC, significantly lower than other annealed samples. This indicated a sig-nificant advantage for the application of this material as permanent magnets in electrical machines and generators due to a low energy loss.

  5. Effect of annealing temperature on gelatinization of rice starch suspension as studied by rheological and thermal measurements.

    Science.gov (United States)

    Tsutsui, Kazumi; Katsuta, Keiko; Matoba, Teruyoshi; Takemasa, Makoto; Nishinari, Katsuyoshi

    2005-11-16

    The effect of annealing temperature (Ta) on the rheological behavior of 10 wt % rice starch suspension was investigated by the dynamic viscoelasticity, the differential scanning calorimetry (DSC), and the amount of leached out amylose and the swelling ratio of starch suspension. The rheological behaviors of the annealed samples are classified into three types in terms of Ta: Ta1, 48 and 55 degrees C, which are much lower than the gelatinization temperature, Tgel (=62 degrees C); Ta2, 58, 60, and 62 degrees C, which are almost the same as Tgel; and Ta3, 65, 68, 70, and 73 degrees C, which are much higher than Tgel. For the samples annealed at Ta2, the onset temperature of the storage and the loss moduli, G' and G'', increased with increasing T(a), and G' and G" in the temperature range from 65 to 90 degrees C gradually increased though smaller than those for the nonannealed sample, the control. This can be understood by the partial gelatinization; i.e., the leached out amylose prevents further amylose from leaching out. The rheological property of the samples annealed at Ta1 is not so different from that of the control, and the samples annealed at Ta3 are almost gelatinized. The rheological behavior of starch suspension can be controlled by Ta.

  6. Annealing effects and DLTS study on PNP silicon bipolar junction transistors irradiated by 20 MeV Br ions

    Science.gov (United States)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Bollmann, Joachim

    2014-01-01

    Isochronal anneal sequences have been carried out on 3CG130 silicon PNP bipolar junction transistors (BJTs) irradiated with 20 MeV bromine (Br) heavy ions. The Gummel curve was utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. The results show that the base current (IB) decreases with the increasing annealing temperature, while the collector current (IC) keeps invariably. The current gain varies slightly, when the annealing temperature (TA) is lower than 500 K, while varies rapidly at TA>550 K, and the current gain of the 3CG130 BJT annealing at 700 K almost restore to that of the pre-radiation transistor. The deep level transient spectroscopy (DLTS) data was used to assign the relative magnitude of each of the important defects. Based on the in situ electrical measurement and DLTS spectra, it is clear that the V2(+/0) trap is the main contribution to the degradation of current gain after the 20 MeV Br ions irradiation. The V2(+/0) peak has many characteristics expected for the current gain degradation.

  7. Annealing effects and DLTS study on PNP silicon bipolar junction transistors irradiated by 20 MeV Br ions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chaoming [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Xingji, E-mail: lxj0218@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yang, Jianqun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bollmann, Joachim [Institute of Electronics and Sensor Materials, TU Bergakademie, Freiberg 71691 (Germany)

    2014-01-21

    Isochronal anneal sequences have been carried out on 3CG130 silicon PNP bipolar junction transistors (BJTs) irradiated with 20 MeV bromine (Br) heavy ions. The Gummel curve was utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. The results show that the base current (I{sub B}) decreases with the increasing annealing temperature, while the collector current (I{sub C}) keeps invariably. The current gain varies slightly, when the annealing temperature (T{sub A}) is lower than 500 K, while varies rapidly at T{sub A}>550 K, and the current gain of the 3CG130 BJT annealing at 700 K almost restore to that of the pre-radiation transistor. The deep level transient spectroscopy (DLTS) data was used to assign the relative magnitude of each of the important defects. Based on the in situ electrical measurement and DLTS spectra, it is clear that the V{sub 2}(+/0) trap is the main contribution to the degradation of current gain after the 20 MeV Br ions irradiation. The V{sub 2}(+/0) peak has many characteristics expected for the current gain degradation.

  8. Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals: voriconazole as a case study.

    Science.gov (United States)

    Sanphui, Palash; Mishra, Manish Kumar; Ramamurty, Upadrasta; Desiraju, Gautam R

    2015-03-02

    Crystals of voriconazole, an antifungal drug, are soft in nature, and this is disadvantageous during compaction studies where pressure is applied on the solid. Crystal engineering is used to make cocrystals and salts with modified mechanical properties (e.g., hardness). Cocrystals with biologically safe coformers such as fumaric acid, 4-hydroxybenzoic acid, and 4-aminobenzoic acid and salts with hydrochloric acid and oxalic acid are prepared through solvent assisted grinding. The presence (salt) or absence (cocrystal) of proton transfer in these multicomponent crystals is unambiguously confirmed with single crystal X-ray diffraction. All the cocrystals have 1:1 stoichiometry, whereas salts exhibit variable stoichiometries such as HCl salt (1:2) and oxalate salts (1:1.5 and 1:1). The nanoindentation technique was applied on single crystals of the salts and cocrystals. The salts exhibit better hardness than the drug and cocrystals in the order salts ≫ drug > cocrystals. The molecular origin of this mechanical modulation is explained on the basis of slip planes in the crystal structure and relative orientations of the molecules with respect to the nanoindentation direction. The hydrochloride salt is the hardest solid in this family. This may be useful for tableting of the drug during formulation and in drug development.

  9. Through-vial impedance spectroscopy of the mechanisms of annealing in the freeze-drying of maltodextrin: the impact of annealing hold time and temperature on the primary drying rate.

    Science.gov (United States)

    Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina

    2014-06-01

    The study aims to investigate the impact of annealing hold time and temperature on the primary drying rate/duration of a 10% (w/v) solution of maltodextrin with an emphasis on how the mechanisms of annealing might be understood from the in-vial measurements of the ice crystal growth and the glass transition. The electrical impedance of the solution within a modified glass vial was recorded between 10 and 10(6) Hz during freeze-drying cycles with varying annealing hold times (1-5 h) and temperatures. Primary drying times decreased by 7%, 27% and 34% (1.1, 4.3 and 5.5 h) with the inclusion of an annealing step at temperatures of -15°C, -10°C and -5°C, respectively. The glass transition was recorded at approximately -16°C during the re-heating and re-cooling steps, which is close to the glass transition (Tg ') reported for 10% (w/v) maltodextrin and therefore indicates that a maximum freeze concentration (∼86%, w/w, from the Gordon-Taylor equation) was achieved during first freezing, with no further ice being formed on annealing. This observation, coupled to the decrease in electrical resistance that was observed during the annealing hold time, suggests that the reduction in the drying time was because of improved connectivity of ice crystals because of Ostwald ripening rather than devitrification.

  10. Influence of crystallizing and non-crystallizing cosolutes on trehalose crystallization during freeze-drying.

    Science.gov (United States)

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2010-11-01

    To study the influence of crystallizing and non-crystallizing cosolutes on the crystallization behavior of trehalose in frozen solutions and to monitor the phase behavior of trehalose dihydrate and mannitol hemihydrate during drying. Trehalose (a lyoprotectant) and mannitol (a bulking agent) are widely used as excipients in freeze-dried formulations. Using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD), the crystallization behavior of trehalose in the presence of (i) a crystallizing (mannitol), (ii) a non-crystallizing (sucrose) solute and (iii) a combination of mannitol and a model protein (lactose dehydrogenase, catalase, or lysozyme) was evaluated. By performing the entire freeze-drying cycle in the sample chamber of the XRD, the phase behavior of trehalose and mannitol were simultaneously monitored. When an aqueous solution containing trehalose (4% w/v) and mannitol (2% w/v) was cooled to -40°C at 0.5°C/min, hexagonal ice was the only crystalline phase. However, upon warming the sample to the annealing temperature (-18°C), crystallization of mannitol hemihydrate was readily evident. After 3 h of annealing, the characteristic XRD peaks of trehalose dihydrate were also observed. The DSC heating curve of frozen and annealed solution showed two overlapping endotherms, attributed by XRD to the sequential melting of trehalose dihydrate-ice and mannitol hemihydrate-ice eutectics, followed by ice melting. While mannitol facilitated trehalose dihydrate crystallization, sucrose completely inhibited it. In the presence of protein (2 mg/ml), trehalose crystallization required a longer annealing time. When the freeze-drying was performed in the sample chamber of the diffractometer, drying induced the dehydration of trehalose dihydrate to amorphous anhydrate. However, the final lyophiles prepared in the laboratory lyophilizer contained trehalose dihydrate and mannitol hemihydrate. Using XRD and DSC, the sequential crystallization of ice, mannitol

  11. Study of the nonequilibrium critical quenching and the annealing dynamics for the long-range Ising model in one dimension

    Science.gov (United States)

    Rodriguez, D. E.; Bab, M. A.; Albano, E. V.

    2011-09-01

    Extensive Monte Carlo simulations are employed in order to study the dynamic critical behaviour of the one-dimensional Ising magnet, with algebraically decaying long-range interactions of the form 1/rd + σ, with σ = 0.75. The critical temperature, as well as the critical exponents, are evaluated from the power-law behaviour of suitable physical observables when the system is quenched from uncorrelated states, corresponding to infinite temperature, to the critical point. These results are compared with those obtained from the dynamic evolution of the system when it is annealed at the critical point from the ordered state. Also, the critical temperature in the infinite interaction limit is obtained by means of a finite-range scaling analysis of data measured with different truncated interaction ranges. All the estimated static critical exponents (γ/ν, β/ν, and 1/ν) are in good agreement with renormalization group (RG) results and previously reported numerical data obtained under equilibrium conditions. On the other hand, the dynamic exponent of the initial increase of the magnetization (θ) was close to RG predictions. However, the dynamic exponent z of the time correlation length is slightly different to the RG results probably due to the fact that it may depend on the specific dynamics used or because the two-loop expansion used in the RG analysis may be insufficient.

  12. Shattuckite and plancheite: A crystal chemical study

    Science.gov (United States)

    Evans, Howard T.; Mrose, Mary E.

    1966-01-01

    The orthorhombic crystal structures of shattuckite, Cu5( SiO3)4(OH)2 and planchétite, Cu8(Si4011)2(OH)4 H2O, have been solved. Shattuckite contains silicate chains similar to pyroxene in a complex association with copper atoms, while the closely related planchéite contains silicate chains similar to amphibole.

  13. Optical and electrical characterization of crystalline silicon films formed by rapid thermal annealing of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Baldus-Jeursen, Christopher, E-mail: cjbaldus@uwaterloo.ca; Tarighat, Roohollah Samadzadeh, E-mail: rsamadza@uwaterloo.ca; Sivoththaman, Siva, E-mail: sivoththaman@uwaterloo.ca

    2016-03-31

    The effect of rapid thermal annealing (RTA) on n-type hydrogenated amorphous silicon (a-Si:H) films deposited on single-crystal silicon (c-Si) wafers was studied by electrical and optical methods. Deposition of a-Si:H films by plasma-enhanced chemical vapor deposition (PECVD) was optimized for high deposition rate and maximum film uniformity. RTA processed films were characterized by spreading resistance profiling (SRP), Hall effect, spectroscopic ellipsometry, defect etching, and transmission electron microscopy (TEM). It was found that the films processed between 600 °C and 1000 °C were highly crystalline and that the defect density in the films diminished with increasing thermal budget. Junctions formed by the RTA processed n-type a-Si:H films on p-type c-Si wafers were tested for device applicability. It was established that these films can be used as the emitter layer in n{sup +}p photovoltaic (PV) devices with over 14% conversion efficiency. - Highlights: • Rapid thermal annealing of doped amorphous silicon deposited on single-crystal silicon (c-Si) wafers resulted in highly crystalline films for photovoltaic devices. • As the annealing temperature increased, the electrical and optical properties of the films became increasingly similar to single-crystal silicon. • Annealing temperatures between 500-1000 oC were investigated. Solar cell devices fabricated after annealing at 750 oC were found to be the most suitable compromise between good quality crystalline films and minimal dopant diffusion into the c-Si wafer. • Annealed films were highly conductive without the need for a transparent conducting oxide.

  14. A study of the surface structure and composition of annealed Ga{sub 0.96}Mn{sub 0.04}As(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, A.; Gustafson, J.; Sadowski, J.; Andersen, J.N.; Kanski, J.; Lundgren, E

    2004-01-30

    The surface structure and chemical composition of annealed Ga{sub 0.96}Mn{sub 0.04}As(1 0 0) have been studied by scanning tunneling microscopy (STM), auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The samples were As capped and subsequently transferred in-air from the MBE system to the STM chamber. After annealing to 600 K it is found that the Mn segregates to the surface and forms a compound, which is stable up to annealing temperatures of 790 K. For annealing temperatures above 825 K a well-ordered phase exists signified by a LEED pattern consisting of a superposition of a (1x6) and a (4x2) pattern. LEED and STM measurements demonstrate that the surface is dominated by (1x6) domains coexisting with small patches of (4x2) domains. By comparing the STM images of the high temperature phase found on Ga{sub 0.96}Mn{sub 0.04}As(1 0 0) with the high temperature phases found on ordinary GaAs(1 0 0), we demonstrate differences between annealed Ga{sub 0.96}Mn{sub 0.04}As(1 0 0) and GaAs(1 0 0) in both surface morphology and atomic structure. We argue that the Ga{sub 0.96}Mn{sub 0.04}As surface is more As rich than the GaAs surface prepared in a similar fashion. Reasons for these differences are discussed.

  15. Structural change upon annealing of amorphous GeSbTe grown on Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Bragaglia, V., E-mail: bragaglia@pdi-berlin.de; Jenichen, B.; Giussani, A.; Perumal, K.; Riechert, H.; Calarco, R. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2014-08-07

    The structural change upon annealing of an amorphous GeSbTe (GST) film deposited by molecular beam epitaxy on a Si(111) substrate is studied by means of X-ray diffraction (XRD), X-ray reflectivity (XRR), and atomic force microscopy (AFM). XRD profiles reveal that both metastable cubic and stable hexagonal phases are obtained with a single out-of-plane orientation. XRR study shows a density increase and consequent thickness decrease upon annealing, in accordance with literature. From both, the XRD and the AFM study, it emerges that the crystalline substrate acts as a template for the film, favoring the crystallization of the amorphous GST into the [111] oriented metastable cubic phase, and the latter turns into the [0001] stable hexagonal phase for higher annealing temperature.

  16. Structural change upon annealing of amorphous GeSbTe grown on Si(111)

    Science.gov (United States)

    Bragaglia, V.; Jenichen, B.; Giussani, A.; Perumal, K.; Riechert, H.; Calarco, R.

    2014-08-01

    The structural change upon annealing of an amorphous GeSbTe (GST) film deposited by molecular beam epitaxy on a Si(111) substrate is studied by means of X-ray diffraction (XRD), X-ray reflectivity (XRR), and atomic force microscopy (AFM). XRD profiles reveal that both metastable cubic and stable hexagonal phases are obtained with a single out-of-plane orientation. XRR study shows a density increase and consequent thickness decrease upon annealing, in accordance with literature. From both, the XRD and the AFM study, it emerges that the crystalline substrate acts as a template for the film, favoring the crystallization of the amorphous GST into the [111] oriented metastable cubic phase, and the latter turns into the [0001] stable hexagonal phase for higher annealing temperature.

  17. Studies on improved hole injection into N,N'-Bis(3-methylphenyl)- N,N'-diphenylbenzidine hole transport layer in the device by thermal annealing of indium tin oxide anode

    Science.gov (United States)

    Dasi, Gnyaneshwar; Asokan, K.; Thangaraju, Kuppusamy

    2017-03-01

    We demonstrate the improved hole injection into N,N'-Bis(3-methylphenyl)- N,N'-diphenylbenzidine (TPD) hole transport layer (HTL) by thermal annealing of ITO anode in hole-only devices (HODs). ITO anode was patterned and annealed at different temperatures (200, 300, and 400 °C) under the normal ambient. ITO film annealed at 400 °C shows the higher sheet resistance of 185 Ω/□ and the Hall measurement also confirms the drastic increase in the resistivity after 300 °C. The drastic decrease of Hall carrier concentration and mobility after 300 °C is attributed to the trapping of free carriers and scattering from the chemisorbed oxygen at grain boundaries. XRD analysis shows the increasing crystallite size as annealing temperature increases. SEM images show that ITO thin film annealed at 400 °C exhibits the wrinkle kind of morphological structures. AFM studies also supported the significant changes with an increase in the surface roughness of ITO film annealed after 300 °C. The fabricated HOD based on ITO anode annealed at 300 °C exhibited the improved hole injection than that of pristine and 200 °C annealed ITO-based HODs, and it is drastically decreased for 400 °C annealed ITO-based device below that of pristine device. It is reported that the annealing of ITO film at 400 °C under the normal ambient changes its surface morphology and/or surface chemical properties which play a role in the hole-injection properties. These results show that annealing of ITO anode upto 300 °C under the normal ambient improves the hole injection into TPD HTL in HODs, which will also be useful to enhance the hole injection and improve the charge balance in organic light-emitting diodes to improve the efficiencies.

  18. Charge-sensitive deep level transient spectroscopy of helium-ion-irradiated silicon, as-irradiated and after thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Li Bing-Sheng; Zhang Chong-Hong; Yang Yi-Tao; Zhou Li-Hong; Zhang Hong-Hua

    2009-01-01

    Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873 K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and I073 K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.

  19. Photocatalytic Properties of Columnar Nanostructured TiO2 Films Fabricated by Sputtering Ti and Subsequent Annealing

    Directory of Open Access Journals (Sweden)

    Zhengcao Li

    2012-01-01

    Full Text Available Columnar nanostructured TiO2 films were prepared by sputtering Ti target in pure argon with glancing angle deposition (GLAD and subsequent annealing at 400°C for different hours in air. Compared with sputtering TiO2 target directly, sputtering Ti target can be carried out under much lower base pressure, which contributes to obtaining discrete columnar nanostructures. In the present study, TiO2 films obtained by annealing Ti films for different hours all kept discrete columnar structures as the Ti films deposited in GLAD regime. The longer the annealing time was, the better the phase transition accomplished from Ti to TiO2 (a mixture of rutile and anatase, and the better it crystallized. In addition, those TiO2 films performed photocatalytic decolorization effectively and showed a law changing over annealing time under UV light irradiation towards methyl orange, which demonstrated the potential applications for treatment of effluent.

  20. Effect of Annealing Temperature on the Microstructure and Resistivity of Ge2Sb2Te5 Films

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; SONG Zhi-Tang; FENG Song-Lin; CHEN Bomy

    2004-01-01

    @@ The effect of annealing temperature on crystallization of amorphous Ge2Sb2 Te5 films with thickness of 40 nm is studied by TEM and AFM methods. The relationship between microstructure and resistivity of the Ge2Sb2 Te5film is investigated. From the TEM measurements, the grain size of crystallites increases gradually as the annealing temperature increases. When the annealing temperature is too high, voids are formed, which may originate from evaporation of the Ge2Sb2 Te5 film at the elevated temperatures, formation of sink, being nucleated by residual vacancies, and surface roughness. The resistivity of the Ge2Sb2 Te5 film decreases with the increasing annealing temperature and has slight changes when the temperature is higher than 400 ℃. Phase transitions and scattering of crystallite boundaries may be the major factors affecting the resistivity of the Ge2Sb2 Te5 film.

  1. Effect of annealing on the interfacial Dzyaloshinskii-Moriya interaction in Ta/CoFeB/MgO trilayers

    Science.gov (United States)

    Khan, R. A.; Shepley, P. M.; Hrabec, A.; Wells, A. W. J.; Ocker, B.; Marrows, C. H.; Moore, T. A.

    2016-09-01

    The interfacial Dzyaloshinskii-Moriya interaction (DMI) has been shown to stabilize homochiral Néel-type domain walls in thin films with perpendicular magnetic anisotropy, and as a result, permit them to be propagated by a spin Hall torque. In this study, we demonstrate that in Ta/Co20Fe60B20/MgO, the DMI may be influenced by annealing. We find that the DMI peaks at D = 0.057 ± 0.003 mJ/m2 at an annealing temperature of 230 °C. DMI fields were measured using a purely field-driven creep regime domain expansion technique. The DMI field and the anisotropy field follow a similar trend as a function of annealing temperature. We infer that the behavior of the DMI and the anisotropy are related to interfacial crystal ordering and B expulsion out of the CoFeB layer as the annealing temperature is increased.

  2. The annealing temperature dependence of anatase TiO2 thin films prepared by the electron-beam evaporation method

    Science.gov (United States)

    Taherniya, Atefeh; Raoufi, Davood

    2016-12-01

    In this paper, we report on titanium dioxide (TiO2) thin films deposited by an electron beam evaporation method on quartz glass substrates (15 × 15 × 2 mm3 in size), followed by post-annealing at 300 °C to 600 °C for an annealing time of up to 2 h. The substrate temperature during the film deposition was kept at 150 °C. The effect of post-growth thermal annealing on the structural and optical properties of TiO2 thin films were systematically studied as a function of annealing temperature. We found that the as-deposited TiO2 films are amorphous in structure, while the films started to crystallize into the anatase phase when annealed at temperatures ≥450 °C. An increase in annealing temperature results in a decrease of transmittance percentage and also in optical band gap energy. The refractive indices of the films were evaluated from the measured transmittance spectra using the envelope method. An increase in the refractive index with an increase of annealing temperature was observed.

  3. Influences of high-temperature annealing on atomic layer deposited Al2O3/4H-SiC

    Institute of Scientific and Technical Information of China (English)

    Wang Yi-Yu; Shen Hua-Jun; Bai Yun; Tang Yi-Dan; Liu Ke-An; Li Cheng-Zhan; Liu Xin-Yu

    2013-01-01

    High-temperature annealing of the atomic layer deposition (ALD) of Al2O3 films on 4H-SiC in O2 atmosphere is studied with temperature ranging from 800 ℃ to 1000 ℃.It is observed that the surface morphology of Al2O3 films annealed at 800 ℃ and 900 ℃ is pretty good,while the surface of the sample annealed at 1000 ℃ becomes bumpy.Grazing incidence X-ray diffraction (GIXRD) measurements demonstrate that the as-grown films are amorphous and begin to crystallize at 900 ℃.Furthermore,C-V measurements exhibit improved interface characterization after annealing,especially for samples annealed at 900 ℃ and 1000 ℃.It is indicated that high-temperature annealing in O2 atmosphere can improve the interface of Al2O3/SiC and annealing at 900 ℃ would be an optimum condition for surface morphology,dielectric quality,and interface states.

  4. Experimental study of surface crystallization on integrated circuit chips

    Institute of Scientific and Technical Information of China (English)

    Zhang Xin; Liu Meng-Xin; Gao Yong; Wang Cai-Lin; Wang Zhi-Wei; Zhang Xian

    2006-01-01

    A surface crystallization phenomenon on bonding pads and wires of integrated circuit chip is reported in this paper. Through a lot of experiments, an unknown failure effect caused by mixed crystalline matter is revealed, whereas non-plasma fluorine contamination cannot cause the failure of bonding pads. By experiments combined with infrared spectroscopy analysis, the surface crystallization effect is studied. The conclusion of the study can provide the guidance for IC fabrication, modelling and analysis.

  5. Study on the Crystallization of Amorphous Cr-Si-Ni Thin Films Using in situ X-ray Diffraction

    Institute of Scientific and Technical Information of China (English)

    Xianping DONG; Jiansheng WU

    2001-01-01

    Crystallization behavior of amorphous Cr-Si-Ni thin films was investigated by means of high temperature in situ X-ray diffraction measurements. The diffraction spectra were recorded isothermally at temperature between 250 and 750℃. The in situ testing of crystallization enables the direct observation of structure evolution which is dependent on heat treatment.Based on the testing results, the grain sizes of the crystalline phases were compared and phase transition tendency was understood. In the mean time, electrical properties of the films as functions of annealing temperature and time have been studied. The increase of volume fraction of CrSi2 crystallinc phases in the Cr-Si-Ni films leads to the decrease in conductivity of the films.The annealing behavior of temperature coefficient of resistance (TCR) is a result of competition between a negative contribution caused by the weak localization effects in amorphous region and a positive contribution caused by CrSi2 grains. Thus the proper mixture of amorphous and crystalline constituents could result in a final zero TCR.

  6. A Spectroscopic Ellipsometry Study of TiO2 Thin Films Prepared by dc Reactive Magnetron Sputtering: Annealing Temperature Effect

    Institute of Scientific and Technical Information of China (English)

    Mati Horprathum; Pongpan Chindaudom; Pichet Limsuwan

    2007-01-01

    TiO2 thin Rims are obtained by dc reactive magnetron sputtering. A target of titanium (99.995%) and a mixture of argon and oxygen gases are used to deposit TiO2 films on to silicon wafers (100). The crystalline structure of deposited and annealed film are deduced by variable-angle spectroscopic ellipsometry (VASE) and supported by x-ray diffractometry. The optical properties of the Sims are examined by VASE. Measurements of ellipsometry are performed in the spectral range 0.72-3.55 eV at incident angle 75°. Several SE models, categorized by physical and optical models, are proposed based on the 'simpler better' rule and curve-fits, which are generated and compared to the experimental data using the regression analysis. It has been found that the triple-layer physical model together with the Cody-Lorentz dispersion model offer the most convincing result. The as-deposited films are found to be inhomogeneous and amorphous, whereas the annealed films present the phase transition to anatase and rutile structures. The refractive index of TiO2 thin films increases with annealing temperature. A more detailed analysis further reveals that thickness of the top sub-layer increases, whereas the region of the bottom amorphous sub-layer shrinks when the films are annealed at 300°C.

  7. Growth and Annealing Study of Mg-Doped AlGaN and GaN/AlGaN Superlattices

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-Zhu; LI Jin-Min; WANG Zhan-Guo; WANG Xiao-Liang; HU Guo-Xin; RAN Jun-Xue; WANG Xin-Hua; GUO Lun-Chun; XIAO Hong-Ling; LI Jian-Ping; ZENG Yi-Ping

    2006-01-01

    @@ Mg-doped AlGaN and GaN/AlGaN superlattices are grown by metalorganic chemical vapour deposition (MOCVD).Rapid thermal annealing (RTA) treatments are carried out on the samples. Hall and high resolution x-ray diffraction measurements are used to characterize the electrical and structural prosperities of the as-grown and annealed samples, respectively. The results of hall measurements show that after annealing, the Mg-doped AlGaN sample can not obtain the distinct hole concentration and can acquire a resistivity of 1.4×103 Ωcm. However, with the same annealing treatment, the GaN/AlGaN superlattice sample has a hole concentration of 1.7×1017 cm-3 and a resistivity of 5.6Ωcm. The piezoelectric field in the GaN/AlGaN superlattices improves the activation efficiency of Mg acceptors, which leads to higher hole concentration and lower p-type resistivity.

  8. A Study of the Pickup of Abrasive Particles during Abrasion of Annealed Aluminum on Silicon Carbide Abrasive Papers,

    Science.gov (United States)

    annealed aluminium during abrasion on silicon carbide abrasive papers. Neither optical nor scanning electron microscopy adequately characterises the...despite its limitations when examining rough surfaces. The present results show that the pickup of silicon carbide particles increases with increase in

  9. Surface and Interface Study of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C

    Science.gov (United States)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak

    1998-01-01

    The surface and interface properties of Pd(sub 0.9)Cr(sub 0.1/SiC Schottky diode gas sensor both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(sub x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 deg. C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Pd(sub x)Si formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(sub 0.9)Cr(sub 0.1) film are likely responsible for significantly improved device sensitivity.

  10. A change in domain morphology in optical superlattice LiNbO sub 3 induced by thermal annealing

    CERN Document Server

    Lu Yan Qing; Luo Qi; Zhu Yong Yuan; Chen Xiang Fei; Xue Cheng Cheng; Ming Nai Ben

    1997-01-01

    Optical superlattice LiNbO sub 3 crystals were grown by the Czochralski method. The effect of thermal annealing below the Curie temperature on domain structures of a sample with good periodicity was studied. It was found that the periodic domain structure remained unchanged at annealing temperature lower than 1000 deg. C and began to deteriorate when annealed at above 1000 deg. C. A sample at 1100 deg. C for an hour almost changed to a single-domain structure except that a 60 mu m single-domain layer with reversed spontaneous polarization was formed at the edge of the sample. These results are useful for revealing the mechanism of formation of the periodic domain structure and designing a more favourable temperature field to improve the crystals' quality. A space-charge-field model was proposed to explain the phenomena. (author)

  11. Crystal fingerprint space--a novel paradigm for studying crystal-structure sets.

    Science.gov (United States)

    Valle, Mario; Oganov, Artem R

    2010-09-01

    The initial aim of the crystal fingerprint project was to solve a very specific problem: to classify and remove duplicate crystal structures from the results generated by the evolutionary crystal-structure predictor USPEX. These duplications decrease the genetic diversity of the population used by the evolutionary algorithm, potentially leading to stagnation and, after a certain time, reducing the likelihood of predicting essentially new structures. After solving the initial problem, the approach led to unexpected discoveries: unforeseen correlations, useful derived quantities and insight into the structure of the overall set of results. All of these were facilitated by the project's underlying idea: to transform the structure sets from the physical configuration space to an abstract, high-dimensional space called the fingerprint space. Here every structure is represented as a point whose coordinates (fingerprint) are computed from the crystal structure. Then the space's distance measure, interpreted as structure 'closeness', enables grouping of structures into similarity classes. This model provides much flexibility and facilitates access to knowledge and algorithms from fields outside crystallography, e.g. pattern recognition and data mining. The current usage of the fingerprint-space model is revealing interesting properties that relate to chemical and crystallographic attributes of a structure set. For this reason, the mapping of structure sets to fingerprint space could become a new paradigm for studying crystal-structure ensembles and global chemical features of the energy landscape.

