WorldWideScience

Sample records for crystal annealing study

  1. Study of photoluminescence from annealed bulk-ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoneta, M.; Ohishi, M.; Saito, H. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Yoshino, K. [Department of Electrical and Electronic Engineering, Miyazaki University, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Honda, M. [Faculty of Science, Naruto University of Education, 748 Nakajima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2006-03-15

    We have investigated the influence of rapid thermal annealing on the photoluminescence of bulk-ZnO single crystal. As-grown ZnO wafer, illuminated by 325 nm ultraviolet light at 4.2 K, emitted the visible luminescence of pale green centered of 2.29 eV. The luminescence was observed by the anneal at the temperature range between 400 C and 1000 C, however, its intensity decreased with anneal temperature. The free-exciton and the 2.18 eV emission line were obtained by the anneal at 1200 C for 60 sec. From the X-ray diffraction and the surface morphology measurements, the improvement of the crystallinity of bulk-ZnO crystal were confirmed. We suggest that a rapid thermal annealing technique is convenience to improve the the quality of bul-ZnO single crystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Annealing behavior of solution grown polyethylene single crystals

    NARCIS (Netherlands)

    Loos, J.; Tian, M.

    2006-01-01

    The morphology evolution of solution grown polyethylene single crystals has been studied upon annealing below their melting temperature by using atomic force microscopy (AFM). AFM investigations have been performed ex situ, which means AFM investigations at room temperature after the annealing

  3. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    International Nuclear Information System (INIS)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; James, R.B.

    2010-01-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  4. Annealing of KDP crystals in vacuum and under pressure

    International Nuclear Information System (INIS)

    Pritula, I.M.; Kolybayeva, M.I.; Salo, V.I.

    1997-01-01

    The effect of the high temperature annealing (T an > 230 degrees C) on the absorption spectra and laser damage threshold of KDP crystals was studied in the present paper. The experiments on isotermal annealing were performed under pressure in the atmosphere with specific properties. The composition of the atmosphere was selected to be chose to that of the desorbing gas component determined during annealing in vacuum. The mentioned conditions allowed to conduct annealing in the temperature range of 230 - 280 degrees C without degradation of the sample. The variations in the absorption spectra showed that the effect of the annealing is most strongly revealed in the short - wave region of the spectrum (λ -1 before and k=0.12 cm -1 after annealing) demonstrate that at temperatures ∼ 230 - 280 degrees C the processes ensuring the improvement of the structure quality are stimulated in the volume of the crystals: (a) before the annealing laser damage threshold was 1.5 10 11 W/cm 2 ; (b) after the annealing (t = 280 degrees C) it became 4 10 11 W/cm 2

  5. Annealing effect of H+ -implanted single crystal silicon on strain and crystal structure

    International Nuclear Information System (INIS)

    Duo Xinzhong; Liu Weili; Zhang Miao; Gao Jianxia; Fu Xiaorong; Lin Chenglu

    2000-01-01

    The work focuses on the rocking curves of H + -implanted single silicon crystal detected by Four-Crystal X-ray diffractometer. The samples were annealed under different temperatures. Lattice defect in H + -implanted silicon crystals was detected by Rutherford Backscattering Spectrometry. It appeared that H-related complex did not crush until annealing temperature reached about 400 degree C. At that temperature H 2 was formed, deflated in silicon lattice and strained the lattice. But defects did not come into being in large quantity. The lattice was undamaged. When annealing temperature reached 500 degree C, strain induced by H 2 deflation crashed the silicon lattice. A large number of defects were formed. At the same time bubbles in the crystal and blister/flaking on the surface could be observed

  6. On crystallization of bisphenol-A polycarbonate thin films upon annealing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chunhong; Li, Qichao; Mao, Wenfeng; Wang, Peng; He, Chunqing, E-mail: hecq@whu.edu.cn

    2015-10-16

    Crystallization of polycarbonate (PC) films as a function of annealing time has been investigated by various methods. A distinct diffraction peak at 17.56°, a sharp decrease of film thickness, an increase of refractive index and branch-type structures on the surface are found merely for the film after crystallization. Interestingly, positron annihilation parameters demonstrate fractional free-volumes in PC films vary significantly not only before crystallization but also at the early stage of annealing, which are not found by other methods. The results show that free-volumes in PC film must be increased remarkably before crystallization, which enables the occurrence of molecule rearrangement. - Highlights: • Fractional free-volume in PC film decreased of early stage of annealing. • Crystallization of PC film on Si substrate occurred after annealed for ∼48 hours. • Fractional free-volume in PC film increased remarkably before crystallization. • Positron diffusion length and S parameter revealed the variation of free volumes.

  7. On crystallization of bisphenol-A polycarbonate thin films upon annealing

    International Nuclear Information System (INIS)

    Yang, Chunhong; Li, Qichao; Mao, Wenfeng; Wang, Peng; He, Chunqing

    2015-01-01

    Crystallization of polycarbonate (PC) films as a function of annealing time has been investigated by various methods. A distinct diffraction peak at 17.56°, a sharp decrease of film thickness, an increase of refractive index and branch-type structures on the surface are found merely for the film after crystallization. Interestingly, positron annihilation parameters demonstrate fractional free-volumes in PC films vary significantly not only before crystallization but also at the early stage of annealing, which are not found by other methods. The results show that free-volumes in PC film must be increased remarkably before crystallization, which enables the occurrence of molecule rearrangement. - Highlights: • Fractional free-volume in PC film decreased of early stage of annealing. • Crystallization of PC film on Si substrate occurred after annealed for ∼48 hours. • Fractional free-volume in PC film increased remarkably before crystallization. • Positron diffusion length and S parameter revealed the variation of free volumes

  8. Investigations of morphological changes during annealing of polyethylene single crystals

    NARCIS (Netherlands)

    Tian, M.; Loos, J.

    2001-01-01

    The morphological evolution of isolated individual single crystals deposited on solid substrates was investigated during annealing experiments using in situ and ex situ atomic force microscopy techniques. The crystal morphology changed during annealing at temperatures slightly above the original

  9. Hp Ge: Purification, crystal growth, and annealing properties

    International Nuclear Information System (INIS)

    Hall, R.N.

    1984-01-01

    The prospects for growing HP Ge crystals of increased size and purity are examined. One interesting approach is to grow dislocation-free crystals, which must then be annealed to reduce the concentration of V 2 H traps. The phenomena which occur during annealing are discussed and compared with experiment. Hydrogen, present in atomic form at the growth temperature, forms H 2 molecules during cooling, causing the effective diffusion coefficient to decrease rapidly. Models representing the reactions between H and the V 2 H, A(H, Si), and D(H,O) complexes are presented and analyzed

  10. Crystallization degree change of expanded graphite by milling and annealing

    International Nuclear Information System (INIS)

    Tang Qunwei; Wu Jihuai; Sun Hui; Fang Shijun

    2009-01-01

    Expanded graphite was ball milled with a planetary mill in air atmosphere, and subsequently thermal annealed. The samples were characterized by using X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). It was found that in the milling initial stage (less than 12 h), the crystallization degree of the expanded graphite declined gradually, but after milling more than 16 h, a recrystallization of the expanded graphite toke place, and ordered nanoscale expanded graphite was formed gradually. In the annealing initial stage, the non-crystallization of the graphite occurred, but, beyond an annealing time, recrystallizations of the graphite arise. Higher annealing temperature supported the recrystallization. The milled and annealed expanded graphite still preserved the crystalline structure as raw material and hold high thermal stability.

  11. Hydrogen Annealing Of Single-Crystal Superalloys

    Science.gov (United States)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  12. Growth and characterization of air annealing Mn-doped YAG:Ce single crystal for LED

    International Nuclear Information System (INIS)

    Xiang, Weidong; Zhong, Jiasong; Zhao, Yinsheng; Zhao, Binyu; Liang, Xiaojuan; Dong, Yongjun; Zhang, Zhimin; Chen, Zhaoping; Liu, Bingfeng

    2012-01-01

    Highlights: ► The YAG:Ce,Mn single crystal was well synthesized by the Czochralski (CZ) method. ► The emission intensity of the sample has been influenced after annealing. ► Annealed in the air at 1200 °C was the most optimal annealing condition. ► The single crystal could be used in the white light LED which emitted by blue light. - Abstract: The growth of Mn-doped YAG:Ce (yttrium aluminum garnet doped cerium) single crystal by the Czochralski (CZ) method and the characterization of its spectroscopy and color-electric parameters are presented. The absorption spectra indicate that the crystal absorbed highly in the 300–500 nm wavelength range. The emission spectrum of the crystal consists of a peak around 538 nm when excited by 460 nm blue light, which prove the YAG:Ce,Mn single crystal could be used in the white light emitting doides (LED). The different charges of Mn ions have different luminescence properties, and the air annealing process for the single crystal would change the concentration of Mn ions with different charges, which could influence the emission intensity of the single crystal.

  13. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, I.; Takahashi, H.; Kojima, H.

    1992-01-01

    This paper reports that La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen

  14. Annealing effect on superconductivity of La2CuO4 single crystals

    International Nuclear Information System (INIS)

    Tanaka, L.; Takahashi, H.; Kojima, H.

    1992-01-01

    La 2 CuO 4 single crystals grown at an oxygen pressure of 0.2 MPa by TSFZ method are superconducting below 32 K, and show a semiconducting behavior in nonsuperconducting state. The single crystals of La 2 CuO 4 are changed from superconductors to semiconductors by annealing in argon, and are returned to superconductors by annealing at ambient pressure of oxygen. Therefore, superconductivity of the La 2 CuO 4 single crystals is due to excess oxygen. (orig.)

  15. Effect of Te atmosphere annealing on the properties of CdZnTe single crystals

    International Nuclear Information System (INIS)

    Yu Pengfei; Jie Wanqi; Wang Tao

    2011-01-01

    Low-resistivity CdZnTe:In (CZT:In) single crystals were annealed under Te atmosphere according to the behaviors of deep-donor Te antisite. The results indicated that the star-like Cd inclusions were completely eliminated after 120 h annealing. Meanwhile, the resistivity is greatly enhanced. The resistivity of the slice annealed after 240 h was achieved as high as 1.8x10 11 Ω cm, five orders of magnitude higher than that of as-grown slice. It suggested that the deep-donor level Te antisites were successfully introduced to pin the Fermi level at the mid band-gap position. The IR transmittances of the slices were also improved, which increased as the annealing time increased. PL measurement revealed that the (D 0 ,X) peak representing high quality of CZT crystal appeared. It can be concluded that the quality of CZT crystals is obviously improved after annealing under Te atmosphere. - Highlights: → High resistivity is due to deep-donor level Te Cd . → The resistivity achieved was as high as 1.8x10 11 Ω cm. → Star-like inclusions are Cd inclusions. → (D 0 ,X) peak represents the improvement of the crystal quality.

  16. Structural changes in the crystal-amorphous interface of isotactic polypropylene film induced by annealing and γ-irradiation

    International Nuclear Information System (INIS)

    Nishimoto, Sei-ichi; Seike, Hideo; Chaisupakitsin, M.; Yoshii, Fumio; Makuuchi, Keizo.

    1995-01-01

    Annealing and radiation effects on the microstructures of isotactic polypropylenes, homopolymer and ethylene (<2.3 wt%) incorporated random copolymers, in the solid state were studied to get mechanistic insight into the modification and degradation of mechanical properties. The growth of helical conformation of isotactic chains in the crystal-amorphous interface was induced to greater extent by γ-irradiation, while the transition from smectic to monoclinic modifications in the crystal phase occurred simultaneously by annealing. The yield stress of the polypropylene films increased with the increased content of helical conformation as the result of annealing and/or γ-irradiation. (author)

  17. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    International Nuclear Information System (INIS)

    Gong, Maogao; Xiang, Weidong; Liang, Xiaojuan; Zhong, Jiasong; Chen, Daqin; Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run

    2015-01-01

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y 3 Al 5 O 12 single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application

  18. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Maogao [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Zhong, Jiasong; Chen, Daqin [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

    2015-08-05

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y{sub 3}Al{sub 5}O{sub 12} single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application.

  19. Resistive switching behavior in single crystal SrTiO{sub 3} annealed by laser

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xinqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Shuai, Yao, E-mail: yshuai@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wu, Chuangui, E-mail: cgwu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Luo, Wenbo [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Sun, Xiangyu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Yuan, Ye; Zhou, Shengqiang [Helmholtz-Zentrum Dresden Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, D-01328 Dresden (Germany); Ou, Xin [State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Wanli [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Collaboration Innovation Center of Electronic Materials and Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-12-15

    Highlights: • Laser annealing was used to introduce oxygen vacancies into the single crystal SrTiO{sub 3}. • The effect of laser annealing with different fluence on the single crystal SrTiO{sub 3} was systematically studied. • The concentration of oxygen vacancies can be tuned by changing the fluence of laser. • Resistive switching behavior was observed in the sample with relatively high laser fluence after an electro-forming process. - Abstract: Single crystal SrTiO{sub 3} (STO) wafers were annealed by XeCl laser (λ = 308 nm) with different fluences of 0.4 J/cm{sup 2}, 0.6 J/cm{sup 2} and 0.8 J/cm{sup 2}, respectively. Ti/Pt electrodes were sputtered on the surface of STO wafer to form co-planar capacitor-like structures of Pt/Ti/STO/Ti/Pt. Current-Voltage measurements show that the leakage current is enhanced by increasing laser fluence. Resistive switching behavior is only observed in the sample annealed by laser with relatively high fluence after an electro-forming process. The X-ray photoelectron spectroscopy measurements indicate that the amount of oxygen vacancies increases with the increase of laser fluence. This work indicates resistive switching appears when enough oxygen vacancies are generated by the laser, which form conductive filaments under an external electric field.

  20. Quantitative analysis of swelling on annealing of hydrogen ion implanted diamond single crystals

    International Nuclear Information System (INIS)

    Kuznetsov, G.F.

    2006-01-01

    Local swelling observed upon high-temperature annealing of natural diamond single crystals implanted by 350-keV hydrogen ions with a dose of 12 10 16 cm 2 is studied. Based on room-temperature measurements, Griffith cracking criterion in combination with gas law, model quantitative calculations of the swelling size and the amount of hydrogen molecules in a swelling have been carried out for the first time. At room temperature, T 1 293 K, the amount of local elastic stresses in the upper layer of the diamond is counterbalanced by inner hydrogen pressure. Behavior of the gas bubbles with the annealing temperature increase up to 1693 K and repeated annealing at a temperature of 1743 K has been calculated [ru

  1. Ionization annealing of semiconductor crystals. Part two: the experiment

    Directory of Open Access Journals (Sweden)

    Garkavenko A. S.

    2014-12-01

    Full Text Available There is a conception that irradiation of semiconductor crystals with high energy electrons (300 keV results in a significant and irreversible deterioration of their electrical, optical and structural properties. Semiconductors are typically irradiated by low voltage electron accelerators with a continuous flow, the current density in such accelerators is 10–5—10–6 A/cm2, the energy — 0,3—1 MeV. All changes in the properties after such irradiation are resistant at room temperature, and marked properties recovery to baseline values is observed only after prolonged heating of the crystals to a high temperature. In contrast, the authors in their studies observe an improvement of the structural properties of semiconductor crystals (annealing of defects under irradiation with powerful (high current pulsed electron beams of high energy (E0 = 0,3–1 MeV, t = 0,1—10 ns, Ω = 1—10 Hz, j = 20—300 A/cm2. In their previous paper, the authors presented theoretical basis of this effect. This article describes an experimental study on the influence of high-current pulsed electron beams on the optical homogeneity of semiconductor GaAs and CdS crystals, confirming the theory put forward earlier.

  2. Pulsed Q-switched ruby laser annealing of Bi implanted Si crystals investigated by channeling

    International Nuclear Information System (INIS)

    Deutch, B.I.; Shih-Chang, T.; Shang-Hwai, L.; Zu-Yao, Z.; Jia-Zeng, H.; Ren-Zhi, D.; Te-Chang, C.; De-Xin, C.

    1979-01-01

    Channeling was used to investigate pulsed, Q switched ruby-laser annealed and thermally annealed Si single crystals implanted with 40-keV Bi ions to a dose of 10 15 atoms/cm 2 . After thermal annealing, residual damage decreased with increasing annealing temperature to a minimum value of 30% at 900 0 C. The Bi atoms in substitutional sites reached a maximum value (50%) after annealing at 750 0 C but decreased with increasing annealing temperature. Out diffusion of Bi atoms occurred at temperatures higher than 625 0 C. For comparison, the residual damage disappeared almost completely after pulsed-laser annealing (30 ns pulse width, Energy, E = 3J/cm 2 ). The concentration of Bi in Si exceeded its solid solubility by an order of magnitude; 95% of Bi atoms were annealed to substitutional sites. Laser pulses of different energies were used to investigate the efficiency of annealing. (author)

  3. High resolution electron microscopy study of as-prepared and annealed tungsten-carbon multilayers

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Gronsky, R.; Kortright, J.B.

    1988-12-01

    A series of sputtered tungsten-carbon multilayer structures with periods ranging from 2 to 12 nm in the as-prepared state and after annealing at 500/degree/C for 4 hours has been studied with high resolution transmission electron microscopy. The evolution with annealing of the microstructure of these multilayers depends on their period. As-prepared structures appear predominantly amorphous from TEM imaging and diffraction. Annealing results in crystallization of the W-rich layers into WC in the larger period samples, and less complete or no crystallization in the smaller period samples. X-ray scattering reveals that annealing expands the period in a systematic way. The layers remain remarkably well-defined after annealing under these conditions. 12 refs., 4 figs., 1 tab

  4. [Effect of annealing temperature on the crystallization and spectroscopic response of a small-molecule semiconductor doped in polymer film].

    Science.gov (United States)

    Yin, Ming; Zhang, Xin-Ping; Liu, Hong-Mei

    2012-11-01

    The crystallization properties of the perylene (EPPTC) molecules doped in the solid film of the derivative of polyfluorene (F8BT) at different annealing temperatures, as well as the consequently induced spectroscopic response of the exciplex emission in the heterojunction structures, were studied in the present paper. Experimental results showed that the phase separation between the small and the polymer molecules in the blend film is enhanced with increasing the annealing temperature, which leads to the crystallization of the EPPTC molecules due to the strong pi-pi stacking. The size of the crystal phase increases with increasing the annealing temperature. However, this process weakens the mechanisms of the heterojunction configuration, thus, the total interfacial area between the small and the polymer molecules and the amount of exciplex are reduced significantly in the blend film. Meanwhile, the energy transfer from the polymer to the small molecules is also reduced. As a result, the emission from the exciplex becomes weaker with increasing the annealing temperature, whereas the stronger emission from the polymer molecules and from the crystal phase of the small molecules can be observed. These experimental results are very important for understanding and tailoring the organic heterojunction structures. Furthermore, this provides photophysics for improving the performance of photovoltaic or solar cell devices.

  5. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    International Nuclear Information System (INIS)

    Zappettini, A.; Zambelli, N.; Benassi, G.; Calestani, D.; Pavesi, M.

    2014-01-01

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  6. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zappettini, A.; Zambelli, N.; Benassi, G.; Calestani, D. [Istituto Materiali Elettronica e Magnetismo – Consiglio Nazionale delle Ricerche, Parma (Italy); Pavesi, M. [Istituto Materiali Elettronica e Magnetismo – Consiglio Nazionale delle Ricerche, Parma (Italy); Istituto di Fisica e Scienze della Terra, Università degli Studi di Parma, Parma (Italy)

    2014-06-23

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  7. The Effects of Annealing Parameters on the Crystallization and Morphology of Cu(In,GaSe2 Absorber Layers Prepared by Annealing Stacked Metallic Precursors

    Directory of Open Access Journals (Sweden)

    Chia-Ho Huang

    2014-01-01

    Full Text Available CIGS films are prepared by single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor. The annealing processes were performed using various Ar pressures, heating rates, and soaking times. A higher Ar pressure is needed to fabricate highly crystalline CIGS films, as no extra Se-vapor source is supplied. As the heating rate increases, the surface morphologies of the CIGS films become looser and some cracks are observed. However, the influence of soaking time is insignificant and the selenization process only requires a short time when the precursors are selenized at a higher temperature with a lower heating rate and a higher Ar pressure. In this study, a dense chalcopyrite CIGS film with a thickness of about 1.5-1.6 μm, with large grains (~1.2 μm and no cracking or peeling is obtained after selenizing at a temperature of 550°C, an Ar pressure of 300 Torr, a heating rate of 60°C/min, and a soaking time of 20 min. By adequate design of the stacked precursor and controlling the annealing parameters, single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor is simplified for the fabrication of a fully crystallized chalcopyrite CIGS absorber layers with good crystallization and large grains.

  8. Temperature dependence of radiation colloidal centers production and annealing in alkali halide crystals

    International Nuclear Information System (INIS)

    Kristapson, J.Z.; Ozerskii, V.J.

    1981-01-01

    The investigation results on temperature dependences of production and annealing of radiation colloidal color centers have been reviewed. In order to produce such centers in NaCl, KCl and KBr crystals the doses of 10 2 -10 4 Mrad as well as irradiation temperatures of 300-600 K and post-irradiation heating of up to 800 K were applied. It has been demonstrated that to produce X-centers, it is necessary to have optimal temperature and initial critical dose during both irradiation and post-irradiation heating of crystals. It has been also found that during annealing hole centers produced are different with regard to thermal stability. The possible recombination mechanisms of hole and electron products of radiolysis during post-irradiation heating has been analyzed [ru

  9. Structural study of conventional and bulk metallic glasses during annealing

    International Nuclear Information System (INIS)

    Pineda, E.; Hidalgo, I.; Bruna, P.; Pradell, T.; Labrador, A.; Crespo, D.

    2009-01-01

    Metallic glasses with conventional glass-forming ability (Al-Fe-Nd, Fe-Zr-B, Fe-B-Nb compositions) and bulk metallic glasses (Ca-Mg-Cu compositions) were studied by synchrotron X-ray diffraction during annealing throughout glass transition and crystallization temperatures. The analysis of the first diffraction peak position during the annealing process allowed us to follow the free volume change during relaxation and glass transition. The structure factor and the radial distribution function of the glasses were obtained from the X-ray measurements. The structural changes occurred during annealing are analyzed and discussed.

  10. a-Si:H crystallization from isothermal annealing and its dependence on the substrate used

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lopez, M., E-mail: marlonrl@yahoo.com.mx [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Orduna-Diaz, A.; Delgado-Macuil, R.; Gayou, V.L.; Bibbins-Martinez, M. [CIBA-Tlaxcala, Instituto Politecnico Nacional, Tepetitla, Tlax. 90700 (Mexico); Torres-Jacome, A.; Trevino-Palacios, C.G. [INAOE, Tonantzintla, Puebla, Pue. 72000 (Mexico)

    2010-10-25

    We present hydrogenated amorphous silicon (a-Si:H) films which were deposited on two different substrates (glass and mono-crystalline silicon) after an isothermal annealing treatment at 250 deg. C for up to 14 h. The annealed amorphous films were analyzed using atomic force microscopy, Raman and FTIR spectroscopy. Films deposited on glass substrate experienced an amorphous-crystalline phase transition after annealing because of the metal-induced crystallization effect, reaching approximately 70% conversion after 14 h of annealing. An absorption frequency of the TO-phonon mode that varies systematically with the substoichiometry of the silicon oxide in the 1046-1170 cm{sup -1} region was observed, revealing the reactivity of the film with the annealing time. For similar annealing time, films deposited on mono-crystalline silicon substrate remained mainly amorphous with minimal Si-crystalline formation. Therefore, the crystalline formations and the shape of the films surfaces depends on the annealing time as well as on the substrate employed during the deposition process of the a-Si:H film.

  11. Crystallization and segregation in vitreous rutile films annealed at high temperature

    International Nuclear Information System (INIS)

    Omari, M.A.; Sorbello, R.S.; Aita, C.R.

    2005-01-01

    Vitreous titania films with rutile short-range order were sputter deposited on unheated fused silica substrates, sequentially annealed at 973 and 1273 K, and examined by Raman microscopy, scanning electron microscopy, and x-ray diffraction. A segregated microstructure developed after the 1273 K anneal. This microstructure consists of supermicron-size craters dispersed in a matrix of submicron rutile crystals. Ti-O short-range order in the craters is characteristic of a mixture of two high pressure phases, m-TiO 2 (monoclinic P2 1 /c space group) and α-TiO 2 (tetragonal Pbcn space group). We calculated that a high average compressive stress parallel to the substrate must be accommodated in the films at 1273 K, caused by the difference in the thermal expansion coefficients of titania and fused silica. The formation of the segregated microstructure is modeled by considering two processes at work at 1273 K to lower a film's internal energy: crystallization and nonuniform stress relief. The Gibbs-Thomson relation shows that small m-TiO 2 crystallites are able to form directly from vitreous TiO 2 at 1273 K. However, the preferred mechanism for forming α-TiO 2 is likely to be by epitaxial growth at crystalline rutile twin boundaries (secondary crystallization). Both phases are denser than crystalline rutile and reduce the average thermal stress in the films

  12. Effect of high temperature annealing on defects and optical properties of ZnO single crystals

    International Nuclear Information System (INIS)

    Jiang, M.; Wang, D.D.; Zou, B.; Chen, Z.Q.; Kawasuso, A.; Sekiguchi, T.

    2012-01-01

    Hydrothermal grown ZnO single crystals were annealed in N 2 or O 2 between 900 and 1300 C. Positron lifetime measurements reveal a single lifetime in all the ZnO samples before and after annealing. The positron lifetime is about 181 ps after annealing at 900 C in either N 2 or O 2 atmosphere. However, increase of the positron lifetime is observed after further annealing the sample at higher temperatures up to 1300 C, and it has a faster increase in O 2 ambient. Temperature dependence measurements show that the positron lifetime has very slight increase with temperature for the 900 C annealed sample, while it shows notable variation for the sample annealed at 1300 C. This implied that annealing at high temperature introduces additional defects. These defects are supposed to be Zn vacancy-related defects. Cathodoluminescence (CL) measurements indicates enhancement of both UV and green emission after annealing, and the enhancement of green emission is much stronger for the samples annealed in O 2 ambient. The possible origin of green emission is tentatively discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Spectroscopic and crystallographic studies of YAG:Pr4+ single crystals

    International Nuclear Information System (INIS)

    Pawlak, D.; Frukacz, Z.; Mierczyk, Z.; Suchocki, A.; Zachara, J.

    1998-01-01

    Y 3 Al 5 O 12 single crystals doped with praseodymium and magnesium ions have been prepared. The reversible color change of this crystal is observed when annealing in oxidizing or reducing atmospheres. The change is ascribed to the formation of Pr 4+ in the as-grown crystal, caused by the second dopant, Mg 2+ . The absorption spectra of YAG:Pr,Mg in the range 200-1100 nm, as grown and annealed in air and H 2 /N 2 atmosphere, are presented and discussed. Additional broad absorption bands are observed for the as-grown crystals and those annealed in oxidizing atmosphere. Crystallographic investigations of the original crystal and after annealing in a reducing atmosphere as described above, show no distinct structural differences. A redox mechanism is proposed to explain the color change during annealing. (orig.)

  14. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Machida, Emi [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Research Fellowships of the Japan Society for the Promotion of Science, Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472 (Japan); Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192 (Japan); Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ikenoue, Hiroshi [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  15. Mechanisms of aluminium-induced crystallization and layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers.

    Science.gov (United States)

    Wang, J Y; Wang, Z M; Jeurgens, L P H; Mittemeijer, E J

    2009-06-01

    Aluminium-induced crystallization (ALIC) of amorphous Si and subsequent layer exchange (ALILE) occur in amorphous-Si/polycrystalline-Al bilayers (a-Si/c-Al) upon annealing at temperatures as low as 165 degrees C and were studied by X-ray diffraction and Auger electron spectroscopic depth profiling. It follows that: (i) nucleation of Si crystallization is initiated at Al grain boundaries and not at the a-Si/c-Al interface; (ii) low-temperature annealing results in a large Si grain size in the continuous c-Si layer produced by ALILE. Thermodynamic model calculations show that: (i) Si can "wet" the Al grain boundaries due to the favourable a-Si/c-Al interface energy (as compared to the Al grain-boundary energy); (ii) the wetting-induced a-Si layer at the Al grain boundary can maintain its amorphous state only up to a critical thickness, beyond which nucleation of Si crystallization takes place; and (iii) a tiny driving force controls the kinetics of the layer exchange.

  16. Comparative Study of Furnace and Flash Lamp Annealed Silicon Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Maheshwar Shrestha

    2018-03-01

    Full Text Available Low-temperature growth of microcrystalline silicon (mc-Si is attractive for many optoelectronic device applications. This paper reports a detailed comparison of optical properties, microstructure, and morphology of amorphous silicon (a-Si thin films crystallized by furnace annealing and flash lamp annealing (FLA at temperatures below the softening point of glass substrate. The initial a-Si films were grown by plasma enhanced chemical vapor deposition (PECVD. Reflectance measurement indicated characteristic peak in the UV region ~280 nm for the furnace annealed (>550 °C and flash lamp annealed films, which provided evidence of crystallization. The film surface roughness increased with increasing the annealing temperature as well as after the flash lamp annealing. X-ray diffraction (XRD measurement indicated that the as-deposited samples were purely amorphous and after furnace crystallization, the crystallites tended to align in one single direction (202 with uniform size that increased with the annealing temperature. On the other hand, the flash lamp crystalized films had randomly oriented crystallites with different sizes. Raman spectroscopy showed the crystalline volume fraction of 23.5%, 47.3%, and 61.3% for the samples annealed at 550 °C, 650 °C, and with flash lamp, respectively. The flash lamp annealed film was better crystallized with rougher surface compared to furnace annealed ones.

  17. TEM studies of P+ implanted and subsequently laser annealed Si

    International Nuclear Information System (INIS)

    Sadana, D.K.; Wilson, M.C.; Booker, G.R.; Washburn, J.

    1979-05-01

    The present investigation is concerned with laser annealing of P + implanted Si. The aim of the work was to study the crystallization behavior of damage structure occurring due to high dose rate implantation using transmission electron microscopy (TEM) as the method of examination

  18. Thermal annealing and recoil reactions of 128I atoms in thermal neutron activated iodate-nitrate mixed crystals

    International Nuclear Information System (INIS)

    Mishra, S.P.; Sharma, R.B.

    1983-01-01

    Recoil reaction of 128 I atoms in neutron irradiated mixed crystals (iodate-nitrate) have been studied by thermal annealing methods. The retention of 128 I (i.e. radioactivity of 128 I retained in the parent chemi cal form) decreases sharply in the beginning and then attains saturation value with the increase in concentration of nitrate. The annealing followed the usual characteristic pattern, viz., a steep rise in retention within the first few minutes and then a saturation value thereafter but these saturation values in case of mixed crystals are lower in comparison to those of pure iodate targets. The process obeys simple first order kinetics and the activation energy obtained are of lower order than those obtained in case of pure targets. The results are discussed in the light of present ideas and the role of nitrate ion and its radiolytic products have also been invoked. (author)

  19. Effects of post-annealing and cobalt co-doping on superconducting properties of (Ca,Pr)Fe{sub 2}As{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T., E-mail: 8781303601@mail.ecc.u-tokyo.ac.jp; Ogino, H.; Yakita, H.; Yamamoto, A.; Kishio, K.; Shimoyama, J.

    2014-10-15

    Highlights: • Post-annealing at 400 °C killed superconductivity for Co-free sample. • Pr,Co co-doped samples maintained superconductivity even after annealing. • Two-step superconducting transition was observed via magnetization measurement. • Bulk superconductivity of low-T{sub c} component was confirmed. • Superconducting volume fraction of high-T{sub c} component was always small. - Abstract: In order to clarify the origin of anomalous superconductivity in (Ca,RE)Fe{sub 2}As{sub 2} system, Pr doped and Pr,Co co-doped CaFe{sub 2}As{sub 2} single crystals were grown by the FeAs flux method. These samples showed two-step superconducting transition with T{sub c1} = 25–42 K, and T{sub c2} < 16 K, suggesting that (Ca,RE)Fe{sub 2}As{sub 2} system has two superconducting components. Post-annealing performed for these crystals in evacuated quartz ampoules at various temperatures revealed that post-annealing at ∼400 °C increased the c-axis length for all samples. This indicates that as-grown crystals have a certain level of strain, which is released by post-annealing at ∼400 °C. Superconducting properties also changed dramatically by post-annealing. After annealing at 400 °C, some of the co-doped samples showed large superconducting volume fraction corresponding to the perfect diamagnetism below T{sub c2} and high J{sub c} values of 10{sup 4}–10{sup 5} A cm{sup −2} at 2 K in low field, indicating the bulk superconductivity of (Ca,RE)Fe{sub 2}As{sub 2} phase occurred below T{sub c2}. On the contrary, the superconducting volume fraction above T{sub c2} was always very small, suggesting that 40 K-class superconductivity observed in this system is originating in the local superconductivity in the crystal.

  20. Thermal annealing studies of GeTe-Sb2Te3 alloys with multiple interfaces

    Directory of Open Access Journals (Sweden)

    Valeria Bragaglia

    2017-08-01

    Full Text Available A high degree of vacancy ordering is obtained by annealing amorphous GeTe-Sb2Te3 (GST alloys deposited on a crystalline substrate, which acts as a template for the crystallization. Under annealing the material evolves from amorphous to disordered rocksalt, to ordered rocksalt with vacancies arranged into (111 oriented layers, and finally converts into the stable trigonal phase. The role of the interface in respect to the formation of an ordered crystalline phase is studied by comparing the transformation stages of crystalline GST with and without a capping layer. The capping layer offers another crystallization interface, which harms the overall crystalline quality.

  1. Planar nucleation and crystallization in the annealing process of ion implanted silicon

    International Nuclear Information System (INIS)

    Luo Yimin; Chen Zhenhua; Chen Ding

    2010-01-01

    According to thermodynamic and kinetic theory, considering the variation of bulk free energy and superficial energy after nucleation as well as the migration of atoms, we study systematically the planar nucleation and crystallization that relate to two possible transition mechanisms in the annealing process of ion implanted Si: (1) liquid/solid transition: the critical nucleation work is equal to half the increased superficial energy and inversely proportional to the supercooling ΔT. Compared with bulk nucleation, the radius of the critical nucleus decreases by half, and the nucleation rate attains its maximum at T = T m /2. (2) amorphous/crystalline transition: the atoms contained in the critical nucleus and situated on its surface, as well as critical nucleation work, are all directly proportional to the height of the nucleus, and the nucleation barrier is equal to half the superficial energy too. In addition, we take SiGe semiconductor as a specific example for calculation; a value of 0.03 eV/atom is obtained for the elastic strain energy, and a more reasonable result can be gotten after taking into account its effect on transition Finally, we reach the following conclusion as a result of the calculation: for the annealing of ion implanted Si, no matter what the transition method is-liquid or solid planar nucleation-the recrystallization process is actually carried out layer by layer on the crystal substrate, and the probability of forming a 'rod-like' nucleus is much larger than that of a 'plate-like' nucleus. (semiconductor materials)

  2. Study of defects created in silicon during thermal annealings - Correlation with the presence of oxygen

    International Nuclear Information System (INIS)

    Olivier, Michel

    1975-01-01

    Defects generation and precipitation phenomena in Czochralski silicon crystals annealed ten of hours at 1000 C have been observed. The defects (perfect dislocation loops emitted by semi-coherent precipitates, Frank loops in correlation with coherent precipitates) are studied by Transmission Electron Microscopy, X-Ray Topography and chemical etching. The generation of defects is connected to the precipitation of interstitial oxygen as it is shown by studying the infrared absorption at 9 μm. We present a lot of experimental results which indicates that the precipitates are SiO 2 clusters; in particular, we show that this hypothesis can explain the presence, after annealing, of an infrared absorption band at 8,2 μm. Some results on Czochralski silicon crystals annealed at 1150 deg. C and 1250 deg. C are then presented. In particular, X-Ray Topography studies show the presence of large (∼100 μm) Frank loops which seem connected to oxygen precipitation. (author) [fr

  3. Singularities of 28Si electrical activation in a single crystal and epitaxial GaAs under radiation annealing

    International Nuclear Information System (INIS)

    Ardyshev, V.M.; Ardyshev, M.V.; Khludkov, S.S.

    2000-01-01

    Using the voltage-capacitance characteristics method, the concentration profiles of 28 Si that is implanted in monocrystal and epitaxial GaAs after fast thermal annealing (FTA) (825, 870, 950 deg C, 12 s) have been studied; using Van-der-Paw method, the electron Hall mobility temperature dependence in the range of 70-400 K has been measured. Unlike thermal annealing (800 deg C, 30 min), the silicon diffusion depth redistribution into GaAs is shown to occur for both types of material. The coefficient of diffusion of Si in the single crystal is 2 times greater, but the electrical activation efficiency is somewhat less than in the epitaxial GaAs for each of the temperatures of FTA. The analysis of the temperature dependence of the electron mobility in ion-implanted layers after FTA gives the evidence about the significantly lower concentration of defects restricting the mobility in comparison with results obtained at thermal annealing during 30 min [ru

  4. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    International Nuclear Information System (INIS)

    Mtangi, W.; Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M.; Nyamhere, C.

    2012-01-01

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8±0.3) meV that has been suggested as Zn i related and possibly H-complex related and (54.5±0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X Zn . The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60×10 17 cm −3 at 200 °C to 4.37×10 18 cm -3 at 800 °C.

  5. Lattice location of platinum ions implanted into single crystal zirconia and their annealing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D X [Royal Melbourne Inst. of Tech., VIC (Australia); Sood, D K [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research; Brown, I G [Lawrence Berkeley Lab., CA (United States)

    1994-12-31

    Single crystal samples of (100) oriented cubic zirconia stabilised with 9.5 mol % yttria were implanted with platinum ions, using a metal vapour vacuum arc (MEVVA) high current ion implanter, to a nominal dose of 1x10{sup 17} ions/cm{sup 2}. The implanted samples were annealed isothermally in air ambient at 1200 deg C, from 1-24 hours. Rutherford Backscattering Spectrometry and Channeling (RBSC) of 2 MeV He ions are employed to determine depth distributions of ion damage, Pt ions and substitutionality of Pt ions before and after annealing. The damage behaviour, Pt migration and lattice location are discussed in terms of metastable phase formation and solid solubility considerations. 7 refs., 3 figs.

  6. Lattice location of platinum ions implanted into single crystal zirconia and their annealing behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D.X. [Royal Melbourne Inst. of Tech., VIC (Australia); Sood, D.K. [Academia Sinica, Shanghai, SH (China). Shanghai Inst. of Nuclear Research; Brown, I.G. [Lawrence Berkeley Lab., CA (United States)

    1993-12-31

    Single crystal samples of (100) oriented cubic zirconia stabilised with 9.5 mol % yttria were implanted with platinum ions, using a metal vapour vacuum arc (MEVVA) high current ion implanter, to a nominal dose of 1x10{sup 17} ions/cm{sup 2}. The implanted samples were annealed isothermally in air ambient at 1200 deg C, from 1-24 hours. Rutherford Backscattering Spectrometry and Channeling (RBSC) of 2 MeV He ions are employed to determine depth distributions of ion damage, Pt ions and substitutionality of Pt ions before and after annealing. The damage behaviour, Pt migration and lattice location are discussed in terms of metastable phase formation and solid solubility considerations. 7 refs., 3 figs.

  7. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    Science.gov (United States)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  8. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    To, C K; Yang, B; Beling, C D; Fung, S; Ling, C C [Department of Physics, University of Hong Kong (Hong Kong); Gong, M, E-mail: sfung@hkucc.hku.h, E-mail: edwardto04@yahoo.com.h [Department of Physics, Sichuan University, Chengdu (China)

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2 MeV electrons with fluence of 6x10{sup 17}cm{sup -2}. Isochronal annealing from 100 deg. C - 800 deg. C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300 deg. C and 600 deg. C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300 deg. C and 600 deg. C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300 deg. C and 700 deg. C.

  9. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    International Nuclear Information System (INIS)

    To, C K; Yang, B; Beling, C D; Fung, S; Ling, C C; Gong, M

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2 MeV electrons with fluence of 6x10 17 cm -2 . Isochronal annealing from 100 deg. C - 800 deg. C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300 deg. C and 600 deg. C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300 deg. C and 600 deg. C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300 deg. C and 700 deg. C.

  10. Study of rolled uranium annealing process

    International Nuclear Information System (INIS)

    Cabane, G.

    1954-06-01

    The dilatometric study of rolled uranium clearly shows not only the expansions or contractions induced by stress relief or diffusion of vacancies, but also the slope variations of the cooling curves, which are the best evidence of a texture change. Under the microscope, hard-rolled sheets appear as a mixture of two distinct structures; it is also possible by intermediate annealing to prepare homogeneous sheets of either structure, i.e. twinned or untwinned. All these sheets which have similar textures, undergo at first a primary recrystallization beginning at 320 deg C, then a texture change without any apparent crystal growth, at about 430 deg C. (author) [fr

  11. Growth of two-dimensional Ge crystal by annealing of heteroepitaxial Ag/Ge(111) under N2 ambient

    Science.gov (United States)

    Ito, Koichi; Ohta, Akio; Kurosawa, Masashi; Araidai, Masaaki; Ikeda, Mitsuhisa; Makihara, Katsunori; Miyazaki, Seiichi

    2018-06-01

    The growth of a two-dimensional crystal of Ge atoms on an atomically flat Ag(111) surface has been demonstrated by the thermal annealing of a heteroepitaxial Ag/Ge structure in N2 ambient at atmospheric pressure. The surface morphology and chemical bonding features of heteroepitaxial Ag(111) grown on wet-cleaned Ge(111) after annealing at different temperatures and for various times have been systematically investigated to control the surface segregation of Ge atoms and the planarization of the heteroepitaxial Ag(111) surface.

  12. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1982-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices in which the device is rapidly heated to a temperature between 450 and 900 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. (author)

  13. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M. [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nyamhere, C. [Nelson Mandela Metropolitan University, Physics Department, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8{+-}0.3) meV that has been suggested as Zn{sub i} related and possibly H-complex related and (54.5{+-}0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X{sub Zn}. The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60 Multiplication-Sign 10{sup 17} cm{sup -3} at 200 Degree-Sign C to 4.37 Multiplication-Sign 10{sup 18} cm{sup -3} at 800 Degree-Sign C.

  14. Thermal annealing and pressure effects on BaFe2-xCoxAs2 single crystals.

    Science.gov (United States)

    Shin, Dongwon; Jung, Soon-Gil; Prathiba, G; Seo, Soonbeom; Choi, Ki-Young; Kim, Kee Hoon; Park, Tuson

    2017-11-26

    We investigate the pressure and thermal annealing effects on BaFe2-xCoxAs2 (Co-Ba122) single crystals with x = 0.1 and 0.17 via electrical transport measurements. The thermal annealing treatment not only enhances the superconducting transition temperature (Tc) from 9.6 to 12.7 K for x = 0.1 and from 18.1 to 21.0 K for x = 0.17, but also increases the antiferromagnetic transition temperature (TN). Simultaneous enhancement of Tc and TN by the thermal annealing treatment indicates that thermal annealing could substantially improve the quality of the Co-doped Ba122 samples. Interestingly, Tc of the Co-Ba122 compounds shows a scaling behavior with a linear dependence on the resistivity value at 290 K, irrespective of tuning parameters, such as chemical doping, pressure, and thermal annealing. These results not only provide an effective way to access the intrinsic properties of the BaFe2As2 system, but also may shed a light on designing new materials with higher superconducting transition temperature. © 2017 IOP Publishing Ltd.

  15. Effect of additional nickel on crystallization degree evolution of expanded graphite during ball-milling and annealing

    International Nuclear Information System (INIS)

    Wang Liqin; Yue Xueqing; Zhang Fucheng; Zhang Ruijun

    2010-01-01

    Expanded graphite (EG) and a mixture of EG and nickel (EG-Ni system) were ball-milled and subsequently annealed, respectively. The products were characterized by X-ray diffraction (XRD), Raman spectra and transmission electron microscopy (TEM). After 100 h milling, the average crystallite thickness (L c ) of EG and EG-Ni system deceases from 14.5 to 8.0 and 9.6 nm, respectively, while the interlayer spacing (d 002 ) increases from 0.3341 to 0.3371 and 0.3348 nm, respectively. It can be concluded that ball-milling decreases the crystallization degree of EG, while the additional nickel restrains this process. For the samples ball-milled for 80 h, the disorder parameter I D /(I D + I G ) ratio of EG and EG-Ni system is in the range of 20.7-55.8% and 31.7-45.8%, respectively, implying that the presence of nickel is beneficial to more homogeneous ball-milling of EG. When the samples after ball-milling for 80 h were annealed for 4 h, the average crystallite thickness of EG and EG-Ni system increases from 8.5 to 9.0 nm and from 11.8 to 15.5 nm, respectively. It is deduced that annealing improves the crystallization degree of ball-milled EG, and the additional nickel is helpful for this process.

  16. Single-crystal-like GdNdOx thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Directory of Open Access Journals (Sweden)

    Ziwei Wang

    2016-06-01

    Full Text Available Single-crystal-like rare earth oxide thin films on silicon (Si substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdOx (GNO film was deposited using a high-temperature sputtering process at 500°C. A Gd2O3 and Nd2O3 mixture was used as the sputtering target, in which the proportions of Gd2O3 and Nd2O3 were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  17. Effect of starting point formation on the crystallization of amorphous silicon films by flash lamp annealing

    Science.gov (United States)

    Sato, Daiki; Ohdaira, Keisuke

    2018-04-01

    We succeed in the crystallization of hydrogenated amorphous silicon (a-Si:H) films by flash lamp annealing (FLA) at a low fluence by intentionally creating starting points for the trigger of explosive crystallization (EC). We confirm that a partly thick a-Si part can induce the crystallization of a-Si films. A periodic wavy structure is observed on the surface of polycrystalline silicon (poly-Si) on and near the thick parts, which is a clear indication of the emergence of EC. Creating partly thick a-Si parts can thus be effective for the control of the starting point of crystallization by FLA and can realize the crystallization of a-Si with high reproducibility. We also compare the effects of creating thick parts at the center and along the edge of the substrates, and a thick part along the edge of the substrates leads to the initiation of crystallization at a lower fluence.

  18. Annealing as grown large volume CZT single crystals for increased spectral resolution

    International Nuclear Information System (INIS)

    Li, Longxia

    2008-01-01

    The spectroscopic performance of current large-volume Cadmium 10% Zinc Telluride, Cd 0.9 Zn 0.1 Te, (CZT) detectors is impaired by cumulative effect of tellurium precipitates (secondary phases) presented in CZT single-crystal grown by low-pressure Bridgman techniques(1). This statistical effect may limit the energy resolution of large-volume CZT detectors (typically 2-5% at 662 keV for 12-mm thick devices). The stochastic nature of the interaction prevents the use of any electronic or digital charge correction techniques without a significant reduction in the detector efficiency. This volume constraint hampers the utility of CZT since the detectors are inefficient at detecting photons >1MeV and/or in low fluency situations. During the project, seven runs CZT ingots have been grown, in these ingots the indium dopant concentrations have been changed in the range between 0.5ppm to 6ppm. The I-R mapping imaging method has been employed to study the Te-precipitates. The Teprecipitates in as-grown CZT wafers, and after annealing wafers have been systematically studied by using I-R mapping system (home installed, resolution of 1.5 (micro)m). We employed our I-R standard annealing CZT (Zn=4%) procedure or two-steps annealing into radiation CZT (Zn=10%), we achieved the 'non'-Te precipitates (size 10 9-10 (Omega)-cm. We believe that the Te-precipitates are the p-type defects, its reducing number causes the CZT became n+-type, therefore we varied or reduced the indium dapant concentration during the growth and changed the Te-precipitates size and density by using different Cd-temperature and different annealing procedures. We have made the comparisons among Te-precipitates size, density and Indium dopant concentrations, and we found that the CZT with smaller size of Te-precipitates is suitable for radiation uses but non-Te precipitates is impossible to be used in the radiation detectors, because the CZT would became un-dopant or 'intrinsic' with non radiation affection (we

  19. Effect of laser-plasma X-ray irradiation on crystallization of amorphous silicon film by excimer laser annealing

    International Nuclear Information System (INIS)

    Matsuo, Naoto; Uejukkoku, Kazuya; Heya, Akira; Takanashi, Yasuyuki; Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu

    2007-01-01

    The effect of laser plasma soft X-ray (LPX) irradiation on crystallization by excimer laser annealing (ELA) was investigated at low ELA energy densities. The crystalline fraction at energy densities of 50 and 60 mJ/cm 2 for LPX followed by ELA is nearly equal to that at 80 to 100 mJ/cm 2 for the ELA method with non-LPX irradiation. The results obtained indicate that LPX irradiation before ELA reduces the critical energy density for the start of crystallization. The combined method of LPX irradiation and ELA will enable us to realize a low-temperature process for ELA crystallization. (author)

  20. AFM, XRD and HRTEM Studies of Annealed FePd Thin Films

    International Nuclear Information System (INIS)

    Perzanowski, M.; Zabila, Y.; Polit, A.; Krupinski, M.; Dobrowolska, A.; Marszalek, M.; Morgiel, J.

    2010-01-01

    Ferromagnetic FePd L1 0 ordered alloys are highly expected as forthcoming high-density recording materials, because they reveal a large perpendicular magnetocrystalline anisotropy. The value of the magnetic anisotropy of FePd alloy strongly depends on the alloy composition, degree of alloy order as well as on the crystallographic grain orientation. In particular, to obtain the perpendicular anisotropy, it is necessary to get the films with (001) texture. One of the successful methods, which allows one to obtain highly ordered alloy, is a subsequent deposition of Fe and Pd layers, followed by an annealing at high temperature. This paper presents the study of the FePd thin alloy film structure changing in the result of high temperature annealing. During the annealing in high vacuum, the measurements of electrical resistance were performed, indicating the regions of different structure evolution. Changes in the crystal structure and surface morphology induced by thermal treatment were investigated by X-ray diffraction, atomic force microscopy, as well as high resolution transmission electron microscopy and then compared with electrical resistivity measurement. The slow thermal annealing of the deposited layers leads to the formation of L1 0 ordered FePd alloy with preferred (111) grain orientation. After the annealing at the highest used temperature, the dewetting process was observed, resulting in a creation of well oriented, regular nanoparticles. (author)

  1. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1981-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices is described in which the device is rapidly heated to a temperature between 450 and 600 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. The process may be enhanced by the application of optical radiation from a Xenon lamp. (author)

  2. Electrical properties and annealing kinetics study of laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wang, K.L.; Liu, Y.S.; Kirkpatrick, C.G.; Possin, G.E.

    1979-01-01

    This paper describes measurements of electrical properties and the regrowth behavior of ion-implanted silicon annealed with an 80-ns (FWHM) laser pulse at 1.06 μm. The experimental results include: (1) a determination of threshold energy density required for melting using a transient optical reflectivity technique, (2) measurements of dopant distribution using Rutherford backscattering spectroscopy, (3) characterization of electrical properties by measuring reverse leakage current densities of laser-annealed and thermal-annealed mesa diodes, (4) determination of annealed junction depth using an electron-beam-induced-current technique, and (5) a deep-level-transient spectroscopic study of residual defects. In particular, by measuring these properties of a diode annealed at a condition near the threshold energy density for liquid phase epitaxial regrowth, we have found certain correlations among these various annealing behaviors and electrical properties of laser-annealed ion-implanted silicon diodes

  3. Study on the process of radiation defects annealing in corundum crystals

    International Nuclear Information System (INIS)

    Abdukadyrova, I.Kh.; Vakhidov, Sh.A.; Khaimov-Mal'kov, V.Ya.

    1975-01-01

    The paper reports on the results of an investigation of the annealing of the colour centres that appear in samples of corundum during reactor irradiation and located in the near ultra-violet and visible portions of the spectrum. (author)

  4. Double and triple crystal diffraction investigation on ion implanted and electron beam annealed silicon

    International Nuclear Information System (INIS)

    Servidori, M.; Cembali, F.; Winter, U.; Zaumseil, P.; Richter, H.

    1985-01-01

    Double (DCD) and triple crystal (TCD) diffractometry was used to investigate radiation damage produced in silicon by silicon bombardment and its evolution after electron beam annealing. The implantation processes were carried out at 60 keV energy and at doses of 0.5, 1, 5, 10, 50, 100, and 200 x 10 13 ions/cm 2 . As to the annealing treatments, an electron gun was used, operating in the ranges 7.5 to 24 W/cm 2 and 2 to 20 seconds. DCD rocking curves were analyzed by means of the dynamical theory of X-ray diffraction. The formalism introduced by Taupin was used to simulate the experimental intensity profiles. From the resulting best fits, the lattice strain vs. depth profiles were obtained, indicating an increase of the damage with dose for the as-implanted samples up to 1 x 10 14 cm -2 dose, whereas amorphous layers are produced for the higher doses. After annealing, lowering of the residual strain was observed to be directly proportional to the implanted dose. In particular, a complete recovery of the damage occurred for the 0.5 and 1 x 10 13 cm -2 samples. The results obtained by the fitting procedure were substantially independent from the power densities and times used during electron beam irradiation. TCD as a very sensitive method to investigate lattice defects after implantation was used to obtain information about the crystallographic perfection of the surface layer. The absence of diffuse scattering indicates that the annealed layers do not contain microdefects within the detection limits. (author)

  5. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    International Nuclear Information System (INIS)

    Sitek, J.; Toth, I.; Miglierini, M.

    1993-01-01

    Amorphous ribbons of Fe 73.5 Nb 3 Cu 1 Si 13.5 B 9 have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 μm and 27 μm were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO 3 -structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO 3 -structure FeSi alloy, paramagnetic FeNbB and presumably Fe 23 B 6 and Fe 3 SiB 2 . (orig.)

  6. High-temperature annealing of proton irradiated beryllium – A dilatometry-based study

    Energy Technology Data Exchange (ETDEWEB)

    Simos, Nikolaos, E-mail: simos@bnl.gov [Brookhaven National Laboratory, Upton, NY, 11973 (United States); Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit [Brookhaven National Laboratory, Upton, NY, 11973 (United States); Savkliyildiz, Ilyas [Rutgers University (United States)

    2016-08-15

    S−200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 10{sup 20} cm{sup −2} peak fluence and irradiation temperatures in the range of 100–200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation {sup 4}He and {sup 3}H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  7. Annealing of chemical radiation damage in zirconium nitrate

    International Nuclear Information System (INIS)

    Mahamood, Aysha; Chandunni, E.; Nair, S.M.K.

    1979-01-01

    A kinetic study of the annealing of γ-irradiation damage in zirconium nitrate is presented. The annealing can be represented as a combination of a first order and a second order process. It is considered that the first order process is the combination of close correlated pairs of Osup(-) and NO fragments and the second order process involves the single reaction of random recombination of the fragments throughout the crystal. (auth.)

  8. Annealing behavior of high permeability amorphous alloys

    International Nuclear Information System (INIS)

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co 71 4 Fe 4 6 Si 9 6 B 14 4 were investigated. Annealing this alloy below 400 0 C results in magnetic hardening; annealing above 400 0 C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation

  9. Electron paramagnetic resonance study of Ce doped partially stabilized ZrO2 crystals

    Directory of Open Access Journals (Sweden)

    Mikhail А. Borik

    2017-09-01

    Full Text Available ZrO2 (PSZ solid solutions crystals stabilized with yttrium and cerium oxides have been studied using electron paramagnetic resonance (EPR in the X and Q ranges. Zr3+ have been observed centers in the as-annealed ZrO2 crystals stabilized only by yttrium oxide (2.8 mol% Y2O3. Another type of paramagnetic-O-centers appear as a result of CeO2 addition to ZrO2 crystals along with yttrium oxide. To estimate the concentration of Ce3+ ions in PZS crystals, we recorded the EPR spectra in the presence of a reference at 7 K. Paramagnetic Ce3+ ions have been identified and their relative amount in the PSZ crystals before and after high-temperature heat treatment has been assessed. Annealing in air leads decreases the concentration of Ce3+ ions for all the test compositions and changes the color of the crystals from red to white. After annealing of the sample 2.0Y0.8Ce3Zr, the amount of paramagnetic Ce3+ ions decreased approximately twofold. Paramagnetic centers from Ce3+ have not been detected in the specimen with a low cerium content of 0.1 mol% after annealing which indicates the complete transition of Ce3+ to the Ce4+ state. We show that the forming cerium paramagnetic centers are bound by strong exchange interactions. No angular dependence of the EPR lines of the paramagnetic Ce3+ cations on the applied external magnetic field has been observed. Probable origin of the absence of angular dependence is that the impurity rare-earth ions are located close to one another, forming impurity clusters with an effective spin of Seff=1/2.

  10. Heterojunctions formed by annealing of GaSe and InSe layered crystals in zinc vapor

    Directory of Open Access Journals (Sweden)

    Kudrynskyi Z. R.

    2012-12-01

    Full Text Available The article presents a method of creating heterojunc¬tions based on semiconductors with different lattice types. Substrates manufactured from GaSe and InSe layered crystals were annealed in Zn vapor. This way, n-ZnSe–p-GaSe and n-ZnSe–p-InSe heterojunctions were obtained. The obtained heterojunctions are photo¬sensitive in near and infrared spectral regions. This method opens up greate possibilities of producing heterostructures with a desired sensitivity band.

  11. Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrate

    International Nuclear Information System (INIS)

    Brooks, K.G.; Reaney, I.M.; Klissurska, R.; Huang, Y.; Bursill, L.A.; Setter, N.

    1994-01-01

    The nucleation, growth and orientation of lead zirconate titanate thin films prepared from organometallic precursor solutions by spin coating on (111) oriented platinum substrates and crystallized by rapid thermal annealing was investigated. The effects of pyrolysis temperature, post-pyrolysis thermal treatments, excess lead addition, and Nb dopant substitution are reported. The use of post pyrolysis oxygen anneals at temperatures in the regime of 350-450 deg C was found to strongly effect the kinetics of subsequent amorphous-pyrochlore perovskite crystallization by rapid thermal annealing. It has also allowed films of reproducible microstructure and textures (both (100) and (111)) to be prepared by rapid thermal annealing. It is suggested that such anneals and pyrolysis temperature affect the oxygen concentration/average Pb valence in the amorphous films prior to annealing. The changes in Pb valence state then affect the stability of the transient pyrochlore phase and thus the kinetics of perovskite crystallization. Nb dopant was also found to influence the crystallization kinetics. 28 refs., 18 figs

  12. Single-crystal-like GdNdO{sub x} thin films on silicon substrates by magnetron sputtering and high-temperature annealing for crystal seed layer application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziwei; Xiao, Lei; Liang, Renrong, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn; Shen, Shanshan; Xu, Jun; Wang, Jing, E-mail: wang-j@tsinghua.edu.cn, E-mail: liangrr@tsinghua.edu.cn [Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2016-06-15

    Single-crystal-like rare earth oxide thin films on silicon (Si) substrates were fabricated by magnetron sputtering and high-temperature annealing processes. A 30-nm-thick high-quality GdNdO{sub x} (GNO) film was deposited using a high-temperature sputtering process at 500°C. A Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} mixture was used as the sputtering target, in which the proportions of Gd{sub 2}O{sub 3} and Nd{sub 2}O{sub 3} were controlled to make the GNO’s lattice parameter match that of the Si substrate. To further improve the quality of the GNO film, a post-deposition annealing process was performed at a temperature of 1000°C. The GNO films exhibited a strong preferred orientation on the Si substrate. In addition, an Al/GNO/Si capacitor was fabricated to evaluate the dielectric constant and leakage current of the GNO films. It was determined that the single-crystal-like GNO films on the Si substrates have potential for use as an insulator layer for semiconductor-on-insulator and semiconductor/insulator multilayer applications.

  13. Comparative studies of laser annealing technique and furnace annealing by X-ray diffraction and Raman analysis of lithium manganese oxide thin films for lithium-ion batteries

    International Nuclear Information System (INIS)

    Pröll, J.; Weidler, P.G.; Kohler, R.; Mangang, A.; Heißler, S.; Seifert, H.J.; Pfleging, W.

    2013-01-01

    The structure and phase formations of radio frequency magnetron sputtered lithium manganese oxide thin films (Li 1.1 Mn 1.9 O 4 ) under ambient air were studied. The influence of laser annealing and furnace annealing, respectively, on the bulk structure and surface phases was compared by using ex-situ X-ray diffraction and Raman analysis. Laser annealing technique formed a dominant (440)-reflection, furnace annealing led to both, (111)- and (440)-reflections within a cubic symmetry (S.G. Fd3m (227)). Additionally, in-situ Raman and in-situ X-ray diffraction were applied for online detection of phase transformation temperatures. In-situ X-ray diffraction measurements clearly identified the starting temperature for the (111)- and (440)-reflections around 525 °C and 400 °C, respectively. The 2θ Bragg peak positions of the characteristic (111)- and (440)-reflections were in good agreement with those obtained through conventional furnace annealing. Laser annealing of lithium manganese oxide films provided a quick and efficient technique and delivered a dominant (440)-reflection which showed the expected electrochemical behavior of the well-known two-step de-/intercalation process of lithium-ions into the cubic spinel structure within galvanostatic testing and cyclic voltammetry. - Highlights: ► Formation of cubic spinel-like phase of Li–Mn–O thin films by rapid laser annealing ► Laser annealing at 680 °C and 100 s was demonstrated as quick crystallization method. ► 400 °C was identified as characteristic onset temperature for (440)-reflex formation

  14. Comparison of pulsed electron beam-annealed and pulsed ruby laser-annealed ion-implanted silicon

    International Nuclear Information System (INIS)

    Wilson, S.R.; Appleton, B.R.; White, C.W.; Narayan, J.; Greenwald, A.C.

