WorldWideScience

Sample records for crystal aluminum phosphate

  1. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte.

    Science.gov (United States)

    Mahmoud, Morsi M; Cui, Yuantao; Rohde, Magnus; Ziebert, Carlos; Link, Guido; Seifert, Hans Juergen

    2016-06-23

    Lithium aluminum germanium phosphate (LAGP) glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD) were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW) processing. Thirty GHz microwave (MW) processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM). Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.

  2. Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte

    Directory of Open Access Journals (Sweden)

    Morsi M. Mahmoud

    2016-06-01

    Full Text Available Lithium aluminum germanium phosphate (LAGP glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW processing. Thirty GHz microwave (MW processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM. Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.

  3. Crystallization Kinetics of Lithium Aluminum Germanium Phosphate Glass by DSC Technique

    Institute of Scientific and Technical Information of China (English)

    HE Kun; WANG Yanhang; ZU Chengkui; LIU Yonghua; ZHAO Huifeng; HAN Bin; CHENG Jiang

    2012-01-01

    The crystallization kinetics of Li2O-Al2O3-GeO2-P2O5 (LAGP) glass fabricated via the conventional melt-quenching method was studied by differential scanning calorimetry (DSC) under nonisothermal condition at different heating rates.The activation energy of glass transition Eg is 634.4 kJ/mol,indicating that LAGP glass is easy to crystallize at an elevated temperature.The activation energy of crystallization Ec and Avrami index n obtained from Matusita's model are 442.01 kJ/mol and 1.7,respectively.The value of n reveals that bulk crystallization predominates slightly over surface crystallization during crystallization process.LAGP glass-ceramics after different heat treatments have the same crystalline phases determined as major phase LiGe2(PO4)3,with AlPO4 and GeO2 as their impurity phases.

  4. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  5. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  6. Aluminum phosphate ceramics for waste storage

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  7. Adsorption behavior of condensed phosphate on aluminum hydroxide

    Institute of Scientific and Technical Information of China (English)

    GUAN Xiao-hong; CHEN Guang-hao; SHANG Chii

    2007-01-01

    Sodium pyrophosphate(pyro-P,Na4P207),sodium tripolyphosphate(tripoly-P,NasP3010),and sodium hexametaphosphate(metaP,(NaP03)6)were selected as the model compounds of condensed phosphate to investigate the adsorption behavior of condensed phosphate on aluminum hydroxide.The adsorption was found to be endothermic and divisible into two stages:(1)fast adsorption within 1 h:and(2)slow adsorption between 1 and 24 h.The modified Freundlich model simulated the fast adsorption stage well;the slow adsorption stage was described well by the first-order kinetics.The activation energies of pyro-P,tripoly-P,and meta-P adsorption on aluminum hydroxide were determined to be 20.2,22.8 and 10.9 kJ/mol P adsorbed,respectively,in the fast adsorption stage and to be 66.3.53.5 and 72.5 kJ/tool P adsorbed,respectively,in the slow adsorption stage.The adsorption increased the negative charge of the aluminum hydroxide surface.Transmission electron microscopy and energy dispersive X-ray analysis analyses provided evidence that the adsorption was not uniform on the surface and that the small crystals contfibuted more to the fast adsorption than the normal sites did.The results from X-ray fluorescence spectrometry and X-ray photoelectron spectroscopy tests also revealed the uneven adsorption of condensed phosphate as a function of the penetration depth.More condensed phosphates were adsorbed on the outer surface of aluminum hydroxide than in its inner parts.

  8. REFINEMENT OF THE CRYSTAL STRUCTURE OF GUANIDINIUM ALUMINUM SULFATE HEXAHYDRATE.

    Science.gov (United States)

    FERROELECTRIC CRYSTALS, * CRYSTAL STRUCTURE ), (*GUANIDINES, CRYSTAL STRUCTURE ), (*ALUMINUM COMPOUNDS, CRYSTAL STRUCTURE ), SULFATES, HYDRATES, X RAY DIFFRACTION, CHROMIUM COMPOUNDS, CRYSTAL LATTICES, CHEMICAL BONDS

  9. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  10. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    Energy Technology Data Exchange (ETDEWEB)

    Andrew W. Wang

    2002-01-01

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is shown below: 2H{sub 2} + CO = CH{sub 3}OH; 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O; H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a

  11. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    Energy Technology Data Exchange (ETDEWEB)

    Andrew W. Wang

    2002-05-15

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is: 2H{sub 2} + CO = CH{sub 3}OH 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a scaleup project

  12. MAGNETORESISTANCE AND HALL EFFECT IN SINGLE CRYSTALS OF ALUMINUM

    Science.gov (United States)

    ALUMINUM, *SINGLE CRYSTALS, CRYSTALS, HALL EFFECT , IMPURITIES, LOW PRESSURE, MAGNETIC FIELDS, MAGNETIC PROPERTIES, PARTICLE TRAJECTORIES, ELECTRICAL RESISTANCE, SOLID STATE PHYSICS, SURFACE PROPERTIES.

  13. Aluminum-phosphate binder formation in zeolites as probed with X-ray absorption microscopy.

    Science.gov (United States)

    van der Bij, Hendrik E; Cicmil, Dimitrije; Wang, Jian; Meirer, Florian; de Groot, Frank M F; Weckhuysen, Bert M

    2014-12-24

    In this work, three industrially relevant zeolites with framework topologies of MOR, FAU and FER have been explored on their ability to form an AlPO4 phase by reaction of a phosphate precursor with expelled framework aluminum. A detailed study was performed on zeolite H-mordenite, using in situ STXM and soft X-ray absorption tomography, complemented with (27)Al and (31)P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, XRD, FT-IR spectroscopy, and N2 physisorption. Extraframework aluminum was extracted from steam-dealuminated H-mordenite and shown to dominantly consist of amorphous AlO(OH). It was found that phosphoric acid readily reacts with the AlO(OH) phase in dealuminated H-mordenite and forms an extraframework amorphous AlPO4 phase. It was found that while AlPO4 crystallizes outside of the zeolitic channel system forming AlPO4 islands, AlPO4 that remains inside tends to stay more amorphous. In the case of ultrastable zeolite Y the FAU framework collapsed during phosphatation, due to extraction of framework aluminum from the lattice. However, using milder phosphatation conditions an extraframework AlPO4 α-cristobalite/tridymite phase could also be produced within the FAU framework. Finally, in steamed zeolite ferrierite with FER topology the extraframework aluminum species were trapped and therefore not accessible for phosphoric acid; hence, no AlPO4 phase could be formed within the structure. Therefore, the parameters to be taken into account in AlPO4 synthesis are the framework Si/Al ratio, stability of framework aluminum, pore dimensionality and accessibility of extraframework aluminum species.

  14. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Slack, Glen A.

    2017-06-06

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density .ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  15. Defect reduction in seeded aluminum nitride crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Stack, Glen A.

    2017-04-18

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  16. Seed selections for crystallization of calcium phosphate for phosphorus recovery

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Dietfried DONNERT; Ute BERG; Peter G. WEIDLER; Rolf NUEESCH

    2007-01-01

    Seed induces and promotes the crystallization of calcium phosphate, and acts as carrier of the recovered phosphorus (P). In order to select suitable seed for P recovery from wastewater, three seeds including Apatite (AP), Juraperle (JP) and phosphate-modified Juraperle (M-JP) were tested and compared. Batch and fixed-bed column experiments of seeded crystallization of calcium phosphate were undertaken by using synthetic wastewater with 10 mg/L P phosphate. It shows that AP has bad enduring property in the crystallization process, while JP has better performance for multiple uses, and M-JP is a hopeful seed for P recovery by crystallization of calcium phosphate.

  17. The crystallization processes in the aluminum particles production technology

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The physical and mathematical model of the crystallization process of liquid aluminum particles in the spray-jet of the ejection-type atomizer was proposed. The results of mathematical modeling of two-phase flow in the spray-jet and the crystallization process of fluid particles are given. The influence of the particle size, of the flow rate and the stagnation temperature gas in the ranges of industrial technology implemented for the production of powders aluminum of brands ASD, on the crystallization characteristics were investigated. The approximations of the characteristics of the crystallization process depending on the size of the aluminum particles on the basis of two approaches to the mathematical description of the process of crystallization of aluminum particles were obtained. The results allow to optimize the process parameters of ejection-type atomizer to produce aluminum particles with given morphology.

  18. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    . With this technique, only zeolites with relatively low Al contents were reported (Si/Al ratio about 100). In this work, the preparation of aluminum-rich mesoporous MFI-type zeolite single crystals (Si/Al similar to 16-50) using aluminum isopropoxide as the aluminum Source is reported for the first time. All samples......Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source...

  19. Study on phosphating treatment of aluminum alloy: role of yttrium oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shenglin

    2009-01-01

    Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2-4H2O (hopeite) and AIPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by po-larization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s.

  20. Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal

    Institute of Scientific and Technical Information of China (English)

    CHEN Xuechu; KONG Hainan; WU Deyi; WANG Xinze; LIN Yongyong

    2009-01-01

    Xonotlite was synthesized and tested for phosphate removal and recovery from synthetic solution in a batch mode. The effects of pH, initial calcium concentration, bicarbonate concentration on phosphate removal through crystallization were examined. The morphology and X-ray diffraction (XRD) pattern of xonotlite before and after crystallization confirmed the formation of crystalline hydroxyapatite. The results indicated that, the crystallization product had a very high P content (> 10%), which is comparable to phosphate rock at the dosage of 50-200 mg xonotlite per liter, with a maximum P content of 16.7%. The kinetics of phosphate removal followed the second-order reaction equation. The phosphate removal ability increased with increasing pH. The precipitation of calcium phosphate took place when pH is higher than 7.2, whereas the crystallization occurred at pH 6.0. A high calcium concentration can promote the removal of phosphate via crystallization, while a high bicarbonate concentration also enhanced phosphate removal through that it increased the pH and thus induced the precipitation process. When xonotlite was used to remove phosphate from wastewater, the removal efficiency could reach 91.3% after 24 h reaction time, with removal capacity 137 mg/g. The results indicated that xonotlite might be used as an effective crystal seed for the removal and recovery of phosphate from aqueous solution.

  1. Carbonate inhibits the crystallization of aluminum hydroxide in bauxite

    Energy Technology Data Exchange (ETDEWEB)

    Bardossy, G.; White, J.L.

    1979-01-01

    Although the role of anions such as nitrate, chloride, and sulfate in inhibiting the crystallization of aluminum hydroxide in soils and geological deposits is generally accepted, the dramatic effect of the carbonate ion in maintaining aluminum hydroxide gel in the amorphous form has been overlooked by most earth scientists. Examination of bauxite occurrences suggests that the inhibiting effect of carbonate is quite apparent in the smaller grain size of gibbsite in karstic bauxite deposits as compared to that in lateritic bauxite. Scarbroeite, a crystalline aluminum hydroxy carbonate, has been observed in rare instances. It is suggested that the highly reactive carbonate-containing aluminum hydroxide gells used as pharmaceutical antacids are amorphous or poorly crystalline forms of scarbroeite. The effect of the sulfate anion is also apparent in certain bauxite deposits where dissolution of gibbsite by sulfuric acid has resulted from the oxidation of pyrite, with subsequent reprecipitation of gibbsite.

  2. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies

    NARCIS (Netherlands)

    Ea, H.K.; Chobaz, V.; Nguyen, C.; Nasi, S.; Lent, P.L. van; Daudon, M.; Dessombz, A.; Bazin, D.; McCarthy, G.; Jolles-Haeberli, B.; Ives, A.; Linthoudt, D. Van; So, A.; Liote, F.; Busso, N.

    2013-01-01

    BACKGROUND: basic calcium phosphate (BCP) crystals are commonly found in osteoarthritis (OA) and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1). In vivo, IL-1

  3. High-Q aluminum nitride photonic crystal nanobeam cavities

    CERN Document Server

    Pernice, W H P; Schuck, C; Tang, H X

    2012-01-01

    We demonstrate high optical quality factors in aluminum nitride (AlN) photonic crystal nanobeam cavities. Suspended AlN photonic crystal nanobeams are fabricated in sputter-deposited AlN-on-insulator substrates using a self-protecting release process. Employing one-dimensional photonic crystal cavities coupled to integrated optical circuits we measure quality factors up to 146,000. By varying the waveguide-cavity coupling gap, extinction ratios in excess of 15 dB are obtained. Our results open the door for integrated photonic bandgap structures made from a low loss, wide-transparency, nonlinear optical material system.

  4. Aluminum-phosphate binder formation in zeolites as probed with X-ray absorption microscopy

    NARCIS (Netherlands)

    Van Der Bij, Hendrik E.; Cicmil, Dimitrije; Wang, Jian; Meirer, Florian; De Groot, Frank M F; Weckhuysen, Bert M.

    2014-01-01

    In this work, three industrially relevant zeolites with framework topologies of MOR, FAU and FER have been explored on their ability to form an AlPO4 phase by reaction of a phosphate precursor with expelled framework aluminum. A detailed study was performed on zeolite H-mordenite, using in situ STXM

  5. Aluminum-phosphate binder formation in zeolites as probed with X-ray absorption microscopy

    NARCIS (Netherlands)

    Van Der Bij, Hendrik E.; Cicmil, Dimitrije; Wang, Jian; Meirer, Florian; De Groot, Frank M F; Weckhuysen, Bert M.