  12. Growth, spectral and crystallization perfection studies of semi organic non linear optical crystal - L-alanine lithium chloride

    Science.gov (United States)

    Redrothu, Hanumantharao; Kalainathan, S.; Bhagavannarayana, G.

    2012-06-01

    Single crystals of L-alanine lithium chloride single crystals were successfully grown using slow evaporation solution growth technique at constant temperature (303K). The formation of the new crystal has been confirmed by single-crystal X-ray diffraction, FT-IR studies. The crystalline perfection was analyzed by high-resolution X-ray diffraction (HRXRD) rocking curve measurements. The powder second harmonic generation (SHG) has been confirmed by Nd: YAG laser. The results have been discussed in detail.

  13. Crystal growth, structural and thermal studies of amino acids admixtured L-arginine phosphate monohydrate single crystals

    Science.gov (United States)

    Anandan, P.; Saravanan, T.; Parthipan, G.; Kumar, R. Mohan; Bhagavannarayana, G.; Ravi, G.; Jayavel, R.

    2011-05-01

    To study the improved characteristics of L-arginine phosphate monohydrate (LAP) crystals, amino acids mixed LAP crystals have been grown by slow cooling method. Amino acids like glycine, L-alanine, and L-valine have been selected for doping. Optical quality bulk crystals have been harvested after a typical growth period of about twenty days. The effect of amino acids in the crystal lattice and molecular vibrational frequencies of various functional groups in the crystals have been studied using X-ray powder diffraction and Fourier Transform infrared (FTIR) analyses respectively. Thermal behavior of the amino acids mixed LAP crystals have been studied from the TG and DTG analyses. High-resolution X-ray diffraction studies have been carried out to find the crystalline nature. Optical transmission studies have been carried out by UV-vis spectrophotometer. The cut off wavelength is below 240 nm for the grown crystals.

  14. Free-falling Crystals: Biological Macromolecular Crystal Growth Studies in Low Earth Orbit

    Science.gov (United States)

    Judge, Russell A.; Snell, E. H.; Pusey, M. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Spacecraft orbiting the earth experience a reduced acceleration environment due to being in a state of continuous free-fall. This state colloquially termed microgravity, has produced improved X-ray diffraction quality crystals of biological macromolecules. Improvements in X-ray diffraction resolution (detail) or signal to noise, provide greater detail in the three-dimensional molecular structure providing information about the molecule, how it works, how to improve its function or how to impede it. Greater molecular detail obtained by crystallization in microgravity, has important implications for structural biology. In this article we examine the theories behind macromolecule crystal quality improvement in microgravity using results obtained from studies with the model protein, chicken egg white lysozyme.

  15. Ion implantation of silicon in gallium arsenide: Damage and annealing characterizations

    Science.gov (United States)

    Pribat, D.; Dieumegard, D.; Croset, M.; Cohen, C.; Nipoti, R.; Siejka, J.; Bentini, G. G.; Correra, L.; Servidori, M.

    1983-05-01

    The purpose of this work is twofold: (i) to study the damage induced by ion implantation, with special attention to low implanted doses; (ii) to study the efficiency of annealing techniques — particularly incoherent light annealing — in order to relate the electrical activity of implanted atoms to damage annealing. We have used three methods to study the damage induced by ion implantation: (1) RBS (or nuclear reactions) in random or in channeling geometry (2) RX double crystal diffractometry and (3) electrical measurements (free carrier profiling). Damage induced by silicon implantation at doses >10 14at/cm 2 can be monitored by all three techniques. However, the sensitivity of RBS is poor and hence this technique is not useful for low implantation doses. As device technology requires dopant levels in the range of 5 × 10 12 atoms/cm 2, we are particularly interested to the development of analytical techniques able to detect the damage at this implantation level. The sensitivity of such techniques was checked by studying homogeneously doped (5 × 10 16 e -/cm 3) and semi-insulating GaAs samples implanted with 3 × 10 12 silicon atoms/cm 2 at 150 keV. The substrate temperature during implantation was 200°C. The damage produced in these samples and its subsequent annealing are evidenced by strong changes in X-ray double crystal diffraction spectra. This method hence appears as a good monitoring technique. Annealing of the implanted layers has been performed using incoherent light sources (xenon lamps) either in flash or continuous conditions. Reference samples have also been thermally annealed (850°C, 20 min in capless conditions). The results are compared, and the electrical carrier profiles obtained after continuous incoherent light irradiation indicate that the implanted silicon atoms are almost dully activated. The advantages and disadvantages of incoherent light irradiation are discussed (surface oxidation, surface damage) in comparison with standard

  16. Crystal growth and reflectivity studies of Zn1–MnTe crystals

    Indian Academy of Sciences (India)

    K Veera Brahmam; D Raja Reddy; B K Reddy

    2005-08-01

    Single crystals of Zn1–MnTe were prepared by vertical Bridgman crystal growth method for different concentrations of Mn. Chemical analysis and reflectivity studies were carried out for compositional and band structure properties. Microscopic variation in composition between starting and end compounds was observed from EDAX analysis. Linear dependence of fundamental absorption edge (0) as a function of Mn concentration () was expressed in terms of a straight line fit and a shift in 0 towards higher energy was observed in reflectivity spectra of Zn1–MnTe.

  17. Synthesis and microstructural studies of annealed Cu(2)O/Cu(x)S bilayer as transparent electrode material for photovoltaic and energy storage devices.

    Science.gov (United States)

    Taleatu, B A; Arbab, E A A; Omotoso, E; Mola, G T

    2014-10-01

    Cu2 O thin film and a transparent bilayer have been fabricated by electrodeposition method. The growths were obtained in potentiostatic mode with gradual degradation of anodic current. X-ray diffraction (XRD) study showed that the bilayer is polycrystalline and it possesses mixture of different crystallite phases of copper oxides. Surface morphology of the films was investigated by scanning electron microscopy (SEM). The SEM images revealed that the films were uniformly distributed and the starting material (Cu2 O) had cubical structure. Grains agglomeration and crystallinity were enhanced by annealing. Optical studies indicated that all the samples have direct allowed transition. Energy band gap of the bilayer film was reduced by annealing treatment thus corroborating quantum confinement upshot. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  18. Hot Plate Annealing at a Low Temperature of a Thin Ferroelectric P(VDF-TrFE Film with an Improved Crystalline Structure for Sensors and Actuators

    Directory of Open Access Journals (Sweden)

    Rahman Ismael Mahdi

    2014-10-01

    Full Text Available Ferroelectric poly(vinylidene fluoride-trifluoroethylene (P(VDF-TrFE copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE thin films are measured as a function of different annealing temperatures (80 to 140 °C. It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  19. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators.

    Science.gov (United States)

    Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H

    2014-10-14

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  20. Simulation study of PET detector limitations using continuous crystals

    Science.gov (United States)

    Cabello, Jorge; Etxebeste, Ane; Llosá, Gabriela; Ziegler, Sibylle I.

    2015-05-01

    Continuous crystals can potentially obtain better intrinsic detector spatial resolution compared to pixelated crystals, additionally providing depth of interaction (DoI) information from the light distribution. To achieve high performance sophisticated interaction position estimation algorithms are required. There are a number of algorithms in the literature applied to different crystal dimensions and different photodetectors. However, the different crystal properties and photodetector array geometries have an impact on the algorithm performance. In this work we analysed, through Monte Carlo simulations, different combinations of realistic crystals and photodetector parameters to better understand their influence on the interaction position estimation accuracy, with special emphasis on the DoI. We used an interaction position estimation based on an analytical model for the present work. Different photodetector granulation schemes were investigated. The impact of the number of crystal faces readout by photodetectors was studied by simulating scenarios with one and two photodetectors. In addition, crystals with different levels of reflection and aspect ratios (AR) were analysed. Results showed that the impact of photodetector granularity is mainly shown near the edges and specially in the corners of the crystal. The resulting intrinsic spatial resolution near the centre with a 12 × 12 × 10 mm3 LYSO crystal was 0.7-0.9 mm, while the average spatial resolution calculated on the entire crystal was 0.77 ± 0.18 mm for all the simulated geometries with one and two photodetectors. Having front and back photodetectors reduced the DoI bias (Euclidean distance between estimated DoI and real DoI) and improved the transversal resolution near the corners. In scenarios with one photodetector, small AR resulted in DoI inaccuracies for absorbed events at the entrance of the crystal. These inaccuracies were slightly reduced either by increasing the AR or reducing the amount of

  1. Designing Robust Process Analytical Technology (PAT) Systems for Crystallization Processes: A Potassium Dichromate Crystallization Case Study

    DEFF Research Database (Denmark)

    Abdul Samad, Noor Asma Fazli Bin; Sin, Gürkan

    2013-01-01

    The objective of this study is to test and validate a Process Analytical Technology (PAT) system design on a potassium dichromate crystallization process in the presence of input uncertainties using uncertainty and sensitivity analysis. To this end a systematic framework for managing uncertaintie...

  2. Microstructural evolution of Au/TiO{sub 2} nanocomposite films: The influence of Au concentration and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Kubart, T.; Kumar, S.; Leifer, K. [Solid-State Electronics, Department of Engineering Sciences, Uppsala University, P.O. Box 534, Uppsala SE-751 21 (Sweden); Rodrigues, M.S. [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Duarte, N.; Martins, B.; Dias, J.P. [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Vaz, F. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-04-01

    Nanocomposite thin films consisting of a dielectric matrix, such as titanium oxide (TiO{sub 2}), with embedded gold (Au) nanoparticles were prepared and will be analysed and discussed in detail in the present work. The evolution of morphological and structural features was studied for a wide range of Au concentrations and for annealing treatments in air, for temperatures ranging from 200 to 800 °C. Major findings revealed that for low Au atomic concentrations (at.%), there are only traces of clustering, and just for relatively high annealing temperatures, T ≥ 500 °C. Furthermore, the number of Au nanoparticles is extremely low, even for the highest annealing temperature, T = 800 °C. It is noteworthy that the TiO{sub 2} matrix also crystallizes in the anatase phase for annealing temperatures above 300 °C. For intermediate Au contents (5 at.% ≤ C{sub Au} ≤ 15 at.%), the formation of gold nanoclusters was much more evident, beginning at lower annealing temperatures (T ≥ 200 °C) with sizes ranging from 2 to 25 nm as the temperature increased. A change in the matrix crystallization from anatase to rutile was also observed in this intermediate range of compositions. For the highest Au concentrations (> 20 at.%), the films tended to form relatively larger clusters, with sizes above 20 nm (for T ≥ 400 °C). It is demonstrated that the structural and morphological characteristics of the films are strongly affected by the annealing temperature, as well as by the particular amounts, size and distribution of the Au nanoparticles dispersed in the TiO{sub 2} matrix. - Highlights: • Au:TiO{sub 2} films were produced by magnetron sputtering and post-deposition annealing. • The Au concentration in the films increases with the Au pellet area. • Annealing induced microstructural changes in the films. • The nanoparticle size evolution with temperature depends on the Au concentration.

  3. Crystals for neutron scattering studies of quantum magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Yankova, Tantiana [ETH Zurich, Switzerland; Hüvonen, Dan [ETH Zurich, Switzerland; Mühlbauer, Sebastian [ETH Zurich, Switzerland; Schmidiger, David [ETH Zurich, Switzerland; Wulf, Erik [ETH Zurich, Switzerland; Hong, Tao [ORNL; Garlea, Vasile O [ORNL; Custelcean, Radu [ORNL; Ehlers, Georg [ORNL

    2012-01-01

    We review a strategy for targeted synthesis of large single crystal samples of prototype quantum magnets for inelastic neutron scattering experiments. Four case studies of organic copper halogenide S = 1/2 systems are presented. They are meant to illustrate that exciting experimental results pertaining to the forefront of many-body quantum physics can be obtained on samples grown using very simple techniques, standard laboratory equipment, and almost no experience in advanced crystal growth techniques.

  4. Thermo optical study of nematic liquid crystal doped with ferrofluid

    Science.gov (United States)

    Jessy P., J.; Shalini, M.; Patel, Nainesh; Sarawade, Pradip; Radha, S.

    2017-05-01

    Liquid crystal composite materials with tunable physical properties are of great scientific interest because of optoelectronic and biomedical applications. We report our study of modified optical properties of 5CB Nematic Liquid Crystal (NLC) by doping with ferrofluid at low concentrations of 0.1% by the investigation of thermo optic behaviour. The observed sensitivity of optical response in ferrofluid doped NLC is expected to pave way for several thermo-optic applications.

  5. Thermal annealing induced structural and optical properties of Se72Te25In3 thin films

    Science.gov (United States)

    Pathak, H. P.; Shukla, Nitesh; Kumar, Vipin; Dwivedi, D. K.

    2016-05-01

    Thin films of a- Se72Te25In3 were prepared by vacuum evaporation technique in a base pressure of 10-6 Torr on to well cleaned glass substrate. a-Se72Te25In3 thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical absorption spectra of these films were measured in the wavelength range 400-1100 nm in order to derive the absorption coefficient of these films. The optical band gap of as prepared and annealed films as a function of photon energy has been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.

  6. Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres

    Science.gov (United States)

    Sarma, Biplab; Jurovitzki, Abraham L.; Ray, Rupashree S.; Smith, York R.; Mohanty, Swomitra K.; Misra, Mano

    2015-07-01

    The effect of annealing atmosphere on the supercapacitance behavior of iron oxide nanotube (Fe-NT) electrodes has been explored and reported here. Iron oxide nanotubes were synthesized on a pure iron substrate through an electrochemical anodization process in an ethylene glycol solution containing 3% H2O and 0.5 wt.% NH4F. Subsequently, the annealing of the nanotubes was carried out at 500 °C for 2 h in various gas atmospheres such as air, oxygen (O2), nitrogen (N2), and argon (Ar). The morphology and crystal phases evolved after the annealing processes were examined via field emission scanning electron microscopy, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical capacitance properties of the annealed Fe-NT electrodes were evaluated by conducting cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy tests in the Li2SO4 electrolyte. Based on these experiments, it was found that the capacitance of the Fe-NT electrodes annealed in air and O2 atmospheres shows mixed behavior comprising both the electric double layer and pseudocapacitance. However, annealing in N2 and Ar environments resulted in well-defined redox peaks in the CV profiles of the Fe-NT electrodes, which are therefore attributed to the relatively higher pseudonature of the capacitance in these electrodes. Based on the galvanostatic charge-discharge studies, the specific capacitance achieved in the Fe-NT electrode after annealing in Ar was about 300 mF cm-2, which was about twice the value obtained for N2-annealed Fe-NTs and three times higher than those annealed in air and O2. The experiments also demonstrated excellent cycle stability for the Fe-NT electrodes with 83%-85% capacitance retention, even after many charge-discharge cycles, irrespective of the gas atmospheres used during annealing. The increase in the specific capacitance was discussed in terms of increased oxygen vacancies as a result of the

  7. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices.

    Science.gov (United States)

    Cheng, Zengguang; Zhou, Qiaoyu; Wang, Chenxuan; Li, Qiang; Wang, Chen; Fang, Ying

    2011-02-09

    By combining atomic force microscopy and trans-port measurements, we systematically investigated effects of thermal annealing on surface morphologies and electrical properties of single-layer graphene devices fabricated by electron beam lithography on silicon oxide (SiO(2)) substrates. Thermal treatment above 300 °C in vacuum was required to effectively remove resist residues on graphene surfaces. However, annealing at high temperature was found to concomitantly bring graphene in close contact with SiO(2) substrates and induce increased coupling between them, which leads to heavy hole doping and severe degradation of mobilities in graphene devices. To address this problem, a wet-chemical approach employing chloroform was developed in our study, which was shown to enable both intrinsic surfaces and enhanced electrical properties of graphene devices. Upon the recovery of intrinsic surfaces of graphene, the adsorption and assisted fibrillation of amyloid β-peptide (Aβ1-42) on graphene were electrically measured in real time.

  8. Studies on crystal growth and physical properties of 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline single crystal

    Science.gov (United States)

    Jebin, R. P.; Suthan, T.; Rajesh, N. P.; Vinitha, G.; Dhas, S. A. Britto

    2016-07-01

    The organic material 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline has been grown by slow evaporation technique. Single crystal and Powder X-ray diffraction studies have been carried out to conform the grown crystal. FTIR and FT-Raman spectra were recorded to identify the functional groups present in the crystal. The optical property of the grown crystal was analysed by UV-Vis-NIR measurement. The thermal property of the grown crystal was analysed by thermogravimetric (TG) and differential thermal analyses (DTA). Thermal diffusivity of the grown crystal was analysed by Photo acoustic spectroscopic (PAS) studies. The third order nonlinear optical properties of 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser. The mechanical property of the grown crystal was analysed by using microhardness studies.

  9. Effect of annealing on structural and optical properties of Ni(1-x)MnxO nanostructures thin films

    Science.gov (United States)

    Khodair, Ziad T.; Kamil, Asaad A.; Abdalaah, Yamamah K.

    2016-12-01

    Nanostructured Nickel-Manganese oxide (Ni(1-x)MnxO) thin films, where (x=0%, 2%, 4%, 6% and 8%) have been prepared by a simple and inexpensive chemical spray pyrolysis technique (CSP) on glass substrates at a temperature of (400 °C) and thickness of about (300 nm). The effect of annealing on structural properties has been investigated. The structural properties of these films have been studied using X-ray diffraction. The X-ray results showed that all films before and after annealing are polycrystalline in nature with cubic structure and preferred orientation along (111) plane. The average crystallite size (Dav) was calculated using Scherrer formula for Nickel-Manganese oxide (Ni(1-x)MnxO) thin films before and after annealing and it is found that the (Dav) increases as the Mn-concentration increases and increases after annealing too, and the (Dav) values after annealing were in the range of (11.260-19.943) nm. The Structural parameters including (Lattice Constant (a○), Dislocation Density (δ), Number of Crystal Per Unite area (No) and Texture coeffecient (Tc) were also calculated. AFM results showed the average grain size estimated from the AFM granularity report confirms the XRD results. The optical properties of the films prepared before and after annealing were studied by recording the transmittance and absorbance spectrum in the range of (300-900) nm, the results showed that the absorbance increases with increasing the percentage of doping and it is also found that the energy band gap for the allowed direct transition decreass with increasing the percentage of doping for all films prepared before and after annealing and the values were in the range of (3.59-3.53 eV) before annealing and increased to the range of (3.64-3.57 eV) after annealing.

  10. Growth and high pressure studies of zirconium sulphoselenide single crystals

    Indian Academy of Sciences (India)

    K R Patel; R D Vaidya; M S Dave; S G Patel

    2009-11-01

    Transition metal trichalcogenides are well suited for extreme pressure lubrication. These materials being semiconducting and of layered structure may undergo structural and electronic transition under pressure. In this paper authors reported the details about synthesis and characterization of zirconium sulphoselenide single crystals. The chemical vapour transport technique was used for the growth of zirconium sulphoselenide single crystals. The energy dispersive analysis by X-ray (EDAX) gave the confirmation about the stoichiometry of the as-grown crystals and other structural characterizations were accomplished by X-ray diffraction (XRD) study. The variation of electrical resistance was monitored in a Bridgman opposed anvil set-up up to 8 GPa pressure to identify the occurrence of any structural transition. These crystals do not possess any structural transitions upto the pressure limit examined.

  11. Brillouin light scattering studies of 2D magnonic crystals

    Science.gov (United States)

    Tacchi, S.; Gubbiotti, G.; Madami, M.; Carlotti, G.

    2017-02-01

    Magnonic crystals, materials with periodic modulation of their magnetic properties, represent the magnetic counterpart of photonic, phononic and plasmonic crystals, and have been largely investigated in recent years because of the possibility of using spin waves as a new means for carrying and processing information over a very large frequency bandwidth. Here, we review recent Brillouin light scattering studies of 2D magnonic crystals consisting of single- and bi-component arrays of interacting magnetic dots or antidot lattices. In particular, we discuss the principal properties of the magnonic band diagram of such systems, with emphasis given to its dependence on both magnetic and the geometrical parameters. Thanks to the possibility of tailoring their band structure by means of several degrees of freedom, planar magnonic crystals offer a good opportunity to design an innovative class of nanoscale microwave devices.

  12. Studies on confined crystallization behavior of polycaprolactone thin films

    Institute of Scientific and Technical Information of China (English)

    QIAO Congde; JIANG Shichun; JI Xiangling; AN Lijia; JIANG Bingzheng

    2007-01-01

    The confined crystallization behavior ofpolycap-rolactone (PCL) in thin and ultrathin films was studied by AFM (atomic force microscopy). It was found that the crys-talline morphology of PCL depended on the film's thickness.When the thickness is d>2Rg (radius of gyration), the polymer can crystallize into spherulites; when Rg < d< 2 Rg,a dense-branch morphology and dendrites could be found;when dcrystallization temperature and the substrate and the molecular weigbt on the crystalline mor-phology were discussed. It was shown that the crystallization of PCL in thin films is a diffusion-controlled process, and it can be explained by diffusion-limited aggregation.

  13. Study on template removal from silicalite-1 giant crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mateo, Ester, E-mail: emateog@unizar.es [Department of Earth Sciences, University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza (Spain); Paniagua, Andres [Department of Earth Sciences, University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza (Spain); Gueell, Carme [Unitat d' Enologia del CeRTA (Generalitat de Catalunya), Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Coronas, Joaquin, E-mail: coronas@unizar.es [Department of Chemical and Environmental Engineering and Nanoscience Institute of Aragon, University of Zaragoza, 50018 Zaragoza (Spain); Santamaria, Jesus [Department of Chemical and Environmental Engineering and Nanoscience Institute of Aragon, University of Zaragoza, 50018 Zaragoza (Spain)

    2009-06-03

    The formation of silicalite-1 giant crystals with a size of up to 3 mm can be achieved by controlling the factors affecting the nucleation and crystallization process using a piece of tube of quartz glass as the silica source under hydrothermal conditions. Once prepared and characterized by scanning electron and optical microscopy, thermogravimetry and single crystal powder X-ray diffraction, a challenge that remains is the removal of the template giving rise to colourless and crack-free crystals. As pointed out by stereoscopical, optical and fluorescence confocal optical microscopies, this was achieved in this study by the calcination protocols developed, involving the use of pure O{sub 2} and 5% of O{sub 2} in Ar and O{sub 2}-O{sub 3} (1.5% of O{sub 3}), maximum temperatures of 400 deg. C and heating rates as low as 0.5 deg. C/min.

  14. 非晶态Ni-W-P镀层退火晶化和激光晶化组织结构的演变%Microstructures evolution of electroless amorphous Ni-W-P coating during laser and annealing crystallization

    Institute of Scientific and Technical Information of China (English)

    刘宏; 郭荣新; 李莎; 宗云; 何冰清

    2011-01-01

    用XRD定量分析法并结合扫描电镜形貌观察,研究化学沉积高磷(13.3%)含量的Ni-W-P镀层在不同热处理条件下的晶化程度、晶粒尺寸及晶格应变等组织结构的演变规律.结果表明:高磷非晶态镀层在退火晶化过程中,Ni3P相的体积分数始终高于Ni相的,700℃时,两相的体积分数之差显著增大,镀层仍有残存的非晶相;在400~500℃之间形成的Ni3P的晶粒尺寸大于Ni的;温度为500~700℃时,Ni相的尺寸大于Ni3P的,但均未超过纳米级.镀层晶格应变表现为随退火温度的升高而降低,镀态时晶格应变最大.激光晶化处理的非晶态Ni-W-P镀层的显微结构特征介于400~500℃之间退火的镀层晶化特征.随扫描速度增加,不仅Ni3P晶粒尺寸增大,而且两相的尺寸差变大.%The evolution of microstructures, in terms of degree of crystallisation, grain size and lattice strain of electroless Ni-W-P coating with high phosphorous (13.3%) content during laser and furnace annealing was investigated by quantitative XRD method and morphological observation of SEM. The results show that, during the annealing crystallization of the amorphous coating, the volume fraction of Ni3P exceeds that of Ni, and the volume fraction difference between the two phases increases remarkably at 700 ℃, but the remaining amorphous phase still exists in the coating. The grain size of Ni3P is larger than that of Ni between 400 ℃ and 500 ℃, the grain size of both phases is reversed above 500-700 °C and are in the range of nanoscale. The lattice strain of as-plated deposit is the maximum and decreases with the increase of temperature. The characteristics of microstructures of the coating treated by laser is consistent with the deposit annealed by furnace between 400 ℃ and 500 ℃. The grain size of Ni3P and phases difference increase with the increase of the scanning velocity.

  15. An Effect of Annealing on Shielding Properties of Shungite

    Science.gov (United States)

    Belousova, E. S.; Mahmoud, M. Sh.; Lynkou, L. M.

    2013-05-01

    Annealing of shungite is studied in oxidizing conditions in a chamber with NH4Cl, and in vacuum at 900 °C for 2h. Frequency dependencies of transmission and reflection coefficients of annealed shungite are measured in the frequency range of 8-12 GHz. The minimum reflection at 8-10 GHz was shown for shungite annealed in the oxidizing atmosphere.

  16. STUDY OF Ag DIFFUSION INTO Cu SINGLE CRYSTALS BY RUTHERFORD BACKSCATTERING SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    R. Wang

    2003-01-01

    4. 0Me V 7 Li++ RBS was used for investigations of thermal diffusion of Ag in Cu single crystals. The annealing of samples was carried out in vacuum in the temperature range from 498K to 613K. The element depth concentration profiles transformed fiom RBS spectra indicate that the diffusion of Ag into Cu is a typical volume diffusion. The Arrhenius parameters corresponding to the diffusion were obtained.

  17. A study of the effect of UV laser annealing on a-SiC films for structure ordering

    CERN Document Server

    Cho, N I; Hong, C; Chae, H B; Kim, C K; Lee, B T

    2000-01-01

    A UV laser annealing was carried out on amorphous SiC films which were deposited on Si substrate by using plasma-enhanced chemical-vapour deposition. Scanning electron microscope micrographs taken from the surfaces of the films exhibited images of grains that were not presented before the UV laser treatment. Fourier-transformed infrared and X-ray diffraction experiments identified those grains as microcrystals of SiC and Si transformed from the amorphous state. Auger electron spectroscopy depth profiling analysis showed that there were more Si atoms than C atoms in the layer. The resistivities of films changed abruptly from 170 OMEGA cm to 226 k OMEGA cm after UV laser annealing.

  18. Crystallization and Moessbauer studies of the Fe sub 7 sub 8 Al sub 4 Nb sub 5 B sub 1 sub 2 Cu sub 1 alloy

    CERN Document Server

    Kim, C S; Kim, S B; Park, J Y; Kim, K Y; Noh, T H; Oak, H N

    1998-01-01

    A melt-spun Fe sub 7 sub 8 Al sub 4 Nb sub 5 B sub 1 sub 2 Cu sub 1 alloy with an ultra-thin ribbon has been studied by x-ray diffraction, Moessbauer spectroscopy, and vibrating sample magnetometry. The average hyperfine field H sub h sub f (T) of the amorphous state shows temperature dependence of [H sub h sub f (T) - H sub h sub f (0)]/H sub h sub f (0) -0.53(T/T sub c) sup 3 sup / sup 2 - 0.21(T/T sub c < 0.7, indicative of spin-wave excitation. The quadrupole splitting just above the Curie temperature Tc is 0.42 mm/s, whereas the quadrupole shift below T sub c is zero. The Curie and the crystallization temperature are T sub c = 450 K and T sub x = 703 K, respectively, for a heating rate of 5 K/min. The occupied area ratio of the alpha-Fe phase flash-annealed at 723 K is 59% and remains unchanged. The crystallization temperature of the flash-annealed alloy becomes lower, and the formation of an alpha-Fe is easier than that of the conventional alloy. The flash-annealing technique is effective in improvin...