    1978-11-01

    Recently two new techniques, pulsed electron beam annealing and pulsed laser annealing, have been developed for processing ion-implanted silicon. These two types of anneals have been compared using ion-channeling, ion back-scattering, and transmission electron microscopy (TEM). Single crystal samples were implanted with 100 keV As + ions to a dose of approx. 1 x 10 16 ions/cm 2 and subsequently annealed by either a pulsed Ruby laser or a pulsed electron beam. Our results show in both cases that the near-surface region has melted and regrown epitaxially with nearly all of the implanted As (97 to 99%) incroporated onto lattice sites. The analysis indicates that the samples are essentially defect free and have complete electrical recovery

  15. Moessbauer study of isothermally annealed amorphous Fe-Nb-Cu-Si-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, J. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Toth, I. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia)); Miglierini, M. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava (Slovakia))

    1993-11-01

    Amorphous ribbons of Fe[sub 73.5]Nb[sub 3]Cu[sub 1]Si[sub 13.5]B[sub 9] have been annealed above the crystallization temperature. Annealed samples consisted of crystalline and amorphous phases in a wide temperature range. Two samples of different thicknesses of 33 [mu]m and 27 [mu]m were isothermally annealed at a temperature of 545 C from 0.5 to 5 h in a vacuum furnace. The amount of crystalline phase increases rapidly in the ticker sample. The crystalline part of the Moessbauer spectrum consists of four sharp sextets which can be assigned to a DO[sub 3]-structure FeSi alloy. After 700 C annealing the amorphous phase was not observed and the crystalline phase consisted of the DO[sub 3]-structure FeSi alloy, paramagnetic FeNbB and presumably Fe[sub 23]B[sub 6] and Fe[sub 3]SiB[sub 2]. (orig.)

  16. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    International Nuclear Information System (INIS)

    Mtangi, W.; Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van; Nyamhere, C.

    2012-01-01

    Highlights: ► Highly rectifying Pd/ZnO contacts have been fabricated. ► The rectification behaviour decrease with annealing temperature. ► The surface donor concentration increases with increase in annealing temperature. ► The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current–voltage (IV) and capacitance–voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at −1.5 V. An average barrier height of (0.77 ± 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 ± 0.03) eV after annealing at 550 °C. The reverse current has been measured as (2.10 ± 0.01) × 10 −10 A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 °C to (1.56 ± 0.01) × 10 −5 A. The depletion layer width measured at −2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 μm after annealing at 200 °C to 0.24 μm after annealing at 500 °C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 × 10 15 cm −3 at 200 °C to 6.06 × 10 16 cm −3 after annealing at 550 °C. This increase in the volume concentration has been explained as an effect of a conductive channel that shifts closer to the surface after sample annealing. The series resistance has been observed to decrease with increase in annealing temperature. The Pd contacts have shown high stability up to an annealing temperature of 250 °C as revealed by the IV

  17. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Nyamhere, C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Highly rectifying Pd/ZnO contacts have been fabricated. Black-Right-Pointing-Pointer The rectification behaviour decrease with annealing temperature. Black-Right-Pointing-Pointer The surface donor concentration increases with increase in annealing temperature. Black-Right-Pointing-Pointer The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current-voltage (IV) and capacitance-voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at -1.5 V. An average barrier height of (0.77 {+-} 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 {+-} 0.03) eV after annealing at 550 Degree-Sign C. The reverse current has been measured as (2.10 {+-} 0.01) Multiplication-Sign 10{sup -10} A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 Degree-Sign C to (1.56 {+-} 0.01) Multiplication-Sign 10{sup -5} A. The depletion layer width measured at -2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 {mu}m after annealing at 200 Degree-Sign C to 0.24 {mu}m after annealing at 500 Degree-Sign C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 Multiplication-Sign 10{sup 15} cm{sup -3} at 200 Degree-Sign C to 6.06 Multiplication-Sign 10{sup 16} cm{sup -3} after annealing at 550 Degree-Sign C. This increase in the volume concentration has been explained as an effect of a conductive channel

  18. Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors

    Science.gov (United States)

    Adams, Aaron Lee

    Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging

  19. Thermal annealing of amorphous Ti-Si-O thin films

    OpenAIRE

    Hodroj , Abbas; Chaix-Pluchery , Odette; Audier , Marc; Gottlieb , Ulrich; Deschanvres , Jean-Luc

    2008-01-01

    International audience; Ti-Si-O thin films were deposited using an aerosol chemical vapor deposition process at atmospheric pressure. The film structure and microstructure were analysed using several techniques before and after thermal annealing. Diffraction results indicate that the films remain X-ray amorphous after annealing whereas Fourier transform infrared spectroscopy gives evidence of a phase segregation between amorphous SiO2 and well crystallized anatase TiO2. Crystallization of ana...

  20. Atomic scale imaging of structural changes in solid electrolyte lanthanum lithium niobate upon annealing

    International Nuclear Information System (INIS)

    Hu, Xiaobing; Fisher, Craig A.J.; Kobayashi, Shunsuke; Ikuhara, Yumi H.; Fujiwara, Yasuyuki; Hoshikawa, Keigo; Moriwake, Hiroki; Kohama, Keiichi; Iba, Hideki; Ikuhara, Yuichi

    2017-01-01

    La (1-x)/3 Li x NbO 3 (LLNbO) is a promising electrolyte material for solid-state lithium-ion batteries because it is stable in contact with Li metal and contains a high concentration of intrinsic Li-ion vacancies. One strategy for improving its ionic conductivity and making it more competitive with other solid-state Li-ion electrolytes is to disorder the Li-ion vacancies by appropriate post-synthesis heat treatment, e.g., annealing. In this study, we examine the effects of annealing on single crystals of LLNbO with Li contents x = 0.07 and 0.13 based on simultaneous atomic resolution high angle annular dark field and annular bright field imaging methods using state-of-the-art aberration corrected scanning transmission electron microscopes. It is found that La modulation within A1 layers of the cation-deficient layered perovskite structure becomes more diffuse after annealing. In addition, some La atoms move to A-site positions and O4 window positions in the nominally vacant A2 layer, while O atom columns in this layer become rumpled in the [001] p direction, indicating that the NbO 6 octahedra are more heavily distorted after annealing. The observed crystal structure differences between as-prepared and annealed single crystals explain the drop in Li-ion conductivities of LLNbO single crystals after heat treatment.

  1. Crystallization of amorphous phase in niobium alloys with oxygen

    International Nuclear Information System (INIS)

    Dekanenko, V.M.; Samojlenko, Z.A.; Revyakin, A.V.

    1982-01-01

    Crystallization and subsequent phase transformations of amorphous phase during annealings in the system Nb-O are studied. It is shown that quenching from liquid state of niobium alloys with oxygen with a rate of 10 5 -10 6 K/s results in partial crystallization of the melt. Phase transition from amorphous to crystal state at 670 K in all probability takes place without the change of chemical composition. After crystallization the decomposition of oversaturated solid solution on the basis of NbO takes place with the separation of low- temperature modification, γ-Nb 2 O 5 . Niobium pentoxide of both modifications during prolong annealings at 770 K and short- time annealings higher 1070 K disappears completely [ru

  2. Structural analysis of as-deposited and annealed low-temperature gallium arsenide

    Science.gov (United States)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1993-04-01

    The structure of GaAs grown at low substrate temperatures (LT-GaAs) by molecular beam epitaxy has been studied using high resolution X-ray diffraction methods. Double crystal rocking curves from the as-deposited LT-GaAs show well defined interference fringes, indicating a high level of structural perfection. Triple crystal diffraction analysis of the as-deposited sample showed significantly less diffuse scattering near the LT-GaAs 004 reciprocal lattice point compared with the substrate 004 reciprocal lattice point, suggesting that despite the incorporation of approximately 1% excess arsenic, the epitaxial layer had superior crystalline perfection than did the GaAs substrate. Triple crystal scans of annealed LT-GaAs showed an increase in the integrated diffuse intensity by approximately a factor of three as the anneal temperature was increased from 700 to 900°C. Analogous to the effects of SiO2 precipitates in annealed Czochralski silicon, the diffuse intensity is attributed to distortions in the epitaxial LT-GaAs lattice by arsenic precipitates.

  3. Characterizations of MoTiO5 flash memory devices with post-annealing

    International Nuclear Information System (INIS)

    Kao, Chyuan Haur; Chen, Hsiang; Chen, Su Zhien; Chen, Yu Jie; Chu, Yu Cheng

    2014-01-01

    In this study, high-K MoTiO 5 dielectrics were applied as charge trapping layers in fabricated metal-oxide-high-K MoTiO 5 -oxide-Si-type memory devices. Among the applied MoTiO 5 trapping layer treatment conditions, annealing at 900 °C yielded devices that exhibited superior memory performance, such as a larger memory window and faster programming/erasing speed. Multiple material analyses, namely X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy, confirmed that annealing at 900 °C can improve the material quality as a result of crystallization. The fabricated MoTiO 5 -based memory devices show potential for future commercial memory device applications. - Highlights: • MoTiO5-based flash memories have been fabricated. • MoTiO5 trapping layers could be formed by co-sputtering. • MoTiO5 layers with annealing exhibited a good memory performance. • Multiple material analyses confirm that annealing enhanced crystallization

  4. Thermal annealing and ionic abrasion in ZnTe

    International Nuclear Information System (INIS)

    Bensahel, D.

    1975-01-01

    Thermal annealing of the ZnTe crystal is studied first in order to obtain information on the aspect of the penetration profile. Ionic abrasion is then investigated to find out whether it produces the same effects as ionic implantation, especially for luminescence [fr

  5. Toward the understanding of annealing effects on (GaIn)2O3 films

    International Nuclear Information System (INIS)

    Zhang, Fabi; Jan, Hideki; Saito, Katsuhiko; Tanaka, Tooru; Nishio, Mitsuhiro; Nagaoka, Takashi; Arita, Makoto; Guo, Qixin

    2015-01-01

    (GaIn) 2 O 3 films with nominal indium content of 0.3 deposited at room temperature by pulsed laser deposition have been annealed in different gas ambient (N 2 , vacuum, Ar, O 2 ) and temperatures (700–1000 °C) in order to understand the annealing effects. X-ray diffraction and X-ray rocking curve revealed that the film annealed at 800 °C under O 2 ambient has best crystallinity. X-ray photoelectron spectroscopy analysis indicated that oxygen ambient annealing has greatly helped on decreasing the oxygen vacancy. (GaIn) 2 O 3 films with different nominal indium content varying from 0.2 to 0.7 annealed at 800 °C under O 2 ambient also showed high crystal quality, improved optical transmittance, and smooth surface. - Highlights: • (GaIn) 2 O 3 films have been annealed in different gas ambient and temperature. • Only oxygen ambient can crystallize (GaIn) 2 O 3 film. • Film annealed at 800 °C appears best crystal quality. • High quality films were obtained with wide indium content varying from 0.2 to 0.7

  6. Evolution of Structural and Optical Properties of ZnO Nanorods Grown on Vacuum Annealed Seed Crystallites

    Directory of Open Access Journals (Sweden)

    Waqar Khan

    2018-01-01

    Full Text Available In this study, the ambient condition for the as-coated seed layer (SL annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs. The NR crystals of high surface density (~240 rods/μm2 and aspect ratio (~20.3 show greatly enhanced (002 degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002 and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors.

  7. Kinetics of isothermal annealing of hypochlorite in γ-irradiated potassium chlorate

    International Nuclear Information System (INIS)

    Arnikar, H.J.; Patil, S.F.; Patil, B.T.

    1977-01-01

    The kinetics of isothermal annealing of hypochlorite formed in the gamma radiolysis of potassium chlorate crystals have been studied at different temperatures in the range of 100-160 deg C. The hypochlorite is found to anneal by a combination of first and second order processes, the former being fast, virtually reaching completion within a few hours. It is then followed by a slow second order process. (authors)

  8. ESR studies of high-energy phosphorus-ion implanted synthetic diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isoya, J [University of Library and Information Science, Tsukuba, Ibaraki (Japan); Kanda, H; Morita, Y; Ohshima, T

    1997-03-01

    Phosphorus is among potential n-type dopants in diamond. High pressure synthetic diamond crystals of type IIa implanted with high energy (9-18 MeV) phosphorus ions have been studied by using electron spin resonance (ESR) technique. The intensity and the linewidth of the ESR signal attributed to the dangling bond of the amorphous phase varied with the implantation dose, suggesting the nature of the amorphization varies with the dose. The ESR signals of point defects have been observed in the low dose as-implanted crystals and in the high dose crystals annealed at high temperature and at high pressure. (author)

  9. Propagating self-sustained annealing of radiation-induced interstitial complexes

    International Nuclear Information System (INIS)

    Bokov, P M; Selyshchev, P A

    2016-01-01

    A propagating self-sustained annealing of radiation induced defects as a result of thermal-concentration instability is studied. The defects that are considered in the model are complexes. Each of them consists of one atom of impunity and of one interstitial atom. Crystal with defects has extra energy which is transformed into heat during defect annealing. Simulation of the auto-wave of annealing has been performed. The front and the speed of the auto-wave have been obtained. It is shown that annealing occurs in a narrow region of time and space. There are two kinds of such annealing behaviour. In the first case the speed of the auto-wave oscillates near its constant mean value and the front of temperature oscillates in a complex way. In the second case the speed of propagation is constant and fronts of temperature and concentration look like sigmoid functions. (paper)

  10. Positron annihilation and thermoluminescence studies of thermally induced defects in α-Al2O3 single crystals

    International Nuclear Information System (INIS)

    Muthe, K P; Gupta, S K; Sudarshan, K; Pujari, P K; Kulkarni, M S; Rawat, N S; Bhatt, B C

    2009-01-01

    α-Al 2 O 3 crystals were subjected to different thermal treatments at a temperature of 1500 deg. C in a strongly reducing ambience of carbon and vacuum. Positron annihilation spectroscopy (PAS) and thermally stimulated luminescence (TL) studies were carried out to understand the nature of defects generated. Results show the presence of aluminium vacancies in crystals annealed in vacuum. On annealing in the presence of graphite, ingress of carbon in these vacancies is indicated by different PAS measurements. A simultaneous enhancement of dosimetry properties has been observed. The study provides evidence that association of carbon with aluminium vacancies helps in creation of effective dosimetry traps.

  11. Radiation defects in electron-irradiated InP crystals

    International Nuclear Information System (INIS)

    Brailovskii, E.Yu.; Karapetyan, F.K.; Megela, I.G.; Tartachnik, V.P.

    1982-01-01

    The results are presented of formation and annealing of defects in InP crystals at 1 to 50 MeV electron irradiation. The recovery of electrical properties in the range of 77 to 970 K during annealing processes is studied. Five low temperature annealing states in n-InP and the reverse annealing in p-InP are observed at 77 to 300 K. Four annealing stages at temperatures higher than 300 K are present. When the electron energy is increased more complicated thermostable defects are formed, and at 50 MeV electron energy besides of the point defect clusters are formed, which anneal at temperatures of 800 to 970 K. It is shown that the peculiarities of the Hall mobility at irradiation and annealing are caused by the scattering centres E/sub c/ - 0.2 eV. The 'limiting' position of the Fermi level in electron irradiated InP crystals is discussed. (author)

  12. Radiation defects in electron-irradiated InP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brailovskii, E.Yu.; Karapetyan, F.K.; Megela, I.G.; Tartachnik, V.P. (AN Ukrainskoj SSR, Kiev. Inst. Yadernykh Issledovanij)

    1982-06-16

    The results are presented of formation and annealing of defects in InP crystals at 1 to 50 MeV electron irradiation. The recovery of electrical properties in the range of 77 to 970 K during annealing processes is studied. Five low temperature annealing states in n-InP and the reverse annealing in p-InP are observed at 77 to 300 K. Four annealing stages at temperatures higher than 300 K are present. When the electron energy is increased more complicated thermostable defects are formed, and at 50 MeV electron energy besides of the point defect clusters are formed, which anneal at temperatures of 800 to 970 K. It is shown that the peculiarities of the Hall mobility at irradiation and annealing are caused by the scattering centres E/sub c/ - 0.2 eV. The 'limiting' position of the Fermi level in electron irradiated InP crystals is discussed.

  13. Electron microscopy study of Ni induced crystallization in amorphous Si thin films

    International Nuclear Information System (INIS)

    Radnóczi, G. Z.; Battistig, G.; Pécz, B.; Dodony, E.; Vouroutzis, N.; Stoemenos, J.; Frangis, N.; Kovács, A.

    2015-01-01

    The crystallization of amorphous silicon is studied by transmission electron microscopy. The effect of Ni on the crystallization is studied in a wide temperature range heating thinned samples in-situ inside the microscope. Two cases of limited Ni source and unlimited Ni source are studied and compared. NiSi 2 phase started to form at a temperature as low as 250°C in the limited Ni source case. In-situ observation gives a clear view on the crystallization of silicon through small NiSi 2 grain formation. The same phase is observed at the crystallization front in the unlimited Ni source case, where a second region is also observed with large grains of Ni 3 Si 2 . Low temperature experiments show, that long annealing of amorphous silicon at 410 °C already results in large crystallized Si regions due to the Ni induced crystallization

  14. Transformation of point defects under annealing of neutron-irradiated Si and Si:Ge

    International Nuclear Information System (INIS)

    Pomozov, Yu.V.; Khirunenko, L.I.; Shakhovtsev, V.I.; Yashnik, V.I.

    1990-01-01

    Transformation of point radiation defects under isochronous annealing of neurton-irradaited Si and Si:Ge is studied. It is determined, that occurence of several new centers which produce A-centre range absorption bands is observed at annealing within 423-493 K temperature range. It is shown that vacancy and oxygen are included in the centers composition. It is found that VO centre transformation into VO 2 at annealing occurs via intermediate stage in contrast to that occuring in electron-irradiated crystals via VO direct diffusion to interstitial oxygen. Transformation of centers under Si ansd Si:Ge annealing occurs similarly

  15. The effect of annealing ambient on surface segregation in indium implanted sapphire

    International Nuclear Information System (INIS)

    Sood, D.K.; Victoria University of Technology, Melbourne; Zhou, W.; Victoria University of Technology, Melbourne; Academia Sinica, Shanghai Institute of Metallurgy; Cao, D.X.; Victoria University of Technology, Melbourne; Academia Sinica, Shanghai, SH

    1991-01-01

    A systematic study of the effect of annealing ambient on both indium surface segregation and lattice damage recovery of single crystal Al 2 O 3 has been done by performing 1 hour anneals at 800 deg C for the samples identically implanted with indium ions at 100keV energy to a high dose of 5x10 16 ions/cm 2 . Following solid phase epitaxial re-crystallization of amorphous layer, the indium dopant shows rapid thermal migration. The indium redistribution consists of 2 parts: 1. appreciable broadening corresponding to diffusion within the amorphous layer, and 2. indium segregation to the free surface to form In 2 O 3 , or escape out of the surface to sublime into the surrounding ambient. Lattice damage recovery depends on indium concentration profile in amorphous layer of Al 2 O 3 which is directly influenced by the annealing ambient. It is confirmed that the presence of moisture or oxygen in annealing ambient results in In 2 O 3 formation on the surface. (author). 6 refs.; 3 figs.; 1 tab

  16. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors

    International Nuclear Information System (INIS)

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander A.; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Giuseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-01-01

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an order of 10 2 . During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10 −5 mbar, we observed the diffusion of Te from the sample, so causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10 −5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on the conditions in local regions, such as composition and structure, as well as on the annealing conditions

  17. Dependence of the annealing kinetics of A centers and divacancies on temperature, particle energy, and irradiation dose for n-Si crystals

    International Nuclear Information System (INIS)

    Pagava, T.A.

    2002-01-01

    n-Si crystals grown by the float-zone method with a phosphorus concentration of ∼6 x 10 13 cm -3 and irradiated with 2-MeV electrons and 25-MeV protons were studied. It is shown that the kinetics of the isochronous annealing of the A centers and divacancies (the annealing temperature and the rearrangement of radiation defects in the situation where the dissociation of one type of defects gives rise to more stable defects) depends in a complicated way on the energy, dose, and temperature of irradiation; i.e., this kinetics depends on the relation between the concentrations of various radiation defects and on the charge state of reacting primary radiation defects when they interact with each other, with impurity atoms, and with disordered regions. An increase in the concentration of divacancies in the temperature range of 180-210 deg. C is attributed to the dissociation of disordered regions

  18. Formation of a Polycrystalline Silicon Thin Film by Using Blue Laser Diode Annealing

    Science.gov (United States)

    Choi, Young-Hwan; Ryu, Han-Youl

    2018-04-01

    We report the crystallization of an amorphous silicon thin film deposited on a SiO2/Si wafer using an annealing process with a high-power blue laser diode (LD). The laser annealing process was performed using a continuous-wave blue LD of 450 nm in wavelength with varying laser output power in a nitrogen atmosphere. The crystallinity of the annealed poly-silicon films was investigated using ellipsometry, electron microscope observation, X-ray diffraction, and Raman spectroscopy. Polysilicon grains with > 100-nm diameter were observed to be formed after the blue LD annealing. The crystal quality was found to be improved as the laser power was increased up to 4 W. The demonstrated blue LD annealing is expected to provide a low-cost and versatile solution for lowtemperature poly-silicon processes.

  19. Isothermal annealing kinetics of X-irradiated pyrene by EPR

    International Nuclear Information System (INIS)

    Partiti, C.S.M.; Pontuschka, W.M.; Fazzio, A.; Piccini, A.

    1989-07-01

    The annealing behavior of X-irradiated stable free radicals found in Pyrene (C 16 H 10 ) single crystals was studied by EPR. Two processes of thermal decay kinetics were found, both with the same activation energy (1.9±0.1) ev. (author) [pt

  20. Correlation of infrared spectra and phase transitions in annealed proton-exchanged MgO doped LiNbO3

    International Nuclear Information System (INIS)

    Sun, Jian; Xu, Chang-qing

    2015-01-01

    Infrared spectra of OH − groups in annealed proton-exchanged (APE) 5 mol. % MgO-doped LiNbO 3 (MgO:LiNbO 3 ) crystals were studied using the Fourier transform infrared spectroscopy technique. Samples were prepared by benzoic acid proton-exchange followed with thermal annealing in oxygen. Evolutions of absorption peaks in APE MgO:LiNbO 3 crystals were recorded and analyzed. Comparing with none-doped APE LiNbO 3 crystals, a different phase transition behavior was found during thermal annealing. A periodically poled MgO:LiNbO 3 slab waveguide was prepared using identical procedures, and the second harmonic generation (SHG) signals were measured. Comparing the obtained SHG results with the infrared spectra, relationships between the phase transitions and the recovery of second-order nonlinear coefficients during thermal annealing were investigated. Finally, a method for optimizing the performance of MgO:LiNbO 3 waveguides was proposed

  1. Defect annealing in Mn/Fe-implanted TiO2(rutile)

    CERN Document Server

    Gunnlaugsson, H P; Masenda, H; Mølholt, T E; Johnston, K; Bharuth-Ram, K; Gislason, H; Langouche, G; Naidoo, D; Ólafsson, S; Svane, A; Weyer, G

    2014-01-01

    A study of the annealing processes and charge state of dilute Fe in rutile TiO2 single crystals was performed in the temperature range 143-662 K, utilizing online 57Fe emission Mossbauer spectroscopy following low concentrations ( 350 K.

  2. Strain of laser annealed silicon surfaces

    Science.gov (United States)

    Nemanich, R. J.; Haneman, D.

    1982-05-01

    High resolution Raman scattering measurements have been carried out on pulse and continuous-wave laser annealed silicon samples with various surface preparations. These included polished and ion-bombarded wafers, and saw-cut crystals. The pulse annealing treatments were carried out in ultrahigh vacuum and in air. The residual strain was inferred from the frequency shift of the first-order Raman active mode of Si, and was detectable in the range 10-2-10-3 in all except the polished samples.

  3. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    International Nuclear Information System (INIS)

    Ghosh, Swapankumar; Divya, Damodaran; Remani, Kottayilpadi C.; Sreeremya, Thadathil S.

    2010-01-01

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 o C. The activation energy for growth of CeO 2 nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO 2 particles in narrow size range. CeO 2 nanocrystals precipitated at 35 o C were further annealed at temperatures in the range 300-700 o C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  4. Crystallization behavior and domain structure in textured Pb(Zr0.52Ti0.48)O3 thin films by different annealing processes

    International Nuclear Information System (INIS)

    Huang, W.; Jiang, S.W.; Li, Y.R.; Zhu, J.; Zhang, Y.; Wei, X.H.; Zeng, H.Z.

    2006-01-01

    Amorphous Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films were prepared on the Pt/Ti/SiO 2 /Si substrates by radio-frequency magnetron sputtering at room temperature. After rapid thermal annealing (RTA) and conventional furnace annealing (CFA) at different temperatures, the films were transformed into polycrystalline PZT thin films with (111) and (100) orientation, respectively. The phase formation and ferroelectric domains correlated with different orientation were systematically investigated by X-ray diffraction and piezoresponse force microscopy. The results showed that the perovskite PZT crystal with [111] orientation hetero-nucleated preferentially on top of the PtPb intermetallic phase at the PZT/Pt interface during RTA process. It is of interest to find that the domain self-organized into a structure with rounded shape at the early stage of crystallization. While the nucleation of the films treated by CFA dominantly homo-nucleated, thus the (100) orientation grains with minimum surface energy were easy to grow. The texture effects on ferroelectric properties of PZT films were also discussed in relation to the domain structure

  5. Effect of annealing temperatures on the morphology and structural properties of PVDF/MgO nanocomposites thin films

    Science.gov (United States)

    Rozana, M. D.; Arshad, A. N.; Wahid, M. H. M.; Habibah, Z.; Sarip, M. N.; Rusop, M.

    2018-05-01

    This study investigates the effect of annealing on the topography, morphology and crystal phases of poly(vinylideneflouride)/Magnesium Oxide (MgO) nanocomposites thin films via AFM, FESEM and ATR-FTIR. The nanocomposites thin films were annealed at temperatures ranging from 70°C to 170°C. The annealed PVDF/MgO nanocomposites thin films were then cooled at room temperature before removal from the oven. This is to restructure the crystal lattice and to reduce imperfection for the PVDF/MgO nanocomposites thin films. PVDF/MgO nanocomposites thin films with annealing temperatures of 70°C, 90°C and 110°C showed uniform distribution of MgO nanoparticles, relatively low average surface roughness and no visible of defects. High application of annealing temperature on PVDF/MgO nanocomposites thin films caused tear-like defects on the thin films surface as observed by FESEM. The PVDF/MgO nanocomposites thin films annealed at 70°C was found to be a favourable film to be utilized in this study due to its enhanced β-crystalites of PVDF as evident in ATR-FTIR spectra.

  6. Effects of annealing on the compositional heterogeneity and structure in zirconium-based bulk metallic glass thin films

    International Nuclear Information System (INIS)

    He, L.; Chu, J.P.; Li, C.-L.; Lee, C.-M.; Chen, Y.-C.; Liaw, P.K.; Voyles, P.M.

    2014-01-01

    In-situ heating fluctuation electron microscopy and scanning transmission electron microscopy have been utilized to study compositional and structural heterogeneities in Zr 51 Cu 32 Al 9 Ni 8 thin films upon annealing. Composition fluctuations are present in the as-deposited thin films. Well below the glass transition temperature, the composition fluctuations increase with annealing time. Short- and medium-range order also change with annealing temperature. The observed heterogeneities in the glass structure persist until annealing causes crystallization. The 20 nm thick Zr 51 Cu 32 Al 9 Ni 8 films contain oxide layers both at the surface and the film/substrate interface with the total thickness of 7–8 nm. In-situ annealing increased the oxygen content of the whole films to about 24 wt.% after 2 h at 400 °C. - Highlights: • Zr 51 Cu 32 Al 9 Ni 8 thin films were studied with in-situ heating electron microscopy. • Annealing at 400 °C increases the Zr and Cu compositional fluctuations. • Short-range order in Zr 51 Cu 32 Al 9 Ni 8 becomes less homogeneous above 350 °C. • Medium-range order changes in degree and types at 400 °C, well below T g . • Annealing increases composition and structure heterogeneities until crystallization

  7. Temperature distribution study in flash-annealed amorphous ribbons

    International Nuclear Information System (INIS)

    Moron, C.; Garcia, A.; Carracedo, M.T.

    2003-01-01

    Negative magnetrostrictive amorphous ribbons have been locally current annealed with currents from 1 to 8 A and annealing times from 14 ms to 200 s. In order to obtain information about the sample temperature during flash or current annealing, a study of the temperature dispersion during annealing in amorphous ribbons was made. The local temperature variation was obtained by measuring the local intensity of the infrared emission of the sample with a CCD liquid nitrogen cooled camera. A distribution of local temperature has been found in spite of the small dimension of the sample

  8. Effect of crystal structure on optical properties of sol–gel derived zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: xiaodong_wang@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Wu, Guangming; Zhou, Bin [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China); Shen, Jun, E-mail: shenjun67@tongji.edu.cn [Pohl Institute of Solid State Physics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092 (China)

    2013-04-15

    Highlights: ► ZrO{sub 2} films were deposited by sol–gel method. ► Crystal structures of the films were tuned by different thermal annealing methods. ► The refractive indices vary with the crystal structures of the films. ► Lattice-mismatch was found to reduce the refractive index of ZrO{sub 2} films. -- Abstract: The optical properties of sol–gel derived zirconia thin films and their relation to the crystal structure are studied in this paper. ZrO{sub 2} films were deposited on quartz glass and silicon wafer substrates by sol–gel method with conventional furnace annealing (CFA) and rapid thermal annealing (RTA). Crystal structures of the films were analyzed by X-ray diffraction (XRD) and Raman spectroscopy, while refractive indices of the films were determined from the reflectance and transmittance spectra. The refractive indices vary with the function of crystal structure and density of the films, which depends on annealing temperature and annealing technique. Lattice-mismatch between monoclinic phase and tetragonal phase was found to reduce the refractive index of ZrO{sub 2} films.

  9. Through-vial impedance spectroscopy of the mechanisms of annealing in the freeze-drying of maltodextrin: the impact of annealing hold time and temperature on the primary drying rate.

    Science.gov (United States)

    Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina

    2014-06-01

    The study aims to investigate the impact of annealing hold time and temperature on the primary drying rate/duration of a 10% (w/v) solution of maltodextrin with an emphasis on how the mechanisms of annealing might be understood from the in-vial measurements of the ice crystal growth and the glass transition. The electrical impedance of the solution within a modified glass vial was recorded between 10 and 10(6) Hz during freeze-drying cycles with varying annealing hold times (1-5 h) and temperatures. Primary drying times decreased by 7%, 27% and 34% (1.1, 4.3 and 5.5 h) with the inclusion of an annealing step at temperatures of -15°C, -10°C and -5°C, respectively. The glass transition was recorded at approximately -16°C during the re-heating and re-cooling steps, which is close to the glass transition (Tg ') reported for 10% (w/v) maltodextrin and therefore indicates that a maximum freeze concentration (∼86%, w/w, from the Gordon-Taylor equation) was achieved during first freezing, with no further ice being formed on annealing. This observation, coupled to the decrease in electrical resistance that was observed during the annealing hold time, suggests that the reduction in the drying time was because of improved connectivity of ice crystals because of Ostwald ripening rather than devitrification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Alloying and microstructural changes in platinum–titanium milled and annealed powders

    International Nuclear Information System (INIS)

    Maweja, Kasonde; Phasha, M.J.; Yamabe-Mitarai, Y.

    2012-01-01

    Graphical abstract: (a) SE-SEM micrographs of PtTi martensite formed in powder milled for short time annealed at 1500 °C and quenched in helium gas flow (b) BSE-SEM of structure formed after slow cooling. Highlights: ► A disordered metastable FCC Pt(Ti) solid solution was formed after longer milling period. ► HCP Ti crystals were first deformed and then the atoms were dissolved in strained FCC Pt lattices. ► Longer milling time suppressed the occurrence of martensitic transformation after annealing. ► Martensite phase was formed in products that went through a short milling time then annealed and quenched. ► The width of the martensite features formed was smaller at higher cooling rates. - Abstract: Equiatomic platinum–titanium powder mixtures were processed by high energy ball milling under argon atmosphere and sintered under vacuum. Evolution of the crystal structures and microstructures of the products formed were investigated by XRD and SEM techniques, respectively. The HCP crystals of Ti were first deformed and then a disordered metastable FCC Pt(Ti) solid solution was formed during milling due to semi-coherency of FCC lattices. A nanostructured Pt(Ti) product was formed after long milling time, which contained 44–47 at.% Ti and 53–56 at.% Pt. An ordered PtTi intermetallic was formed by annealing the metastable Pt(Ti) at temperature above 1300 °C. The crystal structure and microstructure of the TiPt phase depended on the milling time, annealing temperature and the cooling rate. The B19 PtTi plate martensite was formed after annealing at 1500 °C and quenching at a cooling rate of 23 °C/min to 200 °C/min for short time milled products. The width of martensite features was smaller at high cooling rate. In PtTi products milled for longer time, no martensitic transformation was observed on cooling the annealed samples. Small amounts of Pt 5 Ti 3 were formed in the powders milled for 16 h or more, followed by annealing at 1500 °C and furnace

  11. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Swapankumar, E-mail: swapankumar.ghosh2@mail.dcu.ie; Divya, Damodaran [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India); Remani, Kottayilpadi C. [Sree Neelakanda Government Sanskrit College, Department of Chemistry (India); Sreeremya, Thadathil S. [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India)

    2010-06-15

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 {sup o}C. The activation energy for growth of CeO{sub 2} nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO{sub 2} particles in narrow size range. CeO{sub 2} nanocrystals precipitated at 35 {sup o}C were further annealed at temperatures in the range 300-700 {sup o}C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  12. Improvement on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Esakky, Papanasam, E-mail: papanasamte@gmail.com; Kailath, Binsu J

    2017-08-15

    Highlights: • Post deposition annealing (PDA) and post metallization annealing (PMA) on the electrical characteristics of Pd/HfO{sub 2}/6H-SiC MIS capacitors. • Post deposition N{sub 2}O plasma annealing inhibits crystallization of HfO{sub 2} during high temperature annealing. • Plasma annealing followed by RTA in N{sub 2} results in formation of hafnium silicate at the HfO{sub 2}-SiC interface. • PDA reduces interface state density (D{sub it}) and gate leakage current density (J{sub g}) by order. • PMA in forming gas for 40 min results in better passivation and reduces D{sub it} by two orders and J{sub g} by thrice. - Abstract: HfO{sub 2} as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO{sub 2}/SiC capacitors offer higher sensitivity than SiO{sub 2}/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO{sub 2}/SiC interface. Effect of post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO{sub 2}/SiC MIS capacitors are reported in this work. N{sub 2}O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N{sub 2} result in formation of Hf silicate at the HfO{sub 2}/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N{sub 2}O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO{sub 2}/SiC capacitors.

  13. Influence of annealing conditions on anodic tungsten oxide layers and their photoelectrochemical activity

    International Nuclear Information System (INIS)

    Syrek, Karolina; Zych, Marta; Zaraska, Leszek; Sulka, Grzegorz D.

    2017-01-01

    Highlights: • Effect of annealing temperature on the morphology and crystalline structure of anodic WO 3 was investigated. • Photoelectrochemical properties of WO 3 layers annealed at different temperatures were studied. • Edges of conduction and valence bands were estimated for tungsten oxide layers annealed at different temperatures. • Influence of annealing time on crystalline structure, morphology and photoelectrochemical performance was studied. - Abstract: The nanoporous tungsten oxide films having an amorphous structure were prepared in an electrolyte containing fluoride ions via an anodization process. The as-synthesized anodic oxide layers can be easily converted to the monoclinic WO 3 phase upon annealing in air. The as-synthesized and annealed WO 3 layers were investigated by using X-ray diffraction, scanning electron microscopy, and photocurrent spectroscopy. The effect of annealing temperature and annealing time on the oxide morphology, crystal structure and electrochemical properties were studied. The samples were annealed in air at the temperatures ranging from 400 to 600 °C, and it was found that the original porous morphology of oxide is completely lost after annealing at 600 °C. The changes in the average crystallite sizes upon annealing were confirmed by XRD measurements. The photoelectrochemical performance of the annealed WO 3 layers were studied under pulsed UV illumination, and the highest photocurrents were observed at the incident light wavelength of 350 nm for the sample annealed at 500 °C for 2 h. The band gap energy and the positions of conduction and valence band edges were determined for all studied samples.

  14. Thermal annealing behaviour of sulphur-35 produced in pile-irradiated mixed crystals AlCl/sub 3/-FeCl/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Dyakovich, V; Todorovski, D S; Kostadinova, Z D [Sofia Univ. (Bulgaria). Khimicheski Fakultet

    1983-12-19

    The regression analysis of the experimental results on the thermal annealing behaviour of /sup 35/S produced in pile-irradiated mixed crystals AlCl/sub 3/-FeCl/sub 3/ confirms some suppositions made in a previous paper. The chemical state of /sup 35/S is defined by the target prehistory and the iron concentration. The influence of Fe/sup 3 +/ can be observed indirectly through its influence on the defect structure formed.

  15. Influence of secondary phases during annealing on re-crystallization of CuInSe{sub 2} electrodeposited films

    Energy Technology Data Exchange (ETDEWEB)

    Gobeaut, A. [Laboratoire de Reactivite et Chimie des Solides, 33 rue St Leu, 80039 Amiens (France); Laffont, L., E-mail: lydia.laffont@u-picardie.f [Laboratoire de Reactivite et Chimie des Solides, 33 rue St Leu, 80039 Amiens (France); Tarascon, J.-M. [Laboratoire de Reactivite et Chimie des Solides, 33 rue St Leu, 80039 Amiens (France); Parissi, L.; Kerrec, O. [Institut de Recherche et de Developpement de l' Energie Photovoltaique, 6 quai Watier, 78401 Chatou cedex (France)

    2009-06-01

    Electrodeposited CuInSe{sub 2} thin films are of potential importance, as light absorber material, in the next generation of photovoltaic cells as long as we can optimize their annealing process to obtain dense and highly crystalline films. The intent of this study was to gain a basic understanding of the key experimental parameters governing the structural-textural-composition evolution of thin films as function of the annealing temperature via X-ray diffraction, scanning/transmission electron microscopy and thermal analysis measurements. The crystallization of the electrodeposited CuInSe{sub 2} films, with the presence of Se and orthorhombic Cu{sub 2} {sub -} {sub x}Se (o-Cu{sub 2} {sub -} {sub x}Se) phases, occurs over two distinct temperature ranges, between 220 {sup o}C and 250 {sup o}C and beyond 520 {sup o}C. Such domains of temperature are consistent with the melting of elemental Se and the binary CuSe phase, respectively. The CuSe phase forming during annealing results from the reaction between the two secondary species o-Cu{sub 2} {sub -} {sub x}Se and Se (o-Cu{sub 2} {sub -} {sub x}Se + Se {yields} 2 CuSe) but can be decomposed into the cubic {beta}-Cu{sub 2} {sub -} {sub x}Se phase by slowing down the heating rate. Formation of liquid CuSe beyond 520{sup o}C seems to govern both the grain size of the films and the porosity of the substrate-CuInSe{sub 2} film interface. A simple model explaining the competitive interplay between the film crystallinity and the interface porosity is proposed, aiming at an improved protocol based on temperature range, which will enable to enhance the film crystalline nature while limiting the interface porosity.

  16. Effect of annealing on phase transition in poly(vinylidene fluoride)

    Indian Academy of Sciences (India)

    Here we report the crystallization of both and -phase PVDF films by varying preparation temperature using DMSO solvent. The -phase PVDF films were annealed at 70, 90, 110, 130 and 160°C for five hours. The changes in the phase contents in the PVDF at different annealing conditions have been described.

  17. A study of PbTiO sub 3 crystallization in pure and composite nanopowders prepared by the sol-gel technique

    CERN Document Server

    Cernansky, M; Kral, K; Krupkova, R

    2002-01-01

    In this investigation the crystallization of PbTiO sub 3 upon annealing of pure nanopowders and PbTiO sub 3 -SiO sub 2 (1:1 v/v) nanocomposite powders prepared by the sol-gel technique was studied. Using x-ray diffraction phase analysis, the start of PbTiO sub 3 crystallization in pure PbTiO sub 3 powders was detected at 400 sup o C. Distinct crystallization of PbTiO sub 3 in PbTiO sub 3 -SiO sub 2 nanocomposites starts at 700 sup o C, whereas SiO sub 2 remains amorphous. There are indications that an interface interaction between the PbTiO sub 3 and the SiO sub 2 phase plays an important role in hindering the crystallization of PbTiO sub 3. The particle size (size of coherently scattering regions) was estimated from the broadening of the x-ray diffraction line profiles. The average size of PbTiO sub 3 nanocrystallites increases with temperature and time of annealing, the influence of temperature being more significant than that of the annealing time. Differential scanning calorimetry confirmed the results of...

  18. Epitaxial growth of thin single-crystals and their quality study by Rutherford scattering in channeling conditions

    International Nuclear Information System (INIS)

    Kirsch, Robert.

    1975-01-01

    Some aspects of thin crystalline layers are reminded: vacuum deposition, epitaxial growth, annealing and interdiffusion ion channeling and scattering of 1-2MeV helium ions are used to study the crystalline quality, the annealing effects and in some cases the interdiffusion in epitaxial multilayers of silver, copper gold and nickel. Thin single-crystals of gold and nickel oriented (III) plan parallel to the surface were obtained by successive epitaxial growth from muscovite mica clivages. The mounting techniques of single crystalline, self-supporting, 300 to 1200 Angstroems thick, gold and nickel targets of 3mm diameter are described. The gold single-crystals have dislocation densities of 10 8 cm -2 and the various epitaxial layers are obtained without twinning [fr

  19. A thermoluminescence study of Z2-centres in terbium-doped NaCl crystals

    International Nuclear Information System (INIS)

    Reddy, K.N.; Ahmed, I.M.; Pandaraiah, N.; Rao, U.V.S.; Babu, V.H.

    1983-01-01

    Thermoluminescence (TL), optical absorption are used to correlate thermal annealing of Z 2 -centres with TL peak occurring around 110 0 C in terbium-doped NaCl crystals. The TL glow peak occurring around 190 0 C is attributed to the thermal annealing of F-centres. The thermal activation parameters are calculated for both Z 2 - and F-centre peaks. (author)

  20. Study of post annealing influence on structural, chemical and electrical properties of ZTO thin films

    International Nuclear Information System (INIS)

    Jain, Vipin Kumar; Kumar, Praveen; Kumar, Mahesh; Jain, Praveen; Bhandari, Deepika; Vijay, Y.K.

    2011-01-01

    Research highlights: → Structural, chemical and electrical properties of cost effective ZTO thin films with varying concentrations. → Effect of annealing of ZTO films. - Abstract: Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO 2 ; 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO films were annealed at 450 deg. C in vacuum. These films were characterized to study the effect of annealing and addition of SnO 2 concentration on the structural, chemical and electrical properties. The XRD analysis indicates that crystallization of the ZTO films strongly depends on the concentration of SnO 2 and post annealing where annealed films showed polycrystalline nature. Atomic force microscopy (AFM) images manifest the surface morphology of these ZTO thin films. The XPS core level spectra of Zn(2p), O(1s) and Sn(3d) have been deconvoluted into their Gaussian component to evaluate the chemical changes, while valence band spectra reveal the electronic structures of these films. A small shift in Zn(2p) and Sn(3d) core level towards higher binding energy and O(1s) core level towards lower binding energy have been observed. The minimum electrical resistivity (ρ ∼ 3.69 x 10 -2 Ω-cm), maximum carrier concentration (n ∼ 3.26 x 10 19 cm -3 ) and Hall mobility (μ ∼ 5.2 cm 2 v -1 s -1 ) were obtained for as-prepared ZTO (50:50) film thereafter move towards lowest resistivity (ρ ∼ 1.12 x 10 -3 Ω-cm), highest carrier concentration (n ∼ 2.96 x 10 20 cm -3 ) and mobility (μ ∼ 18.8 cm 2 v -1 s -1 ) for annealed ZTO (50:50) thin film.

  1. Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mota-Santiago, Pablo-Ernesto [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Crespo-Sosa, Alejandro, E-mail: crespo@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Jimenez-Hernandez, Jose-Luis; Silva-Pereyra, Hector-Gabriel; Reyes-Esqueda, Jorge-Alejandro; Oliver, Alicia [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Systematic study on the formation of Ag and Au nano-particles in Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Annealing in a reducing atmosphere, below the metal melting point is more suitable. Black-Right-Pointing-Pointer Au nano-particles grow up to 15 nm and Ag nano-particles up to 45 nm in radius. Black-Right-Pointing-Pointer Ostwald ripening is the mechanism responsible for the formation of large nanoparticles. Black-Right-Pointing-Pointer Optical properties of metallic nano-particles in Al{sub 2}O{sub 3} can be related to their size. - Abstract: Metallic nano-particles embedded in transparent dielectrics are very important for new technological applications because of their unique optical properties. These properties depend strongly on the size and shape of the nano-particles. In order to achieve the synthesis of metallic nano-particles it has been used the technique of ion implantation. This is a very common technique because it allows the control of the depth and concentration of the metallic ions inside the sample, limited mostly by straggling, without introducing other contaminant agents. The purpose of this work was to measure the size of the nano-particles grown under different conditions in Sapphire and its size evolution during the growth process. To achieve this goal, {alpha}-Al{sub 2}O{sub 3} single crystals were implanted with Ag or Au ions at room temperature with different fluences (from 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2} to 8 Multiplication-Sign 10{sup 16} ions/cm{sup 2}). Afterwards, the samples were annealed at different temperatures (from 600 Degree-Sign C to 1100 Degree-Sign C) in oxidising, reducing, Ar or N{sub 2} atmospheres. We measured the ion depth profile by Rutherford Backscattering Spectroscopy (RBS) and the nano-crystals size distribution by using two methods, the surface plasmon resonance in the optical extinction spectrum and the Transmission Electron Microscopy (TEM).

  2. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime; Liang, Ru-Ze; Wang, Kai; Cruciani, Federico; Kan, Zhipeng; Wohlfahrt, Markus; Tang, Ming-Chun; Laquai, Fré dé ric; Beaujuge, Pierre

    2017-01-01

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  3. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime

    2017-12-19

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  4. The effect of annealing atmosphere on the thermoluminescence of synthetic calcite

    International Nuclear Information System (INIS)

    Pagonis, Vasilis

    1998-01-01

    Samples of high purity calcite powder were annealed in air, nitrogen and carbon dioxide atmospheres in the temperature range 300-700 deg. C and in atmospheric pressure. The samples were subsequently irradiated and the effect of the annealing atmosphere and temperature on the thermoluminescence (TL) of the samples was studied. Our results show that both carbonate and oxygen ions play an important part in the TL of calcite annealed in this temperature range. The intensities of the TL signal in the nitrogen and carbon dioxide anneals rise continuously with the annealing temperature. For all annealing temperatures it was found that the carbon dioxide atmosphere caused an increase in the observed TL signal as compared with anneals in an inert nitrogen atmosphere, while the shape of the TL glow curves remained the same. This increase in the observed TL signal is explained via the surface adsorption of carbonate ions. The shape and location of the TL peaks suggest that samples annealed in air exhibit a different type of TL center than samples annealed in nitrogen and carbon dioxide atmospheres. A possible mechanism for the role of oxygen ions involves a surface adsorption process and a subsequent diffusion of oxygen ions in the bulk of the crystal. Annealing of the samples in air at temperatures T>600 deg. C causes a collapse of the TL signal, in agreement with previous studies of calcite powders. No such collapse of the TL signal is observed for the nitrogen and carbon dioxide anneals, suggesting that a different type of TL center and/or recombination center is involved in air anneals. Arrhenius plots for the air anneals yield an activation energy E=0.45±0.05 eV, while the carbon dioxide and nitrogen anneals yield a lower activation energy E=0.28±0.04 eV

  5. Study on the influence of annealing effects in GaN VPE

    International Nuclear Information System (INIS)

    Furtado, M.

    1983-06-01

    The effects of annealing that occur during VPE growth of GaN were investigated. GaN powder (and epilayers) samples were annealed in Ar, N 2 , H 2 , NH 3 , HC1 + N 2 and HC1 + H 2 (N 2 , H 2 and HC1 + N 2 ), respectively; under a range of experimental conditions of interest for preparing electroluminescent devices. Good surface appearence Zn doped epilayers were also used under N 2 in order to investigate surface morphology changes due to thermal decomposition. It was found that GaN reacts with H 2 , remains stable under NH 3 , and the effects of thermal decomposition are somewhat enhanced with HC1. The epilayers' behaviour under thermal decomposition and HC1 are interpreted by the greater stability of the (0001) crystal plane, which accounts for the improvement of the surface quality under special growth conditions. Significant observations are reported concerning GaN decomposition in different ambients [pt

  6. Thermal annealing in neutron-irradiated tribromobenzenes

    DEFF Research Database (Denmark)

    Siekierska, K.E.; Halpern, A.; Maddock, A. G.

    1968-01-01

    in the crystals was estimated by means of the 1,2-dibromoethylene exchange technique. The results suggest that, as a consequence of nuclear events, quite a number of different reactions occur whereas the principal annealing reaction is a recombination of atomic bromine with a dibromophenyl radical....

  7. Crystallization of silicon films of submicron thickness by blue-multi-laser-diode annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mugiraneza, Jean de Dieu; Shirai, Katsuya; Suzuki, Toshiharu; Okada, Tatsuya; Noguchi, Takashi [University of the Ryukyus, Okinawa (Japan); Matsushima, Hideki; Hashimoto, Takao; Ogino, Yoshiaki; Sahota, Eiji [Hitachi Computer Peripherals Co. Ltd, Kanagawa (Japan)

    2012-01-15

    Blue-Multi-Laser-Diode Annealing (BLDA) was performed in the continuous wave (CW) mode on Si films as thick as 0.5 {mu}m and 1 {mu}m deposited by rf sputtering. As a result of controlling the laser power from 4.0 to 4.8 W, a whole Si layer of 0.5 {mu}m in thickness was completely crystallized and consisted of a columnar structure of fine grains beneath a partially melted Si surface owing to the high temperature gradient along the depth in the Si layer. After additional hydrogenation in a furnace ambient, the ratio of the photo/dark current under AM 1.5 illumination distinctly improved to 6 times higher than that of as-deposited condition. The BLDA is expected to be applied to thin-film solar cells and/or to thin film transistor (TFT) photo-sensor systems on panels as a new low-temperature poly-silicon (LTPS) fabrication technique.

  8. Air atmosphere annealing effects on LSO:Ce crystal

    Czech Academy of Sciences Publication Activity Database

    Ding, D.; Feng, H.; Ren, G.; Nikl, Martin; Qin, L.; Pan, S.; Yang, F.

    2010-01-01

    Roč. 57, č. 3 (2010), s. 1272-1277 ISSN 0018-9499 R&D Projects: GA MŠk ME08034 Institutional research plan: CEZ:AV0Z10100521 Keywords : annealing * cerium * LSO * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.519, year: 2010

  9. Role of dopant in annealing of chemical radiation damage in potassium nitrate

    International Nuclear Information System (INIS)

    Mohapatra, B.M.; Bhatta, D.

    1984-01-01

    The role of cationic vacancy in th annealing of gamma-irradiated potassium nitrate has been investigated using Ba 2+ as a dopant. Isothermal annealing data show that the pure potassium nitrate is immune to annealing above and below the temperature of crystal transition 127degC (Rhombic↔tTrigonal), while the doped crystals undergo recovery by a combination of one first order and one second order process above the phase change and by a second order process below this temperature. The recovery process above 127degC is initially fast (upto 1 hr) but subsequently it slows down to a pseudo-plateau. The proportion of damage which recombines by first and second order processes is 40.6 and 59.4 respectively. (author)

  10. Study of effect of quenching and deformation on KCl: Gd crystals by ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The study of ionic conductivity vs reciprocal temperature of pure KCl and KCl crystal doped with. 0⋅1, 0⋅3 and 0⋅5 mole% gadolinium has been carried out in as grown, quenched from elevated temperatures. (100, 350 and 500°C) and annealed at various timings i.e. 2–3 h and deformed by different percentages.

  11. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings.

    Science.gov (United States)

    Yang, Yu-Sen; Cho, Ting-Pin

    2013-08-07

    Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr₂N, (CrAl)₂N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr₂N and (CrAl)₂N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr₂N and (CrAl)₂N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr₂N and (CrAl)₂N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness.

  12. Structural change upon annealing of amorphous GeSbTe grown on Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Bragaglia, V., E-mail: bragaglia@pdi-berlin.de; Jenichen, B.; Giussani, A.; Perumal, K.; Riechert, H.; Calarco, R. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2014-08-07

    The structural change upon annealing of an amorphous GeSbTe (GST) film deposited by molecular beam epitaxy on a Si(111) substrate is studied by means of X-ray diffraction (XRD), X-ray reflectivity (XRR), and atomic force microscopy (AFM). XRD profiles reveal that both metastable cubic and stable hexagonal phases are obtained with a single out-of-plane orientation. XRR study shows a density increase and consequent thickness decrease upon annealing, in accordance with literature. From both, the XRD and the AFM study, it emerges that the crystalline substrate acts as a template for the film, favoring the crystallization of the amorphous GST into the [111] oriented metastable cubic phase, and the latter turns into the [0001] stable hexagonal phase for higher annealing temperature.

  13. A study of the crystallization of ZrO

    International Nuclear Information System (INIS)

    Aguilar, D. H.; Torres-Gonzalez, L. C.; Torres-Martinez, L. M.; Lopez, T.; Quintana, P.

    2001-01-01

    ZrO(sub 2)-SiO(sub 2) sol-gel powders were produced using tetraethoxysilane (TEOS) and zirconium propoxide. After gellation, the ZrO(sub 2) crystallization process was investigated using X-ray diffraction (XRD), thermal analysis (DTA/TGA), and scanning electron microscopy (SEM). Fresh gels were amorphous. Thermal treatments were carried out from 100 to 1400 C for a total annealing time of 182 h. Tetragonal zirconia, (Z(t)) was the first phase to crystallize, between 300 and 500 C. Crystallization temperature was lower for zirconia-rich compositions, increasing as silica content was raised. DTA analysis showed that Z(t) crystallization occurred in two stages. Complete tetragonal-monoclinic zirconia transformation occurred near 1000 C, and was clearly observed only in ZrO(sub 2)-rich compositions ( and gt;80%). Silica remains amorphous until 1200 C, when ZrSiO(sub 4) formation took place. A metastable sol-gel phase diagram was proposed to show the crystallization process between 100 and 1400 C

  14. Shrinking of silicon nanocrystals embedded in an amorphous silicon oxide matrix during rapid thermal annealing in a forming gas atmosphere

    Science.gov (United States)

    van Sebille, M.; Fusi, A.; Xie, L.; Ali, H.; van Swaaij, R. A. C. M. M.; Leifer, K.; Zeman, M.

    2016-09-01

    We report the effect of hydrogen on the crystallization process of silicon nanocrystals embedded in a silicon oxide matrix. We show that hydrogen gas during annealing leads to a lower sub-band gap absorption, indicating passivation of defects created during annealing. Samples annealed in pure nitrogen show expected trends according to crystallization theory. Samples annealed in forming gas, however, deviate from this trend. Their crystallinity decreases for increased annealing time. Furthermore, we observe a decrease in the mean nanocrystal size and the size distribution broadens, indicating that hydrogen causes a size reduction of the silicon nanocrystals.

  15. High pressure annealing of Europium implanted GaN

    KAUST Repository

    Lorenz, K.; Miranda, S. M. C.; Alves, E.; Roqan, Iman S.; O'Donnell, K. P.; Bokowski, M.

    2012-01-01

    GaN epilayers were implanted with Eu to fluences of 1×10^13 Eu/cm2 and 1×10^15 Eu/cm2. Post-implant thermal annealing was performed in ultra-high nitrogen pressures at temperatures up to 1450 ºC. For the lower fluence effective structural recovery of the crystal was observed for annealing at 1000 ºC while optical activation could be further improved at higher annealing temperatures. The higher fluence samples also reveal good optical activation; however, some residual implantation damage remains even for annealing at 1450 ºC which leads to a reduced incorporation of Eu on substitutional sites, a broadening of the Eu luminescence lines and to a strongly reduced fraction of optically active Eu ions. Possibilities for further optimization of implantation and annealing conditions are discussed.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. High pressure annealing of Europium implanted GaN

    KAUST Repository

    Lorenz, K.

    2012-02-09

    GaN epilayers were implanted with Eu to fluences of 1×10^13 Eu/cm2 and 1×10^15 Eu/cm2. Post-implant thermal annealing was performed in ultra-high nitrogen pressures at temperatures up to 1450 ºC. For the lower fluence effective structural recovery of the crystal was observed for annealing at 1000 ºC while optical activation could be further improved at higher annealing temperatures. The higher fluence samples also reveal good optical activation; however, some residual implantation damage remains even for annealing at 1450 ºC which leads to a reduced incorporation of Eu on substitutional sites, a broadening of the Eu luminescence lines and to a strongly reduced fraction of optically active Eu ions. Possibilities for further optimization of implantation and annealing conditions are discussed.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. Dosimetric characteristics of muscovite mineral studied under different annealing conditions

    International Nuclear Information System (INIS)

    Kalita, J M; Wary, G

    2015-01-01

    The annealing effect on the thermoluminescence (TL) characteristics of x-ray irradiated muscovite mineral relevant to dosimetry has been studied. For un-annealed and 473 K annealed samples an isolated TL peak has been observed at around 347 K; however, annealing at 573, 673 and 773 K two composite peaks have been recorded at around 347 and 408 K. Kinetic analysis reveals that there is a trap level at a depth of 0.71 eV, and due to annealing at 573 K (or above), a new trap level generates at 1.23 eV. The dosimetric characteristics, such as dose response, fading and reproducibility, have been studied in detail for all types of samples. The highest linear dose response has been observed from 10 to 2000 mGy in the 773 K annealed sample. Due to generation of the deep trap level, fading is found to reduce significantly just after annealing above 573 K. Reproducibility analysis shows that after 10 cycles of reuse the coefficient of variations in the results for 60, 180 and 1000 mGy dose irradiated 773 K annealed samples are found to be 1.78%, 1.37% and 1.58%, respectively. These analyses demand that after proper annealing muscovite shows important dosimetric features that are essentially required for a thermoluminescence dosimeter (TLD). (paper)

  18. Control of crystal structure, morphology and optical properties of ceria films by post deposition annealing treatments

    International Nuclear Information System (INIS)

    Eltayeb, Asmaa; Vijayaraghavan, Rajani K.; McCoy, Anthony P.; Cullen, Joseph; Daniels, Stephen; McGlynn, Enda

    2016-01-01

    In this paper, the effects of post-deposition annealing temperature and atmosphere on the properties of pulsed DC magnetron sputtered ceria (CeO_2) thin films, including crystalline structure, grain size and shape and optical properties were investigated. Experimental results, obtained from X-ray diffraction (XRD), showed that the prepared films crystallised predominantly in the CeO_2 cubic fluorite structure, although evidence of Ce_2O_3 was also seen and this was quantified by a Rietveld refinement. The anneal temperature and oxygen content of the Ar/O_2 annealing atmosphere both played important roles on the size and shape of the nanocrystals as determined by atomic force microscopy (AFM). The average grain size (determined by an AFM) as well as the out of plane coherence length (obtained from XRD) varied with increasing oxygen flow rate (OFR) in the annealing chamber. In addition, the shape of the grains seen in the AFM studies transformed from circular to triangular as the OFR was raised from 20 sccm to 30 sccm during an 800 °C thermal anneal. X-ray photoelectron spectroscopy was used to measure near-surface oxidation states of the thin-films with varying OFR in the annealing chamber. The bandgap energies were estimated from the ultra-violet and visible absorption spectra and low-temperature photoluminescence. An extracted bandgap value of 3.04 eV was determined for as-deposited CeO_2 films and this value increased with increasing annealing temperatures. However, no difference was observed in bandgap energies with variation of annealing atmosphere. - Highlights: • Deposition of ceria thin films by pulsed DC magnetron sputtering • Effect of annealing temperature and gas ambient on film crystalline structure • Evidence for control of the film roughness and grain size and shape is achieved. • Investigation of the effect of post-deposition annealing on the film stoichiometry • Films showed blue shifts in bandgap energies with increasing annealing

  19. Temperature, stress, and annealing effects on the luminescence from electron-irradiated silicon

    Science.gov (United States)

    Jones, C. E.; Johnson, E. S.; Compton, W. D.; Noonan, J. R.; Streetman, B. G.

    1973-01-01

    Low-temperature photoluminescence spectra are presented for Si crystals which have been irradiated with high-energy electrons. Studies of isochronal annealing, stress effects, and the temperature dependences of the luminescence are used to discuss the nature of the luminescent transitions and the properties of defects. Two dominant bands present after room-temperature anneal of irradiated material are discussed, and correlations of the properties of these bands are made with known Si defects. A band between 0.8 and 1.0 eV has properties which are related to those of the divacancy, and a band between 0.6 and 0.8 eV has properties related to those of the Si-G15(K) center. Additional peaks appear in the luminescence after high-temperature anneal; the influence of impurities and the effects of annealing of these lines are discussed.

  20. Post-annealing effects on pulsed laser deposition-grown GaN thin films

    International Nuclear Information System (INIS)

    Cheng, Yu-Wen; Wu, Hao-Yu; Lin, Yu-Zhong; Lee, Cheng-Che; Lin, Ching-Fuh

    2015-01-01

    In this work, the post-annealing effects on gallium nitride (GaN) thin films grown from pulsed laser deposition (PLD) are investigated. The as-deposited GaN thin films grown from PLD are annealed at different temperatures in nitrogen ambient. Significant changes of the GaN crystal properties are observed. Raman spectroscopy is used to observe the crystallinity, the change of residual stress, and the thermal decomposition of the annealed GaN thin films. X-ray diffraction is also applied to identify the crystal phase of GaN thin films, and the surface morphology of GaN thin films annealed at different temperatures is observed by scanning electron microscopy. Through the above analyses, the GaN thin films grown by PLD undergo three stages: phase transition, stress alteration, and thermal decomposition. At a low annealing temperature, the rock salt GaN in GaN films is transformed into wurtzite. The rock salt GaN diminishes with increasing annealing temperature. At a medium annealing temperature, the residual stress of the film changes significantly from compressive strain to tensile strain. As the annealing temperature further increases, the GaN undergoes thermal decomposition and the surface becomes granular. By investigating the annealing temperature effects and controlling the optimized annealing temperature of the GaN thin films, we are able to obtain highly crystalline and strain-free GaN thin films by PLD. - Highlights: • The GaN thin film is grown on sapphire by pulsed laser deposition. • The GaN film undergoes three stages with increasing annealing temperature. • In the first stage, the film transfers from rock salt to wurtzite phase. • In the second stage, the stress in film changes from compressive to tensile. • In the final stage, the film thermally decomposes and becomes granular

  1. [Effects of annealing temperature on the structure and optical properties of ZnMgO films prepared by atom layer deposition].