    2014-01-01

    In this work, three industrially relevant zeolites with framework topologies of MOR, FAU and FER have been explored on their ability to form an AlPO4 phase by reaction of a phosphate precursor with expelled framework aluminum. A detailed study was performed on zeolite H-mordenite, using in situ STXM

  6. Performance evaluation of aluminum/phosphate cell for powering small electronic devices

    Directory of Open Access Journals (Sweden)

    Gymama Slaughter

    2015-12-01

    Full Text Available We report on an innovative membrane-free aluminum/phosphate cell based on the activation of aluminum (Al as anodic material using ZnO nanocrystal in phosphate rich electrolyte that is capable of generating sufficient power to power a light-emitting diode (LED, selected as a model of a small electronic device. The energy from the cell is periodically supplied in high power bursts due to the charge and discharge cycle of the capacitor. The entire process is controlled by a switched capacitor regulator. The Al/phosphate cell was studied in neutral 100 mM phosphate buffer solution (7.4 at a temperature of 25 °C. We demonstrate that two Al/phosphate cells connected in series can generate an open circuit voltage (Voc up to 1.66 V to continuously power a LED via a switched capacitor regulator circuit. The switched capacitor regulator circuit enabled the 1 μF capacitor to store the incoming power from the cell and discharge it in a large power burst to supply the necessary drive strength required by the LED. This new Al/phosphate cell configuration is a ‘green’ alternative to the use of glucose abiotic and biofuel cells for powering ultra-low power implantable electronic devices.

  7. Poly-Si films with low aluminum dopant containing by aluminum-induced crystallization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Typically, highly p-doped (2×10 18 cm -3 ) poly-Si films fabricated by the aluminum induced layer exchange (ALILE) process are not suitable for solar cell absorber layers. In this paper, the fabrication of high-quality, continuous polycrystalline silicon (poly-Si) films with lower doping concentrations (2×10 16 cm -3 ) using aluminum-induced crystallization (AIC) is reported. Secondary-ion-mass spectroscopy (SIMS) results showed that annealing at different temperature profiles leads to a variety of Al concentrations. Hall Effect measurements revealed that Al dopant concentration depends on the annealing temperature and temperature profile. Raman spectral analysis indicated that samples prepared via AIC contain some regions with small grains.

  8. Aluminum-rich mesoporous MFI - type zeolite single crystals

    DEFF Research Database (Denmark)

    Kustova, Marina; Kustov, Arkadii; Christensen, Christina Hviid

    2005-01-01

    Zeolitcs are crystalline materials, which are widely used as solid acid catalysts and supports in many industrial processes. Recently, mesoporous MFI-type zeolite single crystals were synthesized by use of carbon particles as a mesopore template and sodium aluminate as the aluminum Source...... are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), ammonia temperature programmed desorption (NH3-TPD), and N-2 adsorption measurements. The obtained zeolites combine the high crystallinity and the characteristic micropores of zeolites with an intracrystalline mesopore system...

  9. Poly-crystalline thin-film by aluminum induced crystallization on aluminum nitride substrate

    Science.gov (United States)

    Bhopal, Muhammad Fahad; Lee, Doo Won; Lee, Soo Hong

    2016-09-01

    Thin-film polycrystalline silicon ( pc-Si) on foreign (non-silicon) substrates has been researched by various research groups for the production of photovoltaic cells. High quality pc-Si deposition on foreign substrates with superior optical properties is considered to be the main hurdle in cell fabrication. Metal induced crystallization (MIC) is one of the renowned techniques used to produce this quality of material. In the current study, an aluminum induced crystallization (AIC) method was adopted to produce pc-Si thin-film on aluminum nitride (AlN) substrate by a seed layer approach. Aluminum and a-Si layer were deposited using an e-beam evaporator. Various annealing conditions were used in order to investigate the AIC grown pc-Si seed layers for process optimization. The effect of thermal annealing on grain size, defects preferentially crystallographic orientation of the grains were analyzed. Surface morphology was studied using an optical microscope. Poly-silicon film with a crystallinity fraction between 95-100% and an FWHM between 5-6 cm-1 is achievable at low temperatures and for short time intervals. A grain size of about 10 micron can be obtained at a low deposition rate on an AIN substrate. Similarly, Focused ion beam (FIB) also showed that at 425 °C sample B and at 400 °C sample A were fully crystallized. The crystalline quality of pc-Si was evaluated using μ-Raman spectroscopy as a function of annealed conditions and Grazing incidence X-ray diffraction (GIXRD) was used to determine the phase direction of the pc-Si layer. The current study implicates that a poly-silicon layer with good crystallographic orientation and crystallinity fraction is achievable on AIN substrate at low temperatures and short time frames.

  10. Subsurface Damage in Scratch Testing of Potassium Dihydrogen Phosphate Crystal

    Institute of Scientific and Technical Information of China (English)

    WANG Ben; WU Dongjiang; GAO Hang; KANG Renke; GUO Dongming

    2009-01-01

    Potassium dihydrogen phosphate (KDP) is an important electro-optic crystal, often used for frequency conversion and Pockels cells in large aperture laser systems. To investigate the influence of anisotropy to the depth of subsurface damage and the profiles of cracks in subsurface of KDP crystal, an experimental study was made to obtain the form of subsurface damage produced by scratches on KDP crystal in [100], [120] and [110] crystal directions on (001) crystal plane. The results indicated that there were great differences between depth and crack shape in different directions. For many slip planes in KDP, the plastic deformation and cracks generated under pressure in the subsurfacewerecomplex. Fluctuations of subsurface damage depth at transition point were attributed to the deformation of the surface which consumed more energy when the surface deformation changed from the mixed region of brittle and plastic to the complete brittle region along the scratch. Also, the process of subsurface damage from shallow to deep, from dislocation to big crack in KDP crystal with the increase of radial force and etch pit on different crystal plane were obtained. Because crystallographic orientation and processing orientation was different, etching pits on (100) crystal plane were quadrilateral while on (110) plane and (120) plane were trapezoidal and triangular, respectively.

  11. Competition between transferrin and the serum ligands citrate and phosphate for the binding of aluminum.

    Science.gov (United States)

    Harris, Wesley R; Wang, Zhepeng; Hamada, Yahia Z

    2003-05-19

    A key issue regarding the speciation of Al(3+) in serum is how well the ligands citric acid and phosphate can compete with the iron transport protein serum transferrin for the aluminum. Previous studies have attempted to measure binding constants for each ligand separately, but experimental problems make it very difficult to obtain stability constants with the accuracy required to make a meaningful comparison between these ligands. In this study, effective binding constants for Al-citrate and Al-phosphate at pH 7.4 have been determined using difference UV spectroscopy to monitor the direct competition between these ligands and transferrin. The analysis of this competition equilibrium also includes the binding of citrate and phosphate as anions to apotransferrin. The effective binding constants are 10(11.59) for the 1:1 Al-citrate complexes and 10(14.90) for the 1:2 Al-citrate complexes. The effective binding constant for the 1:2 Al-phosphate complex is 10(12.02). No 1:1 Al-phosphate complex was detected. Speciation calculations based on these effective binding constants indicate that, at serum concentrations of citrate and phosphate, citrate will be the primary low-molecular-mass ligand for aluminum. Formal stability constants for the Al-citrate system have also been determined by potentiometric methods. This equilibrium system is quite complex, and information from both electrospray mass spectrometry and difference UV experiments has been used to select the best model for fitting the potentiometric data. The mass spectra contain peaks that have been assigned to complexes having aluminum:citrate stoichiometries of 1:1, 1:2, 2:2, 2:3, and 3:3. The difference UV results were used to determine the stability constant for Al(H(-1)cta)-, which was then used in the least-squares fitting of the potentiometric data to determine stability constants for Al(Hcta)+, Al(cta), Al(cta)2(3-), Al(H(-1)cta)(cta)(4-), Al2(H(-1)cta)2(2-), and Al3(H(-1)cta)3(OH)(4-).

  12. Growth of aluminum nitride bulk crystals by sublimation

    Science.gov (United States)

    Liu, Bei

    The commercial potential of III-nitride semiconductors is already being realized by the appearance of high efficiency, high reliability, blue and green LEDS around the world. However, the lack of a native nitride substrate has hindered the full-realization of more demanding III-nitride devices. To date, single aluminum nitride (AlN) crystals are not commercially available. New process investigation is required to scale up the crystal size. New crucibles stable up to very high temperatures (˜2500°C) are needed which do not incorporate impurities into the growing crystals. In this thesis, the recent progresses in bulk AlN crystal growth by sublimation-recondensation were reviewed first. The important physical, optical and electrical properties as well as chemical and thermal stabilities of AlN were discussed. The development of different types of growth procedures including self-seeding, substrate employed and a new "sandwich" technique were covered in detail. Next, the surface morphology and composition at the initial stages of AlN grown on 6H-SiC (0001) were investigated. Discontinuous AlN coverage occurred after 15 minutes of growth. The initial discontinuous nucleation of AlN and different lateral growth of nuclei indicated discontinuous AIN direct growth on on-axis 6H-SiC substrates. At the temperature in excess of 2100°C, the durability of the furnace fixture materials (crucibles, retorts, etc.) remains a critical problem. The thermal and chemical properties and performance of several refractory materials, including tantalum carbide, niobium carbide, tungsten, graphite, and hot-pressed boron nitride (HPBN), in inert gas, as well as under AIN crystal growth conditions were discussed. TaC and NbC are the most stable crucible materials in the crystal growth system. HPBN crucible is more suitable for AlN self-seeding growth, as crystals tend to nucleate in thin colorless platelets with low dislocation density. Finally, clear and colorless thin platelet Al

  13. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies.

    Directory of Open Access Journals (Sweden)

    Hang-Korng Ea

    Full Text Available basic calcium phosphate (BCP crystals are commonly found in osteoarthritis (OA and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1. In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals.synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages.intra-articular BCP crystals can elicit synovial inflammation and cartilage degradation suggesting that BCP crystals have a direct

  14. Pathogenic Role of Basic Calcium Phosphate Crystals in Destructive Arthropathies

    Science.gov (United States)

    Ea, Hang-Korng; Chobaz, Véronique; Nguyen, Christelle; Nasi, Sonia; van Lent, Peter; Daudon, Michel; Dessombz, Arnaud; Bazin, Dominique; McCarthy, Geraldine; Jolles-Haeberli, Brigitte; Ives, Annette; Van Linthoudt, Daniel; So, Alexander; Lioté, Frédéric; Busso, Nathalie

    2013-01-01

    Background basic calcium phosphate (BCP) crystals are commonly found in osteoarthritis (OA) and are associated with cartilage destruction. BCP crystals induce in vitro catabolic responses with the production of metalloproteases and inflammatory cytokines such as interleukin-1 (IL-1). In vivo, IL-1 production induced by BCP crystals is both dependant and independent of NLRP3 inflammasome. We aimed to clarify 1/ the role of BCP crystals in cartilage destruction and 2/ the role of IL-1 and NLRP3 inflammasome in cartilage degradation related to BCP crystals. Methodology/ Principal Findings synovial membranes isolated from OA knees were analysed by alizarin Red and FTIR. Pyrogen free BCP crystals were injected into right knees of WT, NLRP3 -/-, ASC -/-, IL-1α -/- and IL-1β-/- mice and PBS was injected into left knees. To assess the role of IL-1, WT mice were treated by intra-peritoneal injections of anakinra, the IL-1Ra recombinant protein, or PBS. Articular destruction was studied at d4, d17 and d30 assessing synovial inflammation, proteoglycan loss and chondrocyte apoptosis. BCP crystals were frequently found in OA synovial membranes including low grade OA. BCP crystals injected into murine knee joints provoked synovial inflammation characterized by synovial macrophage infiltration that persisted at day 30, cartilage degradation as evidenced by loss of proteoglycan staining by Safranin-O and concomitant expression of VDIPEN epitopes, and increased chondrocyte apoptosis. BCP crystal-induced synovitis was totally independent of IL-1α and IL-1β signalling and no alterations of inflammation were observed in mice deficient for components of the NLRP3-inflammasome, IL-1α or IL-1β. Similarly, treatment with anakinra did not prevent BCP crystal effects. In vitro, BCP crystals elicited enhanced transcription of matrix degrading and pro-inflammatory genes in macrophages. Conclusions/ Significance intra-articular BCP crystals can elicit synovial inflammation and cartilage

  15. Aluminum nitride bulk crystal growth in a resistively heated reactor

    Science.gov (United States)

    Dalmau, Rafael Federico

    A resistively heated reactor capable of temperatures in excess of 2300°C was used to grow aluminum nitride (AlN) bulk single crystals from an AlN powder source by physical vapor transport (PVT) in nitrogen atmosphere. AlN crystals were grown at elevated temperatures by two different methods. Self-seeded crystals were obtained by spontaneous nucleation on the crucible walls, while seeded growth was performed on singular and vicinal (0001) surfaces of silicon carbide (SiC) seeds. During self-seeded growth experiments a variety of crucible materials, such as boron nitride, tungsten, tantalum, rhenium, tantalum nitride, and tantalum carbide, were evaluated. These studies showed that the morphology of crystals grown by spontaneous nucleation strongly depends on the growth temperature and contamination in the reactor. Crucible selection had a profound effect on contamination in the crystal growth environment, influencing nucleation, coalescence, and crystal morphology. In terms of high-temperature stability and compatibility with the growth process, the best results for AlN crystal growth were obtained in crucibles made of sintered tantalum carbide or tantalum nitride. In addition, contamination from the commercially purchased AlN powder source was reduced by presintering the powder prior to growth, which resulted in a drastic reduction of nearly all impurities. Spontaneously grown single crystals up to 15 mm in size were characterized by x-ray diffraction, x-ray topography, glow discharge mass spectrometry, and secondary ion mass spectrometry. Average dislocation densities were on the order of 103 cm -3, with extended areas virtually free of dislocations. High resolution rocking curves routinely showed peak widths as narrow as 7 arcsec, indicating a high degree of crystalline perfection. Low-temperature partially polarized optical reflectance measurements were used to calculate the crystal-field splitting parameter of AlN, Deltacr = -230 meV, and a low-temperature (1

  16. Crystal growth of aragonite in the presence of phosphate

    Science.gov (United States)

    Tadier, Solène; Rokidi, Stamatia; Rey, Christian; Combes, Christèle; Koutsoukos, Petros G.