  19. Raman study of TiO2 role in SiO2-Al2O3-MgO-TiO2-ZnO glass crystallization.

    Science.gov (United States)

    Furić, Kresimir; Stoch, Leszek; Dutkiewicz, Jan

    2005-05-01

    Tough glass-ceramic material of special mechanical properties with nanosize crystal phases formed by appropriately controlled crystallization was studied by Raman spectroscopy. It was obtained by TiO2 activated crystallization of Mg-aluminosilicate glass of SiO2-Al2O3-MgO-TiO2-ZnO composition. Crystallization was preceded by a change in the TiO2 structural position and state, which is manifested by a changed color of glass from yellow into blue shortly before the glass transformation (Tg) temperature. Raman spectroscopy was applied to explain the mechanism of this process and to establish the role of TiO2 in the early stage of glass crystallization that precedes a complete crystal phase formation. The starting glasses were found in almost complete disorder, since all bands were weak, broad and dominated by a Bose band at about 90 cm-1. After the sample annealing all bands turned out better resolved and the Bose band practically disappeared, both confirming the amorphous structure reorganization process. A multiplet observed in the vicinity of 150 cm-1 we assigned to the anatase and other titania structures that can be considered prime centers of crystallization. Finally, in the closest neighborhood of the Rayleigh line the low frequency mode characterizing nanoparticles was observed. According to this band theory, the mean size of initial titania crystallites is about 10nm for all samples, but the size distribution varies within factor two among them.

  20. Strongly Driven Crystallization Processes in a Metallic Glass

    Energy Technology Data Exchange (ETDEWEB)

    LaGrange, T; Grummon, D S; Reed, B W; Browning, N D; King, W E; Campbell, G H

    2009-02-09

    The crystallization of amorphous NiTi thin films was studied in situ using pulsed laser heating in a dynamic transmission electron microscope. A single pulse can crystallize small areas of the film within 2 {micro}s. The crystallized volume fraction and morphology depend strongly on the laser energy, the laser spatial profile, and the heat transport in the film. As compared to slower furnace and continuous wave laser annealing, pulsed laser heating produces a dramatically different microstructure. Higher than expected crystallization rates were observed under pulsed irradiation that do not correlate with kinetic data obtained from the slow-heating crystallization experiments.

  1. Optimization of Temperatures Heating Melt and Annealing Soft Magnetic Alloys

    Science.gov (United States)

    Tsepelev, Vladimir; Starodubtsev, Yuri

    2017-05-01

    Taking into account the concept of the quasi-chemical model of the liquid micro-non-uniform composition and the research made on the physical properties of the Fe-based melts being crystallized, the unique technology of the melt time-temperature treatment has been developed. Amorphous ribbons produced using this technology require optimal annealing temperatures to be specifically selected. Temperature dependences of the kinematic viscosity of a multicomponent Fe72.5Cu1Nb2Mo1.5Si14B9 melt have been studied. A critical temperature is detected above which the activation energy of viscous flow of the melt changes. Upon cooling the overheated melt, the temperature curves of the kinematic viscosity become linear within the given coordinates. In amorphous ribbon produced in the mode with overheating the melt above the critical temperature, the enthalpy of crystallization grows, the following heat treatment results in an increase in magnetic permeability.

  2. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    Science.gov (United States)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  3. Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent

    Indian Academy of Sciences (India)

    S Satapathy; Santosh Pawar; P K Gupta; K B R Varma

    2011-07-01

    The -phase poly (vinylidene fluoride) (PVDF) films are usually prepared using dimethyl sulfoxide (DMSO) solvent, regardless of preparation temperature. Here we report the crystallization of both and -phase PVDF films by varying preparation temperature using DMSO solvent. The -phase PVDF films were annealed at 70, 90, 110, 130 and 160°C for five hours. The changes in the phase contents in the PVDF at different annealing conditions have been described. When thin films were annealed at 90°C for 5 h, maximum percentage of -phase appears in PVDF thin films. The -phase PVDF films completely converted to -phase when they were annealed at 160°C for 5 h. From X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), differential scanning calorimetry (DSC) and Raman studies, it is confirmed that the PVDF thin films, cast from solution and annealed at 90°C for 5 h, have maximum percentage of -phase. The -phase PVDF shows a remnant polarization of 4.9 C/cm2 at 1400 kV/cm at 1 Hz.

  4. INFLUENCE OF ANNEALING TEMPERATURE ON CHARACTERISTICS OF BISMUTH DOPED ZINC OXIDE FILMS

    Directory of Open Access Journals (Sweden)

    Sirirat Tubsungnoen Rattanachan

    2013-01-01

    Full Text Available In this study, Bismuth (Bi doped ZnO thin films were deposited on quartz substrates by a sol-gel spin coating method and annealed at different annealing temperatures of 200, 300, 400, 500, 600 and 700°C, respectively. Structural and optical properties of nanocrystalline Bi-doped ZnO film on quartz were investigated by using X-Ray Diffraction (XRD, Scanning Electron Microscope (SEM and UV-VIS spectrophotometer. The high annealing temperature of 700°C as a critical temperature causes the crystallographic reorientation plane in ZnO:Bi nanostructure mostly due to the initial formation of the polycrystalline phase with the inter-grain segregation of Bi dopant atoms. Bi-incorporating ZnO films with an increase in annealing temperature resulted in a blue wavelength shift of the photon absorption edge. The optical band gap of the films was increased from 3.27 eV to 3.34 eV. By decreasing the annealing temperatures from 700 to 200°C, the grain size of Bi-doped ZnO decreased from 18 nm to 8 nm. The effect of the annealing temperature on the electrical conductivity had been considered. The low electrical conductivity of 0.9 (Ω.cm-1 was obtained for ZnO:0.2 film annealed at 600°C with good nano-crystallization. However, the Bi-doped ZnO films prepared by cost-effective spin coating technique provided to have a very high photon absorption coefficient (104-105 cm-1 and did not appreciably affect the optical transparency. ZnO films doped with 0.2% at. Bi can be used as a high resistive buffer layer for solar cell application.

  5. Crystallization study of Te–Bi–Se glasses

    Indian Academy of Sciences (India)

    Manish Saxena; P K Bhatnagar

    2003-08-01

    Crystallization studies are carried out under non-isothermal conditions with samples heated at several uniform rates. The dependence of the glass transition temperature (), the crystalline temperature () and the peak temperature of crystallization () on the composition and heating rate () has been studied. For a memory/switching material, the thermal stability and ease of glass formation are of crucial importance. The glass transition temperature, , increases slightly with the variation of Bi content. From the heating rate dependence of , the activation energy for glass transition () has been evaluated. The results are discussed on the basis of Kissinger’s approach and are interpreted using the chemically ordered network model (CONM).

  6. Microwave studies on double rare earth oxalate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth, Anit [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Joseph, Cyriac [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Paul, Issac [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Ittyachen, M.A. [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560 (India); Mathew, K.T. [Microwave Imaging and Material Research Laboratory, Department of Electronics, Cochin University of Science and Technology, Kochi 682022 (India)]. E-mail: ktm@cusat.ac.in; Lonappan, Anil [Microwave Imaging and Material Research Laboratory, Department of Electronics, Cochin University of Science and Technology, Kochi 682022 (India); Jacob, Joe [Microwave Imaging and Material Research Laboratory, Department of Electronics, Cochin University of Science and Technology, Kochi 682022 (India)

    2005-01-25

    Rare earth compounds are recognized for outstanding physical, magnetic and optical properties. The oxalates and molybdates have gained importance for their various properties, which find applications in electro and accusto optical devices. This paper reports the microwave dielectric studies on double rare earth oxalate crystals. Using the cavity perturbation technique dielectric parameters such as complex permittivity and conductivity at microwave frequencies is determined. Using X-ray diffraction study the crystalline nature of the samples was established. The molecular and crystal structures were identified by IR analysis.

  7. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  8. Overview: Experimental studies of crystal nucleation: Metals and colloids

    Science.gov (United States)

    Herlach, Dieter M.; Palberg, Thomas; Klassen, Ina; Klein, Stefan; Kobold, Raphael

    2016-12-01

    Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. Experimental results demonstrate the power of these methods not only for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the physical nature of heterogeneous versus homogeneous nucleation and nucleation of phases nucleated under non-equilibrium conditions. The results are analyzed within classical nucleation theory that defines the activation energy of homogeneous nucleation in terms of the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the potential of colloidal suspensions as model systems for the crystallization process. The nucleation process of colloids is observed in situ by optical observation and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal

  9. Spectral characteristics and nonlinear studies of crystal violet dye

    Science.gov (United States)

    Sukumaran, V. Sindhu; Ramalingam, A.

    2006-03-01

    Solid-state dye-doped polymer is an attractive alternative to the conventional liquid dye solution. In this paper, the spectral characteristics and the nonlinear optical properties of the dye crystal violet are studied. The spectral characteristics of crystal violet dye doped poly(methylmethacrylate) modified with additive n-butyl acetate (nBA) are studied by recording its absorption and fluorescence spectra and the results are compared with the corresponding liquid mixture. The nonlinear refractive index of the dye in nBA and dye doped polymer film were measured using z-scan technique, by exciting with He-Ne laser. The results obtained are intercompared. Both the samples of dye crystal violet show a negative nonlinear refractive index. The origin of optical nonlinearity in the dye may be attributed due to laser-heating induced nonlinear effect.

  10. Residual entropy and simulated annealing

    OpenAIRE

    Ettelaie, R.; Moore, M. A.

    1985-01-01

    Determining the residual entropy in the simulated annealing approach to optimization is shown to provide useful information on the true ground state energy. The one-dimensional Ising spin glass is studied to exemplify the procedure and in this case the residual entropy is related to the number of one-spin flip stable metastable states. The residual entropy decreases to zero only logarithmically slowly with the inverse cooling rate.

  11. Synthesis, crystal growth, solubility, structural, optical, dielectric and microhardness studies of Benzotriazole-4-hydroxybenzoic acid single crystals

    Science.gov (United States)

    Silambarasan, A.; Krishna Kumar, M.; Thirunavukkarasu, A.; Mohan Kumar, R.; Umarani, P. R.

    2015-06-01

    Organic Benzotriazole-4-hydroxybenzoic acid (BHBA), a novel second-order nonlinear optical single crystal was grown by solution growth method. The solubility and nucleation studies were performed for BHBA crystal at different temperatures 30, 35, 40 45 and 50 °C. Single crystal X-ray diffraction study reveals that the BHBA belongs to Pna21 space group of orthorhombic crystal system. The crystal perfection of BHBA was examined from powder and high resolution X-ray diffraction analysis. UV-visible and photoluminescence spectra were recorded to study its transmittance and excitation, emission behaviors respectively. Kurtz powder second harmonic generation test reveals that, the frequency conversion efficiency of BHBA is 3.7 times higher than that of potassium dihydrogen phosphate (KDP) crystal. The dielectric constant and dielectric loss values were estimated for BHBA crystal at various temperatures and frequencies. The mechanical property of BHBA crystal was studied on (110), (010) and (012) planes by using Vicker's microhardness test. The chemical etching study was performed on (012) facet of BHBA crystal to analyze its growth feature.

  12. In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals

    Science.gov (United States)

    Chauhan, Chetan K.; Joshi, Mihir J.

    2013-01-01

    The formation of urinary stones, known as nephrolithiasis or urolithiasis, is a serious, debilitating problem throughout the world. Struvite—NH4MgPO4·6H2O, ammonium magnesium phosphate hexahydrate, is one of the components of urinary stones (calculi). Struvite crystals with different morphologies were grown by in vitro single diffusion gel growth technique with different growth parameters. The crystals were characterized by powder XRD, FT-IR, thermal analysis and dielectric study. The powder XRD results of struvite confirmed the orthorhombic crystal structure. The FT-IR spectrum proved the presence of water of hydration, metal-oxygen bond, N-H bond and P-O bond. For thermal analysis TGA, DTA and DSC were carried out simultaneously. The kinetic and thermodynamic parameters of dehydration/decomposition process were calculated. Vickers micro-hardness and related mechanical parameters were also calculated. The in vitro growth inhibition studies of struvite by the juice of Citrus medica Linn as well as the herbal extracts of Commiphora wightii, Boerhaavia diffusa Linn and Rotula aquatica Lour were carried out and found potent inhibitors of struvite.

  13. Study of crystallization behavior of poly(phenylene sulfide

    Directory of Open Access Journals (Sweden)

    Liliana B. Nohara

    2006-06-01

    Full Text Available Poly(phenylene sulfide (PPS is an engineering thermoplastic polymer that presents high temperature resistance (glass transition temperature around 85 ºC and melting point at 285 ºC. These properties combined with its mechanical properties and its high chemical resistance allows its use in technological applications such as molding resins and as matrix for structural thermoplastic composites. During the manufacture of thermoplastic composites, the polymer is exposed to repeated melting, quenching and crystallization processes. The properties of semicrystalline polymers, such as PPS, depend on its crystallization behavior. This work deals with the PPS crystallization kinetics under different thermal cycles. This study was performed under isothermal conditions in a differential scanning calorimetry (DSC, coupled to Perkin Elmer crystallization software referred to as Pyris Kinetics - Crystallization. The results were correlated with microscopic analyses carried out in a polarized light microscope, equipped with a controlled heating and cooling accessory. In this case, the experimental conditions were the same adopted for the DSC analyses. From the results, parameters could be established to be used in the composite manufacture.

  14. Effects of hydrothermal annealing on characteristics of CuInS{sub 2} thin films by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Shi Yong, E-mail: sys-99@163.com [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Xue Fanghong [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Li Chunyan [School of Materials, Dalian University of Technology, Dalian 116024 (China); Zhao Qidong; Qu Zhenping; Li Xinyong [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15

    CuInS{sub 2} thin films have been deposited by successive ionic layer absorption and reaction (SILAR) method, then annealed in a Na{sub 2}S solution (denoted as hydrothermal annealing) at 200 Degree-Sign C for different time. The effect of hydrothermal annealing on the properties of the films was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and optical absorption spectroscopy. The XRD, TEM and SEM results indicate that well-crystallized CuInS{sub 2} films could be obtained after annealing in 0.1 mol/L Na{sub 2}S solution for 1.5 h. The annealed CuInS{sub 2} films were slightly S-rich and the direct band gap varied from 1.32 to 1.58 eV as the annealing time increased from 0.5 h to 2 h.

  15. Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals

    Science.gov (United States)

    Campos, S.; Denoyer, A.; Jandl, S.; Viana, B.; Vivien, D.; Loiseau, P.; Ferrand, B.

    2004-06-01

    Infrared transmission and Raman scattering have been used to study Raman active phonons and crystal-field excitations in Yb3+-doped yttrium, lutetium and scandium orthosilicate crystals (Y2SiO5 (YSO), Lu2SiO5 (LSO) and Sc2SiO5 (SSO)), which belong to the same C2h6 crystallographic space group. Energy levels of the Yb3+ ion 2F5/2 manifold are presented. In the three hosts, Yb3+ ions experience high crystal field strength, particularly in Yb:SSO. Satellites in the infrared transmission spectra have been detected for the first time in the Yb3+-doped rare earth orthosilicates. They could be attributed to perturbed Yb3+ sites of the lattices or to magnetically coupled Yb3+ pairs.

  16. Surface enhanced raman spectroscopy studies on triglycine sulphate single crystals

    Science.gov (United States)

    Parameswari, A.; Mohamed Asath, R.; Premkumar, R.; Milton Franklin Benial, A.

    2017-01-01

    Adsorption characteristics of triglycine sulphate (TGS) on silver (Ag) surface were investigated based on density functional theory calculations and surface enhanced Raman spectroscopy (SERS) technique. The single crystals of TGS were grown by slow evaporation method. Ag nanoparticles (Ag NPs) were prepared by solution combustion method and characterized. The calculated and observed structural parameters of TGS molecule were compared. Raman and SERS spectra for TGS single crystal were studied experimentally and validated theoretically. Frontier molecular orbitals (FMOs) analysis was carried out for TGS and TGS adsorbed on Ag surface. The second harmonic generation measurements confirm the nonlinear optical (NLO) activity of the TGS molecule. SERS spectral analysis reveals that the TGS adsorbed as tilted orientation on the silver surface. The theoretical and experimental results evidence the suitability of the grown TGS single crystal for optoelectronic applications.

  17. A combined study based on experimental analyses and theoretical calculations on properties of poly (lactic acid) under annealing treatment

    Science.gov (United States)

    Loued, W.; Wéry, J.; Dorlando, A.; Alimi, K.

    2015-02-01

    In this paper, the significance of annealing, in two different atmospheres (air and vacuum), on the surface characteristics of poly (lactic acid) (PLA) films was investigated. X-ray diffraction (XRD) measurements correlated to atomic force microscopy (AFM) observations of the cast PLA films show that thermal treatment under air atmosphere is responsible for a significant increase of crystallinity with the increase of temperature. However, band gap energy of the title compound is slightly affected by annealing at different temperatures. As for the untreated PLA, the molecular geometry was optimized using density functional theory (DFT/B3LYP) method with 6-31g (d) basis set in ground state. From the optimized geometry, HOMO and LUMO energies and quantum chemical parameters were performed at B3LYP/6-31g (d). The theoretical results, applied to simulated optical spectra of the compound, were compared to the observed ones. On the basis of theoretical vibrational analyses, the thermodynamic properties were calculated at different temperatures, revealing the correlation between internal energy (U), enthalpy (H), entropy (S), Free energy (G) and temperatures.

  18. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS: Different Behavior of Parallel and Perpendicular Lamellae.

    Science.gov (United States)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M; Perlich, Jan; Kyriakos, Konstantinos; Jaksch, Sebastian; Papadakis, Christine M

    2014-08-26

    The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP(-β), in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scattering (GISAXS). A thin film of lamellae-forming poly(styrene-b-butadiene) prepared by spin-coating features lamellae of different orientations with the lamellar spacing depending on orientation. During annealing with ethyl acetate (EAC) vapor, it is found that perpendicular lamellae behave differently from parallel ones, which is due to the fact that their initial lamellar thicknesses differ strongly. Quantitatively, the swelling process is composed of three regimes and the drying process of two regimes. The first two regimes of swelling are associated with a significant structural rearrangement of the lamellae; i.e., the lamellae first become thicker, and then perpendicular and randomly oriented lamellae vanish, which results in a purely parallel orientation at the end of the swelling process. The rearrangement is attributed to the increase of mobility of the polymer chains imparted by the solvent and to a decrease of total free energy of the thin film. In the third regime of swelling, the scaling exponent is found to be β = -0.32. During drying, the deswelling is nonaffine which may be a consequence of the increase of nonfavorable segmental interactions as the solvent is removed.

  19. Rotational Mobility in a Crystal Studied by Dielectric Relaxation Spectroscopy

    Science.gov (United States)

    Dionisio, Madalena S. C.; Diogo, Herminio P.; Farinha, J. P. S.; Ramos, Joaquim J. Moura

    2005-01-01

    A laboratory experiment for undergraduate physical chemistry courses that uses the experimental technique of dielectric relaxation spectroscopy to study molecular mobility in a crystal is proposed. An experiment provides an excellent opportunity for dealing with a wide diversity of important basic concepts in physical chemistry.

  20. The effect of low temperature thermal annealing on the magnetic properties of Heusler Ni–Mn–Sn melt-spun ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Llamazares, J.L. Sánchez, E-mail: jose.sanchez@ipicyt.edu.mx [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Quintana-Nedelcos, A. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Marmara University, Department of Material and Metalurgy Eng., Kadıkoy 34777, Istanbul (Turkey); Ríos-Jara, D. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Sánchez-Valdes, C.F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a, San Luis Potosí S.L.P. 78216, México (Mexico); Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, AP 14, Ensenada 22860, Baja California, México (Mexico); and others

    2016-03-01

    We report the effect of low temperature vacuum annealing (823 K; 550 °C) on the elemental chemical composition, structural phase transition temperatures, phase structure, and magnetic properties of Ni{sub 50.6}Mn{sub 36.3}Sn{sub 13.1} as-solidified ribbons. Their elemental chemical composition, highly oriented columnar-like microstructure and single-phase character (L2{sub 1}-type crystal structure for austenite) remain unchanged after this low temperature annealing. Annealed ribbons show a reduction of interatomic distances which lead to a small change in the characteristic phase transition temperatures (~3–6 K) but to a significant rise of ~73 and 63% in the saturation magnetization of the martensite and austenite phases, respectively, that can be strictly ascribed to the strengthening of ferromagnetic interactions due to the change in interatomic distances. - Highlights: • We study the effect of low temperature annealing on Ni{sub 50.6}Mn{sub 36.3}Sn{sub 13.1} melt-spun ribbons. • Low temperature annealing preserves the crystal structure, composition and microstructure of the ribbons. • Low temperature annealing reduces the cell volume. • The strengthening of the ferromagnetic exchange interaction significant increases σ{sub S}.

  1. Experimental and numerical optical characterization of plasmonic copper nanoparticles embedded in ZnO fabricated by ion implantation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Le, Khai Q. [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh City (Viet Nam); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia); Nguyen, Hieu P.T. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102 (United States); Ngo, Quang Minh [Institute of Material Sciences, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Canimoglu, Adil [Nigde University, Faculty of Arts and Sciences, Physics Department, Nigde (Turkey); Can, Nurdogan, E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2016-06-05

    Here we describe the successfully fabrication of metal nanoparticle crystals by implanting copper (Cu) ions into single zinc oxide (ZnO) crystals with ion energy of 400 keV at ion doses of 1 × 10{sup 16} to 1 × 10{sup 17} ions/cm{sup 2}. After implantation and post-annealing treatment, the Cu implanted ZnO produces a broad range of luminescence emissions, ranging from green to yellow. A green luminescence peak at 550 nm could be ascribed to the isolated Cu ions. The changes in luminescence emission bands between the initial implant and annealed suggest that the implants give rise to clustering Cu nanoparticles in the host matrix but that the annealing process dissociates these. Numerical modelling of the Cu nanoparticles was employed to simulate their optical properties including the extinction cross section, electron energy loss spectroscopy and cathodoluminescence. We demonstrate that the clustering of nanoparticles generates Fano resonances corresponding to the generation of multiple resonances, while the isolation of nanoparticles results in intensity amplification. - Highlights: • We present the fabrication of metal nanoparticle crystals by implanting Cu into ZnO. • The luminescence properties were studied at different annealing temperature. • Numerical modelling of the Cu nanoparticles was employed. • We demonstrate that the clustering of nanoparticles generates Fano resonances.

  2. Simulated annealing with probabilistic analysis for solving traveling salesman problems

    Science.gov (United States)

    Hong, Pei-Yee; Lim, Yai-Fung; Ramli, Razamin; Khalid, Ruzelan

    2013-09-01

    Simulated Annealing (SA) is a widely used meta-heuristic that was inspired from the annealing process of recrystallization of metals. Therefore, the efficiency of SA is highly affected by the annealing schedule. As a result, in this paper, we presented an empirical work to provide a comparable annealing schedule to solve symmetric traveling salesman problems (TSP). Randomized complete block design is also used in this study. The results show that different parameters do affect the efficiency of SA and thus, we propose the best found annealing schedule based on the Post Hoc test. SA was tested on seven selected benchmarked problems of symmetric TSP with the proposed annealing schedule. The performance of SA was evaluated empirically alongside with benchmark solutions and simple analysis to validate the quality of solutions. Computational results show that the proposed annealing schedule provides a good quality of solution.

  3. Interstitial-related defect reactions in electron-irradiated oxygen-rich Ge crystals: A DLTS study

    Science.gov (United States)

    Markevich, V. P.; Peaker, A. R.; Lastovskii, S. B.; Murin, L. I.; Litvinov, V. V.; Emtsev, V. V.; Dobaczewski, L.

    2009-12-01

    Electrically active defects induced in oxygen-rich Ge:Sb crystals by irradiation with MeV electrons at 80 or 300 K have been studied by means of capacitance transient techniques. Transformations of the defects upon post-irradiation isochronal anneals have also been investigated. It is argued that a radiation-induced electron trap with an energy level at about 110 meV below the conduction band edge (E110) can be associated with electron emission from an energy level of the Ge self-interstitial (IGe). The E110 trap is eliminated in the temperature range 150-200 K upon 15 min isochronal annealing. No other traps in the upper half of the gap emerge simultaneously with the disappearance of the E110 trap. It is argued that Ge self-interstitials become mobile at temperatures higher than 150 K and in oxygen-rich Ge interact with interstitial oxygen atoms (Oi). The resulting IGeOi complexes do not have energy levels in the upper half of the Ge gap. Diffusion and interaction of the IGeOi defects with interstitial oxygen atoms at T>50 °C result in the formation of IGeO2i complexes. In the most stable configuration the IGeO2i complex has orthorhombic (C2v) symmetry.

  4. Interstitial-related defect reactions in electron-irradiated oxygen-rich Ge crystals: A DLTS study

    Energy Technology Data Exchange (ETDEWEB)

    Markevich, V.P., E-mail: V.Markevich@manchester.ac.u [School of Electrical and Electronic Engineering, University of Manchester, Sackville Str. Building, Manchester, M60 1QD (United Kingdom); Peaker, A.R. [School of Electrical and Electronic Engineering, University of Manchester, Sackville Str. Building, Manchester, M60 1QD (United Kingdom); Lastovskii, S.B.; Murin, L.I. [Scientific-Practical Materials Research Center of NAS of Belarus, Minsk 220072 (Belarus); Litvinov, V.V. [Belarusian State University, Minsk 220050 (Belarus); Emtsev, V.V. [Ioffe Physico-Technical Institute, St. Petersburg 194021 (Russian Federation); Dobaczewski, L. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland)

    2009-12-15

    Electrically active defects induced in oxygen-rich Ge:Sb crystals by irradiation with MeV electrons at 80 or 300 K have been studied by means of capacitance transient techniques. Transformations of the defects upon post-irradiation isochronal anneals have also been investigated. It is argued that a radiation-induced electron trap with an energy level at about 110 meV below the conduction band edge (E{sub 110}) can be associated with electron emission from an energy level of the Ge self-interstitial (I{sub Ge}). The E{sub 110} trap is eliminated in the temperature range 150-200 K upon 15 min isochronal annealing. No other traps in the upper half of the gap emerge simultaneously with the disappearance of the E{sub 110} trap. It is argued that Ge self-interstitials become mobile at temperatures higher than 150 K and in oxygen-rich Ge interact with interstitial oxygen atoms (O{sub i}). The resulting I{sub Ge}O{sub i} complexes do not have energy levels in the upper half of the Ge gap. Diffusion and interaction of the I{sub Ge}O{sub i} defects with interstitial oxygen atoms at T>50 deg. C result in the formation of I{sub Ge}O{sub 2i} complexes. In the most stable configuration the I{sub Ge}O{sub 2i} complex has orthorhombic (C{sub 2v}) symmetry.

  5. Formation of silicon nanocrystals in silicon carbide using flash lamp annealing

    Science.gov (United States)

    Weiss, Charlotte; Schnabel, Manuel; Prucnal, Slawomir; Hofmann, Johannes; Reichert, Andreas; Fehrenbach, Tobias; Skorupa, Wolfgang; Janz, Stefan

    2016-09-01

    During the formation of Si nanocrystals (Si NC) in SixC1-x layers via solid-phase crystallization, the unintended formation of nanocrystalline SiC reduces the minority carrier lifetime and therefore the performance of SixC1-x as an absorber layer in solar cells. A significant reduction in the annealing time may suppress the crystallization of the SiC matrix while maintaining the formation of Si NC. In this study, we investigated the crystallization of stoichiometric SiC and Si-rich SiC using conventional rapid thermal annealing (RTA) and nonequilibrium millisecond range flash lamp annealing (FLA). The investigated SixC1-x films were prepared by plasma-enhanced chemical vapor deposition and annealed at temperatures from 700 °C to 1100 °C for RTA and at flash energies between 34 J/cm2 and 62 J/cm2 for FLA. Grazing incidence X-ray diffraction and Fourier transformed infrared spectroscopy were conducted to investigate hydrogen effusion, Si and SiC NC growth, and SiC crystallinity. Both the Si content and the choice of the annealing process affect the crystallization behavior. It is shown that under certain conditions, FLA can be successfully utilized for the formation of Si NC in a SiC matrix, which closely resembles Si NC in a SiC matrix achieved by RTA. The samples must have excess Si, and the flash energy should not exceed 40 J/cm2 and 47 J/cm2 for Si0.63C0.37 and Si0.77C0.23 samples, respectively. Under these conditions, FLA succeeds in producing Si NC of a given size in less crystalline SiC than RTA does. This result is discussed in terms of nucleation and crystal growth using classical crystallization theory. For FLA and RTA samples, an opposite relationship between NC size and Si content was observed and attributed either to the dependence of H effusion on Si content or to the optical absorption properties of the materials, which also depend on the Si content.