    Science.gov (United States)

    Sun, Dong-Xiao; Li, Jin-Hua; Fang, Xuan; Chen, Xin-Ying; Fang, Fang; Chu, Xue-Ying; Wei, Zhi-Peng; Wang, Xiao-Hua

    2014-07-01

    In the present paper, we report the research on the effects of annealing temperature on the crystal quality and optical properties of ZnMgO films deposited by atom layer deposition(ALD). ZnMgO films were prepared on quartz substrates by ALD and then some of the samples were treated in air ambient at different annealing temperature. The effects of annealing temperature on the crystal quality and optical properties of ZnMgO films were characterized by X-ray diffraction (XRD), photoluminescence (PL) and ultraviolet-visible (UV-Vis) absorption spectra. The XRD results showed that the crystal quality of ZnMgO films was significantly improved when the annealing temperature was 600 degrees C, meanwhile the intensity of(100) diffraction peak was the strongest. Combination of PL and UV-Vis absorption measurements showed that it can strongly promote the Mg content increasing in ZnMgO films and increase the band gap of films. So the results illustrate that suitable annealing temperature can effectively improve the crystal quality and optical properties of ZnMgO films.

  2. Preparation and crystallization of hollow α-Fe2O3 microspheres following the gas-bubble template method

    International Nuclear Information System (INIS)

    Valladares, L. de los Santos; León Félix, L.; Espinoza Suarez, S.M.; Bustamante Dominguez, A.G.; Mitrelias, T.; Holmes, S.; Moreno, N.O.; Albino Aguiar, J.; Barnes, C.H.W.

    2016-01-01

    In this work we report the formation of hollow α-Fe 2 O 3 (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO 3 ) 3 .9H 2 O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  3. Reduced flux motion via flux creep annealing in high- Jc single-crystal Y1Ba2Cu3O7

    International Nuclear Information System (INIS)

    Thompson, J.R.; Sun, Y.R.; Malozemoff, A.P.; Christen, D.K.; Kerchner, H.R.; Ossandon, J.G.; Marwick, A.D.; Holtzberg, F.

    1991-01-01

    We investigated the stabilization of magnetic flux in a high-temperature superconductor (a proton-irradiated Y 1 Ba 2 Cu 3 O 7 crystal), by operating with subcritical current density J. Using the thermal history to obtain an induced current density J≤J c , we observed a drastically reduced relaxation rate dM/dt (M=magnetization), after ''flux creep annealing.'' The results show that the field gradient ∼J∼M determined the relaxation rate, independent of the sample's H-T history, in agreement with recent theory

  4. Thermal effect on structural and magnetic properties of Fe78B13Si9 annealed amorphous ribbons

    Science.gov (United States)

    Soltani, Mohamed Larbi; Touares, Abdelhay; Aboki, Tiburce A. M.; Gasser, Jean-Georges

    2017-08-01

    In the present work, we study the influence of thermal treatments on the magnetic properties of as-quenched and pre-crystallized Fe78Si9B13 after stress relaxation. The crystallization behavior of amorphous and treated Fe78Si9B13 ribbons was revisited. The measurements were carried out by means of Differential Scanning Calorimetry, by X-ray diffraction and by Vibrating Sample Magnetometer, Susceptometer and fluxmeter. Relaxed samples were heated in the resistivity device up to 700°C and annealed near the onset temperature about 420°C for respectively 1, 3, 5, 8 hours. In as-quenched samples, two transition points occur at about 505°C and 564°C but in relaxed sample, the transition points have been found about 552°C and 568°C. Kinetics of crystallization was deduced for all studied samples. Annealing of the as-purchased ribbon shows the occurrence of α-Fe and tetragonal Fe3B resulting from the crystallization of the remaining amorphous phase. The effects on magnetic properties were pointed out by relating the structural evolution of the samples. The magnetic measurements show that annealing change the saturation magnetization and the coercive magnetic field values, hence destroying the good magnetic properties of the material. The heat treatment shows that the crystallization has greatly altered the shape of the cycles and moved the magnetic saturation point of the samples. The effect of treatment on the magneto-crystalline anisotropy is also demonstrated.

  5. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    International Nuclear Information System (INIS)

    Gontad, F.; Conde, J.C.; Filonovich, S.; Cerqueira, M.F.; Alpuim, P.; Chiussi, S.

    2013-01-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p + -nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm 2 is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm 2 promote partial crystallization of the amorphous structures

  6. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, F., E-mail: fran_gontad@yahoo.es [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Conde, J.C. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Filonovich, S.; Cerqueira, M.F.; Alpuim, P. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Chiussi, S. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain)

    2013-06-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p{sup +}-nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm{sup 2} is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm{sup 2} promote partial crystallization of the amorphous structures.

  7. Nano-crystallization in ZnO-doped In_2O_3 thin films via excimer laser annealing for thin-film transistors

    International Nuclear Information System (INIS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Bermundo, Juan Paolo Soria; Uraoka, Yukiharu; Ishihara, Ryoichi; Cingel, Johan van der; Mofrad, Mohammad R. T.; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki

    2016-01-01

    In a previous work, we reported the high field effect mobility of ZnO-doped In_2O_3 (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  8. Vapor Annealing Controlled Crystal Growth and Photovoltaic Performance of Bismuth Triiodide Embedded in Mesostructured Configurations.

    Science.gov (United States)

    Kulkarni, Ashish; Singh, Trilok; Jena, Ajay K; Pinpithak, Peerathat; Ikegami, Masashi; Miyasaka, Tsutomu

    2018-03-21

    Low stability of organic-inorganic lead halide perovskite and toxicity of lead (Pb) still remain a concern. Therefore, there is a constant quest for alternative nontoxic and stable light-absorbing materials with promising optoelectronic properties. Herein, we report about nontoxic bismuth triiodide (BiI 3 ) photovoltaic device prepared using TiO 2 mesoporous film and spiro-OMeTAD as electron- and hole-transporting materials, respectively. Effect of annealing methods (e.g., thermal annealing (TA), solvent vapor annealing (SVA), and Petri dish covered recycled vapor annealing (PR-VA)) and different annealing temperatures (90, 120, 150, and 180 °C for PR-VA) on BiI 3 film morphology have been investigated. As found in the study, grain size increased and film uniformity improved as temperature was raised from 90 to 150 °C. The photovoltaic devices based on BiI 3 films processed at 150 °C with PR-VA treatment showed power conversion efficiency (PCE) of 0.5% with high reproducibility, which is, so far, the best PCE reported for BiI 3 photovoltaic device employing organic hole-transporting material (HTM), owing to the increase in grain size and uniform morphology of BiI 3 film. These devices showed stable performance even after 30 days of exposure to 50% relative humidity, and after 100 °C heat stress and 20 min light soaking test. More importantly, the study reveals many challenges and room (discussed in the details) for further development of the BiI 3 photovoltaic devices.

  9. Effect of annealing temperature on the stress and structural properties of Ge core fibre

    Science.gov (United States)

    Zhao, Ziwen; Cheng, Xueli; Xue, Fei; He, Ting; Wang, Tingyun

    2017-09-01

    Effect of annealing temperature on the stress and structural properties of a Ge core fibre via the molten core drawing (MCD) method is investigated using Raman spectroscopy, Scanning electronic microscopy (SEM), and X-ray diffraction. The experimental results showed that the Raman peak position of the Ge fibre shifted from 297.6 cm-1 to 300.5 cm-1, and the FWHM value decreased from 4.53 cm-1 to 4.31 cm-1, when the annealing is carried out at 700 °C, 800 °C, and 900 °C, respectively. For the Ge core annealed at 900 °C, an apparent crystal grain can be seen in the SEM image, and the diffraction peaks of the (3 3 1) plane are generated in the X-ray diffraction spectra. These results show that optimising the annealing temperature allows the release of the residual stress in the Ge core. When the Ge core fibre is annealed at 900 °C, it exhibits the lowest residual stress and the highest crystal quality, and the quality improvement relative to that of the sample annealed at 800 °C is significant. Hence, annealing at around 900 °C can greatly improve the quality of a Ge core fibre. Further performance improvement of the Ge core fibre by annealing techniques can be anticipated.

  10. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings

    Science.gov (United States)

    Yang, Yu-Sen; Cho, Ting-Pin

    2013-01-01

    Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr2N, (CrAl)2N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr2N and (CrAl)2N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness. PMID:28811440

  11. Far-infrared spectroscopy of thermally annealed tungsten silicide films

    International Nuclear Information System (INIS)

    Amiotti, M.; Borghesi, A.; Guizzetti, G.; Nava, F.; Santoro, G.

    1991-01-01

    The far-infrared transmittance spectrum of tungsten silicide has been observed for the first time. WSi 2 polycrystalline films were prepared by coevaporation and chemical-vapour deposition on silicon wafers, and subsequently thermally annealed at different temperatures. The observed structures are interpreted, on the basis of the symmetry properties of the crystal, such as infrared-active vibrational modes. Moreover, the marked lineshape dependence on annealing temperature enables this technique to analyse the formation of the solid silicide phases

  12. Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process

    Directory of Open Access Journals (Sweden)

    Jun Shen

    2013-07-01

    Full Text Available Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO2 coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing.

  13. Rapid thermal annealing of Ti-rich TiNi thin films: A new approach to fabricate patterned shape memory thin films

    International Nuclear Information System (INIS)

    Motemani, Y.; Tan, M.J.; White, T.J.; Huang, W.M.

    2011-01-01

    This paper reports the rapid thermal annealing (RTA) of Ti-rich TiNi thin films, synthesized by the co-sputtering of TiNi and Ti targets. Long-range order of aperiodic alloy could be achieved in a few seconds with the optimum temperature of 773 K. Longer annealing (773 K/240 s), transformed the film to a poorly ordered vitreous phase, suggesting a novel method for solid state amorphization. Reitveld refinement analyses showed significant differences in structural parameters of the films crystallized by rapid and conventional thermal annealing. Dependence of the elastic modulus on the valence electron density (VED) of the crystallized films was studied. It is suggested that RTA provides a new approach to fabricate patterned shape memory thin films.

  14. Repair effect on patterned CoFeB-based magnetic tunneling junction using rapid thermal annealing

    International Nuclear Information System (INIS)

    Wu, K.-M.; Wang, Y.-H.; Chen, Wei-Chuan; Yang, S.-Y.; Shen, Kuei-Hung; Kao, M.-J.; Tsai, M.-J.; Kuo, C.-Y.; Wu, J.-C.; Horng, Lance

    2007-01-01

    Rapid thermal treatment without applying magnetic field reconstructing magnetic property of Co 60 Fe 20 B 20 was studied through magnetoresistance (R-H) measurement. In this paper, we report that the switching behaviors of CoFeB were obviously improved through rapid thermal annealing for only a brief 5 min. The squareness and reproduction of minor R-H loops were enhanced from 100 deg. C to 250 deg. C . Tunneling magnetoresistance (TMR) that is about 35% in the as-etched cells increases up to 44% after 250 deg. C rapid annealing and still shows about 25% TMR even after 400 deg. C treating. Therefore, repair purpose annealing is some what different from crystallizing purpose annealing. Applying magnetic field during repair annealing was not necessary. Brief thermal treatment improves CoFeB switching behavior indeed, and causes less damage at high temperature

  15. Improvement on the electrical characteristics of Pd/HfO2/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    Science.gov (United States)

    Esakky, Papanasam; Kailath, Binsu J.

    2017-08-01

    HfO2 as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO2/SiC capacitors offer higher sensitivity than SiO2/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO2/SiC interface. Effect of post deposition annealing in N2O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO2/SiC MIS capacitors are reported in this work. N2O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N2 result in formation of Hf silicate at the HfO2/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N2O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO2/SiC capacitors.

  16. A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices

    KAUST Repository

    Park, Jihoon; Kurra, Narendra; AlMadhoun, M. N.; Odeh, Ihab N.; Alshareef, Husam N.

    2015-01-01

    We report a simple two-step annealing scheme for the fabrication of stable non-volatile memory devices employing poly(vinylidene fluoride) (PVDF) polymer thin-films. The proposed two-step annealing scheme comprises the crystallization

  17. Defect production in simulated cascades: cascade quenching and short-term annealing

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1982-01-01

    Defect production in high energy displacement cascades has been modeled using the computer code MARLOWE to generate the cascades and the stochastic computer code ALSOME to simulate the cascade quenching and short-term annealing of isolated cascades. The quenching is accomplished by using ALSOME with exaggerated values for defect mobilities and critical reaction distanes for recombination and clustering, which are in effect until the number of defect pairs is equal to the value determined from resistivity experiments at 4K. Then normal mobilities and reaction distances are used during short-term annealing to a point representative of Stage III recovery. Effects of cascade interactions at low fluences are also being investigated. The quenching parameter values were empirically determined for 30 keV cascades. The results agree well with experimental information throughout the range from 1 keV to 100 keV. Even after quenching and short-term annealing the high energy cascades behave as a collection of lower energy subcascades and lobes. Cascades generated in a crystal having thermal displacements were found to be in better agreement with experiments after quenching and annealing than those generated in a non-thermal crystal

  18. Annealing of radiation-induced defects in vanadium and vanadium-titanium alloys

    International Nuclear Information System (INIS)

    Leguey, T.

    1996-01-01

    The annealing of defects induced by electron irradiation up to a dose of 6.10 21 m -2 at T<293 K has been investigated in single-crystals of pure vanadium and in vanadium-titanium alloys with compositions 0.3, 1 and 5 at.% Ti using positron annihilation spectroscopy. The recovery of the positron annihilation parameters in V single-crystals indicates that the defect annealing takes place in the temperature range 410-470 K without formation of microvoids for the present irradiation conditions. For the alloys the recovery onset is shifted to 460 K, the width of the annealing stage is gradually broadened with increasing Ti content, and microvoids are formed for annealing temperatures at the end of the recovery stage. The results show that the vacancy release from vacancy-interstitial impurity pairs and subsequent recombination with interstitial loops is the mechanism of the recovery in pure V. For V-Ti alloys, vacancy-Ti-interstitial impurity complexes and vacancy-Ti pairs appear to be the defects responsible for the positron trapping. The broadening of the recovery stage with increasing Ti content indicates that solute Ti is a very effective trap for vacancies in V. (orig.)

  19. AFM and FTIR characterization of microcrystalline Si obtained from isothermal annealing of Al/a-Si:H

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lopez, M.; Orduna-Diaz, A.; Delgado-Macuil, R. [Centro de Investigacion en Biotecnologia Aplicada (CIBA), IPN, Tlaxcala, Tlax. 72197 (Mexico); Olvera-Hernandez, J. [Centro de Investigacion en Dispositivos Semiconductores (CIDS), BUAP, Puebla, Pue. 72570 (Mexico); Navarro-Contreras, H.; Vidal, M.A.; Saucedo, N.; Mendez-Garcia, V.H. [Instituto de Investigacion en Comunicacion Optica (IICO), UASLP, San Luis Potosi, S.L.P. 78100 (Mexico)

    2007-04-15

    Atomic force microscopy and Fourier transform infrared spectroscopy were used to investigate the morphology of the microcrystalline surface, and also the amorphous-crystalline structural transformation of a-Si:H films, isothermally annealed during several hours. Crystallization process was strongly influenced by the deposition of an Al layer on the surface of a-Si:H samples. Representative AFM images show the presence of grains, which increase in diameter with the annealing time. Relative crystallized fraction as a function of the annealing time can be described adequately by using the Avrami equation. The kinetic of this crystallization process suggest a two-dimensional growth of the Si nuclei. Fourier transform infrared measurements show the presence of an intense band near 512 cm{sup -1} associated to Si-Si bonding. We observed the relative diminishing of the intensity of the Si-H wagging mode at 694 cm{sup -1} with annealing time, suggesting effusion of hydrogen to the surface of microcrystalline films. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Post-growth annealing of zinc oxide thin films pulsed laser deposited under enhanced oxygen pressure on quartz and silicon substrates

    International Nuclear Information System (INIS)

    Rusop, M.; Uma, K.; Soga, T.; Jimbo, T.

    2006-01-01

    Zinc oxide (ZnO) thin films have been prepared by pulsed laser deposition (PLD) technique at room temperature on quartz and single crystal silicon (1 0 0) substrates. The oxygen ambient gas pressure was attained at 6 Torr during the deposition. The deposited films were post-growth annealed in air at various annealing temperatures for 30 min. The X-ray diffraction (XRD), optical and electrical properties have been measured to study the properties of the films as a function of annealing temperatures. XRD has shown the strength of (0 0 2) peak increases and FWHM value decreases as the annealing temperatures increases from 200 to 600 deg. C. The post-growth annealed at 600 deg. C show dominant c-axis oriented hexagonal wurtize crystal structure and exhibit high average transmittance about 85% in the visible region and very sharp absorption edge at 376 nm with energy band gap of approximately 3.46 eV. Electrical measurement indicates the resistivity decreases with the annealing temperatures up to 600 deg. C, after which it increases with higher annealing temperatures at 800 deg. C. The complex of oxygen vacancy in the ZnO films may be the source of low conductivity in undoped ZnO films

  1. Polysilicon tft's fabricated by crystallization of a-si:h enhanced by hydrogen plasma

    International Nuclear Information System (INIS)

    Gallegos, O.; Garcia, R.; Estrada, M.; Cerdeira, A.; Leyva, A.

    2001-01-01

    Poly-silicon thin film transistors (TFTs) are widely applied in integrated LCD driving circuits and image sensors, because they have better characteristics than a-Si:H TFTs. Poly-silicon can deposited or obtained by crystallization of amorphous silicon layers after annealing above 900 oC. For the last years, research is been done in order to crystallize a- Si:H films at low temperature and time budget. In this work we present crystallization at 650 oC of intrinsic and doped a-Si:H layers after a hydrogen plasma annealing to enhanced the crystallization process. Intrinsic layers crystallized in 4-6 hours after annealing in hydrogen plasma, while doped layers crystallized for the same annealing times, independently of been or not annealed in hydrogen plasma. Layers were characterized by XRD and by resistivity measurements. Resistivity of n-type layers changed from 300 to 0.02 cm after crystallization. Resistivity of i-layers also decreased, but both values are very high and it is difficult to determine with precision its change. The high resistivity of the polycrystalline layers is determined by the small grain size. Poly-silicon TFTs were fabricated using the above procedure to crystallize the amorphous layers. The complete fabrication process is presented. Output characteristics are shown and compared to same characteristics for a-Si:H TFTs fabricated simultaneously with the exception of the crystallization process. TFTs' sensibility to light was also used to verify that crystallization took place

  2. Crystallization of Trehalose in Frozen Solutions and its Phase Behavior during Drying

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthi, Prakash; Patapoff, Thomas W.; Suryanarayanan, Raj (Genentech); (UMM)

    2015-02-19

    To study the crystallization of trehalose in frozen solutions and to understand the phase transitions during the entire freeze-drying cycle. Aqueous trehalose solution was cooled to -40 C in a custom-designed sample holder. The frozen solution was warmed to -18 C and annealed, and then dried in the sample chamber of the diffractometer. XRD patterns were continuously collected during cooling, annealing and drying. After cooling, hexagonal ice was the only crystalline phase observed. However, upon annealing, crystallization of trehalose dihydrate was evident. Seeding the frozen solution accelerated the solute crystallization. Thus, phase separation of the lyoprotectant was observed in frozen solutions. During drying, dehydration of trehalose dihydrate yielded a substantially amorphous anhydrous trehalose. Crystallization of trehalose, as trehalose dihydrate, was observed in frozen solutions. The dehydration of the crystalline trehalose dihydrate to substantially amorphous anhydrate occurred during drying. Therefore, analyzing the final lyophile will not reveal crystallization of the lyoprotectant during freeze-drying. The lyoprotectant crystallization can only become evident by continuous monitoring of the system during the entire freeze-drying cycle. In light of the phase separation of trehalose in frozen solutions, its ability to serve as a lyoprotectant warrants further investigation.

  3. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes.

    Science.gov (United States)

    Yu, W Q; Zhang, Y L; Jiang, X Q; Zhang, F Q

    2010-10-01

    Titanium oxide nanotube layers by anodization have excellent potential for dental implants because of good bone cell promotion. It is necessary to evaluate osteoblast behavior on different annealing temperature titania nanotubes for actual implant designs.  Scanning Electron Microscopy, X-Ray polycrystalline Diffractometer (XRD), X-ray photoelectron Spectroscope, and Atomic Force Microscopy (AFM) were used to characterize the different annealing temperature titania nanotubes. Confocal laser scanning microscopy, MTT, and Alizarin Red-S staining were used to evaluate the MC3T3-E1 preosteoblast behavior on different annealing temperature nanotubes.  The tubular morphology was constant when annealed at 450°C and 550°C, but collapsed when annealed at 650°C. XRD exhibited the crystal form of nanotubes after formation (amorphous), after annealing at 450°C (anatase), and after annealing at 550°C (anatase/rutile). Annealing led to the complete loss of fluorine on nanotubes at 550°C. Average surface roughness of different annealing temperature nanotubes showed no difference by AFM analysis. The proliferation and mineralization of preostoblasts cultured on anatase or anatase/rutile nanotube layers were shown to be significantly higher than smooth, amorphous nanotube layers.  Annealing can change the crystal form and composition of nanotubes. The nanotubes after annealing can promote osteoblast proliferation and mineralization in vitro. © 2010 John Wiley & Sons A/S.

  4. In situ study of annealing-induced strain relaxation in diamond nanoparticles using Bragg coherent diffraction imaging

    Directory of Open Access Journals (Sweden)

    S. O. Hruszkewycz

    2017-02-01

    Full Text Available We observed changes in morphology and internal strain state of commercial diamond nanocrystals during high-temperature annealing. Three nanodiamonds were measured with Bragg coherent x-ray diffraction imaging, yielding three-dimensional strain-sensitive images as a function of time/temperature. Up to temperatures of 800 °C, crystals with Gaussian strain distributions with a full-width-at-half-maximum of less than 8×10−4 were largely unchanged, and annealing-induced strain relaxation was observed in a nanodiamond with maximum lattice distortions above this threshold. X-ray measurements found changes in nanodiamond morphology at temperatures above 600 °C that are consistent with graphitization of the surface, a result verified with ensemble Raman measurements.

  5. Sequential multiple-step europium ion implantation and annealing of GaN

    KAUST Repository

    Miranda, S. M C; Edwards, Paul R.; O'Donnell, Kevin Peter; Boćkowski, Michał X.; Alves, Eduardo Jorge; Roqan, Iman S.; Vantomme, André ; Lorenz, Katharina

    2014-01-01

    Sequential multiple Eu ion implantations at low fluence (1×1013 cm-2 at 300 keV) and subsequent rapid thermal annealing (RTA) steps (30 s at 1000 °C or 1100 °C) were performed on high quality nominally undoped GaN films grown by metal organic chemical vapour deposition (MOCVD) and medium quality GaN:Mg grown by hydride vapour phase epitaxy (HVPE). Compared to samples implanted in a single step, multiple implantation/annealing shows only marginal structural improvement for the MOCVD samples, but a significant improvement of crystal quality and optical activation of Eu was achieved in the HVPE films. This improvement is attributed to the lower crystalline quality of the starting material, which probably enhances the diffusion of defects and acts to facilitate the annealing of implantation damage and the effective incorporation of the Eu ions in the crystal structure. Optical activation of Eu3+ ions in the HVPE samples was further improved by high temperature and high pressure annealing (HTHP) up to 1400 °C. After HTHP annealing the main room temperature cathodo- and photoluminescence line in Mg-doped samples lies at ∼ 619 nm, characteristic of a known Mg-related Eu3+ centre, while after RTA treatment the dominant line lies at ∼ 622 nm, typical for undoped GaN:Eu. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sequential multiple-step europium ion implantation and annealing of GaN

    KAUST Repository

    Miranda, S. M C

    2014-01-20

    Sequential multiple Eu ion implantations at low fluence (1×1013 cm-2 at 300 keV) and subsequent rapid thermal annealing (RTA) steps (30 s at 1000 °C or 1100 °C) were performed on high quality nominally undoped GaN films grown by metal organic chemical vapour deposition (MOCVD) and medium quality GaN:Mg grown by hydride vapour phase epitaxy (HVPE). Compared to samples implanted in a single step, multiple implantation/annealing shows only marginal structural improvement for the MOCVD samples, but a significant improvement of crystal quality and optical activation of Eu was achieved in the HVPE films. This improvement is attributed to the lower crystalline quality of the starting material, which probably enhances the diffusion of defects and acts to facilitate the annealing of implantation damage and the effective incorporation of the Eu ions in the crystal structure. Optical activation of Eu3+ ions in the HVPE samples was further improved by high temperature and high pressure annealing (HTHP) up to 1400 °C. After HTHP annealing the main room temperature cathodo- and photoluminescence line in Mg-doped samples lies at ∼ 619 nm, characteristic of a known Mg-related Eu3+ centre, while after RTA treatment the dominant line lies at ∼ 622 nm, typical for undoped GaN:Eu. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of growth flux solvent on anneal-tuning of ground states in CaFe2As2

    Science.gov (United States)

    Roncaioli, Connor; Drye, Tyler; Saha, Shanta R.; Paglione, Johnpierre

    2018-04-01

    The effects of anneal-tuning of single-crystalline samples of CaFe2As2 synthesized via a molten Sn-flux method are investigated using x-ray diffraction, chemical composition, electrical transport, and magnetic susceptibility measurements in order to understand the role of growth conditions on the resultant phase diagram. Previous studies of CaFe2As2 crystals synthesized using a self-flux (FeAs) method revealed an ability to tune the structural and magnetic properties of this system by control of post-synthesis annealing conditions, resulting in an ambient pressure phase diagram that spans from tetragonal/orthorhombic antiferromagnetism to the collapsed tetragonal phase of this system. In this work, we compare previous results to those obtained on crystals synthesized via Sn flux, finding similar tunability in both self- and Sn-flux cases, but less sensitivity to annealing temperatures in the latter case, resulting in a temperature-shifted phase diagram.

  8. Nickel-induced crystallization of amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J A; Arce, R D; Buitrago, R H [INTEC (CONICET-UNL), Gueemes 3450, S3000GLN Santa Fe (Argentina); Budini, N; Rinaldi, P, E-mail: jschmidt@intec.unl.edu.a [FIQ - UNL, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina)

    2009-05-01

    The nickel-induced crystallization of hydrogenated amorphous silicon (a-Si:H) is used to obtain large grained polycrystalline silicon thin films on glass substrates. a-Si:H is deposited by plasma enhanced chemical vapour deposition at 200 deg. C, preparing intrinsic and slightly p-doped samples. Each sample was divided in several pieces, over which increasing Ni concentrations were sputtered. Two crystallization methods are compared, conventional furnace annealing (CFA) and rapid thermal annealing (RTA). The crystallization was followed by optical microscopy and scanning electron microscopy observations, X-ray diffraction, and reflectance measurements in the UV region. The large grain sizes obtained - larger than 100{mu}m for the samples crystallized by CFA - are very encouraging for the preparation of low-cost thin film polycrystalline silicon solar cells.

  9. Primary crystallization in Al-rich metallic glasses at unusually low temperatures

    International Nuclear Information System (INIS)

    Bokeloh, J.; Boucharat, N.; Roesner, H.; Wilde, G.

    2010-01-01

    The initial stage of the primary crystallization reaction and the glass transition of the marginal metallic glass Al 89 Y 6 Fe 5 were investigated by conventional differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC), microcalorimetry, X-ray diffraction (XRD) and transmission electron microscopy. A sharp onset of the primary crystallization was found by microcalorimetry and XRD studies at temperatures which were 120 deg. C below the primary crystallization peak observed in conventional DSC. A systematic MDSC study of annealed samples revealed a wide spectrum of glass transition onsets, which show a strong dependence on the annealing conditions. In addition, the glass transition onsets can be linked to the initial stage of the primary crystallization. The spectrum of glass transition onsets observed is discussed with respect to the occurrence of phase separation preceding the nucleation and growth of dendritic aluminium nanocrystals.

  10. Experimental and numerical optical characterization of plasmonic copper nanoparticles embedded in ZnO fabricated by ion implantation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Le, Khai Q. [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh City (Viet Nam); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia); Nguyen, Hieu P.T. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102 (United States); Ngo, Quang Minh [Institute of Material Sciences, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Canimoglu, Adil [Nigde University, Faculty of Arts and Sciences, Physics Department, Nigde (Turkey); Can, Nurdogan, E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2016-06-05

    Here we describe the successfully fabrication of metal nanoparticle crystals by implanting copper (Cu) ions into single zinc oxide (ZnO) crystals with ion energy of 400 keV at ion doses of 1 × 10{sup 16} to 1 × 10{sup 17} ions/cm{sup 2}. After implantation and post-annealing treatment, the Cu implanted ZnO produces a broad range of luminescence emissions, ranging from green to yellow. A green luminescence peak at 550 nm could be ascribed to the isolated Cu ions. The changes in luminescence emission bands between the initial implant and annealed suggest that the implants give rise to clustering Cu nanoparticles in the host matrix but that the annealing process dissociates these. Numerical modelling of the Cu nanoparticles was employed to simulate their optical properties including the extinction cross section, electron energy loss spectroscopy and cathodoluminescence. We demonstrate that the clustering of nanoparticles generates Fano resonances corresponding to the generation of multiple resonances, while the isolation of nanoparticles results in intensity amplification. - Highlights: • We present the fabrication of metal nanoparticle crystals by implanting Cu into ZnO. • The luminescence properties were studied at different annealing temperature. • Numerical modelling of the Cu nanoparticles was employed. • We demonstrate that the clustering of nanoparticles generates Fano resonances.

  11. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators.

    Science.gov (United States)

    Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H

    2014-10-14

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  12. On the annealing behaviour of dysprosium ion implanted nickel: a combined study using Rutherford backscattering, transmission electron microscopy, and total current spectroscopy

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Johnson, E.

    1977-01-01

    Despite continuing improvements in applications of the analytical method of Rutherford backscattering (RBS) to solid state physics it is recognized that more complete information can be obtained if other techniques - for example transmission electron microscopy (TEM) - are employed simultaneously. Experiments are described in which a combined RBS and TEM study of the annealing of nickel, rendered amorphous by implantation of 20 keV dysprosium ions is supplemented with a completely new technique - total current spectroscopy (TCS). In TCS low energy electrons (0-15 eV) are used to probe the damaged nickel. Observations have been made during annealing of both the reappearance of the bulk band structure of the metal and of a 'surface peak' which is highly sensitive to the recovery process. Changes in the height of the surface peak reveal three sharp annealing stages, the first two being preceded by reverse annealing which correlates well with RBS and TEM results. The first annealing stage - following the amorphous to crystalline transition - may be associated with electronic effects in the vicinity of the Curie point. Changes in the position of the surface peak allow one to trace the diffusion of dysprosium to the surface. Quantum mechanical resonances at the damage/crystal interface have also been followed throughout annealing. The initially amorphous layer (approximately 2.2nm) increases in thickness slightly during recovery. (Auth.)

  13. Influences of annealing temperature on sprayed CuFeO2 thin films

    Science.gov (United States)

    Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.

    2018-06-01

    Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.

  14. On the annealing of the EPR dislocation signal in silicon

    International Nuclear Information System (INIS)

    Zolotukhin, M.N.; Kveder, V.V.; Osip'yan, Yu.A.

    1981-01-01

    The annealing kinetics of the (EPR) dislocation signal (D-centers) in silicon is studied. The disappearance of the dislocation EPR signal as a result of annealing is ascribed to rearrangement of the nuclei of the partial dislocations accompanied by pairwise ''closing'' of the broken bonds in the S=0 state. The height of the energy barrier for the rearrangement process is approximately 2 eV. A residual ''nonannealing'' EPR signal is observed in strongly deformed silicon crystals. It resembles an isotropic line with a width approximately 7.5 Oe and a g-factor approximately 2.006. It is suggested that the respective EPR centers (O-centers) are similar to the EPR centers in amorphic silicon [ru

  15. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits—A comparative study

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2010-01-01

    and nickel electrodeposits was achieved by time-resolved X-ray diffraction line profile analysis and crystallographic texture analysis during room temperature storage and during isothermal annealing at elevated temperatures. These in-situ studies with unique time resolution allowed quantification of the self-annealing......Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver...... kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted...

  16. Effect of Pre-Irradiation Annealing and Laser Modification on the Formation of Radiation-Induced Surface Color Centers in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Novikov, A. N.; Radkevich, A. V.; Runets, L. P.; Stupak, A. P.; Tarasenko, N. V.

    2017-01-01

    It is shown that surface color centers of the same type are formed in the surface layer and in regions with damaged crystal structure inside crystalline lithium fluoride after γ-irradiation. Results are presented from a study of the effect of pre-irradiation annealing on the efficiency with which surface centers are formed in lithium fluoride nanocrystals. Raising the temperature for pre-irradiation annealing from room temperature to 250°C leads to a substantial reduction in the efficiency with which these centers are created. Surface color centers are not detected after γ-irradiation for pre-irradiation annealing temperatures of 300°C and above. Adsorption of atmospheric gases on the crystal surface cannot be regarded as a necessary condition for the formation of radiation-induced surface centers.

  17. Dependence of boron cluster dissolution on the annealing ambient

    International Nuclear Information System (INIS)

    Radic, Ljubo; Lilak, Aaron D.; Law, Mark E.

    2002-01-01

    Boron is introduced into silicon via implantation to form p-type layers. This process creates damage in the crystal that upon annealing causes enhanced diffusion and clustering of the boron layer. Reactivation of the boron is not a well-understood process. In this letter we experimentally investigate the effect of the annealing ambient on boron reactivation kinetics. An oxidizing ambient which injects silicon interstitials is compared to an inert ambient. Contrary to published theory, an excess of interstitials does not accelerate the reactivation process

  18. Improved perovskite phototransistor prepared using multi-step annealing method

    Science.gov (United States)

    Cao, Mingxuan; Zhang, Yating; Yu, Yu; Yao, Jianquan

    2018-02-01

    Organic-inorganic hybrid perovskites with good intrinsic physical properties have received substantial interest for solar cell and optoelectronic applications. However, perovskite film always suffers from a low carrier mobility due to its structural imperfection including sharp grain boundaries and pinholes, restricting their device performance and application potential. Here we demonstrate a straightforward strategy based on multi-step annealing process to improve the performance of perovskite photodetector. Annealing temperature and duration greatly affects the surface morphology and optoelectrical properties of perovskites which determines the device property of phototransistor. The perovskite films treated with multi-step annealing method tend to form highly uniform, well-crystallized and high surface coverage perovskite film, which exhibit stronger ultraviolet-visible absorption and photoluminescence spectrum compare to the perovskites prepared by conventional one-step annealing process. The field-effect mobilities of perovskite photodetector treated by one-step direct annealing method shows mobility as 0.121 (0.062) cm2V-1s-1 for holes (electrons), which increases to 1.01 (0.54) cm2V-1s-1 for that treated with muti-step slow annealing method. Moreover, the perovskite phototransistors exhibit a fast photoresponse speed of 78 μs. In general, this work focuses on the influence of annealing methods on perovskite phototransistor, instead of obtains best parameters of it. These findings prove that Multi-step annealing methods is feasible to prepared high performance based photodetector.

  19. Selective molecular annealing: in situ small angle X-ray scattering study of microwave-assisted annealing of block copolymers.

    Science.gov (United States)

    Toolan, Daniel T W; Adlington, Kevin; Isakova, Anna; Kalamiotis, Alexis; Mokarian-Tabari, Parvaneh; Dimitrakis, Georgios; Dodds, Christopher; Arnold, Thomas; Terrill, Nick J; Bras, Wim; Hermida Merino, Daniel; Topham, Paul D; Irvine, Derek J; Howse, Jonathan R

    2017-08-09

    Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≥6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies.

  20. Preparation and crystallization of hollow α-Fe{sub 2}O{sub 3} microspheres following the gas-bubble template method

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, L. de los Santos, E-mail: ld301@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); León Félix, L. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Laboratory of Magnetic Characterization, Instituto de Física, Universidade de Brasília, DF 70910-900, Brasilia (Brazil); Espinoza Suarez, S.M.; Bustamante Dominguez, A.G. [Laboratorio de Cerámicos y Nanomateriales, Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Mitrelias, T.; Holmes, S. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom); Moreno, N.O. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, Sao Cristóvao, Sergipe (Brazil); Albino Aguiar, J. [Laboratório de Supercondutividade e Materiais Avançados, Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife (Brazil); Barnes, C.H.W. [Cavendish Laboratory, Department of Physics, University of Cambridge, J.J Thomson Av., Cambridge, CB3 0HE (United Kingdom)

    2016-02-01

    In this work we report the formation of hollow α-Fe{sub 2}O{sub 3} (hematite) microspheres by the gas-bubble template method. This technique is simple and it does not require hard templates, surfactants, special conditions of atmosphere or complex steps. After reacting Fe(NO{sub 3}){sub 3}.9H{sub 2}O and citric acid in water by sol–gel, the precursor was annealed in air at different temperatures between 180 and 600 °C. Annealing at 550 and 600 °C generates bubbles on the melt which crystallize and oxidizes to form hematite hollow spheres after quenching. The morphology and crystal evolution are studied by means of X-ray diffraction and scanning electron microscopy. We found that after annealing at 250–400 °C, the sample consist of a mixture of magnetite, maghemite and hematite. Single hematite phase in the form of hollow microspheres is obtained after annealing at 550 and 600 °C. The crystallization and crystal size of the hematite shells increase with annealing temperature. A possible mechanism for hollow sphere formation is presented. - Highlights: • Formation of hollow hematite microspheres by the gas-bubble template method. • This technique does not require hard templates or special conditions of atmosphere. • Annealing promotes the transition magnetite to maghemite to hematite. • Crystallization of the hematite shells increase with annealing temperature.

  1. Study of shallow junction formation by boron-containing cluster ion implantation of silicon and two-stage annealing

    Science.gov (United States)

    Lu, Xin-Ming

    Shallow junction formation made by low energy ion implantation and rapid thermal annealing is facing a major challenge for ULSI (ultra large scale integration) as the line width decreases down to the sub micrometer region. The issues include low beam current, the channeling effect in low energy ion implantation and TED (transient enhanced diffusion) during annealing after ion implantation. In this work, boron containing small cluster ions, such as GeB, SiB and SiB2, was generated by using the SNICS (source of negative ion by cesium sputtering) ion source to implant into Si substrates to form shallow junctions. The use of boron containing cluster ions effectively reduces the boron energy while keeping the energy of the cluster ion beam at a high level. At the same time, it reduces the channeling effect due to amorphization by co-implanted heavy atoms like Ge and Si. Cluster ions have been used to produce 0.65--2keV boron for low energy ion implantation. Two stage annealing, which is a combination of low temperature (550°C) preannealing and high temperature annealing (1000°C), was carried out to anneal the Si sample implanted by GeB, SiBn clusters. The key concept of two-step annealing, that is, the separation of crystal regrowth, point defects removal with dopant activation from dopant diffusion, is discussed in detail. The advantages of the two stage annealing include better lattice structure, better dopant activation and retarded boron diffusion. The junction depth of the two stage annealed GeB sample was only half that of the one-step annealed sample, indicating that TED was suppressed by two stage annealing. Junction depths as small as 30 nm have been achieved by two stage annealing of sample implanted with 5 x 10-4/cm2 of 5 keV GeB at 1000°C for 1 second. The samples were evaluated by SIMS (secondary ion mass spectrometry) profiling, TEM (transmission electron microscopy) and RBS (Rutherford Backscattering Spectrometry)/channeling. Cluster ion implantation

  2. Structural transformation of implanted diamond layers during high temperature annealing

    International Nuclear Information System (INIS)

    Rubanov, S.; Fairchild, B.A.; Suvorova, A.; Olivero, P.; Prawer, S.

    2015-01-01

    In the recent years graphitization of ion-beam induced amorphous layers became the basic tool for device fabrication in diamond. The etchable graphitic layers can be removed to form free-standing membranes into which the desired structures can be sculpted using FIB milling. The optical properties of the devices fabricated using this method are assumed on the model of sharp diamond–air interface. The real quality of this interface could depend on degree of graphitization of the amorphous damage layers after annealing. In the present work the graphitization process was studied using conventional and analytical TEM. It was found that annealing at 550 °C results in a partial graphitization of the implanted volume with formation of the nano-crystalline graphitic phase sandwiched between layers of tetrahedral amorphous carbon. Annealing at 1400 °C resulted in complete graphitization of the amorphous layers. The average size of graphite nano-crystals did not exceed 5 nm with predominant orientation of c-planes normal to the sample surface.

  3. Crystal Structure of Tetragonal Form of La2NiO4+x

    Science.gov (United States)

    Kajitani, Tsuyoshi; Hosoya, Syoichi; Hirabayashi, Makoto; Fukuda, Tsuguo; Onozuka, Takashi

    1989-10-01

    The crystal structure of the title oxide was studied by means of the X-ray and neutron single crystal diffraction measurements. At room temperature, the tetragonal crystal structure is P42/ncm-type (No. 138), which is one of the subgroup of the space group I4/mmm. The lattice parameters of a sample annealed and slowly cooled in oxygen atmosphere from 673 K are a{=}b{=}5.4640(1) Å and c{=}12.6719(2) Å, while the oxygen content, x{=}0.10(4), was determined from obtained neutron data. The title oxide undergoes a tetragonal (P42/ncm)/tetragonal (I4/mmm) phase transition at about 560 K. The transition temperature is almost identical both in the annealed and as-grown crystals.

  4. Effects of hydrothermal annealing on characteristics of CuInS{sub 2} thin films by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Shi Yong, E-mail: sys-99@163.com [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Xue Fanghong [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China); Li Chunyan [School of Materials, Dalian University of Technology, Dalian 116024 (China); Zhao Qidong; Qu Zhenping; Li Xinyong [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Sciences and Technology, Dalian University of Technology, Dalian 116024 (China)

    2012-07-15

    CuInS{sub 2} thin films have been deposited by successive ionic layer absorption and reaction (SILAR) method, then annealed in a Na{sub 2}S solution (denoted as hydrothermal annealing) at 200 Degree-Sign C for different time. The effect of hydrothermal annealing on the properties of the films was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and optical absorption spectroscopy. The XRD, TEM and SEM results indicate that well-crystallized CuInS{sub 2} films could be obtained after annealing in 0.1 mol/L Na{sub 2}S solution for 1.5 h. The annealed CuInS{sub 2} films were slightly S-rich and the direct band gap varied from 1.32 to 1.58 eV as the annealing time increased from 0.5 h to 2 h.

  5. Fabrication of three-dimensional crystalline silicon-on-carbon nanotube nanocomposite anode by sputtering and laser annealing for high-performance lithium-ion battery

    Science.gov (United States)

    Kim, Ilwhan; Hyun, Seungmin; Nam, Seunghoon; Lee, Hoo-Jeong; Kang, Chiwon

    2018-05-01

    In this study, we fabricate a three-dimensional (3D) crystalline Si (c-Si)/carbon nanotube (CNT) nanocomposite anode by sputtering Si on 3D CNTs followed by laser annealing for Si crystallization — a simple, cost-effective route — for advanced Li-ion battery (LIB) applications. We use scanning electron microscopy, X-ray diffraction spectroscopy, and Raman spectroscopy to analyze the samples annealed at different laser energy densities. As a result, we confirm that laser annealing enables Si crystallization without damaging the CNTs. We assemble half-type coin cells for the battery performance test: the 3D c-Si/CNT anode sample demonstrates a specific capacity superior to that of its control counterpart; the cyclic stability is also enhanced significantly.

  6. luminescence in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    have studied the effect of annealing in chlorine gas on the ML of X-rayed KCl crystals. ..... high temperature because of the thermal bleaching of the coloration in alkali halide ..... [31] J Hawkins, Ph.D. Thesis (University of Reading, 1976).

  7. Interpretation of microstructure evolution during self-annealing and thermal annealing of nanocrystalline electrodeposits-A comparative study

    International Nuclear Information System (INIS)

    Pantleon, Karen; Somers, Marcel A.J.

    2010-01-01

    Electrodeposition results in a non-equilibrium state of the as-deposited nanocrystalline microstructure, which evolves towards an energetically more favorable state as a function of time and/or temperature upon deposition. Real-time investigation of the evolving microstructure in copper, silver and nickel electrodeposits was achieved by time-resolved X-ray diffraction line profile analysis and crystallographic texture analysis during room temperature storage and during isothermal annealing at elevated temperatures. These in-situ studies with unique time resolution allowed quantification of the self-annealing kinetics of copper and silver electrodeposits as well as the annealing kinetics of electrodeposited nickel. Similarities and characteristic differences of the kinetics and mechanisms of microstructure evolution in the various electrodeposits are discussed and the experimental results are attempted to be interpreted in terms of recovery, recrystallization and grain growth.

  8. Defects Identification and Effects of Annealing on Lu2(1-xY2xSiO5 (LYSO Single Crystals for Scintillation Application

    Directory of Open Access Journals (Sweden)

    Samuel Blahuta

    2011-07-01

    Full Text Available The nature, properties and relative concentrations of electronic defects were investigated by Thermoluminescence (TL in Lu2(1-xY2xSiO5 (LYSO single crystals. Ce and Tb-doped single crystals, grown by the Czochralski technique (CZ, revealed similar traps in TL. LYSO:Ce single crystals were grown by the Floating-Zone technique (FZ with increasing oxygen concentration in the growth atmosphere. TL intensity is strongly dependent on the oxygen content of the material, and oxygen vacancies are proven to be the main electronic defects in LYSO. The effects of oxidizing and reducing annealing post-treatment on these defects were investigated. While oxidizing treatments efficiently reduce the amount of electronic defects, reducing treatments increase the amount of existing traps. In a thermally assisted tunneling mechanism, the localization of oxygen vacancies around the dopant is discussed. They are shown to be in the close vicinity of the dopant, though not in first neighbor positions.

  9. High resolution x-ray diffraction analysis of annealed low-temperature gallium arsenide

    Science.gov (United States)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1992-05-01

    High resolution x-ray diffraction methods have been used to characterize GaAs grown at low substrate temperatures by molecular beam epitaxy and to examine the effects of post-growth annealing on the structure of the layers. Double crystal rocking curves from the as-deposited epitaxial layer show well-defined interference fringes, indicating a high level of structural perfection despite the presence of excess arsenic. Annealing at temperatures from 700 to 900 °C resulted in a decrease in the perpendicular lattice mismatch between the GaAs grown at low temperature and the substrate from 0.133% to 0.016% and a decrease (but not total elimination) of the visibility of the interference fringes. Triple-crystal diffraction scans around the 004 point in reciprocal space exhibited an increase in the apparent mosaic spread of the epitaxial layer with increasing anneal temperature. The observations are explained in terms of the growth of arsenic precipitates in the epitaxial layer.

  10. Defect annealing in Mn/Fe-implanted TiO2 (rutile)

    International Nuclear Information System (INIS)

    Gunnlaugsson, H P; Svane, A; Weyer, G; Mantovan, R; Masenda, H; Naidoo, D; Mølholt, T E; Gislason, H; Ólafsson, S; Johnston, K; Bharuth-Ram, K; Langouche, G

    2014-01-01

    A study of the annealing processes and charge state of dilute Fe in rutile TiO 2 single crystals was performed in the temperature range 143–662 K, utilizing online 57 Fe emission Mössbauer spectroscopy following low concentrations (<10 −3  at%) implantation of 57 Mn (T 1/2  = 1.5 min). Both Fe 3+ and Fe 2+ were detected throughout the temperature range. Three annealing stages were distinguished: (i) a broad annealing stage below room temperature leading to an increased Fe 3+ fraction; (ii) a sharp annealing stage at ∼330 K characterized by conversion of Fe 3+ to Fe 2+ and changes in the hyperfine parameters of Fe 2+ , attributed to the annealing of Ti vacancies in the vicinity of the probe atoms; and (iii) an annealing stage in the temperature range from 550 to 600 K, where all Fe ions are transformed to Fe 3+ , attributed to the annealing of the nearby O vacancies. The dissociation energy of Mn Ti –V O pairs was estimated to be 1.60(15) eV. Fe 2+ is found in an environment where it can probe the lattice structure through the nuclear quadrupole interaction evidencing the extreme radiation hardness of rutile TiO 2 . Fe 3+ is found in a paramagnetic state with slow spin–lattice relaxation which follows a ∼T n temperature dependence with 4.1 < n < 6.3 at T > 350 K. (paper)

  11. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Temperature-modified photonic bandgap in colloidal photonic crystals fabricated by vinyl functionalized silica spheres

    International Nuclear Information System (INIS)

    Deng Tiansong; Zhang Junyan; Zhu Kongtao; Zhang Qifeng; Wu Jinlei

    2011-01-01

    Graphical abstract: A thermal annealing procedure was described for fine modifying the photonic bandgap properties of colloidal photonic crystals, which were self-assembled from vinyl-functionalized silica spheres by a gravity sedimentation process. Highlights: → We described a thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals. → The position of its stop band had more than 25% blue shift by annealing the sample from 60 to 600 deg. C. → The annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. → The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals. - Abstract: A thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals was described. The colloidal photonic crystals were assembled from monodisperse vinyl functionalized silica spheres by a gravity sedimentation process. The samples diffract light following Bragg's law combined with Snell's law. By annealing the sample at temperatures in the range of 60-600 deg. C, the position of its stop band shifted from 943 to 706 nm. It had more than 25% blue shift. In addition, the annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. Fourier transform infrared (FT-IR) spectra and thermo-gravimetric analysis (TGA) curves of vinyl functionalized silica spheres confirmed the above results. The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals.

  13. Mössbauer and Kerr microscopy investigation of crystallization in FeCoB ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Hussain, Zaineb; Babu, Hari [UGC DAE Consortium for Scientific Research, University Campus, Kandhwa Road, Indore-452001 India (India); Shrivastava, Namrata [School of Physics, DAVV, Khandwa Road, Indore – 452001 India (India); Gupta, Ajay [Amity Centre for Spintronic Materials, Amity University, Noida 201303.India (India)

    2016-05-23

    The present work reports the crystallization study of amorphous FeCoB ribbons using x-ray diffraction, {sup 57}Fe Mössbauer spectroscopy in transmission mode and magneto-optical Kerr (MOKE) microscopy. Annealing at 673 K is found to result in crystallization. From the Mossbauer measurements it is observed that the Fe magnetic moments are in the plane of sample for as-cast ribbon; α-FeCo, (Fe{sub 0.5}Co{sub 0.5}){sub 2}B and Fe{sub 2}B phases are formed after crystallization. MOKE microscopy revealed that wide 180° domain walls & narrow fingerprint domains are observed before crystallization and fine domains are observed after crystallization. The results are explained in terms of the presence of internal stresses and their annealing with thermal heat treatment.

  14. Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys

    International Nuclear Information System (INIS)

    Zhang, J.T.; Wang, W.M.; Ma, H.J.; Li, G.H.; Li, R.; Zhang, Z.H.

    2010-01-01

    Using the differential scanning calorimetry (DSC), the isochronal and isothermal crystallization kinetics of amorphous Fe 61 Co 9-x Zr 8 Mo 5 W x B 17 (x = 0 and 2) ribbons was investigated by the Kissinger equation and by the Kolmogorov-Johnson-Mehl-Avrami and Ranganathan-Heimendahl equations, respectively. The results show that tungsten can improve the activation energy E 1 K for the first crystallization in the isochronal annealing process and activation energy E n for the nucleation in the isothermal annealing process, which can be ascribed to the dissolution of tungsten in the amorphous phase. Meanwhile, tungsten can decrease the activation energy E 2 K for the second crystallization in the isochronal annealing process and growth activation energy E g in the isothermal annealing process, which is possibly associated with the formation of W-rich compound after the early nucleation process.

  15. Evaluation of the Process of Solvent Vapor Annealing on Organic Thin Films

    KAUST Repository

    Ren, Yi

    2011-07-01

    Solvent vapor annealing has recently emerged as an intriguing, room-temperature, and highly versatile alternative to thermal annealing. The chemically selective interaction between solvents and organic semiconductors opens new opportunities to selectively anneal certain components of the device, while leaving others intact. On the downside, these interactions are complex and rather unpredictable, requiring further investigation. We propose a novel methodology to investigate solvent-film interactions, based on use of an in situ quartz crystal microbalance with dissipation (QCM-D) capability and in situ grazing incidence wide angle X-ray scattering (GIWAXS). These methods make it possible to investigate both qualitatively and quantitatively the solvent vapor uptake, the resulting softening and changes (reversible and/or irreversible) in crystallinity. Using this strategy, we have investigated the solvent vapor annealing of traditional donor and acceptor materials, namely poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-Phenyl-C61-butyric acid methyl ester (PCBM). We find these materials retain their rigid structure during toluene vapor annealing and do not dewet. We also investigated the toluene vapor annealing of several newly proposed acceptor molecules (pentacene-based) modified with various silyl groups and electron withdrawing groups to tune the packing structure of the acceptor domains and energy levels at the donor-acceptor interface. We found a dramatic effect of the electron-withdrawing group on vapor uptake and whether the film remains rigid, softens, or dissolves completely. In the case of trifluoromethyl electron-withdrawing group, we found the film dissolves, resulting in complete and irreversible loss of long range order. By contrast, the cyano group prevented loss of long range order, instead promoting crystallization in some cases. The silyl groups had a secondary effect in comparison to these. In the last part of the thesis, we investigated the

  16. Influence of Al concentration and annealing temperature on structural, optical, and electrical properties of Al co-doped ZnO thin films

    International Nuclear Information System (INIS)

    Gürbüz, Osman; Kurt, İsmail; Çalışkan, Serkan; Güner, Sadık

    2015-01-01

    Highlights: • RF magnetron sputtering technique seems to be very efficient method for fabrication of Al doped ZnO (AZO) films. • Long range single crystalline structure improves with annealing process. • Optical properties became much better after annealing process especially for the AZO films that include high Al concentration. • Much greater conductivity with increasing Al concentration and annealing process. • AZO films have potential applicability in spintronic devices. - Abstract: The pure ZnO and Al-doped ZnO (AZO) thin films (thickness: 200 nm) were prepared on both side polished silica (SiO 2 ) substrates via RF magnetron sputtering at room temperature by using 2.5 inches high-purity ZnO (99.9%) and Al (99.9%) targets. The samples were annealed at 300 °C, 400 °C and 500 °C for 45 min in N 2 ambient in quartz annealing furnace system, respectively. We investigated the effects of various Al concentrations and annealing treatment on the structural, electrical, and optical properties of films. The preferred crystallization was observed along c axis (single (0 0 2) diffraction peak) from substrate surface assigning the single crystalline Würtzite lattice for pure ZnO and AZO thin films. Although increasing Al concentration decreases the order of crystallization of as-grown films, annealing process increases the long range crystal order. The crystallite sizes vary between minimum 12.98 nm and maximum 20.79 nm for as-grown and annealed samples. The crystallite sizes decrease with increasing Al concentration but increase with increasing annealing temperature as general trend. The grain size and porosity of films change with annealing treatment. The smaller grains coalesce together to form larger grains for many films. However, a reverse behavior is seen for Al 2.23 ZnO and Al 12.30 ZnO samples. That is, Al concentration plays critical role as well as temperature on grain size. Low percent optical transmittance (T%) is observed due to higher Al

  17. Annealing Effect on the Structural and Optical Properties of Sputter-Grown Bismuth Titanium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    José E. Alfonso

    2014-04-01

    Full Text Available The aim of this work is to assess the evolution of the structural and optical properties of BixTiyOz films grown by rf magnetron sputtering upon post-deposition annealing treatments in order to obtain good quality films with large grain size, low defect density and high refractive index similar to that of single crystals. Films with thickness in the range of 220–250 nm have been successfully grown. After annealing treatment at 600 °C the films show excellent transparency and full crystallization. It is shown that to achieve larger crystallite sizes, up to 17 nm, it is better to carry the annealing under dry air than under oxygen atmosphere, probably because the nucleation rate is reduced. The refractive index of the films is similar under both atmospheres and it is very high (n =2.5 at 589 nm. However it is still slightly lower than that of the single crystal value due to the polycrystalline morphology of the thin films.

  18. Effect of isothermal annealing on degree of crystallinity and mechanical properties of poly(l-lactide-co-glycolide)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Na; Wang, Liansong [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan, 610041 (China); Graduated School of Chinese Academy of Sciences, Beijing, 100039 (China); Huang, Dongling; Zhang, Tianyao; Zhang, Lifang [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan, 610041 (China); Xiong, Chengdong

    2010-03-15

    We investigated the effect of isothermal annealing on the degree of crystallinity and mechanical properties of a random copolymer-poly(l-lactide-co -glycolide) (PLLGA)-with monomer molar ratios of 85/15 (PLLGA85/15) by performing polarizing optical microscopy, differential scanning calorimetry, and X-ray diffraction, and studying the tensile properties. Isothermal annealing of PLLGA at 130 C was conducted to improve the degree of crystallinity of the copolymer; the maximum degree of crystallinity (44.5%) was achieved after 60 min of annealing. The crystal size/perfection was observed to increase with annealing time. The highest tensile strength of 65.8 MPa was achieved after 80 min of annealing. However, the degree of crystallinity and tensile strength can only reach to certain extent. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Nano-crystallization in ZnO-doped In{sub 2}O{sub 3} thin films via excimer laser annealing for thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Mami N., E-mail: f-mami@ms.naist.jp; Ishikawa, Yasuaki; Bermundo, Juan Paolo Soria; Uraoka, Yukiharu [Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Ishihara, Ryoichi; Cingel, Johan van der; Mofrad, Mohammad R. T. [Delft University of Technology, Feldmannweg 17, P.O. Box 5053, 2600 GB Delft (Netherlands); Kawashima, Emi; Tomai, Shigekazu; Yano, Koki [Idemitsu Kosan Co., Ltd., 1280 Kami-izumi, Sodegaura, Chiba, 299-0293 (Japan)

    2016-06-15

    In a previous work, we reported the high field effect mobility of ZnO-doped In{sub 2}O{sub 3} (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  20. Implantation activation annealing of Si-implanted gallium nitride at temperatures > 1,100 C

    International Nuclear Information System (INIS)

    Zolper, J.C.; Han, J.; Biefeld, R.M.

    1997-01-01

    The activation annealing of Si-implanted GaN is reported for temperatures from 1,100 to 1,400 C. Although previous work has shown that Si-implanted GaN can be activated by a rapid thermal annealing at ∼1,100 C, it was also shown that significant damage remained in the crystal. Therefore, both AlN-encapsulated and uncapped Si-implanted GaN samples were annealed in a metal organic chemical vapor deposition system in a N 2 /NH 3 ambient to further assess the annealing process. Electrical Hall characterization shows increases in carrier density and mobility for annealing up to 1,300 C before degrading at 1,400 C due to decomposition of the GaN epilayer. Rutherford backscattering spectra show that the high annealing temperatures reduce the implantation induced damage profile but do not completely restore the as-grown crystallinity

  1. In-situ cyclic pulse annealing of InN on AlN/Si during IR-lamp-heated MBE growth

    Science.gov (United States)

    Suzuki, Akira; Bungi, Yu; Araki, Tsutomu; Nanishi, Yasushi; Mori, Yasuaki; Yamamoto, Hiroaki; Harima, Hiroshi

    2009-05-01

    To improve crystal quality of InN, an in-situ cyclic rapid pulse annealing during growth was carried out using infrared-lamp-heated molecular beam epitaxy. A cycle of 4 min growth of InN at 400 °C and 3 s pulse annealing at a higher temperature was repeated 15 times on AlN on Si substrate. Annealing temperatures were 550, 590, 620, and 660 °C. The back of Si was directly heated by lamp irradiation through a quartz rod. A total InN film thickness was about 200 nm. With increasing annealing temperature up to 620 °C, crystal grain size by scanning electron microscope showed a tendency to increase, while widths of X-ray diffraction rocking curve of (0 0 0 2) reflection and E 2 (high) mode peak of Raman scattering spectra decreased. A peak of In (1 0 1) appeared in X-ray diffraction by annealing higher than 590 °C, and In droplets were found on the surface by annealing at 660 °C.

  2. Effect of annealing conditions on the molecular properties and wetting of viscoelastic bitumen substrates by liquids

    Directory of Open Access Journals (Sweden)

    Salomé dos Santos

    2017-01-01

    Full Text Available Typically, in the production of asphalt concrete, bitumen and mineral aggregates are heated and mixed at temperatures above 100 °C. After the mixing process bitumen ideally coats the mineral aggregates and remains in the form of thin films. Because bitumen is highly temperature sensitive, the study of its properties in terms of chemistry, microstructure and rheology as a function of different annealing conditions is very relevant. The resultant molecular properties have a direct correlation to bitumen macroscopic response to liquids such as water, which is of extreme relevance to the understanding of the detrimental effect of water on asphalt pavements. The wetting characteristics play a crucial role on the extension of detachment of bitumen from the mineral aggregates when asphalt is exposed to wet conditions. Therefore, in this work, the effect of the annealing temperature and cooling history on the chemistry, microstructure and wetting of bitumen films was studied. Crystalline microstructures were identified in bulk and on the surface of the bitumen films. Larger crystals presenting higher crystallinity degree were identified when the annealed bitumen films were cooled slowly. Moreover, higher annealing temperatures increased the oxidation level. The change of the rheological properties due to the alterations of the annealing conditions produced changes in the wetting characteristics. For instance, the advancing motion of a liquid drop on the viscoelastic bitumen substrate presented an intermittent behaviour due to the deformation of bitumen at the liquid-bitumen-air contact line. Consequently, changes in the contact angles were also observed. Keywords: Bitumen, Crystallization, Oxidation, Advancing contact angle, Wetting

  3. Effect of annealing ambient on anisotropic retraction of film edges during solid-state dewetting of thin single crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gye Hyun; Thompson, Carl V., E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Ma, Wen [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Yildiz, Bilge [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239 (United States)

    2016-08-21

    During solid-state dewetting of thin single crystal films, film edges retract at a rate that is strongly dependent on their crystallographic orientations. Edges with kinetically stable in-plane orientations remain straight as they retract, while those with other in-plane orientations develop in-plane facets as they retract. Kinetically stable edges have retraction rates that are lower than edges with other orientations and thus determine the shape of the natural holes that form during solid-state dewetting. In this paper, measurements of the retraction rates of kinetically stable edges for single crystal (110) and (100) Ni films on MgO are presented. Relative retraction rates of kinetically stable edges with different crystallographic orientations are observed to change under different annealing conditions, and this accordingly changes the initial shapes of growing holes. The surfaces of (110) and (100) films were also characterized using low energy electron diffraction, and different surface reconstructions were observed under different ambient conditions. The observed surface structures were found to correlate with the observed changes in the relative retraction rates of the kinetically stable edges.