    2017-01-01

    The crystal growth of aragonite was investigated at pH 7.8, 37 °C and constant solution supersaturation from aragonite-seeded supersaturated solutions. The effect of the presence of orthophosphate ions in the supersaturated solution on the kinetics of crystallization of aragonite was investigated over the range of orthophosphate concentrations of 0.25 μM-1 mM. In the presence of orthophosphate in the range of 0.25 μM-8 μM, the crystal growth rate of aragonite decreased with increasing phosphate concentration. At orthophosphate concentration levels exceeding 2 μM, induction times were measured and were found to increase with orthophosphate concentration. At orthophosphate concentration levels >8 μM, the crystal growth of aragonite was inhibited, suggesting the blockage of the active growth sites by the adsorption of orthophosphate ions. Adsorption was confirmed by the investigation of orthophosphate uptake on aragonite, which was: i) found to depend on the equilibrium concentration of orthophosphate in aqueous solutions saturated with respect to aragonite; ii) not influenced by the ionic strength of the electrolyte up to 0.15 M NaCl, showing that electrostatic interactions between orthophosphate and CaCO3 did not play a significant role in this concentration range. Adsorption data of orthophosphate on the aragonite crystals gave satisfactory fit to the Langmuir adsorption model and was confirmed by XPS analysis.

  17. Crystal Growth Models of Dexamethasone Sodium Phosphate in a MSMPR Reactive Crystallizer

    Institute of Scientific and Technical Information of China (English)

    郝红勋; 王静康; 王永莉; 侯宝红

    2005-01-01

    The reactive crystallization process of dexamethasone sodium phosphate was investigated in a continuous mixed-suspension, mixed-product-removal(MSMPR) crystallizer. Analyzing experimental data, it was found that the growth of product crystal was size-dependent. The Bransom, CR, ASL, M J2 and M J3 size-dependent growth models were discussed in details. Using experimental steady state population density data of dexamethasone sodium phosphate, parameters of five size-dependent growth models were determined by the method of non-linear least-squares. By comparison of experimental population density and linear growth rate data with those obtained from the five size-dependent growth models, it was found that the MJ3 model predicts the growth more accurately than do the other four models. Based on the theory of population balance, the crystal nucleation and growth rate equations of dexamethasone sodium phosphate were determined by non-linear regression method. The effects of different operation parameters such as supersaturation, magma density and temperature on the quality of product crystal were also discussed, and the optimal operation conditions were derived.

  18. Molecular mechanisms of crystallization impacting calcium phosphate cements

    Science.gov (United States)

    Giocondi, Jennifer L.; El-Dasher, Bassem S.; Nancollas, George H.; Orme, Christine A.

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. PMID:20308110

  19. Molecular mechanisms of crystallization impacting calcium phosphate cements.

    Science.gov (United States)

    Giocondi, Jennifer L; El-Dasher, Bassem S; Nancollas, George H; Orme, Christine A

    2010-04-28

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO(4).2H(2)O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite's excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives.

  20. Crystallization Behavior of Phosphate Glasses with Hydrophobic Coating Materials

    Directory of Open Access Journals (Sweden)

    Jaeyeop Chung

    2015-01-01

    Full Text Available We analyzed the effect of the addition of Li2O3, TiO2, and Fe2O3 on the crystallization behavior of P2O5–CaO–SiO2–K2O glasses and the effect of the crystallization behavior on the roughness and hydrophobicity of the coated surface. Exothermic behavior, including a strong exothermic peak in the 833–972 K temperature range when Fe2O3, TiO2, or Li2O3 was added, was confirmed by differential thermal analysis. The modified glass samples (PFTL1–3 showed diffraction peaks when heated at 1073 and 1123 K for 5 min; the crystallized phase corresponds to Fe3(PO42, that is, graftonite. We confirmed that the intensity of the diffraction peaks increases at high temperatures and with increasing Li2O3 content. In the case of the PFTL3 glass, a Li3Fe2(PO42 phase, that is, trilithium diiron(III tris[phosphate(V], was observed. Through scanning electron microscopy and the contact angles of the surfaces with water, we confirmed that the increase in surface roughness, correlated to the crystallization of the glass frit, increases hydrophobicity of the surface. The calculated values of the local activation energies for the growth of Fe3(PO42 on the PTFL1, PTFL2, and PFTL3 glass were 237–292 kJ mol−1, 182–258 kJ mol−1, and 180–235 kJ mol−1.

  1. Inactivation of Bakers' yeast glucose-6-phosphate dehydrogenase by aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungwoo; Joshi, J.G. (Univ. of Tennessee, Knoxville (USA))

    1989-04-18

    Preincubation of yeast glucose-6-phosphate dehydrogenase (G6PD) with Al(III) produced an inactive enzyme containing 1 mol of Al(III)/mol of enzyme subunit. None of the enzyme-bound Al(III) was dissociated by dialysis against 10 mM Tris-HCl, pH 7.0, containing 0.2 mM EDTA at 4{degree}C for 24 h. Citrate, NADP{sup +}, EDTA, or NaF protected the enzyme against the Al(III) inactivation. The Al(III)-inactivated enzyme, however, was completely reactivated only by citrate and NaF. The dissociation constant for the enzyme-aluminum complex was calculated to be 4 {times} 10{sup {minus}6} M with NaF, a known reversible chelator for aluminum. Modification of histidine and lysine residues of the enzyme with diethyl pyrocarbonate and acetylsalicylic acid, respectively, inactivated the enzyme. However, the modified enzyme still bound 1 mol of Al(III)/mol of enzyme subunit. Circular dichroism studies showed that the binding of Al(III) to the enzyme induced a decrease in {alpha}-helix and {beta}-sheet and an increase in random coil. Therefore, it is suggested that inactivation of G6PD by Al(III) is due to the conformational change induced by Al(III) binding.

  2. Electrochemical potentials of layered oxide and olivine phosphate with aluminum substitution: A first principles study

    Indian Academy of Sciences (India)

    Arun Kumar Varanasi; Phani Kanth Sanagavarapu; Arghya Bhowmik; Mridula Dixit Bharadwaj; Balasubramanian Narayana; Umesh V Waghmare; Dipti Deodhare; Alind Sharma

    2013-12-01

    First-principles prediction of enhancement in the electrochemical potential of LiCoO2 with aluminum substitution has been realized through earlier experiments. For safer and less expensive Li-ion batteries, it is desirable to have a similar enhancement for alternative cathode materials, LiFePO4 and LiCoPO4. Here, we present first-principles density functional theory based analysis of the effects of aluminum substitution on electrochemical potential of LiCoO2, LiFePO4 and LiCoPO4. While Al substitution for transition metal results in increase in electrochemical potential of LiCoO2, it leads to reduction in LiFePO4 and LiCoPO4. Through comparative topological analysis of charge density of these materials, we identify a ratio of Bader charges that correlates with electrochemical potential and determine the chemical origin of these contrasting effects: while electronic charge from lithium is transferred largely to oxygen in LiCoO2, it gets shared by the oxygen and Co/Fe in olivine phosphates due to strong covalency between O and Co/Fe. Our work shows that covalency of transition metal–oxygen bond plays a key role in determining battery potential.

  3. Crystal structure of hydrazine iron(III) phosphate, the first transition metal phosphate containing hydrazine.

    Science.gov (United States)

    David, Renald

    2015-12-01

    The title compound, poly[(μ2-hydrazine)(μ4-phosphato)iron(III)], [Fe(PO4)(N2H4)] n , was prepared under hydro-thermal conditions. Its asymmetric unit contains one Fe(III) atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The Fe(III) atom is bound to four O atoms of symmetry-related PO4 tetra-hedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octa-hedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetra-hedron bridges four Fe(III) atoms and each hydrazine ligand bridges two Fe(III) atoms. The H atoms of the hydrazine ligands are also involved in moderate N-H⋯O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4)(N2H4)] and [Mn(SO4)(N2H4)].

  4. Crystal structure of hydrazine iron(III phosphate, the first transition metal phosphate containing hydrazine

    Directory of Open Access Journals (Sweden)

    Renald David

    2015-12-01

    Full Text Available The title compound, poly[(μ2-hydrazine(μ4-phosphatoiron(III], [Fe(PO4(N2H4]n, was prepared under hydrothermal conditions. Its asymmetric unit contains one FeIII atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The FeIII atom is bound to four O atoms of symmetry-related PO4 tetrahedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octahedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetrahedron bridges four FeIII atoms and each hydrazine ligand bridges two FeIII atoms. The H atoms of the hydrazine ligands are also involved in moderate N—H...O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4(N2H4] and [Mn(SO4(N2H4].

  5. Two-Stage Separation of V(IV) and Al(III) by Crystallization and Solvent Extraction from Aluminum-Rich Sulfuric Acid Leaching Solution of Stone Coal

    Science.gov (United States)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing; Liu, Hong

    2016-12-01

    To improve separation of V(IV) and Al(III) from aluminum-rich sulfuric acid leaching solution of stone coal, the two-stage separation by crystallization and solvent extraction methods have been developed. A co-extraction coefficient (k) was put forward to evaluate comprehensively co-extraction extent in different solutions. In the crystallization stage, 68.2% of aluminum can be removed from the solution. In the solvent extraction stage, vanadium was selectively extracted using di-2-ethylhexyl phosphoric acid/tri-n-butyl phosphate from the crystalline mother solution, followed by H2SO4 stripped efficiently. A V2O5 product with purity of 98.39% and only 0.10% Al was obtained after oxidation, precipitation, and calcination. Compared with vanadium extraction from solution without crystallization, the counter-current extraction stage of vanadium can be decreased from 6 to 3 and co-extraction coefficient (k) decreased from 2.51 to 0.58 with two-stage separation. It is suggested that the aluminum removal by crystallization can evidently weaken the influence of aluminum co-extraction on vanadium extraction and improve the selectivity of solvent extraction for vanadium.

  6. The gypsum-brushite system: crystallization from solutions poisoned by phosphate ions

    Science.gov (United States)

    Rinaudo, C.; Lanfranco, A. M.; Boistelle, R.

    1996-01-01

    Gypsum and a non-stoichiometric calcium phosphate sulphate hydrate (CPSH) were grown from solutions poisoned by phosphate ions. The pH ranged from 4.7 to 5.6 and the sulphate over phosphate ratios from 1.5 to 9. In some cases, when the phosphate concentration was high (30%-40%) CPSH was stable. When the phosphate concentration was lower (10%-20%), CPSH formed as first phase in association with gypsum, but dissolved as soon as gypsum crystallized and grew at its expense. In that case, gypsum contained up to 10% phosphate. On the other hand, when gypsum crystallized alone, as first phase, it did not contain detectable amounts of phosphate.

  7. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    Science.gov (United States)

    Gorelik, V. S.; Voinov, Yu. P.; Shchavlev, V. V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2016-12-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  8. A study about some phosphate derivatives as inhibitors of calcium oxalate crystal growth

    Science.gov (United States)

    Grases, F.; March, P.

    1989-08-01

    The kinetic of crystal growth of calcium oxalate monohydrate seed crystals were investigated potentiometrically in the presence of several phosphate derivatives, D-fructose-1,6-diphosphate, pyrophosphate, methylene diphosphonate and phytate, and it was found that in some cases they strongly inhibited crystal growth. The inhibitory action of the different substances assayed was comparatively evaluated.