  6. Study of Crystals Semiconductors in Superlattices via Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    *1A. L. C. L. Jamshidi

    2013-12-01

    Full Text Available This work analyzes, from the effects related to the processes of transportation of carrier and the changes in the electronic structure of semiconductors materials due to the presence of defects and disorders in the crystalline net. These defects are located in specific areas of the material and either interact or remain inert. In general, they are described by local wave functions. The study of superlattices of semiconductor crystal considers important parameters such as disorder effects in crystals and the alternate periodic growth of the layer of two semiconductors with different gaps and minigaps energies. The quantum mechanical calculations are applied for determining the physical properties of the semiconductors crystals. This study encompasses the effects of defects and the crystalline disorders evaluation by quantum mechanics. Further, it is discuss the presence of defects in the periodic, quasiperiodic and disordered arrangements. The theoretical approach use to understand the mechanism and the results of experimental techniques in which are characterized the current and optic transportation of a semiconductor crystal.

  7. A study of structural, electrical, and optical properties of p-type Zn-doped SnO2 films versus deposition and annealing temperature

    Science.gov (United States)

    Le, Tran; Phuc Dang, Huu; Luc, Quang Ho; Hieu Le, Van

    2017-04-01

    This study presents a detailed investigation of the structural, electrical, and optical properties of p-type Zn-doped SnO2 versus the deposition and annealing temperature. Using a direct-current (DC) magnetron sputtering method, p-type transparent conductive Zn-doped SnO2 (ZTO) films were deposited on quartz glass substrates. Zn dopants incorporated into the SnO2 host lattice formed the preferred dominant SnO2 (1 0 1) and (2 1 1) planes. X-ray photoelectron spectroscopy (XPS) was used for identifying the valence state of Zn in the ZTO film. The electrical property of ZTO films changed from n-type to p-type at the threshold temperature of 400 °C, and the films achieved extremely high conductivity at the optimum annealing temperature of 600 °C after annealing for 2 h. The best conductive property of the film was obtained on a 10 wt% ZnO-doped SnO2 target with a resistivity, hole concentration, and hole mobility of 0.22 Ω · cm, 7.19  ×  1018 cm-3, and 3.95 cm2 V-1 s-1, respectively. Besides, the average transmission of films was  >84%. The surface morphology of films was examined using scanning electron microscopy (SEM). Moreover, the acceptor level of Zn2+ was identified using photoluminescence spectra at room temperature. Current-voltage (I-V) characteristics revealed the behavior of a p-ZTO/n-Si heterojunction diode.

  8. Qualification study of LiF flight crystals for the objective crystal spectrometer on the SPECTRUM-X-GAMMA satellite

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Rasmussen, I.; Schnopper, Herbert W.;

    1992-01-01

    The Objective Crystal Spectrometer (OXS) on the SPECTRUM-X-GAMMA satellite will carry these types of natural crystals LiF(220), Ge(111) and RAP(001). They will be used to study, among others, the H- and the He-like emission from the cosmically important elements Fe, S, Ar and O. More than 300 Li...

  9. Preparation and crystallization of hollow α-Fe{sub 2}O{sub 3} microspheres following the gas-bubble template method

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, L. de los Santos, E-mail: ld301@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); León Félix, L. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, DF 70910-900, Brasilia (Brazil); Espinoza Suarez, S.M.; Bustamante Dominguez, A.G. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Mitrelias, T.; Holmes, S. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); Moreno, N.O. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, Sao Cristóvao, Sergipe (Brazil); Albino Aguiar, J. [Laboratório de Supercondutividade e Materiais Avançados, Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife (Brazil); Barnes, C.H.W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom)

    2016-02-01

    In this work we report the formation of hollow α-Fe{sub 2}O{sub 3} (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO{sub 3}){sub 3}.9H{sub 2}O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  10. Study of Hydrogen flame annealed Au thin-film surface morphology, integrity and film quality on various substrate surfaces

    Science.gov (United States)

    Schell, Michael; Senevirathne, Indrajith

    2013-03-01

    Au thin-films have many applications in both industry and proof of concept investigations in device engineering. Typical Au depositions on substrate give rise to Stanski-Krastanov (SK) like growth while Frank-van der Merwe (FM) mode like growth is desired in many molecular self assembly and other engineering applications. Au films are magnetron sputter deposited at 100mtorr at low deposition rates (~ 1ML/min) on cleaved/fresh mica, glass microscopy slides and Si surfaces. Samples are hydrogen flame annealed to facilitate surface diffusion with minimal film contamination. Resulting Au surfaces were investigated and compared against purchased Au(111) on mica (standard) surface. Regular and custom built hydrophilic and hydrophobic AFM (Atomic Force Microcopy) probes were used in contact, and non contact AFM with topography and phase imaging to access the contamination and surface defects. Surface integrity, roughness, corrugation and morphology on Au surfaces were estimated. LHU Nanotechnology Program, PASSHE FPDC (LOU # 2010-LHU-03).

  11. NMR AND ESR STUDIES ON ANNEALING EFFECTS IN a-Si : F : H AND a-Si : H

    OpenAIRE

    1981-01-01

    Measurements of NMR of F in a-Si :F : H and a-Si : F have been carried out and the results are compared with those of H in a-Si : F : H and a-Si : H. Effects of motional narrowing on the linewidth of F NMR in a-Si : F : H show that some fraction of F is incorporated in the form of SiF4 or (SiF2)n which tends to move easily. When samples are annealed, the increase in the ESR center density is remarkable in a-Si : F : H and a-Si : H corresponding to the decrease in the H content, but the increa...

  12. Improvement of superconductivity in Fe{sub 1+y}Te{sub 0.6}Se{sub 0.4} induced by annealing with CaF{sub 2} and SmF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiong [Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189 (China); Sun, Yue [Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189 (China); Department of Applied Physics, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Zhang, Yufeng; Zhou, Wei; Yuan, Feifei [Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189 (China); Shi, Zhixiang, E-mail: zxshi@seu.edu.cn [Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189 (China)

    2015-10-15

    Highlights: • The excess Fe can be removed by annealing with CaF{sub 2} and SmF{sub 3}. Furthermore, the improvement of superconductivity of Fe{sub 1+y}Te{sub 0.6}Se{sub 0.4} single crystal is observed. • Compared with the pervious annealing materials, these two new annealing materials, CaF{sub 2} and SmF{sub 3}, are safe and easy-handing. • After annealing, the largest T{sub c} and J{sub c} can exceed 13 K and 1.0 × 10{sup 5} A/cm{sup 2} (5 K, in self-field). - Abstract: We report detailed studies of the CaF{sub 2} and SmF{sub 3} annealing effects in Fe{sub 1+y}Te{sub 0.6}Se{sub 0.4} single crystals. Superconductivity in Fe{sub 1+y}Te{sub 0.6}Se{sub 0.4} single crystals was improved after annealing, which strongly suggested the effectiveness of the CaF{sub 2} and SmF{sub 3} annealing. In detail, no matter which annealing material was employed, the largest values of superconducting transition temperature and critical current density reached about 14 K and 1.0 × 10{sup 5} A/cm{sup 2} (5 K, in self-field), respectively. Furthermore, compared with the pervious annealing materials, CaF{sub 2} and SmF{sub 3} are safe and easy-handing.

  13. Effect of Pre-Irradiation Annealing and Laser Modification on the Formation of Radiation-Induced Surface Color Centers in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Novikov, A. N.; Radkevich, A. V.; Runets, L. P.; Stupak, A. P.; Tarasenko, N. V.

    2017-01-01

    It is shown that surface color centers of the same type are formed in the surface layer and in regions with damaged crystal structure inside crystalline lithium fluoride after γ-irradiation. Results are presented from a study of the effect of pre-irradiation annealing on the efficiency with which surface centers are formed in lithium fluoride nanocrystals. Raising the temperature for pre-irradiation annealing from room temperature to 250°C leads to a substantial reduction in the efficiency with which these centers are created. Surface color centers are not detected after γ-irradiation for pre-irradiation annealing temperatures of 300°C and above. Adsorption of atmospheric gases on the crystal surface cannot be regarded as a necessary condition for the formation of radiation-induced surface centers.

  14. Theoretical and Numerical Study of Nonlinear Phononic Crystals

    Science.gov (United States)

    Guerder, Pierre-Yves

    This work is dedicated to the theoretical and numerical study of nonlinear phononic crystals. The studied nonlinearities are those due to the second (quadratic) and third (cubic) order elastic constants of the materials that constitute the crystals. Nonlinear effects are studied by the means of finite element methods, used to simulate the propagation of an elastic wave through the crystals. A first research project concerns the study of a bone structure, namely the dispersion of elastic waves in a structure composed of collagen and hydroxy apatite alternate constituent layers. Simulations showed that it exists a strong link between bones hydration and their ability to dissipate the energy. The second study relates to an elastic resonator. A structure composed of steel inclusions in a silica matrix shows a switch behavior when the cubic nonlinearities of steel are taken into account. This strong nonlinear effect appears when the amplitude of the incident wave reaches a threshold. A full analytical model is provided. The last study demonstrates the design of composite materials with both strong cubic nonlinearities and weak quadratic nonlinearities. The derivation of the mixing laws of the elastic parameters of a nonlinear material inside a linear one is performed up to order three. Equations show a strong amplification of the nonlinear parameters of the material for some concentrations. Numerical simulations allow to conclude that the above mentioned resonator can be produced.

  15. Evidence of incomplete annealing at 800 °C and the effects of 120 °C baking on the crystal orientation and the surface superconducting properties of cold-worked and chemically polished Nb

    Science.gov (United States)

    Sung, Z.-H.; Dzyuba, A.; Lee, P. J.; Larbalestier, D. C.; Cooley, L. D.

    2015-07-01

    High-purity niobium rods were cold-worked by wire-drawing, followed by various combinations of chemical polishing and high-vacuum baking at 120 °C or annealing at 800 °C in order to better understand changes to the surface superconducting properties resulting from typical superconducting radio-frequency cavity processing. AC susceptibility measurements revealed an enhanced upper transition Tc at ˜ 9.3-9.4 K in all samples that was stable through all annealing steps, a value significantly above the accepted Tc of 9.23 K for pure annealed niobium. Corresponding elevations were seen in the critical fields, the ratio of the surface critical field Hc3 to the bulk upper critical field Hc2 rising to 2.3, well above the Ginzburg-Landau value of 1.695. Orientation imaging revealed an extensive dislocation rich sub-grain structure in the as-drawn rods, a small reduction of the surface strain after baking at 120 °C, and a substantial but incomplete recrystallization near the surface after annealing at 800 °C. We interpret these changes in surface superconducting and structural properties to extensive changes in the near-surface interstitial contamination produced by baking and annealing and to synergistic interactions between H and surface O introduced during electropolishing and buffered chemical polishing.

  16. 连续退火热镀锌板镀层表面黑点缺陷研究%Study of dark dot defect on coating surface of continuously annealed hot-dip galvanized steel sheet

    Institute of Scientific and Technical Information of China (English)

    刘李斌; 蒋光锐; 马兵智; 李蔚然; 刘华赛; 齐春雨

    2014-01-01

    研究了热镀锌板镀层表面黑点的产生机理,分析了该缺陷对热镀锌板涂镀质量的影响,提出了相应的改进措施。结果表明,基板表面存在微小凹坑,镀锌后表面形成黑色圆形氧化膜,即黑点缺陷,对热镀锌板涂镀后的磷化膜质量产生不利影响。实际生产中,通过降低热轧卷的卷曲温度、清洗槽电解电流密度及提高退火炉的密封性,可有效减轻该缺陷。%Generation mechanism of dark dot defect and effect on painting surface quality of hot -dip galvanized steel sheet were studied , and some relative improvement measures were proposed .The results show that little pits exist on the substrate , which form dark dot defect is composed of oxide film after galvanized .The dark dot defect markedly influences crystal structure of phosphate coating .Moreover , during practical production , it could be effectively reduced by decreasing coiling temperature , reducing current density in rinse tank and improving sealing of the annealing furnace .

  17. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings

    Directory of Open Access Journals (Sweden)

    Yu-Sen Yang

    2013-08-01

    Full Text Available Various PVD (physical vapor deposition hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN, Cr2N, (CrAl2N and Me-DLC (Si-DLC and Cr-DLC coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA measurements. The as-deposited hcp-AlN, Cr2N and (CrAl2N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr2N and (CrAl2N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr2N and (CrAl2N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness.

  18. Effect of anneal temperature on fluorine doped tin oxide (FTO) nanostructured fabricated using hydrothermal method

    Science.gov (United States)

    Ahmad, M. K.; Marzuki, N. A.; Soon, C. F.; Nafarizal, N.; Sanudin, R.; Suriani, A. B.; Mohamed, A.; Shimomura, M.; Murakami, K.; Mamat, M. H.; Malek, M. F.

    2017-01-01

    FTO thin films were prepared by the hydrothermal method at anneal temperature of 100°C-400°C using pentahydrate stannic chloride (SnCl4.5H2O) and ammonium fluoride (NH4F) as precursors, and a mixture of DI water, acetone and hydrochloride as a solvent. The X-ray diffraction studies confirmed the tetragonal structure with polycrystalline nature. The preferred directions of crystal growth appeared in the diffractogram of FTO thin films prepared with different anneal temperature were correspond to the reflection from the (101), (200) and (211) planes, respectively. The electrical study reveals that the films have degenerate and exhibit n-type electrical conductivity. For films prepared at 400°C, the relatively higher transmittance of about 85-90% at 800nm has been observed. The transmission attained in this study is greater than the values reported for tin oxide films prepared at anneal temperature 400°C, from an aqueous solution of SnCl4.5H2O precursor. Resistivity is smaller than the value reported. The obtained results revealed that the structures and properties of the films were greatly affected by anneal temperature

  19. Low-temperature positron-lifetime studies of proton-irradiated silicon

    DEFF Research Database (Denmark)

    Mäkinen, S.; Rajainmäki, H.; Linderoth, Søren

    1990-01-01

    The positron-lifetime technique has been used to identify defects created in high-purity single-crystal silicon by irradiation with 12-MeV protons at 15 K, and the evolution of the defects has been studied by subsequent annealings between 20 and 650 K. Two clear annealing steps were seen in the s......The positron-lifetime technique has been used to identify defects created in high-purity single-crystal silicon by irradiation with 12-MeV protons at 15 K, and the evolution of the defects has been studied by subsequent annealings between 20 and 650 K. Two clear annealing steps were seen...

  20. Effect of thermal annealing on structure and optical band gap of amorphous Se72Te25Sb3 thin films

    Science.gov (United States)

    Dwivedi, D. K.; Pathak, H. P.; Kumar, Vipin; Shukla, Nitesh

    2014-04-01

    Thin films of a-Se72Te25Sb3 were prepared by vacuum evaporation technique in a base pressure of 10-6 Torr on to well cleaned glass substrate. a-Se72Te25Sb3 thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical band gap of as prepared and annealed films as a function of photon energy in the wavelength range 400-1100 nm has been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.

  1. Effects of Annealing Temperature on Properties of ZnO Thin Films Grown by Pulsed Laser Deposition

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Hui-zhao; XUE Shou-bin; XUE Cheng-shan; HU Li-jun; LI Bao-li; ZHANG Shi-ying

    2007-01-01

    ZnO thin films are deposited on n-Si(111) substrates by pulsed laser deposition(PLD) system.Then the samples are annealed at different temperatures in air ambient and their properties are investigated particularly as a function of annealing temperature.The microstructure,morphology and optical properties of the as-grown ZnO films are studied by X-ray diffraction(XRD),atomic force microscope(AFM),Fourier transform infrared spectroscopy(FTIR) and photoluminescence(PL) spectra.The results show that the as-grown ZnO films have a hexagonal wurtzite structure with a preferred c-axis orientation.Moreover,the diameters of the ZnO crystallites become larger and the crystal quality of the ZnO films is improved with the increase of annealing temperature.

  2. Study on Growth and Optical, Scintillation Properties of Thallium Doped Cesium Iodide –Scintillator Crystal

    Directory of Open Access Journals (Sweden)

    B. Ravi

    2014-06-01

    Full Text Available Single crystal of Thallium doped cesium Iodide –Scintillator crystal was grown using vertical Bridgeman technique. The grown crystal was included for cutting and polishing for the characterization purpose and this crystal was studied by optical transmission properties, photo luminescence and thermally luminescence characteristics. Gamma-ray detectors were fabricated using the grown crystal that showed good linearity and nearly 7.5% resolution at 662 keV.

  3. Behaviour of Charge Carriers in As-Deposited and Annealed Undoped TCO Films

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan-Wen; WU Fa-Yu; ZHENG Chun-Yan

    2011-01-01

    We examine the structures, cut-off points of transmittance spectra and electric properties of undoped ZnO, SnO2 and CdO films by scanning electron microscopy, x-ray diffraction, spectrophotometer and Hall-effect measurements, respectively. The films are deposited by using an rf magnetron sputtering system from powder targets in argon and then annealed in vacuum. The structures and properties of the as-deposited films are compared with those of the annealed one. We try to explain the behaviour of charge carriers based on the semiconductor physics theory.%We examine the structures,cut-off points of transmittance spectra and electric properties of undoped ZnO,SnO2 and CdO films by scanning electron microscopy,x-ray diffraction,spectrophotometer and Hall-effect measurements,respectively.The films are deposited by using an rf magnetron sputtering system from powder targets in argon and then annealed in vacuum.The structures and properties of the as-deposited films are compared with those of the annealed one.We try to explain the behaviour of charge carriers based on the semiconductor physics Many studies about transparent conductive oxide (TCO) films have focused on the effects of deposition techniques,post-annealing parameters and dopants on the optical and electrical properties of the films.[1-11] It is believed that the microstructure and the charge carrier are the two key factors for the control of the electrical properties of TCO films.The integration of the crystals,which normally can be improved by post annealing treatment,may affect the mobility of charge carriers and hence the electrical properties of TCO films.

  4. Single crystal neutron diffraction study of triglycine sulphate revisited

    Indian Academy of Sciences (India)

    Rajul Ranjan Choudhury; R Chitra

    2008-11-01

    In order to get the exact hydrogen-bonding scheme in triglycine sulphate (TGS), which is an important hydrogen bonded ferroelectric, a single crystal neutron diffraction study was undertaken. The structure was refined to an -factor of [2] = 0.034. Earlier neutron structure of TGS was reported with a very limited data set and large standard deviations. The differences between the present and the earlier reported neutron structure of TGS are discussed.

  5. XRD study of intercalation in statically annealed composites of ethylene copolymers and organically modified montmorillonites. 2. One-tailed organoclays

    Directory of Open Access Journals (Sweden)

    Sara Filippi

    2014-01-01

    Full Text Available Ethylene copolymers with different polar comonomers, such as vinyl acetate, methyl acrylate, glycidyl methacrylate, and maleic anhydride, were used for the preparation of polymer/clay nanocomposites by statically annealing their mechanical mixtures with different commercial or home-made organically modified montmorillonites containing only one long alkyl tail. The nanostructure of the products was monitored by X-ray diffraction, and the dispersion of the silicate particles within the polymer matrix was qualitatively evaluated through microscopic analyses. The effect of the preparation conditions on the structure and the morphology of the composites was also addressed through the characterization of selected samples with similar composition prepared by melt compounding. In agreement with the findings reported in a previous paper for the composites filled with two-tailed organoclays, intercalation of the copolymer chains within the tighter galleries of the one-tailed clays occurs easily, independent of the application of a mechanical stress. However, the shear-driven break-up of the intercalated clay particles into smaller platelets (exfoliation seems more hindered. A collapse of the organoclay interlayer spacing was only observed clearly for a commercial one-tailed organoclay – Cloisite® 30B – whereas the same effect was almost negligible for a home-made organoclay with similar structure.

  6. Studies on Nematic Liquid Crystal Using Spin Wave Theory

    Institute of Scientific and Technical Information of China (English)

    LIUJian-Jun; LIUXiao-Jing; SHENMan; YANGGuo-Chen

    2004-01-01

    A spin wave theory is proposed to study nematic liquid crystals. Since the orientation of the molecular long axis and the angular momentum of the molecule rotating around its long axis have the same direction, operators can be introduced to research the nematic liquid crystal. By transforming the intermolecular interaction potential,the Hamiltonian of the system has the same form as that of the ferromagnetic substance. The relation of the order parameters to the reduced temperature can be obtained. It is in good agreement with the experimental results in the low temperature region. In the high temperature region close to the transition point, by using the Hamiltonian, the transition point can be obtained, which is near to the Maier-Saupe's result.

  7. Study on the Crystallization Mechanism of Spectinomycin Dihydrochloride

    Institute of Scientific and Technical Information of China (English)

    鲍颖; 王静康; 王永莉; 戚振; 王宏斌

    2003-01-01

    The growth mechanism of spectinomycin dihydrochloride crystal in pure water and acetone-water mixture at different temperatures has been studied by induction period measurement. The induction period was measured visually. The solid-liquid interfacial tension was determined on the basis of classical homogenous nucleation theory and the surface entropy factor was calculated. It was shown that the interfacial tension and surface entropy factor increased with the increase of acetone concentration and the decrease of temperature. It was demonstrated that the growth mechanism of spectinomycin dihydrochloride crystal was controlled by birth and spread growth in pure water or in acetone-water mixture at high temperatures and turned from birth and spread growth to spiral growth with the increase of acetone concentration in acetone-water mixture at low temperatures.

  8. Growth and micro-topographical studies of gel grown cholesterol crystals

    Indian Academy of Sciences (India)

    Anit Elizabeth; Cyriac Joseph; M A Ittyachen

    2001-08-01

    Cholesterol (C27H46O) is the most abundant and best-known steroid in the animal kingdom. The in vitro crystallization of this important biomaterial has been attempted by few researchers. Here we are reporting crystallization of pure cholesterol monohydrate crystals in gel medium. It is found that the morphology of the crystals depends on various parameters. The effect of solvent has been studied in detail. The different morphologies observed are fibrous, needle, platelet, dendrite etc. Micro topographical studies have been made and it is found that the crystals grow, at least in the last stage, by spreading of layers. However, at initial stage microcrystals formed and developed into dendrite or needle forms. These one-dimensional crystals developed into platelets and finally thickened. Further studies reveal that micro impurities play a vital role in the development of these crystals as seen by dissolution figures on the crystals. These crystals are characterized by using the XRD and IR spectroscopic methods.

  9. Growth, Structural and Microhardness Studies on New Semiorganic Single Crystals of Calcium Para Nitrophenolate Dihydrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Good quality crystals of calcium p-nitrophenolate (NPCa) were grown from saturated solution by slow evaporation method. The crystal structure analysis and the molecular arrangement of these crystals were determined using X-ray diffraction (XRD). From single crystal XRD studies, NPCa is found to be crystallized in the monoclinic system with a space group P21/n. The functional groups of the material were confirmed qualitatively by FTIR (Fourier transform infrared spectroscopy) spectral analysis. Optical absorption studies reveal the absorption region and microhardness studies were carried out to confirm the mechanical behaviour of the crystals.

  10. Loviisa Unit One: Annealing - healing

    Energy Technology Data Exchange (ETDEWEB)

    Kohopaeae, J.; Virsu, R. [ed.; Henriksson, A. [ed.

    1997-11-01

    Unit 1 of the Loviisa nuclear powerplant was annealed in connection with the refuelling outage in the summer of 1996. This type of heat treatment restored the toughness properties of the pressure vessel weld, which had been embrittled be neutron radiation, so that it is almost equivalent to a new weld. The treatment itself was an ordinary metallurgical procedure that took only a few days. But the material studies that preceded it began over fifteen years ago and have put IVO at the forefront of world-wide expertise in the area of radiation embrittlement

  11. Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Afarin Bahrami

    2012-01-01

    Full Text Available Porous silicon (PSi layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm2 fixed current density for different etching times. The samples were coated with a 50–60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM. Photoacoustic spectroscopy (PAS measurements were carried out to measure the thermal diffusivity (TD of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.

  12. Effect of current annealing on electronic properties of multilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Goto, H; Tomori, H; Kanda, A [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan); Ootuka, Y [Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Tsukuba 305-8571 (Japan); Tsukagoshi, K, E-mail: tanaka@lt.px.tsukuba.ac.j [MANA, NIMS, Namiki, Tsukuba, Ibaraki 305-0047 (Japan)

    2010-06-01

    While ideal graphene has high mobility due to the relativistic nature of carriers, it is known that the carrier transport in actual graphene samples is dominated by the influence of scattering from charged impurities, which almost conceals the intrinsic splendid properties of this novel material. The common techniques to improve the graphene mobility include the annealing in hydrogen atmosphere and the local annealing by imposing a large biasing current. Although annealing is quite important technique for the experimental study of graphene, detailed evaluation of the annealing effect is lacking at present. In this paper, we study the effect of the current annealing in multilayer graphene devices quantitatively by investigating the change in the mobility and the carrier density at the charge neutrality point. We find that the current annealing sometimes causes degradation of the transport properties.

  13. Magnetic alignment study of rare-earth-containing liquid crystals.

    Science.gov (United States)

    Galyametdinov, Yury G; Haase, Wolfgang; Goderis, Bart; Moors, Dries; Driesen, Kris; Van Deun, Rik; Binnemans, Koen

    2007-12-20

    The liquid-crystalline rare-earth complexes of the type [Ln(LH)3(DOS)3]-where Ln is Tb, Dy, Ho, Er, Tm, or Yb; LH is the Schiff base N-octadecyl-4-tetradecyloxysalicylaldimine; and DOS is dodecylsulfate-exhibit a smectic A phase. Because of the presence of rare-earth ions with a large magnetic anisotropy, the smectic A phase of these liquid crystals can be easier aligned in an external magnetic field than smectic A phases of conventional liquid crystals. The magnetic anisotropy of the [Ln(LH)3(DOS)3] complexes was determined by measurement of the temperature-dependence of the magnetic susceptibility using a Faraday balance. The highest value for the magnetic anisotropy was found for the dysprosium(III) complex. The magnetic alignment of these liquid crystals was studied by time-resolved synchrotron small-angle X-ray scattering experiments. Depending on the sign of the magnetic anisotropy, the director of the liquid-crystalline molecules was aligned parallel or perpendicular to the magnetic field lines. A positive value of the magnetic anisotropy (and parallel alignment) was found for the thulium(III) and the ytterbium(III) complexes, whereas a negative value of the magnetic anisotropy (and perpendicular alignment) was observed for the terbium(III) and dysprosium(III) complexes.

  14. Crystal structural studies of destripeptide (B28-B30) insulin

    Institute of Scientific and Technical Information of China (English)

    叶军; 茅毓新; 桂璐璐; 常文瑞; 梁栋材

    2000-01-01

    Single crystals of destripeptide (B28-B30) insulin (DTRI) in three forms were obtained by hanging-drop vapor diffusion method. Form 1 belongs to P21 space group with cell parameters a-4.77 nm, b=6.19 nm, c=6.12 nm, β=110.3°. Form 2 belongs to P4122 or P4322 space group with cell parameters a= 6.45 nm, c=12.07 nm. Form 3 belongs to P212121 space group with cell parameters a=4.98 nm, b=5.16 nm, c=10.06 nm. The structure of form 1 crystal was determined by molecular replacement method and refined at 0.23 nm resolution. The R-factor of the final model is 18.8% with r.m.s. deviations of 0.001 5 nm and 3.3?for the bond lengths and the bond angles, respectively. Studies on the crystal structure show that the removal of B28 Pro has brought DTRI structural changes which made it dissociate more easily than native insulin although DTRI can still form a hexamer.

  15. Structural and magnetic studies on copper succinate dihydrate single crystals

    Indian Academy of Sciences (India)

    M P BINITHA; P P PRADYUMNAN

    2017-09-01

    Single crystals of copper succinate dihydrate were grown in silica gel by slow diffusion of copper chloride tosodium metasilicate gel impregnated with succinic acid. The grown crystal was subjected to single crystal X-ray diffractionstudies. In its structure each copper atom is penta co-ordinated to oxygen atoms of four succinate oxygens and oxygenof co-ordinated water molecule. The four bis-bidendate succinate anions form syn–syn bridges among two copper atomsto form a polymeric two-dimensional chain. From room temperature vibrating sample magnetometer (VSM) studies themagnetic moment of the material is calculated as 1.35 Bohr magneton (BM), indicating antiferromagnetic interaction betweencopper atoms and can be explained as due to the orbital overlap of the bridging ligand and the two copper atoms in syn-synorientation. A strong bonding of the magnetic orbital of equatorially oriented Cu atom on both sides of the exchange pathway(Cu–O-C-O–Cu) leads to the anti-ferromagnetic interaction.