  4. Annealing Time Effect on Nanostructured n-ZnO/p-Si Heterojunction Photodetector Performance

    Science.gov (United States)

    Habubi, Nadir. F.; Ismail, Raid. A.; Hamoudi, Walid K.; Abid, Hassam. R.

    2015-02-01

    In this work, n-ZnO/p-Si heterojunction photodetectors were prepared by drop casting of ZnO nanoparticles (NPs) on single crystal p-type silicon substrates, followed by (15-60) min; step-annealing at 600∘C. Structural, electrical, and optical properties of the ZnO NPs films deposited on quartz substrates were studied as a function of annealing time. X-ray diffraction studies showed a polycrystalline, hexagonal wurtizte nanostructured ZnO with preferential orientation along the (100) plane. Atomic force microscopy measurements showed an average ZnO grain size within the range of 75.9 nm-99.9 nm with a corresponding root mean square (RMS) surface roughness between 0.51 nm-2.16 nm. Dark and under illumination current-voltage (I-V) characteristics of the n-ZnO/p-Si heterojunction photodetectors showed an improving rectification ratio and a decreasing saturation current at longer annealing time with an ideality factor of 3 obtained at 60 min annealing time. Capacitance-voltage (C-V) characteristics of heterojunctions were investigated in order to estimate the built-in-voltage and junction type. The photodetectors, fabricated at optimum annealing time, exhibited good linearity characteristics. Maximum sensitivity was obtained when ZnO/Si heterojunctions were annealed at 60 min. Two peaks of response, located at 650 nm and 850 nm, were observed with sensitivities of 0.12-0.19 A/W and 0.18-0.39 A/W, respectively. Detectivity of the photodetectors as function of annealing time was estimated.

  5. Structural Properties Characterized by the Film Thickness and Annealing Temperature for La2O3 Films Grown by Atomic Layer Deposition.

    Science.gov (United States)

    Wang, Xing; Liu, Hongxia; Zhao, Lu; Fei, Chenxi; Feng, Xingyao; Chen, Shupeng; Wang, Yongte

    2017-12-01

    La 2 O 3 films were grown on Si substrates by atomic layer deposition technique with different thickness. Crystallization characteristics of the La 2 O 3 films were analyzed by grazing incidence X-ray diffraction after post-deposition rapid thermal annealing treatments at several annealing temperatures. It was found that the crystallization behaviors of the La 2 O 3 films are affected by the film thickness and annealing temperatures as a relationship with the diffusion of Si substrate. Compared with the amorphous La 2 O 3 films, the crystallized films were observed to be more unstable due to the hygroscopicity of La 2 O 3 . Besides, the impacts of crystallization characteristics on the bandgap and refractive index of the La 2 O 3 films were also investigated by X-ray photoelectron spectroscopy and spectroscopic ellipsometry, respectively.

  6. Origin of green luminescence in hydrothermally grown ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Čížek, J., E-mail: jakub.cizek@mff.cuni.cz; Hruška, P.; Melikhova, O.; Procházka, I. [Department of Low-Temperature Physics, Charles University in Prague, V Holešovičkách 2, CZ-180 00, Prague 8 (Czech Republic); Valenta, J. [Department of Chemical Physics and Optics, Charles University in Prague, Ke Karlovu 3, CZ-121 16, Prague 2 (Czech Republic); Novotný, M.; Bulíř, J. [Academy of Science of the Czech Republic, Institute of Physics, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic)

    2015-06-22

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.

  7. Origin of green luminescence in hydrothermally grown ZnO single crystals

    International Nuclear Information System (INIS)

    Čížek, J.; Hruška, P.; Melikhova, O.; Procházka, I.; Valenta, J.; Novotný, M.; Bulíř, J.

    2015-01-01

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration

  8. Origin of green luminescence in hydrothermally grown ZnO single crystals

    Science.gov (United States)

    Čížek, J.; Valenta, J.; Hruška, P.; Melikhova, O.; Procházka, I.; Novotný, M.; Bulíř, J.

    2015-06-01

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.

  9. Rapid thermal pulse annealing

    International Nuclear Information System (INIS)

    Miller, M.G.; Koehn, B.W.; Chaplin, R.L.

    1976-01-01

    Characteristics of recovery processes have been investigated for cases of heating a sample to successively higher temperatures by means of isochronal annealing or by using a rapid pulse annealing. A recovery spectra shows the same features independent of which annealing procedure is used. In order to determine which technique provides the best resolution, a study was made of how two independent first-order processes are separated for different heating rates and time increments of the annealing pulses. It is shown that the pulse anneal method offers definite advantages over isochronal annealing when annealing for short time increments. Experimental data by means of the pulse anneal techniques are given for the various substages of stage I of aluminium. (author)

  10. Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.T. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Wang, W.M., E-mail: weiminw@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Ma, H.J.; Li, G.H.; Li, R.; Zhang, Z.H. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2010-06-10

    Using the differential scanning calorimetry (DSC), the isochronal and isothermal crystallization kinetics of amorphous Fe{sub 61}Co{sub 9-x}Zr{sub 8}Mo{sub 5}W{sub x}B{sub 17} (x = 0 and 2) ribbons was investigated by the Kissinger equation and by the Kolmogorov-Johnson-Mehl-Avrami and Ranganathan-Heimendahl equations, respectively. The results show that tungsten can improve the activation energy E{sub 1}{sup K} for the first crystallization in the isochronal annealing process and activation energy E{sub n} for the nucleation in the isothermal annealing process, which can be ascribed to the dissolution of tungsten in the amorphous phase. Meanwhile, tungsten can decrease the activation energy E{sub 2}{sup K} for the second crystallization in the isochronal annealing process and growth activation energy E{sub g} in the isothermal annealing process, which is possibly associated with the formation of W-rich compound after the early nucleation process.

  11. Void formation by annealing of neutron-irradiated plastically deformed molybdenum

    International Nuclear Information System (INIS)

    Petersen, K.; Nielsen, B.; Thrane, N.

    1976-01-01

    The positron annihilation technique has been used in order to study the influence of plastic deformation on the formation and growth of voids in neutron irradiated molybdenum single crystals treated by isochronal annealing. Samples were prepared in three ways: deformed 12-19% before irradiation, deformed 12-19% after irradiation, and - for reference purposes -non-deformed. In addition a polycrystalline sample was prepared in order to study the influence of the grain boundaries. All samples were irradiated at 60 0 C with a flux of 2.5 x 10 18 fast neutrons/cm 2 . After irradiation the samples were subjected to isochronal annealing. It was found that deformation before irradiation probably enhanced the formation of voids slightly. Deformation after irradiation strongly reduced the void formation. The presence of grain boundaries in the polycrystalline sample had a reducing influence on the growth of voids. (author)

  12. Crystallization of some amorphous metallic alloys studied by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sitek, J.; Miglierini, M.; Lipka, J.; Valko, P.; Toth, I.

    1990-01-01

    The present work provides an analysis of crystallization processes in amorphous metallic alloys Fe 80 Si 4 Cr 1.8 B 14 and Fe 67 Co 18 B 14 Si 1 . Crystallization of the first sample started at the temperature of 648 K. The fully crystalline state was observed after annealing at 748 K. We identified four sextets. One corresponds to crystalline Fe 2 B and the three others to FeSi solid solution with 10 at.% of Si. Crystallization of Fe 67 Co 18 B 14 Si 1 started at the temperature of 623 K. We identified two crystalline phases. The first may have its origin as (Fe 1-x Co x ) 3 B, the second one may correspond to a Fe-Co solid solution with a different Co content. (orig.)

  13. The influence of Ti doping and annealing on Ce_2Ti_2O_7 flash memory devices

    International Nuclear Information System (INIS)

    Kao, Chyuan Haur; Chen, Su Zhien; Luo, Yang; Chiu, Wang Ting; Chiu, Shih Wei; Chen, I Chien; Lin, Chan-Yu; Chen, Hsiang

    2017-01-01

    Highlights: • Ce_2Ti_2O_7 flash memories have been fabricated. • Material quality can be improved by annealing. • The memory performance can be enhanced by Ti doping. • Ti doping and annealing can reinforce crystallization. - Abstract: In this research, a CeO_2 film with Ti doping was used as a trapping layer in metal oxide high-K-oxide-Si (MOHOS)-type memory devices. Since incorporation of Ti atoms into the film could fix dangling bonds and defects, the Ce_2Ti_2O_7 trapping layer with annealing treatment could have a larger memory window and a faster programming/erasing speed. To confirm the origin, multiple material analyses indicate that annealing at an appropriate temperature and Ti doping could enhance crystallization. The Ce_2Ti_2O_7-based memory device is promising for future industrial flash memory applications.

  14. A device for routine studies of nuclear track annealing in mineral grains

    International Nuclear Information System (INIS)

    Jha, R.; Lal, D.

    1984-01-01

    For studies of annealing of nuclear tracks in common rock-forming minerals, we have devised a simple heating system that provides a highly stable hot environment characterized by a large temperature gradient. The temperature can be maintained at the desired values within +- 2 deg C over a period of several months. The system allows placing of samples at eight different temperature points in the temperature range of 350 to 550 deg C in a single setting. This range essentially encompasses the entire temperature range normally used in laboratory track annealing of mineral grains with annealing duration of a few minutes to a couple of months. Lower as well as higher temperatures and different ranges are possible by changing the material used for the heating system and its geometry. However, for annealing at high temperature, and for short duration we found that it is more convenient to heat samples in the appropriate region of the cone of a large gas flame. We present, as an example, results of cosmic-ray track annealing studies in hypersthene grains from the Johnstown meteorite. The simplicity and reproducibility of the technique allows an in-depth study of annealing characteristics of different minerals. (author)

  15. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.

    Science.gov (United States)

    Nakagawa, Kyuya; Tamiya, Shinri; Do, Gabsoo; Kono, Shinji; Ochiai, Takaaki

    2018-06-01

    Glassy phase formation in a frozen product determines various properties of the freeze-dried products. When an aqueous solution is subjected to freezing, a glassy phase forms as a consequence of freeze-concentration. During post-freezing annealing, the relaxation of the glassy phase and the ripening of ice crystals (i.e. Ostwald ripening) spontaneously occur, where the kinetics are controlled by the annealing and glass transition temperatures. This study was motivated to observe the progress of glassy state relaxation separate from ice coarsening during annealing. X-ray computed tomography (CT) was used to observe a frozen and post-freezing annealed solutions by using monochromatized X-ray from the synchrotron radiation. CT images were successfully obtained, and the frozen matrix were analyzed based on the gray level values that were equivalent to the linear X-ray attenuation coefficients of the observed matters. The CT images obtained from rapidly frozen sucrose and dextrin solutions with different concentrations gave clear linear relationships between the linear X-ray attenuation coefficients values and the solute concentrations. It was confirmed that the glassy state relaxation progressed as increasing annealing time, and this trend was larger in the order of the glass transition temperature of the maximally freeze-concentrated phase. The sucrose-water system required nearly 20 h of annealing time at -5 °C for the completion of the glassy phase relaxation, whereas dextrin-water systems required much longer periods because of their higher glass transition temperatures. The trends of ice coarsening, however, did not perfectly correspond to the trends of the relaxation, suggesting that the glassy phase relaxation and Ostwald ripening would jointly control the ice crystal growth/ripening kinetics, and the dominant mechanism differed by the annealing stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Ion implantation and annealing studies in III-V nitrides

    International Nuclear Information System (INIS)

    Zolper, J.C.; Pearton, S.J.

    1996-01-01

    Ion implantation doping and isolation is expected to play an enabling role for the realization of advanced III-Nitride based devices. In fact, implantation has already been used to demonstrate n- and p-type doping of GaN with Si and Mg or Ca, respectively, as well as to fabricate the first GaN junction field effect transistor. Although these initial implantation studies demonstrated the feasibility of this technique for the III-Nitride materials, further work is needed to realize its full potential. After reviewing some of the initial studies in this field, the authors present new results for improved annealing sequences and defect studies in GaN. First, sputtered AlN is shown by electrical characterization of Schottky and Ohmic contacts to be an effect encapsulant of GaN during the 1,100 C implant activation anneal. The AlN suppresses N-loss from the GaN surface and the formation of a degenerate n + -surface region that would prohibit Schottky barrier formation after the implant activation anneal. Second, they examine the nature of the defect generation and annealing sequence following implantation using both Rutherford Backscattering (RBS) and Hall characterization. They show that for a Si-dose of 1 x 10 16 cm -2 50% electrical donor activation is achieved despite a significant amount of residual implantation-induced damage in the material

  17. Application of triple-crystal diffractometry for study of ion implanted layer defects

    International Nuclear Information System (INIS)

    Shcherbachev, K.D.; Bublik, V.T.

    2000-01-01

    Application of a triple-crystal arrangement, unlike traditionally used double-crystal one, allowed one to separate coherent and incoherent scattering components and to improve a resolution significantly. Advantages of the triple-crystal X-ray diffractometry to study defects in ion-implanted layers are demonstrated by example of characterisation of Si-GaAs(100) wafers doped by Si + with energy of 50 keV and does of 1x10 15 and 1x10 14 cm -2 . To explain a behaviour of point defects after implantation and annealing the analysis of strain depth profile was used. Two processes are shown to play a key role in formation of the distorted layer during implantation. The first one is an annihilation of Frenkel pairs components that decreases the total point defects concentration. Another one is a sink of more mobile interstitials to the surface that leads to formation of the thin subsurface layer enriched by vacancies [ru

  18. Effect of Thermal Annealing and Second Harmonic Generation on Bulk Damage Performance of Rapid-Growth KDP Type I Doublers at 1064 nm

    International Nuclear Information System (INIS)

    Runkel, M; Maricle, S; Torres, R; Auerbach, J; Floyd, R; Hawley-Fedder, R; Burnham, A K

    2000-01-01

    This paper discusses the results of thermal annealing and in-situ second harmonic generation (SHG) damage tests performed on six rapid growth KDP type 1 doubler crystals at 1064 nm (1 ω) on the Zeus automated damage test facility. Unconditioned (S/1) and conditioned (R/1) damage probability tests were performed before and after thermal annealing, then with and without SHG on six doubler crystals from the NIF-size, rapid growth KDP boule F6. The tests revealed that unannealed, last-grown material from the boule in either prismatic or pyramidal sectors exhibited the highest damage curves. After thermal annealing at 160 C for seven days, the prismatic sector samples increased in performance ranging from 1.6 to 2.4X, while material from the pyramidal sector increased only modestly, ranging from 1.0 to 1.4X. Second harmonic generation decreased the damage fluence by an average of 20 percent for the S/1 tests and 40 percent for R/1 tests. Conversion efficiencies under test conditions were measured to be 20 to 30 percent and compared quite well to predicted behavior, as modeled by LLNL frequency conversion computer codes. The damage probabilities at the 1 ω NIF redline fluence (scaled to 10 ns via t 0.5 ) for S/1 tests for the unannealed samples ranged from 20 percent in one sample to 90-100 percent for the other 5 samples. Thermal annealing reduced the damage probabilities to less than 35 percent for 3 of the poor-performing crystals, while two pyramidal samples remained in the 80 to 90 percent range. Second harmonic generation in the annealed crystal increased the S/1 damage probabilities on all the crystals and ranged from 40 to 100 percent. In contrast, R/1 testing of an unannealed crystal resulted in a damage probability at the NIF redline fluence of 16%. Annealing increased the damage performance to the extent that all test sites survived NIF redline fluences without damage. Second harmonic generation in the R/1 test yielded a damage probability of less than 2

  19. Study of Nd:YAG laser annealing of electroless Ni-P film on spiegel-iron plate by Taguchi method and grey system theory

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.L. [Department of Materials Science and Engineering, National Formosa University, 64, Wunhua Road, Huwei, Yunlin 632, Taiwan (China); Chien, W.T.; Jiang, M.H. [Department of Mechanical Engineering, National Pingtung University of Science and Technology, 1, Shuehfu Road, Neipu, Pingtung 912, Taiwan (China); Chen, W.J., E-mail: chenwjau@yuntech.edu.t [Graduate School of Materials Science, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan (China)

    2010-04-09

    An electroless Ni-P film was first deposited on a spiegel-iron plate and then annealed by an Nd:YAG pulsed wave laser. In order to obtain the optimal laser annealing parameters for maximizing the hardness and minimizing the surface roughness of electroless Ni-P films, the Taguchi method and grey system theory were used to analyze the experimental data. The electroless Ni-P film was also characterized by scanning electron microscopy for the morphology, and transmission electron microscopy for the microstructure and crystal structure. The results showed that the hardness and the surface roughness of electroless Ni-P films can be, at the same time, improved to 50.8% and 68%, respectively, by the laser annealing with the optimal parameters.

  20. Study of Nd:YAG laser annealing of electroless Ni-P film on spiegel-iron plate by Taguchi method and grey system theory

    International Nuclear Information System (INIS)

    Liu, W.L.; Chien, W.T.; Jiang, M.H.; Chen, W.J.

    2010-01-01

    An electroless Ni-P film was first deposited on a spiegel-iron plate and then annealed by an Nd:YAG pulsed wave laser. In order to obtain the optimal laser annealing parameters for maximizing the hardness and minimizing the surface roughness of electroless Ni-P films, the Taguchi method and grey system theory were used to analyze the experimental data. The electroless Ni-P film was also characterized by scanning electron microscopy for the morphology, and transmission electron microscopy for the microstructure and crystal structure. The results showed that the hardness and the surface roughness of electroless Ni-P films can be, at the same time, improved to 50.8% and 68%, respectively, by the laser annealing with the optimal parameters.

  1. Effect of annealing atmosphere on optic-electric properties of Zn O thin films

    International Nuclear Information System (INIS)

    Bueno, C.; Pacio, M.; Juarez, H.; Osorio, E.; Perez, R.

    2017-01-01

    In this work the study of structural, morphologic characteristics, optical and electrical properties of the thin films of Zn O in temperatures and annealing atmospheres different was realized. The films were obtained by the sol-gel method, utilizing zinc acetate dihydrate as the precursor, monoethanolamine (Mea) as a stabilizing agent and 2-methoxyethanol as a solvent and deposited by spin-coating. The films were crystallized at 600, 800 and 1000 degrees Celsius in oxygen and nitrogen atmospheres. The results obtained by XRD, Sem, photoluminescence and Hall effects of the Zn O films were related and depend strongly on the temperature and atmosphere annealing. (Author)

  2. Effect of annealing atmosphere on optic-electric properties of Zn O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, C. [Benemerita Universidad Autonoma de Puebla, Facultad de Ingenieria, Blvd. Valsequillo y Av. San Claudio s/n, 72570 Puebla (Mexico); Pacio, M.; Juarez, H. [Benemerita Universidad Autonoma de Puebla, Posgrado en Dispositivos Semiconductores, Av. San Claudio y 14 Sur, 72450 Puebla (Mexico); Osorio, E. [Universidad de Quinta Roo, Blvd. Bahia s/n, esquina Ignacio Comonfort, El Bosque, 77019 Chetumal, Quintana Roo (Mexico); Perez, R., E-mail: cba3009@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ingenieria Quimica, Av. San Claudio y 18 Sur, 72570 Puebla (Mexico)

    2017-11-01

    In this work the study of structural, morphologic characteristics, optical and electrical properties of the thin films of Zn O in temperatures and annealing atmospheres different was realized. The films were obtained by the sol-gel method, utilizing zinc acetate dihydrate as the precursor, monoethanolamine (Mea) as a stabilizing agent and 2-methoxyethanol as a solvent and deposited by spin-coating. The films were crystallized at 600, 800 and 1000 degrees Celsius in oxygen and nitrogen atmospheres. The results obtained by XRD, Sem, photoluminescence and Hall effects of the Zn O films were related and depend strongly on the temperature and atmosphere annealing. (Author)

  3. Optical absorption analysis on diamond crystals modified by H2+ implantation and subsequent annealing

    International Nuclear Information System (INIS)

    Ma, Z.Q.; Naramoto, Hiroshi; Aoki, Yasushi; Yamamoto, Shunya; Takeshita, Hidefumi; Goppelt-Langer, P.C.

    1995-01-01

    The optical absorption analysis on synthetic diamond irradiated by molecular hydrogen ions (H 2 + ) with 40 keV, 10 15 -10 17 H/cm 2 , at 100 K, showed that the absorption coefficient (α) of modified layer in UV-VIS range was increased with the implanted dose and decreased with thermal annealing. While its relative optical band gap (E r,opt ) was decreased with ion fluence and proportional to the annealing temperature. The possible microstructure of atomic coordination for as-implanted and subsequent annealing samples was discussed tentatively. In addition the optical inhomogeneity of the type Ib diamond has been revealed by absorption topograph at λ=430 nm. (author)

  4. Luminescence and photosensitivity of PbI2 crystals

    International Nuclear Information System (INIS)

    Novosad, S.S.; Novosad, I.S.; Matviishin, I.M.

    2002-01-01

    One studied effect of temperature treatment and storage conditions on spectra features of PbI 2 crystals grown by the Bridgman-Stockbarger method from salt additionally purified by directed crystallization. Spectra of X-ray luminescence, photoluminescence and thermostimulated luminescence were investigated within 85-295 K temperature range under stationary X-ray excitation and emission of N 2 -laser. One studied photoelectret properties of those crystals under 85 K. Luminescence of PbI 2 crystals with maximum within 595 nm region observed following their thermal annealing under 475-495 K temperature and typical for near-the-surface section of specimens may be caused by oxygen-containing centres [ru

  5. High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayers

    International Nuclear Information System (INIS)

    Bhatt, Pramod; Ganeshan, V.; Reddy, V.R.; Chaudhari, S.M.

    2006-01-01

    High temperature annealing effect on structural and magnetic properties of Ti/Ni multilayer (ML) up to 600 deg. C have been studied and reported in this paper. Ti/Ni multilayer samples having constant layer thicknesses of 50 A each are deposited on float glass and Si(1 1 1) substrates using electron-beam evaporation technique under ultra-high vacuum (UHV) conditions at room temperatures. The micro-structural parameters and their evolution with temperature for as-deposited as well as annealed multilayer samples up to 600 deg. C in a step of 100 deg. C for 1 h are determined by using X-ray diffraction (XRD) and grazing incidence X-ray reflectivity techniques. The X-ray diffraction pattern recorded at 300 deg. C annealed multilayer sample shows interesting structural transformation (from crystalline to amorphous) because of the solid-state reaction (SSR) and subsequent re-crystallization at higher temperatures of annealing, particularly at ≥400 deg. C due to the formation of TiNi 3 and Ti 2 Ni alloy phases. Sample quality and surface morphology are examined by using atomic force microscopy (AFM) technique for both as-deposited as well as annealed multilayer samples. In addition to this, a temperature dependent dc resistivity measurement is also used to study the structural transformation and subsequent alloy phase formation due to annealing treatment. The corresponding magnetization behavior of multilayer samples after each stage of annealing has been investigated by using Magneto-Optical Kerr Effect (MOKE) technique and results are interpreted in terms of observed micro-structural changes

  6. Laser annealing of ion implanted silicon

    International Nuclear Information System (INIS)

    White, C.W.; Appleton, B.R.; Wilson, S.R.

    1980-01-01

    Pulsed laser annealing of ion implanted silicon leads to the formation of supersaturated alloys by nonequilibrium crystal growth processes at the interface occurring during liquid phase epitaxial regrowth. The interfacial distribution coefficients from the melt (k') and the maximum substitutional solubilities (C/sub s//sup max/) are far greater than equilibrium values. Both K' and C/sub s//sup max/ are functions of growth velocity. Mechanisms limiting substitutional solubilities are discussed. 5 figures, 2 tables

  7. Effect of tensile stress on the annealed structure of a metallic glass

    International Nuclear Information System (INIS)

    Vianco, P.T.; Li, J.C.M.

    1987-01-01

    The low-temperature (120 0 --245 0 C) structural relaxation of Metglas/sup R/ 2826B (Ni 49 Fe 29 P 14 B 6 Si 2 ) amorphous alloy was investigated for samples subjected to a tensile stress in the range of 20--400 MPa during annealing. The stress-annealed samples demonstrated a much smaller increase of microhardness than was observed in similarly annealed ribbons without a stress. Further heat treatment of the stress-annealed specimens, this time without the stress, was capable of increasing the microhardnesses of only some ribbons to values equal to those of samples similarly heat treated initially without a stress. An additional exothermic peak in the differential scanning calorimetry (DSC) thermograms of the stress-annealed specimens indicated the presence of a more disordered structure at room temperature, which was found to correlate with the lower microhardness values. Otherwise, those artifacts of the DSC thermograms that were characteristic of samples annealed without a stress were still present in the stress-annealed ribbons. No effect on the crystallization temperature was noted but the glass transition temperature was increased in the stress-annealed case with respect to values attained when the stress was absent during heat treatment. A reduction in the degree of embrittlement of those samples annealed with a tensile stress was a further indication of more disorder in the stress-annealed ribbons

  8. Orientation effect on recovery and recrystallization of cold rolled niobium single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, R. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)], E-mail: rajagopalan.5@osu.edu; Viswanathan, G.B.; Levit, V.I.; Fraser, H.L. [Center for Accelerated Maturation of Materials, Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2009-05-15

    Single crystal sheets of niobium with initial orientations of (0 0 1) [11-bar0], (1 1 0) [11-bar 0] and (1 1 1) [11-bar0] were rolled at room temperature in the strain range of 25-50%. The deformed specimens were vacuum annealed at temperatures of 800 deg. C, 1000 deg. C, and 1200 deg. C for 3 h. TEM, SEM-OIM and optical microscopy revealed orientation stability in (0 0 1) and (1 1 0) rolled samples with no recrystallization observed after annealing. Samples rolled along (1 1 1) partially recrystallized after annealing at 1000 deg. C and 1200 deg. C. A relatively small increase was observed in hardness of (0 0 1) rolled crystals between 25% and 50% strain, implying low work hardening rates. (1 1 1) rolled samples showed higher hardening rates, and enhanced recovery in hardness values after annealing, due to partial recrystallization. Conditions have been identified for the deformation and annealing of niobium single crystals, enabling the preservation of single crystal structure and near-complete recovery of mechanical properties. A simple crystallographic model is proposed, giving an explanation for the observed orientation stability in (0 0 1) and (1 1 0) rolled samples, and the tendency towards instability and recrystallization in (1 1 1) rolled samples.

  9. Analysis of Study Trend of Growth and Characterization of CdZnTe Single Crystal

    International Nuclear Information System (INIS)

    Lee, Kyu Hong; Ha, Jang Ho; Kim, Han Soo

    2011-05-01

    CdZnTe (CZT) alloys are very important semiconducting compounds due to their use in several strategic applications in medical, space, and security devices, especially, radiation detector. Specific problems of the bulk crystal growth are still to be solved. However, since industries require excellent bulk CZT crystals, a strong effort is being organized worldwide to optimize the growth process and obtain better material. This report presents the study trend of the bulk CZT crystal growth and characteristics. After the first section where the problems connected to the complicated phase diagram of CZT are presented, the second section describes the various general physical and chemical properties, together with the compensation problems of the CZT material. In the third section, various growth methods are described, paying attention to the defects generated in the different cases. Further, the annealing process which is an essential step for improving the crystal quality is described. In the last section, the general material characterization methods are presented, as a scientific approach for assessing the quality of the bulk crystal

  10. Thermal annealing studies in muscovite and in quartz

    International Nuclear Information System (INIS)

    Roberts, J.H.; Gold, R.; Ruddy, F.H.

    1979-06-01

    In order to use Solid State Track Recorders (SSTR) in environments at elevated temperatures, it is necessary to know the thermal annealing characteristics of various types of SSTR. For applications in the nuclear energy program, the principal interest is focused upon the annealing of fission tracks in muscovite mica and in quartz. Data showing correlations between changes in track diameters and track densities as a function of annealing time and temperature will be presented for Amersil quartz glass. Similar data showing changes in track lengths and in track densities will be presented for mica. Time-temperature regions will be defined where muscovite mica can be accurately applied with negligible correction for thermal annealing

  11. Effects of annealing on the microstructure, corrosion resistance, and mechanical properties of RE{sub 65}Co{sub 25}Al{sub 10} (RE=Ce, La, Pr, Sm, and Gd) bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhou [School of Materials Science and Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022 (China); Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022 (China); Xing, Qi; Sun, Zhenxi; Xu, Jing; Zhao, Zhengfeng [School of Materials Science and Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022 (China); Chen, Shuying; Liaw, Peter K. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Wang, Yan, E-mail: mse_wangy@ujn.edu.cn [School of Materials Science and Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022 (China); Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022 (China)

    2015-02-25

    The effects of annealing on the microstructure, corrosion resistance and mechanical properties of the RE{sub 65}Co{sub 25}Al{sub 10} (RE=Ce, La, Pr, Sm, and Gd) bulk metallic glasses (BMGs) were studied. Microstructural changes are induced after annealing below the onset crystallization temperature of 484 K, resulting in the variation of thermal stability and crystallization behavior. A proper annealing enhances the corrosion resistance in 3.5 wt% NaCl solution, which can be attributed to reduction of the electrochemical activity and galvanic coupling effects in the chloride solution. Moreover, the RE-based BMG annealed at 484 K possesses the higher corrosion potential and lower corrosion current density, combined with the corrosion morphologies, which suggests the best corrosion resistance. Annealing can also obviously change the mechanical properties and fracture morphologies. It presents that free volume annihilation can cause more difficulty in the elastic atom rearrangement for the as-annealed RE-based BMGs.

  12. Origin of dislocation luminescence centers and their reorganization in p-type silicon crystal subjected to plastic deformation and high temperature annealing.

    Science.gov (United States)

    Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro

    2017-12-01

    Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4  cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.

  13. High-temperature annealing of graphite: A molecular dynamics study

    Science.gov (United States)

    Petersen, Andrew; Gillette, Victor

    2018-05-01

    A modified AIREBO potential was developed to simulate the effects of thermal annealing on the structure and physical properties of damaged graphite. AIREBO parameter modifications were made to reproduce Density Functional Theory interstitial results. These changes to the potential resulted in high-temperature annealing of the model, as measured by stored-energy reduction. These results show some resemblance to experimental high-temperature annealing results, and show promise that annealing effects in graphite are accessible with molecular dynamics and reactive potentials.

  14. O 1s core levels in Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Parmigiani, F.; Shen, Z.X.; Mitzi, D.B.; Lindau, I.; Spicer, W.E.; Kapitulnik, A.

    1991-01-01

    High-quality Bi 2 Sr 2 CaCu 2 O 8+δ superconducting single crystals, annealed at different oxygen partial pressures, have been studied using angular-resolved x-ray photoelectron spectroscopy with a resolution higher than that used in any previous study. Two states of the oxygen, separated by ∼0.7 eV, are unambiguously observed. Examining these components at different angles makes it possible to distinguish bulk from surface components. Using this capability we discover that annealing under lower oxygen partial pressure (1 atm) results in oxygen intercalation beneath the Bi-O surface layer of the crystal, whereas for higher-pressure anneals (12 atm) additional oxygen is found on the Bi-O surfaces. This steplike intercalation mechanism is also confirmed by the changes observed in the Cu and Bi core lines as a function of the annealing oxygen partial pressure

  15. Effect of In Situ Annealing Treatment on the Mobility and Morphology of TIPS-Pentacene-Based Organic Field-Effect Transistors

    Science.gov (United States)

    Yang, Fuqiang; Wang, Xiaolin; Fan, Huidong; Tang, Ying; Yang, Jianjun; Yu, Junsheng

    2017-08-01

    In this work, organic field-effect transistors (OFETs) with a bottom gate top contact structure were fabricated by using a spray-coating method, and the influence of in situ annealing treatment on the OFET performance was investigated. Compared to the conventional post-annealing method, the field-effect mobility of OFET with 60 °C in situ annealing treatment was enhanced nearly four times from 0.056 to 0.191 cm2/Vs. The surface morphologies and the crystallization of TIPS-pentacene films were characterized by optical microscope, atomic force microscope, and X-ray diffraction. We found that the increased mobility was mainly attributed to the improved crystallization and highly ordered TIPS-pentacene molecules.

  16. On simulated annealing phase transitions in phylogeny reconstruction.

    Science.gov (United States)

    Strobl, Maximilian A R; Barker, Daniel

    2016-08-01

    Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Annealing studies of zircaloy-2 cladding at 580-8500C

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1978-05-01

    For fuel element cladding it is important to determine if prior metallurgical condition combined with irradiation damage can influence high temperature deformation, because studies of such deformation are required to produce data for the cladding ballooning models which are used in analysing loss-of-coolant accidents (LOCA). If the behaviour of all cladding conditions during a LOCA can be represented by, say, the annealed condition, then much experimental work on a multiplicity of cladding conditions can be avoided. By examining the metallographic structure and hardness, the present study determines the time required in the range 580 to 850 0 C for returning Zircaloy cladding to the annealed condition, so that for any transient, a point can be specified where the material should have annealed. An equation has been derived to give this information. (author)

  18. Rapid preparation of solution-processed InGaZnO thin films by microwave annealing and photoirradiation

    International Nuclear Information System (INIS)

    Cheong, Heajeong; Ogura, Shintaro; Ushijima, Hirobumi; Yoshida, Manabu; Fukuda, Nobuko; Uemura, Sei

    2015-01-01

    We fabricated solution-processed indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) by microwave (MW) annealing an IGZO precursor film followed by irradiating with vacuum ultraviolet (VUV) light. MW annealing allows more rapid heating of the precursor film than conventional annealing processes using a hot plate or electric oven and promotes the crystallization of IGZO. VUV irradiation was used to reduce the duration and temperature of the post-annealing step. Consequently, the IGZO TFTs fabricated through MW annealing for 5 min and VUV irradiation for 1 min exhibited an on/off current ratio of 10 8 and a field-effect mobility of 0.3 cm 2  V −1  s −1 . These results indicate that MW annealing and photoirradiation is an effective combination for annealing solution processed IGZO precursor films to prepare the semiconductor layers of TFTs

  19. Kinetics of the electronic center annealing in Al2O3 crystals

    Science.gov (United States)

    Kuzovkov, V. N.; Kotomin, E. A.; Popov, A. I.

    2018-04-01

    The experimental annealing kinetics of the primary electronic F, F+ centers and dimer F2 centers observed in Al2O3 produced under neutron irradiation were carefully analyzed. The developed theory takes into account the interstitial ion diffusion and recombination with immobile F-type and F2-centers, as well as mutual sequential transformation with temperature of three types of experimentally observed dimer centers which differ by net charges (0, +1, +2) with respect to the host crystalline sites. The relative initial concentrations of three types of F2 electronic defects before annealing are obtained, along with energy barriers between their ground states as well as the relaxation energies.

  20. Study of annealing effects in Al–Sb bilayer thin films

    Indian Academy of Sciences (India)

    There are three methods to prepare compound semiconductor systems: bilayer annealing (Singh and Vijay 2004a), rapid thermal annealing (Singh and Vijay 2004b) and ion beam mixing (Dhar et al 2003). The annealing and ion beam mixing were found to show inferior mixing effects compared to rapid thermal annealing.

  1. Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoxia; Zhou, Xuan; Yu, Shuaishuai; Wei, Congcong; Xu, Jing; Wang, Yan, E-mail: mse_wangy@ujn.edu.cn

    2017-05-15

    The effects of annealing treatment on the microstructure, thermal stability, and magnetic properties of the mechanical alloyed FeSiBAlNiM (M=Co, Cu, Ag) amorphous high entropy alloys (HEAs) have been investigated in this project. The simple crystallization products in FeSiBAlNi amorphous HEAs with Co and Ag addition reveal the high phase stability during heating process. At high annealing treatment, the crystallized HEAs possess the good semi-hard magnetic property. It can conclude that crystallization products containing proper FeSi-rich and FeB-rich phases are beneficial to improve the magnetic property. Annealing near the exothermic peak temperature presents the best enhancing effect on the semi-hard magnetic property of FeSiBAlNiCo. It performs both large saturated magnetization and remanence ratio of 13.0 emu/g and near 45%, which exhibit 465% and 105% enhancement compared with as-milled state, respectively. - Highlights: • Co, Cu, Ag additions affect crystallization behavior of FeSiBAlNi amorphous HEAs. • Crystallization products in FeSiBAlNi Co/Ag reveal high phase stability. • Proper FeSi-rich and FeB-rich phases are beneficial to improve magnetic property. • Annealing treatment improves semi-hard magnetic property compared to as-milled state. • Annealing near exothermic peak temperature shows best enhancing effect on magnetism.

  2. Structure and properties of melt-spun high acrylonitrile copolymer fibers via continuous zone-drawing and zone-annealing processes

    International Nuclear Information System (INIS)

    Wu Zongquan; Zhang Anqiu; Percec, Simona; Jin Shi; Jing, Alexander J.; Ge, Jason J.; Cheng, Stephen Z.D.

    2003-01-01

    Continuous zone-drawing and zone-annealing processes have been utilized to probe improvements in mechanical performance of melt-spun high acrylonitrile copolymer fibers (AMLON TM ). The as-spun fibers were zone-drawn at different ratios in a narrow temperature range of 100-105 deg. C and then zone-annealed. As a result of these processes, the fibers show substantial increases in tensile strength and tensile modulus (about three times) and significant improvements in elongation-at-break (about two times) after zone annealing. The thermal transition behavior, dimensional stability and dynamic relaxation properties of the as-spun, zone-drawn and zone-annealed fibers have been studied using differential scanning calorimetry, thermal mechanical and dynamic mechanical experiments. Their mechanical and thermal property changes after the zone-drawing and zone-annealing processes can be associated with the microscopic structural evolution including crystallinity, crystal orientation and apparent crystallite size detected by wide angle X-ray diffraction experiments

  3. Experimental quantum annealing: case study involving the graph isomorphism problem.

    Science.gov (United States)

    Zick, Kenneth M; Shehab, Omar; French, Matthew

    2015-06-08

    Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N(2) to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers.

  4. Rapid preparation of solution-processed InGaZnO thin films by microwave annealing and photoirradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Heajeong; Ogura, Shintaro; Ushijima, Hirobumi; Yoshida, Manabu; Fukuda, Nobuko; Uemura, Sei, E-mail: sei-uemura@aist.go.jp [Flexible Electronics Research Center (FLEC), National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2015-06-15

    We fabricated solution-processed indium–gallium–zinc oxide (IGZO) thin-film transistors (TFTs) by microwave (MW) annealing an IGZO precursor film followed by irradiating with vacuum ultraviolet (VUV) light. MW annealing allows more rapid heating of the precursor film than conventional annealing processes using a hot plate or electric oven and promotes the crystallization of IGZO. VUV irradiation was used to reduce the duration and temperature of the post-annealing step. Consequently, the IGZO TFTs fabricated through MW annealing for 5 min and VUV irradiation for 1 min exhibited an on/off current ratio of 10{sup 8} and a field-effect mobility of 0.3 cm{sup 2} V{sup −1} s{sup −1}. These results indicate that MW annealing and photoirradiation is an effective combination for annealing solution processed IGZO precursor films to prepare the semiconductor layers of TFTs.

  5. Calorimetric features of release of plastic deformation induced internal stresses, and approach to equilibrium state on annealing of crystals and glasses

    Energy Technology Data Exchange (ETDEWEB)

    Johari, G.P., E-mail: joharig@mcmaster.ca

    2014-04-01

    Highlights: • Stress release in a glass occurs at a faster rate than structural relaxation. • Plastically-deformed glass would show two exothermic minima, and no glass transition. • Enthalpy matching procedure would yield an inaccurate fictive temperature. • Complex heat capacity may distinguish plastically-deformed from quench-formed glass. - Abstract: Plastic deformation of crystals and glasses produces internal strains (stresses), which change their energy and other thermodynamic properties. On annealing, these stresses decrease at a rate faster than the structure relaxes toward the equilibrium state. Mechanism of such relaxations in crystals differs from that in glasses and it also differs for glasses of different types. In all cases, the energy related properties decrease with time isothermally and on heating, resembling the structure relaxation of a stress-free glass. We consider these features and argue that kinetics of enthalpy loss with time yields the rate constants of the stress release and of the structure change, and not the viscosity determining α-relaxation time. Since thermal cycling does not recover the enthalpy from internal stresses, a glass with stresses has neither a glass-softening temperature, T{sub g}, nor a fictive temperature, T{sub f}. Plastic deformation would not rejuvenate a physically aged glass to the properties of its un-aged state. The Prigogine–Defay ratio can be extended to all T{sub f}s, and used to investigate the effect of distribution of relaxation times on its value, but it can not be defined for an internally stressed glass. After discussing the effects of annealing on the heat capacity and DSC scans, we conclude that on slow heating, glass with deformation-induced stresses would show two exothermic minima, and normal glass would show only one such minimum. Temperature-modulated scanning calorimetry would also distinguish an internally stressed glass from an equally high-enthalpy, stress-free glass. Enthalpy

  6. Creep recovery of metallic glass Fe-Ni-B after longtime stress-annealing

    NARCIS (Netherlands)

    Jurikova, A; Csach, K; Miskuf, J; Ocelik, Vaclav

    2004-01-01

    The creep strain recovery of magnetic soft material - amorphous metallic glass Fe-Ni-B after a longtime stress-annealing at different temperatures below the crystallization temperature was described using differential scanning calorimetry and dilatometry. Several deformation energy accumulations

  7. Facile Synthesis of Calcium Borate Nanoparticles and the Annealing Effect on Their Structure and Size

    Directory of Open Access Journals (Sweden)

    Manizheh Navasery

    2012-11-01

    Full Text Available Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD and Fourier Transform Infrared spectroscopy (FTIR, Transmission electron microscopy (TEM, and Thermogravimetry (TGA. The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB2O4 nanoparticles and tetraborate (CaB4O7 nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures.

  8. The influence of the bulk reduction state on the surface structure and morphology of rutile TiO{sub 2}(110) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Hebenstreit, W.; Diebold, U.; Tyryshkin, A.M.; Bowman, M.K.; Dunham, G.G.; Henderson, M.A.

    2000-05-25

    The authors have investigated the relationship between different types and amounts of bulk defects and the surface morphology of TiO{sub 2}(110) single crystals prepared by annealing in ultrahigh vacuum and in oxygen. Rutile TiO{sub 2}(110) specimens were cut from the same crystal and were heated in a furnace to different temperatures which resulted in different states of reduction (colors of the crystals). After characterization of the bulk defects with electron paramagnetic resonance (EPR), the specimens were studied with scanning tunneling microscopy (STM), low-energy He{sup +} ion scattering (LEIS), and work function measurements. EPR reveals that darker rutile crystals exhibit higher concentrations of extended Ti{sup 3+} related bulk defects such as crystallographic shear planes (CSP), with a decrease in substitutional and interstitial defects as compared to lighter crystals. Surface structures with (1 x 2) features are preferably formed upon UHV annealing on these darker crystals. LEIS measurements show that all of the crystals' (110) surfaces are reoxidized upon annealing in {sup 18}O{sub 2} (573 K, 1 x 10{sup {minus}6} mbar, 10 min) and that the {sup 18}O surface content is proportional to the bulk reduction state. UV-visible adsorption spectra and resistivity measurements also scale with the reduction states of crystals. Only the (1 x 1) structure is observed on the surface of slightly reduced crystals. Annealing in oxygen induces additional metastable structures, i.e., TiO{sub 2} clusters on blue crystals and rosette networks on dark blue crystals.

  9. Crystallization of DNA-coated colloids

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  10. The effect of annealing on structural, optical and photosensitive properties of electrodeposited cadmium selenide thin films

    Directory of Open Access Journals (Sweden)

    Somnath Mahato

    2017-06-01

    Full Text Available Cadmium selenide (CdSe thin films have been deposited on indium tin oxide coated glass substrate by simple electrodeposition method. X-ray Diffraction (XRD studies identify that the as-deposited CdSe films are highly oriented to [002] direction and they belong to nanocrystalline hexagonal phase. The films are changed to polycrystalline structure after annealing in air for temperatures up to 450 °C and begin to degrade afterwards with the occurrence of oxidation and porosity. CdSe completely ceases to exist at higher annealing temperatures. CdSe films exhibit a maximum absorbance in the violet to blue-green region of an optical spectrum. The absorbance increases while the band gap decreases with increasing annealing temperature. Surface morphology also shows that the increase of the annealing temperature caused the grain growth. In addition, a number of distinct crystals is formed on top of the film surface. Electrical characteristics show that the films are photosensitive with a maximum sensitivity at 350 °C.

  11. Annealing of dislocation loops in neutron-irradiated copper investigated by positron annihilation

    International Nuclear Information System (INIS)

    Gauster, W.B.; Mantl, S.; Schober, T.; Triftshauser, W.

    1975-01-01

    Positron annihilation angular correlation measurements were carried out on neutron-irradiated copper as a function of annealing temperature. Two types of specimens were used: single crystals irradiated with fast neutrons, and 10 B-doped polycrystalline samples irradiated with thermal neutrons. All irradiations were at approximately 320 0 K. A structure in the annealing curve, not previously observed by other techniques, indicates that between 460 and 600 0 K the dislocation loops present after irradiation dissociate and more effective positron trapping sites are formed. (auth)

  12. Structural evolution of tunneling oxide passivating contact upon thermal annealing.

    Science.gov (United States)

    Choi, Sungjin; Min, Kwan Hong; Jeong, Myeong Sang; Lee, Jeong In; Kang, Min Gu; Song, Hee-Eun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan; Kim, Ka-Hyun

    2017-10-16

    We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (V oc ) due to the hydrogen motion, but the implied V oc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.

  13. 1-(2-furoyl)-3,3-(diphenyl)thiourea: spectroscopic characterization and structural study from X-ray powder diffraction using simulated annealing

    Energy Technology Data Exchange (ETDEWEB)

    Estevez H, O.; Duque, J. [Universidad de La Habana, Instituto de Ciencia y Tecnologia de Materiales, 10400 La Habana (Cuba); Rodriguez H, J. [UNAM, Instituto de Investigaciones en Materiales, 04510 Mexico D. F. (Mexico); Yee M, H., E-mail: oestevezh@yahoo.com [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, 07738 Mexico D. F. (Mexico)

    2015-07-01

    1-Furoyl-3,3-diphenylthiourea (FDFT) was synthesized, and characterized by Ftir, {sup 1}H and {sup 13}C NMR and ab initio X-ray powder structure analysis. FDFT crystallizes in the monoclinic space group P2{sub 1} with a = 12.691(1), b = 6.026(2), c = 11.861(1) A, β = 117.95(2) and V = 801.5(3) A{sup 3}. The crystal structure has been determined from laboratory X-ray powder diffraction data using direct space global optimization strategy (simulated annealing) followed by the Rietveld refinement. The thiourea group makes a dihedral angle of 73.8(6) with the furoyl group. In the crystal structure, molecules are linked by van der Waals interactions, forming one-dimensional chains along the a axis. (Author)

  14. Infrared absorption studies of the annealing of irradiated diamonds

    International Nuclear Information System (INIS)

    Woods, G.S.

    1984-01-01

    Natural (types Ia and IIa) and synthetic (type Ib) diamonds have been irradiated with energetic electrons and neutrons and then heated at temperatures up to 1400 deg C. Attendant changes in the infrared absorption spectra, especially above the Raman frequency (1332 cm -1 ), have been monitored. The most prominent absorption to develop in the infrared region proper, on annealing both type Ia and type Ib specimens, whether electron- or neutron-irradiated is the H1a line at 1450 cm -1 . Measurements taken of neutron-irradiated type Ia specimens show that the strength of this line is specimen-dependent, and that it is a linear function of radiation dose. Isochronal annealing studies show that the onset of the line occurs during heating at 250 deg C for type Ia specimens and at 650 deg C for type Ib specimens. The absorption begins to weaken during heating at 1100 deg C, but it is very persistent, surviving an anneal of 4 hours at 1400 deg C, albeit with diminished intensity. Three other weaker lines at 1438, 1358 and 1355 cm -1 develop with the 1450 cm -1 line, but differ from it and from each other in subsequent annealing behaviour. Other lines were observed; these are reported and discussed. (author)

  15. Crystal growth and mechanical hardness of In{sub 2}Se{sub 2.7}Sb{sub 0.3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Piyush, E-mail: piyush-patel130@yahoo.com; Vyas, S. M., E-mail: s-m-vyas-gu@hotmail.com; Patel, Vimal; Pavagadhi, Himanshu [Department of Physics, School of Science, Gujarat University, Ahmedabad, Gujarat, India-380009 (India); Solanki, Mitesh [panditdindayal Petroleum University, Gandhinagar. Gujarat (India); Jani, Maunik P. [BITS Edu Campus, Varnama, Vadodara, Gujarat (India)

    2015-08-28

    The III-VI compound semiconductors is important for the fabrication of ionizing radiation detectors, solid-state electrodes, and photosensitive heterostructures, solar cell and ionic batteries. In this paper, In{sub 2}Se{sub 2.7} Sb{sub 0.3} single crystals were grown by the Bridgman method with temperature gradient of 60 °C/cm and the growth velocity 0.5cm/hr. The as-grown crystals were examined under the optical microscope for surface study, a various growth features observed on top free surface of the single crystal which is predominant of layers growth mechanism. The lattice parameters of as-grown crystal was determined by the XRD analysis. A Vickers’ projection microscope were used for the study of microhardness on the as-cleaved, cold-worked and annealed samples of the crystals, the results were discussed, and reported in detail.

  16. Atomistic insights into the nanosecond long amorphization and crystallization cycle of nanoscale G e2S b2T e5 : An ab initio molecular dynamics study

    Science.gov (United States)

    Branicio, Paulo S.; Bai, Kewu; Ramanarayan, H.; Wu, David T.; Sullivan, Michael B.; Srolovitz, David J.

    2018-04-01

    The complete process of amorphization and crystallization of the phase-change material G e2S b2T e5 is investigated using nanosecond ab initio molecular dynamics simulations. Varying the quench rate during the amorphization phase of the cycle results in the generation of a variety of structures from entirely crystallized (-0.45 K/ps) to entirely amorphized (-16 K/ps). The 1.5-ns annealing simulations indicate that the crystallization process depends strongly on both the annealing temperature and the initial amorphous structure. The presence of crystal precursors (square rings) in the amorphous matrix enhances nucleation/crystallization kinetics. The simulation data are used to construct a combined continuous-cooling-transformation (CCT) and temperature-time-transformation (TTT) diagram. The nose of the CCT-TTT diagram corresponds to the minimum time for the onset of homogenous crystallization and is located at 600 K and 70 ps. That corresponds to a critical cooling rate for amorphization of -4.5 K/ps. The results, in excellent agreement with experimental observations, suggest that a strategy that utilizes multiple quench rates and annealing temperatures may be used to effectively optimize the reversible switching speed and enable fast and energy-efficient phase-change memories.

  17. Effect of thermal annealing on scintillation properties of Ce:Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12} under different atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Ding, Dongzhou; Wu, Yuntao; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Wang, Qingqing; Ye, Le; Ren, Guohao [Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai (China)

    2017-05-15

    Cerium-doped 1% Ce:Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12}(GYGAG) single crystal samples grown via Czochralski method were annealed under air, O{sub 2} and N{sub 2} atmospheres from 350 to 1400 C. The X-ray excited luminescence spectra, energy spectra and UV as well as thermally stimulated luminescence (TSL) spectra were performed comparatively on ''as-grown'' and thermally annealed samples. It was found that the luminescence efficiency after annealing in air and O{sub 2} was significantly enhanced compared to the non-annealed samples and this phenomenon was suggested to be caused by the existence of some oxygen vacancies in the Ce:GYGAG crystals. And the oxygen vacancies in the as-grown GYGAG crystals can be effectively eliminated by means of annealing in O{sub 2} containing atmosphere without changing the luminescence mechanism. From the TSL curves before and after annealing, three traps within 77-650 K were found to be related to oxygen vacancies. (orig.)

  18. Growth and characterizations of Ba2Ti2Fe2As4O single crystals

    Directory of Open Access Journals (Sweden)

    Yun-Lei Sun, Abduweli Ablimit, Jin-Ke Bao, Hao Jiang, Jie Zhou and Guang-Han Cao

    2013-01-01

    Full Text Available Single crystals of a new iron-based superconductor Ba2Ti2Fe2As4O have been grown successfully via a Ba2As3-flux method in a sealed evacuated quartz tube. Bulk superconductivity with Tc ~ 21.5 K was demonstrated in resistivity and magnetic susceptibility measurements after the as-grown crystals were annealed at 500 °C in vacuum for a week. X-ray diffraction patterns confirm that the annealed and the as-grown crystals possess the identical crystallographic structure of Ba2Ti2Fe2As4O. Energy-dispersive x-ray spectra indicate that partial Ti/Fe substitution exists in the [Fe2As2] layers and the annealing process redistributes the Ti within the Fe-plane. The ordered Fe-plane stabilized by annealing exhibits superconductivity with magnetic vortex pinned by Ti.

  19. Thermal annealing of fission tracks in fluorapatite, chlorapatite, manganoanapatite, and Durango apatite: experimental results

    International Nuclear Information System (INIS)

    Ravenhurst, C.E.; Roden-Tice, M.K.; Miller, D.S.

    2003-01-01

    It is well known that the optically measured lengths of fission tracks in apatite crystals are a function of etching conditions, crystallographic orientation of the track, composition of the crystal, and the state of thermal annealing. In this study we standardize etching conditions and optimize track length measurability by etching until etch pits formed at the surface of each apatite crystal reached widths of about 0.74 μm. Etching times using 5M HNO 3 at 21 o C were 31 s for Otter Lake, Quebec, fluorapatite; 47 s for Durango, Mexico, apatite; 33 s for Portland, Connecticut, manganoanapatite; and 11 s for Bamle, Norway, chlorapatite. An etching experiment using two etchant strengths (5M and 1.6M HNO 3 ) revealed that, despite significant differences in etch pit shape, fission-track length anisotropy with respect to crystallographic orientation of the tracks is not a chemical etching effect. A series of 227 constant-temperature annealing experiments were carried out on nuclear reactor induced tracks in oriented slices of the apatites. After etching, crystallographic orientations of tracks were measured along with their lengths. The 200-300 track lengths measured for each slice were ellipse-fitted to give the major (c crystallographic direction) and minor (a crystallographic direction) semi-axes used to calculate equivalent isotropic lengths. The equivalent isotropic length is more useful than mean length for thermal history analysis because the variation caused by anisotropy has been removed. Using normalized etching procedures and equivalent isotropic length data, we found that the fluorapatite anneals most readily, followed by Durango apatite, manganoanapatite, and lastly chlorapatite. (author)

  20. Nucleation and Crystal Growth of Organic-Inorganic Lead Halide Perovskites under Different Relative Humidity.

    Science.gov (United States)

    Gao, Hao; Bao, Chunxiong; Li, Faming; Yu, Tao; Yang, Jie; Zhu, Weidong; Zhou, Xiaoxin; Fu, Gao; Zou, Zhigang

    2015-05-06

    Organic-inorganic lead halide perovskite compounds are very promising materials for high-efficiency perovskite solar cells. But how to fabricate high-quality perovksite films under controlled humidity conditions is still an important issue due to their sensitivity to moisture. In this study, we investigated the influence of ambient humidity on crystallization and surface morphology of one-step spin-coated perovskite films, as well as the performance of solar cells based on these perovskite films. On the basis of experimental analyses and thin film growth theory, we conclude that the influence of ambient humidity on nucleation at spin-coating stage is quite different from that on crystal growth at annealing stage. At the spin-coating stage, high nucleation density induced by high supersaturation prefers to appear under anhydrous circumstances, resulting in layer growth and high coverage of perovskite films. But at the annealing stage, the modest supersaturation benefits formation of perovskite films with good crystallinity. The films spin-coated under low relative humidity (RH) followed by annealing under high RH show an increase of crystallinity and improved performance of devices. Therefore, a mechanism of fast nucleation followed by modest crystal growth (high supersaturation at spin-coating stage and modest supersaturation at annealing stage) is suggested in the formation of high-quality perovskite films.

  1. Microstructural evolution of Au/TiO{sub 2} nanocomposite films: The influence of Au concentration and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Kubart, T.; Kumar, S.; Leifer, K. [Solid-State Electronics, Department of Engineering Sciences, Uppsala University, P.O. Box 534, Uppsala SE-751 21 (Sweden); Rodrigues, M.S. [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Duarte, N.; Martins, B.; Dias, J.P. [Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Vaz, F. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Centro/Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-04-01

    Nanocomposite thin films consisting of a dielectric matrix, such as titanium oxide (TiO{sub 2}), with embedded gold (Au) nanoparticles were prepared and will be analysed and discussed in detail in the present work. The evolution of morphological and structural features was studied for a wide range of Au concentrations and for annealing treatments in air, for temperatures ranging from 200 to 800 °C. Major findings revealed that for low Au atomic concentrations (at.%), there are only traces of clustering, and just for relatively high annealing temperatures, T ≥ 500 °C. Furthermore, the number of Au nanoparticles is extremely low, even for the highest annealing temperature, T = 800 °C. It is noteworthy that the TiO{sub 2} matrix also crystallizes in the anatase phase for annealing temperatures above 300 °C. For intermediate Au contents (5 at.% ≤ C{sub Au} ≤ 15 at.%), the formation of gold nanoclusters was much more evident, beginning at lower annealing temperatures (T ≥ 200 °C) with sizes ranging from 2 to 25 nm as the temperature increased. A change in the matrix crystallization from anatase to rutile was also observed in this intermediate range of compositions. For the highest Au concentrations (> 20 at.%), the films tended to form relatively larger clusters, with sizes above 20 nm (for T ≥ 400 °C). It is demonstrated that the structural and morphological characteristics of the films are strongly affected by the annealing temperature, as well as by the particular amounts, size and distribution of the Au nanoparticles dispersed in the TiO{sub 2} matrix. - Highlights: • Au:TiO{sub 2} films were produced by magnetron sputtering and post-deposition annealing. • The Au concentration in the films increases with the Au pellet area. • Annealing induced microstructural changes in the films. • The nanoparticle size evolution with temperature depends on the Au concentration.

  2. Stages in the Recovery of Deformed Single Crystals of Iron Studied by Position Annihilation Techniques

    NARCIS (Netherlands)

    Lee, Jong-Lam; Waber, James T.; Park, Yong-Ki; Hosson, J.T.M. De

    Isochronal as well as isothermal measurements have been made on high purity single crystals of iron which had been cold rolled about 10% prior to annealing. Two steps were isolated corresponding first to the annihilation of screw dislocations and then to the elimination of edge dislocations at

  3. Creation of oxygen-enriched layers at the surface of GaAs single crystal

    International Nuclear Information System (INIS)

    Kulik, M.; Maczka, D.; Kobzev, A.P.

    1999-01-01

    The optical properties and the element depth profiles at the (100) plane high resistant and noncomposite GaAs single crystals implanted with In ions were investigated. The results have been compared with those obtained for virgin samples. The optic properties for all of the samples (implanted and not implanted, annealed and not annealed) have been measured using the ellipsometric method. The element depth profiles for the same samples have been obtained by the RBS and NRA techniques. It has been shown that the post-implantation annealing at a temperature more than 600 deg C leads to a ten time increase in contents of oxygen atoms in the implanted layer with respect to the not annealed sample. The thickness of the transparence layer at the surface of GaAs single crystal increases also after implantation with In ions and subsequent annealing

  4. The annealing of phosphorus-implanted silicon investigated at low temperatures

    International Nuclear Information System (INIS)

    Wagner, C.; Burkhardt, F.

    1978-01-01

    Phosphorus ions are implanted at 50 keV into misaligned silicon crystals at 20 and 300 0 C, respectively. The ion doses used are 8 x 10 13 and 8 x 10 14 cm -2 , respectively. After annealing treatments the electrical properties of the samples are investigated by measuring Hall effect and sheet resistivity in the range from 300 to 4.2 K. The experimental results indicate some problems which must be taken into account for interpreting Hall effect measurements made at room temperature only. Furthermore the results give some new information on the annealing process in phosphorus implanted silicon and the influence of the implantation parameters. (author)

  5. Thermally-induced crystallization behaviour of 80GeSe2–20Ga2Se3 glass as probed by combined X-ray diffraction and PAL spectroscopy

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Calvez, L.; Petracovschi, E.; Klym, H.; Ingram, A.; Demchenko, P.

    2014-01-01

    Highlights: • Chalcogenide Ge–Ga–Se glasses were annealed at 380 °C for 10, 25 and 50 h. • Crystallization of glasses during annealing indicates formation of crystals. • Structural changes are described by two-state positron trapping model. • Modification leading to nucleation and fragmentation of free volume of glasses. • The Ge–Ga–Se systems cannot be classified as typical pseudo-binary system. -- Abstract: Crystallization behaviour of 80GeSe 2 –20Ga 2 Se 3 glass caused by thermal annealing at 380 °C for 10, 25 and 50 h are studied using X-ray diffraction and positron annihilation lifetime spectroscopy. It is shown that the structural changes caused by crystallization can be adequately described by positron trapping modes determined within two-state model. The observed changes in defect-related component in the fit of experimental positron lifetime spectra for annealed glasses testifies in a favour of structural fragmentation of larger free volume entities into smaller ones with preceding nucleation in the initial stage of thermal annealing. Because of strong deviation in defect-free bulk positron lifetime from corresponding additive values proper to boundary constituents, the studied glasses cannot be considered as typical representatives of pseudo-binary cut-section

  6. Investigation of the effects of substrate annealing on the properties of polymer blends

    CSIR Research Space (South Africa)

    Motaung, DE

    2010-06-01

    Full Text Available by the controlled evaporation rate of the solvent. It is proposed that pre-substrate annealing controls the crystallization of P3HT, the phase separation and diffusion of the acceptor material (C60 or PCBM)...

  7. The influence of Ti doping and annealing on Ce{sub 2}Ti{sub 2}O{sub 7} flash memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Chyuan Haur [Department of Electronic Engineering, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC (China); Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan, ROC (China); Department of Electronic Engineering, Ming Chi University of Technology, Taiwan, ROC (China); Chen, Su Zhien [Department of Electronic Engineering, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC (China); Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan, ROC (China); Luo, Yang; Chiu, Wang Ting; Chiu, Shih Wei; Chen, I Chien [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, No. 1, University Rd., Puli, Nantou Country 54561, Taiwan, ROC (China); Lin, Chan-Yu [Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan, ROC (China); Chen, Hsiang, E-mail: hchen@ncnu.edu.tw [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, No. 1, University Rd., Puli, Nantou Country 54561, Taiwan, ROC (China)

    2017-02-28

    Highlights: • Ce{sub 2}Ti{sub 2}O{sub 7} flash memories have been fabricated. • Material quality can be improved by annealing. • The memory performance can be enhanced by Ti doping. • Ti doping and annealing can reinforce crystallization. - Abstract: In this research, a CeO{sub 2} film with Ti doping was used as a trapping layer in metal oxide high-K-oxide-Si (MOHOS)-type memory devices. Since incorporation of Ti atoms into the film could fix dangling bonds and defects, the Ce{sub 2}Ti{sub 2}O{sub 7} trapping layer with annealing treatment could have a larger memory window and a faster programming/erasing speed. To confirm the origin, multiple material analyses indicate that annealing at an appropriate temperature and Ti doping could enhance crystallization. The Ce{sub 2}Ti{sub 2}O{sub 7}-based memory device is promising for future industrial flash memory applications.