  9. Alkaline aluminum phosphate glasses for thermal ion-exchanged optical waveguide

    Science.gov (United States)

    Wang, Fei; Chen, Baojie; Pun, Edwin Yue Bun; Lin, Hai

    2015-04-01

    Alkaline aluminum phosphate glasses (NMAP) with excellent chemical durability for thermal ion-exchanged optical waveguide have been designed and investigated. The transition temperature Tg (470 °C) is higher than the ion-exchange temperature (390 °C), which is favorable to sustain the stability of the glass structure for planar waveguide fabrication. The effective diffusion coefficient De of K+-Na+ ion exchange in NMAP glasses is 0.110 μm2/min, indicating that ion exchange can be achieved efficiently in the optical glasses. Single-mode channel waveguide has been fabricated on Er3+/Yb3+ doped NMAP glass substrate by standard micro-fabrication and K+-Na+ ion exchange. The mode field diameter is 9.6 μm in the horizontal direction and 6.0 μm in the vertical direction, respectively, indicating an excellent overlap with a standard single-mode fiber. Judd-Ofelt intensity parameter Ω2 is 5.47 × 10-20 cm2, implying a strong asymmetrical and covalent environment around Er3+ in the optical glasses. The full width at half maximum and maximum stimulated emission cross section of the 4I13/2 → 4I15/2 are 30 nm and 6.80 × 10-21 cm2, respectively, demonstrating that the phosphate glasses are potential glass candidates in developing compact optoelectronic devices. Pr3+, Tm3+ and Ho3+ doped NMAP glasses are promising candidates to fabricate waveguide amplifiers and lasers operating at special telecommunication windows.

  10. Complex rare-earth aluminum hydrides: mechanochemical preparation, crystal structure and potential for hydrogen storage.

    Science.gov (United States)

    Weidenthaler, Claudia; Pommerin, André; Felderhoff, Michael; Sun, Wenhao; Wolverton, Christopher; Bogdanović, Borislav; Schüth, Ferdi

    2009-11-25

    A novel type of complex rare-earth aluminum hydride was prepared by mechanochemical preparation. The crystal structure of the REAlH(6) (with RE = La, Ce, Pr, Nd) compounds was calculated by DFT methods and confirmed by preliminary structure refinements. The trigonal crystal structure consists of isolated [AlH(6)](3-) octahedra bridged via [12] coordinated RE cations. The investigation of the rare-earth aluminum hydrides during thermolysis shows a decrease of thermal stability with increasing atomic number of the RE element. Rare-earth hydrides (REH(x)) are formed as primary dehydrogenation products; the final products are RE-aluminum alloys. The calculated decomposition enthalpies of the rare-earth aluminum hydrides are at the lower end for reversible hydrogenation under moderate conditions. Even though these materials may require somewhat higher pressures and/or lower temperatures for rehydrogenation, they are interesting examples of low-temperature metal hydrides for which reversibility might be reached.

  11. Inhibition effect of phosphate on the crystal grain growth of nanosized titania

    Institute of Scientific and Technical Information of China (English)

    FENG Xiaohui; LIE Jingze; LI Ping; ZHANG Yanfeng; WEI Yu

    2009-01-01

    The inhibitory effect of phosphate on the crystal grain growth of nanosized titania during high temperature calcination was investigated. Nanosized titanium dioxide powders prepared by hydrolysis of titanium tetrachloride were soaked in phosphate solutions with different con-centrations. The obtained powders calcined at various temperatures were characterized by X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), and X-ray photoelectronic spectroscopy (XPS). The grain size of the samples without phosphate treatment in-creased quickly when calcined at high temperatures, while the grain size of the samples with phosphate modification increased slowly when calcined at the same temperature. This phenomenon implies that phosphate treatment plays an important role in inhibiting the crystal grain growth of titania. The possible mechanism of the inhibition effect of phosphate on titania is discussed.

  12. Comparison of the cost and efficiency of Aluminum and Iron electrodes application in the removal of phosphate, nitrate, and COD from laundry wastewater using electrocoagulation process

    Directory of Open Access Journals (Sweden)

    Marzieh Razavi

    2014-03-01

    Conclusion: Although application of both iron and aluminum electrodes lead to obtaining considerable removal phosphate, nitrate and COD, iron electrodes could result in reasonable removals to meet Environmental Standards with lower operational costs.

  13. The thickness of native oxides on aluminum alloys and single crystals

    OpenAIRE

    Evertsson, J.; Bertram, F.; Weissenrieder, J.; Goethelid, Mats; Pan, J; Mikkelsen, A.; Nilsson, J.-O.; Lundgren, E.; Zhang, F.; Rullik, L.; Merte, L. R.; Shipilin, Mikhail; Soldemo, M.; S Ahmadi; Vinogradov, N.

    2015-01-01

    We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liq...

  14. ACO-zeotype iron aluminum phosphates with variable Al/Fe ratios controlled by F⁻ ions.

    Science.gov (United States)

    Wang, Yanyan; Li, Yi; Wang, Lei; Zhang, Jingzhe; Yan, Yan; Li, Jiyang; Yu, Jihong; Wang, Jincheng; Xu, Ruren

    2011-03-01

    Three new iron aluminum phosphates |(C(2)H(10)N(2))(4)|[Fe(8 - x)Al(x)F(x)(H(2)O)(2 - x)(PO(4))(8)]·2H(2)O (χ = 1.64, 1.33, 0.80) with ACO-zeotype structures denoted as FeAPO-CJ66(a), FeAPO-CJ66(b), and FeAPO-CJ66(c), respectively, have been synthesized in the fluoride ion system. Their framework structures are made of double 4-ring (D4R) building units formed by the alternating connection of Fe(Al)O(4)F(O) trigonal bipyramids and PO(4) tetrahedra, which possess 3D intersecting 8-ring channels running along the [001], [010], and [100] directions. Fluoride ions or water molecules reside in the center of D4Rs, and diprotonated ethylenediamine cations and water molecules are occluded in the free space of channels to stabilize the whole structure. Notably, the Al/Fe ratios in the frameworks can be effectively controlled from 1/3.9 to 1/5.0 to 1/9.0 by adjusting the amounts of phosphoric acid and hydrofluoric acid added to the initial reaction mixture. Mössbauer and magnetic measurements show that the Fe ions in the compounds are bivalent and undergo antiferromagnetic ordering at room temperature.

  15. Enhanced proton conductivity of niobium phosphates by interfacing crystal grains with an amorphous functional phase

    DEFF Research Database (Denmark)

    Huang, Yunjie; Yu, Lele; Li, Haiyan

    2016-01-01

    Niobium phosphate is an interesting proton conductor operational in the intermediate temperature range. In the present work two forms of phosphates were prepared: an amorphous one with high specific area and a crystalline one with low specific surface area. Both phosphates exhibited very low proton...... conductivities. An activation process was developed to convert the phosphates into crystal grains with a phosphorus rich amorphous phase along the grain boundaries. As a result, the obtained niobium phosphates showed considerably enhanced and stable proton conductivities. The activation effect was prominent when...... the high surface area amorphous phosphate was used as the precursor. At 250 °C thus obtained niobium phosphate showed a high and stable conductivity of 0.03 S cm−1 under dry atmosphere and of 0.06 S cm−1 at a water partial pressure of 0.12 atm....

  16. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Science.gov (United States)

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.

  17. Effect on thickness of Al layer in poly-crystalline Si thin films using aluminum(Al) induced crystallization method.

    Science.gov (United States)

    Jeong, Chaehwan; Na, Hyeon Sik; Lee, Suk Ho

    2011-02-01

    The polycrystalline silicon (poly-Si) thin films were prepared by aluminum induced crystallization. Aluminum (Al) and amorphous silicon (a-Si) layers were deposited using DC sputtering and plasma enhanced chemical vapor deposition method, respectively. For the whole process Al properties of bi-layers can be one of the important factors. In this paper we investigated the structural and electrical properties of poly-crystalline Si thin films with a variation of Al thickness through simple annealing process. All samples showed the polycrystalline phase corresponding to (111), (311) and (400) orientation. Process time, defined as the time required to reach 95% of crystalline fraction, was within 60 min and Al(200 nm)/a-Si(400 nm) structure of bi-layer showed the fast response for the poly-Si films. The conditions with a variation of Al thickness were executed in preparing the continuous poly-Si films for solar cell application.

  18. Studies on Crystal Growth, Vibrational, Electronic Properties of Nonlinear Optical Crystal: Triglycine Phosphate

    Science.gov (United States)

    Meera, M. R.; Dipuna Das, C. N.; Bena Jothy, V.; Rayar, S. L.

    2016-10-01

    Nonlinear optics is a topic of much current interest that exhibits a great diversity. This is due to the technological potentials of certain nonlinear optical effects for photonic based technologies. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. In this context, the present work it is attempted to grow NLO active Triglycine phosphate [(NH2CH2COOH)3H3PO4](TGP) crystal from aqueous solution at room temperature by slow evaporation method. The geometry, intermolecular hydrogen bonding and harmonic vibrational wavenumbers of TGP was investigated with the help of B3LYP density functional theory (DFT) methods. Natural Bond Orbital (NBO) analysis confirms the occurrence of strong intermolecular N-H...O hydrogen bond. Second harmonic frequency generation was examined by Kurtz and Perry powder test. Theoretical first order hyperpolarizability value was calculated.

  19. On the hydrates of codeine phosphate: the remarkable influence of hydrogen bonding on the crystal size.

    Science.gov (United States)

    Runčevski, Tomče; Petruševski, Gjorgji; Makreski, Petre; Ugarkovic, Sonja; Dinnebier, Robert E

    2014-07-07

    Codeine phosphate forms three hydrates and two anhydrates. The sesquihydrate and hemihydrate, which differ by one water molecule, are stable at room temperature. The influence of this molecule on the internal crystal structure and how it translates into the external crystal shape are reported.

  20. PHASE ANALYSIS AND CRYSTAL STRUCTURE STUDIES ON BINARY ALLOYS OF ALUMINUM WITH TRANSITION METALS.

    Science.gov (United States)

    In order to provide the necessary background for detailed crystal-chemistry studies in the field of binary aluminum - transition metal systems, extensive investigations have been carried out on the phase relations of a large number of such systems. The results of these studies are briefly summarized, as are also the results of crystal structure determinations of a few alumi num - transition metal phases. (Author)

  1. Microstructure Evolution in High Purity Aluminum Single Crystal Processed by Equal Channel Angular Pressing (ECAP).

    Science.gov (United States)

    Dong, Jinfang; Dong, Qing; Dai, Yongbing; Xing, Hui; Han, Yanfeng; Ma, Jianbo; Zhang, Jiao; Wang, Jun; Sun, Baode

    2017-01-22

    Aluminum single crystal with 99.999% purity was deformed at room temperature by equal channel angular pressing (ECAP) up to 16 passes. Grain size and misorientation of processed samples were quantitatively characterized by TEM and EBSD. The results show that the refinement efficiency of high purity aluminum single crystal was poor in the initial stage. Extrusion by fewer ECAP passes (n ≤ 8) resulted in only elongated grains containing a large number of subgrains and small misorientations between grains. Stable microstructures of nearly equiaxed grains with high misorientations were obtained by 15 passages, indicating that the initial extremely coarse grains and highly uniform grain orientation are not conducive to the accumulation of strain energy. The initial state of high purity aluminum has a significant effect on the refining efficiency of the ECAP process.

  2. Molecular mechanisms of crystallization impacting calcium phosphate cements

    OpenAIRE

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to gr...

  3. Crystallization kinetics of amorphous aluminum-tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T.; Radic, N. [Rugjer Boskovic Inst., Zagreb (Croatia). Div. of Mater. Sci.; Ivkov, J. [Institute of Physics, Bijenicka 46, P.O.B. 304, HR-10000 Zagreb (Croatia); Babic, E.; Tonejc, A. [Faculty of Sciences, Physics Department, Bijenicka 32, P.O.B. 162, HR-10000 Zagreb (Croatia)

    1999-01-01

    Crystallization kinetics of the amorphous Al-W thin films under non-isothermal conditions was examined by continuous in situ electrical resistance measurements in vacuum. The estimated crystallization temperature of amorphous films in the composition series of the Al{sub 82}W{sub 18} to Al{sub 62}W{sub 38} compounds ranged from 800 K to 920 K. The activation energy for the crystallization and the Avrami exponent were determined. The results indicated that the crystallization mechanism in films with higher tungsten content was a diffusion-controlled process, whereas in films with the composition similar to the stoichiometric compound (Al{sub 4}W), the interface-controlled crystallization probably occurred. (orig.) With 4 figs., 1 tab., 26 refs.

  4. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Kohiruimaki, T, E-mail: kohi@hi-tech.ac.jp [Department of Technology, Hachinohe Institute of Technology, 88-1 Myo-oobiraki, Hachinohe-shi 031-8501 (Japan)

    2011-10-29

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 {mu}m were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 {mu}m were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 {mu}m had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 {mu}m{sup 2} suggesting that these crystals may be of practical use in industrial fermenters.

  5. Synthesis of some calcium phosphate crystals using the useful biomass for immobilization of microorganisms

    Science.gov (United States)

    Kohiruimaki, T.

    2011-10-01

    Three sources of biomass generated by primary industry were used as the raw material for the synthesis of calcium phosphate crystals. Phosphoric acid was extracted from burned rice chaff using a 30% nitric acid solution, while scallop shells and gypsum of plasterboard were used as calcium sources. The calcium phosphate crystals were synthesized by a method involving homogeneous precipitation, and the relationship between the composition and shape of the crystals and the pH at the time of the precipitation was investigated. Monetite crystals in a petal form with a diameter ranging from 0.1 to 2 μm were precipitated at pH 2.0, while granular apatite crystals with a mean diameter of 1 μm were precipitated at pH 6.0. We also investigated the ability of the synthesized calcium phosphate crystals to immobilize lactic acid bacteria for practical use in industrial bioreactor. It was determined that monetite crystals with a diameter of 2 μm had the highest ability to fix lactic acid bacteria. The population of lactic acid bacteria was estimated to exceed 1,300 bacteria per crystal surface of 50 μm2 suggesting that these crystals may be of practical use in industrial fermenters.