  16. Effect of rapid thermal annealing on polycrystalline InGaN thin films deposited on fused silica substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kazazis, S.A., E-mail: kazazis@physics.uoc.gr [Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion (Greece); Papadomanolaki, E. [Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion (Greece); Androulidaki, M.; Tsagaraki, K.; Kostopoulos, A.; Aperathitis, E. [Microelectronics Research Group, IESL-FORTH, P.O. Box 1385, 71110 Heraklion (Greece); Iliopoulos, E. [Department of Physics, University of Crete, P.O. Box 2208, 71003 Heraklion (Greece); Microelectronics Research Group, IESL-FORTH, P.O. Box 1385, 71110 Heraklion (Greece)

    2016-07-29

    In this work, we report on the effects of Rapid Thermal Annealing (RTA) on the structural, electrical and optical properties of polycrystalline InGaN thin films deposited on amorphous fused silica substrates by molecular beam deposition. Films with 20%, 35% and 50% indium content were grown and subjected to post-deposition RTA treatments. Annealing promoted crystallization in the case of the film with 0.5 InN mole fraction while in the lower indium content cases no apparent effect on the improvement of crystallinity was observed. For RTA temperature above 550 °C, film resistivity was reduced by at least two orders of magnitude due to annealing-induced increased carrier concentration. The optical properties of the films were systematically studied by variable angle spectroscopic ellipsometry. In the highest indium content films, a monotonic optical band gap widening was observed upon annealing, explained by the Burstein–Moss effect. In contrast, photoluminescence peak position was not affected by the resulting Fermi level changes. This is attributed to the different mechanisms between optical absorption and emission in such highly doped semiconductors. - Highlights: • Polycrystalline InGaN films were deposited on fused silica substrates. • Rapid thermal annealing effect on structural, electrical and optical properties studied. • Films' resistivity significantly reduced after annealing at 550 °C, in all InN content cases. • In higher indium content films, optical band gap blueshifts upon annealing, due to Burstein–Moss effect. • Photoluminescence emission position was unaffected by the band gap shift.

  17. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric

    2010-08-18

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Variation of the viscosity of molten potassium niobate with annealing time

    Science.gov (United States)

    Hong, Xinguo; Chen, Yufeng

    1996-07-01

    Using the double-wire torsion pendulum method, we have measured the viscosity of a potassium niobate molten system with excess K 2O from 50 to 56 mol% at temperatures up to 1190°C in air. Both the viscosity and its activation energy show strong time dependence. While the values for viscosity increase for melts with 50 and 51 mol% K 2O, which are annealed at 1150°C in air, the viscosity, however, of the melt with more than 2 mol% excess K 2O shows a completely different time dependence, i.e. drastic decrease with annealing time. A similar striking reversed variation of temperature-dependent viscosity with annealing time is observed when the K 2O content in the melt is up to 52 mol%. These anomalous variations in viscosity give clear evidence why the KNbO 3 single crystal should be grown from mother melts with excess K 2O above 51 mol%, and after being annealed for a long time. This result also confirms that the double-wire torsion pendulum method is a useful tool to study the time-dependent viscosity of melts at high temperature in air.

  19. Annealing effect and stability of carbon nanotubes in hydrogen flame

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Annealing of carbon nanotubes (CNTs) by the hydrogen flame in air was investigated in this study. Raman spectroscopy and scanning electron microscopy were used to characterize the products. The peak width of Raman spectra decreased with the increase in the annealing time. The CNTs were not stable in the hydrogen flame and the etching rate of the CNTs by hydrogen flame was very high. The hydrogen flame annealing had some effects on improving the crystallinity of CNTs.

  20. Studies on crystallization behaviour and mechanical properties of Al–Ni–La metallic glasses

    Indian Academy of Sciences (India)

    K L Sahoo; Rina Sahu; M Ghosh; S Chatterjee

    2008-06-01

    Alloy ingots with nominal composition, Al92–Ni8La ( = 4 to 6) and Al94–Ni6La ( = 6, 7), were prepared by induction melting in a purified Ar atmosphere. Each ingot was inductively re-melted and rapidly solidified ribbons were obtained by ejecting the melt onto a rotating copper wheel in an argon atmosphere. The crystallization behaviour of melt-spun amorphous ribbon was investigated by means of differential scanning calorimetry (DSC), X-ray diffractometry and transmission electron microscopy. DSC showed that Al86Ni8La6 alloy undergoes a three-stage and rest of the alloys undergo a two-stage crystallization process upon heating. The phases responsible for each stage of crystallization were identified. During the first crystallization stage fcc-Al precipitates for low La-containing alloys and for higher La-containing alloys a bcc metastable phase precipitates. The second crystallization stage is due to formation of intermetallic compounds along with fcc-Al. Microhardness of all the ribbons was examined at different temperatures and correlated with structural evolutions. Precipitation strengthening of nano-size fcc-Al is responsible for maximum hardness in these annealed alloys.

  1. Simulated annealing: in mathematical global optimization computation, hybrid with local or global search, and practical applications in crystallography and molecular modelling

    CERN Document Server

    Zhang, Jiapu

    2013-01-01

    Simulated annealing (SA) was inspired from annealing in metallurgy, a technique involving heating and controlled cooling of a material to increase the size of its crystals and reduce their defects, both are attributes of the material that depend on its thermodynamic free energy. In this Paper, firstly we will study SA in details on its practical implementation. Then, hybrid pure SA with local (or global) search optimization methods allows us to be able to design several effective and efficient global search optimization methods. In order to keep the original sense of SA, we clarify our understandings of SA in crystallography and molecular modeling field through the studies of prion amyloid fibrils.

  2. Thermally induced native defect transform in annealed GaSb

    Science.gov (United States)

    Jie, Su; Tong, Liu; Jing-Ming, Liu; Jun, Yang; Yong-Biao, Bai; Gui-Ying, Shen; Zhi-Yuan, Dong; Fang-Fang, Wang; You-Wen, Zhao

    2016-07-01

    Undoped p-type GaSb single crystals were annealed at 550-600 °C for 100 h in ambient antimony. The annealed GaSb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy (GDMS), infrared (IR) optical transmission and photoluminescence (PL) spectroscopy. Compared with the as-grown GaSb single crystal, the annealed GaSb samples have lower hole concentrations and weak native acceptor related PL peaks, indicating the reduction of the concentration of gallium antisite related native acceptor defects. Consequently, the below gap infrared transmission of the GaSb samples is enhanced after the thermal treatment. The mechanism about the reduction of the native defect concentration and its influence on the material property were discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 61474104 and 61504131).

  3. Study of Surface Cell Madelung Constant and Surface Free Energy of Nanosized Crystal Grain

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Jia; WANG Tian-Min; CUI Min

    2005-01-01

    Surface cell Madelung constant is firstly defined in calculating surface free energy of nanosized crystal grains, which explains the physical performance of small crystals and may be great benefit to make surface analysis and study dynamics of crystal nucleus growth. A new ap- proximative expression of surface energy and relevant thermodynamic data was used in this cal- culation. A new formula and computing method for calculating the Madelung constant α of any complex crystals is proposed, and surface free energies and surface electrostatic energies of nano- sized crystal grains as well as Madelung constant of some complex crystals are theoretically cal- culated in this paper. The surface free energy of nanosized crystal grain TiO2 and surface elec- trostatic energy(absolute value) of nanosized crystal grain α-Al2O3 are found to be the biggest among other crystal grains.

  4. Study of surface cell Madelung constant and surface free energy of nanosized crystal grain

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei-Jia; Wang Tian-Min; Rong Ai-Lun; Cui Min

    2006-01-01

    Surface cell Madelung constant is firstly defined for calculating the surface free energy of nanosized crystal grains,which explains the physical performance of small crystals and may be greatly beneficial to the analysis of surface states and the study of the dynamics of crystal nucleation and growth.A new approximative expression of the surface energy and relevant thermodynamic data are used in this calculation.New formula and computing method for calculating the Madelung constant α of any complex crystals are proposed,and the surface free energies and surface electrostatic energies of nanosized crystal grains and the Madelung constant of some complex crystals are theoretically calculated in this paper.The surface free energy of nanosized-crystal-grain TiO2 and the surface electrostatic energy (absolute value) of nanosized-crystal-grain α-A12O3 are found to be the biggest among all the crystal grains including those of other species.

  5. A Study of Ca-Mg Silicate Crystalline Glazes--An Analysis on Forms of Crystals

    Institute of Scientific and Technical Information of China (English)

    LIU Pei-de; YU Ping-li; WU Ji-huai

    2004-01-01

    In the study on Ca-Mg silicate crystalline glazes, we found some disequilibrated crystallization phenomena,such as non-crystallographic small angle forking and spheroidal growth, parasitism and wedging-form of crystals, dendritic growth, secondary nucleation, etc. Those phenomena possibly resulted from two factors:(1) partial temperature gradient, which is caused by heat asymmetry in the electrical resistance furnace,when crystals crystalize from silicate melt ; (2) constitutional supercooling near the surface of crystals. The disparity of disequilibrated crystallization phenomena in different main crystalline phases causes various morphological features of the crystal aggregates. At the same time, disequilibrated crystallization causes great stress retained in the crystals, which results in cracks in glazes when the temperature drops. According to the results, the authors analyzed those phenomena and displayed correlative figures and data.

  6. Impact of annealing on magnetic and structural features of FeCoSiBMoP metallic glass

    Science.gov (United States)

    Amini, Narges; Miglierini, Marcel; Hasiak, Mariusz

    2016-10-01

    Magnetic behavior of Fe51Co12Si16B8Mo5P8 metallic glass prepared by a melt spinning technique is studied by magnetic measurements and room temperature transmission Mössbauer spectrometry. Mössbauer spectra were evaluated by the Normos program using distributions of hyperfine magnetic fields, P(B). The resulting ribbons were inspected in the as-quenched state as well as after annealing at temperatures of 200-550 °C for 1 hour. In the low temperature region, i.e., below the onset of crystallization, structural relaxation phenomena were unveiled. The onset of crystallization as derived from DSC and from XRD measurements differs by ˜40 degrees. Traces of crystalline phases were observed by XRD after annealing at 525 °C while DSC gives Tx1 = 566 °C. Mössbauer spectrometry exhibits presence of crystallites only after annealing at 550 °C. Standard deviation and the mean hyperfine magnetic field values of P(B) distributions obtained from Mössbauer spectrometry monotonically increase with temperature of annealing. They are attributed to the modification in the short range order of Fe atoms environments.

  7. Investigation of annealing-treatment on structural and optical properties of sol–gel-derived zinc oxide thin films

    Indian Academy of Sciences (India)

    Shenghong Yang; Ying Liu; Yueli Zhang; Dang Mo

    2010-06-01

    The transparent ZnO thin films were prepared on Si(100) substrates by the sol–gel method. The structural and optical properties of ZnO thin films, submitted to an annealing treatment in the 400–700°C ranges are studied by X-ray diffraction (XRD) and UV-visible spectroscopic ellipsometry (SE). XRD measurements show that all the films are crystallized in the hexagonal wurtzite phase and present a random orientation. Three prominent peaks, corresponding to the (100) phase (2 ≈ 31.8°), (002) phase (2 ≈ 34.5°), and (110) phase (2 ≈ 36.3°) appear on the diffractograms. The crystallite size increases with increasing annealing temperature. These modifications influence the optical properties. The optical constants and thickness of the films have been determined by analysing the SE spectra. The optical bandgap has been determined from the extinction coefficient. We found that the refractive index and the extinction coefficient increase with increasing annealing temperature. The optical bandgap energy decreases with increasing annealing temperature. These mean that the optical quality of ZnO films is improved by annealing.

  8. Applications of nanosecond laser annealing to fabricating p-n homo junction on ZnO nanorods

    Science.gov (United States)

    Shimogaki, T.; Ofuji, T.; Tetsuyama, N.; Okazaki, K.; Higashihata, M.; Nakamura, D.; Ikenoue, H.; Asano, T.; Okada, T.

    2013-03-01

    Zinc oxide (ZnO) has attracted considerable attension due to its wide applications in particular ultra violet light emitting diode (UV-LED). In addition, the one-dimensional ZnO crystals are quite attractive as building blocks for light emitting devices like laser and LED, because of their high crystallinity and light confinement properties. However, a method for the realization of the stable p-type ZnO has not been well established. In our study, we have investigated the effect of the nanosecond laser irradiation to the ZnO nanorods as an ultrafast melting and recrystallizing process for realization of the p-type ZnO. Fabrication of the p-n homo junction along ZnO nanorods has been demonstrated using phosphorus ion implantation and ns-laser annealing by a KrF excimer laser. Rectifying I-V characteristics attributed to p-n junction were observed from the measurement of electrical properties. In addition, the penetration depth of laser annealed layer was measured by observing cathode luminescence images. Then, it was turned out that high repetition rate laser annealing can anneal ZnO nanorods over the optical-absorption length. In this report, optical, structural, and electrical characteristics of the phosphorus ion-implanted ZnO nanorods annealed by the KrF excimer laser are discussed.

  9. Growth, Structural And Optical Studies On Bis L-alanine Lithium Chloride (BLALC) Single Crystal

    Science.gov (United States)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Bis L-alanine Lithium Chloride (BLALC) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 15 x 9 x 4 mm3 have been obtained in 28 days. The grown crystals were colourless and transparent. Single crystal X-ray diffraction (XRD) study showed that BLALC belongs to orthorhombic system with a non-centro-symmetric space group P212121. The crystallinity of BLALC crystal was confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. The functional groups of the grown crystals have been identified by FTIR studies. UV-visible transmittance spectrum was recorded to study the optical transparency of BLALC crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique.

  10. Evolution on the structural and optical properties of SiO{sub x} films annealed in nitrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Coyopol, A., E-mail: acoyopol@gmail.com; Díaz-Becerril, T.; García-Salgado, G.; Juárez-Santisteban, H.; López, R.; Rosendo-Andrés, E.

    2014-01-15

    In this paper, thermal annealing in nitrogen atmosphere at temperatures from 900 to 1100 °C was done on the SiO{sub x} films to follow the changes in their optical and structural properties. Micro-Raman measurements revealed the existence of a nanocrystalline phase and it become dominant as the annealing temperature increased from 900 to 1100 °C. The last might be an indicative of presence of silicon clusters with high crystallization grade embedded in the SiO{sub x} matrix. X-ray diffractograms from samples annealed at 1100 °C showed reflections at 2θ=28.4, 47.3, and 56.1° ascribed to (1 1 1), (2 2 0), and (3 1 1) planes of the silicon respectively. HRTEM measurements confirmed the existence of silicon nanocrystals (Si-ncs) in the SiO{sub x} films and both the average size and number of the Si-ncs were modified by the annealing process. Photoluminescence (PL) measurement displayed a broad emission from 400 to 1100 nm. This emission was related to the number of nanocrystals and to the creation of interface defects in SiO{sub x} films. -- Highlights: • Si-ncs are synthesized from interaction between a silicon solid-source and hydrogen atoms. • The size modulation of Si-ncs by effect of the annealing temperature is studied. • Silicon clusters consist of a crystalline core surrounded by an amorphous silicon shell. • The average size and number of the Si-ncs are modified by the annealing effect. • The increase in the number of Si-ncs with annealing process causes radiative centers.

  11. Ball milling and annealing of Co-50 at% W Powders

    CSIR Research Space (South Africa)

    Bolokang, AS

    2013-04-01

    Full Text Available annealing of unmilled compacts yielded metastable phases. Upon 10 and 20 h ball milling of Co-W powder, no alloying was obtained. Although milling did not yield significant crystal changes in W and Co ground state struc- tures, its effect is evident during...

  12. Structure and magnetism of Ni/Ti multilayers on annealing

    Indian Academy of Sciences (India)

    Surendra Singh; Saibal Basu; P Bhatt

    2008-11-01

    Neutron reflectometry study has been carried out in unpolarized (NR) and polarized (PNR) mode to understand the structure and magnetic properties of alloy formation at the interfaces of Ni/Ti multilayers on annealing. The PNR data from annealed sample shows a noticeable change with respect to the as-deposited sample. These changes are: a prominent shift of the multilayer Bragg peak to a higher angle and a decrease in the intensity of the Bragg peak. The PNR data from annealed sample revealed the formation of magnetically dead alloy layers at the interfaces. Changes in roughness parameters of the interfaces on annealing were also observed in the PNR data.

  13. Studies on synthesis, growth, structural, optical properties of organic 8-hydroxyquinolinium succinate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Thirumurugan, R., E-mail: singlecrystalxrd@gmail.com; Anitha, K., E-mail: singlecrystalxrd@gmail.com [School of Physics, Madurai Kamaraj University, Madurai-625021 (India)

    2014-04-24

    8-hydroxyquinolinium succinate (8HQSU), an organic material has been synthesized and single crystals were grown by employing the technique of slow evaporation. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. 8HQSU crystal belongs to the monoclinic crystallographic system with non-centro symmetric space group of P2{sub 1}. FT-IR spectral investigation has been carried out to identify the various functional groups present in the grown crystal. UV–vis spectral studies reveal that 8HQSU crystals are transparent in the entire visible region and the cut-off wavelength has been found to be 220nm.

  14. The Effect of Orientation Relaxation on Polymer Melt Crystallization Studied by Monte Carlo Simulations

    Institute of Scientific and Technical Information of China (English)

    WANG Mao-Xiang

    2009-01-01

    We use dynamic Monte Carlo simulations to study the athermal relaxation of bulk extended chains and the isothermal crystallization in intermediately relaxed melts. It is found that the memory of chain orientations in the melt can significantly enhance the crystallization rates. The crystal orientation and lamellar thickness essentially depend on the orientational relaxation. Moreover, there is a transition of the nucleation mechanism during the isothermal crystallization from the intermediately relaxed melts. These results explain the mechanism of the self-nucleation by orientation and suggest that in flow-induced polymer crystallization, the orientational relaxation of chains decides the crystal orientation.

  15. PWO crystals for CMS electromagnetic calorimeter studies of the radiation damage kinetics

    CERN Document Server

    Drobychev, G Yu; Dormenev, V; Korzhik, M; Lecoq, P; Lopatic, A; Nédélec, P; Peigneux, J P; Sillou, D

    2005-01-01

    Kinetics of radiation damage of the PWO crystals under irradiation and recovery were studied. Crystals were irradiated with dose corresponding to average one expected in the electromagnetic calorimeter (working dose irradiation). Radiation damage and recovery were monitored through measurements of PWO optical transmission. An approach is proposed which allows evaluating the influence of the PWO crystals properties on the statistical term in the energy resolution of the electromagnetic calorimeter. The analysis also gives important information about the nature of the radiation damage mechanism in scintillation crystals. The method was used during development of technology of the mass production of radiation hard crystals and during development of methods for crystals certification

  16. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuntao, E-mail: ywu52@utk.edu [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Luo, Zhaohua; Jiang, Haochuan [Ningbo Institution of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Meng, Fang [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Koschan, Merry [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996 (United States); Melcher, Charles L. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN 37996 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2015-04-21

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd{sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu){sub 3}Ga{sub 3}Al{sub 2}O{sub 12}:1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce{sup 3+} transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce{sup 3+} emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under {sup 137}Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal. - Highlights: • GGAG:Ce single crystal and GLuGAG:Ce optical ceramics were fabricated. • The light yield of both ceramic and crystal G(Lu)GAG:Ce reached the level of 45,000 photons/MeV. • GLuGAG:Ce optical ceramic showed a better energy resolution of 7.1% for 662 keV. • GLuGAG:Ce ceramics exhibited lower afterglow level than that of GGAG:Ce single crystals. • The possible optimization strategies for

  17. Creep recovery of metallic glass Fe-Ni-B after longtime stress-annealing

    NARCIS (Netherlands)

    Jurikova, A; Csach, K; Miskuf, J; Ocelik, Vaclav

    2004-01-01

    The creep strain recovery of magnetic soft material - amorphous metallic glass Fe-Ni-B after a longtime stress-annealing at different temperatures below the crystallization temperature was described using differential scanning calorimetry and dilatometry. Several deformation energy accumulations

  18. RSM Base Study of the Effect of Argon Gas Flow Rate and Annealing Temperature on the [Bi]:[Te] Ratio and Thermoelectric Properties of Flexible Bi-Te Thin Film

    Science.gov (United States)

    Nuthongkum, Pilaipon; Sakulkalavek, Aparporn; Sakdanuphab, Rachsak

    2016-10-01

    Bismuth telluride (Bi-Te) thin films coated on a flexible substrate were prepared by RF (radio frequency) magnetron sputtering technique. A response surface methodology based on a central composite design was used to optimize deposition parameters, including the amount of Ar gas flow rate (100.5-106.5 sccm) in the sputtering process and the annealing temperature (250-320°C) for stoichiometric Bi2Te3 thin films. The mathematical model was validated and proven to be statistically sufficient and accurate in predicting a response (Te content). The stoichiometric Bi2Te3 thin films can be prepared on terms appropriate to the Ar flow rate and annealing temperature under several conditions, such as at the Ar flow rate of 103.5 sccm followed by an annealing temperature of 285°C. The characterization of the crystal structure and surface morphology of selected samples with different [Bi]:[Te] content were analyzed by x-ray diffraction (XRD) and a field emission scanning electron microscope, respectively. The XRD spectra showed Bi-Te and Bi2Te3 structures that corresponded with the ratio of [Bi]:[Te]. The Seebeck coefficient and electrical conductivity were simultaneously measured at room temperature and up to 300°C by a direct current four-terminal method. The maximum power factor of the stoichiometric Bi2Te3 thin film was 61×10-5 W/K2m at 243°C.

  19. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary r...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses.......The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...

  20. Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive

    National Research Council Canada - National Science Library

    Yong Sun; Jiajun Peng; Yani Chen; Yingshan Yao; Ziqi Liang

    2017-01-01

    .... Moreover, thermal annealing is often indispensable to the crystallization of perovskites and removal of residual solvents, which is unsuitable for scalable fabrication of flexible solar modules...

  1. HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Huckleberry, Adam R.; Rodriguez, Carmen P.; Lang, Jesse B.; Owen, Antionette T.; Kruger, Albert A.

    2012-04-02

    In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Matyáš et al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition.

  2. Experimental studies of the transient fluctuation theorem using liquid crystals

    Indian Academy of Sciences (India)

    Soma Datta; Arun Roy

    2009-05-01

    In a thermodynamical process, the dissipation or production of entropy can only be positive or zero, according to the second law of thermodynamics. However, the laws of thermodynamics are applicable to large systems in the thermodynamic limit. Recently a fluctuation theorem, known as the transient fluctuation theorem (TFT), which generalizes the second law of thermodynamics to small systems has been proposed. This theorem has been tested in small systems such as a colloidal particle in an optical trap. We report for the first time an analogous experimental study of TFT in a spatially extended system using liquid crystals.

  3. EPR studies of gamma-irradiated taurine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, A. E-mail: abulut@samsun.omu.edu.tr; Karabulut, B.; Tapramaz, R.; Koeksal, F

    2000-04-01

    An EPR study of gamma-irradiated taurine [C{sub 2}H{sub 7}NO{sub 3}S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of {sup 32}SO{sup -}{sub 2} and {sup 33}SO{sup -}{sub 2} radicals. The hyperfine values of {sup 33}SO{sup -}{sub 2} radical were used to obtain O-S-O bond angle for both sites.

  4. Theoretical and Experimental Study of Time Reversal in Cubic Crystals

    Institute of Scientific and Technical Information of China (English)

    陆铭慧; 张碧星; 汪承灏

    2004-01-01

    The self-adaptive focusing of the time reversal in anisotropic media is studied theoretically and experimentally. It is conducted for the compressional wave field in the cubic crystal silicon. The experimental result is in agreement with our theoretical analysis. The focusing gain and the displacement distributions of the time reversal field are analysed in detail. It is shown that the waves from different elements of the transducer array arrive at the original place of the source simultaneously after the time reversal operation. The waveform distortions caused by the velocity anisotropy can automatically be compensated for after the time reversal processing.

  5. The effects of substrate and annealing on structural and electrochemical properties in LiCoO2 thin films prepared by DC magnetron sputtering.

    Science.gov (United States)

    Noh, Jung Pil; Jung, Ki Taek; Cho, Gyu Bong; Lee, Sang Hun; Kim, Ki Won; Nam, Tae Hyun

    2012-07-01

    LiCoO2 thin films were fabricated by direct current magnetron sputtering method on STS304 and Ti substrates. The effects of substrate and annealing on their structural and electrochemical properties of LiCoO2 thin film cathode were studied. Crystal structures and surface morphologies of the deposited films were investigated by X-ray diffraction and field emission scanning electron microscopy. The as-deposited films on both substrates have amorphous structure. The (104) oriented perfect crystallization was obtained by annealing over 600 degrees C in STS304 substrate. The LiCoO2 thin film deposited on Ti substrate shows the (003) texture after annealing at 700 degrees C. The electrochemical properties were investigated by the cyclic voltammetry and charge-discharge measurement. The 600 degrees C-annealed LiCoO2 film deposited on STS304 substrate exhibits the inithial discharge capacity of 22 uAh/cm2 and the 96% capacity retention rate at 50th cycles. The electrochemical measurement on annealed films over 600 degrees C was impossible due to the formed TiO2 insulator layer using Ti substrate. As a result, it was found that the STS304 substrate seems to be more suitable material than the Ti substrate in fabricating LiCoO2 thin film cathode.

  6. Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: A new organic crystal for optical limiting applications

    Science.gov (United States)

    Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.

    2016-08-01

    Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.

  7. Electron-beam pulse annealed Ti-implanted GaP

    Science.gov (United States)

    Werner, Z.; Barlak, M.; Ratajczak, R.; Konarski, P.; Markov, A. M.; Heller, R.

    2016-08-01

    Gallium phosphide heavily doped with substitutional titanium is a prospective material for intermediate band solar cells. To manufacture such a material, single crystals of GaP were implanted with 120 keV Ti ions to doses between 5 × 1014 cm-2 and 5 × 1015 cm-2. They were next pulse annealed with 2 μs electron-beam pulses of electron energy of about 13 keV and pulse energy density between 1 and 2 Jcm-2. The samples were studied by channeled Rutherford Backscattering, particle induced X-ray emission, and SIMS. The results show full recovery of crystal structure damaged by implantation and good retention of the implanted titanium without, however, its significant substitution at crystal sites.

  8. Synthesis of Cu-Al-Zn-O nanocomposite: effect of annealing on the physical properties

    Indian Academy of Sciences (India)

    Laya Dejam; Seyed Mohammad Elahi; Majid Mojtahedzade Larijani; Yousef Seyed Jalili

    2015-12-01

    We prepared Cu-Al-Zn-O (CAZO) nanocomposite thin films on quartz substrates by radio frequency (RF) magnetron sputtering method. The as-deposited CAZO film is amorphous in nature and annealing in air environment results in weak crystallization of the films and formation of CuAlO2 and CAZO. The surface morphology of the films was studied with atomic force microscopy images, while Rutherford backscattering spectrometry (RBS) was used to characterize material properties. The optical bandgap of films was found to be 3–4.2 eV depending on the annealing temperature. The photoluminescence (PL) of the samples was measured at room temperature. Violet, blue and green spectra peaks were observed from the PL spectra of the four samples. The emission spectrum indicates the suitability of CAZO nanocomposite for gas sensor applications and technology.

  9. Nanocrystallization behaviour of a ternary amorphous alloy during isothermal annealing: a Monte Carlo simulation

    Institute of Scientific and Technical Information of China (English)

    Jin Shi-Feng; Wang Wei-Min; Zhou Jian-Kun; Guo Hong-Xuan; J.F. Webb; Bian Xiu-Fang

    2005-01-01

    The nanocrystallization behaviour of Zr70Cu20Ni10 metallic glass during isothermal annealing is studied by employing a Monte Carlo simulation incorporating with a modified Ising model and a Q-state Potts model. Based on the simulated microstructure and differential scanning calorimetry curves, we find that the low crystal-amorphous interface energy of Ni plays an important role in the nanocrystallization of primary Zr2Ni. It is found that when T < TImax (where TImax is the temperature with maximum nucleation rate), the increase of temperature results in a larger growth rate and a much finer microstructure for the primary Zr2Ni, which accords with the microstructure evolution in "flash annealing". Finally, the Zr2Ni/Zr2Cu interface energy σG contributes to the pinning effect of the primary nano-sized Zr2Ni grains in the later formed normal Zr2Cu grains.

  10. Surface studies on as-grown (111) faces of sodium bromate crystals

    Indian Academy of Sciences (India)

    K Kishan Rao; V Surender

    2001-12-01

    Single crystals of sodium bromate are grown at various supersaturations ranging from 3% to 8%. Surface studies have been carried out on as-grown and etched (111) faces of these crystals. Typical and systematically oriented growth hillocks are observed almost on all the faces. Further dislocation studies are made to understand the growth history of these crystals. These studies suggest that the crystals grow by 2D-growth mechanism. In addition to this, studies are also conducted on the formation of overgrowths and inclusions in these crystals.