  8. Microstructural and conductivity changes induced by annealing of ZnO:B thin films deposited by chemical vapour deposition

    International Nuclear Information System (INIS)

    David, C; Girardeau, T; Paumier, F; Eyidi, D; Guerin, P; Marteau, M; Lacroix, B; Papathanasiou, N; Tinkham, B P

    2011-01-01

    Zinc oxide (ZnO) thin films have attracted much attention in recent years due to progress in crystal growth for a large variety of technological applications including optoelectronics and transparent electrodes in solar cells. Boron (B)-doped ZnO thin films are deposited by low pressure chemical vapour deposition (LPCVD) on Si(100). These films exhibit a strong (002) texture with a pyramidal grain structure. The ZnO films were annealed after growth; the annealing temperature and the atmosphere appear to strongly impact the layer conductivity. This work will first present the modification of the physical properties (carrier concentration, mobility) extracted from the simulation of layer reflection in the infrared range. At low annealing temperatures the mobility increases slightly before decreasing drastically above a temperature close to 250 deg. C. The chemical and structural evolution (XPS, x-ray diffraction) of the films was also studied to identify the relationship between microstructural modifications and the variations observed in the film conductivity. An in situ XRD study during annealing has been performed under air and low pressure conditions. As observed for electrical properties, the microstructural modifications shift to higher temperatures for vacuum annealing.

  9. Fiscal 2000 research achievement report on the pioneering research and development involving next-generation liquid crystal process base technologies; 2000 nendo jisedai ekisho process kiban gijutsu ni kakawaru sendo kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the enhancement of energy conservation in the liquid crystal display manufacturing process, activities are conducted in the three fields of (1) low temperature thin film fabrication technology, (2) zone-selective thin film growth technology, and (3) next-generation liquid crystal process base technology and comprehensive surveys. Conducted in field (1) are pioneering studies of low temperature high quality Si film fabrication by electromagnetic annealing, low temperature high quality thin film fabrication by EPA (electron plasma annealing), and low temperature normal pressure film fabrication. Conducted in field (2) are pioneering studies of zone-selective fabrication of high quality Si crystal film, high precision control of reforming (doping), and free pattern low resistance wiring fabrication. Conducted in field (3) are tentative fabrication, evaluation, and analysis of ultimate performance TFTs (thin film transistors) produced by the state-of-the-art purification enhancement technology; next-generation liquid crystal process; and surveys of functional thin film to be a novel material for substrates. In the pioneering study of low temperature high quality Si film fabrication by means of electromagnetic annealing, microwave annealing is studied as an energy efficient process to replace the currently favored ELA (excimer laser annealing) method, and then it is proved that the microwave annealing method is much higher in energy efficiency than the ELA method. (NEDO)

  10. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    OpenAIRE

    Md. Poostforush; H. Azizi

    2014-01-01

    The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO). Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina) but their transparency was preserved (Tλ550 nm ~ 72%). Integrated annealed alumina phase, low ...

  11. Effect of annealing on the composition and structure of TiC and TaC powders

    International Nuclear Information System (INIS)

    Vavrda, J.; Blazhikova, J.

    1979-01-01

    Effect of annealing (1300-2000 deg C) upon lattice parameters and composition of TiC and TaC powders has been investigated. It is established that the lowest deviation from stoichiometric composition of TiC and TaC is the result of annealing the samples, placed in graphite crucibles, in the medium of pure argon. It is shown, that the processes of decarbonizing and crystal defect formation produce decisive effect upon recrystallization of titanium and tantalum carbides. Using the methods of X-ray diffraction and scanning electron microscopy significant difference is detected in structural changes in TiC at high temperature heat treatment compared to recrystallization processes in metals. Singled out are the following stages of the process: carbide decarbonizing and arizing of lattice distortions connected with it; progressing disorientation of mosaic blocks, connected with the increase in stresses of the second kind and subsequent gragmentation of big crystals; relief in fragmentated crystals

  12. Annealing studies of Zircaloy-2 cladding at 580-850 deg C

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1983-01-01

    For fuel rod cladding it is important to determine if prior metallurgical condition combined with irradiation damage can influence high temperature deformation, because studies of such deformation are required to produce data for the cladding ballooning models which are used in analysing loss-of-coolant (LOCA). If the behaviour of all cladding conditions during a LOCA can be represented by, say, the annealed condition, then a great deal of experimental work on a multiplicity of cladding conditions can be avoided. By examining the metallographic structure and hardness, the present study determines the time required in the range 580 to 850 deg C for returning Zircaloy cladding to the annealed condition, so that for any transient a point can be specified where the material should have annealed. An equation has been derived to give this information. (author)

  13. Method of fabricating patterned crystal structures

    KAUST Repository

    Yu, Liyang

    2016-12-15

    A method of manufacturing a patterned crystal structure for includes depositing an amorphous material. The amorphous material is modified such that a first portion of the amorphous thin-film layer has a first height/volume and a second portion of the amorphous thin-film layer has a second height/volume greater than the first portion. The amorphous material is annealed to induce crystallization, wherein crystallization is induced in the second portion first due to the greater height/volume of the second portion relative to the first portion to form patterned crystal structures.

  14. Crystal structure of LT GaAs layers before and after annealing

    International Nuclear Information System (INIS)

    Litiental-Weber, Z.

    1992-01-01

    In this paper the structural quality of GaAs layers grown at low temperatures by solid-source and gas-source MBE at different growth conditions is described. Dependence on the growth temperature and concentration of As [expressed at As/Ga beam equivalent pressure (BEP)] used for the growth is discussed. A higher growth temperature is required top obtain the same monocrystalling layer thickness with increased BEP. The annealing of these layers is associated with the formation of As precipitates. Semicoherent precipitates with lowest formation energies are formed in the monocrystalline parts of the layers grown with the lowest BEP. Precipitates with higher formation energies are formed when higher BEP is applied; they are also formed in the vicinity of structural defects. Formation of As precipitates releases strain in the layers. Arsenic precipitates are not formed in annealed ternary (InAlAs) layers despite their semi-insulating properties. The role of As precipitates in semi-insulating properties and the short lifetime of minority carriers in these layers is discussed

  15. Amorphization and recrystallization in MeV ion implanted InP crystals

    International Nuclear Information System (INIS)

    Xiong, F.; Nieh, C.W.; Jamieson, D.N.; Vreeland, T. Jr.; Tombrello, T.A.

    1988-01-01

    A comprehensive study of MeV- 15 N-ion-implanted InP by a variety of analytical techniques has revealed the physical processes involved in MeV ion implantation into III-V compound semiconductors as well as the influence of post-implantation annealing. It provides a coherent picture of implant distribution, structural transition, crystalline damage, and lattice strain in InP crystals induced by ion implantation and thermal annealing. The experimental results from the different measurements are summarized in this report. Mechanisms of amorphization by implantation and recrystallization through annealing in MeV-ion-implanted InP are proposed and discussed in light of the results obtained

  16. Growth and properties of oxygen doped Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Kapitulnik, A.; Mitzi, D.B.

    1990-01-01

    This paper reports results on oxygen doped single crystals in the Bi 2 Sr 2 CaCu 2 O 8+δ system grown by a directional solidification method. Annealing of as made crystals in increasing partial pressure of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed). Magnetic and photoemission properties of these crystals will be discussed

  17. The annealing temperature dependences of microstructures and magnetic properties in electro-chemical deposited CoNiFe thin films

    International Nuclear Information System (INIS)

    Suharyadi, Edi; Riyanto, Agus; Abraha, Kamsul

    2016-01-01

    CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co_6_5Ni_1_5Fe_2_0, Co_6_2Ni_1_5Fe_2_3, and Co_5_5Ni_1_5Fe_3_0 thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co_6_5Ni_1_5Fe_2_0, Co_6_2Ni_1_5Fe_2_3, and Co_5_5Ni_1_5Fe_3_0 thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending on annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.

  18. Substrate-induced phase of a [1]benzothieno[3,2-b]benzothiophene derivative and phase evolution by aging and solvent vapor annealing.

    Science.gov (United States)

    Jones, Andrew O F; Geerts, Yves H; Karpinska, Jolanta; Kennedy, Alan R; Resel, Roland; Röthel, Christian; Ruzié, Christian; Werzer, Oliver; Sferrazza, Michele

    2015-01-28

    Substrate-induced phases (SIPs) are polymorphic phases that are found in thin films of a material and are different from the single crystal or "bulk" structure of a material. In this work, we investigate the presence of a SIP in the family of [1]benzothieno[3,2-b]benzothiophene (BTBT) organic semiconductors and the effect of aging and solvent vapor annealing on the film structure. Through extensive X-ray structural investigations of spin coated films, we find a SIP with a significantly different structure to that found in single crystals of the same material forms; the SIP has a herringbone motif while single crystals display layered π-π stacking. Over time, the structure of the film is found to slowly convert to the single crystal structure. Solvent vapor annealing initiates the same structural evolution process but at a greatly increased rate, and near complete conversion can be achieved in a short period of time. As properties such as charge transport capability are determined by the molecular structure, this work highlights the importance of understanding and controlling the structure of organic semiconductor films and presents a simple method to control the film structure by solvent vapor annealing.

  19. Color center annealing and ageing in electron and ion-irradiated yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Costantini, Jean-Marc; Beuneu, Francois

    2005-01-01

    We have used X-band electron paramagnetic resonance (EPR) measurements at room-temperature (RT) to study the thermal annealing and RT ageing of color centers induced in yttria-stabilized zirconia (YSZ), i.e. ZrO 2 :Y with 9.5 mol% Y 2 O 3 , by swift electron and ion-irradiations. YSZ single crystals with the orientation were irradiated with 2.5 MeV electrons, and implanted with 100 MeV 13 C ions. Electron and ion beams produce the same two color centers, namely an F + -type center (singly ionized oxygen vacancy) and the so-called T-center (Zr 3+ in a trigonal oxygen local environment) which is also produced by X-ray irradiations. Isochronal annealing was performed in air up to 973 K. For both electron and ion irradiations, the defect densities are plotted versus temperature or time at various fluences. The influence of a thermal treatment at 1373 K of the YSZ single crystals under vacuum prior to the irradiations was also investigated. In these reduced samples, color centers are found to be more stable than in as-received samples. Two kinds of recovery processes are observed depending on fluence and heat treatment

  20. Dopant rearrangement and superconductivity in Bi2Sr2-xLaxCuO6 thin films under annealing

    International Nuclear Information System (INIS)

    Cancellieri, C; Lin, P H; Ariosa, D; Pavuna, D

    2007-01-01

    By combining x-ray diffraction (XRD), x-ray photoemission spectroscopy (XPS) and AC susceptibility measurements we investigate the evolution of structural and superconducting properties of La-doped Bi-2201 thin films grown by pulsed laser deposition (PLD) under different annealing conditions. We find that the main effect of oxygen annealing is to improve the crystal coherence by enabling La cation migration to the Sr sites. This activates the desired hole doping. Short-time Ar annealing removes the interstitial oxygen between the BiO layers, fine adjusting the effective hole doping. The superconducting critical temperature is consequently enhanced. However, longer annealings result in phase separation and segregation of the homologous compound Bi-1201. We attribute this effect to the loss of Bi during the annealing

  1. Defect studies in annealed ZnO by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, D; Roy, Tapatee Kundu; Chakrabarti, Mahuya; Dechoudhury, Siddhartha; Bhowmick, Debasis; Chakrabarti, Alok [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2008-01-30

    Coincidence Doppler broadening of the positron annihilation technique has been employed to identify the defects in thermally annealed 'as-received' ZnO and thermally annealed ball-milled nanocrystalline ZnO. Results indicate that a significant amount of oxygen vacancy has been created in ZnO due to annealing at about 500 deg. C and above. The results also indicate that the Zn vacancy created during the ball milling process can be easily removed by annealing the sample at about 500 deg. C and above. The defect characterization has also been correlated with the magnetic properties of ZnO.

  2. Defect studies in annealed ZnO by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Sanyal, D; Roy, Tapatee Kundu; Chakrabarti, Mahuya; Dechoudhury, Siddhartha; Bhowmick, Debasis; Chakrabarti, Alok

    2008-01-01

    Coincidence Doppler broadening of the positron annihilation technique has been employed to identify the defects in thermally annealed 'as-received' ZnO and thermally annealed ball-milled nanocrystalline ZnO. Results indicate that a significant amount of oxygen vacancy has been created in ZnO due to annealing at about 500 deg. C and above. The results also indicate that the Zn vacancy created during the ball milling process can be easily removed by annealing the sample at about 500 deg. C and above. The defect characterization has also been correlated with the magnetic properties of ZnO

  3. Characteristics of withstanding radiation damage of InP crystals and devices

    International Nuclear Information System (INIS)

    Yamaguchi, Masafumi; Ando, Koshi

    1988-01-01

    Recently, the authors discovered that the characteristics of with standing radiation damage of InP crystals and devices (solar cells) are superior to those of Si and GaAs crystals and devices. Also the restoration phenomena at room temperature of radiation deterioration and the accelerated anneal phenomena by light irradiation and the injection of other minority, carriers in InP system devices were found. Such excellent characteristics suggested that InP devices are promising for the use in space. In this paper, taking an example of solar cells, the radiation resistance characteristics and their mechanism of InP crystals and devices are reported, based on the results of analysis by deep level transient spectroscopy and others. In InP solar cells, the high efficiency of photoelectric conversion was maintained even in the high dose irradiation of 1 MeV electron beam. As the carrier concentration in InP crystals is higher, they are stronger against radiation. With the increase of carrier concentration, the rate of anneal of radiation deterioration at room temperature increased. The accelerated anneal effect by minority carrier injection was remarkable in n + -p junction cells. The excellent characteristics of InP crystals are due to the formation of Frenkel defects of P and their instability. (K.I.)

  4. Impact of high temperature and short period annealing on SnS films deposited by E-beam evaporation

    International Nuclear Information System (INIS)

    Gedi, Sreedevi; Reddy, Vasudeva Reddy Minnam; Kang, Jeong-yoon; Jeon, Chan-Wook

    2017-01-01

    Highlights: • Preparation SnS films using electron beam evaporation at room temperature. • SnS films were annealed at a high temperaure for different short period of times. • The films showed highly oriented (111) planes with orthorhombic crystal structure. • Surface morphology showed bigger and faceted grains embedded in orthorombic. • The TEM confirmed that big orthorombic slabs had single-crystalline nature. - Abstract: Thin films of SnS were deposited on Mo-substrate using electron beam evaporation at room temperature. As-deposited SnS films were annealed at a constant high temperaure of 860 K for different short period of times, 1 min, 3 min, and 5 min. The impact of heat treatment period on the physical properties of SnS films was investigated using appropriate characterization tools. XRD analysis revealed that the films were highly oriented along (111) plane with orthorhombic crystal structure. Surface morphology of as-deposited SnS films showed an identical leaf texture where as the annealed films showed large orthorombic slab shape grains in adidition to the leaf shape grains, which indicates the significance of short period annealing at high temperature. The transmission electron microscopy confirmed that those large orthorombic slabs had single-crystalline nature. The results emphasized that the short period annealing treatment at high temperature stimulated the growth of film towards the single crystallinity.

  5. Impact of high temperature and short period annealing on SnS films deposited by E-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gedi, Sreedevi; Reddy, Vasudeva Reddy Minnam; Kang, Jeong-yoon; Jeon, Chan-Wook, E-mail: cwjeon@ynu.ac.kr

    2017-04-30

    Highlights: • Preparation SnS films using electron beam evaporation at room temperature. • SnS films were annealed at a high temperaure for different short period of times. • The films showed highly oriented (111) planes with orthorhombic crystal structure. • Surface morphology showed bigger and faceted grains embedded in orthorombic. • The TEM confirmed that big orthorombic slabs had single-crystalline nature. - Abstract: Thin films of SnS were deposited on Mo-substrate using electron beam evaporation at room temperature. As-deposited SnS films were annealed at a constant high temperaure of 860 K for different short period of times, 1 min, 3 min, and 5 min. The impact of heat treatment period on the physical properties of SnS films was investigated using appropriate characterization tools. XRD analysis revealed that the films were highly oriented along (111) plane with orthorhombic crystal structure. Surface morphology of as-deposited SnS films showed an identical leaf texture where as the annealed films showed large orthorombic slab shape grains in adidition to the leaf shape grains, which indicates the significance of short period annealing at high temperature. The transmission electron microscopy confirmed that those large orthorombic slabs had single-crystalline nature. The results emphasized that the short period annealing treatment at high temperature stimulated the growth of film towards the single crystallinity.

  6. Enhancements of the critical currents of YBaCuO single crystals by neutron (n) and proton (p) irradiation

    International Nuclear Information System (INIS)

    Vlcek, B.M.; Frischherz, M.C.; Vishwanathan, H.K.; Welp, U.; Crabtree, G.W.; Kirk, M.A.

    1992-01-01

    We present results of magnetization hysteresis and T c measurements of neutron and proton irradiated YBaCuO single crystals. The crystals used for comparison were irradiated to a fluence of 2x10 7 n/cm 2 (n,E > 0.1MeV) and 1x10 16 p/cm 2 (p,E=3.5MeV). The critical currents at 1T and 10K are enhanced by a factor of 5 for the neutron irradiated and a factor of 9 for the proton irradiated sample respectively. After irradiation the crystals were annealed at 100, 200 and 300C for 8h each in air. Following each annealing step the critical temperature and the magnetization hysteresis at 10 and 70K was measured. Upon annealing, we observe a decrease of the critical currents, which is more pronounced for the proton irradiated sample. This decrease is related to the removal of point defects or their small clusters. Thus, their contribution to pinning can be studied. The critical temperature decreases after both types of irradiation by about 0.5K and is fully recovered after annealing

  7. Thermally-induced crystallization behaviour of 80GeSe{sub 2}–20Ga{sub 2}Se{sub 3} glass as probed by combined X-ray diffraction and PAL spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Scientific Research Company “Carat”, 202, Stryjska str., Lviv 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa 42201 (Poland); Calvez, L.; Petracovschi, E. [Equipe Verres et Céramiques, UMR-CNRS 6226, Institute des Sciences chimiques de Rennes, Université de Rennes 1, 35042 Rennes Cedex (France); Klym, H. [Lviv polytechnic National University, 12 Bandera str., Lviv 79013 (Ukraine); Ingram, A. [Physics Faculty of Opole University of Technology, 75, Ozimska str., Opole 45370 (Poland); Demchenko, P. [Ivan Franko National University of Lviv, 6, Kyryla and Mefodiya Str., Lviv 79005 (Ukraine)

    2014-01-05

    Highlights: • Chalcogenide Ge–Ga–Se glasses were annealed at 380 °C for 10, 25 and 50 h. • Crystallization of glasses during annealing indicates formation of crystals. • Structural changes are described by two-state positron trapping model. • Modification leading to nucleation and fragmentation of free volume of glasses. • The Ge–Ga–Se systems cannot be classified as typical pseudo-binary system. -- Abstract: Crystallization behaviour of 80GeSe{sub 2}–20Ga{sub 2}Se{sub 3} glass caused by thermal annealing at 380 °C for 10, 25 and 50 h are studied using X-ray diffraction and positron annihilation lifetime spectroscopy. It is shown that the structural changes caused by crystallization can be adequately described by positron trapping modes determined within two-state model. The observed changes in defect-related component in the fit of experimental positron lifetime spectra for annealed glasses testifies in a favour of structural fragmentation of larger free volume entities into smaller ones with preceding nucleation in the initial stage of thermal annealing. Because of strong deviation in defect-free bulk positron lifetime from corresponding additive values proper to boundary constituents, the studied glasses cannot be considered as typical representatives of pseudo-binary cut-section.

  8. Annealing Effects on the Normal-State Resistive Properties of Underdoped Cuprates

    Science.gov (United States)

    Vovk, R. V.; Khadzhai, G. Ya.; Nazyrov, Z. F.; Kamchatnaya, S. N.; Feher, A.; Dobrovolskiy, O. V.

    2018-05-01

    The influence of room-temperature annealing on the parameters of the basal-plane electrical resistance of underdoped YBa_2Cu_3O_{7-δ } and HoBa_2Cu_3O_{7-δ } single crystals in the normal and superconducting states is investigated. The form of the derivatives dρ (T)/dT makes it possible to determine the onset temperature of the fluctuation conductivity and indicates a nonuniform distribution of the labile oxygen. Annealing has been revealed to lead to a monotonic decrease in the oxygen deficiency, that primarily manifests itself as a decrease in the residual resistance, an increase of T_c, and a decrease in the Debye temperature.

  9. Annealing Effects on the Magnetization of Co-Ni-B Amorphous Nanoparticles

    International Nuclear Information System (INIS)

    Vargas, J.M.

    2001-01-01

    Chemically prepared (Co x Ni 1-x ) 1 00 -y B y (x=0.5, 0.75, 1; y∼30) amorphous fine particles were characterized by x-ray diffraction, DTA and TGA, and in-situ magnetic measurement as a function of annealing temperature in an inert atmosphere.Magnetic measurement performed in as prepared and ∼150C degree annealed samples show an increase of the saturation magnetization and magnetic moment after thermal tretment.Room temperature magnetization increases by factors of ∼3 in average.These measurements may indicate a local re-ordering of the amorphous phase at temperatures much lower than the full crystallization temperature

  10. Annealing effects on cathodoluminescence of zircon

    Science.gov (United States)

    Tsuchiya, Y.; Nishido, H.; Noumi, Y.

    2011-12-01

    U-Pb zircon dating (e. g., SHRIMP) is an important tool to interpret a history of the minerals at a micrometer-scale, where cathodoluminescence (CL) imaging allows us to recognize internal zones and domains with different chemical compositions and structural disorder at high spatial resolution. The CL of zircon is attributed by various types of emission centers, which are extrinsic ones such as REE impurities and intrinsic ones such as structural defects. Metamictization resulted from radiation damage to the lattice by alpha particles from the decay of U and Th mostly causes an effect on the CL features of zircon as a defect center. However, slightly radiation-damaged zircon, which is almost nondetectable by XRD, has not been characterized using CL method. In this study, annealing effects on CL of zircon has been investigated to clarify a recovery process of the damaged lattice at low radiation dose. A single crystal of zircon from Malawi was selected for CL measurements. It contains HfO2: 2.30 w.t %, U: 241 ppm and Th: 177 ppm. Two plate samples perpendicular to c and a axes were prepared for annealing experiments during 12 hours from room temperature to 1400 degree C. Color CL images were captured using a cold-cathode microscope (Luminoscope: Nuclide ELM-3R). CL spectral measurements were conducted using an SEM (JEOL: JSM-5410) combined with a grating monochromator (Oxford: Mono CL2) to measure CL spectra ranging from 300 to 800 nm in 1 nm steps with a temperature controlled stage. The dispersed CL was collected by a photoncounting method using a photomultiplier tube (Hamamatsu: R2228) and converted to digital data. All CL spectra were corrected for the total instrumental response. Spectral analysis reveals an anisotropy of the CL emission bands related to intrinsic defect center in blue region, radiation-induced defect center from 500 to 700 nm, and trivalent Dy impurity center at 480 and 580 nm, but their relative intensities are almost constant. CL on the

  11. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates

    International Nuclear Information System (INIS)

    De Los Santos Valladares, L.; Salinas, D. Hurtado; Dominguez, A. Bustamante; Najarro, D. Acosta; Khondaker, S.I.; Mitrelias, T.; Barnes, C.H.W.; Aguiar, J. Albino; Majima, Y.

    2012-01-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO 2 /Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 °C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution Cu → Cu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO was detected. Pure Cu 2 O films are obtained at 200 °C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300–550 °C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current–voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: ► The crystallization and electrical resistivity of oxides in a Cu films are studied. ► In annealing Cu films, the phase evolution Cu + Cu 2 O → Cu 2 O → Cu 2 O + CuO → CuO occurs. ► A resistivity phase diagram, obtained from the current–voltage response, is presented. ► Some decreases in the resistivity may be related to the crystallization.

  12. Optical and X-ray absorption spectroscopy in lead doped lithium fluoride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Somma, F; Aloe, P; D' Acapito, F; Montereali, R M; Polosan, S; Secu, M; Vincenti, M A, E-mail: somma@fis.uniroma3.it

    2010-11-15

    LiF:Pb doped crystals were successfully grown by Kyropoulos method, starting with drying powders. The presence of Pb{sup 2+} ions in the LiF crystals were evidenced by the absorption band at 278 nm and by 375 nm photoluminescence. The presence of some other Pb structures with oxygen compounds in the as made samples was evidenced, decreasing after some annealing procedures. The local environment and valence state of Pb in LiF were studied by X-ray Absorption Spectroscopy at the Pb L{sub III} and L{sub I} edges. XANES data reveal that Pb is present as Pb{sup 2+} whereas EXAFS data show that it is incorporated in the crystal and not forming PbF{sub 2} precipitates. Identical spectra are obtained for samples as prepared and after thermal annealing up to 650 deg. C demonstrating the stability of the incorporation site. Also the concentration of Pb in the crystal has no effect on the location site of the metal as the same spectrum is obtained for specimens with different dopant concentrations.

  13. Damage and in-situ annealing during ion implantation

    International Nuclear Information System (INIS)

    Sadana, D.K.; Washburn, J.; Byrne, P.F.; Cheung, N.W.

    1982-11-01

    Formation of amorphous (α) layers in Si during ion implantation in the energy range 100 keV-11 MeV and temperature range liquid nitrogen (LN)-100 0 C has been investigated. Cross-sectional transmission electron microscopy (XTEM) shows that buried amorphous layers can be created for both room temperature (RT) and LN temperature implants, with a wider 100 percent amorphous region for the LN cooled case. The relative narrowing of the α layer during RT implantation is attributed to in-situ annealing. Implantation to the same fluence at temperatures above 100 0 C does not produce α layers. To further investigate in situ annealing effects, specimens already containing buried α layers were further irradiated with ion beams in the temperature range RT-400 0 C. It was found that isolated small α zones (less than or equal to 50 diameter) embedded in the crystalline matrix near the two α/c interfaces dissolved into the crystal but the thickness of the 100 percent α layer was not appreciably affected by further implantation at 200 0 C. A model for in situ annealing during implantation is presented

  14. In-homogeneity in the pre-dose sensitization of the 110 °C TL peak in various quartz samples: The influence of annealing

    International Nuclear Information System (INIS)

    Polymeris, George S.; Oniya, Ebenezer O.; Jibiri, Nnamdi N.; Tsirliganis, Nestor C.; Kitis, George

    2012-01-01

    The pre-dose sensitization effect of the 110 °C TL glow-peak of quartz is a basic tool in thermoluminescence and optically stimulated luminescence dating and retrospective dosimetry. In the present work, a homogeneity study was performed on pre-dose sensitization in grains obtained from large quartz crystals samples collected from 10 different origins. The aliquot – to – aliquot scatter of the pre-dose sensitization of the 110 °C TL peak within each quartz crystal was monitored. The influence of the annealing on this scattering was also studied. Therefore, the investigation was applied to the un-fired “as is” samples as well as to samples annealed at 900 °C for 1 h following cooling to room temperature in air. The results showed that in the case of “as is” quartz the sensitization effect vary strongly within each aliquot of the same quartz sample. This strong variation is removed by both the high temperature annealing as well as heating up to 500 °C, involved in the TL measurements. These results are generally discussed in the framework of existing models and applications of the effect.

  15. Influence of annealing temperature and environment on the properties of indium tin oxide thin films

    International Nuclear Information System (INIS)

    Wang, R X; Beling, C D; Fung, S; Djurisic, A B; Ling, C C; Kwong, C; Li, S

    2005-01-01

    Indium tin oxide (ITO) thin films were deposited on glass substrates using the e-beam evaporating technique. The influence of deposition rate and post-deposition annealing on the optical properties of the films was investigated in detail. It is found that the deposition rate and annealing conditions strongly affect the optical properties of the films. The transmittance of films greatly increases with increasing annealing temperature below 300 deg. C but drastically drops at 400 deg. C when they are annealed in forming gas (mixed N 2 and H 2 gas). An interesting phenomenon observed is that the transmittance of the darkened film can recover under further 400 deg. C annealing in air. Atomic force microscopy, x-ray diffraction and x-ray photoemission spectroscopy were employed to obtain information on the chemical state and crystallization of the films. Analysis of these data suggests that the loss and re-incorporating of oxygen are responsible for the reversible behaviour of the ITO thin films

  16. The effects of incomplete annealing on the temperature dependence of sheet resistance and gage factor in aluminum and phosphorus implanted silicon on sapphire

    Science.gov (United States)

    Pisciotta, B. P.; Gross, C.

    1976-01-01

    Partial annealing of damage to the crystal lattice during ion implantation reduces the temperature coefficient of resistivity of ion-implanted silicon, while facilitating controlled doping. Reliance on this method for temperature compensation of the resistivity and strain-gage factor is discussed. Implantation conditions and annealing conditions are detailed. The gage factor and its temperature variation are not drastically affected by crystal damage for some crystal orientations. A model is proposed to account for the effects of electron damage on the temperature dependence of resistivity and on silicon piezoresistance. The results are applicable to the design of silicon-on-sapphire strain gages with high gage factors.

  17. Influence of annealing atmosphere on structural and superconducting properties of MgB{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gregor, M., E-mail: gregor@fmph.uniba.sk; Plecenik, T.; Sobota, R.; Brndiarova, J.; Roch, T.; Satrapinskyy, L.; Kus, P.; Plecenik, A.

    2014-09-01

    Highlights: • Superconducting MgB{sub 2} thin film were deposited by co-deposition using the thermal and e-beam evaporation. • Ex situ annealing process was done using various atmospheres. • Influence of annealing atmosphere and temperature on superconducting and structural properties were studied. • Possible mechanisms of the formation and crystallization of MgB{sub 2} thin film are discussed. - Abstract: Influence of an ex situ annealing temperature and atmosphere on chemical composition and structural and superconducting properties of MgB{sub 2} thin films deposited by vacuum evaporation has been investigated. The annealing has been done in Ar, N{sub 2} and Ar + 5%H{sub 2} atmospheres at pressure of 700 Pa and temperature varying from 700 to 800 °C. It has been shown that annealing in Ar and N{sub 2} atmosphere at 700–800 °C produces relatively thick MgO layer on the surface of the films, while creation of such layer is highly reduced if the annealing is done in reducing Ar + 5%H{sub 2} atmosphere. The XPS and XRD results suggest that the MgO layer prevents out-diffusion of Mg from the film during the annealing, what assures better stoichiometry of the films as well as creation of larger MgB{sub 2} grains. The films with the highest amount of MgO on the surface, annealed in nitrogen atmosphere, thus paradoxically exhibited the highest critical temperature of T{sub c0} = 34.8 K with very sharp transition width of 0.1 K.

  18. Characterization of in-situ annealed sub-micron thick Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Byoung-Soo; Sung, Shi-Joon; Hwang, Dae-Kue, E-mail: dkhwang@dgist.ac.kr

    2015-09-01

    Sub-micron thick Cu(In,Ga)Se{sub 2} (CIGS) thin films were deposited on Mo-coated soda-lime glass substrates under various conditions by single-stage co-evaporation. Generally, the short circuit current (J{sub sc}) decreased with the decreasing thickness of the absorber layer. However, in this study, J{sub sc} was nearly unchanged with decreasing thickness, while the open circuit voltage (V{sub oc}) and fill factor (FF) decreased by 31.9 and 31.1%, respectively. We believe that the remarkable change of V{sub oc} and FF can be attributed to the difference in the total amount of injected thermal energy. Using scanning electron microscopy, we confirmed that the surface morphology becomes smooth and the grain size increased after the annealing process. In the X-ray diffraction patterns, the CIGS thin film also showed an improved crystal quality. We observed that the electric properties were improved by the in-situ annealing of CIGS thin films. The reverse saturation current density of the annealed CIGS solar cell was 100 times smaller than that of reference solar cell. Thus, sub-micron CIGS thin films annealed under a constant Se rate showed a 64.7% improvement in efficiency. - Highlights: • The effects of in-situ annealing the sub-micron CIGS film have been investigated. • The surface morphology and the grain size were improved by in-situ annealing. • The V{sub oc} and FF of the films were increased by about 30% after in-situ annealing. • In-situ annealing of sub-micron thick CIGS films can be improved an efficiency.

  19. Peculiarities of radiation defect formation and annealing in n-Si due to their interaction with each other and defect clusters

    International Nuclear Information System (INIS)

    Lugakov, P.F.; Lukyanitsa, V.V.

    1984-01-01

    Rearrangement processes proceeding during annealing (T/sub a/ = 50 to 500 0 C) of radiation defects in 60 Co γ-irradiated (T/sub irr/ 0 C) n-Si crystals (rho = 100 to 600 Ωcm) grown by the vacuum float-zone technique are studied. The temperature dependences of the Hall coefficient are measured. The results obtained are interpreted taking into account the interaction during annealing of vacancy-type defects (E-centres, divacancies) with each other and interstitial radiation defects (C/sub i/-C/sub s/ complexes, interstitial carbon C/sub i/). Phosphorus-two vacancies complexes, stable to T/sub a/ >= 500 0 C, are shown to be formed as a result of rearrangements and interaction of E-centres between themselves. The character of interaction of vacancy defects with interstitial ones is found to change significantly in the presence of defect clusters in the bulk of the crystal which are formed under heat treatment (T = 800 0 C, two hours) of the samples preliminary irradiated with fast neutrons (flux PHI/sub n/ = 1x10 14 to 1x10 16 cm -2 ). The peculiarities of radiation defects annealing observed in this case are explained taking into account the influence of defect clusters on the migration processes of mobile defects. Nature of radiation defects being formed at various stages of annealing is discussed. (author)

  20. Investigation on structural aspects of ZnO nano-crystal using radio-active ion beam and PAC

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Bichitra Nandi, E-mail: bichitra.ganguly@saha.ac.in [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Dutta, Sreetama; Roy, Soma [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Röder, Jens [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Physical Chemistry, RWTH-Aachen, Aachen (Germany); Johnston, Karl [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Experimental Physics, University of the Saarland, Saarbrücken (Germany); Martin, Manfred [Physical Chemistry, RWTH-Aachen, Aachen (Germany)

    2015-11-01

    Nano-crystalline ZnO has been studied with perturbed angular correlation using {sup 111m}Cd, implanted at ISOLDE/CERN and X-ray diffraction using Rietveld analysis. The data show a gradual increase in the crystal size and stress for a sample annealed at 600 °C, and reaching nearly properties of standard ZnO with tempering at 1000 °C. The perturbed angular correlation data show a broad frequency distribution at low annealing temperatures and small particle sizes, whereas at high annealing temperature and larger crystal sizes, results similar to bulk ZnO have been obtained. The ZnO nano-crystalline samples were initially prepared through a wet chemical route, have been examined by Fourier Transform Infrared Spectroscopy (FT-IR) and chemical purity has been confirmed with Energy Dispersive X-ray (EDAX) analysis as well as Transmission Electron Microscopy (TEM).

  1. Influence of thermal annealing on the morphology and structural properties of a conjugated polymer in blends with an organic acceptor material

    CSIR Research Space (South Africa)

    Motaung, DE

    2009-06-01

    Full Text Available variation in morphology during annealing due to the crystallization of C60. The as-prepared P3HT:C60 films have a higher surface roughness and larger cluster size compared to the as-prepared P3HT films. The thermal annealing effects on the optical microscopy...

  2. Effect of template post-annealing on Y(Dy)BaCuO nucleation on CeO2 buffered metallic tapes

    Science.gov (United States)

    Hu, Xuefeng; Zhong, Yun; Zhong, Huaxiao; Fan, Feng; Sang, Lina; Li, Mengyao; Fang, Qiang; Zheng, Jiahui; Song, Haoyu; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing

    2017-08-01

    Substrate engineering is very significant in the synthesis of the high-temperature superconductor (HTS) coated conductor. Here we design and synthesize several distinct and stable Cerium oxide (CeO2) surface reconstructions which are used to grow epitaxial films of the HTS YBa2Cu3O7-δ (YBCO). To identify the influence of annealing and post-annealing surroundings on the nature of nucleation centers, including Ar/5%H2, humid Ar/5%H2 and O2 in high temperature annealing process, we study the well-controlled structure, surface morphology, crystal constants and surface redox processes of the ceria buffers by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electronic microscopy (FE-SEM), respectively. The ceria film post-annealed under humid Ar/5%H2 gas shows the best buffer layer properties. Furthermore, the film absorbs more oxygen ions, which appears to contribute to oxygenation of superconductor film. The film is well-suited for ceria model studies as well as a perfect substitute for CeO2 bulk material.

  3. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric

    2010-08-18

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric; Mondal, Rajib; Bettinger, Christopher J.; Sok, Seihout; Toney, Michael F.; Bao, Zhenan

    2010-01-01

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influence of low-temperature annealing on magnetic properties of (Nd0.625Ni0.375)85Al15 metallic glass

    International Nuclear Information System (INIS)

    Xu Feng; Wang Zhiming; Chen Guang; Jiang Jianzhong; Du Youwei

    2008-01-01

    After a review of the selection process of (Nd 0.625 Ni 0.375 ) 85 Al 15 as a metallic glass with a relatively high glass-forming ability, we investigate the influences of its phase transitions by duplicating the heating process of the isochronal thermal analysis with low-temperature annealings. The structure, thermal stability and magnetic properties are characterized. And the influences on magnetic properties are particularly discussed with emphasis. Both the annealing processes, to the glass-transition temperature and to the onset temperature of crystallization, bring about a higher coercivity of the sample and a higher freezing temperature of the spin-glass-state. For the sample annealed to the onset temperature of crystallization, the influence is quite obvious and is ascribed to the formation of ferrimagnetic Nd 7 Ni 3 phase, as detected by XRD. For the sample annealed to the glass-transition temperature, the indistinct influence is further identified with the analysis of the frequency dependence of the spin-glass-state, and it is mainly attributed to the change of the short-range order in the amorphous matrix

  6. Effect of the annealing temperature of thin Hf0.3Zr0.7O2 films on their energy storage behavior

    International Nuclear Information System (INIS)

    Park, Min Hyuk; Kim, Han Joon; Kim, Yu Jin; Moon, Taehwan; Kim, Keum Do; Hwang, Cheol Seong

    2014-01-01

    With increasing annealing temperature (T anneal ), the magnitude of the electric fields for the antiferroelectric-to-ferro-electric (E AF ) and ferroelectric-to-antiferroelectric (E FA ) transition of a 9.2 nm thick Hf 0.3 Zr 0.7 O 2 film decreased. The energy storage densities of the Hf 0.3 Zr 0.7 O 2 films crystallized at 400 C, 500 C, and 600 C were as large as 42.2 J/cm 3 , 40.4 J/cm 3 , and 28.3 J/cm 3 , respectively, at the electric field of 4.35 MV/cm. The maximum dielectric constant of the Hf 0.3 Zr 0.7 O 2 film crystallized at 600 C was the largest (∝46) as it had the smallest E AF and E FA , whereas the leakage current density of the film crystallized at 400 C was the smallest. The 400 C of T anneal was the optimum condition for energy storage application. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Dependence of TL-property changes of natural quartzes on aluminium contents accompanied by thermal annealing treatment

    International Nuclear Information System (INIS)

    Hashimoto, T.; Sakaue, S.; Aoki, H.; Ichino, M.

    1994-01-01

    The TL properties were investigated using both an IPDA (Intensified Photo-Diode Array) spectrometric system and a TLCI (Thermoluminescence Colour Image) method after thermal annealing treatment at several temperatures. An apparent colour change from original blue- (BTL) to red-TL(RTL) has unexpectedly occurred in a Z-cut slice of Madagascar quartz, after an annealing treatment around 1000 o C. From the TL-colour change studies of the Z-cut slice, it was confirmed that original BTL intensities are inversely proportional to the Al contents; the TLCI-patterns of the original or annealed Z-cut slice gave stripe patterns corresponding to Al impurity contents along the crystal growth direction particularly yielding an intense appearance of RTL on higher Al contents after the annealing treatment. This changeability of TL-colour towards RTL after thermal annealing treatment was found to be intimately correlated with the square of Al concentrations, although BTL clearly changed as linearly proportional to Al impurity contents. Finally, the cleavage of Al-O-Al bonds or some sites in the vicinity of Al-O-Al bonds were plausibly considered to play an important role for the formation of RTL colour centres in natural quartzes as a result of the operation of high temperature effects. (Author)

  8. Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID.

    Science.gov (United States)

    Puydinger Dos Santos, Marcos Vinicius; Szkudlarek, Aleksandra; Rydosz, Artur; Guerra-Nuñez, Carlos; Béron, Fanny; Pirota, Kleber Roberto; Moshkalev, Stanislav; Diniz, José Alexandre; Utke, Ivo

    2018-01-01

    Non-noble metals, such as Cu and Co, as well as noble metals, such as Au, can be used in a number modern technological applications, which include advanced scanning-probe systems, magnetic memory and storage, ferroelectric tunnel junction memristors, metal interconnects for high performance integrated circuits in microelectronics and nano-optics applications, especially in the areas of plasmonics and metamaterials. Focused-electron-beam-induced deposition (FEBID) is a maskless direct-write tool capable of defining 3-dimensional metal deposits at nanometre scale for above applications. However, codeposition of organic ligands when using organometallic precursors is a typical problem that limits FEBID of pure metal nanostructures. In this work, we present a comparative study using a post-growth annealing protocol at 100, 200, and 300 °C under high vacuum on deposits obtained from Co 2 (CO) 8 , Cu(II)(hfac) 2 , and Me 2 Au(acac) to study improvements on composition and electrical conductivity. Although the as-deposited material was similar for all precursors, metal grains embedded in a carbonaceous matrix, the post-growth annealing results differed. Cu-containing deposits showed the formation of pure Cu nanocrystals at the outer surface of the initial deposit for temperatures above 100 °C, due to the migration of Cu atoms from the carbonaceous matrix containing carbon, oxygen, and fluorine atoms. The average size of the Cu crystals doubles between 100 and 300 °C of annealing temperature, while the composition remains constant. In contrast, for Co-containing deposits oxygen release was observed upon annealing, while the carbon content remained approximately constant; the cobalt atoms coalesced to form a metallic film. The as-deposited Au-containing material shows subnanometric grains that coalesce at 100 °C, maintaining the same average size at annealing temperatures up to 300 °C. Raman analysis suggests that the amorphous carbonaceous matrix of the as-written Co

  9. Rise and fall of ferromagnetism in O-irradiated Al2O3 single crystals

    International Nuclear Information System (INIS)

    Li, Qiang; Xu, Juping; Liu, Jiandang; Du, Huaijiang; Ye, Bangjiao

    2015-01-01

    In dilute magnetic semiconductors studies, sapphire was usually used as non-magnetic substrate for films. We observed weak ferromagnetic component in Al 2 O 3 single crystal substrate, and excluded the possibility of ferromagnetic contaminations carefully by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The ferromagnetism rise and fall during the process of annealing-oxygen irradiation-annealing of the sapphire. The ferromagnetic changes are consistent with Al-vacancy related defects detected by positron annihilation spectroscopy. With first-principle calculations, we confirm that Al-vacancy can introduce magnetic moment for 3 μB in Al 2 O 3 crystal and form stable V Al -V Al ferromagnetic coupling at room temperature

  10. In-homogeneity in the pre-dose sensitization of the 110 Degree-Sign C TL peak in various quartz samples: The influence of annealing

    Energy Technology Data Exchange (ETDEWEB)

    Polymeris, George S., E-mail: polymers@auth.gr [Laboratory of Radiation Applications and Archaeological Dating, Department of Archaeometry and Physicochemical Measurements, Cultural and Educational Technology Institute, Athena, Research and Innovation Center in Information, Communication and Knowledge Technologies, Tsimiski 58, GR-67100 Xanthi (Greece); ISIK University, Faculty of Science and Arts, Physics Department, Sile 34980, Istanbul (Turkey); Oniya, Ebenezer O. [Laboratory of Radiation Applications and Archaeological Dating, Department of Archaeometry and Physicochemical Measurements, Cultural and Educational Technology Institute, Athena, Research and Innovation Center in Information, Communication and Knowledge Technologies, Tsimiski 58, GR-67100 Xanthi (Greece); Physics and Electronics Department, Adekunle Ajasin University, PMB 01 Akungba Akoko (Nigeria); Jibiri, Nnamdi N. [Department of Physics, University of Ibadan, Ibadan (Nigeria); Tsirliganis, Nestor C. [Laboratory of Radiation Applications and Archaeological Dating, Department of Archaeometry and Physicochemical Measurements, Cultural and Educational Technology Institute, Athena, Research and Innovation Center in Information, Communication and Knowledge Technologies, Tsimiski 58, GR-67100 Xanthi (Greece); Kitis, George [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece)

    2012-03-01

    The pre-dose sensitization effect of the 110 Degree-Sign C TL glow-peak of quartz is a basic tool in thermoluminescence and optically stimulated luminescence dating and retrospective dosimetry. In the present work, a homogeneity study was performed on pre-dose sensitization in grains obtained from large quartz crystals samples collected from 10 different origins. The aliquot - to - aliquot scatter of the pre-dose sensitization of the 110 Degree-Sign C TL peak within each quartz crystal was monitored. The influence of the annealing on this scattering was also studied. Therefore, the investigation was applied to the un-fired 'as is' samples as well as to samples annealed at 900 Degree-Sign C for 1 h following cooling to room temperature in air. The results showed that in the case of 'as is' quartz the sensitization effect vary strongly within each aliquot of the same quartz sample. This strong variation is removed by both the high temperature annealing as well as heating up to 500 Degree-Sign C, involved in the TL measurements. These results are generally discussed in the framework of existing models and applications of the effect.

  11. Annealing of ion irradiated high TC Josephson junctions studied by numerical simulations

    International Nuclear Information System (INIS)

    Sirena, M.; Matzen, S.; Bergeal, N.; Lesueur, J.; Faini, G.; Bernard, R.; Briatico, J.; Crete, D. G.

    2009-01-01

    Recently, annealing of ion irradiated high T c Josephson iunctions (JJs) has been studied experimentally in the perspective of improving their reproducibility. Here we present numerical simulations based on random walk and Monte Carlo calculations of the evolution of JJ characteristics such as the transition temperature T c ' and its spread ΔT c ' , and compare them with experimental results on junctions irradiated with 100 and 150 keV oxygen ions, and annealed at low temperatures (below 80 deg. C). We have successfully used a vacancy-interstitial annihilation mechanism to describe the evolution of the T c ' and the homogeneity of a JJ array, analyzing the evolution of the defects density mean value and its distribution width. The annealing first increases the spread in T c ' for short annealing times due to the stochastic nature of the process, but then tends to reduce it for longer times, which is interesting for technological applications

  12. Evolution of Zr/Hf/Zr trilayers during annealing studied by RBS

    International Nuclear Information System (INIS)

    Kling, A.; Soares, J.C.

    2010-01-01

    The Zr/Hf system is highly interesting due its various applications, e.g. formation of amorphous ternary alloys, superconductive properties and production of gate oxide layers with high dielectric coefficients by oxidation of Zr/Hf multilayers. In this work Zr/Hf/Zr trilayers with an individual layer thickness of approximately 50 nm were deposited by electron gun evaporation on a substrate consisting of silicon covered by a micrometer thick thermal oxide layer. Samples were subjected to annealing procedures at 500 and 1200 o C in flowing air atmosphere to promote oxidation and Zr/Hf interdiffusion effects. RBS studies of the as-deposited and annealed samples were performed at the van-de-Graaff accelerator of ITN using He + and H + beams with energies between 2.0 and 2.525 MeV in order to study compositional changes induced by the heat treatment. In the case of low-temperature annealing the layer system appears, besides the oxidation process starting from the surface, to be stable. On the other hand, high-temperature annealing leads to an asymmetric Hf-diffusion into the surface and interior Zr-layer provoked by anomalous diffusion due to a phase transition in Zr accompanied by an almost complete oxidation of the layer structure Oxygen and metal depth distributions obtained by RBS in the as-deposited and treated samples are provided.

  13. Comparison of functional parameters of CsI:Tl crystals and thick films

    International Nuclear Information System (INIS)

    Fedorov, A.; Gektin, A.; Lebedynskiy, A.; Mateychenko, P.; Shkoropatenko, A.

    2013-01-01

    500 mkm thick CsI:Tl columnar films can be produced using thermal evaporation in vacuum by sublimation of the same bulk crystal. Comparison of afterglow and radiation stability of deposited CsI:Tl films with source crystal was the aim of current work. It is shown that the afterglow in the films is always below its level in initial single crystal. It was ascertained that the annealing atmospheres influence the processes leading to the activator depletion of the films during the thermal processing. -- Highlights: ► Thick CsI:Tl columnar films were obtained by thermal evaporation in vacuum. ► Radiation stability of such CsI:Tl films appears to be better than that of crystal. ► CsI:Tl film parameters can be modified by annealing in different atmospheres

  14. Effects of annealing temperature on the characteristics of ALD-deposited HfO2 in MIM capacitors

    International Nuclear Information System (INIS)

    Jeong, S.-W.; Lee, H.J.; Kim, K.S.; You, M.T.; Roh, Y.; Noguchi, T.; Xianyu, W.; Jung, J.

    2006-01-01

    We have investigated the annealing effects of HfO 2 films deposited by an atomic layer deposition (ALD) method on the electrical and physical properties in the Si/SiO 2 /Pt/ALD-HfO 2 /Pd metal-insulator-metal (MIM) capacitors. If the annealing temperature for HfO 2 films was restricted below 500 deg. C, an annealing step using a rapid thermal processor (RTP) improves the electrical properties such as the dissipation factor and the dielectric constant. On the other hand, annealing at 700 deg. C degrades the electrical characteristics in general; the dissipation factor increases over the frequency range of 1∼4 MHz, and the leakage current increases up to 2 orders at the low electric field regions. We found that the degradation of electrical properties is due to the grain growth in the HfO 2 film (i.e., poly-crystallization of the film) by the high temperature annealing processing. We suggested that the annealing temperature must be restricted below 500 deg. C to obtain the high quality high-k film for the MIM capacitors

  15. KBr-Li Br and KBr-LiBr doped with Ti mixed single crystal by Czochralski method and glow curve studies

    International Nuclear Information System (INIS)

    Faripour, H.; Faripour, N.

    2003-01-01

    Mixed-single Crystals: pure KBr-LiBr and KBr-LiBr with Ti dopant were grown by Czochralski method. Because of difference between lattice parameters of KBr and LiBr, the growth speed of crystals were relatively low, and they were annealed in a special temperature condition providing some cleavages. They were exposed by β radiation and the glow curve was analysed for each crystal. Analysing of glow curve, showed that Ti impurity has been the curves of main peak curve appearance temperature decreasing

  16. Increasing Mn substitution in magnetic semiconductors through controlled ambient annealing processes

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, J. [Materials Science Program, Department of Mechanical and Aerospace Engineering, UC San Diego, La Jolla, CA 92093-0411 (United States); Bandaru, P.R. [Materials Science Program, Department of Mechanical and Aerospace Engineering, UC San Diego, La Jolla, CA 92093-0411 (United States)], E-mail: pbandaru@ucsd.edu

    2008-06-25

    We report on a controlled ambient annealing technique aimed at increasing the amount of Mn incorporation in III-V semiconductors. The aim is to reduce the number of hole carrier and magnetic element compensating entities, such as Mn interstitials and anti-site defects, to increase the magnetic Curie temperature. The idea is (a) to increase the number of Group III vacancies through annealing in Group V vapor rich conditions and (b) judicious use of crystal field theory to reduce/stabilize Mn interstitials. Our experimental results constitute the highest reportedT{sub c} ({approx}130 K) in Mn doped InSb and Mn doped InP. The possibility of ferrimagnetism in Mn and Cr incorporated GaAs, was noted.

  17. Annealing study on radiation-induced defects in 6H-SiC

    International Nuclear Information System (INIS)

    Pinheiro, M.V.B.; Lingner, T.; Caudepon, F.; Greulich-Weber, S.; Spaeth, J.M.

    2004-01-01

    We present the results of a systematic isochronal annealing investigation of vacancy-related defects in electron-irradiated n-type 6H-SiC:N. A series of 10 samples cut from a commercial wafer and annealed up to 1200 C after electron-irradiation (1.5 x 10 18 cm -3 ) was characterized with photoluminescence (PL), Magnetic circular dichroism of the absorption (MCDA) and conventional electron paramagnetic resonance (EPR). Apart from less stable triplet-related defects which vanished between 150 C and 300 C, the thermal behavior of three radiation-induced defects was studied: the silicon vacancy (V Si ), the carbon-antisite-carbon-vacancy pair (C Si -V C ) and the D1 center. Their annealing behavior showed that the destruction of the isolated V Si between 750 C and 900 C is followed by the formation of thermally more stable C Si -V C pairs, a result that has been theoretically predicted recently. By further heating the samples the C Si -V C pairs are annealed out between 900 C and 1050 C and were followed by an increase in the D1 center concentration. (orig.)

  18. A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium

    Science.gov (United States)

    Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.

    2015-08-01

    The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.

  19. Formation of Au nanoparticles in sapphire by using Ar ion implantation and thermal annealing

    International Nuclear Information System (INIS)

    Zhou, L.H.; Zhang, C.H.; Yang, Y.T.; Li, B.S.; Zhang, L.Q.; Fu, Y.C.; Zhang, H.H.

    2009-01-01

    In this paper, we present results of the synthesis of gold nanoclusters in sapphire, using Ar ion implantation and annealing in air. Unlike the conventional method of Au implantation followed by thermal annealing, Au was deposited on the surface of m- and a- cut sapphire single crystal samples including those pre-implanted with Ar ions. Au atoms were brought into the substrate by subsequent implantation of Ar ions to form Au nanoparticles. Samples were finally annealed stepwisely in air at temperatures ranging from 400 to 800 deg. C and then studied using UV-vis absorption spectrometry, transmission electron microscopy and Rutherford backscattered spectrometry. Evidence of the formation Au nanoparticles in the sapphire can be obtained from the characteristic surface plasmon resonance (SPR) absorption band in the optical absorption spectra or directly from the transmission electron microscopy. The results of optical absorption spectra indicate that the specimen orientations and pre-implantation also influence the size and the volume fraction of Au nanoparticles formed. Theoretical calculations using Maxwell-Garnett effective medium theory supply a good interpretation of the optical absorption results.

  20. Effects of annealing temperatures on the physicochemical properties of nickel-phosphorus deposits

    International Nuclear Information System (INIS)

    Bai, Allen; Hu, C.-C.

    2003-01-01

    The dependence of physicochemical properties, including microhardness, magnetism, morphology, crystalline information, roughness factor and hydrogen evolution ability, on the phosphorus content, varying from 0 to 28 atomic percentage (at.%), of Ni-P deposits with annealing in air at eight temperatures (i.e., 100, 200, 300, 400, 500, 600, 700 and 800 deg. C) were systematically compared. The microhardness reached a maximum at 400 deg. C due to the crystallization of Ni and Ni 3 P at 400 deg. C and the significant diffusion of Cu into the Ni-P deposit at temperatures ≥500 deg. C, confirmed by the depth profiles of Ni, P, Cu and O elements. The paramagnetism of Ni-P deposit was gradually transformed into ferromagnetism at 400 deg. C, attributable to the phase separation of Ni and Ni 3 P. The roughness factor, R a , of the deposits with P contents ≤12 at.% were increased with increasing the annealing temperature at temperatures a of the deposits with 17-28 at.% of P is approximately independent of the annealing temperature. The rate of hydrogen evolution decreased with increasing the annealing temperature because the specific activity (i/R a ) of the Ni-P deposits was decreased with increasing the annealing temperature

  1. Tensile properties of electron-beam-welded single crystals of molybdenum

    International Nuclear Information System (INIS)

    Hiraoka, Yutaka; Okada, Masatoshi; Irie, Hirosada; Fujii, Tadayuki.

    1987-01-01

    The purpose of this study is to investigate the macro- and microstructures and the tensile properties of electron-beam-welded single crystals of molybdenum. The single-crystal sheets were prepared by means of secondary recrystallization. The welding was carried out by a melt-run technique. The weld metal had the same crystallographic orientation as the base metal, and no grain boundary was observed. However, many large weld pores were formed mostly along the weld bond. The strength and ductility of the welded joints of single crystals were almost the same as those of the base metal (''annealed'' single crystals). It is concluded that the joint efficiency of molybdenum single crystals at room temperature or above was excellent and nearly 100 %. (author)

  2. Annealing Behavior of Al-Implantation-Induced Disorder in 4H-SiC

    International Nuclear Information System (INIS)

    Zhang, Yanwen; Weber, William J.; Jiang, Weilin; Shutthanandan, V.; Thevuthasan, Suntharampillai; Janson, Martin; Hallen, Anders

    2004-01-01

    Single crystal 4H-SiC films were implanted at 150 K with 1.1 MeV Al 2 2+ and subsequently annealed at elevated temperatures. Rutherford backscattering spectrometry (RBS) results indicate that the relative Si disorder at the damage peak recovers significantly as the annealing temperature increases. However, the residual Si disorder is more resistant to high-temperature annealing in the region of the implanted Al. The maximum concentration of Al profile measured by secondary ion mass spectroscopy (SIMS) is a factor of 1000 lower than the level of the residual Si disorder at the same region. Analysis of these results indicates that the excess residual Si disorder around the implanted Al projected range cannot be accounted for by just the Al interstitials; instead, it appears that each implanted Al stabilizes or inhibits recovery for an equivalent of a few hundred Si interstitials under the current experimental conditions

  3. Study of preferential sputtering and segregation effects on the surface composition of Al-Pd-Mn quasi-crystals

    Energy Technology Data Exchange (ETDEWEB)

    Samavat, F.; Gladys, M.; Jenks, C.; Lograsso, T.; King, M.; O' Connor, D.

    2008-02-25

    Using 2 keV He+ and Ne+ low-energy ion scattering (LEIS), it was found that the Al/Pd concentration ratio at the surface of a nominally Al69.9Pd20.5Mn9.6 quasi-crystal decreases to a steady-state value under bombardment as a result of preferential sputtering. Sputtering of an annealed surface results in a significant increase in Mn concentration on the surface which remained at annealing temperatures below 575 K. Variations of the Mn/Pd and Al/Pd ratios have been measured by LEIS as a function of temperature in the range 295-975 K for clean-annealed and sputtered surfaces. The results show that Al/Pd ratio does not significantly change from 295 to 575 K for both He+ and Ne+ but increases with sample temperatures up to 875 K.

  4. The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer.

    Science.gov (United States)

    Shin, Yeonwoo; Kim, Sang Tae; Kim, Kuntae; Kim, Mi Young; Oh, Saeroonter; Jeong, Jae Kyeong

    2017-09-07

    High-mobility indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are achieved through low-temperature crystallization enabled via a reaction with a transition metal catalytic layer. For conventional amorphous IGZO TFTs, the active layer crystallizes at thermal annealing temperatures of 600 °C or higher, which is not suitable for displays using a glass substrate. The crystallization temperature is reduced when in contact with a Ta layer, where partial crystallization at the IGZO back-channel occurs with annealing at 300 °C, while complete crystallization of the active layer occurs at 400 °C. The field-effect mobility is significantly boosted to 54.0 cm 2 /V·s for the IGZO device with a metal-induced polycrystalline channel formed at 300 °C compared to 18.1 cm 2 /V·s for an amorphous IGZO TFT without a catalytic layer. This work proposes a facile and effective route to enhance device performance by crystallizing the IGZO layer with standard annealing temperatures, without the introduction of expensive laser irradiation processes.

  5. Crystallization induced of amorphous silicon by nickel

    International Nuclear Information System (INIS)

    Schmidt, J.A; Rinaldi, P; Budini, N; Arce, R; Buitrago, R.H

    2008-01-01

    Polycrystalline silicon (pc-Si) deposited on glass substrates is a very promising material for the production of different electronic devices, like thin film transistors, active matrices or solar cells. The crystallization of the amorphous silicon to obtain pc-Si can be achieved with different processes, among which nickel-induced crystallization is because it requires low concentrations of the metal and low annealing temperatures. Nucleation and growth of crystalline silicon are measured by the formation of silicide NiSi 2 , which has a lattice constant very similar to that of Si, and acts as a seed upon which crystalline grains can develop. The size of the pc-Si final grain depends on many factors, such as the initial concentration of Ni, the annealing time and temperature, and the presence of other atoms in the Si structure. This work presents a study on the influence of these parameters on the silicon crystallization process induced by Ni. We deposited a series of hydrogenated amorphous silicon samples (a-Si:H) on glass substrates, using the plasma-enhanced chemical vapor deposition method (PE-CVD) with silane gas (SiH 4 ). The deposition temperature was 200 o C, and we prepared intrinsic samples (i), lightly doped with boron (p), heavily doped with boron (p + ) and heavily doped with phosphorous (n + ). Each sample was divided into eight portions, depositing different concentrations of Ni into each one using the cathodic sputtering method. The concentration of Ni was determined by atomic adsorption spectroscopy, and included from 1.5 1 0 15 to 1.5 1 0 16 at/cm 2 . Later the samples were submitted to different thermal treatments in a circulating nitrogen atmosphere. In order to avoid violent dehydrogenation of the a-Si:H that damages the samples, the annealing was carried out gradually. In a first stage the samples were heated at a velocity of 0.5 o C /min up to 400 o C, holding them for 24 hrs at this temperature in order to reach hydrogen effusion. Heating

  6. Annealing induced structural evolution and electrochromic properties of nanostructured tungsten oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ching-Lin [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Lin, Chung-Kwei [School of Dental Technology, Taipei Medical University, Taipei City 110, Taiwan, ROC (China); Wang, Chun-Kai [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Wang, Sheng-Chang [Department of Mechanical Engineering, Southern Taiwan University, Tainan 710, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: JLH888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2013-12-31

    The effect of microstructure on the optical and electrochemical properties of nanostructured tungsten oxide films was evaluated as a function of annealing temperature. The films using block copolymer as the template were prepared from peroxotungstic acid (PTA) by spin-coating onto the substrate and post-annealed at 250–400 °C to form tungsten oxide films with nanostructure. The microstructure of the films was measured by X-ray diffraction and surface electron microscopy. The films annealed at temperatures below 300 °C are characterized by amorphous or nanocrystalline structures with a pore size of less than 10 nm. The evaluated annealing temperature caused a triclinic crystalline structure and microcracks. Cyclic voltammetry measurements were performed in a LiClO{sub 4}-propylene carbonate electrolyte. The results showed that the ion inserted capacity were maximized for films annealed at 300 °C and decreased with the increasing of annealing temperature. The electrochromic properties of the nanostructured tungsten oxide films were evaluated simultaneously by potentiostat and UV–vis spectroscopy. The films annealed at 300 °C exhibit high transmission modulation (∆T ∼ 40%) at λ = 633 nm and good kinetic properties. As a result, the correlation between the microstructure and kinetic properties was established, and the electrochromic properties have been demonstrated. - Highlights: • Surfactant-assisted WO{sub 3} films have been prepared by sol–gel method. • Nanostructure of porous WO{sub 3} film is retained after crystallization. • Kinetic properties of WO{sub 3} can be improved by nanostructure and crystallinity.