  6. Crystal growth, structural and thermal studies of amino acids admixtured L-arginine phosphate monohydrate single crystals

    Science.gov (United States)

    Anandan, P.; Saravanan, T.; Parthipan, G.; Kumar, R. Mohan; Bhagavannarayana, G.; Ravi, G.; Jayavel, R.

    2011-05-01

    To study the improved characteristics of L-arginine phosphate monohydrate (LAP) crystals, amino acids mixed LAP crystals have been grown by slow cooling method. Amino acids like glycine, L-alanine, and L-valine have been selected for doping. Optical quality bulk crystals have been harvested after a typical growth period of about twenty days. The effect of amino acids in the crystal lattice and molecular vibrational frequencies of various functional groups in the crystals have been studied using X-ray powder diffraction and Fourier Transform infrared (FTIR) analyses respectively. Thermal behavior of the amino acids mixed LAP crystals have been studied from the TG and DTG analyses. High-resolution X-ray diffraction studies have been carried out to find the crystalline nature. Optical transmission studies have been carried out by UV-vis spectrophotometer. The cut off wavelength is below 240 nm for the grown crystals.

  7. Phase equilibrium and preparation, crystallization and viscous sintering of glass in the alumina-silica-lanthanum phosphate system

    Science.gov (United States)

    He, Feng

    The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single

  8. The Durability of Various Crucible Materials for Aluminum Nitride Crystal growth by Sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Liu,B.; Edgar, J.; Gu, Z.; Zhuang, D.; Raghothamachar, B.; Dudley, M.; Sarua, A.; Kuball, M.; Meyer, H.

    2004-01-01

    Producing high purity aluminum nitride crystals by the sublimation-recondensation technique is difficult due to the inherently reactive crystal growth environment, normally at temperature in excess of 2100 C. The durability of the furnace fixture materials (crucibles, retorts, etc.) at such a high temperature remains a critical problem. In the present study, the suitability of several refractory materials for AlN crystal growth is investigated, including tantalum carbide, niobium carbide, tungsten, graphite, and hot-pressed boron nitride. The thermal and chemical properties and performance of these materials in inert gas, as well as under AlN crystal growth conditions are discussed. TaC and NbC are the most stable crucible materials with very low elemental vapor pressures in the crystal growth system. Compared with refractory material coated graphite crucibles, HPBN crucible is better for AlN self-seeded growth, as crystals tend to nucleate in thin colorless platelets with low dislocation density.

  9. Aluminum induced crystallization of strongly (111) oriented polycrystalline silicon thin film and nucleation analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and α-Si layers were deposited by magnetron sputtering respectively and annealed at 480°C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between γ-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of γ-Al2O3, which was formed at the early stage of annealing.

  10. Ionothermal synthesis and crystal structures of metal phosphate chains

    NARCIS (Netherlands)

    Wragg, D.; Le Ouay, B.; Beale, A.M.; O'Brien, M.G.; Slawin, A.M.Z.; Warren, J.E.; Prior, T.J.; Morris, R.E.

    2013-01-01

    We have prepared isostructural aluminium and gallium phosphate chains by ionothermal reactions in 1-ethyl-3-methylimidazolium bromide and 1-ethylpyridinium bromide under a variety of conditions. The chains can be prepared as pure phases or along with three dimensional framework phases. The chains ar

  11. Bulk crystals of L-Histidinium dihydrogen phosphate orthophosphoric acid grown by Sankaranarayanan-Ramasamy method

    Science.gov (United States)

    Ittyachan, Reena; Arunkumar, A.

    2017-01-01

    L-Histidinium dihydrogen phosphate orthophosphoric acid (LHDP) crystal of length 80 mm long and 20 mm diameter has been grown from aqueous solution along c-axis using Sankaranarayanan-Ramasamy method. The unit cell parameters were confirmed by single crystal X-ray diffraction analysis and it belongs to orthorhombic system. The UV-vis-NIR spectrum showed that the grown crystal is transparent in the entire visible region. The lower optical cut-off wavelength for this crystal was observed at 240 nm. Fluorescence studies were carried out in range of 200-700 nm. SHG efficiency was analyzed using Kurtz-Perry powder technique.

  12. Thiourea-doped ammonium dihydrogen phosphate: A single crystal neutron diffraction investigation

    Indian Academy of Sciences (India)

    A Jayarama; M R Suresh Kumar; S M Dharmaprakash; R Chitra; R R Choudhury

    2008-11-01

    Thiourea-doped ammonium dihydrogen phosphate (TADP) exhibits nonlinear optical property and the second harmonic generation efficiency of these crystals is three times that of pure ammonium dihydrogen phosphate (ADP) crystal. In this context, the study of structural distortion in the thiourea-doped ADP crystal is significant, hence single neutron diffraction investigations were undertaken. The final -factors are: [2 > 2(2)] = 0.11, Goodness of fit () = 1.15. Though the dopant could not be located from the difference Fourier map, the cell parameters ( = = 7.531(3) Å, = 7.544(5) Å) were found to be significantly greater than that of pure ADP at RT ( = = 7.502(1)$ ̊Å, = 7.546(1) Å). This indicates that the dopant concentration in the crystals is small but enough to bring changes in the overall average structure.

  13. Mechanism of calcium phosphates precipitation in liquid crystals; Mecanisme de precipitation de phosphates de calcium dans des cristaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Prelot, B.; Zemb, T

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m{sup 2}/g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  14. Molecular mechanism of crystallization impacting calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    In summary, SPM data has shown that (1) Mg inhibits growth on all steps but relatively high Mg/Ca ratios are needed. Extracting the mechanism of interaction requires more modeling of the kinetic data, but step morphology is consistent with incorporation. (2) Citrate has several effects depending on the citrate/Ca ratio. At the lowest concentrations, citrate increases the step free energy without altering the step kinetics; at higher concentrations, the polar step is slowed. (3) Oxalate also slows the polar step but additionally stabilizes a new facet, with a [100]{sub Cc} step. (4) Etidronate has the greatest kinetic impact of the molecules studied. At 7{micro}M concentrations, the polar step slows by 60% and a new polar step appears. However, at the same time the [10-1]{sub Cc} increases by 67%. It should be noted that all of these molecules complex calcium and can effect kinetics by altering the solution supersaturation or the Ca to HPO{sub 4}{sup 2-} ratio. For the SPM data shown, this effect was corrected for to distinguish the effect of the molecule at the crystal surface from the effect of the molecule on the solution speciation. The goal of this paper is to draw connections between fundamental studies of atomic step motion and potential strategies for materials processing. It is not our intent to promote the utility of SPM for investigating processes in cement dynamics. The conditions are spectacularly different in many ways. The data shown in this paper are fairly close to equilibrium (S=1.6) whereas the nucleation of cements is initiated at supersaturation ratios in the thousands to millions. Of course, after the initial nucleation phase, the growth will occur at more modest supersaturations and as the cement evolves towards equilibrium certainly some of the growth will occur in regimes such as shown here. In addition to the difference in supersaturation, cements tend to have lower additive to calcium ratios. As an example, the additive to Ca ratio is

  15. Effect of calcium phosphate crystals induced by uremic serum on calcification of human aortic smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    刘曜蓉

    2013-01-01

    Objective To investigate the impact of calcium phosphate crystals induced by uremic serum on calcification of human aortic smooth muscle cells (HASMCs) .Methods Uremic serum was incubated at 37℃for 3days.Calcium phosphate crystals and uremic supernatant were isolated from uremic serum by ultracentrifugation.

  16. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process.

    Science.gov (United States)

    Hutnik, Nina; Kozik, Anna; Mazienczuk, Agata; Piotrowski, Krzysztof; Wierzbowska, Boguslawa; Matynia, Andrzej

    2013-07-01

    Continuous DT MSMPR (Draft Tube Mixed Suspension Mixed Product Removal) crystallizer was provided with typical wastewater from phosphorus mineral fertilizers industry (pH phosphate(V) ions decreased from 0.445 to 9.2 × 10(-4) mass %. This can be regarded as a very good process result. In product crystals, besides main component - struvite, all impurities from wastewater were detected analytically.

  17. Multiscale Crystal Plasticity Modeling Considering Nucleation of Dislocations Based on Thermal Activation Process on Ultrafine-grained Aluminum

    Science.gov (United States)

    Aoyagi, Y.

    2017-05-01

    In this study, a crystal plasticity model expressing the behavior of the dislocation source and the mobile dislocations is proposed by considering a thermal activation process of dislocations. In order to predict the variation of critical resolved shear stress due to grain boundaries, mobile dislocations, or dislocation sources, information on these crystal defects is introduced into a hardening law of crystal plasticity. The crystal orientation and shape of ultrafine-grained (UFG) aluminum produced by accumulative roll bonding processes are measured by electron backscatter diffraction (EBSD). Mechanical properties of the UFG aluminum are estimated using tensile test and indentation test. Results obtained by EBSD are introduced into a computational model. Finite element simulation for polycrystal of aluminum investigates the effect of microstructure on mechanical properties of UFG aluminum.

  18. Crystal chemical characterization of mullite-type aluminum borate compounds

    Science.gov (United States)

    Hoffmann, K.; Hooper, T. J. N.; Zhao, H.; Kolb, U.; Murshed, M. M.; Fischer, M.; Lührs, H.; Nénert, G.; Kudějová, P.; Senyshyn, A.; Schneider, H.; Hanna, J. V.; Gesing, Th. M.; Fischer, R. X.

    2017-03-01

    Al-rich aluminum borates were prepared by different synthesis routes using various Al/B ratios, characterized by diffraction methods, spectroscopy and prompt gamma activation analysis. The 11B NMR data show a small amount of BO4 species in all samples. The chemical analysis indicates a trend in the Al/B ratio instead of a fixed composition. Both methods indicate a solid solution Al5-xB1+xO9 where Al is substituted by B in the range of 1-3%. The structure of B-rich Al4B2O9 (C2/m, a=1488 pm, b=553 pm, c=1502 pm, ß=90.6°), was re-investigated by electron diffraction methods, showing that structural details vary within a crystallite. In most of the domains the atoms are orderly distributed, showing no signal for the postulated channel oxygen atom O5. The absence of O5 is supported by density functional theory calculations. Other domains show a probable disordered configuration of O5 and O10, indicated by diffuse scattering along the b direction.

  19. The effect factors of potassium dihydrogen phosphate crystallization in aqueous solution

    Science.gov (United States)

    Zhou, Cun; Sun, Fei; Liu, Xuzhao

    2017-01-01

    The effects of cooling rate and pH on the potassium dihydrogen phosphate crystallization process were studied by means of batch crystallization process. The experiment shows that with the increase of cooling rate, the metastable zone width increase and the induction period decrease. When the pH is 3.0, the metastable zone width and induction period are both the minimum, while the crystallization rate is the highest. The crystallization products were characterized by scanning election microscope. Potassium Dihydrogen Phosphate (KDP) is a kind of excellent nonlinear optical materials, and belongs to tetragonal system, and ideal shape is aggregate of tetragonal prism and tetragonal dipyramid, the (100) cone is alternating accumulation by double positive ions and double negative ions [1-4]. The crystals of aqueous solution method to grow have large electro-optical nonlinear coefficient and high loser-damaged threshold, and it is the only nonlinear optical crystal could be used in inertial confinement fusion (ICF), KDP crystals are the ideal system to study the native defects of complex oxide insulating material [5-7]. With the development of photovoltaic technology, KDP crystals growth and performance have become a research focus worldwide [8, 9]. The merits of the crystallization process directly affect the quality of KDP products, so the study of the effect of crystallization conditions has an important significance on industrial production. This paper studied the change rule of metastable zone width, induction period, crystallization rate and particle size distribution in crystal process, and discussed the technical condition of KDP crystallization.

  20. Control of Crystal Morphology for Mold Flux During High-Aluminum AHSS Continuous Casting Process

    Science.gov (United States)

    GUO, Jing; SEO, Myung-Duk; SHI, Cheng-Bin; CHO, Jung-Wook; KIM, Seon-Hyo

    2016-08-01

    In the present manuscript, the efforts to control the crystal morphology are carried out aiming at improving the lubrication of lime-alumina-based mold flux for casting advanced high-strength steel with high aluminum. Jackson α factors for crystals of melt crystallization in multi-component mold fluxes are established and reasonably evaluated by applying thermodynamic databases to understand the crystal morphology control both in lime-alumina-based and lime-silica-based mold fluxes. The results show that Jackson α factor and supercooling are the most critical factors to determine the crystal morphology in a mold flux. Crystals precipitating in mold fluxes appear with different morphologies due to their different Jackson α factors and are likely to be more faceted with higher Jackson α factor. In addition, there is a critical supercooling degree for crystal morphology dendritic transition. When the supercooling over the critical value, the crystals transform from faceted shape to dendritic ones in morphology as the kinetic roughening occurs. Typically, the critical supercooling degrees for cuspidine dendritic transition in the lime-silica-based mold fluxes are evaluated to be between 0.05 and 0.06. Finally, addition of a small amount of Li2O in the mold flux can increase the Jackson α factor and decrease the supercooling for cuspidine precipitation; thus, it is favorable to enhance a faceted cuspidine crystal.