  11. Annealing effects on deuterium retention behavior in damaged tungsten

    Directory of Open Access Journals (Sweden)

    S. Sakurada

    2016-12-01

    Full Text Available Effects of annealing after/under iron (Fe ion irradiation on deuterium (D retention behavior in tungsten (W were studied. The D2 TDS spectra as a function of heating temperature for 0.1dpa damaged W showed that the D retention was clearly decreased as the annealing temperature was increased. In particular, the desorption of D trapped by voids was largely reduced by annealing at 1173K. The TEM observation indicated that the size of dislocation loops was clearly grown, and its density was decreased by the annealing above 573K. After annealing at 1173K, almost all the dislocation loops were recovered. The results of positron annihilation spectroscopy suggested that the density of vacancy-type defects such as voids, was decreased as the annealing temperature was increased, while its size was increased, indicating that the D retention was reduced by the recovery of the voids. Furthermore, it was found that the desorption temperature of D trapped by the voids for damaged W above 0.3dpa was shifted toward higher temperature side. These results lead to a conclusion that the D retention behavior is controlled by defect density. The D retention in the samples annealed during irradiation was less than that annealed after irradiation. This result shows that defects would be quickly annihilated before stabilization by annealing during irradiation.

  12. Studies on an L-leucine hydriodide semiorganic crystal for frequency conversion applications

    Science.gov (United States)

    Baskaran, P.; Vimalan, M.; Anandan, P.; Bakiyaraj, G.; Kirubavathi, K.; Praveen, S. G.; Selvaraju, K.

    2016-03-01

    An L-leucine hydriodide semiorganic crystal has been synthesized and grown by a slow evaporation technique. The lattice parameters of the grown crystal have been confirmed using single-crystal x-ray diffractometry. Various functional groups present in the crystal were identified by Fourier transform infrared (FTIR spectral) assessment. The optical transmission percentage of the crystal was ascertained by UV-vis-near-infrared (NIR) studies. The thermal stability of the crystal was determined by thermogravimetric and differential thermal analysis curves. The mechanical behavior of the crystal was studied using the Vicker’s microhardness analysis. The dielectric properties of the crystal have been investigated for varying temperatures. The second-harmonic generation efficiency was measured by the Kurtz and Perry powder technique and the efficiency is comparable to that of potassium dihydrogen orthophosphate.

  13. Advanced Bent Crystal Collimation Studies at the Tevatron (T-980)

    CERN Document Server

    Zvoda, V; Carrigan, R; Drozhdin, A; Johnson, T; Kwan, S; Mokhov, N; Prosser, A; Reilly, R; Uplegger, R Rivera L; Shiltsev, V; Still, D; Zagel, J; Guidi, V; Bagli, E; Mazzolari, A; Ivanov, Yu; Chesnokov, Yu; Yazynin, I

    2011-01-01

    The T-980 bent crystal collimation experiment at the Tevatron has recently acquired substantial enhancements. First, two new crystals - a 16-strip one manufactured and characterized by the INFN Ferrara group and a quasi-mosaic crystal manufactured and characterized by the PNPI group. Second, a two plane telescope with 3 high-resolution pixel detectors per plane along with corresponding mechanics, electronics, control and software has been manufactured, tested and installed in the E0 crystal region. The purpose of the pixel telescope is to measure and image channeled (CH), volume-reflected (VR) and multiple volume-reflected (MVR) beam profiles produced by bent crystals. Third, an ORIGIN-based system has been developed for thorough analysis of experimental and simulation data. Results of analysis are presented for different types of crystals used from 2005 to present for channeling and volume reflection including pioneering tests of two-plane crystal collimation at the collider, all in comparison with detailed ...

  14. High pressure electrical resistivity study on nonlinear bis thiourea cadmium chloride (BTCC) single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ariponnammal, S.; Radhika, S. [Department of Physics, Gandhigram Rural Institute, Deemed University, Gandhigram - 624 302, Dindigul District, Tamil Nadu (India); Selva Vennila, R. [Department of Physics, Anna University, Chennai - 600 025 (India); Arumugam, S. [Department of Physics, Bharathidasan University, Trichy (India)

    2005-09-01

    The Bis Thiourea Cadmium Chloride (BTCC) crystals have been crystallized by slow evaporation technique. The lattice parameters of the grown crystals have been determined by the Energy dispersive x-ray diffraction technique (EDXRD) and the structure has been confirmed. The high pressure electrical resistivity study have been carried out on this crystal and the results have been reported here. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Experimental studies of crystal-melt differentiation in planetary basalt compositions

    Science.gov (United States)

    Grove, T. L.

    1987-01-01

    An important process that controls the evolution of magmas on and within planetary bodies is crystal-melt differentiation. Experimental studies of silicate melt solidification were performed on several planetary and terrestrial melt compositions, and experiments on one of these compositions in the microgravity environment of the space station would provide an opportunity to understand the factors that control crystal growth and crystal-melt exchange processes at crystal-melt interfaces during solidification. Experimental requirements are presented.

  16. Study on Characteristics of Crystal Growth of NdFeB Cast Alloys

    Institute of Scientific and Technical Information of China (English)

    李波; 郭炳麟; 王东玲; 刘涛; 喻晓军

    2004-01-01

    The characteristic of crystal growth of NdFeB cast alloys was studied.It is found that the crystal growth orientation of conventional ingots is along or .As the cooling rate increases,the crystallization orientation changes from a axis to c axis,along which the grain is easy to be magnetized.Meanwhile,by analyzing the change of crystallization orientation,the influence on the property of magnets was discussed.

  17. Annealing to reduce scattering centers in Czochralski-grown beta-BaB2O4.

    Science.gov (United States)

    Kouta, H; Kuwano, Y

    1999-02-20

    When a visible laser beam passes through beta-BaB(2)O(4) (BBO), scattered light can be observed along the beam within the crystal. Scattering centers caused by structural defects in Czochralski-grown BBO can be reduced by 95% by annealing at 920 degrees C. In the flux-grown BBO, centers actually increase by the same annealing because the process causes microcracks and/or secondary inclusions. It is shown that annealed Czochralski-grown BBO is superior to flux-grown BBO (annealed or as-grown) in terms of optical loss.

  18. Studies on resistive hysteresis characteristics of metal organic decomposition-derived BaTiO3 thin films prepared under various annealing conditions and related switching endurance properties

    Science.gov (United States)

    Sugie, Toshiyuki; Maejima, So; Yamashita, Kaoru; Noda, Minoru

    2016-10-01

    We have prepared metal organic decomposition (MOD)-derived BaTiO3 (BT) thin films under various annealing conditions, especially in nitrogen, and investigated the properties of bipolar-type resistive switching, focusing on the relation between oxygen vacancies and the behavior of resistive hysteresis. BT thin film with both pre annealing and final annealing in nitrogen (layer-by-layer annealing) showed the resistive hysteresis of bipolar-type switching with current ON/OFF ratios of 2 orders of magnitude for both bias polarities. Moreover, it showed the endurance property with the 104 switching cycles. It is possible that the non-filament bipolar-type resistive switching has origins not only at the metal electrode/oxide interface but also the inside of the oxide films, that is, the presence of the oxygen vacancies inside of BT thin films would play an important role in the bipolar-type resistive switching and in improving the switching endurance properties.

  19. Study of linearity of LYSO crystal for HERD calorimeter

    CERN Document Server

    Quan, Zheng; Xu, Ming; Dong, Yong-wei; Wang, Jun-jing; An, Guang-peng; Liu, Xin; Bao, Tian-wei; Zhang, Li; Wang, Rui-jie; Lv, Jun-guang; Wu, Bo-bing; Zhang, Shuang-nan

    2016-01-01

    The High Energy cosmic Radiation Detection (HERD) facility is one of the space astronomy payloads of the cosmic light house program onboard the China's Space Station. HERD is designed for detecting electrons and $\\gamma$-rays up to tens of TeV and cosmic rays up to several PeV. The main instrument of HERD is a 3-D imaging calorimeter (CALO) composed of nearly ten thousand cubic LYSO crystals. Each crystal coupled with spiral Wavelength Shifting Fibers (WLSF) is defined as a HERD CALO Cell (HCC). The required energy range of one HCC is from 10 MeV to 50 TeV. In order to verify the linearity of HCC in such a wide energy range, a beam test has been implemented at the E2 and E3 beam lines of BEPCII. The setup of the beam test and linearity performance are reviewed in this paper. The study shows the linearity of HCC is better than 10\\% in the required energy range.

  20. Quantum annealing correction with minor embedding

    Science.gov (United States)

    Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.

    2015-10-01

    Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.

  1. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals

    Science.gov (United States)

    Swarna Sowmya, N.; Sampathkrishnan, S.; Vidyalakshmi, Y.; Sudhahar, S.; Mohan Kumar, R.

    2015-06-01

    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1064 nm.

  2. multicast utilizando Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Yezid Donoso

    2005-01-01

    Full Text Available En este artículo se presenta un método de optimización multiobjetivo para la solución del problema de balanceo de carga en redes de transmisión multicast, apoyándose en la aplicación de la meta-heurística de Simulated Annealing (Recocido Simulado. El método minimiza cuatro parámetros básicos para garantizar la calidad de servicio en transmisiones multicast: retardo origen destino, máxima utilización de enlaces, ancho de banda consumido y número de saltos. Los resultados devueltos por la heurística serán comparados con los resultados arrojados por el modelo matemático propuesto en investigaciones anteriores.

  3. Crystalline structure changes in preoriented metallocene-based isotactic polypropylene upon annealing.

    Science.gov (United States)

    Wang, Yan; Xu, Jia-Zhuang; Chen, Yan-Hui; Qiao, Kai; Xu, Ling; Ji, Xu; Li, Zhong-Ming; Hsiao, Benjamin S

    2013-06-13

    Partially melted metallocene-based isotactic polypropylene (m-iPP), which was preoriented with a high degree of molecular orientation and a shish-kebab structure, was annealed at various temperatures and isothermally crystallized at 130 °C. The melting and crystallization process was examined using synchrotron wide-angle X-ray diffraction, small-angle X-ray scattering, and differential scanning calorimetry. For the m-iPP samples annealed at relatively low temperatures, lamellar thickening, lateral growth, and a decrease in the γ-crystal fraction occurred. Because of parallel evolution of α- and γ-crystal growth in the limited crystallizable melt volume, the fraction of γ-crystals was very low. Furthermore, topological constraints in the melt dominate the chain flux in crystal evolution; the chains are consumed by the thickening lamellae and lateral growth, forming α-crystals with parallel chains in the unit cell. For the m-iPP samples isothermally annealed at medium annealing temperatures, the increase in the amount of crystallizable melt caused the γ-crystal fraction to increase. A shish-kebab (α-crystals) structure with high thermal stability and a newly formed macro-unoriented structure coexisted in the final sample. After annealing at high temperatures, at which no crystals survived, γ-crystal formation was greatly favored; this was attributed to the nature of m-iPP molecules and their dynamic behavior at 130 °C. Because of the lack of oriented nuclei, randomly oriented lamellae were formed. On the basis of the structural cooperative changes at different scales, the morphological features at different annealing temperatures were proposed.

  4. Study on buoyancy convection phenomenon in the crystal growth process

    Institute of Scientific and Technical Information of China (English)

    DUAN Li; KANG Qi

    2009-01-01

    Real-time phase shift Mach-Zehnder interference technique,imaging technique,and computer image processing technique were combined to perform a real-time diagnosis of NaCIO3 crystal,which described both the dissolution process end the crystallization process of the NaCIO3 crystal in real-time condition.The dissolution fringes and the growth fringes in the process were obtained.Moreover,a distribution of concentration field in this process was obtained by inversion calculation.Finally,the buoyancy convection phenomenon caused by gravity in the crystal growth process was analyzed.The results showed that this convection phenomenon directly influences the growth rate of each crystal face in the crystal.

  5. Study on buoyancy convection phenomenon in the crystal growth process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Real-time phase shift Mach-Zehnder interference technique, imaging technique, and computer image processing technique were combined to perform a real-time diagnosis of NaClO3 crystal, which de- scribed both the dissolution process and the crystallization process of the NaClO3 crystal in real-time condition. The dissolution fringes and the growth fringes in the process were obtained. Moreover, a distribution of concentration field in this process was obtained by inversion calculation. Finally, the buoyancy convection phenomenon caused by gravity in the crystal growth process was analyzed. The results showed that this convection phenomenon directly influences the growth rate of each crystal face in the crystal.

  6. Study of Growth Mechanism of Lysozyme Crystal by Batch Crystallization Method

    Institute of Scientific and Technical Information of China (English)

    Hai Liang CUI; Yong YU; Wan Chun CHEN; Qi KANG

    2006-01-01

    The lysozyme crystals were made by batch crystallization method and the distribution of aggregate in solution were measured by dynamic light scattering. The results showed that the dimension of aggregate increased with the increase of the concentration of lysozyme and NaC1,lysozyme molecules aggregated gradually in solution and finally arrived at balance each other.The higher the concentrations of lysozyme and NaC1 were, the faster the growth rate of (110) face was. The growth rates of lysozyme crystal were obtained by a Zeiss microscope, and the effective surface energy (α) of growing steps were calculated about 4.01×l0-8 J.cm-2 according to the model of multiple two-dimensional nucleation mechanism.

  7. Improvement on the electrical characteristics of Pd/HfO2/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Science.gov (United States)

    Esakky, Papanasam; Kailath, Binsu J.

    2017-08-01

    HfO2 as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO2/SiC capacitors offer higher sensitivity than SiO2/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO2/SiC interface. Effect of post deposition annealing in N2O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO2/SiC MIS capacitors are reported in this work. N2O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N2 result in formation of Hf silicate at the HfO2/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N2O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO2/SiC capacitors.

  8. Study of the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser

    Institute of Scientific and Technical Information of China (English)

    Chen Bin; Yu Bing-Kun; Yan Xiao-Na; Qiu Jian-Rong; Jiang Xiong-Wei; Zhu Cong-Shan

    2004-01-01

    This paper describes the microstructural transformations of borate glass and barium metaborate crystals induced by femtosecond laser. Such structural transformations were verified by Raman spectroscopy. The borate glass is transformed into low temperature (LT) phase of barium metaborate (BaB2O4) crystals after being irradiated for 10 min by a femtosecond laser. In addition, after 20 min of irradiation, high temperature (HT) phase of BaB2O4 crystals is also produced. Further studies demonstrate that LT phase BaB2O4 crystals are formed in the HT phase BaB2O4 crystals after femtosecond laser irradiation for 10 s.

  9. Optical studies of neutron-irradiated lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Oparin, D.V.; Pilipenko, G.I.; Tyutyunnik, O.I.; Gavrilov, F.F.; Sulimov, E.M. (Ural' skij Politekhnicheskij Inst., Sverdlovsk (USSR))

    1984-09-01

    Lithium hydride single crystals irradiated with neutrons were studied by the optical method. Wide bands belonging to the large F-aggregate and quasimetallic F-centres and to the metallic lithium colloids were discovered in the absorption spectra at room temperature. The small Fsub(n)-centres and molecular lithium centres were detected at 77 K. From the electron-vibrational structure of the absorption spectra of these centres the energies of acoustic phonons in X, W, L points of the Brillouin zone of lithium hydride have been found out: TA(L)-235 cm/sup -1/, TA(X)-27g cm/sup -1/, TA(W)-327 cm/sup -1/, LA(W)-384 cm/sup -1/, LA(X)-426 cm/sup -1/.

  10. Photoinduced surface voltage mapping study for large perovskite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Liu, Shengzhong, E-mail: liusz@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Dalian Institute of Chemical Physics, iChEM, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-02

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH{sub 3}NH{sub 3}PbX{sub 3} (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  11. Photoinduced surface voltage mapping study for large perovskite single crystals

    Science.gov (United States)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou; Liu, Shengzhong Frank

    2016-05-01

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH3NH3PbX3 (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  12. The Effect of Annealing at 1500 C on Migration and Release of Ion Implanted Silver in CVD Silicon Carbide

    Energy Technology Data Exchange (ETDEWEB)

    HJ MacLean; RG Ballinger; LE Kolaya; SA Simonson; N Lewis; M Hanson

    2004-10-07

    The transport of silver in CVD {beta}-SiC has been studied using ion implantation. Silver ions were implanted in {beta}-SiC using the ATLAS accelerator facility at the Argonne National Laboratory. Ion beams with energies of 93 and 161 MeV were used to achieve deposition with peak concentrations at depths of approximately 9 and 13 {micro}m, respectively. As-implanted samples were then annealed at 1500 C for 210 or 480 hours. XPS, SEM, TEM, STEM, and optical methods were used to analyze the material before and after annealing. Silver concentration profiles were determined using XPS before and after annealing. STEM and SEM equipped with quantitative chemical analysis capability were used to more fully characterize the location and morphology of the silver before and after annealing. The results show that, within the uncertainty of measurement techniques, there is no silver migration, via either inter- or intragrannular paths, for the times and temperature studied. Additionally, the silver was observed to phase separate within the SiC after annealing. The irradiation damage from the implantation process resulted in a three-layer morphology in the as-implanted condition: (1) a layer of unaltered SiC, followed by (2) a layer of crystallized SiC, followed by (3) an amorphized layer which contained essentially all of the implanted silver. After annealing the layer structure changed. Layer 1 was unaltered. The grains in layer 2 recrystallized to form an epitaxial (columnar) layer. Layer 3 recrystallized to form a fine grain equiaxed layer. The results of this work do not support the long held assumption that silver release from CVD SiC, used for gas-reactor coated particle fuel, is dominated by grain boundary diffusion.

  13. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fenglei [Iowa State Univ., Ames, IA (United States)

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition

  14. Nonlinear optical studies of liquid crystals and polymers

    Science.gov (United States)

    Hong, Seok-Cheol

    Polymers are indispensable in our life. A life is a continuous event maintained by many complex processes in which biological polymers participate. It also gets help from a variety of natural and synthetic polymers with useful functions. Such functions depend on the chemical and conformational structures of polymers and often largely on the surface structures and properties of polymers. We used second order nonlinear optical techniques (sum frequency vibrational spectroscopy (SFVS) and second harmonic generation (SHG)) to obtain structural information on polymers. We also studied liquid crystal molecules deposited on polymer surfaces. The first part of the thesis is aimed at understanding liquid crystal (LC) alignment on rubbed polymer surfaces by determining the molecular orientations of LC adsorbates and surface polymer chains. The alignment of LCs by rubbed polymers is not only of fundamental interest but also of practical importance because it is a technique enabling production of commercial liquid crystal displays. We observed that rubbing induces alignment of surface polymer chains along the rubbing direction, and there is a strong correlation between the molecular orientations of LC adsorbates and the surface chains of rubbed polymers such as polyvinyl alcohol (PVA) and polyimide (6FDA-6CBO). The latter revealed a relatively large but negative pretilt angle, which is highly unusual. On a rubbed polystyrene (PS) surface, we found that the phenyl side groups of PS are oriented perpendicularly to the rubbing direction at the surface, rendering an LC alignment also perpendicular to the rubbing direction. The second part of the thesis is our discovery of rubbing-induced polar ordering on nylon 11 surfaces. Nylon 11 is known to be ferroelectric. We found that mechanical rubbing can induce strong ferroelectric polarization on an initially amorphous film of nylon 11. The surface chains of rubbed nylon 11 are aligned along the rubbing direction while the induced

  15. An Undergraduate Laboratory Exercise for Studying Kinetics of Batch Crystallization

    Science.gov (United States)

    Louhi­-Kultanen, Marjatta; Han, Bing; Nurkka, Annikka; Hatakka, Henry

    2015-01-01

    The present work describes an undergraduate laboratory exercise for improving understanding of fundamental phenomena in cooling crystallization. The exercise of nucleation and crystal growth kinetics supports learning of theories and models presented in lectures and calculation exercises. The teaching methodology incorporates precepts the…

  16. Phase Sensitive X-Ray Diffraction Imaging Study of Protein Crystals

    Science.gov (United States)

    Hu, Z. W.

    2003-01-01

    The study of defects and growth of protein crystals is of importance in providing a fundamental understanding of this important category of systems and the rationale for crystallization of better ordered crystals for structural determination and drug design. Yet, as a result of the extremely weak scattering power of x-rays in protein and other biological macromolecular crystals, the extinction lengths for those crystals are extremely large and, roughly speaking, of the order of millimeters on average compared to the scale of micrometers for most small molecular crystals. This has significant implication for x-ray diffraction and imaging study of protein crystals, and presents an interesting challenge to currently available x-ray analytical techniques. We proposed that coherence-based phase sensitive x-ray diffraction imaging could provide a way to augment defect contrast in x-ray diffraction images of weakly diffracting biological macromolecular crystals. I shall examine the principles and ideas behind this approach and compare it to other available x-ray topography and diffraction methods. I shall then present some recent experimental results in two model protein systems-cubic apofemtin and tetragonal lysozyme crystals to demonstrate the capability of the coherence-based imaging method in mapping point defects, dislocations, and the degree of perfection of biological macromolecular crystals with extreme sensitivity. While further work is under way, it is intended to show that the observed new features have yielded important information on protein crystal perfection and nucleation and growth mechanism otherwise unobtainable.

  17. STUDIES ON PRIMARY CRYSTALLIZATION OF RAPIDLY QUENCHED Al-Ni-Cu-Nd METALLIC GLASS BY USING HIGH RESOLUTION TRASMISSION ELECTRON MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    Y.D. Xiao; W.X. Li; D. Jacovkis; N. Clavaguera; M.T. Clavaguera-Mora; J. Rodriguez- Viejo

    2003-01-01

    Rapidly solidified Al87Ni7Cu3Nd3 metallic glasses, prepared by using melt spinning,were treated under both isothermal and non-isothermal regime. The amorphous ribbon and the annealed samples were closely examined by means of differential scanning calorimetric, conventional X-ray diffraction and high resolution transmission electron microscopy with selected-area electron diffraction, with special interest in primary crystallization into α-Al nanocrystalline particles, in order to understand structural characteristics of Al-based amorphous/nanocrystalline alloys, and nucleation and grain growth mechanism on the nanometer scale during primary crystallization.The results show that, the as-prepared ribbons are fully amorphous and homogeneous in the micron scale, but contain high density of quenched-in clusters or crystallite embryos. Primary crystallization mainly leads to formation of two-phase mixture of α-Al crystal and residual amorphous phase. The annealed ribbons exposed isothermally at 110℃f or 5, 130 minutes and heated continuously up to less than 310℃ at 40℃/min consist of large amount of α-Al fcc crystal nanoparticles dispersed uniformly in an amorphous matrix. However, a very little amount of finer orthorhombie Al3Ni intermetalics particles exist in the annealed ribbons heated up to 310℃. During primary crystallization, the leading kinetic mechanics to impede growth of the α-Al crystal is soft impingement, instead of geometrie impingement.

  18. Remote sensing of atmospheric duct parameters using simulated annealing

    Institute of Scientific and Technical Information of China (English)

    Zhao Xiao-Feng; Huang Si-Xun; Xiang Jie; Shi Wei-Lai

    2011-01-01

    Simulated annealing is one of the robust optimization schemes. Simulated annealing mimics the annealing process of the slow cooling of a heated metal to reach a stable minimum energy state. In this paper,we adopt simulated annealing to study the problem of the remote sensing of atmospheric duct parameters for two different geometries of propagation measurement. One is from a single emitter to an array of radio receivers (vertical measurements),and the other is from the radar clutter returns (horizontal measurements). Basic principles of simulated annealing and its applications to refractivity estimation are introduced. The performance of this method is validated using numerical experiments and field measurements collected at the East China Sea. The retrieved results demonstrate the feasibility of simulated annealing for near real-time atmospheric refractivity estimation. For comparison,the retrievals of the genetic algorithm are also presented. The comparisons indicate that the convergence speed of simulated annealing is faster than that of the genetic algorithm,while the anti-noise ability of the genetic algorithm is better than that of simulated annealing.

  19. SINGULARITY ANALYSIS AND COMPARITIVE STUDY OF SIX DEGREE OF FREEDOM STEWART PLATFORM AS A ROBOTIC ARM BY HEURISTIC ALGORITHMS AND SIMULATED ANNEALING

    Directory of Open Access Journals (Sweden)

    ASHWIN MISHRA,

    2011-01-01

    Full Text Available In this study singularity analysis of the six degree of freedom (DOF Stewart Platform using the various heuristic methods in a specified design configuration has been carried out .The Jacobian matrix of the Stewart platform is obtained and the absolute value of the determinant of the Jacobian is taken as the objective function, and the least value of this objective function is fished in the reachable workspace of the Stewart platform so as to find the singular configurations. The singular configurations of the platform depend on the value of this objective function under consideration, if it is zero the configuration is singular. The results thus obtained by different methods namely the genetic algorithm, Particle Swarm optimization and variants and simulated annealing are compared with each other. The variable sets considered are the respective desirable platform motions in the form of translation and rotation in six degrees of freedom. This paper hence presents a proper comparative study of these algorithms based on the results that are obtained and highlights the advantage of each in terms of computational cost and accuracy.

  20. Mechanism of Annealing Softening of Rolled or Forged Tool Steel

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to reduce hardness of rolled or forged steels after annealing and improve processability, the diameter and dispersity of carbides were measured by SEM and quantitative metallography. The microstructure of annealed steel was analyzed by TEM. The effects of the factors such as solute atoms, carbides, grain boundary and interphase boundary were studied. The mechanism of annealing softening of steels was analyzed on the examples of steels H13, S5, S7, X45CrNiMo4, which are treated with new technology. The results showed that the softening of H13, S7, S5 is easier obtained by isothermal or slow cooling annealing from slightly below A1, but hardness of X45CrNiMo4 after annealing is reduced effectively by obtaining coarse lamellar pearlite. Economic results can be obtained from good processability.

  1. Computational studies of bioceramic crystals and related materials

    Science.gov (United States)

    Rulis, Paul Michael

    Ongoing research to improve the foundations of knowledge concerning the human body requires a detailed understanding of the effects derived from atomic interactions. The details of these fundamental interactions will pave the way to the effective manipulation of macroscopic tissue. As a small step towards the realization of that goal the Orthogonalized Linear Combination of Atomic Orbitals (OLCAO) program suite has been applied to complex bioceramic crystals and other prototypes of hard tissue biological nanostructures. In addition, the OLCAO program suite has been further developed and extended in terms of efficiency, features, ease of use, and ease of maintenance such that even more complex systems and effects can be treated in the future. Through extensive OLCAO ab initio calculations on a collection of prototype bioceramic crystals the differences between them in terms of bonding, charge transfer, electronic structure, and spectroscopic properties have been detailed in an effort to lay the foundations of further research where interfaces, dopants, and defects are considered. In addition, inactive silicon defects that can be considered as prototypes for the complex environment in which bioceramic apatites exist have also been studied with the OLCAO program suite in an effort to expand the detection limit of small structures through spectroscopic means. With much effort, the OLCAO program suite has undergone a detailed conversion to a more modern programming language and programming style. A thorough review of the source code has accounted for many inaccuracies, corrected some programming errors, and removed various inefficient algorithmic bottlenecks. The generation of OLCAO input files, the execution of the components of the OLCAO suite, and the analysis of resultant data has been automated with numerous control scripts. Various external library packages have been instrumented for the benefit of profiling and resource efficiency in a high performance computing

  2. Hall effect studies of donors and acceptors in different types of bulk ZnO modified by annealing and hydrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Kassier, G.H.; Hayes, M.; Auret, F.D.; Diale, M. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Svensson, B.G. [Department of Physics, Centre for Material Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo (Norway)

    2008-07-01

    Samples of as-manufactured and annealed zinc oxide (ZnO) grown by melt-growth, seeded chemical vapour transport (SCVT) growth and hydrogen-implanted hydrothermal ZnO were investigated via the temperature dependent Hall technique. The conduction in the melt-grown sample appeared to be dominated by two donors with activation energies of about 70 meV and 44 meV, the former disappearing with annealing above 550 C. Only one dominant donor of about 80 meV was found in the SCVT-grown sample and it showed little change with annealing. Surface conduction effects were observed only in the SCVT-grown sample. Hydrogen-implanted hydrothermal ZnO layers were found to have only one dominant donor with activation energy of about 45 meV that was stable up to annealing temperatures of about 300 C. The acceptor concentration was found to increase considerably with annealing above 300 C. We attempt to interpret these results by considering theoretical predictions for the various native and extrinsic defects expected to occur in our samples. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Vacuum annealing phenomena in ultrathin TiDy/Pd bi-layer films evaporated on Si(100) as studied by TEM and XPS.