  7. Structural and phase transformations in the low-temperature annealed amorphous “finemet”-type microwires

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V., E-mail: vvch08@yandex.ru [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Aleev, A.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Churyukanova, M.N.; Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Medvedeva, E.V. [Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg 620016 (Russian Federation); Korchuganova, O.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Zhukova, V. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); Zhukov, A.P. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2014-02-15

    Highlights: • Structure and magnetic properties evolution at heating of amorphous microwires was studied. • Relaxation processes in the amorphous phase correlate with an increase in Curie temperature. • Curie temperature change can not be stabilized by a prolonged exposure at pre-crystallization temperatures. • Tomographic atom probe microscopy supports the formation of α-Fe phase precipitations enriched in Si. -- Abstract: Finemet-type glass-coated microwires with amorphous and nanocrystalline structure have been investigated. The relaxation and crystallization processes at heating of amorphous alloy have been studied by DSC method. We observed that the relaxation processes in the amorphous phase correlate with an increasing of the Curie temperature. Additionally a prolonged exposure of the samples below the crystallization temperatures does not stabilize the Curie temperature change. An investigation by the tomographic atom probe microscopy supports the formation of precipitations, probably α-Fe phase, as a result of low-temperature annealing (400 °C, 5 min). We found that the observed nano-sized areas were enriched in silicon.

  8. Structural and phase transformations in the low-temperature annealed amorphous “finemet”-type microwires

    International Nuclear Information System (INIS)

    Tcherdyntsev, V.V.; Aleev, A.A.; Churyukanova, M.N.; Kaloshkin, S.D.; Medvedeva, E.V.; Korchuganova, O.A.; Zhukova, V.; Zhukov, A.P.

    2014-01-01

    Highlights: • Structure and magnetic properties evolution at heating of amorphous microwires was studied. • Relaxation processes in the amorphous phase correlate with an increase in Curie temperature. • Curie temperature change can not be stabilized by a prolonged exposure at pre-crystallization temperatures. • Tomographic atom probe microscopy supports the formation of α-Fe phase precipitations enriched in Si. -- Abstract: Finemet-type glass-coated microwires with amorphous and nanocrystalline structure have been investigated. The relaxation and crystallization processes at heating of amorphous alloy have been studied by DSC method. We observed that the relaxation processes in the amorphous phase correlate with an increasing of the Curie temperature. Additionally a prolonged exposure of the samples below the crystallization temperatures does not stabilize the Curie temperature change. An investigation by the tomographic atom probe microscopy supports the formation of precipitations, probably α-Fe phase, as a result of low-temperature annealing (400 °C, 5 min). We found that the observed nano-sized areas were enriched in silicon

  9. Paramagnetic resonance of LaGaO3: Mn single crystals grown by floating zone melting

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Salosin, M. A.; Fokin, A. V.; Gil'mutdinov, I. F.; Mukhamedshin, I. R.

    2016-02-01

    The EPR spectrum of Mn-doped lanthanum gallate single crystals grown by floating zone melting with optical heating has been studied. In contrast to the crystals grown according to the Czochralski method, no manganese is found in these crystals even after high-temperature annealing in air. The spectral characteristics of Fe3+ and Gd3+ centers in crystals prepared by various methods have been compared in the rhombohedral phase, and the fourth-rank nondiagonal parameters of the Fe3+ trigonal centers have been determined, as well.

  10. Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO2

    International Nuclear Information System (INIS)

    Stavarache, Ionel; Lepadatu, Ana-Maria; Stoica, Toma; Ciurea, Magdalena Lidia

    2013-01-01

    Ge–SiO 2 films with high Ge/Si atomic ratio of about 1.86 were obtained by co-sputtering of Ge and SiO 2 targets and subsequently annealed at different temperatures between 600 and 1000 °C in a conventional furnace in order to show how the annealing process influences the film morphology concerning the Ge nanocrystal and/or amorphous nanoparticle formation and to study their electrical behaviour. Atomic force microscopy (AFM) imaging, Raman spectroscopy and electrical conductance measurements were performed in order to find out the annealing effect on the film surface morphology, as well as the Ge nanoparticle formation in correlation with the hopping conductivity of the films. AFM images show that the films annealed at 600 and 700 °C present a granular surface with particle height of about 15 nm, while those annealed at higher temperatures have smoother surface. The Raman investigations evidence Ge nanocrystals (including small ones) coexisting with amorphous Ge in the films annealed at 600 °C and show that almost all Ge is crystallized in the films annealed at 700 °C. The annealing at 800 °C disadvantages the Ge nanocrystal formation due to the strong Ge diffusion. This transition in Ge nanocrystals formation process by annealing temperature increase from 700 to 800 °C revealed by AFM and Raman spectroscopy measurements corresponds to a change in the electrical transport mechanism. Thus, in the 700 °C annealed films, the current depends on temperature according to a T −1/2 law which is typical for a tunnelling mechanism between neighbour Ge nanocrystals. In the 800 °C annealed films, the current–temperature characteristic has a T −1/4 dependence showing a hopping mechanism within an electronic band of localized states related to diffused Ge in SiO 2 .

  11. Impact of Annealing Temperature on the Physical Properties of the Lanthanum Deficiency Manganites

    Directory of Open Access Journals (Sweden)

    Skini Ridha

    2017-10-01

    Full Text Available The lanthanum deficiency manganites La0.8-x□xCa0.2MnO3 (x = 0, 0.1 and 0.2, where □ is a lanthanum vacancy, were prepared using the classic ceramic methods with different thermal treatments (1373 K and 973 K. The structural, magnetic, and magnetocaloric properties of these compounds were studied as a function of annealing temperature. It was noted that the annealing temperature did not affect the crystal structure of our samples (orthorhombic structure with Pnma space group. Nevertheless, a change in the variation of the unit cell volume V, the average bond length dMn–O, and the average bond angles θMn–O–Mn were observed. Magnetization versus temperature study has shown that all samples exhibited a magnetic transition from ferromagnetic (FM to paramagnetic (PM phase with increasing temperature. However, it can be clearly seen that the annealing at 973 K induced an increase of the magnetization. In addition, the magnetocaloric effect (MCE as well as the relative cooling power (RCP were estimated. As an important result, the values of MCE and RCP in our Lanthanum-deficiency manganites are reported to be near to those found in gadolinium, considered as magnetocaloric reference material.

  12. In situ crystallization of sputter-deposited TiNi by ion irradiation

    International Nuclear Information System (INIS)

    Ikenaga, Noriaki; Kishi, Yoichi; Yajima, Zenjiro; Sakudo, Noriyuki

    2013-01-01

    Highlights: ► We developed a sputtering deposition process equipped with an ion irradiation system. ► Ion irradiation enables crystallization at lower substrate temperature. ► Ion fluence has an effective range for low-temperature crystallization. ► Crystallized films made on polyimide by the process show the shape memory effect. -- Abstract: TiNi is well known as a typical shape-memory alloy, and the shape-memory property appears only when the structure is crystalline. Until recently, the material has been formed as amorphous film by single-target sputtering deposition at first and then crystallized by being annealed at high temperature over 500 °C. Therefore, it has been difficult to make crystalline TiNi film directly on a substrate of polymer-based material because of the low heat resistance of substrate. In order to realize an actuator from the crystallized TiNi film on polymer substrates, the substrate temperature should be kept below 200 °C throughout the whole process. In our previous studies we have found that deposited film can be crystallized at very low temperature without annealing but with simultaneous irradiation of Ar ions during sputter-deposition. And we have also demonstrated the shape-memory effect with the TiNi film made by the new process. In order to investigate what parameters of the process contribute to the low-temperature crystallization, we have focused to the ion fluence of the ion irradiation. Resultantly, it was found that the transition from amorphous structure to crystal one has a threshold range of ion fluence

  13. Doping β-Ga2O3 with europium: influence of the implantation and annealing temperature

    Science.gov (United States)

    Peres, M.; Lorenz, K.; Alves, E.; Nogales, E.; Méndez, B.; Biquard, X.; Daudin, B.; Víllora, E. G.; Shimamura, K.

    2017-08-01

    β-Ga2O3 bulk single crystals were doped by ion implantation at temperatures from room temperature to 1000 °C, using a 300 keV Europium beam with a fluence of 1  ×  1015 at cm-2. Rising the implantation temperature from room temperature to 400-600 °C resulted in a significant increase of the substitutional Eu fraction and of the number of Eu ions in the 3+  charge state as well as in a considerable decrease of implantation damage. Eu is found in both charge states 2+  and 3+  and their relative fractions are critically dependent on the implantation and annealing temperature, suggesting that defects play an important role in stabilizing one of the charge states. The damage recovery during post-implant annealing is a complex process and typically defect levels first increase for intermediate annealing temperatures and a significant recovery of the crystal only starts around 1000 °C. Cathodoluminescence spectra are dominated by the sharp Eu3+ related intra-ionic 4f transition lines in the red spectral region. They show a strong increase of the emission intensity with increasing annealing temperature, in particular for samples implanted at elevated temperature, indicating the optical activation of Eu3+ ions. However, no direct correlation of emission intensity and Eu3+ fraction was found, again pointing to the important role of defects on the physical properties of these luminescent materials.

  14. Raman Spectroscopy Study of Annealing-Induced Effects on Graphene Prepared by Micromechanical Exfoliation

    International Nuclear Information System (INIS)

    Song, Ji Eun; Ko, Taeg Yeoung; Ryu, Sun Min

    2010-01-01

    Raman spectroscopy was combined with AFM to investigate the effects of thermal annealing on the graphene samples prepared by the widely used micromechanical exfoliation method. Following annealing cycles, adhesive residues were shown to contaminate graphene sheets with thin molecular layers in their close vicinity causing several new intense Raman bands. Detailed investigation shows that the Raman scattering is very strong and may be enhanced by the interaction with graphene. Although the current study does not pinpoint detailed origins for the new Raman bands, the presented results stress that graphene prepared by the above method may require extra cautions when treated with heat or possibly solvents. Since its isolation from graphite, graphene has drawn a lot of experimental and theoretical research. These efforts have been mostly in pursuit of various applications such as electronics, sensors, stretchable transparent electrodes, and various composite materials. To accomplish such graphene-based applications, understanding chemical interactions of this new material with environments during various processing treatments will become more important. Since thermal annealing is widely used in various research of graphene for varying purposes such as cleaning, nanostructuring, reactions, etc., understanding annealing-induced effects is prerequisite to many fundamental studies of graphene. In this regard, it is to be noted that there has been a controversy on the cause of the annealing-induced hole doping in graphene

  15. On the fission track dating and annealing behaviour of accessory minerals of Eastern Ghats (Andhra Pradesh, India)

    International Nuclear Information System (INIS)

    Koul, S.L.

    1978-01-01

    Use of the etching of fission fragment damage tracks for an estimation of the uranium content of apatite and zircon crystals is described. The etching conditions have been studied for which visible tracks are developed. Fission track determined ages of 25 samples of apatite and zircon crystals from four widely separated regions of India; the Borra mines (Vishakapatanam), Kashipatnam (Vishakapatnam), the Khamam area (Andhra Pradesh) and the Kodrama mines (Bihar) have been determined. Mean ages for these regions are 456 +- 5, 389 +- 4, 486 +- 7 and 664 +- 7 million years respectively. It is concluded that the fission track ages of the minerals date the last metamorphic event of the Eastern Ghats, known as the Indian Ocean Cycle. Annealing studies confirm that radiation damaged fossil tracks can be erased in minerals under intense metamorphic episodes, thus resetting the geological clock. Extrapolation of the experimentally determined temperatures for annealing suggest that a temperature of 170 0 C in 10 6 years will erase all the tracks in the apatite mineral. The uranium concentration has been estimated to be approximately 10 -8 gm/gm in apatite and approximately 10 -6 gm/gm in zircon. (Auth.)

  16. Annealing effect on thermal conductivity and microhardness of carbon nanotube containing Se80Te16Cu4 glassy composites

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2018-02-01

    This study deals with the effect of thermal annealing on structural/microstructural, thermal and mechanical behavior of pristine Se80Te16Cu4 and carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composites. Pristine Se80Te16Cu4, 3 and 5 wt%CNTs-Se80Te16Cu4 glassy composites are annealed in the vicinity of glass transition temperature to onset crystallization temperature (340-380 K). X-ray diffraction (XRD) pattern revealed formation of polycrystalline phases of hexagonal CuSe and trigonal selenium. The indexed d-values in XRD patterns are in well conformity with the d-values obtained after the indexing of the ring pattern of selected area electron diffraction pattern of TEM images. The SEM investigation exhibited that the grain size of the CNTs containing Se80Te16Cu4 glassy composites increased with increasing annealing temperature and decreased at further higher annealing temperature. Thermal conductivity, microhardness exhibited a substantial increase with increasing annealing temperature of 340-360 K and slightly decreases for 380 K. The variation of thermal conductivity and microhardness can be explained by cross-linking formation and voids reduction.

  17. Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: Annealing effect

    International Nuclear Information System (INIS)

    Salunkhe, R.R.; Dhawale, D.S.; Gujar, T.P.; Lokhande, C.D.

    2009-01-01

    Successive ionic layer adsorption and reaction (SILAR) method has been successfully employed for the deposition of cadmium oxide (CdO) thin films. The films were annealed at 623 K for 2 h in an air and changes in the structural, electrical and optical properties were studied. From the X-ray diffraction patterns, it was found that after annealing, H 2 O vapors from as-deposited Cd(O 2 ) 0.88 (OH) 0.24 were removed and pure cubic cadmium oxide was obtained. The as-deposited film consists of nanocrystalline grains of average diameter about 20-30 nm with uniform coverage of the substrate surface, whereas for the annealed film randomly oriented morphology with slight increase in the crystallite size has been observed. The electrical resistivity showed the semiconducting nature with room temperature electrical resistivity decreased from 10 -2 to 10 -3 Ω cm after annealing. The decrease in the band gap energy from 3.3 to 2.7 eV was observed after the annealing

  18. Crystallization in Y-Si-Al-O-N glasses

    Energy Technology Data Exchange (ETDEWEB)

    Leng-Ward, G; Lewis, M H

    1985-05-01

    The development of crystallization in oxynitride glasses has been characterized using transmission electron microscopy and scanning electron microscopy, X-ray (energy-dispersive) microanalysis, and powder X-ray diffraction techniques. A series of glasses was prepared while maintaining the ratio of yttrium-to-silicon-to-aluminium, but replacing oxygen with nitrogen up to the nitrogen solubility limit. On annealing at 1250 C, the oxide glass fully crystallized into yttrium disilicate (Y2Si2O7). Al2O3 and mullite (Al6Si2O13) while, with increasing nitrogen content, the disilicate phase was progressively replaced by yttrium aluminium garnet (Y3Al5O12) and nitrogen was mainly incorporated into Si2N2O. Annealing of the nitrogen glasses at 1100 C produced partial crystallization involving an intermediate phase related to nitrogen-wollastonite. Phase separation in an as-quenched SiO2-rich Y-Si-Al-O composition glass is illustrated. 9 references.

  19. Placement by thermodynamic simulated annealing

    International Nuclear Information System (INIS)

    Vicente, Juan de; Lanchares, Juan; Hermida, Roman

    2003-01-01

    Combinatorial optimization problems arise in different fields of science and engineering. There exist some general techniques coping with these problems such as simulated annealing (SA). In spite of SA success, it usually requires costly experimental studies in fine tuning the most suitable annealing schedule. In this Letter, the classical integrated circuit placement problem is faced by Thermodynamic Simulated Annealing (TSA). TSA provides a new annealing schedule derived from thermodynamic laws. Unlike SA, temperature in TSA is free to evolve and its value is continuously updated from the variation of state functions as the internal energy and entropy. Thereby, TSA achieves the high quality results of SA while providing interesting adaptive features

  20. Study of grain structure evolution during annealing of a twin-roll-cast Mg alloy

    International Nuclear Information System (INIS)

    Tripathi, A.; Samajdar, I.; Nie, J.F.; Tewari, A.

    2016-01-01

    The evolution of microstructure under static annealing was studied for mid-thickness section of a twin-roll-cast (TRC) magnesium alloy. Annealing was performed at 300 °C and 500 °C for different times. Microstructural evolution was quantitatively analyzed, from optical micrographs, using grain path envelope analysis. Additional information from electron backscatter diffraction (EBSD) was used for addressing the possible mechanism(s). It was found that the TRC structure had a bimodal grain size, which was preserved even after annealing at 300 °C. However, the annealing at 500 °C led to a unimodal grain size. This difference in the grain size distribution created a contrasting behavior in the normalized standard deviations. This was primarily attributed to a competition between recovery and recrystallization, and their respective dominance at 300° and 500 °C. A deformation induced recrystallization recovery (DIRR) model was proposed. The proposed model could successfully address the experimental microstructural evolution. - Highlights: • Annealing of twin roll cast (TRC) magnesium alloy was done at temperatures of 300 °C and 500 °C. • TRC had bimodal structure. Bimodality preserved for annealing at 300 °C. Annealing at 500 °C led to unimodal structure. • Grain evolution was described based on the competition between recovery and recrystallization. • Deformation induced recrystallization recovery (DIRR) mechanistic model was developed.

  1. Pulsed Laser Annealing of Thin Films of Self-Assembled Nanocrystals

    KAUST Repository

    Baumgardner, William J.

    2011-09-27

    We investigated how pulsed laser annealing can be applied to process thin films of colloidal nanocrystals (NCs) into interconnected nanostructures. We illustrate the relationship between incident laser fluence and changes in morphology of PbSe NC films relative to bulk-like PbSe films. We found that laser pulse fluences in the range of 30 to 200 mJ/cm2 create a processing window of opportunity where the NC film morphology goes through interesting transformations without large-scale coalescence of the NCs. NC coalescence can be mitigated by depositing a thin film of amorphous silicon (a-Si) on the NC film. Remarkably, pulsed laser annealing of the a-Si/PbSe NC films crystallized the silicon while NC morphology and translational order of the NC film are preserved. © 2011 American Chemical Society.

  2. Peculiar features of thermal emission of GdB4 and GdB6 single crystals

    International Nuclear Information System (INIS)

    Ostrovskij, E.K.; Taran, A.A.; Kovalev, A.V.; Tkachenko, V.F.; Dudnik, E.M.; Matvienko, A.A.

    1990-01-01

    Thermoemission parameters of single crystals (410) GdB 4 and (110) GdB 6 are studied. Work function is calculated by total current. It is stated that work function of GdB 6 within temperature range of 1500-1880 K after 80 h of annealing varies from 2.95 to 3.10 eV practically with the same temperature coefficient as GdB 4 , i.e. 4.1x10 -4 eV/K. It is shown that single crystal gadolinium hexaboride during the high-temperature annealing in the surface region (∼70 mm) is transformed into gadolinium tetraboride. Influence of free air has been first studied on the GdB 4 emissivity which is determined to increase to p=1.3x10 -2 Pa within the range of T=1640-1840 K

  3. Ion implantation induced blistering of rutile single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Bing-Xi [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Jiao, Yang [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250100 (China); Guan, Jing [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Wang, Lei [School of Physics, Shandong University, Jinan, Shandong 250100 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (China)

    2015-07-01

    The rutile single crystals were implanted by 200 keV He{sup +} ions with a series fluence and annealed at different temperatures to investigate the blistering behavior. The Rutherford backscattering spectrometry, optical microscope and X-ray diffraction were employed to characterize the implantation induced lattice damage and blistering. It was found that the blistering on rutile surface region can be realized by He{sup +} ion implantation with appropriate fluence and the following thermal annealing.

  4. Positron annihilation spectroscopy study on annealing effect of CuO nanoparticles

    International Nuclear Information System (INIS)

    Shi, Jianjian; Wang, Jiaheng; Yang, Wei; Zhu, Zhejie; Wu, Yichu

    2016-01-01

    The microstructure and defects of CuO nanoparticles under isochronal annealing were investigated by positron annihilation spectroscopy (PAS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD and SEM results indicated that the average grain sizes of CuO nanoparticles grew slowly below 800 °C, and then increased rapidly with the annealing temperature from 800 to 1000 °C. Positron lifetime analysis exhibited that positrons were mainly annihilated in mono-vacancies (V Cu , V O ) and vacancy clusters when annealing from 200 to 800 °C. Furthermore, W-S plot of Doppler broadening spectra at different annealing temperatures found that the (W, S) points distributed on two different defect species, which suggested that V − Cu - V + O complexes were produced when the grains grew to bigger size after annealing above 800 °C, and positrons might annihilate at these complexes. (author)

  5. Positron annihilation spectroscopy study on annealing effect of CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianjian; Wang, Jiaheng; Yang, Wei; Zhu, Zhejie; Wu, Yichu, E-mail: ycwu@whu.edu.cn [School of Physics and Technology, Hubei Key Laboratory of Nuclear Solid State Physics, Wuhan University (WHU), Wuhan (China)

    2016-03-15

    The microstructure and defects of CuO nanoparticles under isochronal annealing were investigated by positron annihilation spectroscopy (PAS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD and SEM results indicated that the average grain sizes of CuO nanoparticles grew slowly below 800 °C, and then increased rapidly with the annealing temperature from 800 to 1000 °C. Positron lifetime analysis exhibited that positrons were mainly annihilated in mono-vacancies (V{sub Cu}, V{sub O}) and vacancy clusters when annealing from 200 to 800 °C. Furthermore, W-S plot of Doppler broadening spectra at different annealing temperatures found that the (W, S) points distributed on two different defect species, which suggested that V{sup −}{sub Cu} - V{sup +}{sub O} complexes were produced when the grains grew to bigger size after annealing above 800 °C, and positrons might annihilate at these complexes. (author)

  6. Fast thermal annealing of implantation defects in silicon. Solid phase epitaxy and residual imperfection recovery

    International Nuclear Information System (INIS)

    Adekoya, O.A.

    1987-06-01

    Basic processes ruling the crystal reconstitution in solid phase during fast thermal annealing are studied; the role of electronic and thermodynamic effects at the interface is precised, following the implantations of a donor element (p + ), an acceptor element (B + ) and an intrinsic element (Ge + ). Then, after recrystallization, the electric role of residual point defects is shown together with the possibility of total recovery and an important electric activation of the doping [fr

  7. Crystallization and electrical resistivity of Cu{sub 2}O and CuO obtained by thermal oxidation of Cu thin films on SiO{sub 2}/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    De Los Santos Valladares, L., E-mail: ld301@cam.ac.uk [Cavendish Laboratory, University of Cambridge, J.J Thomson Av., Cambridge CB3 0HE (United Kingdom); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife-Pe (Brazil); Salinas, D. Hurtado [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Dominguez, A. Bustamante [Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Najarro, D. Acosta [Instituto de Fisica, Departamento de Materia Condensada, Universidad Nacional Autonoma de Mexico, Ap. Postal 20-364, CP 01000 (Mexico); Khondaker, S.I. [NanoScience Technology Centre and Department of Physics, University of Central Florida, Orlando, FL 32826 (United States); Mitrelias, T.; Barnes, C.H.W. [Cavendish Laboratory, University of Cambridge, J.J Thomson Av., Cambridge CB3 0HE (United Kingdom); Aguiar, J. Albino [Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife-Pe (Brazil); Majima, Y. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); CREST, Japan Science and Technology Agency (JST), 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2012-08-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO{sub 2}/Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 Degree-Sign C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution Cu {yields} Cu + Cu{sub 2}O {yields} Cu{sub 2}O {yields} Cu{sub 2}O + CuO {yields} CuO was detected. Pure Cu{sub 2}O films are obtained at 200 Degree-Sign C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300-550 Degree-Sign C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current-voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: Black-Right-Pointing-Pointer The crystallization and electrical resistivity of oxides in a Cu films are studied. Black-Right-Pointing-Pointer In annealing Cu films, the phase evolution Cu + Cu{sub 2}O {yields} Cu{sub 2}O {yields} Cu{sub 2}O + CuO {yields} CuO occurs. Black-Right-Pointing-Pointer A resistivity phase diagram, obtained from the current-voltage response, is presented. Black-Right-Pointing-Pointer Some decreases in the resistivity may be related to the crystallization.

  8. Energy Saving in Industrial Annealing Furnaces

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, an energy efficiency studies have been carried out in a natural gas-fired rolling mill annealing furnace of an industrial establishment. In this context, exhaust gas from the furnace has been examined in terms of waste heat potential. In the examinations that have been made in detail; waste heat potential was found as 3.630,31 kW. Technical and feasibility studies have been carried out to realize electricity production through an Organic Rankine Cycle (ORC system for evaluating the waste heat potential of the annealing furnace. It has been calculated that 1.626.378,88 kWh/year of electricity can be generated by using the exhaust gas waste heat of the annealing furnace through an ORC system to produce electric energy with a net efficiency of 16%. The financial value of this energy was determined as 436.032,18 TL/year and the simple repayment period of the investment was 8,12 years. Since the annealing period of the annealing furnace is 2800 hours/year, the investment has not been found to be feasible in terms of the feasibility studies. However, the investment suitability can be assured when the annealing furnace is operating at full capacity for 8,000 hours or more annually.

  9. Crystallization in Pd40Ni40P20 glass

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Saksl, K.; Nishiyama, N.

    2002-01-01

    Phase segregation and the effect of pressure on crystallization of bulk and ribbon Pd40Ni40P20 glasses have been studied by means of differential scanning calorimetry (DSC) and x-ray diffraction. The DSC measurements show only one glass transition event in the samples annealed at different...... temperatures in the supercooled liquid region. Phase analyses reveal at least five crystalline phases crystallized from the glass: monoclinic; body-centered tetragonal; orthorhombic; Ni2Pd2P and fcc-(Ni,Pd) solid solution phases. In the pressure range from 0 to 4.2 GPa, the crystallization temperature...... increases with pressure having a slope of 11 K/GPa. The eutectic crystallization reaction mode and crystalline phases formed are unchanged in the pressure range used. The enhancement of the crystallization temperature with increasing pressure in the glass can be explained by the suppression of atomic...

  10. Evolution of the surface plasmon resonance of Au:TiO{sub 2} nanocomposite thin films with annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Universidade do Minho, Centro/Departamento de Física (Portugal); Buljan, M.; Sancho-Parramon, J.; Bogdanovic-Radovic, I.; Siketic, Z. [Rudjer Boskovic Institute (Croatia); Scherer, T.; Kübel, C. [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility - KNMF (Germany); Bernstorff, S. [Elettra-Sincrotrone Trieste (Italy); Cavaleiro, A. [University of Coimbra, SEG-CEMUC, Mechanical Engineering Department (Portugal); Vaz, F.; Rolo, A. G. [Universidade do Minho, Centro/Departamento de Física (Portugal)

    2014-12-15

    This paper reports on the changes in the structural and morphological features occurring in a particular type of nanocomposite thin-film system, composed of Au nanoparticles (NPs) dispersed in a host TiO{sub 2} dielectric matrix. The structural and morphological changes, promoted by in-vacuum annealing experiments of the as-deposited thin films at different temperatures (ranging from 200 to 800 °C), resulted in a well-known localized surface plasmon resonance (LSPR) phenomenon, which gave rise to a set of different optical responses that can be tailored for a wide number of applications, including those for optical-based sensors. The results show that the annealing experiments enabled a gradual increase of the mean grain size of the Au NPs (from 2 to 23 nm), and changes in their distributions and separations within the dielectric matrix. For higher annealing temperatures of the as-deposited films, a broad size distribution of Au NPs was found (sizes up to 100 nm). The structural conditions necessary to produce LSPR activity were found to occur for annealing experiments above 300 °C, which corresponded to the crystallization of the gold NPs, with an average size strongly dependent on the annealing temperature itself. The main factor for the promotion of LSPR was the growth of gold NPs and their redistribution throughout the host matrix. On the other hand, the host matrix started to crystallize at an annealing temperature of about 500 °C, which is an important parameter to explain the shift of the LSPR peak position to longer wavelengths, i.e. a red-shift.

  11. Positron annihilation spectroscopy of vacancy aggregates in neutron-irradiated MgO crystals

    International Nuclear Information System (INIS)

    Pareja, R.; De La Cruz, R.M.; Gonzalez, R.; Chen, Y.; Department of Energy, Washington, DC

    1992-01-01

    Positron annihilation measurements in neutron-irradiated MgO crystals show that the positron lifetime is shorter than in as-grown crystals, suggesting that most of the defects produced by neutron irradiations are positively charged. The concentration of the neutral anion vacancy (possibly also the neutral anion divacancy) is estimated to be no more than ∼ 10 16 cm -3 for samples irradiated to a dose of 10 17 to 10 19 n cm -2 . Annealing experiments on the neutron-irradiated crystals show a significant increase in the positron lifetime after anneals at 900 K. The increase is attributed to positron trapping by anion-vacancy aggregates. A lifetime of (284±15)ps is tentatively assigned to positrons trapped in these aggregates. (Author)

  12. Investigating the large degeneracy Kondo lattice metamagnet CeTiGe: Crystal growth and doping studies

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, T.; Caroca-Canales, N.; Deppe, M.; Geibel, C. [MPI fuer Chemische Physik fester Stoffe, 01187, Dresden (Germany); Sereni, J. [Centro Atomico Bariloche, 8400, S. C. de Bariloche (Argentina)

    2011-07-01

    CeTiGe is a paramagnetic Kondo lattice system with a large orbital degeneracy involved in the formation of the heavy Fermion ground state. Recently we discovered that this compound presents a huge metamagnetic transition at B{sub MMT} {approx} 13 T, with much larger anomalies in magnetization, magnetoresistance and magnetostriction than in the archetypical Kondo lattice metamagnet CeRu{sub 2}Si{sub 2}. Since CeTiGe forms in a pronounced peritectic reaction the growth of single crystals is difficult. We therefore studied the Ce-Ti-Ge ternary metallographic phase diagram to get a sound basis for future crystal growth attempts. Preliminary results of growth experiments based on these studies are promising and shall be discussed. Furthermore, Ti-rich CeTiGe was recently reported to present a high temperature phase crystallizing in the closely related CeScSi structure type. In order to study this structural instability and the effect on the physical properties, we studied the effect of substituting Sc for Ti, since pure CeScGe crystallizes in the CeScSi structure type. In well annealed samples we observed a two phase region in the range 10% - 25%-Sc-substitution. Preliminary investigations of the CeSc{sub x}Ti{sub 1-x}Ge alloy suggest it is a promising candidate for the observation of a ferromagnetic quantum critical point in a large degeneracy Kondo lattice system.

  13. Annealing effect on structural and optical properties of chemical bath deposited MnS thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ulutas, Cemal, E-mail: cemalulutas@hakkari.edu.tr [Faculty of Education, Hakkari Universty, 30000, Hakkari (Turkey); Gumus, Cebrail [Faculty of Science and Letters, Cukurova University, 01330, Adana (Turkey)

    2016-03-25

    MnS thin film was prepared by the chemical bath deposition (CBD) method on commercial microscope glass substrate deposited at 30 °C. The as-deposited film was given thermal annealing treatment in air atmosphere at various temperatures (150, 300 and 450 °C) for 1 h. The MnS thin film was characterized by using X-ray diffraction (XRD), UV-vis spectrophotometer and Hall effect measurement system. The effect of annealing temperature on the structural, electrical and optical properties such as optical constants of refractive index (n) and energy band gap (E{sub g}) of the film was determined. XRD measurements reveal that the film is crystallized in the wurtzite phase and changed to tetragonal Mn{sub 3}O{sub 4} phase after being annealed at 300 °C. The energy band gap of film decreased from 3.69 eV to 3.21 eV based on the annealing temperature.

  14. Effect of crystallization condition on the Microwave properties of Fe-based amorphous alloy flakes and polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byoung-Gi [Department of Advanced Metallic Materials, Korea Institute of Materials Science, 531 Changwondaero, Changwon, Kyungnam (Korea, Republic of); Hong, Soon-Ho; Sohn, Keun Yong; Park, Won-Wook [School of Nano Engineering, Inje University, 607 Obang-dong, Kimhae, Kyungnam (Korea, Republic of); Kwon, Sang-Kyun; Song, Yong-Sul [Amosense Co., 185-1 Sucham-ri, Tongjin-myun, Gimposi, Kyungkido (Korea, Republic of); Lee, Taek-Dong, E-mail: bgmoon@kims.re.k [Department of Materials Science and Engineering, Korea Insititute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2009-01-01

    The electromagnetic (EM) wave absorption properties with a variation of crystallization temperature have been investigated in a sheet-type absorber made of the amorphous Fe{sub 73}Si{sub 16}B{sub 7}Nb{sub 3}Cu{sub 1}Finemet powder. With the variation of the annealing temperature, the magnetic and dielectric properties of the crystallized Fe-based absorber with a nano-structure were changed. The complex permittivity increased with increasing the annealing temperature, whereas the complex permeability was maximized after annealing at 530 deg. C for 1 hour. The absolute value of the reflection parameter, |S{sub 11}|, increased with increasing annealing temperature of the nanocrystalline alloy powder. On the contrary, the transmission one, |S{sub 21}|, showed the highest value after annealing at 530 deg. C for 1 hour, which is regarded as the optimum temperature for the improvement of EM wave absorption properties.

  15. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    Science.gov (United States)

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  16. The influence of electron irradiation at the various temperatures and annealing on carriers mobility at the low temperatures in neutron transmutation doped gallium arsenide

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Kurilovich, N.F.; Prokhorenko, T.A.; Troshchinskii, V.T.; Shesholko, V.K.

    1999-01-01

    The influence of electron irradiation at the various temperatures and annealing on measured at T=100 K carriers mobility in neutron transmutation doped GaAs have been investigated. It was detected that rate of mobility decreasing with irradiation dose increasing decreases when irradiation temperature increases. It was shown that at the same time it take place the radiation defects creating and their particular or full annealing (in the dependence on irradiation temperature). Radiation stimulated annealing (annealing that take place during irradiation at the elevated temperatures) is more effective than the annealing at the same temperatures that take place after crystals are irradiated at room temperature. It means that any defects annealing during irradiation at elevated temperatures take place at more low temperatures than that during annealing after irradiation at room temperature

  17. Magnetic and structural properties of NdFeB thin film prepared by step annealing

    International Nuclear Information System (INIS)

    Serrona, Leo K.E.B.; Sugimura, A.; Fujisaki, R.; Okuda, T.; Adachi, N.; Ohsato, H.; Sakamoto, I.; Nakanishi, A.; Motokawa, M.

    2003-01-01

    The crystallization of the amorphous phase into the tetragonal Nd 2 Fe 14 B (PHI) phase and the corresponding changes in magnetic properties have been examined by step annealing experiment using a 2 μm thick NdFeB film sample. Microstructural and magnetic analysis indicate that the film was magnetically soft as deposited with the coercivity H ciperp -1 and the remnant magnetization 4πM rperp -1 was developed and diffraction analysis showed evidence of PHI phase 002l peaks being aligned perpendicular to the film plane. At an optimum annealing temperature of 575 deg. C, the remnant magnetization of this anisotropic thin film is around 0.60 T with intrinsic coercivity of ∼1340 kA m -1 . Annealing the film sample at 200 deg. C≤T ann ≤750 deg. C showed variations in magnetic properties that were mostly due to the change in the perpendicular anisotropy. Based on 4πM sperpendicular values plotted against T ann , a dip in 4πM sperpendicular values was observed as T ann increased in the soft-to-hard magnetic characteristics transition region and rose as the hard crystalline phase started to form. The results show that the magnetic properties of the NdFeB film were slightly influenced by the presence of NdO, film surface roughening and the small increase in crystal size as a consequence of repeated heat treatment. At T ann ∼300 deg. C, the nominal saturation magnetization indicated a certain degree of weak perpendicular magnetic anisotropy in the film sample considered to be essential in the enhancement of coercivity in crystallized films

  18. Structural Modification of Platinum Model Systems under High Pressure CO Annealing

    DEFF Research Database (Denmark)

    McCarthy, David Norman; Strebel, Christian Ejersbo; Johansson, Tobias Peter

    2012-01-01

    relation between surface atom coordination, and the desorption temperature of CO. Investigation of these structural features was then made for CO dosing pressures in the mbar range. Intriguingly, from the mbar pressure experiments it was observed that elevated CO pressures enhanced the annealing of the Pt......Using temperature-programmed desorption experiments, we have studied the coordination dependent adsorption of CO on a platinum (Pt) single crystal, and mass-selected Pt nanoparticles in the size range of 3 to 11 nm, for CO dosing pressures in 10–7 mbar and mbar ranges. From low pressure CO...... adsorption experiments on the Pt(111) crystal, we establish a clear link between the degree of presputtering of the surface prior to CO adsorption, and the amount of CO bound at high temperature. It was found that for rougher surfaces, i.e., with more undercoordinated surface atoms, a feature appears...

  19. Study of annealing effect on the growth of ZnO nanorods on ZnO seed layers

    Science.gov (United States)

    Sannakashappanavar, Basavaraj S.; Pattanashetti, Nandini A.; Byrareddy, C. R.; Yadav, Aniruddh Bahadur

    2018-04-01

    A zinc oxide (ZnO) seed layer was deposited on the SiO2/Si substrate by RF sputtering. To study the effect of annealing, the seed layers were classified into annealed and unannealed thin films. Annealing of the seed layers was carried at 450°C. Surface morphology of the seed layers were studied by Atomic force microscopy. ZnO nanorods were then grown on both the types of seed layer by hydrothermal method. The morphology and the structural properties of the nanorods were characterized by X-ray diffraction and Scanning electron microscopy. The effect of seed layer annealing on the growth and orientation of the ZnO nanorods were clearly examined on comparing with the nanorods grown on unannealed seed layer. The nanorods grown on annealed seed layers were found to be well aligned and oriented. Further, the I-V characteristic study was carried out on these aligned nanorods. The results supports positively for the future work to further enhance the properties of developed nanorods for their wide applications in electronic and optoelectronic devices.

  20. Study of the corrosion and microstructure with annealing conditions of a β-quenched HANA-4 alloy

    International Nuclear Information System (INIS)

    Kim, Hyun-Gil; Kim, Il-Hyun; Choi, Byung-Kwan; Park, Jeong-Yong; Jeong, Yong-Hwan; Kim, Kyu-Tae

    2010-01-01

    Research highlights: → The optimum annealing temperature to obtain good corrosion resistance of HANA-4 alloy (Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr) is find out. → The correlation between second phase characteristics and corrosion resistance is explained by oxide study. - Abstract: The variation of microstructure and corrosion characteristics with the applied annealing conditions of a HANA-4 (Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr) alloy were studied by utilizing transmission electron microscopy and a corrosion test at 360 o C in a water environment. The samples were annealed at temperature ranges from 540 to 660 o C up to 16 h after β quenching at 1050 o C. The corrosion behaviour with the annealing conditions was divided into two groups following the second phase characteristics. The suitable annealing temperature to obtain good corrosion resistance in the HANA-4 alloy ranged from 570 to 600 o C.

  1. CdCl{sub 2} activation treatment: A comprehensive study by monitoring the annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bing Lei; Rimmaudo, Ivan; Salavei, Andrei [LAPS-Laboratory for Applied Physics, Department of Computer Science, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona (Italy); Piccinelli, Fabio [Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Di Mare, Simone [LAPS-Laboratory for Applied Physics, Department of Computer Science, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona (Italy); Menossi, Daniele; Bosio, Alessio; Romeo, Nicola [Physics and Earth Science Department, University of Parma, V.le G.P. Usberti 7A, 43124 (Italy); Romeo, Alessandro, E-mail: alessandro.romeo@univr.it [LAPS-Laboratory for Applied Physics, Department of Computer Science, University of Verona, Ca' Vignal 1, Strada Le Grazie 15, 37134 Verona (Italy)

    2015-05-01

    CdTe thin film solar cells have demonstrated high scalability, high efficiency and low cost fabrication process. One of the key factors for the achievements of this technology is the transformation of the absorber layer by an activation treatment where chlorine reacts with CdTe in a controlled atmosphere or in air, improving the electrical properties of the absorber and enhancing the intermixing of the CdS/CdTe layers. With this work we study the activation process by analyzing the CdCl{sub 2} treatment made by wet deposition with different annealing temperatures from 310 °C up to 410 °C in air keeping the same CdCl{sub 2} concentration in methanol solution. In this way the whole dynamic of the chemical reaction from the minimum activation energy is analyzed. Activated CdTe layers have been analyzed by means of X-ray diffraction and atomic force microscopy. Finished devices with efficiencies from 8% for the low temperature annealing up to more than 14% for the high temperature ones have been thoroughly analyzed by current-voltage, capacitance-voltage and drive-level capacitance profiling techniques. The best performance has been achieved with an annealing temperature of 395 °C. - Highlights: • CdCl{sub 2} treatment with 6 different annealing temperatures has been studied. • The amount and the nature of defects change drastically with temperature. • Jsc is proportional to annealing temperature and to grain size. • Efficiency increases with annealing temperature until a threshold is reached.

  2. High-voltage electron-microscopical observation of crack-tip dislocations in silicon crystals

    International Nuclear Information System (INIS)

    Tanaka, Masaki; Higashida, Kenji

    2005-01-01

    Crack-tip dislocations in silicon single crystals were observed by high-voltage electron microscopy. Cracks were introduced into silicon wafers at room temperature by a Vickers indenter. The indented specimens were annealed at 823 K in order to activate dislocation emission from the crack tip under the residual stress due to the indentation. In the specimen without annealing, no dislocations were observed around the crack. On the other hand, in the specimen after the annealing, the aspect of the early stage of dislocation emission was observed, where dislocations were emitted not as a perfect dislocation but as a partial dislocation in the hinge-type plastic zone. Prominent dislocation arrays that were emitted from a crack tip were also observed, and they were found to be of shielding type, which increases the fracture toughness of those crystals

  3. Growth and size distribution of Au nanoparticles in annealed Au/TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reymond-Laruinaz, S.; Saviot, L.; Potin, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Lopes, C.; Vaz, F. [Centro de Física, Universidade do Minho, 4710-057 Braga (Portugal); Marco de Lucas, M.C., E-mail: delucas@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France)

    2014-02-28

    Nanocomposites consisting of noble metal nanoparticles (NPs) embedded in TiO{sub 2} thin films are of great interest for applications in optoelectronics, photocatalysis and solar-cells for which the plasmonic properties of the metal NPs play a major role. This work investigates the first stages of the formation of gold NPs by thermal annealing of Au-doped TiO{sub 2} thin films grown by magnetron sputtering. A low concentration of gold in the films is considered (5 at.%) in order to study the first stages of the formation of the NPs. Raman spectroscopy is used to follow the crystallization of TiO{sub 2} when increasing the annealing temperature. In addition, low-frequency Raman scattering (LFRS) is used to investigate the formation of gold NPs and to determine their size. Resonant LFRS measurements obtained by using a laser wavelength matching the surface plasmon resonance of the metallic NPs significantly enhances the Raman peak intensity enabling to focus on the first stages of the NPs formation. A double size distribution is observed at T{sub a} = 800 °C calling for additional investigations by transmission electron microscopy (TEM). TEM observations reveal an inhomogeneous in-depth size distribution of gold NPs. The annealed films are structured in two sublayers with bigger NPs at the bottom and smaller NPs at the top. At T{sub a} = 800 °C, a double size distribution is confirmed near the surface. A mechanism is proposed to explain the formation of the sublayers. The modification of the diffusion of gold atoms by stresses in the film near the substrate is assumed to be responsible for the observed two layers structure. - Highlights: • Gold-doped TiO{sub 2} thin films were grown by magnetron sputtering. • The first stages of the formation of Au nanoparticles after annealing are studied. • Au nanoparticles and crystallized TiO{sub 2} are observed above 400 °C. • The size distribution of the gold nanoparticles is complex and depth-dependent.

  4. Mathematical foundation of quantum annealing

    International Nuclear Information System (INIS)

    Morita, Satoshi; Nishimori, Hidetoshi

    2008-01-01

    Quantum annealing is a generic name of quantum algorithms that use quantum-mechanical fluctuations to search for the solution of an optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundations of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schroedinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence for both the Schroedinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping

  5. Effects of magnetic annealing on structure and multiferroic properties of pure and dysprosium substituted BiFeO 3

    KAUST Repository

    Zhang, Shuxia; Yao, Yingbang; Chen, Yao; Wang, Dongliang; Zhang, Xianping; Awaji, Satoshi; Watanabe, Kazuo; Ma, Yanwei

    2012-01-01

    In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO 3 and Bi 0.85Dy 0.15FeO 3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO 3 samples are obviously broadened after magnetic annealing, whereas those of Bi 0.85Dy 0.15FeO 3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO 3 samples, the remnant polarizations (P r) are suppressed; in contrast, for Bi 0.85Dy 0.15FeO 3 samples, P r is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed. © 2012 Elsevier B.V. All rights reserved.

  6. Effects of magnetic annealing on structure and multiferroic properties of pure and dysprosium substituted BiFeO 3

    KAUST Repository

    Zhang, Shuxia

    2012-07-01

    In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO 3 and Bi 0.85Dy 0.15FeO 3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO 3 samples are obviously broadened after magnetic annealing, whereas those of Bi 0.85Dy 0.15FeO 3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO 3 samples, the remnant polarizations (P r) are suppressed; in contrast, for Bi 0.85Dy 0.15FeO 3 samples, P r is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed. © 2012 Elsevier B.V. All rights reserved.

  7. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Cheng-Yang; Hong, Shao-Chyang; Hwang, Fu-Tsai; Lai, Li-Wen; Lin, Tan-Wei; Liu, Day-Shan

    2011-01-01

    The effect of a nickel oxide (NiO x ) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO x ) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO x films, with and without a NiO x seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO x film, deposited on a NiO x seed layer, was found to be lower than that of a pure TiO x film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO x film deposited onto the NiO x seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO x /TiO x system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  8. Effect of nickel oxide seed layers on annealed-amorphous titanium oxide thin films prepared using plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng-Yang; Hong, Shao-Chyang [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Hwang, Fu-Tsai [Department of Electro-Optical Engineering, National United University, Miao-Li, 36003, Taiwan (China); Lai, Li-Wen [ITRI South, Industrial Technology Research Institute, Liujia, Tainan, 73445, Taiwan (China); Lin, Tan-Wei [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China); Liu, Day-Shan, E-mail: dsliu@sunws.nfu.edu.tw [Institute of Electro-Optical and Materials Science, National Formosa University, Huwei, Yunlin, 63201, Taiwan (China)

    2011-10-31

    The effect of a nickel oxide (NiO{sub x}) seed layer on the crystallization and photocatalytic activity of the sequentially plasma-enhanced chemical vapor deposited amorphous titanium oxide (TiO{sub x}) thin film processed by a post-annealing process was investigated. The evolution of the crystalline structures, chemical bond configurations, and surface/cross-sectional morphologies of the annealed TiO{sub x} films, with and without a NiO{sub x} seed layer, was examined using X-ray diffractometer, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscope measurements. Thermo- and photo-induced hydrophilicity was determined by measuring the contact angle of water droplet. Photocatalytic activity after UV light irradiation was evaluated from the decolorization of a methylene blue solution. The crystallization temperature of the TiO{sub x} film, deposited on a NiO{sub x} seed layer, was found to be lower than that of a pure TiO{sub x} film, further improving the thermo- and photo-induced surface super-hydrophilicity. The TiO{sub x} film deposited onto the NiO{sub x} seed layer, resulting in significant cluster boundaries, showed a rough surface morphology and proved to alleviate the anatase crystal growth by increasing the post-annealing temperature, which yielded a more active surface area and prohibited the recombination of photogenerated electrons and holes. The photocatalytic activity of the NiO{sub x}/TiO{sub x} system with such a textured surface therefore was enhanced and optimized through an adequate post-annealing process.

  9. Synergic solventing-out crystallization with subsequent time-delay thermal annealing of PbI2 precursor in mesostructured perovskite solar cells

    Science.gov (United States)

    Jia, Fujin; Guo, Yanqun; Che, Lijia; Liu, Zhiyong; Zeng, Zhigang; Cai, Chuanbing

    2018-06-01

    Although the two-step sequential deposition method provides an efficient route to fabricate high performance perovskite solar cells (PSSCs) with increasing reproducibility, the inefficient and incomplete conversion of PbI2 to perovskite is still quite a challenge. Following pioneering works, we found that the conversion process from PbI2 to perovskite mainly involves diffusion, infiltration, contact and reaction. In order to facilitate the conversion from PbI2 to perovskite, we demonstrate an effective method to regulate supersaturation level (the driving force to crystallization) of PbI2 by solventing-out crystallization combining with subsequent time-delay thermal annealing of PbI2 wet film. Enough voids and spaces in resulting porous PbI2 layer will be in favor of efficient diffusion, infiltration of CH3NH3I solution, and further enhance the contact and reaction between PbI2 and CH3NH3I in the whole film, leading to rapid, efficient and complete perovskite conversion with a conversion level of about 99.9%. Enhancement of light harvesting ranging from visible to near-IR region was achieved for the resultant high-quality perovskite. Upon this combined method, the fabricated mesostructured solar cells show tremendous power conversion efficiency (PCE) improvement from 3.2% to about 12.3% with less hysteresis owing to the simultaneous enhancement of short-circuit photocurrent density (J sc), open-circuit voltage (V oc) and fill factor (FF).

  10. Complex impedance spectroscopy of alkali impurities in as-grown, irradiated and annealed quartz

    International Nuclear Information System (INIS)

    Devautour-Vinot, S.; Cambon, O.; Prud'homme, N.; Giuntini, J. C.; Boy, J.-J.; Cibiel, G.

    2007-01-01

    This work compares the dielectric relaxation properties of different crystalline quartz materials, according to their source (natural or synthetics). It is shown that these relaxation properties are due to a hopping process of alkaline (Li + , Na + , and K + ) impurities located near [Al-O 4 ] 5- tetrahedra. A detailed analysis, in terms of the distribution function of the dielectric loss peak, allowed us to perfectly distinguish the different types of as-grown quartz. We show that (i) the natural quartz has less stable M + charge carriers than the synthetic materials and that (ii) the homogeneity of the M + trapping sites, created by the [Al-O 4 ] 5- tetrahedra, strongly depends on the crystal growth conditions. These features were then studied using quartz samples with different treatment conditions: as-grown, irradiated, or annealed at high temperature. We propose that the irradiation greatly facilitates the M + relaxation, by creating additional low energy M + hosting sites, whose number depends on the source of the quartz crystals. We also show that for 100 krad irradiation, the saturation state of the defects is already reached for all the materials under consideration. Finally, we propose that the irradiation followed by annealing at 450 deg. C improves the M + stability and homogeneity in quartz materials, compared with the as-grown materials, this trend being much more relevant for the natural than for the synthetic quartz

  11. Formation of oriented nitrides by N+ ion implantation in iron single crystals

    International Nuclear Information System (INIS)

    Costa, A.R.G.; Silva, R.C. da; Ferreira, L.P.; Carvalho, M.D.; Silva, C.; Franco, N.; Godinho, M.

    2014-01-01

    Iron single crystals were implanted with nitrogen at room temperature, with a fluence of 5×10 17 cm −2 and 50 keV energy, to produce iron nitride phases and characterize the influence of the crystal orientation. The stability and evolution of the nitride phases and diffusion of implanted nitrogen were studied as a function of successive annealing treatments at 250 °C in vacuum. The composition, structure and magnetic properties were characterized using RBS/channeling, X-Ray Diffraction, Magnetic Force Microscopy, Magneto-optical Kerr Effect and Conversion Electron Mössbauer Spectroscopy. In the as-implanted state the formation of Fe 2 N phase was clearly identified in all single crystals. This phase is not stable at 250 °C and annealing at this temperature promotes the formation of ε-Fe 3 N, or γ′-Fe 4 N, depending on the orientation of the substrate. - Highlights: • Oriented magnetic iron nitrides were obtained by nitrogen implantation into iron single crystals. • The stable magnetic nitride phase at 250 °C depends on the orientation of the host single crystal, being γ'-Fe 4 N or ε-Fe 3 N. • The easy magnetization axis was found to lay in the (100) plane for cubic γ'-Fe 4 N and out of (100) plane for hexagonal ε-Fe 3 N

  12. Order-disorder-reorder process in thermally treated dolomite samples: a combined powder and single-crystal X-ray diffraction study

    Science.gov (United States)

    Zucchini, A.; Comodi, P.; Katerinopoulou, A.; Balic-Zunic, T.; McCammon, C.; Frondini, F.

    2012-04-01

    A combined powder and single-crystal X-ray diffraction analysis of dolomite [CaMg(CO3)2] heated to 1,200°C at 3 GPa was made to study the order-disorder-reorder process. The order/disorder transition is inferred to start below 1,100°C, and complete disorder is attained at approximately 1,200°C. Twinned crystals characterized by high internal order were found in samples annealed over 1,100°C, and their fraction was found to increase with temperature. Evidences of twinning domains combined with probable remaining disordered portions of the structure imply that reordering processes occur during the quench. Twin domains are hereby proposed as a witness to thermally induced intra-layer-type cation disordering.

  13. Scalable effective-temperature reduction for quantum annealers via nested quantum annealing correction

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2018-02-01

    Nested quantum annealing correction (NQAC) is an error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding replaces each logical qubit by a complete graph of degree C . The nesting level C represents the distance of the error-correcting code and controls the amount of protection against thermal and control errors. Theoretical mean-field analyses and empirical data obtained with a D-Wave Two quantum annealer (supporting up to 512 qubits) showed that NQAC has the potential to achieve a scalable effective-temperature reduction, Teff˜C-η , with 0 temperature of a quantum annealer. Such effective-temperature reduction is relevant for machine-learning applications. Since we demonstrate that NQAC achieves error correction via a reduction of the effective-temperature of the quantum annealing device, our results address the problem of the "temperature scaling law for quantum annealers," which requires the temperature of quantum annealers to be reduced as problems of larger sizes are attempted to be solved.

  14. Effect of germanium doping on the annealing characteristics of oxygen and carbon-related defects in Czochralski silicon

    International Nuclear Information System (INIS)

    Londos, C. A.; Andrianakis, A.; Sgourou, E. N.; Emtsev, V.; Ohyama, H.

    2010-01-01

    This paper is devoted to the annealing studies of defects produced in carbon-rich Ge-doped Czochralski-grown Si (Cz-Si) by 2 MeV electron irradiation. The annealing temperature of vacancy-oxygen (VO) complexes, carbon interstitial-oxygen interstitial (C i O i ), and carbon interstitial-carbon substitutional (C i C s ) pairs as well as the formation temperature of vacancy-two oxygen (VO 2 ) complexes are monitored as a function of Ge concentration. It has been established that the annealing of C i O i and C i C s defects remains practically unaffected by the Ge presence, whereas the annealing temperature of VO defects and the formation temperature of VO 2 complexes are substantially lowered at Ge concentrations larger than 1x10 19 cm -3 . The hydrostatic component of elastic strains introduced by Ge atoms in the Si crystal lattice was calculated. It appears to be very small, at least insufficient to exert a pronounced effect upon the annealing behavior of radiation-produced defects. This conclusion is in line with what is observed for the C i O i and C i C s species. In the case of VO, whose annealing process in Cz-Si is concurrently conducted by two reaction paths VO+O i →VO 2 and VO+Si I →O i , we suggest that the latter reaction in Ge-doped Cz-Si is enhanced by emitting self-interstitials (Si I ) from loosely bound self-interstitial clusters predominantly formed around Ge impurity atoms. As a result, the liberation of self-interstitials at lower annealing temperatures leads to an enhanced annealing of VO defects. An enhanced formation of VO 2 complexes at lower temperatures is also discussed in terms of other reactions running in parallel with the reaction VO+Si I →O i .

  15. Annealing temperatures influence luminescence of YBO{sub 3}: Ce{sup 3+}, Yb{sup 3+} prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue [Department of Physics, Northwest University, No. 229 Taibai North Road, Xi' an, Shaanxi, 710069 (China); Hu, Xiaoyun, E-mail: hxy3275@nwu.edu.cn [Department of Physics, Northwest University, No. 229 Taibai North Road, Xi' an, Shaanxi, 710069 (China); Zhan, Suchang; Sun, Xiao; Wang, Zhizhong; Miao, Tian; Miao, Hui [Department of Physics, Northwest University, No. 229 Taibai North Road, Xi' an, Shaanxi, 710069 (China); Fan, Jun [School of Chemical Engineering, Northwest University, No. 229 Taibai North Road, Xi' an, Shaanxi, 710069 (China)

    2014-08-01

    Near-infrared (NIR) quantum cutting (QC) YBO{sub 3}: Ce{sup 3+}, Yb{sup 3+} phosphors have been synthesized by solvothermal method with further heat treatment. The emission spectrum shows the Vis and NIR emission intensity of samples are both increasingly strong as annealing temperature rises when the annealing temperature is above 600 °C. Meanwhile the Vis emission of unannealed sample is observed. SEM images show that the sample annealed at different temperatures (200–900 °C) is mainly composed of nanosheets like potato chips, which is melt down granules after annealing treatment above 1000 °C.The crystal texture of all samples whether annealed or not is hexagonal through the analysis of XRD. The Raman and infrared spectrums indicate that the boron ions exist of BO{sub 4} units when the annealing temperature is above 600 °C. The infrared profile of unannealed sample shows that there are N–H units in the samples without annealing treatment. - Highlights: • The nanosheets like potato chips are synthesized by solvothermal method. • Annealing temperature is a great effect for luminescence of sample. • The boron ions exist of BO{sub 4} when the annealing temperature is above 600 °C, whose quantity determines the luminescent intensity. • According to the infrared profile of unannealed sample, there are N–H units, which are beneficial to the Vis emission.

  16. Rise and fall of ferromagnetism in O-irradiated Al{sub 2}O{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026 (China); China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803 (China); Xu, Juping; Liu, Jiandang; Du, Huaijiang; Ye, Bangjiao, E-mail: bjye@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026 (China)

    2015-06-21

    In dilute magnetic semiconductors studies, sapphire was usually used as non-magnetic substrate for films. We observed weak ferromagnetic component in Al{sub 2}O{sub 3} single crystal substrate, and excluded the possibility of ferromagnetic contaminations carefully by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The ferromagnetism rise and fall during the process of annealing-oxygen irradiation-annealing of the sapphire. The ferromagnetic changes are consistent with Al-vacancy related defects detected by positron annihilation spectroscopy. With first-principle calculations, we confirm that Al-vacancy can introduce magnetic moment for 3 μB in Al{sub 2}O{sub 3} crystal and form stable V{sub Al}-V{sub Al} ferromagnetic coupling at room temperature.

  17. Interaction of dislocations and point defects in high-purity molybdenum single crystals

    International Nuclear Information System (INIS)

    Polotskij, I.G.; Benieva, T.Ya.; Golub, T.V.

    1975-01-01

    The effect of the interstitial atoms distribution on dislocations mobility in extra pure molybdenum is studied. The amplitude relationships of the internal fraction were measured, which makes it possible to record energy dissipation associated with dislocation mobility in conditions of microdeformation. It was established that single crystals of extra pure molybdenum subjected to minor plastic deformation (1%) are characterized by high internal friction, which depends on the degree of crystall purification with regard to interstitial admixtures. Annealing at temperatures of 200 - 500 deg reduces the total level of damping and causes appearance of a sharp amplitude relationship. In this case, the reduction of damping is associated with diffusion of the interstitial atoms towards the dislocation line and its fixation. The irreversible nature of the internal friction amplitude relationship after development of high deformation amplitudes is explained by micro-plastic deformation processes. The amplitude. of deformation, after which the internal friction becomes irreversible, increases with the increase of the annealing temperature. The damping-deformation hysteresis reaches its maximum value after heat treatment at middle tempetatures. With the increase of the annealing temperature, the hysteresis becomes less. Thermal activation causes displacement of the critical amplitude corresponding to production of the delta-epsilon hysteresis to the region of lower values. Using the Pagen, Pare and Goben theory the amplitude-dependent internal friction data have been employed for calculation of the activation volume values which characterize the initial stages of plastic flow in extra pure single crystals of molybdenum

  18. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    Science.gov (United States)

    Naito, K.; Matsuishi, K.

    2009-04-01

    Well-uniformed C60 nanotubes were grown at -20 °C with irradiation of red light using C60-saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 °C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  19. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    International Nuclear Information System (INIS)

    Naito, K; Matsuishi, K

    2009-01-01

    Well-uniformed C 60 nanotubes were grown at -20 deg. C with irradiation of red light using C 60 -saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C 60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 deg. C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C 60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  20. Cascade annealing: an overview

    International Nuclear Information System (INIS)

    Doran, D.G.; Schiffgens, J.O.