  1. Crystal field and magnetism with Wannier functions:rare-earth doped aluminum garnets

    Institute of Scientific and Technical Information of China (English)

    Eva Mihóková; Pavel Novák; Valentin V. Laguta

    2015-01-01

    Using the recently developed method we calculated the crystal field parameters in yttrium and lutetium aluminum garnets doped with seven trivalent Kramers rare-earth ions. We then inserted calculated parameters into the atomic-like Hamiltonian taking into account the electron-electron, spin-orbit and Zeeman interactions and determined the multiplet splitting by the crystal field as well as magneticĝ tensors. We compared calculated results with available experimental data. Very good agreement with the spectro-scopic data and qualitative agreement with experimentalĝ tensors was found.

  2. Ground based experiments on the growth and characterization of L-Arginine Phosphate (LAP) crystals

    Science.gov (United States)

    Rao, S. M.; Cao, C.; Batra, A. K.; Lal, R. B.; Mookherji, T. K.

    1991-01-01

    L-Arginine Phosphate (LAP) is a new nonlinear optical material with higher efficiency for harmonic generation compared to KDP. Crystals of LAP were grown in the laboratory from supersaturated solutions by temperature lowering technique. Investigations revealed the presence of large dislocation densities inside the crystals which are observed to produce refractive index changes causing damage at high laser powers. This is a result of the convection during crystal growth from supersaturated solutions. It is proposed to grow these crystals in a diffusion controlled growth condition under microgravity environment and compare the crystals grown in space with those grown on ground. Physical properties of the solutions needed for modelling of crystal growth are also presented.

  3. Characterization studies on the additives mixed L-arginine phosphate monohydrate (LAP) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Haja Hameed, A.S., E-mail: hajahameed2001@gmail.co [PG and Research Department of Physics, Jamal Mohamed College, Tiruchirappalli 620 020, Tamil Nadu (India); Karthikeyan, C. [PG and Research Department of Physics, Jamal Mohamed College, Tiruchirappalli 620 020, Tamil Nadu (India); Ravi, G. [Department of Physics, Alagappa University, Karaikudi 630 003 (India); Rohani, S. [Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, N6A 5B9 (Canada)

    2011-04-01

    L-arginine phosphate monohydrate (LAP), potassium thiocyanate (KSCN) mixed LAP (LAP:KSCN) and sodium sulfite (Na{sub 2}SO{sub 3}) mixed LAP (LAP:Na{sub 2}SO{sub 3}) single crystals were grown by slow cooling technique. The effect of microbial contamination and coloration on the growth solutions was studied. The crystalline powders of the grown crystals were examined by X-ray diffraction and the lattice parameters of the crystals were estimated. From the FTIR spectroscopic analysis, various functional group frequencies associated with the crystals were assigned. Vickers microhardness studies were done on {l_brace}1 0 0{r_brace} faces for pure and additives mixed LAP crystals. From the preliminary surface second harmonic generation (SHG) results, it was found that the SHG intensity at (1 0 0) face of LAP:KSCN crystal was much stronger than that of pure LAP.

  4. Atomistic modeling of different loading paths in single crystal copper and aluminum

    Directory of Open Access Journals (Sweden)

    R. Pezer

    2016-10-01

    Full Text Available Utilizing molecular dynamics (MD integration model we have investigated some of the relevant physical processes caused by different loading paths at the atomic level in Cu and Al monocrystal specimen. Interactions among the atoms in the bulk are modeled with the standard realistic Embedded Atom Method (EAM potentials. MD simulation gives us the detailed information about non-equilibrium dynamics including crystal structure defects, vacancies and dislocations. In particular, we have obtained result that indicate increase in the total energy of the crystal during loading (especially cyclic that provides us direct quantitative evidence of the metal weakening. For the basic response, we have deformed copper and aluminum single crystal according to the simple loading path and a series of multiaxial loading-paths including cyclic repetition. We compute equivalent stress-strain diagrams as well as dislocation total length vs time graphs to describe signatures of the anisotropic response of the crystal

  5. Simulation of Transport Phenomena in Aluminum Nitride Single-Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, V F

    2002-04-03

    The goal of this project is to apply advanced computer-aided modeling techniques for simulating coupled radiation transfer present in the bulk growth of aluminum nitride (AlN) single-crystals. Producing and marketing high-quality single-crystals of AlN is currently the focus of Crystal IS, Inc., which is engaged in building a new generation of substrates for electronic and optical-electronic devices. Modeling and simulation of this company's proprietary innovative processing of AlN can substantially improve the understanding of physical phenomena, assist design, and reduce the cost and time of research activities. This collaborative work supported the goals of Crystal IS, Inc. in process scale-up and fundamental analysis with promising computational tools.

  6. Diagnosis and clinical manifestations of calcium pyrophosphate and basic calcium phosphate crystal deposition diseases.

    Science.gov (United States)

    Ea, Hang-Korng; Lioté, Frédéric

    2014-05-01

    Basic calcium phosphate and pyrophosphate calcium crystals are the 2 main calcium-containing crystals that can deposit in all skeletal tissues. These calcium crystals give rise to numerous manifestations, including acute inflammatory attacks that can mimic alarming and threatening differential diagnoses, osteoarthritis-like lesions, destructive arthropathies, and calcific tendinitis. Awareness of uncommon localizations and manifestations such as intraspinal deposition (eg, crowned dens syndrome, tendinitis of longus colli muscle, massive cervical myelopathy compression) prevents inappropriate procedures and cares. Coupling plain radiography, ultrasonography, computed tomography, and synovial fluid analysis allow accurate diagnosis by directly or indirectly identifying the GRAAL of microcrystal-related symptoms.

  7. Influence of surface treatment of carbon fibers on electrochemical crystallization of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    TAO Ke; HUANG Su-ping; ZHOU Ke-chao

    2005-01-01

    Electrodeposition technique was used to coat calcium phosphate on carbon fiber which can be used to reinforce hydroxyapatite. The differences between fibers treated with and without nitric acid in electrodeposition were evaluated. The X-ray diffractometry results show that CaHPO4·2H2O is obtained as the kind of calcium phosphate coating on carbon fiber. The scanning electron microscopy photographs and deposit kinetic curve indicate that the influences of the functional group attained by nitric acid treatment, the crystal morphology and crystallization of the coating layers on the fiber with and without treatment rate are obviously different. The functional group, especially the acidic group, can act as nucleation centers of electrochemical crystallization.

  8. Calcium Phosphate Crystals from Uremic Serum Promote Osteogenic Differentiation in Human Aortic Smooth Muscle Cells.

    Science.gov (United States)

    Liu, Yaorong; Zhang, Lin; Ni, Zhaohui; Qian, Jiaqi; Fang, Wei

    2016-11-01

    Recent study demonstrated that calcium phosphate (CaP) crystals isolated from high phosphate medium were a key contributor to arterial calcification. The present study further investigated the effects of CaP crystals induced by uremic serum on calcification of human aortic smooth muscle cells. This may provide a new insight for the development of uremic cardiovascular calcification. We tested the effects of uremic serum or normal serum on cell calcification. Calcification was visualized by staining and calcium deposition quantified. Expression of various bone-calcifying genes was detected by real-time PCR, and protein levels were quantified by western blotting or enzyme-linked immunosorbent assays. Pyrophosphate was used to investigate the effects of CaP crystals' inhibition. Finally, CaP crystals were separated from uremic serum to determine its specific pro-calcification effects. Uremic serum incubation resulted in progressively increased calcification staining and increased calcium deposition in HASMCs after 4, 8 and 12 days (P vs 0 day crystals with pyrophosphate incubation prevented calcium deposition and bone-calcifying gene over-expression increased by uremic serum. CaP crystals, rather than the rest of uremic serum, were responsible for these effects. Uremic serum accelerates arterial calcification by mediating osteogenic differentiation. This effect might be mainly attributed to the CaP crystal content.

  9. [Use of the aluminum phosphate-binders in hemodialysis in the ultrapure water era].

    Science.gov (United States)

    Arenas, Maria D; Malek, T; Gil, M T; Moledous, A; Núñez, C; Alvarez-Ude, F

    2008-01-01

    Aluminium binder has been ill-advised, but his use remain applicable in the clinique practice in very seleccionated and particular patients. The repercussion of prolonged treatment with low doses of aluminium phosphate-binders in haemodialysis was studied. The haemodialysis unit had a double osmosis inverse and the aluminium levels in haemodialysis liquid was less than 2 micrograms/liter. 41 patients of the 295 on haemodialysis received aluminium phosphate-binders since the 2005 January to the 2007 November. The mean time of treatment was 17.8 months, and the doses was 3.9 tablets day (mean of 463 grams in the studied period). The association of low doses of aluminium phosphate-binders permitted a better control of phosphorus (6.8 to 4.8 mg/dl; p<0.0001), with a reduction of the others phosphate-binders: sevelamer (10.4 a 8 tablets/day; p<0.0001) and calcium phosphate-binders (4.6 to 3.1 tablets/day; p<0.0001). The serum aluminium increased after the aluminium treatment (6.8 to 13.8 mcg/l; p<0.0001), and no toxicity indirect signs were observed on CMV, haemoglobin, none PTH. Five patients (12.1%) reached aluminium serum levels higher 20 mcg/l, and none reached the 40 mcg/l. The aluminium phosphate-binders were effective, economical and, now, with an apparent better security profile than in a previous time, but it is very important to be careful with this use and to follow a vigilance strict on patients and haemodialysis liquid.

  10. Characterization of Anodic Aluminum Oxide Membrane with Variation of Crystallizing Temperature for pH Sensor.

    Science.gov (United States)

    Yeo, Jin-Ho; Lee, Sung-Gap; Jo, Ye-Won; Jung, Hye-Rin

    2015-11-01

    We fabricated electrolyte-dielectric-metal (EDM) device incorporating a high-k Al2O3 sensing membrane from a porous anodic aluminum oxide (AAO) using a two step anodizing process for pH sensors. In order to change the properties of the AAO template, the crystallizing temperature was varied from 400 degrees C to 700 degrees C over 2 hours. The structural properties were observed by field emission scanning electron microscopy (FE-SEM). The pH sensitivity increased with an increase in the crystallizing temperature from 400 degrees C to 600 degrees C. However at 700 degrees C, deformation occurred. The porous AAO sensor with a crystallizing temperature of 600 degrees C displayed the good sensitivity and long-term stability and the values were 55.7 mV/pH and 0.16 mV/h, respectively.

  11. An approach for phosphate removal with quartz sand, ceramsite, blast furnace slag and steel slag as seed crystal.

    Science.gov (United States)

    Qiu, Liping; Wang, Guangwei; Zhang, Shoubin; Yang, Zhongxi; Li, Yanbo

    2012-01-01

    The phosphate removal abilities and crystallization performance of quartz sand, ceramsite, blast furnace slag and steel slag were investigated. The residual phosphate concentrations in the reaction solutions were not changed by addition of the ceramsite, quartz sand and blast furnace slag. The steel slag could provide alkalinity and Ca(2+) to the reaction solution due to its hydration activity, and performed a better phosphate removal performance than the other three. Under the conditions of Ca/P 2.0, pH 8.5 and 10 mg P/L, the phosphate crystallization occurred during 12 h. The quartz sand and ceramsite did not improve the phosphate crystallization, but steel slag was an effective seed crystal. The phosphate concentration decreased drastically after 12 h after addition of steel slag, and near complete removal was achieved after 48 h. The XRD analysis showed that the main crystallization products were hydroxyapatite (HAP) and the crystallinity increased with the reaction time. Phosphate was successfully recovered from low phosphate concentration wastewater using steel slag as seed material.

  12. Ethylbenzene Disproportionation on HZSM-5 Zeolite : The Effect of Aluminum Content and Crystal Size on the Selectivity for p-Diethylbenzene

    Directory of Open Access Journals (Sweden)

    Velasco N.D.

    1998-01-01

    Full Text Available The aim of this work was to verify the effect of MFI aluminum content and crystal size on the selectivity for para-diethylbenzene during ethylbenzene disproportionation. It was observed that the para-diethylbenzene selectivity increased as MFI crystal size increased. The increase in aluminum content caused a decrease in the selectivity for para-diethylbenzene. However, for crystals larger than 8 m m, the decrease in aluminum content had little influence on the selectivity for para-diethylbenzene. The results can be explained by the number of active aluminum sites on the external surface of the crystals.

  13. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates.

    Directory of Open Access Journals (Sweden)

    Woo-Suk Jung

    Full Text Available D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26, which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD, catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi. Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.

  14. Single crystal EPR study of VO(II)-doped cadmium potassium phosphate hexahydrate: A substitutional incorporation

    Indian Academy of Sciences (India)

    I Sougandi; T M Rajendiran; R Venkatesan; P Sambasiva Rao

    2002-10-01

    Single crystal EPR studies of VO(II)-doped cadmium potassium phosphate hexahydrate (CPPH) have been carried out at room temperature. The angular variation spectra in the three orthogonal planes indicate that the paramagnetic impurity has entered the lattice only substitutionally in place of Cd(II). Spin Hamiltonian parameters have been obtained from single crystal data. Powder spectra show a set of eight parallel and perpendicular features indicating the presence of only one site. The admixture coefficients have been calculated from the data, which agree well with the literature values.