    Science.gov (United States)

    Lisowski, W; Keim, E G

    2010-04-01

    Using a combination of TEM and XPS, we made an analysis of the complex high-temperature annealing effect on ultrathin titanium deuteride (TiD(y)) films evaporated on a Si(100) substrate and covered by an ultrathin palladium layer. Both the preparation and annealing of the TiD(y)/Pd bi-layer films were performed in situ under UHV conditions. It was found that the surface and bulk morphology of the bi-layer film as well as that of the Si substrate material undergo a microstructural and chemical conversion after annealing and annealing-induced deuterium evolution from the TiD(y) phase. Energy-filtered TEM (EFTEM) mapping of cross-section images and argon ion sputter depth profiling XPS analysis revealed both a broad intermixing between the Ti and Pd layers and an extensive inter-diffusion of Si from the substrate into the film bulk area. Segregation of Ti at the Pd top layer surface was found to occur by means of angle-resolved XPS (ARXPS) and the EFTEM analyses. Selected area diffraction (SAD) and XPS provided evidence for the formation of a new PdTi(2) bimetallic phase within the top region of the annealed film. Moreover, these techniques allowed to detect the initial stages of TiSi phase formation within the film-substrate interlayer.

  4. FCC-HCP coexistence in dense thermo-responsive microgel crystals

    Science.gov (United States)

    Karthickeyan, D.; Joshi, R. G.; Tata, B. V. R.

    2017-06-01

    Analogous to hard-sphere suspensions, monodisperse thermo-responsive poly (N-isopropyl acrylamide) (PNIPAM) microgel particles beyond a volume fraction (ϕ) of 0.5 freeze into face centered cubic (FCC)-hexagonal close packed (HCP) coexistence under as prepared conditions and into an FCC structure upon annealing. We report here FCC-HCP coexistence to be stable in dense PNIPAM microgel crystals (ϕ > 0.74) with particles in their deswollen state (referred to as osmotically compressed microgel crystals) and the FCC structure with particles in their swollen state by performing annealing studies with different cooling rates. The structure of PNIPAM microgel crystals is characterized using static light scattering technique and UV-Visible spectroscopy and dynamics by dynamic light scattering (DLS). DLS studies reveal that the particle motion is diffusive at short times in crystals with ϕ 0.74. The observed sub-diffusive behavior at short times is due to the overlap (interpenetration) of the dangling polymer chains between the shells of neighbouring PNIPAM microgel particles. Overlap is found to disappear upon heating the crystals well above their melting temperature, Tm due to reduction in the particle size. Annealing studies confirm that the overlap of dangling polymer chains between the shells of neighbouring PNIPAM spheres is responsible for the stability of FCC-HCP coexistence observed in osmotically compressed PNIPAM microgel crystals. Results are discussed in the light of recent reports of stabilizing the HCP structure in hard sphere crystals by adding interacting polymer chains.

  5. Nuclear magnetic resonance study of epoxy- based polymer-dispersed liquid crystal droplets

    CERN Document Server

    Han, J W

    1998-01-01

    In this work, polymer-dispersed liquid crystals (PDLC) samples were prepared and studied by nuclear magnetic resonance. Proton NMR spectra and spin-lattice relaxations of 4-cyano-4'-pentylbiphenyl(5CB) and p-methoxybenzylidene-p-n-butylaniline (MBBA) liquid crystals confined in microdroplets were measured. The experimental results were compared with those of the liquid crystals in the pores of silica-gels and with those of the mixing components. The experimental results indicated that the nematic ordering in the microdroplets differed markedly from that observed in bulk nematic crystals. In addition, we examined spin-lattice relaxation mechanisms. The proton spin-lattice relaxation mechanisms in bulk nematic liquid crystals are well established. However, when nematic liquid crystals are confined in microdroplets, the relaxation mechanisms are expected to be affected. We examined possible relaxation mechanisms to explain the observed increase in the spin-lattice relaxation rate of liquid crystals confined in m...

  6. Effect of annealing temperature on the structural–microstructural and electrical characteristics of thallium bearing HTSC films prepared by chemical spray pyrolysis technique

    Indian Academy of Sciences (India)

    K K Verma; R S Tiwari; O N Srivastava

    2005-04-01

    In order to get good quality reproducible films of Tl : HTSC system, we have studied the different annealing conditions to finally achieve the optimized annealing condition. In the present investigation, Tl–Ca–Ba–Cu–O superconducting films have been prepared on YSZ (100) and MgO (100) single crystal substrates via precursor route followed by thallination. The post deposition heat treatments of the precursor films were carried out for various annealing temperatures (870°C, 890°C) and durations (1 and 2 min). The optimized thallination procedure occurred at 870°C for 2 min into good quality films with c ( = 0) ∼ 103 K for YSZ and c ( = 0) ∼ 98 K for MgO substrates, respectively. Further we have correlated the structural/microstructural characteristics of the films.

  7. Incidence of in situ annealing on the nanoscale topographical/electrical properties of the tunnel barrier in sputtered epitaxial Fe/MgO/Fe multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D J; Arabski, J; Da Costa, V Da; Schmerber, G; Bowen, M; Boukari, S; Beaurepaire, E, E-mail: dong-jik.kim@ipcms.u-strasbg.f, E-mail: eric.beaurepaire@ipcms.u-strasbg.f [IPCMS UMR 7504 CNRS, Universite de Strasbourg, 23 Rue du Loess, BP 43, 67034 Strasbourg Cedex 2 (France)

    2010-06-02

    Technological improvements in the magnetotransport performance of Fe/MgO/Fe stacks require nanoscale control over the topographical and electrical properties of the ultrathin MgO barrier. We have statistically investigated the incidence of in situ annealing of the lower Fe layer on the nanoscale topographical/electrical properties of Fe/MgO bilayers and the structural and magnetic properties of Fe/MgO/Fe/Co multilayers prepared by sputtering. This annealing step improves the crystal quality of both the lower Fe and the upper Fe/Co layers, leading to an enhanced saturated magnetic moment. Finally, this annealing step substantially mitigates the presence of nanohills on the lower Fe layer and improves the uniformity of the height and/or the thickness of the MgO tunnel barrier. Our results pave the way for studies of nanoscale transport on micrometre-sized devices through a better understanding of, and control over, nanoscale hotspots in the tunnel barrier.

  8. Austenite formation during intercritical annealing

    OpenAIRE

    A. Lis; J. Lis

    2008-01-01

    Purpose: of this paper is the effect of the soft annealing of initial microstructure of the 6Mn16 steel on the kinetics of the austenite formation during next intercritical annealing.Design/methodology/approach: Analytical TEM point analysis with EDAX system attached to Philips CM20 was used to evaluate the concentration of Mn, Ni and Cr in the microstructure constituents of the multiphase steel and mainly Bainite- Martensite islands.Findings: The increase in soft annealing time from 1-60 hou...

  9. Physicochemical, electrical and optical studies of methyl-3-(2-furylmethylidene) carbazate single crystal

    Indian Academy of Sciences (India)

    G Gomathi; R Gopalakrishnan

    2015-09-01

    The current study provides an insight into the physicochemical properties of an organic single crystal methyl-3-(2-furylmethylidene) carbazate, which was grown by employing the slow evaporation solution growth technique and its results were correlated for application point of view. The grown crystal was confirmed by performing single-crystal X-ray diffraction studies and Fourier transform infrared analysis. The optical, thermal, dielectric and mechanical properties of the grown single crystal were primarily investigated. Etching study was performed to analyse the defects and growth mechanism. Kurtz–Perry powder technique was used to study the second harmonic generation efficiency of the crystal and the crystal was found to exhibit Type-I phase matching.

  10. Crystal defect studies using x-ray diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  11. Annealing behavior of rolled AZ31 alloy sheet

    Institute of Scientific and Technical Information of China (English)

    PENG Wei-ping; LI Pei-jie; ZENG Pan

    2006-01-01

    The annealed microstructures of the rolled AZ31 alloy sheets were examined by using light optical microscopy. The mechanical properties were measured by tensile testing, with their crystal orientations analyzed by X-ray diffraction (XRD). After the annealing treatment, the elongated grains were transformed to equiaxed grains with uniform and homogeneous structures. The changes of microstructure decreased the yield strength and enhanced the elongation. The analysis of XRD shows that the AZ31 alloy sheet possesses intense basal-texture, which is weakened during the recrystallization while reinforced during the grain growth. The intense basal-texture induces low ductility, which hence makes the further rolling more difficult. The results indicate that the optimum annealing treatment during AZ31 alloys sheet rolling is at about 300 ℃ for 60-120 min.

  12. Effect of Annealing on Rare Earth Based Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    Li Jinhua

    2004-01-01

    Rare earth-based hydrogen storage alloy used as negative electrode materials for nickel-metal hydride (Ni-MH) batteries are used commercially.The effect of annealing treatment with different annealing temperature and time on the MLNi3.68 Co0.78 Mn0.35 Al0.27 and MMNi3.55 Co0.75 Mn0.40 Al0.30 alloys were investigated.The crystal microstructure,pressure-composition-isotherms (p-C-T) and electrochemical properties of alloys were examined by X-ray diffraction (XRD), automatic PCI monitoring system and electrical performance testing instruments.The optimum annealing treatment conditions of two kinds of alloys were determined.

  13. Molecular beam epitaxy growth and post-growth annealing of FeSe films on SrTiO3: a scanning tunneling microscopy study.

    Science.gov (United States)

    Li, Zhi; Peng, Jun-Ping; Zhang, Hui-Min; Zhang, Wen-Hao; Ding, Hao; Deng, Peng; Chang, Kai; Song, Can-Li; Ji, Shuai-Hua; Wang, Lili; He, Ke; Chen, Xi; Xue, Qi-Kun; Ma, Xu-Cun

    2014-07-02

    Low temperature scanning tunneling microscopy and spectroscopy are used to investigate the atomic and electronic structure evolution of FeSe films grown on SrTiO3 as a function of post-growth annealing. Single unit cell FeSe films are found to bond strongly with the underlying substrate, and become superconductive with diminishing chemical bond disorders at the interface via post-annealing. For thicker FeSe films, post-annealing removes excess Se in the films and leads to a transition from semiconductor into metallic behaviors. In double and multilayer films, strain-induced complex textures are observed and suggested to be the main cause for the absent superconductivity.

  14. Discrepancy between ambient annealing and H{sup +} implantation in optical absorption of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jinpeng, E-mail: hitljp@gmail.com [College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu (China); Li, Chundong [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang (China)

    2016-05-15

    The discrepancy between sub-bandgap absorption in ZnO induced by thermal annealing and H{sup +} implantation is investigated in this study for the first time. Results indicate that nonreductive annealing-induced optical absorption is independent of annealing ambient, and can be assigned to V{sub O}, whereas the absorption centers caused by H{sup +} implantation and H{sub 2} annealing are primarily associated with V{sub O} and ionized Zn{sub i}.

  15. Studies on Crystal Growth, Vibrational, Electronic Properties of Nonlinear Optical Crystal: Triglycine Phosphate

    Science.gov (United States)

    Meera, M. R.; Dipuna Das, C. N.; Bena Jothy, V.; Rayar, S. L.

    2016-10-01

    Nonlinear optics is a topic of much current interest that exhibits a great diversity. This is due to the technological potentials of certain nonlinear optical effects for photonic based technologies. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. In this context, the present work it is attempted to grow NLO active Triglycine phosphate [(NH2CH2COOH)3H3PO4](TGP) crystal from aqueous solution at room temperature by slow evaporation method. The geometry, intermolecular hydrogen bonding and harmonic vibrational wavenumbers of TGP was investigated with the help of B3LYP density functional theory (DFT) methods. Natural Bond Orbital (NBO) analysis confirms the occurrence of strong intermolecular N-H...O hydrogen bond. Second harmonic frequency generation was examined by Kurtz and Perry powder test. Theoretical first order hyperpolarizability value was calculated.

  16. Spectroscopic ellipsometry study of Cu{sub 2}ZnSnSe{sub 4} bulk crystals

    Energy Technology Data Exchange (ETDEWEB)

    León, M., E-mail: maximo.leon@uam.es; Lopez, N.; Merino, J. M.; Caballero, R. [Department of Applied Physics M12, Universidad Autónoma de Madrid, Madrid (Spain); Levcenko, S.; Gurieva, G. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Serna, R. [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain); Bodnar, I. V. [Department of Chemistry, Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus); Nateprov, A.; Guc, M.; Arushanov, E. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau MD 2028 (Moldova, Republic of); Schorr, S. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Institute of Geological Sciences, Free University Berlin, Malteserstr. 74-100, Berlin (Germany); Perez-Rodriguez, A. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs (Barcelona) (Spain); IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)

    2014-08-11

    Using spectroscopic ellipsometry we investigated and analyzed the pseudo-optical constants of Cu{sub 2}ZnSnSe{sub 4} bulk crystals, grown by the Bridgman method, over 0.8–4.5 eV photon energy range. The structures found in the spectra of the complex pseudodielectric functions were associated to E{sub 0}, E{sub 1A}, and E{sub 1B} interband transitions and were analyzed in frame of the Adachi's model. The interband transition parameters such as strength, threshold energy, and broadening were evaluated by using the simulated annealing algorithm. In addition, the pseudo-complex refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity were derived over 0.8–4.5 eV photon energy range.

  17. The effect of humidity on annealing of polymer optical fibre bragg gratings

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Nielsen, Kristian; Bang, Ole

    2015-01-01

    The effect of humidity on annealing of PMMA based microstructured polymer optical fiber (mPOF) Bragg gratings is studied. Polymer optical fibers (POFs) are annealed in order to release stress formed during the fabrication process. Un-annealed fibers will have high hysteresis and low sensitivity...

  18. The study of thermal tunable coupling between a Superconducting photonic crystal waveguide and semi-circular photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Oskooi, Somayeh; Barvestani, Jamal, E-mail: barvestani@tabrizu.ac.ir

    2016-08-15

    Highlights: • The light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal has been studied. • We utilized the finite difference time domain and plane wave expansion methods in the calculations. • The effect of the size of the nearest neighbor rods of waveguide on the coupling efficiency has been investigated. • The coupling efficiencies are reported versus the temperature of the superconducting waveguide. - Abstract: Through the present study, we investigated the light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal. By using the finite difference time domain method, we evaluated the coupling efficiency between the mentioned structures at the various temperatures for different waveguide sizes. Calculation demonstrated that the coupling efficiency strongly depended on the temperature of the superconductor. The peak value of the coupling efficiency was influenced by the size of the nearest neighbor rods of waveguide. The results have shown that it is possible to obtain high efficiency at the desired temperature with proper selection of physical parameters in far-infrared frequency region. This structure has great potential in the optical integration and other areas.

  19. A study on dual readout crystal calorimeter for hadron and jet energy measurement at a future lepton collider

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.P.; /Fermilab

    2010-01-01

    Studies of requirements and specifications of crystals are necessary to develop a new generation of crystals for dual readout crystal hadron or total absorption calorimeter. This is a short and basic study of the characteristics and hadron energy measurement of PbWO4 and BGO crystals for scintillation and Cerenkov Dual Readout hadron calorimeter.

  20. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  1. Study on Crystallization of Titanium Silicalite Zeolite (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Lin Min; Zhu Bin; Shu Xingtian; Wang Xieqing

    2009-01-01

    In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the process of crystallization of titanium silicalite zeolite. The research results revealed that at the initial stage of crystallization the interactions between silica gel and titania gel in the polymer blend could gradually lead to the formation of tiny crystal nuclei with complicated structure that could slowly grow up to form molecular sieves. Quite different from the conventional zeolites that use the acid sites as the catalytically active centers, the oxidative reactivity of the titanium silicalite zeolite was not proportional to its crystallinity and is associated with the oxidative centers of titanium contained in the zeolite.

  2. Formation of plasmonic silver nanoparticles using rapid thermal annealing at low temperature and study in reflectance reduction of Si surface

    Science.gov (United States)

    Barman, Bidyut; Dhasmana, Hrishikesh; Verma, Abhishek; Kumar, Amit; Pratap Chaudhary, Shiv; Jain, V. K.

    2017-09-01

    This work presents studies of plasmonic silver nanoparticles (AgNPs) formation at low temperatures (200 °C-300 °C) onto Si surface by sputtering followed with rapid thermal processing (RTP) for different time durations(5-30 min). The study reveals that 20 min RTP at all temperatures show minimum average size of AgNPs (60.42 nm) with corresponding reduction in reflectance of Si surface from 40.12% to mere 1.15% only in wavelength region 300-800 nm for RTP at 200 °C. A detailed supporting growth mechanism is also discussed. This low temperature technique can be helpful in achieving efficiency improvement in solar cells via reflectance reduction with additional features such as reproducibility, minimal time and very good adhesion without damaging underlying layers device parameters.

  3. Effect of annealing temperature on properties of RF sputtered Cu(In,Ga)Se2 thin films

    Science.gov (United States)

    Yu, Zhou; Yan, Chuanpeng; Yan, Yong; Zhang, Yanxia; Huang, Tao; Huang, Wen; Li, Shasha; Liu, Lian; Zhang, Yong; Zhao, Yong

    2012-09-01

    Cu(In,Ga)Se2 (CIGSe) thin films were prepared by radio frequency (RF) magnetron sputtering at room temperature, following vacuum annealing at different temperatures. We have investigated the effect of annealing temperature (150-550 °C) on the phase transformation process of the CIGSe films. The as-deposited precursor films show a near stoichiometry composition and amorphous structure. Composition loss of the films mainly occur in the annealing temperature range of 150-300 °C. Comparing with samples annealed at 300 °C, films annealed at 350 °C or higher temperatures exhibit almost similar composition and polycrystalline chalcopyrite structure. Crystal quality of the films improves with increasing annealing temperature. Reflectance spectra of the annealed films show interference fringe pattern. The calculated refractive indexes of the films are in the range of 2.4-2.5.

  4. Radiation annealing in cuprous oxide

    DEFF Research Database (Denmark)

    Vajda, P.

    1966-01-01

    Experimental results from high-intensity gamma-irradiation of cuprous oxide are used to investigate the annealing of defects with increasing radiation dose. The results are analysed on the basis of the Balarin and Hauser (1965) statistical model of radiation annealing, giving a square-root relati......-root relationship between the rate of change of resistivity and the resistivity change. The saturation defect density at room temperature is estimated on the basis of a model for defect creation in cuprous oxide....

  5. Optical study of Yb{sup 3+}/Yb{sup 2+} conversion in CaF{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarek, Slawomir M [Institute of Physics, Szczecin University of Technology, Aleja Piastow 48, 70-310 Szczecin (Poland); Tsuboi, Taiju [Faculty of Engineering, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Ito, Masahiko [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon 1 University, UMR CNRS 5620, Batiment A Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Boulon, Georges [Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon 1 University, UMR CNRS 5620, Batiment A Kastler, 10 rue Ampere, 69622 Villeurbanne (France); Leniec, Grzegorz [Institute of Physics, Szczecin University of Technology, Aleja Piastow 48, 70-310 Szczecin (Poland)

    2005-06-29

    Yb{sup 3+} ions with various site symmetries have been observed in the absorption and emission spectra of Yb{sup 3+}:CaF{sub 2} crystals, both {gamma}-irradiated and annealed in hydrogen. The absorption intensity value is found to be much higher for the {gamma}-irradiated crystal and strongly dependent on the gamma dose. The UV absorption spectra of {gamma}-irradiated and H{sub 2}-annealed CaF{sub 2}:5 at.% Yb{sup 3+} crystals are quite similar. Yb{sup 2+} absorption bands are observed at 360, 315, 271, 260, 227 and 214 nm, which are called A, B, C, D, F and G bands, respectively. For {gamma}-irradiated CaF{sub 2}:30 at.% Yb{sup 3+}, an additional band at 234 nm can be seen. It is suggested that only a negligible amount of Yb{sup 3+} ions are converted into Yb{sup 2+} under the {gamma}-irradiation. The presence of Yb{sup 2+} is confirmed by the 565 and 540 nm luminescence under 357 nm excitation. It is also suggested that the excitation in the A, C, D and F absorption bands of Yb{sup 2+} gives rise to photo-ionization of Yb{sup 2+} ions and electrons in the conduction band to form the excited Yb{sup 3+} ions which emit IR Yb{sup 3+} luminescence. The UV absorption and emission spectra obtained for {gamma}-irradiated and H{sub 2}-annealed crystals have different structures. This suggests that different mechanisms are responsible for the creation of Yb{sup 2+} ions. {gamma}-irradiation favours Yb{sup 2+} isolated centres by reduction of Yb{sup 3+} ions located at Ca{sup 2+} lattice sites, whereas annealing in hydrogen favours Yb{sup 2+} centres neighbouring Yb{sup 3+} ions when a Yb{sup 3+} ion pair captures a Compton electron. Also, {gamma}-irradiation does not change the position of Yb{sup 3+} ions converted into Yb{sup 2+} in the CaF{sub 2} lattice. In the case of H{sub 2} annealing, a Yb{sup 3+} ion converted to Yb{sup 2+} is shifted to the Ca{sup 2+} position in the lattice.

  6. Growth and study of some gel grown group II single crystals of iodate

    Indian Academy of Sciences (India)

    Sharda J Shitole; K B Saraf

    2001-10-01

    Single crystals of calcium iodate and barium iodate were grown by simple gel technique by single diffusion method. The optimum conditions were established by varying various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of the reactants etc. Crystals having different morphologies and habits were obtained. Prismatic, dendritic crystals of barium iodate and prismatic, needle shaped, hopper crystals of calcium iodate were obtained. Some of them were transparent, some transluscent, and few others were opaque. Both the crystals were studied using XRD, FT-IR, and thermal analysis. The crystals were doped by iron impurity. The effect of doping was studied using IR spectroscopy and thermal analysis.

  7. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    Science.gov (United States)

    Sathya, P.; Gopalakrishnan, R.

    2015-06-01

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker's microhardness tester. The Second Harmonic Generation (SHG) study revealed that the C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.

  8. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@annauniv.edu [Crystal Research Lab, Department of Physics, Anna University, Chennai-600002 (India)

    2015-06-24

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker’s microhardness tester. The Second Harmonic Generation (SHG) study revealed that the C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.

  9. Characterization studies on the additives mixed L-arginine phosphate monohydrate (LAP) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Haja Hameed, A.S., E-mail: hajahameed2001@gmail.co [PG and Research Department of Physics, Jamal Mohamed College, Tiruchirappalli 620 020, Tamil Nadu (India); Karthikeyan, C. [PG and Research Department of Physics, Jamal Mohamed College, Tiruchirappalli 620 020, Tamil Nadu (India); Ravi, G. [Department of Physics, Alagappa University, Karaikudi 630 003 (India); Rohani, S. [Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, N6A 5B9 (Canada)

    2011-04-01

    L-arginine phosphate monohydrate (LAP), potassium thiocyanate (KSCN) mixed LAP (LAP:KSCN) and sodium sulfite (Na{sub 2}SO{sub 3}) mixed LAP (LAP:Na{sub 2}SO{sub 3}) single crystals were grown by slow cooling technique. The effect of microbial contamination and coloration on the growth solutions was studied. The crystalline powders of the grown crystals were examined by X-ray diffraction and the lattice parameters of the crystals were estimated. From the FTIR spectroscopic analysis, various functional group frequencies associated with the crystals were assigned. Vickers microhardness studies were done on {l_brace}1 0 0{r_brace} faces for pure and additives mixed LAP crystals. From the preliminary surface second harmonic generation (SHG) results, it was found that the SHG intensity at (1 0 0) face of LAP:KSCN crystal was much stronger than that of pure LAP.

  10. Microcalorimetric study of the annealing hardening mechanism of a Cu-2.8Ni-1.4Si (at%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Donoso, E., E-mail: edonoso@ing.uchile.cl [Departamento de Ciencia de los Materiales, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Casilla 2777, Santiago (Chile); Espinoza, R. [Departamento de Ciencia de los Materiales, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Casilla 2777, Santiago (Chile); Dianez, M.J.; Criado, J.M. [Instituto de Ciencias de Materiales de Sevilla, C.S.I.C, Americo Vespucio 49, Isla de la Cartuja, Sevilla (Spain)

    2012-10-30

    The precipitation processes in a Cu-2.8 at% Ni-1.4 at% Si alloy were studied using differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and microhardeness measurements. The analysis of the calorimetric curves from room temperature to 900 K shows the presence of one exothermic reaction attributed to the formation of {delta}-Ni{sub 2}Si particles in the copper matrix that was confirmed by Transmission Electron Microscopy (TEM) and EDS microanalysis. The activation energies calculated for the precipitation of {delta}-Ni{sub 2}Si was lower than the ones corresponding to diffusion of nickel and silicon in copper. A correlation between of microhardness of the alloy and the formation of {delta}-Ni{sub 2}Si particles has been found.

  11. High pressure annealing of Europium implanted GaN

    KAUST Repository

    Lorenz, K.

    2012-02-09

    GaN epilayers were implanted with Eu to fluences of 1×10^13 Eu/cm2 and 1×10^15 Eu/cm2. Post-implant thermal annealing was performed in ultra-high nitrogen pressures at temperatures up to 1450 ºC. For the lower fluence effective structural recovery of the crystal was observed for annealing at 1000 ºC while optical activation could be further improved at higher annealing temperatures. The higher fluence samples also reveal good optical activation; however, some residual implantation damage remains even for annealing at 1450 ºC which leads to a reduced incorporation of Eu on substitutional sites, a broadening of the Eu luminescence lines and to a strongly reduced fraction of optically active Eu ions. Possibilities for further optimization of implantation and annealing conditions are discussed.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  12. On simulated annealing phase transitions in phylogeny reconstruction.

    Science.gov (United States)

    Strobl, Maximilian A R; Barker, Daniel

    2016-08-01

    Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry.

  13. The structure of oxygen-annealed La1.9Ca1.1Cu2O6 superconductor

    Science.gov (United States)

    Hu, Hefei; Zhu, Yimei; Zhong, Ruidan; Schneeloch, John; Liu, Tiansheng; Gu, Genda; Tranquada, John; Hill, John; Billinge, Simon

    2014-03-01

    Effect of annealing under high oxygen pressure on La1.9Ca1.1Cu2O6 (2126) is studied and structure change at the nanometer scale is investigated by using transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). The as-grown single crystal is non-superconducting, which is thought to be due to oxygen deficiency. With annealing under a high oxygen pressure, superconductivity is induced with Tc ~ 53 K. While the as-grown 2126 shows homogenous structure at a large scale, after oxygen annealing, the sample develops a secondary phase La2-xCaxCuO4(214) at nanometer scale, which is evidenced by electron diffraction patterns together with EELS analysis. The content of 214 phase is estimated to be around 20% based on the analysis of scanning TEM images. Magnetization measurements indicate that the 214 phase is also superconducting. Chemical change of the remaining 2126 phase after oxygen annealing will also be discussed.

  14. Effect of annealing on the electrical and optical properties of electron beam evaporated ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al Asmar, R. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Ferblantier, G. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Mailly, F. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Gall-Borrut, P. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France); Foucaran, A. [Centre d' Electronique et de Micro-optoelectronique de Montpellier, CEM2-UNIVERSITE MONTPELLIER II-UMR CNRS 5507, Place E. Bataillon, 34095 Montpellier (France)]. E-mail: foucaran@cem2.univ-montp2.fr

    2005-02-01

    Zinc oxide thin films have been grown on (100)-oriented silicon substrate at a temperature of 100 deg. C by reactive e-beam evaporation. Structural, electrical and optical characteristics have been compared before and after annealing in air by measurements of X-ray diffraction, real and imaginary parts of the dielectric coefficient, refractive index and electrical resistivity. X-ray diffraction measurements have shown that ZnO films are highly c-axis-oriented with a full width at half maximum (FWMH) lower than 0.5 deg . The electrical resistivity increases from 10{sup -2} {omega} cm to reach a value about 10{sup 9} {omega} cm after annealing at 750 deg. C. The FWHM decreases after annealing treatment, which proves the crystal quality improvement. Ellipsometer measurements show the improvement of the refractive index and the real dielectric coefficient after annealing treatment at 750 deg. C of the ZnO films evaporated by electron beam. Atomic force microscopy shows that the surfaces of the electron beam evaporated ZnO are relatively smooth. Finally, a comparative study on structural and optical properties of the electron beam evaporated ZnO and the rf magnetron deposited one is discussed.