    1976-04-01

    Concepts and an overview of radiation displacement damage modeling and annealing kinetics are presented. Short-term annealing methodology is described and results of annealing simulations performed on damage cascades generated using the Marlowe and Cascade programs are included. Observations concerning the inconsistencies and inadequacies of current methods are presented along with simulation of high energy cascades and simulation of longer-term annealing

  1. Effects of surface crystallization and oxidation in nanocrystalline FeNbCuSiB(P) ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Butvinová, B., E-mail: beata.butvinova@savba.sk [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Butvin, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Brzózka, K. [Department of Physics, University of Technology and Humanities in Radom, Krasickiego 54, 26-600 Radom (Poland); Kuzminski, M. [Institute of Physics PAS, Al. Lotnikow 36/42, 02-668 Warsaw (Poland); Maťko, I.; Švec Sr, P. [Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava (Slovakia); Chromčíková, M. [Institute of Inorg. Chem. SAS, Centrum VILA, Študentská 2, 911 50 Trenčín (Slovakia)

    2017-02-15

    Si-poor Fe{sub 74}Nb{sub 3}Cu{sub 1}Si{sub 8}B{sub 14−x}P{sub x}, (x=0, 3) nanocrystalline ribbon-form alloys often form surfaces, which exert in-plane force on underlying ribbon interior when nanocrystallized in even modest presence of oxygen. Mostly unwanted hard-ribbon-axis magnetic anisotropy is standard result. Essential sources of the surface-caused stress have been sought and influence of P instead of B substitution on this effect was studied too. Preferred surface crystallization (PSC) was found to be the major reason. However P substitution suppresses PSC and promotes Fe-oxide formation, which eases the stress, softens the surfaces and provides different annealing evolution of surface properties. - Highlights: • Ar anneal of low-Si FeNbCuBSi ribbons produce surfaces that stress ribbon interior. • The stress comes mainly from preferred crystallization of surfaces. • Partial substitution of B by P changes annealing evolution of surface properties. • Without P, more crystalline surfaces significantly reduce ribbon's elasticity. • P suppresses surface crystallinity, promotes oxides and reduces mutual stress.

  2. Lower-temperature crystallization of CoFeB in MgO magnetic tunnel junctions by using Ti capping layer

    International Nuclear Information System (INIS)

    Ibusuki, Takahiro; Miyajima, Toyoo; Umehara, Shinjiro; Eguchi, Shin; Sato, Masashige

    2009-01-01

    Effects of capping materials on magnetoresistance (MR) properties of MgO magnetic tunnel junctions (MTJs) with a CoFeB free layer were investigated. MR ratios of samples with various capping materials showed a difference in annealing temperature dependence. MTJ with a Ti capping layer annealed at 270 deg. C showed a MR ratio 1.4 times greater than that with a conventional Ta or Ru capping layer. Secondary ion mass spectroscopy and high-resolution transmission electron microscopy images revealed that crystallization of CoFeB was remarkably affected by adjacent materials and the Ti capping layer adjoining CoFeB acted as a boron-absorption layer. These results suggest that the crystallization process can be controlled by choosing proper capping materials. Ti is one of the effective materials that accelerate the crystallization of CoFeB layers at lower annealing temperature

  3. Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Michele; Li, Haoning; Zubialevich, Vitaly Z.; Kusch, Gunnar; Schmidt, Michael; Collins, Timothy; Glynn, Colm; Martin, Robert W.; O’Dwyer, Colm; Morris, Michael D.; Holmes, Justin D.; Parbrook, Peter J.

    2016-12-07

    With advances in nanolithography and dry etching, top-down methods of nanostructuring have become a widely used tool for improving the efficiency of optoelectronics. These nano dimensions can offer various benefits to the device performance in terms of light extraction and efficiency, but often at the expense of emission color quality. Broadening of the target emission peak and unwanted yellow luminescence are characteristic defect-related effects due to the ion beam etching damage, particularly for III–N based materials. In this article we focus on GaN based nanorods, showing that through thermal annealing the surface roughness and deformities of the crystal structure can be “self-healed”. Correlative electron microscopy and atomic force microscopy show the change from spherical nanorods to faceted hexagonal structures, revealing the temperature-dependent surface morphology faceting evolution. The faceted nanorods were shown to be strain- and defect-free by cathodoluminescence hyperspectral imaging, micro-Raman, and transmission electron microscopy (TEM). In-situ TEM thermal annealing experiments allowed for real time observation of dislocation movements and surface restructuring observed in ex-situ annealing TEM sampling. This thermal annealing investigation gives new insight into the redistribution path of GaN material and dislocation movement post growth, allowing for improved understanding and in turn advances in optoelectronic device processing of compound semiconductors.

  4. Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si

    Science.gov (United States)

    Ali, Ahmad Hadi; Hassan, Zainuriah; Shuhaimi, Ahmad

    2018-06-01

    This paper reports on the enhancement of optical transmittance and electrical resistivity of indium tin oxide (ITO) transparent conductive oxides (TCO) deposited by radio frequency (RF) sputtering on Si substrate. Post-annealing was conducted on the samples at temperature ranges of 500-700 °C. From X-ray diffraction analysis (XRD), ITO (2 2 2) peak was observed after post-annealing indicating crystallization phase of the films. From UV-vis measurements, the ITO thin film shows highest transmittance of more than 90% at post-annealing temperature of 700 °C as compared to the as-deposited thin films. From atomic force microscope (AFM), the surface roughness becomes smoother after post-annealing as compared to the as-deposited. The lowest electrical resistivity for ITO sample is 6.68 × 10-4 Ω cm after post-annealed at 700 °C that are contributed by high carrier concentration and mobility. The improved structural and surface morphological characteristics helps in increasing the optical transmittance and reducing the electrical resistivity of the ITO thin films.

  5. The Low-Temperature Crystallization and Interface Characteristics of ZnInSnO/In Films Using a Bias-Crystallization Mechanism

    International Nuclear Information System (INIS)

    Chen, K. J.; Chen, K.J.; Hung, F.Y.; Lui, T.S.; Chang, S.J.; Hu, Z.S.

    2012-01-01

    This study presents a successful bias crystallization mechanism (BCM) based on an indium/glass substrate and applies it to fabrication of ZnInSnO (ZITO) transparent conductive oxide (TCO) films. The effects of bias-crystallization on electrical and structural properties of ZITO/In structure indicate that the current-induced Joule heating and interface diffusion were critical factors for low-temperature crystallization. With biases of 4 V and 0.1 A, the resistivity of the ZITO film was reduced from 3.08x10 -4 Ω * cm to 6.3x10 -5 Ω * cm. This reduction was attributed to the bias-induced energy, which caused indium atoms to diffuse into the ZITO matrix. This effectuated crystallizing the amorphous ZITO (a-ZITO) matrix at a lower temperature (approximately 170 degree C) for a short period (≤20 min) during a bias test. The low-temperature BCM developed for this study obtained an efficient conventional annealed treatment (higher temperature), possessed energy-saving and speed advantages, and can be considered a candidate for application in photoelectric industries.

  6. Coherent diffractive imaging of solid state reactions in zinc oxide crystals

    Science.gov (United States)

    Leake, Steven J.; Harder, Ross; Robinson, Ian K.

    2011-11-01

    We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.

  7. Effects of Annealing Temperature on Structure and Magnetic Properties of TbxY3−xFe5O12 (x=0.2 and 0.4 Thin Films

    Directory of Open Access Journals (Sweden)

    N. B. Ibrahim

    2012-01-01

    Full Text Available Terbium-substituted yttrium iron garnet (TbxY3−xFe5O12 (x=0.2 and 0.4 thin films have been successfully prepared by a sol-gel method followed by spin-coating process. The annealing of the films was performed at different temperatures like 700, 800, and 900°C and found that the films annealed at 900°C turned out to be crystallized into a pure garnet phase. All of the films were bearing grains of nanometer in size. Increasing the annealing temperature gave extra energy to the grains causing to be agglomerates. The lattice contraction occurred as the grain’s sizes were decreased due to the decrease of Fe2+ formation. The magnetic measurements show that all of the films are soft magnetic materials with low saturation magnetization values. The hysteresis loops of the films which were annealed at 900°C were found angular in shape similar to the single crystal-like YIG film.

  8. PTFE Additive and Re-annealing Effect on Thermoluminescence Response of CaSO4:Dy Derived from Co-precipitation Method

    Science.gov (United States)

    Nuraeni, Nunung; Dwi Septianto, Ricky; Iskandar, Ferry; Haryanto, Freddy; Waris, Abdul; Hiswara, Eri

    2017-07-01

    Effect of re-annealing treatment in thermoluminescence response of thermoluminescent dosimeter (TLD) CaSO4:Dy and CaSO4:Dy with PTFE (Polytetrafluoroethylene) addition was investigated. CaSO4:Dy was prepared by a co-precipitation method. The PTFE was added before re-annealing treatment which the mass ratio of CaSO4:Dy and PTFE was fixed to 2:3. The re-annealing treatments of the samples were done at temperature 700 °C for 1 hr. The obtained samples were characterized using a Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) to observe the molecule bonding in sample and crystal properties, respectively. From the experimental results, it was observed that the thermoluminescence intensity of CaSO4:Dy, CaSO4:Dy re-annealed at 700 °C, and CaSO4:Dy + PTFE re-annealed at 700 °C are 57.03, 75.15, and 1191.11 nC, respectively. The intensity of 700 °C-re-annealed CaSO4:Dy increased significantly after PTFE addition.

  9. Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities.

    Science.gov (United States)

    Shankar, Raji; Bulu, Irfan; Leijssen, Rick; Lončar, Marko

    2011-11-21

    We report the observation of optical bistability in Si-based photonic crystal cavities operating around 4.5 µm. Time domain measurements indicate that the source of this optical bistability is thermal, with a time constant on the order of 5 µs. Quality (Q) factor improvement is shown by the use of surface treatments (wet processes and annealing), resulting in a significant increase in Q-factor, which in our best devices is on the order of ~45,000 at 4.48 µm. After annealing in a N(2) environment, optical bistability is no longer seen in our cavities. © 2011 Optical Society of America

  10. Influence of Rapid Thermal Annealing on the Characteristics of InGaN/GaN MQWs

    Directory of Open Access Journals (Sweden)

    Tian Yuan

    2016-01-01

    Full Text Available N-type InGaN/GaN multiple-quantum-wells (MQWs were grown on sapphire substrates by metal organic chemical vapor deposition (MOCVD. The crystal quality and optical properties of samples after rapid thermal annealing (RTA at different temperatures in a range from 400 to 800°C are investigated by X-ray diffraction (XRD and photoluminescence (PL spectrum. The experimental results show that the peaks of InGaN, InN and In can be observed in all samples. And the results are induced by the phase separation and In-clusters. The luminescence peak of the samples annealed showed a red shift. It is caused by strain stress relaxation during the RTA process. Furthermore, some defects can be eliminated and the best annealing temperature is from 500°C to 700°C.

  11. Influence of annealing temperature on structural and magnetic properties of MnFe2O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Surowiec Zbigniew

    2015-03-01

    Full Text Available Nanoparticles of manganese ferrite were obtained by the impregnation of highly ordered mesoporous MCM-41 silica support. The investigated sample contained 20% wt. Fe. The obtained nanocrystallites were strongly dispersed in silica matrix and their size was about 2 nm. The sample annealing at 500°C led to increase of particle size to about 5 nm. The Mössbauer spectroscopy investigations performed at room temperature show on occurrence of MnFe2O4 nanoparticle in superparamagnetic state for the sample annealed in all temperatures. The coexistence of superparamagnetic and ferromagnetic phase was observed at liquid nitrogen temperature. The sample annealed at 400°C and 500°C has bigger manganese ferrite particle and better crystallized structure. One can assign them the discrete hyperfine magnetic field components.

  12. Growth of optical grade germanium crystals

    International Nuclear Information System (INIS)

    Waris, M.; Akhtar, M.J.; Mehmood, N.; Ashraf, M.; Siddique, M.

    2011-01-01

    A novel design of Czochralski( CZ ) growth station in a low frequency induction furnace is described and growth of optical grade Ge crystal as a test material is performed achieving a flat solid-liquid interface shape. Grown Ge crystals are annealed in air at 450 -500 deg. C for 4 hrs and then characterized by determination of crystallographic orientation by Laue (back-reflection of X-rays) method, dislocation density studies by etch-pits formation, measuring electrical resistivity by 4-probe technique, conductivity type determination by hot probe method, measurement of hardness on Moh's scale and optical transmission measurement in IR region. The results obtained are compared to those reported in the literature. The use of this growth station for other materials is suggested. (author)

  13. CdO thin films based on the annealing temperature differences prepared by sol-gel method and their heterojunction devices

    Science.gov (United States)

    Soylu, M.; Yazici, T.

    2017-12-01

    Undoped CdO films were prepared on glass substrate and p-type silicon wafer using sol-gel spin coating method. The structural and optical properties of the films were investigated as a function of the annealing temperature. X-ray diffraction (XRD) patterns reveal that the films are formed from CdO with cubic crystal structure and (1 1 1) preferred orientation. It is seen that good crystallinity is due to the high annealing temperature. The surface morphology of the CdO films was found to be depending on the annealing temperature, showing cauliflower like structure. Optical band gaps for annealing temperature of 250 °C and 450 °C were found to be 2.49 eV and 2.27 eV, respectively, showing a decrease with raising temperature. Optics parameters such as extinction coefficient, refractive index, and surface-volume energy loss were determined with spectrophotometric analysis as a function of annealing temperature. CdO/p-Si heterojunction structure showed weak rectifying behavior. The diode parameters were found to be depending on annealing temperature. The results are encouraging to get better conjunction with CdO thin film component at optimize annealing temperature.

  14. Crystal structure and phase composition of aluminium thin films with holmium additions

    International Nuclear Information System (INIS)

    Koleshko, V.M.; Belitskij, V.F.; Obukhov, V.E.; Rumak, N.V.; Urban, T.P.

    1984-01-01

    The effect of holmium additions on the crystal structure and phase composition of thin aluminium films has been studied. A regularity in grain size changes in aluminium thin films versus the holmium content in them is established. The holmium introduction is shown to result in the appearance of axial texture in the aluminium films, the texture axis being determined by the quantity of the addition. During heat treatment of the aluminium films, containing holmium additions, in the range of low ( approximately 100-200 deg C) annealing temperatures holmium monohydroxide is formed, and at annealing temperatures 300 deg C 0 3 is formed

  15. Correlation of the superconducting transition to oxygen stoichiometry in single-crystal Ba1-xKxBiO3-y

    Science.gov (United States)

    Mosley, W. D.; Dykes, J. W.; Klavins, P.; Shelton, R. N.; Sterne, P. A.; Howell, R. H.

    1993-07-01

    Temperature-dependent positron-lifetime experiments have been performed from room temperature to 15 K on single crystals of the oxide superconductor Ba1-xKxBiO3-y. Results indicate that the filling of oxygen vacancies has a marked impact on the superconducting properties of this system. Cation defect concentrations were below the detectable limit of positron-annihilation-analysis techniques in this material, which is in sharp contrast to identical studies on polycrystalline samples. We find that the positron lifetime in these electrochemically deposited single crystals is determined by the oxygen stoichiometry of the lattice, but there is no experimental signature of strong positron localization. By performing a subsequent oxygen anneal on the crystals, the superconducting transition is sharpened and the onset is raised. The observed change in positron lifetime associated with this annealing procedure is in quantitative agreement with theory.

  16. Development of a Self Aligned CMOS Process for Flash Lamp Annealed Polycrystalline Silicon TFTs

    Science.gov (United States)

    Bischoff, Paul

    The emerging active matrix liquid crystal (AMLCD) display market requires a high performing semiconductor material to meet rising standards of operation. Currently amorphous silicon (a-Si) dominates the market but it does not have the required mobility for it to be used in AMLCD manufacturing. Other materials have been developed including crystallizing a-Si into poly-silicon. A new approach to crystallization through the use of flash lamp annealing (FLA) decreases manufacturing time and greatly improves carrier mobility. Previous work on FLA silicon for the use in CMOS transistors revealed significant lateral dopant diffusion into the channel greatly increasing the minimum channel length required for a working device. This was further confounded by the gate overlap due to misalignment during lithography patterning steps. Through the use of furnace dopant activation instead of FLA dopant activation and a self aligned gate the minimum size transistor can be greatly reduced. A new lithography mask and process flow were developed for the furnace annealing and self aligned gate. Fabrication of the self aligned devices resulted in oxidation of the Molybdenum self aligned gate. Further development is needed to successfully manufacture these devices. Non-self aligned transistors were made simultaneously with self aligned devices and used the furnace activation. These devices showed an increase in sheet resistance from 250 O to 800 O and lower mobility from 380 to 40.2 V/cm2s. The lower mobility can be contributed to an increase in implanted trap density indicating furnace annealing is an inferior activation method over FLA. The minimum transistor size however was reduced from 20 to 5 mum. With improvements in the self aligned process high performing small devices can be manufactured.

  17. Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy

    International Nuclear Information System (INIS)

    Guo, F.Q.; Lu, K.

    1997-01-01

    Microstructure evolution in a melt-spun amorphous Fe 77.2 Mo 0.8 Si 9 B 13 alloy subjected to high-energy ball milling was investigated by means of X-ray diffraction (XRD), a transmission electron microscope (TEM), and a differential scanning calorimeter (DSC). It was found that during ball milling, crystallization occurs in the amorphous ribbon sample with precipitation of an α-Fe solid solution, and the amorphous sample crystallizes completely into a single α-Fe nanostructure (rather than α-Fe and borides as in the usual thermal crystallization products) when the milling time exceeds 135 hours. The volume fraction of material crystallized was found to be approximately proportional to the milling time. The fully crystallized sample with a single α-Fe nanophase exhibits an intrinsic thermal stability against phase separation upon annealing at high temperatures. The ball-milling effect on the subsequent thermal crystallization of the amorphous phase in an as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled partially crystallized samples. The crystallization temperatures and activation energies for the crystallization processes of the residual amorphous phase were considerably decreased due to ball milling, indicating that ball milling has a significant effect on the depression of thermal stability of the residual amorphous phase

  18. Zinc Oxide Nano crystals Synthesized by Quenching Technique

    International Nuclear Information System (INIS)

    Norhayati Abu Bakar; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahya

    2011-01-01

    This paper reports an attempt to synthesize non toxic zinc oxide (ZnO) nano crystals using a simple quenching technique. The hot zinc oxide powder was quenched in hexane solution to obtain ZnO nano crystals. As the result, diameter size of the synthesized ZnO is 200 nm. It was also exhibited a good crystalline with wurtzite phase. The nano crystals properties of ZnO were revealed from good absorbance and green luminescence under UV exposure. This may be related with oxygen vacancy ionization during the annealing process. (author)

  19. Influence of alloying and secondary annealing on anneal hardening ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of alloying and secondary annealing on anneal hardening effect at sintered copper alloys. SVETLANA NESTOROVIC. Technical Faculty Bor, University of Belgrade, Bor, Yugoslavia. MS received 11 February 2004; revised 29 October 2004. Abstract. This paper reports results of investigation carried out on sintered ...

  20. Ion beam synthesis of buried single crystal erbium silicide

    International Nuclear Information System (INIS)

    Golanski, A.; Feenstra, R.; Galloway, M.D.; Park, J.L.; Pennycook, S.J.; Harmon, H.E.; White, C.W.

    1990-01-01

    High doses (10 16 --10 17 /cm 2 ) of 170 keV Er + were implanted into single-crystal left-angle 111 right-angle Si at implantation temperatures between 350 degree C and 520 degree C. Annealing at 800 degree C in vacuum following the implant, the growth and coalescence of ErSi 2 precipitates leads to a buried single crystalline ErSi 2 layer. This has been studied using Rutherford backscattering/channeling, X-ray diffraction, cross-sectional TEM and resistance versus temperature measurements. Samples implanted at 520 degree C using an Er dose of 7 x 10 16 /cm 2 and thermally annealed were subsequently used as seeds for the mesoepitaxial growth of the buried layer during a second implantation and annealing process. Growth occurs meso-epitaxially along both interfaces through beam induced, defect mediated mobility of Er atoms. The crystalline quality of the ErSi 2 layer strongly depends on the temperature during the second implantation. 12 refs., 4 figs

  1. Thermal expansion accompanying the glass-liquid transition and crystallization

    Directory of Open Access Journals (Sweden)

    M. Q. Jiang

    2015-12-01

    Full Text Available We report the linear thermal expansion behaviors of a Zr-based (Vitreloy 1 bulk metallic glass in its as-cast, annealed and crystallized states. Accompanying the glass-liquid transition, the as-cast Vitreloy 1 shows a continuous decrease in the thermal expansivity, whereas the annealed glass shows a sudden increase. The crystallized Vitreloy 1 exhibits an almost unchanged thermal expansivity prior to its melting. Furthermore, it is demonstrated that the nucleation of crystalline phases can induce a significant thermal shrinkage of the supercooled liquid, but with the growth of these nuclei, the thermal expansion again dominates. These results are explained in the framework of the potential energy landscape, advocating that the configurational and vibrational contributions to the thermal expansion of the glass depend on both, structure and temperature.

  2. Effect of radiation induced defects and incompatibility elastic stresses on the diffusion of ion implantated boron in silicon at the pulse annealing

    International Nuclear Information System (INIS)

    Stel'makh, V.F.; Suprun-Belevich, Yu.R.; Chelyadinskij, A.R.

    1987-01-01

    For determination of radiation defects effect on diffusion of the implanted boron in silicon at the pulse annealing, silicon crystals, implanted with boron, preliminary irradiated by silicon ions of different flows for checked defects implantation, were investigated. Silicon crystals additionally implanted by Ge + ions were investigated to research the effect of the incompatibility elastic stresses, emerging in implanted structures due to lattice periods noncoincidence in matrix and alloyed layers, on implanted boron diffusion. It is shown, that abnormally high values of boron diffusion coefficients in silicon at the pulse annealing are explained by silicon interstitial atom participation in redistribution of diffusing boron atoms by two diffusion channels - interstitial and vacation - and by incompatibility elastic stresses effect on diffusion

  3. Reduced annealing temperatures in silicon solar cells

    Science.gov (United States)

    Weinberg, I.; Swartz, C. K.

    1981-01-01

    Cells irradiated to a fluence of 5x10,000,000,000,000/square cm showed short circuit current on annealing at 200 C, with complete annealing occurring at 275 C. Cells irradiated to 100,000,000,000,000/square cm showed a reduction in annealing temperature from the usual 500 to 300 C. Annealing kinetic studies yield an activation energy of (1.5 + or - 2) eV for the low fluence, low temperature anneal. Comparison with activation energies previously obtained indicate that the presently obtained activation energy is consistent with the presence of either the divacancy or the carbon interstitial carbon substitutional pair, a result which agrees with the conclusion based on defect behavior in boron-doped silicon.

  4. Effects of annealing, acid and alcoholic beverages on Fe1+yTe0.6Se0.4

    International Nuclear Information System (INIS)

    Sun, Y; Taen, T; Tsuchiya, Y; Tamegai, T; Shi, Z X

    2013-01-01

    We have systematically investigated and compared different methods to induce superconductivity in the iron chalcogenide Fe 1+y Te 0.6 Se 0.4 , including annealing in a vacuum, N 2 , O 2 and I 2 atmospheres and immersing samples into acid and alcoholic beverages. Vacuum and N 2 annealing are proved to be ineffective in inducing superconductivity in a Fe 1+y Te 0.6 Se 0.4 single crystal. Annealing in O 2 and I 2 and immersion in acid and alcoholic beverages can induce superconductivity by oxidizing the excess Fe in the sample. Superconductivity in O 2 annealed samples is of a bulk nature, while I 2 , acid and alcoholic beverages can only induce superconductivity near the surface. By comparing the different effects of O 2 , I 2 , acid and alcoholic beverages we propose a scenario to explain how the superconductivity is induced in the non-superconducting as-grown Fe 1+y Te 0.6 Se 0.4 . (paper)

  5. Annealing of low-temperature GaAs studied using a variable energy positron beam

    International Nuclear Information System (INIS)

    Keeble, D.J.; Umlor, M.T.; Asoka-Kumar, P.; Lynn, K.G.; Cooke, P.W.

    1993-01-01

    The annihilation characteristics of monoenergetic positrons implanted in a molecular beam epitaxy layer of low-temperature (LT) GaAs annealed at temperatures from 300 to 600 degree C were measured. A gallium vacancy concentration of approximately 3x10 17 cm -3 is inferred for the as-grown material. The S parameter increased significantly upon anneal to 500 degree C. The dominant positron traps in samples annealed at and below 400 degree C are distinct from those acting for samples annealed to 500 or 600 degree C. The change in S parameter for the 600 degree C annealed sample compared to the GaAs substrate, S LT,600 =1.047S sub , is consistent with divacancies or larger open volume defects

  6. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  7. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    International Nuclear Information System (INIS)

    Koparanova, N.; Simov, S.

    1985-01-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more. (author)

  8. Single crystal growth of high-temperature superconductor Bi2.1Sr1.9Ca1.0Cu2.0AlyOx

    International Nuclear Information System (INIS)

    Gu, G.D.; Lin, Z.W.

    2000-01-01

    The effect of Al doping on the crystal growth of Bi-2212 was studied by a floating zone method. The results show that the planar solid-liquid interface breaks down into a cellular growth front while increasing Al doping in the rods of Bi 2.1 Sr 1.9 Ca 1.0 Cu 2.0 Al y O x . The size of the single crystals decreases with the increase in Al doping. The solubility limit for Al or the maximum Cu-site substitution by Al in the Bi-2212 crystals is less than y = 0.01. The majority of nominal Al doping in the rods forms an Al-rich phase in the grain boundaries of the single crystals. The superconductivity of as-grown Al-doped crystals decreases progressively with increasing Al doping in the rods, however, the T c for annealed Al-doped crystals does not change with increasing Al doping in the rods. The unchanged T c for annealed Al-doped Bi-2212 crystals either suggests that a small amount of Al substitution in the Cu site does not cause T c to drop significantly, or indicates that Al only enters the Bi-2212 crystals as an impurity, but does not substitute at the Cu site in the Bi-2212 crystals. (author)

  9. Efficiency enhancement of the MAPbI3-xClx-based perovskite solar cell by a two-step annealing procedure

    Science.gov (United States)

    Huang, Jin; Wang, Minqiang; Ding, Lei; Deng, Jianping; Yao, Xi

    2016-02-01

    The development of a novel two-step annealing method has contributed to the significantly improved performance of the MAPbI3-xClx based perovskite solar cell (PSC). By utilizing a two-step annealing method, we obtained a high power conversion efficiency (PCE) of 12.72% with a current density (J sc) of 18.35 mA cm-2, an open circuit voltage (V oc) of 0.90 V and a fill factor (FF) of 0.71. Noticeably, the two-step annealed device shows no hysteresis and exhibits a PCE which is approximately 1.2 times greater than that of the one-step annealed device. The improvement in device efficiency is ascribed to the reduced series resistance, increased parallel resistance, better surface coverage, lower leakage current and stronger crystallization of the MAPbI3-xClx perovskite layer.

  10. Fabrication of zinc indium oxide thin films and effect of post annealing on structural, chemical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Vipin Kumar, E-mail: vipinjain7678@gmail.com [Institute of Engineering and Technology, JK Lakshmipat University, Jaipur 302026 (India); Kumar, Praveen [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 (India); Srivastava, Subodh; Vijay, Y.K. [Thin film and Membrane Science Laboratory, University of Rajasthan, Jaipur 302004 (India)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer ZIO films have been prepared by flash evaporation. Black-Right-Pointing-Pointer Thermal stability of ZIO films. Black-Right-Pointing-Pointer Structural, optical, electrical and other properties have been studied. - Abstract: In the present study, zinc indium oxide (ZIO) thin films were deposited on glass substrate with varying concentration (ZnO:In{sub 2}O{sub 3} - 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZIO films were annealed in vacuum to study the thermal stability and to see the effects on the structural, chemical and electrical properties. The XRD analysis indicates that crystallization of the ZIO films strongly depends on concentration of In{sub 2}O{sub 3} and post annealing where annealed films showed polycrystalline nature. The surface morphological study of the films using scanning electron microscopy (SEM) revealed the formation of nanostructured ZIO thin films. The surface composition and oxidation state were analyzed by X-ray photoelectron spectroscopy. XPS spectra shows that as the concentration of In{sub 2}O{sub 3} increases from 10 to 50 wt%, the surface composition ratio In/Zn and O/Zn increases for as-prepared and annealed ZIO films while the XPS valance band spectra manifest the electronic transitions. The electrical resistivity was found to be decreased while carrier concentration and Hall mobility increased for both types of films with increasing concentration of In{sub 2}O{sub 3}.

  11. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    Science.gov (United States)

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  12. Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals

    Science.gov (United States)

    Li, Dong-Xiang; Qin, Xiu-Bo; Zheng, Li-Rong; Li, Yu-Xiao; Cao, Xing-Zhong; Li, Zhuo-Xin; Yang, Jing; Wang, Bao-Yi

    2013-03-01

    Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO2 single crystals when a magnetic field is applied parallel to the sample plane. By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy, Ti3+—VO defect complexes (or clusters) have been identified in annealed crystals at a high vacuum. We elucidate that the unpaired 3d electrons in Ti3+ ions provide the observed room-temperature ferromagnetism. In addition, excess oxygen ions in the TiO2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments.

  13. Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals

    International Nuclear Information System (INIS)

    Li Dong-Xiang; Cao Xing-Zhong; Li Zhuo-Xin; Yang Jing; Wang Bao-Yi; Qin Xiu-Bo; Zheng Li-Rong; Li Yu-Xiao

    2013-01-01

    Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO 2 single crystals when a magnetic field is applied parallel to the sample plane. By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy, Ti 3+ —V O defect complexes (or clusters) have been identified in annealed crystals at a high vacuum. We elucidate that the unpaired 3d electrons in Ti 3+ ions provide the observed room-temperature ferromagnetism. In addition, excess oxygen ions in the TiO 2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments

  14. Reactor pressure vessel thermal annealing

    International Nuclear Information System (INIS)

    Lee, A.D.

    1997-01-01

    The steel plates and/or forgings and welds in the beltline region of a reactor pressure vessel (RPV) are subject to embrittlement from neutron irradiation. This embrittlement causes the fracture toughness of the beltline materials to be less than the fracture toughness of the unirradiated material. Material properties of RPVs that have been irradiated and embrittled are recoverable through thermal annealing of the vessel. The amount of recovery primarily depends on the level of the irradiation embrittlement, the chemical composition of the steel, and the annealing temperature and time. Since annealing is an option for extending the service lives of RPVs or establishing less restrictive pressure-temperature (P-T) limits; the industry, the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) have assisted in efforts to determine the viability of thermal annealing for embrittlement recovery. General guidance for in-service annealing is provided in American Society for Testing and Materials (ASTM) Standard E 509-86. In addition, the American Society of Mechanical Engineers (ASME) Code Case N-557 addresses annealing conditions (temperature and duration), temperature monitoring, evaluation of loadings, and non-destructive examination techniques. The NRC thermal annealing rule (10 CFR 50.66) was approved by the Commission and published in the Federal Register on December 19, 1995. The Regulatory Guide on thermal annealing (RG 1.162) was processed in parallel with the rule package and was published on February 15, 1996. RG 1.162 contains a listing of issues that need to be addressed for thermal annealing of an RPV. The RG also provides alternatives for predicting re-embrittlement trends after the thermal anneal has been completed. This paper gives an overview of methodology and recent technical references that are associated with thermal annealing. Results from the DOE annealing prototype demonstration project, as well as NRC activities related to the

  15. Dielectric behavior of MgO:Li+ crystals

    International Nuclear Information System (INIS)

    Puma, M.; Lorincz, A.; Andrews, J.F.; Crawford, J.H Jr.

    1980-01-01

    Measurements of the dielectric constant in crystals of MgO doped with Li + ions have been carried out after quenching from anneals at 1300 0 C in static air. Prior to heat treatment the crystals showed no discernible dielectric loss but afterwards the loss tangent exceeded 0.4. For 10 min anneals the dielectric relaxation is very close to a Debye process and the temperature dependence of the maximum of the loss peak corresponds to an activation energy of 0.72 eV. When plotted in the form of a Cole-Cole arc the data indicate that deviation from a Debye relaxation amounts to a distribution of relaxation time no greater than that which can be accounted for with a distribution of activation energies only 0.007 eV. For longer heating times overlapping relaxation processes appear. The lack of broadening of the loss peak and the magnitude of the relaxation time yield clues as to possible loss mechanisms

  16. Dielectric behavior of MgO:Li+ crystals

    International Nuclear Information System (INIS)

    Puma, M.; Lorincz, A.; Andrews, J.F.; Crawford, J.H. Jr.

    1982-01-01

    Measurements of the dielectric constant in crystals of MgO doped with Li + ions have been carried out after quenching from anneals at 1300 0 C in static air. Prior to heat treatment, the crystals showed no discernible dielectric loss, but afterwards, the loss tangent exceeded 0.4. For 10-min anneals, the dielectric relaxation is very close to a Debye process, and the temperature dependence of the maximum of the loss peak corresponds to an activation energy of 0.724 eV. When plotted in the form of a Cole-Cole arc, the data indicate that deviation from a Debye relaxation amounts to a distribution of relaxation time no greater than that which can be accounted for with a distribution of activation energies of only 0.007 eV. For longer heating times, overlapping relaxation processes appear. The lack of broadening of the loss peak, and the magnitude of the relaxation time, yield clues as to possible loss mechanisms

  17. Effect of annealing temperature on the tribological behavior of ZnO films prepared by sol-gel method

    International Nuclear Information System (INIS)

    Lin Liyu; Kim, Dae-Eun

    2009-01-01

    The tribological behavior of zinc oxide (ZnO) films grown on glass and silicon (100) substrates by sol-gel method was investigated. Particularly, the as-coated films were post-annealed at different temperatures in air to investigate the effect of annealing temperature. Crystal structural and surface morphology of the films were measured by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). XRD patterns and AFM images indicated that the crystallinity and grain size of the films were enhanced and increased, respectively, with temperature. The tribological behavior of films was evaluated by sliding the ZnO films against a Si 3 N 4 ball under 0.5 gf normal load using a reciprocating pin-on-plate tribo-tester. The wear tracks of the films were measured by AFM to quantify the wear resistance of the films. The results showed that the wear resistance of the films could be improved by the annealing process. The wear resistance of the films generally increased with annealing temperature. Specifically, the wear resistance of the films was significantly improved when the annealing temperature was higher than 550 deg. C. The increase in the wear resistance is attributed to the increase in hardness and modulus of the film with annealing temperature

  18. The influence of annealing treatments on the properties of Ag:TiO{sub 2} nanocomposite films prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Adochite, R.C. [Centro de Fisica, Universidade do Minho, Campus de Azurem, 4800-058 Guimaraes (Portugal); Department of Materials Science and Engineering, ' Transilvania' University, 29 Eroilor Blvd., 500036 Brasov (Romania); Munteanu, D., E-mail: muntean.d@unitbv.ro [Department of Materials Science and Engineering, ' Transilvania' University, 29 Eroilor Blvd., 500036 Brasov (Romania); Torrell, M.; Cunha, L. [Centro de Fisica, Universidade do Minho, Campus de Azurem, 4800-058 Guimaraes (Portugal); Alves, E.; Barradas, N.P. [Instituto Tecnologico e Nuclear, Dept. Fisica, Apartado 21, E.N. 10, 2686-953 Sacavem (Portugal); Cavaleiro, A. [SEC-CEMUC - Universidade de Coimbra, Dept. Eng. Mecanica, Polo II, 3030-788 Coimbra (Portugal); Riviere, J.P.; Le Bourhis, E.; Eyidi, D. [Institut Pprime, UPR 3346-CNRS-Universite de Poitiers-ENSMA, SP2MI, teleport2, Bd M. et Pierre Curie, BP 30179, 86962 Futuroscope-Chasseneuil (France); Vaz, F. [Centro de Fisica, Universidade do Minho, Campus de Azurem, 4800-058 Guimaraes (Portugal)

    2012-02-01

    The present paper reports on the preparation and characterization of DC reactive magnetron sputtered Ag:TiO{sub 2} nanocomposite coatings, with a silver content of about 8 at.% (average estimation). The as-deposited samples were subjected to annealing, in a protective atmosphere, at temperatures ranging from 200 to 800 Degree-Sign C. Morphology, structure, hardness and friction behaviour were characterised after each heat treatment. The cross-sections of the films were studied by transmission electron microscopy (TEM). X-ray diffraction (XRD) was used to determine the thin-film structure and crystallinity as a function of annealing temperature. XRD analysis confirmed the presence of silver in all the samples and the crystallization of the TiO{sub 2} matrix for the samples annealed at temperatures above 300 Degree-Sign C. These structural changes were also followed by significant morphological variations, which resulted in the change of the mechanical properties of the films (hardness and Young's modulus) as well as of their tribological behaviour.

  19. Highly Efficient Organic UV Photodetectors Based on Polyfluorene and Naphthalenediimide Blends: Effect of Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Gorkem Memisoglu

    2012-01-01

    Full Text Available A solution-processed organic ultraviolet photodetector (UV-PD is introduced. The active layer of the UV-PD consists of poly(9,9-dioctyl fluorenyl-2,7–yleneethynylene (PFE and N,N′-bis-n-butyl-1,4,5,8- naphthalenediimide (BNDI with a weight ratio of 3 : 1 in chloroform. The effect of thermal annealing on the device properties was investigated from room temperature to 80∘C. The full device structure of ITO/PEDOT:PSS/PFE:BNDI (3 : 1/Al gave responsivity of 410 mA/W at −4 V under 1 mW/cm2 UV light at 368 nm when 60∘C of annealing temperature was used during its preparation. The devices that were annealed over the crystallization temperature of PFE showed a charge transfer resistance increase and a mobility decrease.

  20. Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing

    Energy Technology Data Exchange (ETDEWEB)

    Touihri, S., E-mail: s_touihri@yahoo.fr [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Arfaoui, A.; Tarchouna, Y. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Labidi, A. [Laboratoire Matériaux, Molécules et Applications, IPEST, BP 51 La Marsa 2070, Tunis (Tunisia); Amlouk, M. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Bernede, J.C. [LUNAM, Universite de Nantes, Moltech Anjou, CNRS, UMR 6200, FSTN, 2 Rue de la houssiniere, BP 92208, Nantes F-44322 (France)

    2017-02-01

    Highlights: • Thermally grown molybdenum oxide films are amorphous, oxygen deficient and gas sensing. • Air or vacuum annealing transforms them into a sub-stoichiometric MoO{sub 3−x} phase. • The samples annealed at 500 °C in oxygen were crystallized and identified as pure orthorhombic MoO{sub 3} phase. • The conduction process and sensing mechanism of MoO{sub 3-x} to ethanol have been studied. - Abstract: This paper deals with some physical investigations on molybdenum oxide thin films growing on glass substrates by the thermal evaporation method. These films have been subjected to an annealing process under vacuum, air and oxygen at various temperatures 673, 723 and 773 K. First, the physical properties of these layers were analyzed by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM) and optical measurements. These techniques have been used to investigate the oxygen index in MoO{sub x} properties during the heat treatment. Second, from the reflectance and transmittance optical measurements, it was found that the direct band gap energy value increased from 3.16 to 3.90 eV. Finally, the heat treatments reveal that the oxygen index varies in such molybdenum oxides showing noticeably sensitivity toward ethanol gas.

  1. Hydrogen concentration and distribution in high-purity germanium crystals

    International Nuclear Information System (INIS)

    Hansen, W.L.; Haller, E.E.; Luke, P.N.

    1981-10-01

    High-purity germanium crystals used for making nuclear radiation detectors are usually grown in a hydrogen ambient from a melt contained in a high-purity silica crucible. The benefits and problems encountered in using a hydrogen ambient are reviewed. A hydrogen concentration of about 2 x 10 15 cm -3 has been determined by growing crystals in hydrogen spiked with tritium and counting the tritium β-decays in detectors made from these crystals. Annealing studies show that the hydrogen is strongly bound, either to defects or as H 2 with a dissociation energy > 3 eV. This is lowered to 1.8 eV when copper is present. Etching defects in dislocation-free crystals grown in hydrogen have been found by etch stripping to have a density of about 1 x 10 7 cm -3 and are estimated to contain 10 8 H atoms each

  2. Insights into the annealing process of sol-gel TiO2 films leading to anatase development: The interrelationship between microstructure and optical properties

    Science.gov (United States)

    Blanco, E.; Domínguez, M.; González-Leal, J. M.; Márquez, E.; Outón, J.; Ramírez-del-Solar, M.

    2018-05-01

    The microstructure and optical properties of TiO2 thin films, prepared by the sol-gel dip coating technique on glass substrates, were inspected. After deposition, the films were annealed at several temperatures in the 400-850 °C range and the resulting nanostructured films were studied by different techniques showing that their structural and optical characteristics evolved significantly with the increased annealing temperature. The analysis of these results by the assumption of the Tauc Lorenz model and the use of Wemple-DiDomenico equation leads to a correlation between microstructural aspects and optical characteristics of the films. Thus, crystallization processes (nucleation, growth and phase transformation) and the evolution of films texture and thickness with increasing annealing temperatures are related with the variation of the refractive index, average gap and extinction coefficient during annealing. Finally, the free-carrier concentration in the films, estimated from the Spitzer-Fan model, ranged from 1.44 × 1019 cm-3 to 3.07 × 1019 cm-3 with the changing annealing temperature, which is in agreement with those obtained in similar anatase thin films from electrical measurement techniques.

  3. Crystallization of the amorphous Fe80Zr12B8 alloy under controlled heating

    International Nuclear Information System (INIS)

    Huang, H.; Shao, G.; Tsakiropoulos, P.

    2008-01-01

    The devitrification process of amorphous Fe 80 Zr 12 B 8 alloy ribbons were studied under controlled thermal conditions. The major crystallization event during continuous heating with differential scanning calorimetory (DSC) is dictated by diffusion controlled growth and the associated atom mobility of the slow diffusing species Zr. The existence of prior nano-crystals formed by pre-annealing below the crystallization temperature had little effect on the major crystallization temperature. The crystallization sequence during heating was: amorphous → amorphous + α-Fe + Fe 3 Zr(B) → amorphous + α-Fe + Fe 3 Zr(B) + Fe 2 Zr. Different from previous findings in alloys of lower Zr and B contents, the peak for the crystallization of the α-Fe phase alone is missing in the DSC traces of this alloy

  4. Highly oriented Bi-system bulk sample prepared by a decomposition-crystallization process

    International Nuclear Information System (INIS)

    Xi Zhengping; Zhou Lian; Ji Chunlin

    1992-01-01

    A decomposition-crystallization method, preparing highly oriented Bi-system bulk sample is reported. The effects of processing parameter, decomposition temperature, cooling rate and post-treatment condition on texture and superconductivity are investigated. The method has successfully prepared highly textured Bi-system bulk samples. High temperature annealing does not destroy the growing texture, but the cooling rate has some effect on texture and superconductivity. Annealing in N 2 /O 2 atmosphere can improve superconductivity of the textured sample. The study on the superconductivity of the Bi(Pb)-Sr-Ca-Cu-O bulk material has been reported in numerous papers. The research on J c concentrates on the tape containing the 2223 phase, with very few studies on the J c of bulk sample. The reason for the lack of studies is that the change of superconducting phases at high temperatures has not been known. The authors have reported that the 2212 phase incongruently melted at about 875 degrees C and proceeded to orient the c-axis perpendicular to the surface in the process of crystallization of the 2212 phase. Based on that result, a decomposition-crystallization method was proposed to prepare highly oriented Bi-system bulk sample. In this paper, the process is described in detail and the effects of processing parameters on texture and superconductivity are reported

  5. Very fast simulated re-annealing

    OpenAIRE

    L. Ingber

    1989-01-01

    Draft An algorithm is developed to statistically find the best global fit of a nonlinear non-convex cost-function over a D-dimensional space. It is argued that this algorithm permits an annealing schedule for ‘‘temperature’’ T decreasing exponentially in annealing-time k, T = T0 exp(−ck1/D). The introduction of re-annealing also permits adaptation to changing sensitivities in the multidimensional parameter-space. This annealing schedule is faster than fast Cauchy annealing, ...

  6. Enhancing electron transport in Si:P delta-doped devices by rapid thermal anneal

    International Nuclear Information System (INIS)

    Goh, K. E. J.; Augarten, Y.; Oberbeck, L.; Simmons, M. Y.

    2008-01-01

    We address the use of rapid thermal anneal (RTA) to enhance electron mobility and phase coherent transport in Si:P δ-doped devices encapsulated by low temperature Si molecular beam epitaxy while minimizing dopant diffusion. RTA temperatures of 500-700 deg. C were applied to δ-doped layers encapsulated at 250 deg. C. From 4.2 K magnetotransport measurements, we find that the improved crystal quality after RTA increases the mobility/mean free path by ∼40% and the phase coherence length by ∼25%. Our results suggest that the initial capping layer has near optimal crystal quality and transport improvement achieved by a RTA is limited

  7. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    Directory of Open Access Journals (Sweden)

    Md. Poostforush

    2014-04-01

    Full Text Available The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO. Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina but their transparency was preserved (Tλ550 nm ~ 72%. Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.

  8. In-situ PXRD Study on the Annealing of SrFe12O19 Nano Particles

    DEFF Research Database (Denmark)

    Gjørup, Frederik; Saura-Múzquiz, Matilde; Christensen, Mogens

    Nano sized strontium hexaferrite is synthesized using a hydrothermal flow synthesis, at temperature and pressure above waters critical point. The nano particles are hexagonal platelets, with the easy axis of magnetization along the short c-axis of the platelet. The nano powders are normally pressed...... and annealed to form mechanically stable pellets. This study uses In-situ Powder X-Ray Diffraction (PXRD) to examine the particle growth during annealing of the powder, with emphasis on the ratio between the axes of the platelets (a/c-ratio). By applying an external magnetic field before annealing......, the particles will align along the field lines of the external magnet, and the contact surfaces along the c-axis should increase. It will be examined whether the external magnetic field increases the growth along the c-axis relative to the a/b-axis, compared to annealing without prior magnetization....

  9. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.

    Science.gov (United States)

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-02

    We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  10. Measurement of ultimate tensile strength and Young modulus in LYSO scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scalise, Lorenzo, E-mail: l.scalise@univpm.it [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Rinaldi, Daniele [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia (Italy); Davi, Fabrizio [Dipartimento di Architettura Costruzioni e Strutture, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Paone, Nicola [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2011-10-21

    Scintillating crystals are employed in high energy physics, in medical imaging, diagnostic and security. Two mechanical properties of lutetium-yttrium oxyorthosilicate cerium-doped Lu{sub 2(1-x)}Y{sub 2x}SiO{sub 5}:Ce with x=0.1 (LYSO) crystals have been measured: the ultimate tensile stress ({sigma}{sub UTS}) and the Young elastic modulus (E). Measurements are made by means of a 4-points loading device and the experimental results account for an elastic-brittle stress-strain relation, which depends heavily on the specimen preparation and the material defects. {sigma}{sub UTS} along the [0 1 0] tensile direction ranges within 68.14 and 115.61 MPa, which, in the lowest case, is more than twice with respect to those measured for PbWO{sub 4} (PWO), exhibiting a marked difference between the annealed and the not-annealed samples. The mean elastic modulus (E), along the same direction, is E=1.80x10{sup 11} ({+-}2.15x10{sup 10}) N/m{sup 2}, with lower dispersion respect to UTS data. This type of analysis and study can be included into quality control procedures of crystals, based on samples taken out of production; such procedures can be established for industrial processing of crystals aimed to the high energy physics (calorimeters) and medical imaging (PET, etc.) applications.

  11. Mechanical properties and annealing texture of zirconium sheets

    International Nuclear Information System (INIS)

    Hanif-ur-Rehman; Khawaja, F.A.

    1996-01-01

    Mechanical properties like yield strength (YS), ultimate tensile strength(UTS), percentage elongation and annealing texture has been studied in sheets of commercially pure zirconium. The YS and UTS decrease as a function of annealing temperature up to 600 V, but both quantities have maximum value in sample annealed at 800 deg. C. The percentage elongation decreased with increase in annealing temperature up to 600 deg. C. A slight decrease and minimum value of percentage elongation was observed at 650 and 800 C respectively. The texture development in the annealed samples has been studied by the X-ray diffraction method. The sampled annealed at 800 deg. C showed a texture component (0001) [01 bar 10] with orientation density of about 8 times random, while the samples annealed at 600,650 and 700 deg. C showed a texture component (0001)[2 bar 110] with orientation density of about 5 times random. Thus it is concluded, that the texture component (0001)[2 bar 110] and (0001)[01 bar 10] at 650 and 800 geg. C respectively, may be the responsible for the increase in YS and UTS and decrease in percentage elongation at these temperatures. (author)

  12. Annealing behavior of alpha recoil tracks in phlogopite

    International Nuclear Information System (INIS)

    Gao Shaokai; Yuan Wanming; Dong Jinquan; Bao Zengkuan

    2005-01-01

    Alpha recoil tracks (ARTs) formed during the a-decay of U, Th as well as their daughter nuclei are used as a new dating method which is to some extent a complementarity of fission track dating due to its ability to determine the age of young mineral. ARTs can be observable under phase-contrast interference microscope through chemical etching. In order to study the annealing behavior of ARTs in phlogopite, two methods of annealing experiments were executed. Samples were annealed in the electronic tube furnace at different temperatures ranging from 250 degree C to 450 degree C in steps of 50 degree C. For any given annealing temperature, different annealing times were used until total track fading were achieved. It is found that ARTs anneal much more easily than fission tracks, the annealing ratio increase non-linearly with annealing time and temperature. Using the Arrhenius plot, an activation energy of 0.68ev is finally found for 100% removal of ARTs, which is less than the corresponding value for fission tracks (FTs). Through extending the annealing time to geological time, a much lower temperature range of the sample's cooling history can be got.

  13. Low Leakage Superconducting Tunnel Junctions with a Single Crystal Al2O3 Barrier

    Science.gov (United States)

    2016-03-30

    10-6 Torr ). In this low-pressure oxygen environment, Auger electron spectroscopy (AES) study shows that while oxidation of the base layer is...three layers were grown in situ in an ultra high vacuum (UHV) system with a nominal base pressure of ~1×10-10 Torr . First, a 120~150 nm thick...high-temperature annealing in order to crystallize the amorphous AlOx into a single-crystal Al2O3. After the sample was cooled to room temperature

  14. Thermal annealing dynamics of carbon-coated LiFePO{sub 4} nanoparticles studied by in-situ analysis

    Energy Technology Data Exchange (ETDEWEB)

    Krumeich, Frank, E-mail: krumeich@inorg.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Waser, Oliver; Pratsinis, Sotiris E. [Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich (Switzerland)

    2016-10-15

    The thermal behavior of core-shell carbon-coated lithium iron phosphate (LiFePO{sub 4}-C) nanoparticles made by flame spray pyrolysis (FSP) during annealing was investigated by in-situ transmission electron microscopy (TEM), in-situ X-ray powder diffraction (XRD) as well as ex-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Crystallization of the initially glassy LiFePO{sub 4}-C nanoparticles starts at quite low temperatures (T=400 °C), forming single crystals inside the confinement of the carbon shell. Upon increasing the temperature to T≥700 °C, LiFePO{sub 4} starts to diffuse through the carbon shell resulting in cavities inside the mostly intact carbon shell. By increasing the temperature further to T≥800 °C, the initial core-shell morphology converts into open carbon shells (flakes and cenospheres) and bulky LiFePO{sub 4} particles (diameter in the range 300–400 nm), in agreement with ex-situ experiments. - Graphical abstract: TEM images of a typical sample area recorded at room temperature and after heating in-situ heating reveal the growth of particles and the formation of empty carbon cages. - Highlights: • LiFePO{sub 4} coated by a carbon shell is produced by flame spray pyrolysis. • The amorphous LiFePO{sub 4} starts to crystallize at 400 °C as revealed by in-situ XRD. • Crystal growth was visualized by TEM heating experiments. • The formation of empty carbon cages starts at 700 °C.

  15. Thermal Annealing to Modulate the Shape Memory Behavior of a Biobased and Biocompatible Triblock Copolymer Scaffold in the Human Body Temperature Range.

    Science.gov (United States)

    Merlettini, Andrea; Gigli, Matteo; Ramella, Martina; Gualandi, Chiara; Soccio, Michelina; Boccafoschi, Francesca; Munari, Andrea; Lotti, Nadia; Focarete, Maria Letizia

    2017-08-14

    A biodegradable and biocompatible electrospun scaffold with shape memory behavior in the physiological temperature range is here presented. It was obtained starting from a specifically designed, biobased PLLA-based triblock copolymer, where the central block is poly(propylene azelate-co-propylene sebacate) (P(PAz60PSeb40)) random copolymer. Shape memory properties are determined by the contemporary presence of the low melting crystals of the P(PAz60PSeb40) block, acting as switching segment, and of the high melting crystal phase of PLLA blocks, acting as physical network. It is demonstrated that a straightforward annealing process applied to the crystal phase of the switching element gives the possibility to tune the shape recovery temperature from about 25 to 50 °C, without the need of varying the copolymer's chemical structure. The thermal annealing approach here presented can be thus considered a powerful strategy for "ad hoc" programming the same material for applications requiring different recovery temperatures. Fibroblast culture experiments demonstrated scaffold biocompatibility.

  16. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    Science.gov (United States)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  17. Microstructure, Residual Stress, Corrosion and Wear Resistance of Vacuum Annealed TiCN/TiN/Ti Films Deposited on AZ31

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Composite titanium carbonitride (TiCN thin films deposited on AZ31 by DC/RF magnetron sputtering were vacuum annealed at different temperatures. Vacuum annealing yields the following on the structure and properties of the films: the grain grows and the roughness increases with an increase of annealing temperature, the structure changes from polycrystalline to single crystal, and the distribution of each element becomes more uniform. The residual stress effectively decreases compared to the as-deposited film, and their corrosion resistance is much improved owing to the change of structure and fusion of surface defects, whereas the wear-resistance is degraded due to the grain growth and the increase of surface roughness under a certain temperature.

  18. Influence of annealing and nitrogenation on structure and magnetic properties of mechanically alloyed Sm-Fe powders

    International Nuclear Information System (INIS)

    Teresiak, A.; Kubis, M.; Mattern, N.; Wolf, M.; Mueller, K.-H.

    1998-01-01

    Sm-Fe-N compounds were prepared by mechanical alloying, subsequent annealing and nitrogenation. For crystal structure investigations of the non-equilibrium phases Sm 2 Fe 17+x and Sm 2 Fe 17+x N y , respectively, formed at the various annealing temperatures T A , XRD with following Rietveld analysis was used. For T A between 600 C and 750 C a modified hexagonal TbCu 7 structure (space group P6/mmm) was found in which the Fe(2c) site is replaced by the partially (1/3) and randomly occupied Fe(61) site. The approximated composition is SmFe 8.8-9.0 . The nitrogenated alloys crystallize in the same structure for 600 C A A ≤ 900 C a disordered modified Th 2 Zn 17 structure (space group R anti 3m) was found that is formed by introducing additional Fe (6c) and Sm(3a) positions. The degree of order of the Sm- and Fe-atoms in c-direction increases with increasing annealing temperature. The completely ordered stoichiometric Sm 2 Fe 17 structure could not be reached by annealing the ball milled elemental powders. The nitrided alloys already form this intermediate structure at T A = 750 C. The interstitial nitrogen occupies the 9e site. The estimated nitrogen content is higher in the hexagonal phases than in the rhombohedral phase. Optimum magnetic properties, in particular a coercitivity μ 01 H C = 3.7 T and a good squareness of the demagnetization curve, were obtained for T A = 750 C. Here we found a nitrogen content of y = 3 for Sm 2 Fe 17+x N y . (orig.)

  19. Simulated annealing in adaptive optics for imaging the eye retina

    International Nuclear Information System (INIS)

    Zommer, S.; Adler, J.; Lipson, S. G.; Ribak, E.

    2004-01-01

    Full Text:Adaptive optics is a method designed to correct deformed images in real time. Once the distorted wavefront is known, a deformable mirror is used to compensate the aberrations and return the wavefront to a plane wave. This study concentrates on methods that omit wave front sensing from the reconstruction process. Such methods use stochastic algorithms to find the extremum of a certain sharpness function, thereby correcting the image without any information on the wavefront. Theoretical work [l] has shown that the optical problem can be mapped onto a model for crystal roughening. The main algorithm applied is simulated annealing. We present a first hardware realization of this algorithm in an adaptive optics system designed to image the retina of the human eye

  20. Influence of annealing temperature on the structural, mechanical and wetting property of TiO2 films deposited by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Pradhan, Swati S.; Sahoo, Sambita; Pradhan, S.K.

    2010-01-01

    TiO 2 films have been deposited on silicon substrates by radio frequency magnetron sputtering of a pure Ti target in Ar/O 2 plasma. The TiO 2 films deposited at room temperature were annealed for 1 h at different temperatures ranging from 400 o C to 800 o C. The structural, morphological, mechanical properties and the wetting behavior of the as deposited and annealed films were obtained using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, nanoindentation and water contact angle (CA) measurements. The as deposited films were amorphous, and the Raman results showed that anatase phase crystallization was initiated at annealing temperature close to 400 o C. The film annealed at 400 o C showed higher hardness than the film annealed at 600 o C. In addition, the wettability of film surface was enhanced with an increase in annealing temperature from 400 o C to 800 o C, as revealed by a decrease in water CA from 87 o to 50 o . Moreover, the water CA of the films obtained before and after UV light irradiation revealed that the annealed films remained more hydrophilic than the as deposited film after irradiation.

  1. Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies

    International Nuclear Information System (INIS)

    Babonneau, D; Abadias, G; Toudert, J; Girardeau, T; Fonda, E; Micha, J S; Petroff, F

    2008-01-01

    The comprehensive study of C/FePt granular multilayers prepared by ion-beam sputtering at room temperature and subsequent annealing is reported. The as-deposited multilayers consist of carbon-encapsulated FePt nanoparticles (average size ∼3 nm) with a disordered face-centered-cubic structure. The effects of thermal annealing on the structural and magnetic properties are investigated by using dedicated ex situ and in situ techniques, including high-resolution transmission electron microscopy, extended x-ray absorption fine structure, magnetometry, and coupled grazing incidence small-angle x-ray scattering and x-ray diffraction. Our structural data show that the particle size and interparticle distance increase slightly with annealing at temperatures below 790 K by thermally activated migration of Fe and Pt atoms. We find that thermal annealing at temperatures above 870 K results in the dramatic growth of the FePt nanoparticles by coalescence and their gradual L1 0 ordering. In addition, we observe a preferential graphitization of the carbon matrix, which provides protection against oxidation for the FePt nanoparticles. Magnetization measurements indicate that progressive magnetic hardening occurs after annealing. The dependences of the blocking temperature, saturation magnetization, coercivity, and magnetocrystalline anisotropy energy on the annealing temperature are discussed on the basis of the structural data

  2. Effect of annealing on the magnetic properties and microstructure of NdFeB/Tb multilayered films

    Energy Technology Data Exchange (ETDEWEB)

    Li, D S; Suzuki, S; Liu, W F; Horikawa, T; Machida, K [Center for Advanced Science and Innovation, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: machida@casi.osaka-u.ac.jp

    2009-02-01

    The magnetic properties of NdFeB/Tb multilayered films annealed at 773-1273K were investigated by evaluating the effect of Tb spacer layer and comparing them with those of NdFeB single layered films. The as-deposited NdFeB/Tb film with a amorphous structure was crystallized at the higher annealing temperature than 923K and Nd-rich phases were formed at 1073 K, meanwhile the coercivity increased substantially. By observations of the microstructure, Tb element was found to diffuse into the Nd-rich phases to form a Tb-enriched phase around the Nd{sub 2}Fe{sub 14}B primary phase particles in the multilayered films.

  3. Effect of annealing on the magnetic properties and microstructure of NdFeB/Tb multilayered films

    International Nuclear Information System (INIS)

    Li, D S; Suzuki, S; Liu, W F; Horikawa, T; Machida, K

    2009-01-01

    The magnetic properties of NdFeB/Tb multilayered films annealed at 773-1273K were investigated by evaluating the effect of Tb spacer layer and comparing them with those of NdFeB single layered films. The as-deposited NdFeB/Tb film with a amorphous structure was crystallized at the higher annealing temperature than 923K and Nd-rich phases were formed at 1073 K, meanwhile the coercivity increased substantially. By observations of the microstructure, Tb element was found to diffuse into the Nd-rich phases to form a Tb-enriched phase around the Nd 2 Fe 14 B primary phase particles in the multilayered films.

  4. Temperature-mediated polymorphism in molecular crystals: The impact on crystal packing and charge transport

    KAUST Repository

    Stevens, Loah A.; Goetz, Katelyn P.; Fonari, Alexandr; Shu, Ying; Williamson, Rachel M.; Bredas, Jean-Luc; Coropceanu, Veaceslav P.; Jurchescu, Oana D.; Collis, Gavin E.

    2015-01-01

    We report a novel synthesis to ultra high purity 7,14-bis((trimethylsilyl)ethynyl)dibenzo[b,def]-chrysene (TMS-DBC) and the use of this material in the growth of single crystals by solution and vapor deposition techniques. We observe that the substrate temperature has a dramatic impact on the crystal growth, producing two distinct polymorphs of TMS-DBC; low temperature (LT) fine red needles and high temperature (HT) large yellow platelets. Single crystal X-ray crystallography confirms packing structures where the LT crystals form a 1D slipped-stack structure, while the HT crystals adopt a 2D brickwork motif. These polymorphs also represent a rare example where both are extremely stable and do not interconvert to the other crystal structure upon solvent or thermal annealing. Single crystal organic field-effect transistors of the LT and HT crystals show that the HT 2D brickwork motif produces hole mobilities as high as 2.1 cm2 V-1 s-1, while the mobility of the 1D structure is significantly lower, at 0.028 cm2 V-1 s-1. Electronic-structure calculations indicate that the superior charge transport in the brickwork polymorph in comparison to the slipped-stack polymorph is due to the presence of an increased dimensionality of the charge migration pathways.

  5. Temperature-mediated polymorphism in molecular crystals: The impact on crystal packing and charge transport

    KAUST Repository

    Stevens, Loah A.

    2015-01-13

    We report a novel synthesis to ultra high purity 7,14-bis((trimethylsilyl)ethynyl)dibenzo[b,def]-chrysene (TMS-DBC) and the use of this material in the growth of single crystals by solution and vapor deposition techniques. We observe that the substrate temperature has a dramatic impact on the crystal growth, producing two distinct polymorphs of TMS-DBC; low temperature (LT) fine red needles and high temperature (HT) large yellow platelets. Single crystal X-ray crystallography confirms packing structures where the LT crystals form a 1D slipped-stack structure, while the HT crystals adopt a 2D brickwork motif. These polymorphs also represent a rare example where both are extremely stable and do not interconvert to the other crystal structure upon solvent or thermal annealing. Single crystal organic field-effect transistors of the LT and HT crystals show that the HT 2D brickwork motif produces hole mobilities as high as 2.1 cm2 V-1 s-1, while the mobility of the 1D structure is significantly lower, at 0.028 cm2 V-1 s-1. Electronic-structure calculations indicate that the superior charge transport in the brickwork polymorph in comparison to the slipped-stack polymorph is due to the presence of an increased dimensionality of the charge migration pathways.