  15. Phosphate adsorption on aluminum-coordinated functionalized macroporous–mesoporous silica: Surface structure and adsorption behavior

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Weiya [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Department of Materials Science and Engineering, Taizhou University, Linhai 317000 (China); Li, Dan [Environmetal Engineering, School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia 6150 (Australia); Zhu, Yi; Xu, Kai; Li, Jianqiang [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Han, Boping [Institute of Hydrobiology, Jinan University, Guangzhou 510460 (China); Zhang, Yuanming, E-mail: tzhangym@jnu.edu.cn [Department of Chemistry, Jinan University, Guangzhou 510632 (China)

    2013-12-15

    Graphical abstract: - Highlights: • Al-coordinated functionalized macroporous–mesoporous silica for phosphate removal. • It had the maximum adsorption capacity of 23.59 mg P/g. • Over 95% of the final adsorption capacity reached in the first 1 min. - Abstract: In this study, Al(III)-coordinated diamino-functionalized macroporous–mesoporous silica was synthesized and characterized by X-ray diffraction, N{sub 2} adsorption–desorption, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy. Because of well-defined and interconnecting macroporous–mesoporous networks, the resulting adsorbent (MM-SBA) exhibited a significantly better phosphate adsorption performance and faster removal rate, as compared with the mesoporous adsorbent (M-SBA). Based on the Freundlich and Langmuir models, the phosphate adsorption capacity and the maximum adsorption capacity of MM-SBA were 7.99 mg P/g and 23.59 mg P/g, respectively. In the kinetic study of MM-SBA, over 95% of its final adsorption capacity reached in the first 1 min; whereas that of M-SBA was less than 79%.

  16. Mineral Phosphate Solubilizing Bacteria Isolated from Various Plant Rhizosphere under Different Aluminum Content

    Directory of Open Access Journals (Sweden)

    Dolly Iriani Damarjaya

    2015-10-01

    Full Text Available The objectives of this study was to isolate and characterize the mineral phosphate solubilizing bacteriafrom rhizosphere and evaluate their potential as plant growth promoting bacteria in Al-toxic soils. The halozone formation method was used to isolate PSB using the media containing insoluble phosphates (Ca-P or Al-Pas a source of phosphate. Eight of acid and Al-tolerant PSB isolates that were able to solubilize Ca-P wereobtained from rhizosphere of clover, wheat, corn, and sunflower grown in Al-toxic soil. Identification of theisolates based on the 16S rRNA gene sequence analysis demonstrated that the isolates were strains of Burkholderia(5 strains, Pseudomonas (1 strain, Ralstonia (1 strain, and unidentified bacterium (1 strains. All PSB isolatesshowed the capability to dissolve Ca-P, and only 1 strain (Ralstonia strain was able to dissolve Al-P in agar platemedium. The P-solubilization by these isolates was correlated with pH of medium. Inoculation of the bacterialstrains on clover on Al-toxic medium showed that all isolates increased the plant dry weight compared withuninoculated treatment. Our results showed that those PSB isolates have potential to be developed as a biofertilizerto increase the efficiency of P-inorganic fertilizer used in Al-toxic soils.

  17. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.

    2014-04-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  18. Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point

    Energy Technology Data Exchange (ETDEWEB)

    Kanel, G. I.; Razorenov, S. V.; Baumung, K.; Singer, J.

    2001-07-01

    This article presents experimental results of the dynamic yield strength and dynamic tensile strength ({open_quotes}spall strength{close_quotes}) of aluminum single crystals at shock-wave loading as a function of temperature. The load duration was {similar_to}40 and {similar_to}200 ns. The temperature varied from 20 to 650{degree}C which is only by 10{degree}C below the melting temperature. A linear growth of the dynamic yield strength by more than a factor of 4 was observed within this temperature range. This is attributed to the phonon drag effect on the dislocation motion. High dynamic tensile strength was maintained over the whole temperature range, including the conditions at which melting should start in a material under tension. This could be an indication of the existence of superheated states in solid crystals. {copyright} 2001 American Institute of Physics.

  19. The thickness of native oxides on aluminum alloys and single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Evertsson, J., E-mail: jonas.evertsson@sljus.lu.se [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Bertram, F. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Zhang, F. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Rullik, L.; Merte, L.R.; Shipilin, M. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Soldemo, M.; Ahmadi, S. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Vinogradov, N.; Carlà, F. [ESRF, B.P. 220, 38043 Grenoble (France); Weissenrieder, J.; Göthelid, M. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Pan, J. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Mikkelsen, A. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Nilsson, J.-O. [Sapa Technology, Kanalgatan 1, 612 31 Finspång (Sweden); Lundgren, E. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden)

    2015-09-15

    Highlights: • We have determined the native oxide film thickness on several Al samples. • The results obtained from XRR and XPS show excellent agreement. • The results obtained from EIS show consistently thinner oxide films. • The oxides on the alloys are thicker than the oxides on the single crystals. - Abstract: We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liquid water conditions. The results obtained using X-ray reflectivity and X-ray photoelectron spectroscopy demonstrate good agreement. However, the oxide thicknesses determined from the electrochemical impedance spectroscopy show a larger discrepancy from the above two methods. In the present contribution the reasons for this discrepancy are discussed. We also address the effect of the substrate type and the presence of water on the resultant oxide thickness.

  20. Why Basic Calcium Phosphate Crystals Should Be Targeted In the Treatment of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Claire-Louise Murphy

    2014-07-01

    Full Text Available Osteoarthritis (OA is the most common form of arthritis and results in significant social, psychological, and economic costs. It is characterised by progressive cartilage loss, bone remodelling, osteophyte formation, and synovial inflammation with resultant joint pain and disability. Since OA affects the entire joint, it is not surprising that there has been difficulty developing an effective targeted treatment. Treatments available for structural disease modification are limited. Current options appear to mostly reduce symptoms. Basic calcium phosphate (BCP crystals represent a potential therapeutic target in OA; they have been found in 100% of knee and hip cartilages removed at joint replacement. Intra-articular BCP crystals are associated with large joint effusions and dissolution of intra-articular structures, synovial proliferation, and marked degeneration as assessed by diagnostic imaging. While BCP deposition has been considered by many to be simply a consequence of advanced OA, there is substantial evidence to support BCP crystal deposition as an active pathogenic mediator of OA. BCP crystals exhibit a multiplicity of biologic effects in vitro including the ability to stimulate mitogenesis and prostaglandin, cytokine, and matrix metalloproteinase (MMP synthesis in a number of cell types including macrophages, synovial fibroblasts, and chondrocytes. BCP crystals also contribute to inflammation in OA through direct interaction with the innate immune system. Intra-articular BCP crystals can elicit synovial inflammation and cartilage degradation in mice in vivo . Although intra-articular BCP crystals are difficult to detect at the bedside, advances in modern technology should allow improved identification and quantitation of BCP crystals. Our article focuses on why basic calcium crystals are important in the pathogenesis of OA. There is ample evidence that BCP crystals should be explored as a therapeutic target in OA.

  1. Cation disordering by rapid crystal growth in olivine-phosphate nanocrystals.

    Science.gov (United States)

    Chung, Sung-Yoon; Kim, Young-Min; Lee, Seongsu; Oh, Sang Ho; Kim, Jin-Gyu; Choi, Si-Young; Kim, Youn-Joong; Kang, Suk-Joong L

    2012-06-13

    On the basis of Pauling's first rule for ionic bonding, the coordination number of cations with oxygen anions can be determined by comparison of their relative ionic size ratio. In contrast to simple oxides, various site occupancies by multicomponent cations with similar sizes usually occur in complex oxides, resulting in distinct physical properties. Through an unprecedented combination of in situ high-temperature high-resolution electron microscopy, crystallographic image processing, geometric phase analysis, and neutron powder diffraction, we directly demonstrate that while the initial crystallites after nucleation during crystallization have a very high degree of ordering, significant local cation disordering is induced by rapid crystal growth in Li-intercalation metal-phosphate nanocrystals. The findings in this study show that control of subsequent crystal growth during coarsening is of great importance to attain a high degree of cation ordering, emphasizing the significance of atomic-level visualization in real time.

  2. Study of the degree of deuteration on the microhardness of deuterated potassium dihydrogen phosphate crystals

    Indian Academy of Sciences (India)

    Baoan Liu; Shaotao Sun; Bo Wang; Xun Sun; Zhengping Wang; Xinguang Xu

    2015-08-01

    A series of deuterated potassium dihydrogen phosphate (DKDP) crystals with different degrees of deuteration are grown from aqueous solution by the point-seed technique. The microhardness of (100), (001) and so-called ‘tripler’ faces for these DKDP crystals were measured. Initially the hardness number of (001) face for each crystal increases with the increase of the applied load until it reaches 25 g. With further increase in load, the hardness number decreases gradually. The hardness numbers decline with the increase in deuterium content. These composition dependences are expected since the bond strength is weakened by the substitution of deuterium for hydrogen. The hydrogen bond is considered to play the key role in effecting the crystal’s hardness. The visible hardness anisotropy of the different faces is attributed to the inhomogeneous distribution of the oxygen–hydrogen bond on these faces.

  3. Deposition and characterization of silicon thin-films by aluminum-induced crystallization

    Science.gov (United States)

    Ebil, Ozgenc

    Polycrystalline silicon (poly-Si) as a thin-film solar cell material could have major advantages compared to non-silicon thin-film technologies. In theory, thin-film poly-Si may retain the performance and stability of c-Si while taking advantage of established manufacturing techniques. However, poly-Si films deposited onto foreign substrates at low temperatures typically have an average grain size of 10--50 nm. Such a grain structure presents a potential problem for device performance since it introduces an excessive number of grain boundaries which, if left unpassivated, lead to poor solar cell properties. Therefore, for optimum device performance, the grain size of the poly-Si film should be at least comparable to the thickness of the films. For this project, the objectives were the deposition of poly-Si thin-films with 2--5 mum grain size on glass substrates using in-situ and conventional aluminum-induced crystallization (AIC) and the development of a model for AIC process. In-situ AIC experiments were performed using Hot-Wire Chemical Vapor Deposition (HWCVD) both above and below the eutectic temperature (577°C) of Si-Al binary system. Conventional AIC experiments were performed using a-Si layers deposited on aluminum coated glass substrates by Electron-beam deposition, Plasma Enhanced Chemical Vapor Deposition (PECVD) and HWCVD. Continuous poly-Si films with an average grain size of 10 mum on glass substrates were achieved by both in-situ and conventional aluminum-induced crystallization of Si below eutectic temperature. The grain size was determined by three factors; the grain structure of Al layer, the nature of the interfacial oxide, and crystallization temperature. The interface oxide was found to be crucial for AIC process but not necessary for crystallization itself. The characterization of interfacial oxide layer formed on Al films revealed a bilayer structure containing Al2O3 and Al(OH)3 . The effective activation energy for AIC process was determined

  4. Growth and characterization of calcium hydrogen phosphate dihydrate crystals from single diffusion gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, K.; Dale Keefe, C. [Department of Chemistry, Cape Breton University, Sydney, Nova Scotia (Canada)

    2010-09-15

    Calcium hydrogen phosphate dihydrate (CaHPO{sub 4}.2H{sub 2}O, CHPD) a dissolved mineral in urine is known to cause renal or bladder stones in both human and animals. Growth of CHPD or brushite using sodium metasilicate gel techniques followed by light and polarizing microscopic studies revealed its structural and morphological details. Crystal identity by powder x-ray diffraction confirmed the FT-IR and FT-Raman spectroscopic techniques as alternate methods for fast analysis of brushite crystals which could form as one type of renal stones. P-O-P asymmetric stretchings in both FT-IR (987.2, 874.1 and 792 cm{sup -1}) and FT-Raman (986.3 cm{sup -1}, 1057.6 cm{sup -1} and 875.2 cm{sup -1}) were found as characteristics of brushite crystals. Differential Scanning Calorimetry (DSC) analysis revealed brushite crystallization purity using gel method by studying their endothermic peaks. This study incorporated a multidisciplinary approach in characterizing CHPD crystals grown in vitro to help formulate prevention or dissolution strategy in controlling urinary stone growth. Initial studies with 0.2 M citric acid ions as controlling agent in the nucleation of brushite crystals further support the presented approach. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Crystallization and precipitation of phosphate from swine wastewater by magnesium metal corrosion

    Science.gov (United States)

    Huang, Haiming; Liu, Jiahui; Jiang, Yang

    2015-11-01

    This paper presents a unique approach for magnesium dosage in struvite precipitation by Mg metal corrosion. The experimental results showed that using an air bubbling column filled with Mg metal and graphite pellets for the magnesium dosage was the optimal operation mode, which could significantly accelerate the corrosion of the Mg metal pellets due to the presence of graphite granules. The reaction mechanism experiments revealed that the solution pH could be used as the indicator for struvite crystallization by the process. Increases in the Mg metal dosage, mass ratio of graphite and magnesium metal (G:M) and airflow rate could rapidly increase the solution pH. When all three conditions were at 10 g L-1, 1:1 and 1 L min-1, respectively, the phosphate recovery efficiency reached 97.5%. To achieve a high level of automation for the phosphate recovery process, a continuous-flow reactor immersed with the graphite-magnesium air bubbling column was designed to harvest the phosphate from actual swine wastewater. Under conditions of intermittently supplementing small amounts of Mg metal pellets, approximately 95% of the phosphate could be stably recovered as struvite of 95.8% (±0.5) purity. An economic analysis indicated that the process proposed was technically simple and economically feasible.