  15. Kinetic study on the isothermal and nonisothermal crystallization of monoglyceride organogels.

    Science.gov (United States)

    Meng, Zong; Yang, Lijun; Geng, Wenxin; Yao, Yubo; Wang, Xingguo; Liu, Yuanfa

    2014-01-01

    The isothermal and nonisothermal crystallization kinetics of monoglyceride (MAG) organogels were studied by pulsed nuclear magnetic resonance (pNMR) and differential scanning calorimetry (DSC), respectively. The Avrami equation was used to describe the isothermal crystallization kinetics and experimental data fitted the equation fairly well. Results showed that the crystal growth of MAG organogels was a rod-like growth of instantaneous nuclei at higher degrees of supercooling and a plate-like form with high nucleation rate at lower degrees of supercooling. The exothermic peak in nonisothermal DSC curves for the MAG organogels became wider and shifted to lower temperature when the cooling rate increased, and nonisothermal crystallization was analyzed by Mo equation. Results indicated that at the same crystallization time, to get a higher degree of relative crystallinity, a higher cooling rate was necessary. The activation energy of nonisothermal crystallization was calculated as 739.59 kJ/mol according to the Kissinger method. Therefore, as the results of the isothermal and nonisothermal crystallization kinetics for the MAG organogels obtained, the crystallization rate, crystal nucleation, and growth during the crystallization process could be preliminarily monitored through temperature and cooling rate regulation, which laid the foundation for the real industrial manufacture and application of the MAG organogels.

  16. The Effect of Argon Ambient Pressure and Annealing Time on Bulk MgB2 Superconductor

    Science.gov (United States)

    Erdem, Murat; Ozturk, Ozgur; Asikuzun, Elif; Kaya, Seydanur; Safran, Serap; Kilic, Ahmet; Terzioglu, Cabir

    2015-03-01

    The effects of Ar ambient pressure (vacuum, 0B, 10B and 20B) and annealing times (0.5 h and 1 h) on microstructural, superconducting and mechanical properties of bulk superconducting MgB2 are investigated. The samples are produced using the solid state reaction method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements were performed for determination of the crystal structure, and surface morphology of MgB2 samples, respectively. The superconducting properties were studied by AC magnetic susceptibility and DC resistivity measurements. Increasing the Ar pressure decreased the lattice parameters and hence the average grain size. Increasing the annealing time results in larger lattice parameters and larger grain formation. The susceptibility measurements revealed two step transition which is reminiscent of granular superconductors. The intra-grain transition temperature is determined to be 38.4 K for all samples. The inter-grain transition temperatures of 37.2 K is obtained for samples produced under Ar ambient. The samples produced under Ar ambient have better superconducting properties than the ones produced in vacuum. Increasing the annealing time under vacuum further decreases the superconducting properties probably due to Mg loss. This research is supported by Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KUBAP-03/2012-03.

  17. Study on Birefringent Color Generation for a Reflective Ferroelectric Liquid Crystal Display

    Science.gov (United States)

    Valyukh, Sergiy; Valyukh, Iryna; Xu, Peizhi; Chigrinov, Vladimir

    2006-10-01

    We study the possibility of a layer of a surface stabilized ferroelectric liquid crystal coupled with several retardation plates for birefringent color generation. Double and single polarizer reflective bistable dichromatic ferroelectric liquid crystal displays are considered. We demonstrate that one or two retardation plates are sufficient for a display having good color characteristics and high brightness. Optimal parameters for green/red and blue/yellow ferroelectric liquid crystal displays are found.

  18. Growth, optical, thermal and mechanical studies of methyl 4-hydroxybenzoate single crystals

    Science.gov (United States)

    Vijayan, N.; Ramesh Babu, R.; Gunasekaran, M.; Gopalakrishnan, R.; Ramasamy, P.

    2003-08-01

    Bulk single crystals of methyl 4-hydroxy benzoate have been successfully grown by slow evaporation solution growth technique at room temperature. The grown crystals have been subjected to spectroscopic studies like FT-IR and FT-Raman. The hardness of the crystal was measured by Vicker's microhardness tester. The lattice parameters have been calculated by X-ray diffraction technique and the values are in good agreement with the reported JCPDS file.

  19. Study of Radiation Damage in Lead Tungstate Crystals Using Intense High Energy Beams

    CERN Document Server

    Batarin, V; Butler, J; Cheung, H; Datsko, V S; Davidenko, A; Derevshchikov, A A; Dzhelyadin, R I; Fomin, Y; Frolov, V; Goncharenko, Yu M; Grishin, V; Kachanov, V A; Khodyrev, V Yu; Khroustalev, K; Konoplyannikov, A K; Konstantinov, A S; Kravtsov, V; Kubota, Y; Leontiev, V M; Lukanin, V S; Maisheev, V; Matulenko, Yu A; Melnik, Yu M; Meshchanin, A P; Mikhalin, N; Minaev, N G; Mochalov, V; Morozov, D A; Mountain, R; Nogach, L V; Pikalov, V A; Ryazantsev, A; Semenov, P A; Shestermanov, K E; Soloviev, L; Solovyanov, V L; Stone, S; Ukhanov, M N; Uzunian, A V; Vasilev, A; Yakutin, A; Yarba, J V

    2003-01-01

    We report on the effects of radiation on the light output of lead tungstate crystals. The crystals were irradiated by pure, intense high energy electron and hadron beams as well as by a mixture of hadrons, neutrons and gammas. The crystals were manufactured in Bogoroditsk, Apatity (both Russia), and Shanghai (China). These studies were carried out at the 70-GeV proton accelerator in Protvino.

  20. Study of radiation damage in lead tungstate crystals using intense high-energy beams

    Energy Technology Data Exchange (ETDEWEB)

    Batarin, V.A.; Brennan, T.; Butler, J.; Cheung, H.; Datsko, V.S.; Davidenko, A.M.; Derevschikov, A.A.; Dzhelyadin, R.I.; Fomin, Y.V.; Frolov, V.; Goncharenko, Y.M.; Grishin, V.N.; Kachanov, V.A.; Khodyrev, V.Y.; Khroustalev, K.; Konoplyannikov, A.K.; Konstantinov, A.S.; Kravtsov, V.I.; Kubota, Y.; Leontiev, V.M.; Lukanin, V.S.; Maisheev, V.A.; Matulenko, Y.A.; Melnick, Y.M.; Meschanin, A.P.; Mikhalin, N.E.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Mountain, R.; Nogach, L.V.; Pikalov, V.A.; Ryazantsev, A.V.; Semenov, P.A. E-mail: semenov@mx.ihep.su; Shestermanov, K.E.; Soloviev, L.F.; Solovianov, V.L.; Stone, S.; Ukhanov, M.N.; Uzunian, A.V.; Vasiliev, A.N.; Yakutin, A.E.; Yarba, J

    2003-10-21

    We report on the effects of radiation on the light output of lead tungstate crystals. The crystals were irradiated by pure, intense high-energy electron and hadron beams as well as by a mixture of hadrons, neutrons and gammas. The crystals were manufactured in Bogoroditsk, Apatity (both Russia), and Shanghai (China). These studies were carried out at the 70-GeV proton accelerator in Protvino.

  1. PWO crystals for CMS electromagnetic calorimeter : studies of the radiation damage kinetics

    OpenAIRE

    Drobychev, G.; Auffray, E.; Dormenev, V.; Korzhik, M; Lecoq, P.; Lopatic, A.; Nédélec, P.; Peigneux, J. P.; D. Sillou

    2005-01-01

    Kinetics of radiation damage of the PWO crystals under irradiation and recovery were studied. Crystals were irradiated with dose corresponding to average one expected in the electromagnetic calorimeter (working dose irradiation). Radiation damage and recovery were monitored through measurements of PWO optical transmission. An approach is proposed which allows evaluating the influence of the PWO crystals properties on the statistical term in the energy resolution of the electromagnetic calorim...

  2. Molecular and morphological aspects of annealing-induced stabilization of starch crystallites.

    Science.gov (United States)

    Gomand, Sara V; Lamberts, Lieve; Gommes, Cedric J; Visser, Richard G F; Delcour, Jan A; Goderis, Bart

    2012-05-14

    A unique series of potato (mutant) starches with highly different amylopectin/amylose (AP/AM) ratios was annealed in excess water at stepwise increasing temperatures to increase the starch melting (or gelatinization) temperatures in aqueous suspensions. Small-angle X-ray scattering (SAXS) experiments revealed that the lamellar starch crystals gain stability upon annealing via thickening for high-AM starch, whereas the crystal surface energy decreases for AM-free starch. In starches with intermediate AP/AM ratio, both mechanisms occur, but the surface energy reduction mechanism prevails. Crystal thickening seems to be associated with the cocrystallization of AM with AP, leading to very disordered nanomorphologies for which a new SAXS data interpretation scheme needed to be developed. Annealing affects neither the crystal internal structure nor the spherulitic morphology on a micrometer length scale.

  3. Effect of annealing on superconductivity in Fe1+y(Te1-xSx) system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We have synthesized polycrystalline samples of Fe1.11(Te1-xSx) and single crystals of Fe1+y(Te0.88S0.12),and characterized their properties.Our results show that the solid solution of S in the Fe1.11Te tetragonal lattice is limited,~10%.We observed superconductivity at ~8 K in both polycrystalline samples and single crystals.Magnetization measurements reveal that the volume fraction is small for this superconducting phase in both polycrystalline samples as-synthesized and single crystals as-grown.It is found that annealing in air enhances the superconducting fraction;the maximum fraction is almost 100% in the single crystals annealed in air at 300°C.We discuss the effect of annealing on superconductivity and transport properties at the normal state in the Fe1+y(Te1-xSx) system in terms of decrease of the excess Fe.

  4. Optical characteristics of ZnO single crystal grown by the hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G. Z.; Yin, J. G., E-mail: gzhchen@siom.ac.cn, E-mail: yjg@siom.ac.cn; Zhang, L. H.; Zhang, P. X.; Wang, X. Y.; Liu, Y. C. [Chinese Academy of Sciences, Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics (China); Zhang, C. L. [Guilin Research Institute of Geology for Mineral Resources (China); Gu, S. L. [Nanjing University, Department of Physics (China); Hang, Y., E-mail: yhang@siom.ac.cn [Chinese Academy of Sciences, Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics (China)

    2015-12-15

    ZnO single crystals have been grown by the hydrothermal method. Raman scattering and Photoluminescence spectroscopy (PL) have been used to study samples of ZnO that were unannealed or annealed in different ambient gases. It is suggested that the green emission may originate from defects related to copper in our samples.

  5. Effects of oxygen partial pressure, deposition temperature, and annealing on the optical response of CdS:O thin films as studied by spectroscopic ellipsometry

    Science.gov (United States)

    Junda, Maxwell M.; Grice, Corey R.; Subedi, Indra; Yan, Yanfa; Podraza, Nikolas J.

    2016-07-01

    Ex-situ spectroscopic ellipsometry measurements are made on radio frequency magnetron sputtered oxygenated cadmium sulfide (CdS:O) thin films. Films are deposited onto glass substrates at room temperature and at 270 °C with varying oxygen to total gas flow ratios in the sputtering ambient. Ellipsometric spectra from 0.74 to 5.89 eV are collected before and after annealing at 607 °C to simulate the thermal processes during close-space sublimation of overlying cadmium telluride in that solar cell configuration. Complex dielectric function (ɛ = ɛ1 + iɛ2) spectra are extracted for films as a function of oxygen gas flow ratio, deposition temperature, and post-deposition annealing using a parametric model accounting for critical point transitions and an Urbach tail for sub-band gap absorption. The results suggest an inverse relationship between degree of crystallinity and oxygen gas flow ratio, whereas annealing is shown to increase crystallinity in all samples. Direct band gap energies are determined from the parametric modeling of ɛ and linear extrapolations of the square of the absorption coefficient. As-deposited samples feature a range of band gap energies whereas annealing is shown to result in gap energies ranging only from 2.40 to 2.45 eV, which is close to typical band gaps for pure cadmium sulfide.

  6. RBS study of the reactions in the Si/Co/Ta/Co system after isothermal annealings between 360 and 650 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Franklyn, C. E-mail: franklyn@aec.co.za; Aspeling, J.; Strydom, W.; Malunga, R

    2002-05-01

    Epitaxial cobalt silicide is one of the promising silicides for the future development of new metal-semiconductor devices. In an attempt to understand the effect of Ta on the diffusion mechanism, layered structures of Si(1 0 0)/Co/Ta/Co with 7 and 30 A Ta thickness respectively were prepared. Reactions after isothermal vacuum annealings between 360 and 650 deg. C were investigated by RBS, using a 2 Mev He{sup 2+}ion beam and analyzed with the RUMP program. The Co below the Ta reacted to form either Co{sub 2}Si and CoSi or, CoSi and CoSi{sub 2}, depending on the annealing temperature. After 180 min at 360 deg. C the Co above the Ta, starts with indiffusion only after considerable outdiffusion of Ta (7 A layer). Mass transport of Co occurs after 420 min at 360 deg. C. For the 30 A Ta, outdiffusion was delayed until after 70 min at 530 deg. C, but longer anneals confirm the 7 A results. After annealing for 30 min at 650 deg. C, nearly all the Co above and below the 30 A Ta had converted to CoSi{sub 2}. These results are discussed in terms of the barrier properties of Ta, as well as impurities in the system.

  7. Effect of hydrogenation, low energy ion irradiation and annealing on hydrogen bonding to polycrystalline diamond surface studied by high resolution electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Michaelson, S.; Ternyak, O.; Akhvlediani, R.; Hoffman, A. [Schulich Faculty of Chemistry, Technion, Israeli Institute of Technology, Haifa (Israel); Lafosse, A.; Bertin, M.; Azria, R. [Paris-Sud Univ. et CNRS, Lab. des Collisions Atomiques et Moleculaires, 91 - Orsay (France)

    2007-09-15

    The effects of different processes of hydrogenation, thermal treatment and ion irradiation of hydrogenated polycrystalline diamond surface have been investigated by means of high resolution electron energy loss spectroscopy (HR-EELS). Analysis of the different contributions in the CH stretching, overtones and combination modes, as well as changes in relative intensities of the diamond CC and CH{sub x} related vibrations allowed us to identify the CH{sub x} adsorbed species on the diamond surface following the different treatments. Ex-situ hydrogenation of diamond surface by means of exposure to H-MW plasma results in a fully hydrogenated well-ordered diamond surface and etching of the amorphous phase located on the grain boundaries present on the sample after CVD-deposition. Annealing this surface to 600 C results in some subtle changes in the HR-EELS, probably associated with decomposition of CH{sub x} (x=2,3) adsorbed species. Ion irradiation on the surface induces partial desorption of hydrogen from the diamond phase and a large amount of amorphous defects, some of them of sp and the most of them of sp{sup 2} character. Annealing to 600-700 C of the irradiated surface leads to hydrogen desorption. In-situ hydrogenation of the irradiated and annealed sample does not restore the diamond structure, and results in hydrogenated amorphous surface, unstable with thermal annealing above 600-700 C. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Detailed study of flat bands appearing in metallic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vala, Ali Soltani [Department of Solid State Physics, Faculty of Physics, University of Tabriz, PO Box 51665-163, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, PO Box 51665-163, Tabriz (Iran, Islamic Republic of); Sedghi, Aliasghar; Hosseini, Naser [Department of Solid State Physics, Faculty of Physics, University of Tabriz, PO Box 51665-163, Tabriz (Iran, Islamic Republic of); Kalafi, Manouchehr [Department of Solid State Physics, Faculty of Physics, University of Tabriz, PO Box 51665-163, Tabriz (Iran, Islamic Republic of); Research Institute for Applied Physics and Astronomy, University of Tabriz, PO Box 51665-163, Tabriz (Iran, Islamic Republic of); Excellence Centre for Photonics, University of Tabriz, PO Box 51665-163, Tabriz (Iran, Islamic Republic of)

    2011-09-15

    It has been difficult to compute the band structures of metallic photonic crystals for H-polarization. The existence of surface plasmon modes is the major reason for difficulty due to the localized nature of these modes. In this study, by virtue of the efficiency of the newly developed Dirichlet-to-Neumann map method, we are able to investigate the details of the flat bands in a two dimensional square lattice with metallic cylinders. We have obtained fine band structure for H polarization around the flat band region which has not been reported to the best of our knowledge. Our numerical results show that for the frequency around the surface plasmon, the modes are highly localized at the interface of the cylindrical metallic rods and air background and also by approaching the modes to the surface plasmon frequency the localization length decreases and the number of field's nodes increases considerably. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Study of growth of single crystal ribbon in space

    Science.gov (United States)

    Wood, V. E.; Markworth, A. J.

    1975-01-01

    The technical feasibility is studied of growing single-crystal silicon ribbon in the space environment. Procedures are described for calculating the electromagnetic fields produced in a silicon ribbon by an rf shaping coil. The forces on the ribbon and the degree of shaping to be expected are determined. The expected steady-state temperature distribution in the ribbon is calculated in the one-dimensional approximation. Calculations on simplified models indicate, that lack of flatness of the shaped ribbon and excessive heating of the melt by the eddy currents induced by the shaping fields may pose problems. An analysis of the relative effects of various kinds of forces other than electromagnetic showed that in the space environment capillarity forces would dominate, and that the shape of the melt is thus principally determined by the shape of any solids with which it comes in contact. This suggests that ribbon may be produced simply by drawing between parallel wires. A concept is developed for a process of off-angle growth, in which the ribbon is pulled at an angle to the solidification front. Such a process promises to offer increased growth rate, better homogeneity, and thinner ribbon.

  10. Kinetic study of ultrasonic antisolvent crystallization of sirolimus

    Energy Technology Data Exchange (ETDEWEB)

    Gandhi, P.J. [Chemical Engineering Department, S. V. National Institute of Technology, Surat 395007, Gujarat (India); Concept Medical Research Pvt. Ltd., Ground Floor, Narayan Darshan, Nr. Rupam Cinema, Salabatpura, Surat 395003, Gujarat (India); Murthy, Z.V.P.

    2010-03-15

    Sirolimus, generally used in organ transplantation, is derived from bacterium Streptomyces hygroscopicus. Mass transfer controlled ultrasonic antisolvent method was used for determining the precipitation kinetics of sirolimus. The effect of temperature was determined on the particles size, percentage recovery, critical radius of nucleus, mass transfer coefficient, etc. for sirolimus dissolved in methanol and antisolvent water using ultrasonic treatment. The study was done using classical nucleation theory, which can also be applied to precipitation processes. Experiments were carried out at various temperatures; viz: 45, 50, 60 and 70 C and the percentage recoveries of sirolimus were found to be 90.74, 91.5, 92.64 and 93.61%, respectively, for initial amount of 8 mg dissolved in 1 mL of solvent and further introduced into 12 mL of HPLC water. The final average diameters of crystals observed for the temperatures were 1371, 1287, 1063 and 863 nm, respectively. The systems were found to be mass transfer controlling and that the mass diffusivities were found to be about 3.97 x 10{sup -9}, 4.00 x 10{sup -9}, 3.01 x 10{sup -9} and 1.92 x 10{sup -9} m{sup 2}/s, respectively. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Crystallization in Fe- and Co-Based Amorphous Alloys Studied by In-Situ X-Ray Diffraction

    Science.gov (United States)

    Zhang, L. J.; Yu, P. F.; Cheng, H.; Zhang, M. D.; Liu, D. J.; Zhou, Z.; Jin, Q.; Liaw, P. K.; Li, G.; Liu, R. P.

    2016-12-01

    The amorphous alloys, Fe80Si20, Fe78Si9B13, and Fe4Co67Mo1.5Si16.5B11, were prepared by the spinning method in pure argon. The crystallization behaviors of the three amorphous alloys were researched by in-situ X-ray diffraction (XRD), and the crystallization activation energy was calculated, based on the results of differential scanning calorimetry. The crystallization mechanism of the Fe- and Co-based alloys was analyzed, based on the experimental data. The transformation kinetics was described in terms of Johnson-Mehl-Avrami kinetics, except that the Avrami exponent of the Fe78Si9B13 amorphous alloy annealed at 753 K (480 °C) was 4.12; the obtained values for the overall Avrami exponents of the other three amorphous alloys were below 1, as usually found for the Fe-Si amorphous alloys.

  12. Crystallization of mullite from kaolin according to optical spectroscopy of impurity ions

    Science.gov (United States)

    Igo, A. V.

    2017-06-01

    The luminescence spectra of Cr3+ and Eu3+ ions embedded in mullite ceramic samples are studied. The samples were annealed at temperatures from 600 to 1200°C. Beginning at a temperature of 890°C, the spectra demonstrated the presence of a newly formed crystal phase. At temperatures from 920 to 1200°C, the crystalline form manifested itself as a stable mullite phase. A temperature of 920°C corresponded to a sharp change in the symmetry of the crystal field around Eu3+ (phase transition). The parameters of the spectral lines of ions were used to estimate the mullite crystal-lattice disorder and the residual deformations in ceramic samples. The spread of the mullite crystal-lattice parameter is determined as |Δ a/a| ≈ 0.028 and is independent of the annealing temperature.

  13. Studies on codoping behavior of Nd:Mg:LiNbO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kar, S. [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Choubey, R.K. [Department of Applied Physics, SGSITS, Indore 452 003 (India); Sen, P. [Department of Applied Physics, SGSITS, Indore 452 003 (India); Bhagavannarayana, G. [Crystal Growth Section, National Physical Laboratory, New Delhi 110 012 (India); Bartwal, K.S. [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)]. E-mail: bartwalks@yahoo.co.in

    2007-04-30

    Undoped, Mg doped and Mg, Nd codoped LiNbO{sub 3} single crystals were grown by Czochralski technique. Powder X-ray diffraction (XRD) analysis shows that doping does not change the basic structure of LiNbO{sub 3} crystal. Optical transmission study shows the blue shift in the cutoff frequency in Mg doped and Mg, Nd codoped LiNbO{sub 3} crystals. Five absorption peaks are observed in Nd:Mg:LiNbO{sub 3} crystals corresponding to transitions from {sup 4}I{sub 9/2} ground state of Nd{sup 3+} ions. Crystalline perfection of these crystals examined using high-resolution X-ray diffraction (HRXRD) technique. The Mg, Nd codoped crystals show better crystalline perfection.

  14. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    Science.gov (United States)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  15. Effect of air annealing on structural and magnetic properties of Ni/NiO nanoparticles

    Science.gov (United States)

    Nadeem, K.; Ullah, Asmat; Mushtaq, M.; Kamran, M.; Hussain, S. S.; Mumtaz, M.

    2016-11-01

    We reported systematic study on structural and magnetic properties of nickel/nickel oxide (Ni/NiO) nanoparticles annealed under air atmosphere at different temperatures in the range 400-800 °C. The XRD spectra revealed two phases such as Ni and NiO. The average crystallite size increases with increasing annealing temperature. A phase diagram was developed between two phases versus annealing temperature using XRD analysis. At lower annealing temperatures, Ni phase is dominant which does not easily undergo oxidation to form NiO. The NiO phase increases with increasing annealing temperature. FTIR spectroscopy revealed an increase in the NiO phase content at higher annealing temperature, which is in agreement with the XRD analysis. SEM images showed that nanoparticles are well separated at lower annealing temperatures but get agglomerated at higher annealing temperatures. The ferromagnetic (FM) Ni phase content and saturation magnetization (Ms) showed nearly the same trend with increasing annealing temperature. The nanoparticles annealed at 500 °C and 800 °C revealed highest and lowest Ms values, respectively, which is in accordance with the XRD phase diagram. Coercivity showed an overall decreasing trend with increasing annealing temperature due to decreased concentration of FM Ni phase and increasing average crystallite size. All these measurements indicate that the structural and magnetic properties of Ni/NiO nanoparticles are strongly influenced by the annealing temperature.

  16. Crystallization of Calcium Carbonate in a Large Scale Field Study

    Science.gov (United States)

    Ueckert, Martina; Wismeth, Carina; Baumann, Thomas

    2017-04-01

    The long term efficiency of geothermal facilities and aquifer thermal energy storage in the carbonaceous Malm aquifer in the Bavarian Molasse Basin is seriously affected by precipitations of carbonates. This is mainly caused by pressure and temperature changes leading to oversaturation during production. Crystallization starts with polymorphic nuclei of calcium carbonate and is often described as diffusion-reaction controlled. Here, calcite crystallization is favoured by high concentration gradients while aragonite crystallization is occurring at high reaction rates. The factors affecting the crystallization processes have been described for simplified, well controlled laboratory experiments, the knowledge about the behaviour in more complex natural systems is still limited. The crystallization process of the polymorphic forms of calcium carbonate were investigated during a heat storage test at our test site in the eastern part of the Bavarian Molasse Basin. Complementary laboratory experiments in an autoclave were run. Both, field and laboratory experiments were conducted with carbonaceous tap water. Within the laboratory experiments additionally ultra pure water was used. To avoid precipitations of the tap water, a calculated amount of {CO_2} was added prior to heating the water from 45 - 110°C (laboratory) resp. 65 - 110°C (field). A total water volume of 0.5 L (laboratory) resp. 1 L (field) was immediately sampled and filtrated through 10 - 0.1

  17. Phormidium phycoerythrin forms hexamers in crystals: a crystallographic study.

    Science.gov (United States)

    Sonani, Ravi Raghav; Sharma, Mahima; Gupta, Gagan Deep; Kumar, Vinay; Madamwar, Datta

    2015-08-01

    The crystallographic analysis of a marine cyanobacterium (Phormidium sp. A09DM) phycoerythrin (PE) that shows distinct sequence features compared with known PE structures from cyanobacteria and red algae is reported. Phormidium PE was crystallized using the sitting-drop vapour-diffusion method with ammonium sulfate as a precipitant. Diffraction data were collected on the protein crystallography beamline at the Indus-2 synchrotron. The crystals diffracted to about 2.1 Å resolution at 100 K. The crystals, with an apparent hexagonal morphology, belonged to space group P1, with unit-cell parameters a = 108.3, b = 108.4 Å, c = 116.6 Å, α = 78.94, β = 82.50, γ = 60.34°. The molecular-replacement solution confirmed the presence of 12 αβ monomers in the P1 cell. The Phormidium PE elutes as an (αβ)3 trimer of αβ monomers from a molecular-sieve column and exists as [(αβ)3]2 hexamers in the crystal lattice. Unlike red algal PE proteins, the hexamers of Phormidium PE do not form higher-order structures in the crystals. The existence of only one characteristic visual absorption band at 564 nm suggests the presence of phycoerythrobilin chromophores, and the absence of any other types of bilins, in the Phormidium PE assembly.

  18. Moessbauer studies of YBa[sub 2](Cu[sub 1-x]Fe[sub x])[sub 3]O[sub 7-d] annealed in an inert atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Maknani, J. (Lab. de Magnetisme et Materiaux Magnetiques, CNRS, 92 Meudon (France)); Dormann, J.L. (Lab. de Magnetisme et Materiaux Magnetiques, CNRS, 92 Meudon (France)); Terziev, V.G. (Lab. de Magnetisme et Materiaux Magnetiques, CNRS, 92 Meudon (France)); Jove, J. (Inst. Curie, Paris (France)); Pankowska, H. (Lab. de Physique des Solides, CNRS, 92 Meudon (France)); Gorochov, O. (Lab. de Physique des Solides, CNRS, 92 Meudon (France)); Suryanarayanan, R. (Lab. de Physique des Solides, CNRS, 92 Meudon (France))

    1994-11-01

    YBa[sub 2](Cu[sub 1-x]Fe[sub x])[sub 3]O[sub 7-d] annealed in an Ar atmosphere, then reoxygenated at various temperatures, has been studied by Moessbauer spectroscopy at 300 K and low temperature with and without an applied field of 5.5 T. The results are interpreted as being due to Fe clustering remaining in the chains rather than a significant transfer to the planes. (orig.)

  19. Electron Crystallographic Study on Structure Determination for Minute Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Fanghua; FAN Haifu; WAN Zhenghua; HU Jianjun; TANG Dong

    2007-01-01

    @@ In the 1970s the development of high-resolution electron microscopy (HREM) provided a new approach to structure determination for minute crystals, which is thoroughly different from the diffraction methods.However, the previous method of trial and error has its own limits, such as some preliminary structural information must be known in advance; the crystals must be sufficient strong under the electron beam irradiation;and not all atoms can be seen in the image. Two ideas were proposed to initiate the present research project:one is to transform an arbitrary image into the crystal structure map, and the other is to enhance the image resolution by combining the information contained in the image and the corresponding electron diffraction pattern. These ideas have been realized via the combination of electron microscopy and diffraction crystallography.

  20. Composition dependent thermal annealing behaviour of ion tracks in apatite

    Energy Technology Data Exchange (ETDEWEB)

    Nadzri, A., E-mail: allina.nadzri@anu.edu.au [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia); Schauries, D.; Mota-Santiago, P.; Muradoglu, S. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64287 Darmstadt (Germany); Gleadow, A.J.W. [School of Earth Science, University of Melbourne, Melbourne, VIC 3010 (Australia); Hawley, A. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Kluth, P. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia)

    2016-07-15

    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.