  6. The influence of annealing atmosphere on the material properties of sol-gel derived SnO2:Sb films before and after annealing

    International Nuclear Information System (INIS)

    Jeng, Jiann-Shing

    2012-01-01

    SnO 2 films with and without Sb doping were prepared by the sol-gel spin-coating method. Material properties of the SnO 2 films with different Sb contents were investigated before and after annealing under O 2 or N 2 . When SnO 2 films are annealed under N 2 or O 2 , the resistivity decreases with increasing annealing temperature, which may be related to the increased crystallinity and reduced film defects. The intensity of SnO 2 peaks for both O 2 - and N 2 -annealed films increases as the annealing temperature increases. Small nodules are revealed on the surface of SnO 2 films after annealing in N 2 or O 2 atmospheres, and some voids are present on the surface of N 2 -annealed SnO 2 films. After doping with Sb, the resistivity of SnO 2 films after annealing in O 2 is greater than that of N 2 -annealed SnO 2 films. The surface morphology of SnO 2 films incorporating different molar ratios of Sb after annealing are similar to that of as-spun SnO 2 films with adding Sb. There were no voids found on the surfaces of N 2 -annealed SnO 2 :Sb films. In addition, the peak intensity of SnO 2 :Sb films after O 2 -annealing is higher than those films after N 2 -annealing. The chemical binding states and Hall mobility of the high-temperature annealed SnO 2 films without and with adding Sb are also related to the annealing atmospheres. This study discusses the connection among the material properties of the SnO 2 films with different Sb contents and how these properties are influenced by the Sb-doping concentration and the annealing atmospheres of SnO 2 films.

  7. Effect of annealing time and NH3 flow on GaN films deposited on amorphous SiO2 by MOCVD

    Science.gov (United States)

    Li, Tianbao; Liu, Chenyang; Zhang, Zhe; Yu, Bin; Dong, Hailiang; Jia, Wei; Jia, Zhigang; Yu, Chunyan; Xu, Bingshe

    2018-05-01

    GaN polycrystalline films were successfully grown on amorphous SiO2 by metal-organic chemical vapour deposition to fabricate transferable devices using inorganic films. Field-emission scanning electron microscopy images show that by prolonging the annealing time, re-evaporation is enhanced, which reduced the uniformity of the nucleation layer and GaN films. X-ray diffraction patterns indicate that the decomposition rate of the nucleation layer increases when the annealing flow rate of NH3 is 500 sccm, which makes the unstable plane and amorphous domains decompose rapidly, thereby improving the crystallinity of the GaN films. Photoluminescence spectra also indicate the presence of fewer defects when the annealing flow rate of NH3 is 500 sccm. The excellent crystal structure of the GaN films grown under optimized conditions was revealed by transmission electron microscopy analysis. More importantly, the crystal structure and orientation of GaN grown on SiO2 are the same as that of GaN grown on conventional sapphire substrate when a buffer layer is used. This work can aid in the development of transferable devices using GaN films.

  8. Interaction of light with impurities in lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Schwesyg, Judith Renate Marie-Luise

    2011-06-06

    Congruent lithium niobate (LiNbO{sub 3}) and 5-mol% MgO-doped LiNbO{sub 3} (MgO:LN) crystals are widely used as nonlinear-optical crystals in frequency-conversion devices due to their large nonlinear-optic coefficients. These devices usually require high optical pump powers, but absorption of photons by impurities limits their usability due to heat accumulation that leads to thermo-optic refractive index changes. These refractive index changes distort the beam shape and disturb the phase-matching condition. Furthermore pyroelectric fields can build up. In this thesis the residual optical absorption in congruent LiNbO{sub 3} (CLN) and MgO:LN crystals is studied. Absorption spectra of CLN and MgO:LN crystals between 400-2000 nm reveal a residual absorption up to 0.04 cm{sup -1}. This absorption is mainly caused by transition metal impurities. Between 2300-2800 nm unknown hydrogen absorption bands in CLN and MgO:LN are revealed on the order of 0.001 cm{sup -1}. High-temperature annealing is applied to the CLN and MgO:LN crystals, which decreases optical absorption by up to one order of magnitude. As an application, the operation of a 1550-nm pumped singly-resonant CW optical parametric oscillator, resonant around 2600 nm, using a low-loss, periodically-poled, annealed CLN crystal is demonstrated. Another issue that affects CLN is photorefractive damage (PRD), i.e. light-induced refractive index changes. In contrast, MgO:LN crystals do not suffer from PRD even at high optical intensities. However, it is shown in this thesis that PRD can occur within seconds in MgO:LN, using green laser light at light intensity levels as low as 100 mW/cm{sup 2}, if the crystal is heated by several degrees Celsius during or before illumination. Photorefractive damage does not occur in CLN crystals under the same conditions. We show that the pyroelectric effect together with an elevated photoconductivity compared to that of CLN causes this beam distortion and that this effect also

  9. Interaction of light with impurities in lithium niobate crystals

    International Nuclear Information System (INIS)

    Schwesyg, Judith Renate Marie-Luise

    2011-01-01

    Congruent lithium niobate (LiNbO 3 ) and 5-mol% MgO-doped LiNbO 3 (MgO:LN) crystals are widely used as nonlinear-optical crystals in frequency-conversion devices due to their large nonlinear-optic coefficients. These devices usually require high optical pump powers, but absorption of photons by impurities limits their usability due to heat accumulation that leads to thermo-optic refractive index changes. These refractive index changes distort the beam shape and disturb the phase-matching condition. Furthermore pyroelectric fields can build up. In this thesis the residual optical absorption in congruent LiNbO 3 (CLN) and MgO:LN crystals is studied. Absorption spectra of CLN and MgO:LN crystals between 400-2000 nm reveal a residual absorption up to 0.04 cm -1 . This absorption is mainly caused by transition metal impurities. Between 2300-2800 nm unknown hydrogen absorption bands in CLN and MgO:LN are revealed on the order of 0.001 cm -1 . High-temperature annealing is applied to the CLN and MgO:LN crystals, which decreases optical absorption by up to one order of magnitude. As an application, the operation of a 1550-nm pumped singly-resonant CW optical parametric oscillator, resonant around 2600 nm, using a low-loss, periodically-poled, annealed CLN crystal is demonstrated. Another issue that affects CLN is photorefractive damage (PRD), i.e. light-induced refractive index changes. In contrast, MgO:LN crystals do not suffer from PRD even at high optical intensities. However, it is shown in this thesis that PRD can occur within seconds in MgO:LN, using green laser light at light intensity levels as low as 100 mW/cm 2 , if the crystal is heated by several degrees Celsius during or before illumination. Photorefractive damage does not occur in CLN crystals under the same conditions. We show that the pyroelectric effect together with an elevated photoconductivity compared to that of CLN causes this beam distortion and that this effect also influences frequency conversion

  10. Damage accumulation and annealing in 6H-SiC irradiated with Si+

    International Nuclear Information System (INIS)

    Jiang, W.; Weber, W.J.; Thevuthasan, S.; McCready, D.E.

    1998-01-01

    Damage accumulation and annealing in 6H-silicon carbide (α-SiC) single crystals have been studied in situ using 2.0 MeV He + RBS in a left angle 0001 right angle -axial channeling geometry (RBS/C). The damage was induced by 550 keV Si + ion implantation (30 off normal) at a temperature of -110 C, and the damage recovery was investigated by subsequent isochronal annealing (20 min) over the temperature range from -110 C to 900 C. At ion fluences below 7.5 x 10 13 Si + /cm 2 (0.04 dpa in the damage peak), only point defects appear to be created. Furthermore, the defects on the Si sublattice can be completely recovered by thermal annealing at room temperature (RT), and recovery of defects on the C sublattice is suggested. At higher fluences, amorphization occurs; however, partial damage recovery at RT is still observed, even at a fluence of 6.6 x 10 14 Si + /cm 2 (0.35 dpa in the damage peak) where a buried amorphous layer is produced. At an ion fluence of 6.0 x 10 15 Si + /cm 2 (-90 C), an amorphous layer is created from the surface to a depth of 0.6 μm. Because of recovery processes at the buried crystalline-amorphous interface, the apparent thickness of this amorphous layer decreases slightly (<10%) with increasing temperature over the range from -90 C to 600 C. (orig.)

  11. Ballistic self-annealing during ion implantation

    International Nuclear Information System (INIS)

    Prins, Johan F.

    2001-01-01

    Ion implantation conditions are considered during which the energy, dissipated in the collision cascades, is low enough to ensure that the defects, which are generated during these collisions, consist primarily of vacancies and interstitial atoms. It is proposed that ballistic self-annealing is possible when the point defect density becomes high enough, provided that none, or very few, of the interstitial atoms escape from the layer being implanted. Under these conditions, the fraction of ballistic atoms, generated within the collision cascades from substitutional sites, decreases with increasing ion dose. Furthermore, the fraction of ballistic atoms, which finally end up within vacancies, increases with increasing vacancy density. Provided the crystal structure does not collapse, a damage threshold should be approached where just as many atoms are knocked out of substitutional sites as the number of ballistic atoms that fall back into vacancies. Under these conditions, the average point defect density should approach saturation. This model is applied to recently published Raman data that have been measured on a 3 MeV He + -ion implanted diamond (Orwa et al 2000 Phys. Rev. B 62 5461). The conclusion is reached that this ballistic self-annealing model describes the latter data better than a model in which it is assumed that the saturation in radiation damage is caused by amorphization of the implanted layer. (author)

  12. Strong white photoluminescence from annealed zeolites

    International Nuclear Information System (INIS)

    Bai, Zhenhua; Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji

    2014-01-01

    The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies

  13. Study of annealing effects on the giant magnetoresistance in ferromagnetic alloys

    International Nuclear Information System (INIS)

    Ju Sheng; Li Zhenya

    2005-01-01

    A self-consistent macroscopic theory is developed to improve on that of Gu et al (1996 Phys. Rev. B 53 11685) and to provide a physical understanding of some new experimental observations in ferromagnetic alloys. For composites with non-spherical inclusions, which is the general case in artificial granular systems, previous models based on the calculation of a spherical particle in the dilute limit are inadequate. By considering the particle shape distribution and its evolution with annealing effects, we have studied the shape dependence of the giant magnetoresistance (GMR) in ferromagnetic alloys. It is found that both the particle shape and its orientation are effective factors in determining the magnitude of the GMR. Based on a comparison between our calculations and experimental data, a comprehensive picture of the effects of annealing on GMR is obtained

  14. Effect of annealing on structural and optical properties of Ni{sub (1−x)}Mn{sub x}O nanostructures thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khodair, Ziad T.; Kamil, Asaad A.; Abdalaah, Yamamah K.

    2016-12-15

    Nanostructured Nickel−Manganese oxide (Ni{sub (1−x)}Mn{sub x}O) thin films, where (x=0%, 2%, 4%, 6% and 8%) have been prepared by a simple and inexpensive chemical spray pyrolysis technique (CSP) on glass substrates at a temperature of (400 °C) and thickness of about (300 nm). The effect of annealing on structural properties has been investigated. The structural properties of these films have been studied using X-ray diffraction. The X-ray results showed that all films before and after annealing are polycrystalline in nature with cubic structure and preferred orientation along (111) plane. The average crystallite size (D{sub av}) was calculated using Scherrer formula for Nickel−Manganese oxide (Ni{sub (1−x)}Mn{sub x}O) thin films before and after annealing and it is found that the (D{sub av}) increases as the Mn-concentration increases and increases after annealing too, and the (D{sub av}) values after annealing were in the range of (11.260−19.943) nm. The Structural parameters including (Lattice Constant (a{sub ○}), Dislocation Density (δ), Number of Crystal Per Unite area (N{sub o}) and Texture coeffecient (T{sub c}) were also calculated. AFM results showed the average grain size estimated from the AFM granularity report confirms the XRD results. The optical properties of the films prepared before and after annealing were studied by recording the transmittance and absorbance spectrum in the range of (300−900) nm, the results showed that the absorbance increases with increasing the percentage of doping and it is also found that the energy band gap for the allowed direct transition decreass with increasing the percentage of doping for all films prepared before and after annealing and the values were in the range of (3.59–3.53 eV) before annealing and increased to the range of (3.64-3.57 eV) after annealing.

  15. Synthesis, crystallization behavior and surface modification of Ni-Cr-Si-Fe amorphous alloy

    International Nuclear Information System (INIS)

    Iqbal, M.; Akhter, J.I.; Rajput, M.U.; Mahmood, K.; Hussain, Z.; Hussain, S.; Rafiq, M.

    2011-01-01

    A quaternary Ni/sub 86/Cr/sub 7/Si/sub 4/Fe/sub 3/ amorphous alloy was synthesized by melt spinning technique. Surface modification was done by electron beam melting (EBM), neutron irradiation and gamma-rays. Microstructure of as cast, annealed and modified samples was examined by scanning electron microscope. Crystallization behavior was studied by annealing the samples in vacuum at different temperatures in the range 773-1073 K. Techniques of X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for characterization. Differential scanning calorimetry (DSC) was conducted at various heating rates in the range 10-40 K/min. Thermal parameters like glass transition temperature T/sub g/, crystallization temperature T/sub x/, supercooled liquid region delta T/sub x/ and reduced glass transition temperature T/sub rg/ were measured. The Ni/sub 86/Cr/sub 7/Si/sub 4/Fe/sub 3/ alloy exhibits wide supercooled liquid region of 60 K indicating good thermal stability. The activation energy was calculated to be 160 +- 4 kJ/mol using Kissinger and Ozawa equations respectively which indicates high resistance against crystallization. The XRD results of the samples annealed at 773 K, 923 K, 973 K and 1073 K/20 min show nucleation of Ni/sub 2/Cr/sub 3/ and NiCrFe crystalline phases. Vickers microhardness of the as cast ribbon was measured to be 680. About 30-50 % increase in hardness was achieved by applying EBM technique. (author)

  16. DOE's annealing prototype demonstration projects

    International Nuclear Information System (INIS)

    Warren, J.; Nakos, J.; Rochau, G.

    1997-01-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy's Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana's Marble Hill nuclear power plant. The MPR team's annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company's nuclear power plant at Midland, Michigan. This paper describes the Department's annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges

  17. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    International Nuclear Information System (INIS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-01-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd 3 Ga 3 Al 2 O 12 :0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu) 3 Ga 3 Al 2 O 12 :1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce 3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce 3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137 Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal. - Highlights: • GGAG:Ce single crystal and GLuGAG:Ce optical ceramics were fabricated. • The light yield of both ceramic and crystal G(Lu)GAG:Ce reached the level of 45,000 photons/MeV. • GLuGAG:Ce optical ceramic showed a better energy resolution of 7.1% for 662 keV. • GLuGAG:Ce ceramics exhibited lower afterglow level than that of GGAG:Ce single crystals. • The possible optimization strategies for multicomponent aluminate garnets are discussed

  18. Post-deposition thermal annealing studies of hydrogenated microcrystalline silicon deposited at 40 deg. C

    International Nuclear Information System (INIS)

    Bronsveld, P.C.P.; Wagt, H.J. van der; Rath, J.K.; Schropp, R.E.I.; Beyer, W.

    2007-01-01

    Post-deposition thermal annealing studies, including gas effusion measurements, measurements of infrared absorption versus annealing state, cross-sectional transmission electron microscopy (X-TEM) and atomic force microscopy (AFM), are used for structural characterization of hydrogenated amorphous and microcrystalline silicon films, prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at low substrate temperature (T S ). Such films are of interest for application in thin semiconductor devices deposited on cheap plastics. For T S ∼ 40 deg. C, H-evolution shows rather complicated spectra for (near-) microcrystalline material, with hydrogen effusion maxima seen at ∼ 200-250 deg. C, 380 deg. C and ∼ 450-500 deg. C, while for the amorphous material typical spectra for good-quality dense material are found. Effusion experiments of implanted He demonstrate for the microcrystalline material the presence of a rather open (void-rich) structure. A similar tendency can be concluded from Ne effusion experiments. Fourier Transform infrared (FTIR) spectra of stepwise annealed samples show Si-H bond rupture already at annealing temperatures of 150 deg. C. Combined AFM/X-TEM studies reveal a columnar microstructure for all of these (near-) microcrystalline materials, of which the open structure is the most probable explanation of the shift of the H-effusion maximum in (near-) microcrystalline material to lower temperature

  19. Positronium deuteride and hydride in MgO crystals

    OpenAIRE

    Monge, M. A.; Pareja, R.; González, R.; Chen, Y.

    1996-01-01

    Low-temperature positron lifetime and Doppler broadening measurements were made in MgO crystals containing D− or H− ions in order to investigate the temperature dependence of the positron trapping by D− and H− ions and elucidate the possible formation of PsD (PsH) states. Positrons are trapped at D− and H− ions once the oxygen vacancies, which are more effective positron traps, are eliminated by annealing the crystals at high temperatures in a reducing atmosphere. From the temperature depende...

  20. Modeling of irradiation embrittlement and annealing/recovery in pressure vessel steels

    International Nuclear Information System (INIS)

    Lott, R.G.; Freyer, P.D.

    1996-01-01

    The results of reactor pressure vessel (RPV) annealing studies are interpreted in light of the current understanding of radiation embrittlement phenomena in RPV steels. An extensive RPV irradiation embrittlement and annealing database has been compiled and the data reveal that the majority of annealing studies completed to date have employed test reactor irradiated weldments. Although test reactor and power reactor irradiations result in similar embrittlement trends, subtle differences between these two damage states can become important in the interpretation of annealing results. Microstructural studies of irradiated steels suggest that there are several different irradiation-induced microstructural features that contribute to embrittlement. The amount of annealing recovery and the post-anneal re-embrittlement behavior of a steel are determined by the annealing response of these microstructural defects. The active embrittlement mechanisms are determined largely by the irradiation temperature and the material composition. Interpretation and thorough understanding of annealing results require a model that considers the underlying physical mechanisms of embrittlement. This paper presents a framework for the construction of a physically based mechanistic model of irradiation embrittlement and annealing behavior

  1. Controllable nitrogen doping in as deposited TiO{sub 2} film and its effect on post deposition annealing

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shaoren; Devloo-Casier, Kilian; Devulder, Wouter; Dendooven, Jolien; Deduytsche, Davy; Detavernier, Christophe, E-mail: Christophe.Detavernier@ugent.be [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Gent (Belgium); Verbruggen, Sammy W. [Department of Bio-Engineering Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium and Center for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23, B-3001 Heverlee (Belgium); Lenaerts, Silvia [Department of Bio-Engineering Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Martens, Johan A. [Center for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23, B-3001 Heverlee (Belgium); Van den Berghe, Sven [SCK-CEN, Boeretang 200, B-2400 Mol (Belgium)

    2014-01-15

    In order to narrow the band gap of TiO{sub 2}, nitrogen doping by combining thermal atomic layer deposition (TALD) of TiO{sub 2} and plasma enhanced atomic layer deposition (PEALD) of TiN has been implemented. By altering the ratio between TALD TiO{sub 2} and PEALD TiN, the as synthesized TiO{sub x}N{sub y} films showed different band gaps (from 1.91 eV to 3.14 eV). In situ x-ray diffraction characterization showed that the crystallization behavior of these films changed after nitrogen doping. After annealing in helium, nitrogen doped TiO{sub 2} films crystallized into rutile phase while for the samples annealed in air a preferential growth of the anatase TiO{sub 2} along (001) orientation was observed. Photocatalytic tests of the degradation of stearic acid were done to evaluate the effect of N doping on the photocatalytic activity.

  2. The Effect of Annealing at 15000C on Migration and Release of Ion Implanted Silver in CVD Silicon Carbide

    International Nuclear Information System (INIS)

    HJ MacLean; RG Ballinger; LE Kolaya; SA Simonson; N Lewis; M Hanson

    2004-01-01

    The transport of silver in CVD β-SiC has been studied using ion implantation. Silver ions were implanted in β-SiC using the ATLAS accelerator facility at the Argonne National Laboratory. Ion beams with energies of 93 and 161 MeV were used to achieve deposition with peak concentrations at depths of approximately 9 and 13 (micro)m, respectively. As-implanted samples were then annealed at 1500 C for 210 or 480 hours. XPS, SEM, TEM, STEM, and optical methods were used to analyze the material before and after annealing. Silver concentration profiles were determined using XPS before and after annealing. STEM and SEM equipped with quantitative chemical analysis capability were used to more fully characterize the location and morphology of the silver before and after annealing. The results show that, within the uncertainty of measurement techniques, there is no silver migration, via either inter- or intragrannular paths, for the times and temperature studied. Additionally, the silver was observed to phase separate within the SiC after annealing. The irradiation damage from the implantation process resulted in a three-layer morphology in the as-implanted condition: (1) a layer of unaltered SiC, followed by (2) a layer of crystallized SiC, followed by (3) an amorphized layer which contained essentially all of the implanted silver. After annealing the layer structure changed. Layer 1 was unaltered. The grains in layer 2 recrystallized to form an epitaxial (columnar) layer. Layer 3 recrystallized to form a fine grain equiaxed layer. The results of this work do not support the long held assumption that silver release from CVD SiC, used for gas-reactor coated particle fuel, is dominated by grain boundary diffusion

  3. Experimental determination of the effects of annealing on the micro-structures and mechanical properties of cold-worked alpha-brass

    Science.gov (United States)

    Edward, Aghogho Bright; Izelu, Christopher

    2013-12-01

    Experimental determination of the effect of annealing on the microstructure and mechanical properties of a cold work 70 - 30 brass, was carried out by subjecting specimens of the material to various degrees of cold-work (20%, 40% and 60%), by straining using a tensile machine. The specimens for each degree of cold work were then annealed at 250°C, 350°C, 450°C and 600°C, for 30 minutes. The approach involves the use of metallographic techniques: grinding, polishing and etching to reveal the microstructure while tensile test was carried out on the specimen using a Monsanto tensometer so as to obtain the load/extension graph from which the tensile strength and hardness values were obtained. From the results obtained, it was conclusive that annealing produced finer grains and eliminates prior cold work whereby the material becomes ductile. However, there should be an appreciable deformation for this effect to be noticed. One important aspect of re-crystallization in structural materials is that there is a loss of strength which accompanies disappearance of the cold-worked grains when subjected to high temperature applications. Yet, it is often difficult to establish the exact range of permissible temperature. This work establishes a range for the re-crystallization of alpha brass as 350°C < TC < 450°C, where TC is the re-crystallization temperature. Thus, it will be safe to apply this material at temperatures below 350°C, without fear of structural changes with accompanying lost in strength.

  4. Stored energy and annealing behavior of heavily deformed aluminium

    DEFF Research Database (Denmark)

    Kamikawa, Naoya; Huang, Xiaoxu; Kondo, Yuka

    2012-01-01

    It has been demonstrated in previous work that a two-step annealing treatment, including a low-temperature, long-time annealing and a subsequent high-temperature annealing, is a promising route to control the microstructure of a heavily deformed metal. In the present study, structural parameters...... are quantified such as boundary spacing, misorientation angle and dislocation density for 99.99% aluminium deformed by accumulative roll-bonding to a strain of 4.8. Two different annealing processes have been applied; (i) one-step annealing for 0.5 h at 100-400°C and (ii) two-step annealing for 6 h at 175°C...... followed by 0.5 h annealing at 200-600°C, where the former treatment leads to discontinuous recrystallization and the latter to uniform structural coarsening. This behavior has been analyzed in terms of the relative change during annealing of energy stored as elastic energy in the dislocation structure...

  5. Rapid phase segregation of P3HT:PCBM composites by thermal annealing for high-performance bulk-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Fang, G.J.; Qin, P.L.; Cheng, F.; Zhao, X.Z. [Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Electronic Science and Technology, School of Physics and Technology, Wuhan (China)

    2011-12-15

    The performances of bulk-heterojunction (BHJ) solar cells are investigated for time-dependent thermal annealing with different morphology evolution scales, having special consideration for the diffusion and aggregation of fullerene derivative molecules based on blends of poly(3-hexylthiophene):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM). Meaningfully, rapid formation of dot-like and needle-like crystalline PCBM structures of a few micrometers up to 60 {mu}m in size is obtained with thermal annealing treatment from 2 to 15 min, which dynamically reflects a fast process of PCBM molecule and cluster aggregation. Upon ultrasonic-assisted processing and annealing treatment, the scale of P3HT crystals is drastically increased in view of X-ray diffraction (XRD) patterns, leading to a high hole mobility. And, the P3HT domains can be gradually converted into larger P3HT crystals approved by the decreased full width at half-maximum in the XRD patterns. Corresponding current-voltage curves are measured in quantity and we propose a model to explain the effect of the crystalline degree of P3HT domains and aggregation of PCBM molecules and clusters on the phase segregation, expressing a viewpoint towards high performance of BHJ solar cells. (orig.)

  6. Formation of oxygen related donors in step-annealed CZ–silicon

    Indian Academy of Sciences (India)

    The effect of step-annealing necessitated by the difficulties being faced in the long duration annealing treatments to be given to CZ–silicon has been studied. One pre-anneal of 10 h followed by annealing of 10 h causes a decrease in the absorption coefficient for carbon (c). Oxygen and carbon both accelerate thermal ...

  7. Solar cell structure incorporating a novel single crystal silicon material

    Science.gov (United States)

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  8. Optical and photoelectric properties of nanolamellar structures obtained by thermal annealing of InSe plates in Zn vapours

    Energy Technology Data Exchange (ETDEWEB)

    Untila, Dumitru; Evtodiev, Igor [Faculty of Physics and Engineering, Moldova State University, Chisinau (Moldova, Republic of); Ghitu Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Caraman, Iuliana [Engineering Department ' ' Vasile Alecsandri' ' , University of Bacau (Romania); Spalatu, Nicolae [Department of Materials Science, Tallinn University of Technology (Estonia); Dmitroglo, Liliana; Caraman, Mihail [Faculty of Physics and Engineering, Moldova State University, Chisinau (Moldova, Republic of)

    2018-02-15

    The structural, optical and photoelectric properties of InSe crystals grown by Bridgman-Stockbarger method and ZnSe/InSe structures obtained on InSe by thermal annealing in Zn vapours are studied in this paper. The study of structural properties confirms that ZnSe compound is formed. The analysis of photoelectric properties reveal that both the ZnSe-InSe composite layer and the composite/InSe heterojunction are photosensitive in the VIS-NIR spectral region. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Domain structures of LiNbO3 crystals grown by a floating zone technique

    International Nuclear Information System (INIS)

    Kawakami, Shoji; Ishii, Eiichi; Tsuzuki, Akihiro; Sekiya, Tadashi; Torii, Yasuyoshi; Takahashi, Akio.

    1986-01-01

    LiNbO 3 single crystals were grown from the congruently melting composition by a floating zone technique. It was confirmed by etching that the single domain crystals were produced without applying any external electric field. When annealed above the Curie temperature, antiparallel domain appeared in the form of annual rings. (author)

  10. Effects of high-temperature thermal annealing on the electronic properties of In-Ga-Zn oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qin; Song, Zhong Xiao; Ma, Fei, E-mail: mafei@mail.xjtu.edu.cn, E-mail: liyhemail@gmail.com; Li, Yan Huai, E-mail: mafei@mail.xjtu.edu.cn, E-mail: liyhemail@gmail.com [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xu, Ke Wei [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an, Shaanxi 710049, China and Department of Physics and Opt-electronic Engineering, Xi' an University of Arts and Science, Xi' an, Shaanxi 710065 (China)

    2015-03-15

    Indium gallium zinc oxide (IGZO) thin films were deposited by radio-frequency magnetron sputtering at room-temperature. Then, thermal annealing was conducted to improve the structural ordering. X-ray diffraction and high-resolution transmission electron microscopy demonstrated that the as-deposited IGZO thin films were amorphous and crystallization occurred at 800 and 950 °C. As a result of crystallization at high temperature, the carrier concentration and the Hall mobility of IGZO thin films were sharply increased, which could be ascribed to the increased oxygen vacancies and improved structural ordering of the thin films.

  11. Formation of radiation-induced point defects in silicon doped thin films upon ion implantation and activating annealing

    International Nuclear Information System (INIS)

    Bublik, V.T.; Shcherbachev, K.D.; Komarnitskaya, E.A.; Parkhomenko, Yu.N.; Vygovskaya, E.A.; Evgen'ev, S.B.

    1999-01-01

    The formation and relaxation processes for radiation-induced defects in the implantation of 50 keV Si + ions into gallium arsenide and subsequent 10-min annealing in arsine at 850 deg. C have been studied by the triple-crystal X-ray diffractometry and secondary-ion mass spectroscopy techniques. It is shown that the existence of the vacancy-enriched layer stimulating diffusion of introduced dopants into the substrate surface can significantly affect the distribution profile of the dopant in the course of preparation of thin implanted layers

  12. Preparation and Thermal Characterization of Annealed Gold Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Afarin Bahrami

    2012-01-01

    Full Text Available Porous silicon (PSi layers were formed on a p-type Si wafer. Six samples were anodised electrically with a 30 mA/cm2 fixed current density for different etching times. The samples were coated with a 50–60 nm gold layer and annealed at different temperatures under Ar flow. The morphology of the layers, before and after annealing, formed by this method was investigated by scanning electron microscopy (SEM. Photoacoustic spectroscopy (PAS measurements were carried out to measure the thermal diffusivity (TD of the PSi and Au/PSi samples. For the Au/PSi samples, the thermal diffusivity was measured before and after annealing to study the effect of annealing. Also to study the aging effect, a comparison was made between freshly annealed samples and samples 30 days after annealing.

  13. Study of fossil tracks due to 50≤Z≤92 galactic cosmic ray nuclei in meteoritic crystals: Results and perspectives

    International Nuclear Information System (INIS)

    Perelygin, V.P.; Petrova, R.I.; Stetsenko, S.G.; Brandt, R.; Vater, P.; Rebetez, M.; Spohr, R.; Vetter, J.; Perron, C.

    1999-01-01

    A new approach to the problem of investigation of charge and energy spectra of ultra heavy Galactic cosmic ray nuclei, based on fossil track study of extraterrestrial olivine crystals has been developed. The results of an investigation of ultra heavy Galactic cosmic ray nuclei (Z=50-92) in meteoritic olivine crystals are presented. The technique was based on calibration of olivine crystals with accelerated Xe, Au, Pb and U ions and well-controlled partial annealing of 'fresh' and 'fossil' tracks. It allows us to determine the charge spectra and abundances of cosmic ray nuclei based on fossil track length study in meteoritic and Moon crystals. The comparative studies of the spectra of ''fossil' tracks and tracks due to 208 Pb and 238 U nuclei have shown that the group of 210 μm 'fossil' tracks, first observed in 1980 at JINR is due to Th-U nuclei-products of recent r-process nucleosyntesis in our Galaxy. The method in principle allows one to resolve Pt-Pb peaks in fossil tracks, to establish the upper limit of the abundance of Z>110 nuclei in the Galactic cosmic rays at the level ≤10 -3 to the abundance of actinide nuclei and to get information on the history of Z>50 cosmic ray nuclei in time interval up to 220 M.Y

  14. A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films

    Science.gov (United States)

    Revaux, Amelie; Dantelle, Geraldine; George, Nathan; Seshadri, Ram; Gacoin, Thierry; Boilot, Jean-Pierre

    2011-05-01

    A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 +/- 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing.A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous

  15. In situ Spectroscopy of Solid-State Chemical Reaction in PbBr2-Deposited CsBr Crystals

    Science.gov (United States)

    Kondo, Shin-ichi; Matsunaga, Toshihiro; Saito, Tadaaki; Asada, Hiroshi

    2003-09-01

    It is possible to measure the fundamental optical absorption spectra of CsPbBr3 and Cs4PbBr6, whose stability is predicted by the study of phase diagram in the binary system CsBr-PbBr2, by means of in situ optical absorption and reflection spectroscopy of thermally induced solid-state chemical reaction in PbBr2-deposited CsBr crystals. On heavy annealing of the crystals, the Pb2+ ions are uniformly dispersed in the crystal matrix. The present experiment provides a novel method for measuring intrinsic optical absorption of ternary metal halides and also for in situ monitoring of doping metal halide crystal with impurities (metal ions or halogen ions).

  16. Structural and magnetic properties of Tb implanted ZnO single crystals

    International Nuclear Information System (INIS)

    Zhou Shengqiang; Potzger, K.; Muecklich, A.; Eichhorn, F.; Helm, M.; Skorupa, W.; Fassbender, J.

    2008-01-01

    ZnO single crystals have been implanted with Tb ions. For an atomic concentration of 1.5%, annealing at 823 K leads to an increase of the saturation magnetization per implanted Tb ion up to 1.8 μ B at room temperature. Structural investigations revealed no secondary phase formation, but the out-diffusion of Tb. No significant evidence is found for Tb substituting Zn sites either in the as-implanted or annealed samples. However, indications for the existence of a small amount of Tb nanoclusters however have been found using magnetization versus temperature measurements. The ferromagnetic properties disappear completely upon annealing at 1023 K. This behavior is related to the formation of oxide complexes or nanoparticles

  17. Nuclear reaction analysis of Ge ion-implanted ZnO bulk single crystals: The evaluation of the displacement in oxygen lattices

    Science.gov (United States)

    Kamioka, K.; Oga, T.; Izawa, Y.; Kuriyama, K.; Kushida, K.; Kinomura, A.

    2014-08-01

    The displacement of oxygen lattices in Ge ion-implanted ZnO bulk single crystals is studied by nuclear reaction analysis (NAR), photoluminescence (PL), and Van der Pauw methods. The Ge ion-implantation (net concentration: 2.6 × 1020 cm-3) into ZnO is performed using a multiple-step energy. The high resistivity of ∼103 Ω cm in un-implanted samples remarkably decreased to ∼10-2 Ω cm after implanting Ge-ion and annealing subsequently. NRA measurements of as-implanted and annealed samples suggest the existence of the lattice displacement of O atoms acting as acceptor defects. As O related defects still remain after annealing, these defects are not attributed to the origin of the low resistivity in 800 and 1000 °C annealed ZnO.

  18. Effect of Annealing Temperature and Oxygen Flow in the Properties of Ion Beam Sputtered SnO-₂x Thin Films.

    Science.gov (United States)

    Wang, Chun-Min; Huang, Chun-Chieh; Kuo, Jui-Chao; Sahu, Dipti Ranjan; Huang, Jow-Lay

    2015-08-14

    Tin oxide (SnO 2-x ) thin films were prepared under various flow ratios of O₂/(O₂ + Ar) on unheated glass substrate using the ion beam sputtering (IBS) deposition technique. This work studied the effects of the flow ratio of O₂/(O₂ + Ar), chamber pressures and post-annealing treatment on the physical properties of SnO₂ thin films. It was found that annealing affects the crystal quality of the films as seen from both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. In addition, the surface RMS roughness was measured with atomic force microscopy (AFM). Auger electron spectroscopy (AES) analysis was used to obtain the changes of elemental distribution between tin and oxygen atomic concentration. The electrical property is discussed with attention to the structure factor.

  19. A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices

    KAUST Repository

    Park, Jihoon

    2015-01-01

    We report a simple two-step annealing scheme for the fabrication of stable non-volatile memory devices employing poly(vinylidene fluoride) (PVDF) polymer thin-films. The proposed two-step annealing scheme comprises the crystallization of the ferroelectric gamma-phase during the first step and enhancement of the PVDF film dense morphology during the second step. Moreover, when we extended the processing time of the second step, we obtained good hysteresis curves down to 1 Hz, the first such report for ferroelectric PVDF films. The PVDF films also exhibit a coercive field of 113 MV m-1 and a ferroelectric polarization of 5.4 μC cm-2. © The Royal Society of Chemistry 2015.

  20. Positron Annihilation Study of Radiation Defects in Zinc Oxide

    OpenAIRE

    Tomiyama, Noriyuki; Takenaka, Minoru; Kuramoto, Eiichi

    1992-01-01

    Positron annihilation studies have been carried out to clarify the radiation induced defects in ZnO single crystals. Vapor-grown ZnO crystals were irradiated at 77 K with 28 MeV electrons. Before irradiation as-grown specimens showed the mean positron lifetime in the range of 160-195 ps. Electron irradiation increased the mean positron lifetime up to 205-210 ps.This long-lifetime disappeared until 473 K during successive isochronal annealing steps. The radiation-induced coloration was anneale...

  1. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100).

    Science.gov (United States)

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-11-06

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl₄:C₃H₈O₂) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm -1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm -1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility.

  2. Effects of flexible substrate thickness on Al-induced crystallization of amorphous Ge thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Naoki [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Toko, Kaoru, E-mail: toko@bk.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, Noriyuki; Yoshizawa, Noriko [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan); Suemasu, Takashi [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-05-29

    Amorphous germanium (a-Ge) thin films were directly crystallized on flexible plastic substrates at 325 °C using Al-induced crystallization. The thickness of the plastic substrate strongly influenced the crystal quality of the resulting polycrystalline Ge layers. Using a thicker substrate lowered the stress on the a-Ge layer during annealing, which increased the grain size and fraction of (111)-oriented grains within the Ge layer. Employing a 125-μm-thick substrate led to 95% (111)-oriented Ge with grains having an average size of 100 μm. Transmission electron microscopy demonstrated that the Ge grains had a low-defect density. Production of high-quality Ge films on plastic substrates allows for the possibility for developing Ge-based electronic and optical devices on inexpensive flexible substrates. - Highlights: • Polycrystalline Ge thin films are directly formed on flexible plastic substrates. • Al-induced crystallization allows the low-temperature growth (325 °C) of amorphous Ge. • The substrate bending during annealing strongly influences the crystal quality of poly-Ge. • A thick substrate (125 μm) leads to 95% (111)-oriented Ge with grains 100 μm in size.

  3. Effect of thermal annealing on electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2016-08-01

    Full Text Available The effect of thermal annealing on the electron spin relaxation of beryllium-doped In0.8Ga0.2As0.45P0.55 bulk was investigated by time-resolved spin-dependent pump and probe reflection measurement with a high time resolution of 200 fs. Three similar InGaAsP samples were examined one of which was annealed at 800 °C for 1 s, one was annealed at 700 °C for 1 s and the other was not annealed after crystal growth by molecular beam epitaxy. Although the carrier lifetimes of the 700 °C-annealed sample and the unannealed sample were similar, that of the 800 °C-annealed sample was extended to 11.6 (10.4 ns at 10 (300 K, which was more than two (four times those of the other samples. However, interestingly the spin relaxation time of the 800 °C-annealed sample was found to be similar to those of the other two samples. Particularly at room temperature, the spin relaxation times are 143 ps, 147 ps, and 111 ps for the 800 °C-annealed sample, 700 °C-annealed sample, and the unannealed sample, respectively.

  4. The kinetics of isothermal annealing of gamma-irradiation damage in crystalline barium nitrate

    International Nuclear Information System (INIS)

    Nair, S.M.K.; Krishnan, M.S.; James, C.

    1983-01-01

    The annealing of #betta#-irradiation damage in crystalline barium nitrate at different temperatures in the range 370 to 430 deg C is a combination of a first-order process affecting a small portion of the fragments and a second-order process, with a higher energy of activation, governing the behaviour of the remainder approx. 73%. The annealing data have been analysed on the models for simple interstitial vacancy recombination and also as a combination of a first-order and second-order process with an energy of activation of 10.9 and 24.0 kcal mole - 1 respectively. It is considered that the first-order process is the combination of close-correlated pairs of O and NO 2- fragments and the second order process involves the single reaction of random recombination of the fragments throughout the crystal. (author)

  5. Phase transformations in sputter-deposited W-doped TiO2 films during annealing in air

    International Nuclear Information System (INIS)

    Saladukhin, I. A.; Abadias, G.

    2013-01-01

    Pure and tungsten-doped TiO 2 films are characterized as amorphous in the as-deposited state by XRD. A crystallization of titanium dioxide occurs during their annealing in air. Depending on the tungsten and nitrogen doping level, anatase or rutile phase formation is observed. Both of these phases are thermally stable in all interval of the temperatures used during annealing. Phase composition and lattice parameter analysis indicates on the formation of substitutional Ti 1 -xW x O 2 films. N-doped Ti 0 .75W 0 .25O 2 film is more resistant against high-temperature oxidation as compared to Ti 0 .74W 0 .26O 2 film and, especially, as compared to Ti 0 .60W 0 .40O 2 film. (authors)

  6. Optoelectronic study and annealing stability of room temperature pulsed laser ablated ZnSe polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Taj Muhammad, E-mail: tajakashne@gmail.com; Zakria, M.; Ahmad, Mushtaq; Shakoor, Rana I.

    2014-03-15

    In principal, we described stability of the room temperature ZnSe thin films with thermal annealing deposited onto glass by pulsed laser deposition technique using third harmonic 355 nm of Nd: YAG laser beam. Optoelectronic analysis and stability with thermal annealing was described in terms of structural and optical properties. These properties were investigated via X-ray diffraction, atomic force microscope, scanning electron microscope, Raman, Fourier transform infrared and photoluminescence spectroscopies. From the strong reflection corresponding to the (1 1 1) plane (2θ=27.48°) and the longitudinal optical “LO” phonon modes at 250 cm{sup −1} and 500 cm{sup −1} in the X-ray diffraction and Raman spectra, a polycrystalline zincblende structure of the film was established. At 300 and 350 °C annealing temperatures, the film crystallites were preferentially oriented with the (1 1 1) plane parallel to the substrate and became amorphous at 400 °C. Atomic force microscopic images showed that the morphologies of ZnSe films became smooth with root mean squared roughness 9.86 nm after annealing at 300 and 350 °C while a rougher surface was observed for the amorphous film at 400 °C. Fourier transform infrared study illustrated the chemical nature and Zn–Se bonding in the deposited films. For the as-deposited and annealed samples at 300 and 350 °C, scanning electron micrographs revealed mono-dispersed indistinguishable ZnSe grains and smooth morphological structure which changed to a cracking and bumpy surface after annealing at 400 °C. The physical phenomenon of annealing induced morphological changes could be explained in terms of “structure zone model”. Excitonic emission at 456 nm was observed for both as-deposited and annealed film at 350 °C. The transmission spectrum shows oscillatory behavior because of the thin film interference and exhibited a high degree of transparency down to a wavelength ∼500 nm in the IR region. Energy band-gap was

  7. Effects of High-Temperature Annealing in Air on Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    Science.gov (United States)

    Bansal, Narottam P.

    2008-01-01

    BN/SiC-coated Hi-Nicalon fiber-reinforced celsian matrix composites (CMC) were annealed for 100 h in air at various temperatures to 1200 C, followed by flexural strength measurements at room temperature. Values of yield stress and strain, ultimate strength, and composite modulus remain almost unchanged for samples annealed up to 1100 C. A thin porous layer formed on the surface of the 1100 C annealed sample and its density decreased from 3.09 to 2.90 g/cu cm. The specimen annealed at 1200 C gained 0.43 wt%, was severely deformed, and was covered with a porous layer of thick shiny glaze which could be easily peeled off. Some gas bubbles were also present on the surface. This surface layer consisted of elongated crystals of monoclinic celsian and some amorphous phase(s). The fibers in this surface ply of the CMC had broken into small pieces. The fiber-matrix interface strength was characterized through fiber push-in technique. Values of debond stress, alpha(sub d), and frictional sliding stress, tau(sub f), for the as-fabricated CMC were 0.31+/-0.14 GPa and 10.4+/-3.1 MPa, respectively. These values compared with 0.53+/-0.47 GPa and 8.33+/-1.72 MPa for the fibers in the interior of the 1200 C annealed sample, indicating hardly any change in fiber-matrix interface strength. The effects of thermal aging on microstructure were investigated using scanning electron microscopy. Only the surface ply of the 1200 C annealed specimens had degraded from oxidation whereas the bulk interior part of the CMC was unaffected. A mechanism is proposed explaining the various steps involved during the degradation of the CMC on annealing in air at 1200 C.

  8. Influence of gaseous annealing environment on the properties of indium-tin-oxide thin films

    International Nuclear Information System (INIS)

    Wang, R.X.; Beling, C.D.; Fung, S.; Djurisic, A.B.; Ling, C.C.; Li, S.

    2005-01-01

    The influence of postannealing in different gaseous environments on the optical properties of indiu-tin-oxide (ITO) thin films deposited on glass substrates using e-beam evaporation has been systematically investigated. It is found that the annealing conditions affect the optical and electrical properties of the films. Atomic force microscopy, x-ray diffraction, and x-ray photoemission spectroscopy (XPS) were employed to obtain information on the chemical state and crystallization of the films. These data suggest that the chemical states and surface morphology of the ITO film are strongly influenced by the gaseous environment during the annealing process. The XPS data indicate that the observed variations in the optical transmittance can be explained by oxygen incorporation into the film, decomposition of the indium oxide phases, as well as the removal of metallic In

  9. The Effects of a High Magnetic Field on the Annealing of [(Fe0.5Co0.50.75B0.2Si0.05]96Nb4 Bulk Metallic Glass

    Directory of Open Access Journals (Sweden)

    Peng Jia

    2016-11-01

    Full Text Available In contrast with amorphous alloys, nanocrystalline soft magnetic materials show improved thermal stability and higher soft magnetic properties. The nanocrystalline soft magnetic composites are usually fabricated by partially crystallizing from parent amorphous alloys. This paper reports our experimental observation on the sequence of crystallization in metallic glass under a high magnetic field (HMF. An application of a HMF to bulk metallic glass (BMG of [(Fe0.5Co0.50.75B0.2Si0.05]96Nb4 prioritizes the precipitation of α-(Fe,Co phase separated from the subsequent precipitation of borides, (Fe,Co23B6, upon isothermal annealing at a glass transition temperature. Furthermore, it was observed that, through the annealing treatment under a HMF, a soft magnetic nanocomposite, in which only α-(Fe,Co phase uniformly distributes in amorphous matrix, was achieved for boron-bearing BMG. The promotion of the α-Fe or (Fe,Co phase and the prevention of the boride phases during the isothermal annealing process help to produce high-quality soft magnetic nanocomposite materials. The mechanism by which a HMF influences the crystallization sequence was interpreted via certain changes in Gibbs free energies for two ferromagnetic phases. This finding evidences that the annealing treatment under a HMF is suitable for enhancing the soft magnetic properties of high B content (Fe,Co-based bulk amorphous and nanocrystalline materials.

  10. Production of an ordered (B2) CuPd nanoalloy by low-temperature annealing under hydrogen atmosphere.

    Science.gov (United States)

    Yamauchi, Miho; Tsukuda, Tatsuya

    2011-05-14

    CuPd (1/1) nanoalloys composed of disordered body-centered-cubic crystals (crystal size = 1.6 nm) were prepared by synchronous reduction of Cu and Pd precursor ions with NaBH(4). In situ XRD measurement revealed that Cu and Pd atoms in the CuPd nanoalloys are arranged into an ordered B2 structure under exposure to H(2) (5 kPa) at 373 K. Ordering of Cu and Pd atoms over a longer distance (up to 3.6 nm) was achieved by annealing the nanoalloys for a longer time under a H(2) atmosphere.

  11. Indium Gallium Zinc Oxide: Phase Formation and Crystallization Kinetics during Millisecond Laser Spike Annealing

    Science.gov (United States)

    Lynch, David Michael

    similar to ZnO thin films. A classical nucleation and growth model is proposed and compared to alternative models proposed in literature. Extending this study of CAAC IGZO, the formation and growth of crystalline IGZO over a wide composition range and processing conditions were explored. IGZO itself is one composition of a class of homologous structures in the pseudo-binary InGaO3(ZnO)m system. For integer m, the equilibrium structure is known and well-characterized; however, for non-integer m, disorder must exist and the kinetics of the structural development remain almost completely unknown. A high-throughput (combinatorial) approach utilizing co-sputter deposition, millisecond timescale thermal gradient laser annealing, and spatially-resolved characterization using microbeam wide-angle X-ray scattering was used to probe the structural evolution as a function of temperature, time, and composition. As-deposited films were amorphous in the InGaO3- rich composition range, becoming crystalline (wurtzite) with increasing ZnO content. Under millisecond heating, films evolved toward the equilibrium layered structure consisting of nearly pure In2O3 layers with (Ga, Zn)Ox interlayers. Composition deviations (non-integer m) are discussed within a model of cationic disorder in both the In2O3 layers and the (Ga, Zn)O x layers. Crystal-tocrystal transformations in the high-ZnO region are discussed within the context of a new growth model for these homologous structures. This deeper understanding of the nature of crystalline IGZO will help to enable the successful implementation of CAAC IGZO for high-performance display applications.

  12. Synthesis of V-doped TiO{sub 2} films by chemical bath deposition and the effect of post-annealing on their properties

    Energy Technology Data Exchange (ETDEWEB)

    Shopova-Gospodinova, Denitsa [Institut fuer Materialwissenschaft, Universitaet Stuttgart, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Jeurgens, Lars P.H.; Welzel, Udo [Max-Planck-Institut fuer Intelligente Systeme (formerly MPI for Metals Research), Department Mittemeijer, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Bauermann, Luciana Pitta; Hoffmann, Rudolf C. [Institut fuer Materialwissenschaft, Universitaet Stuttgart, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Bill, Joachim, E-mail: mwishopova@imw.uni-stuttgart.de [Institut fuer Materialwissenschaft, Universitaet Stuttgart, Heisenbergstrasse 3, D-70569 Stuttgart (Germany)

    2012-07-01

    Amorphous composite films, composed of a Ti{sub 1-x}V{sub x}O{sub 2} solid-solution phase and a V{sub 2}O{sub 5} phase, were produced by chemical bath deposition and subsequently air-annealed at various temperatures up to 550 Degree-Sign C. The microstructure and chemical composition of the as-prepared and annealed films were investigated by a combinatorial experimental approach using Scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. Ultraviolet-Visible Spectrometry was applied to determine the optical band gap of the as-prepared and annealed films. It followed that the incorporation of vanadium in the as-deposited films reduces the optical band gap of TiO{sub 2} from about 3.8 eV to 3.2 eV. Annealing of the films up to 350 Degree-Sign C leads to slight increase of band gap, as attributed to a reduction of the defect density in the initially amorphous oxide films due to the gradual development of long-range order and a concurrent reduction of the V{sup 4+}-dopant concentration in the Ti{sub 1-x}V{sub x}O{sub 2} solid-solution phase. The films crystallized upon annealing in air at 550 Degree-Sign C, which resulted in drastic changes of the phase constitution, optical absorbance and surface morphology. Due to the lower solubility of V{sup 4+} in crystalline TiO{sub 2}, V{sup 4+} segregates out of the crystallizing Ti{sub 1-x}V{sub x}O{sub 2} solid-solution phase, forming crystalline V{sub 2}O{sub 5} at the film surface. - Highlights: Black-Right-Pointing-Pointer Incorporation of vanadium in TiO2 thin film reduces its optical band gap. Black-Right-Pointing-Pointer Amorphous V-doped TiO2 and TiO2-V2O5 composite films were air-annealed up to 550 Masculine-Ordinal-Indicator C. Black-Right-Pointing-Pointer Annealing of the films up to 350 Degree-Sign C leads to slight increase of the band gap.

  13. Dopant redistribution and electrical activation in silicon following ultra-low energy boron implantation and excimer laser annealing

    International Nuclear Information System (INIS)

    Whelan, S.; La Magna, A.; Privitera, V.; Mannino, G.; Italia, M.; Bongiorno, C.; Fortunato, G.; Mariucci, L.

    2003-01-01

    Excimer laser annealing (ELA) of ultra-low-energy (ULE) B-ion implanted Si has been performed. High-resolution transmission electron microscopy has been used to assess the as-implanted damage and the crystal recovery following ELA. The electrical activation and redistribution of B in Si during ELA has been investigated as a function of the laser energy density (melted depth), the implant dose, and the number of laser pulses (melt time). The activated and retained dose has been evaluated with spreading resistance profiling and secondary ion mass spectrometry. A significant amount of the implanted dopant was lost from the sample during ELA. However, the dopant that was retained in crystal material was fully activated following rapid resolidification. At an atomic concentration below the thermodynamic limit, the activation efficiency (dose activated/dose implanted into Si material) was a constant for a fixed melt depth, irrespective of the dose implanted and hence the total activated dose was raised as the implant dose was increased. The electrical activation was increased for high laser energy density annealing when the dopant was redistributed over a deeper range

  14. Comparative studies of monoclinic and orthorhombic WO3 films used for hydrogen sensor fabrication on SiC crystal

    International Nuclear Information System (INIS)

    Zuev, V V; Romanov, R I; Fominski, V Y; Grigoriev, S N; Volosova, M A; Demin, M V

    2016-01-01

    Amorphous WO x films were prepared on the SiC crystal by using two different methods, namely, reactive pulsed laser deposition (RPLD) and reactive deposition by ion sputtering (RDIS). After deposition, the WO x films were annealed in an air. The RISD film possessed a m-WO 3 structure and consisted of closely packed microcrystals. Localized swelling of the films and micro-hills growth did not destroy dense crystal packing. RPLD film had layered β-WO 3 structure with relatively smooth surface. Smoothness of the films were destroyed by localized swelling and the micro-openings formation was observed. Comparative study of m-WO 3 /SiC, Pt/m-WO 3 /SiC, and P-WO 3 /SiC samples shows that structural characteristics of the WO 3 films strongly influence on the voltage/current response as well as on the rate of current growth during H 2 detection at elevated temperatures. (paper)

  15. Investigation of PEG crystallization in frozen PEG-sucrose-water solutions. I. Characterization of the nonequilibrium behavior during freeze-thawing.

    Science.gov (United States)

    Bhatnagar, Bakul S; Martin, Susan M; Teagarden, Dirk L; Shalaev, Evgenyi Y; Suryanarayanan, Raj

    2010-06-01

    Our objective was to characterize the nonequilibrium thermal behavior of frozen aqueous solutions containing PEG and sucrose. Aqueous solutions of (i) sucrose (10%, w/v) with different concentrations of PEG (1-20%, w/v), and (ii) PEG (10%, w/v) with different concentrations of sucrose (2-20%, w/v), were cooled to -70 degrees C at 5 degrees C/min and heated to 25 degrees C at 2 degrees C/min in a differential scanning calorimeter. Annealing was performed at temperatures ranging from -50 to -20 degrees C for 2 or 6 h. Similar experiments were also performed in the low-temperature stage of a powder X-ray diffractometer. A limited number of additional DSC experiments were performed wherein the samples were cooled to -100 degrees C. In unannealed systems with a fixed sucrose concentration (10%, w/v), the T'g decreased from -35 to -48 degrees C when PEG concentration was increased from 1% to 20% (w/v). On annealing at -25 degrees C, PEG crystallized. This was evident from the increase in T'g and the appearance of a secondary melting endotherm in the DSC. Low-temperature XRD provided direct evidence of PEG crystallization. Annealing at temperatures crystallization and a devitrification event was observed above the T'g. In unannealed systems with a fixed PEG concentration (10%, w/v), the T'g increased from -50 to -40 degrees C when sucrose concentration was increased from 5% to 50%, w/v. As the annealing time increased (at -25 degrees C), the T'g approached that of a sucrose-water system, reflecting progressive PEG crystallization. A second glass transition at approximately -65 degrees C was evident in unannealed systems [10%, w/v sucrose and 10 (or 20%), w/v PEG] cooled to -100 degrees C. Investigation of the nonequilibrium behavior of frozen PEG-sucrose-water ternary system revealed phase separation in the freeze-concentrate. Annealing facilitated PEG crystallization. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  16. Microstructure evolution and crystallography of the phase-change material TiSbTe films annealed in situ

    International Nuclear Information System (INIS)

    Chen, Yong-Jin; Zhang, Bin; Ding, Qing-Qing; Deng, Qing-Song; Chen, Yan; Song, Zhi-Tang; Li, Ji-Xue; Zhang, Ze; Han, Xiao-Dong

    2016-01-01

    In this work, the morphology, crystallization process and crystal structure of the phase-change material TiSbTe (TST) alloy have been successfully established, which is essential for applying this alloy in phase-change memory. Specifically, atomic force microscopy (AFM) was employed to characterize the as-deposited and post-annealed thin films, and transmission electron microscopy (TEM) analyses of the films annealed in situ were used in combination with selected-area electron diffraction (SAED) and radial distribution function (RDF) analyses to investigate the structural evolution from the amorphous phase to the polycrystalline phase. Moreover, the presence of structures with medium-range order in amorphous TST, which is beneficial for high-speed crystallization, was indicated by the structure factors S(Q)s. The crystallization temperature was determined to be approximately 170 °C, and the grain size varied from several to dozens of nanometers. As the temperature increased, particularly above 200 °C, the first single peak of the rG(r) curves transformed into double shoulder peaks due to the increasing impact of the Ti−Te bonds. In general, the majority of Ti atoms were doped into the SbTe lattice and tended to form structural defects, whereas the remainder of the Ti atoms aggregated, leading to the appearance of TiTe 2 phase separation, as confirmed by the SAED patterns, high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images and corresponding energy-dispersive X-ray (EDX) mappings. - Highlights: • TEM morphology, SAED and RDF were used to investigate the structural evolution. • The S(Q)s implied the existence of medium range order structure in a-TST. • The rG(r) implied the impact of the Ti−Te bonds in crystallization process. • The crystallography of c-TST was revealed through Cs-HAADF-STEM and EDX.

  17. Microstructure evolution and crystallography of the phase-change material TiSbTe films annealed in situ

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong-Jin; Zhang, Bin [Beijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Ding, Qing-Qing [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Deng, Qing-Song [Beijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Chen, Yan; Song, Zhi-Tang [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Li, Ji-Xue [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Ze [Beijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Han, Xiao-Dong, E-mail: xdhan@bjut.edu.cn [Beijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2016-09-05

    In this work, the morphology, crystallization process and crystal structure of the phase-change material TiSbTe (TST) alloy have been successfully established, which is essential for applying this alloy in phase-change memory. Specifically, atomic force microscopy (AFM) was employed to characterize the as-deposited and post-annealed thin films, and transmission electron microscopy (TEM) analyses of the films annealed in situ were used in combination with selected-area electron diffraction (SAED) and radial distribution function (RDF) analyses to investigate the structural evolution from the amorphous phase to the polycrystalline phase. Moreover, the presence of structures with medium-range order in amorphous TST, which is beneficial for high-speed crystallization, was indicated by the structure factors S(Q)s. The crystallization temperature was determined to be approximately 170 °C, and the grain size varied from several to dozens of nanometers. As the temperature increased, particularly above 200 °C, the first single peak of the rG(r) curves transformed into double shoulder peaks due to the increasing impact of the Ti−Te bonds. In general, the majority of Ti atoms were doped into the SbTe lattice and tended to form structural defects, whereas the remainder of the Ti atoms aggregated, leading to the appearance of TiTe{sub 2} phase separation, as confirmed by the SAED patterns, high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images and corresponding energy-dispersive X-ray (EDX) mappings. - Highlights: • TEM morphology, SAED and RDF were used to investigate the structural evolution. • The S(Q)s implied the existence of medium range order structure in a-TST. • The rG(r) implied the impact of the Ti−Te bonds in crystallization process. • The crystallography of c-TST was revealed through Cs-HAADF-STEM and EDX.

  18. Chemical and electrical characterisation of the segregation of Al from a CuAl alloy (90%:10% wt) with thermal anneal

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, C., E-mail: conor.byrne2@mail.dcu.ie [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Brady, A.; Walsh, L.; McCoy, A.P.; Bogan, J. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); McGlynn, E. [School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Rajani, K.V. [School of Electronic Engineering, Dublin City University, Dublin 9 (Ireland); Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); School of Physical Sciences, National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-01-29

    A copper–aluminium (CuAl) alloy (90%:10% wt) has been investigated in relation to segregation of the alloying element Al, from the alloy bulk during vacuum anneal treatments. X-ray photoelectron spectroscopy (XPS) measurements were used to track the surface enrichment of Al segregating from the alloy bulk during in situ ultra-high vacuum anneals. Secondary ion mass spectroscopy (SIMS) indicates a build-up of Al at the surface of the annealed alloy relative to the bulk composition. Metal oxide semiconductor (MOS) CuAl/SiO{sub 2}/Si structures show a shift in flatband voltage upon thermal anneal consistent with the segregation of the Al to the alloy/SiO{sub 2} interface. Electrical four point probe measurements indicate that the segregation of Al from the alloy bulk following thermal annealing results in a decrease in film resistivity. X-ray diffraction data shows evidence for significant changes in crystal structure upon annealing, providing further evidence for expulsion of Al from the alloy bulk. - Highlights: • CuAl alloy (90%:Al 10% wt) deposited and vacuum annealed • XPS and SIMS data show segregation of Al from the alloy bulk. • Chemical changes seen indicate the reduction of Cu oxide and growth of Al Oxide. • Electrical measurements indicate a chemical change at the metal/SiO{sub 2} interface. • All data consistent with Cu diffusion barrier layer formed.

  19. Crystallization of the amorphous Fe{sub 80}Zr{sub 12}B{sub 8} alloy under controlled heating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. [School of Engineering (H6), University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Shao, G. [Centre for Materials Research and Innovation, University of Bolton, Bolton BL3 5AB (United Kingdom)], E-mail: G.Shao@bolton.ac.uk; Tsakiropoulos, P. [Department of Engineering Materials, Sir Robert Hadfirld Building, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2008-07-14

    The devitrification process of amorphous Fe{sub 80}Zr{sub 12}B{sub 8} alloy ribbons were studied under controlled thermal conditions. The major crystallization event during continuous heating with differential scanning calorimetory (DSC) is dictated by diffusion controlled growth and the associated atom mobility of the slow diffusing species Zr. The existence of prior nano-crystals formed by pre-annealing below the crystallization temperature had little effect on the major crystallization temperature. The crystallization sequence during heating was: amorphous {yields} amorphous + {alpha}-Fe + Fe{sub 3}Zr(B) {yields} amorphous + {alpha}-Fe + Fe{sub 3}Zr(B) + Fe{sub 2}Zr. Different from previous findings in alloys of lower Zr and B contents, the peak for the crystallization of the {alpha}-Fe phase alone is missing in the DSC traces of this alloy.

  20. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, R.; Pagan, V.R.; Kabulski, A.; Kuchibhatla, S.; Harman, J.; Kasarla, K.R.; Rodak, L.E.; Hensel, J.P.; Famouri, P.; Korakakis, D.

    2008-01-01

    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE-grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.