  6. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Calabrese, J.C.; Wawrzak, Z.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    3,4-Dihydroxy-2-butanone-4-phosphate synthase catalyzes a commitment step in the biosynthesis of riboflavin. On the enzyme, ribulose 5-phosphate is converted to 3,4-dihydroxy-2-butanone 4-phosphate and formate in steps involving enolization, ketonization, dehydration, skeleton rearrangement, and formate elimination. The enzyme is absent in humans and an attractive target for the discovery of antimicrobials for pathogens incapable of acquiring sufficient riboflavin from their hosts. The homodimer of 23 kDa subunits requires Mg{sup 2+} for activity. The first three-dimensional structure of the enzyme was determined at 1.4 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on Escherichia coli protein crystals containing gold. The protein consists of an {alpha} + {beta} fold having a complex linkage of {beta} strands. Intersubunit contacts are mediated by numerous hydrophobic interactions and three hydrogen bond networks. A proposed active site was identified on the basis of amino acid residues that are conserved among the enzyme from 19 species. There are two well-separated active sites per dimer, each of which comprise residues from both subunits. In addition to three arginines and two threonines, which may be used for recognizing the phosphate group of the substrate, the active site consists of three glutamates, two aspartates, two histidines, and a cysteine which may provide the means for general acid and base catalysis and for coordinating the Mg{sup 2+} cofactor within the active site.

  7. The Surface Structure and Thermal Properties of Novel Polymer Composite Films Based on Partially Phosphorylated Poly(vinyl alcohol with Aluminum Phosphate

    Directory of Open Access Journals (Sweden)

    Asmalina Mohamed Saat

    2014-01-01

    Full Text Available Partially phosphorylated polyvinyl alcohol (PPVA with aluminum phosphate (ALPO4 composites was synthesized by solution casting technique to produce (PPVA100-y-(ALPO4y (y = 0, 1, and 2. The surface structure and thermal properties of the films were characterized using Fourier transform infrared (FTIR spectroscopy and thermogravimetric analysis (TGA. The results showed that the films have higher thermal stability with strong bonding between PPVA and ALPO4.

  8. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Debasish

    2009-02-01

    Full Text Available Abstract Background The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. Results We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2Å resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in

  9. Effects of collagen types II and X on the kinetics of crystallization of calcium phosphate in biomineralization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of the components of cartilages matrix on the process of endochondral ossification and the kinetics of crystal growth of calcium phosphate have been studied in the presence of type II or X collagen. During the experiments, type I collagen was added as the seed material. FT-IR analysis shows that calcium phosphate crystallized on the surface of type I collagen was mainly hydroxyapatite. Both type II and X collagens could reduce the growth rate of calcium phosphate crystals, and the effect of type X collagen is more obvious. The reaction was in the fourth order in the presence of type II collagen. The results showed that type II or X collagen had the ability to make Ca2+ accumulate in the process of endochondral ossification, but has little effect on crystal growth and the product of biomineralization.

  10. Biomimetic Precipitation of Uniaxially Grown Calcium Phosphate Crystals from Full-Length Human Amelogenin Sols

    Institute of Scientific and Technical Information of China (English)

    Vuk Uskokovié; Wu Li; Stefan Habelitz

    2011-01-01

    Human dental enamel forms over a period of 2 - 4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of a dense amelogenin matrix is presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aims to establish the physicochemical and biochemical conditions for the synthesis of fibrous apatite crystals under the control of a recombinant full-length human amelogenin matrix in combination with a programmable titration system. The growth of apatite substrates was initiated from supersaturated calcium phosphate solutions in the presence of dispersed amelogenin assemblies. It was shown earlier and confirmed in this study that binding of amelogenin onto apatite surfaces presents the first step that leads to substrate-specific crystal growth. In this work, we report enhanced nucleation and growth under conditions at which amelogenin and apatite carry opposite charges and adsorption of the protein onto the apatite seeds is even more favored. Experiments at pH below the isoelectric point of amelogenin showed increased protein binding to apatite and at low Ca/P molar ratios resulted in a change in crystal morphology from plate-like to fibrous and rod-shaped. Concentrations of calcium and phosphate ions in the supernatant did not show drastic decreases throughout the titration period, indicating controlled precipitation from the protein suspension metastable with respect to calcium phosphate. It is argued that ameloblasts in the developing enamel may vary the density of the protein matrix at the nano scale by varying local pH, and thus control the interaction between the mineral and protein phases. The biomimetic experimental setting applied in this study has thus proven as convenient for gaining insight into the fundamental nature of the process of

  11. Biomimetic Precipitation of Uniaxially Grown Calcium Phosphate Crystals from Full-Length Human Amelogenin Sols.

    Science.gov (United States)

    Uskoković, Vuk; Li, Wu; Habelitz, Stefan

    2011-06-10

    Human dental enamel forms over a period of 2 - 4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of a dense amelogenin matrix is presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aims to establish the physicochemical and biochemical conditions for the synthesis of fibrous apatite crystals under the control of a recombinant full-length human amelogenin matrix in combination with a programmable titration system. The growth of apatite substrates was initiated from supersaturated calcium phosphate solutions in the presence of dispersed amelogenin assemblies. It was shown earlier and confirmed in this study that binding of amelogenin onto apatite surfaces presents the first step that leads to substrate-specific crystal growth. In this work, we report enhanced nucleation and growth under conditions at which amelogenin and apatite carry opposite charges and adsorption of the protein onto the apatite seeds is even more favored. Experiments at pH below the isoelectric point of amelogenin showed increased protein binding to apatite and at low Ca/P molar ratios resulted in a change in crystal morphology from plate-like to fibrous and rod-shaped. Concentrations of calcium and phosphate ions in the supernatant did not show drastic decreases throughout the titration period, indicating controlled precipitation from the protein suspension metastable with respect to calcium phosphate. It is argued that ameloblasts in the developing enamel may vary the density of the protein matrix at the nano scale by varying local pH, and thus control the interaction between the mineral and protein phases. The biomimetic experimental setting applied in this study has thus proven as convenient for gaining insight into the fundamental nature of the process of

  12. {sup 26}Al-containing acidic and basic sodium aluminum phosphate preparation and use in studies of oral aluminum bioavailability from foods utilizing {sup 26}Al as an aluminum tracer

    Energy Technology Data Exchange (ETDEWEB)

    Yokel, Robert A. [College of Pharmacy, 511C Pharmacy Building 725 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536-0082 (United States) and Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305 (United States)]. E-mail: ryokel@email.uky.edu; Urbas, Aaron A. [Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055 (United States); Lodder, Robert A. [College of Pharmacy, 511C Pharmacy Building 725 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536-0082 (United States); Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055 (United States); Selegue, John P. [Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055 (United States); Florence, Rebecca L. [College of Pharmacy, 511C Pharmacy Building 725 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536-0082 (United States)

    2005-04-01

    We synthesized {sup 26}Al-containing acidic and basic (alkaline) sodium aluminum phosphates (SALPs) which are FDA-approved leavening and emulsifying agents, respectively, and used them to determine the oral bioavailability of aluminum incorporated in selected foods. We selected applicable methods from published syntheses (patents) and scaled them down ({approx}3000- and 850-fold) to prepare {approx}300-400 mg of each SALP. The {sup 26}Al was incorporated at the beginning of the syntheses to maximize {sup 26}Al and {sup 27}Al equilibration and incorporate the {sup 26}Al in the naturally-occurring Al-containing chemical species of the products. Near infrared spectroscopy (NIR) and X-ray powder diffraction (XRD) were used to characterize the two SALP samples and some intermediate samples. Multi-elemental analysis (MEA) was used to determine Na, Al and P content. Commercial products were included for comparison. Satisfactory XRD analyses, near infrared spectra and MEA results confirmed that we synthesized acidic and basic SALP, as well as some of the syntheses intermediates. The {sup 26}Al-containing acidic and basic SALPs were incorporated into a biscuit material and a processed cheese, respectively. These were used in oral bioavailability studies conducted in rats in which the {sup 26}Al present in blood after its oral absorption was quantified by accelerator mass spectrometry. The results showed oral Al bioavailability from acidic SALP in biscuit was {approx}0.02% and from basic SALP in cheese {approx}0.05%, lower than our previous determination of Al bioavailability from drinking water, {approx}0.3%. Both food and water can appreciably contribute to the Al absorbed from typical human Al intake.

  13. Optical properties of one-dimensional photonic crystals based on porous films of anodic aluminum oxide

    Science.gov (United States)

    Gorelik, V. S.; Klimonsky, S. O.; Filatov, V. V.; Napolskii, K. S.

    2016-04-01

    The optical properties of one-dimensional photonic crystals based on porous anodic aluminum oxide films have been studied by measuring transmittance and specular reflectance spectra in the visible and UV spectral regions. Angular dependences of the spectral positions of optical stop bands are obtained. It is shown that the reflectance within the first stop band varies from point to point on the sample surface, reaching a level of 98-99% at some points. The dispersion relation for electromagnetic waves in the model of infinite periodic structure is calculated for the samples under study. The possibility of using models with an infinite or finite number of layers to calculate reflectance spectra near the first optical stop band is discussed.

  14. Study of polycrystalline silicon obtained by aluminum-induced crystallization depending on process conditions

    Science.gov (United States)

    Pereyaslavtsev, Alexander; Sokolov, Igor; Sinev, Leonid

    2016-11-01

    In this paper, we have decided to consider an alternative method of producing polycrystalline silicon and study change of its electrophysical characteristics depending on process parameters. As an alternative low-pressure chemical vapor deposition method appears aluminum-induced crystallization (AIC), which allows to obtain a polycrystalline silicon film is significantly larger grain size, thereby reducing contribution of grain boundaries. A comprehensive study of polycrystalline silicon was carried out using a variety of microscopic (OM, SEM) and spectroscopic (RAMAN, XPS) and diffraction (EBSD, XRD) analytic methods. We also considered possibility of self-doping in AIC, result of which was obtained polycrystalline silicon with different resistance. Additionally considered changes in temperature coefficient of resistance depending on technological parameters of AIC process.

  15. Photonic crystal dumbbell resonators in silicon and aluminum nitride integrated optical circuits

    CERN Document Server

    Pernice, W H P; Tang, H X

    2014-01-01

    Tight confinement of light in photonic cavities provides an efficient template for the realization of high optical intensity with strong field gradients. Here we present such a nanoscale resonator device based on a one-dimensional photonic crystal slot cavity. Our design allows for realizing highly localized optical modes with theoretically predicted Q factors in excess of 106. The design is demonstrated experimentally both in a high-contrast refractive index system (silicon), as well as in medium refractive index contrast devices made from aluminum nitride. We achieve extinction ratio of 21dB in critically coupled resonators using an on-chip readout platform with loaded Q factors up to 33,000. Our approach holds promise for realizing ultra-small opto-mechanical resonators for high-frequency operation and sensing applications.

  16. Threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yuanyuan; Zhang, Qingming, E-mail: qmzhang@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2015-12-15

    Molecular dynamics method is used to study the threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact. Two effective simulation methods, piston-driven method and multi-scale shock technique, are used to simulate the shock wave. The simulation results from the two methods agree well with the experimental data, indicating that the shock wave velocity is linearly dependent on the particle velocity. The atom is considered to be ionized if the increase of its internal energy is larger than the first ionization energy. The critical impact velocity for plasma phase transition is about 13.0 km/s, corresponding to the threshold of pressure and temperature which is about 220 GPa and 11.0 × 10{sup 3 }K on the shock Hugoniot, respectively.

  17. Measurement of refractive index of biaxial potassium titanyl phosphate crystal plate using reflection spectroscopic ellipsometry technique

    Indian Academy of Sciences (India)

    A K Chaudhary; A Molla; A Asfaw

    2009-10-01

    The paper reports the measurement of refractive indices and anisotropic absorption coefficients of biaxial potassium titanyl phosphate (KTP) crystal in the form of thin plate using reflection ellipsometry technique. This experiment is designed in the Graduate Optics Laboratory of the Addis Ababa University and He–Ne laser ( = 632.8 nm), diode laser ( = 670.0 nm) and temperature-tuned diode laser ( = 804.4 and 808.4 nm), respectively have been employed as source. The experimental data for , are fitted to the Marquardt–Levenberg theoretical model of curve fitting. The obtained experimental data of refractive indices are compared with different existing theoretical and experimental values of KTP crystals and found to be in good agreement with them.

  18. Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells.

    Science.gov (United States)

    Corr, Emma M; Cunningham, Clare C; Helbert, Laura; McCarthy, Geraldine M; Dunne, Aisling

    2017-02-07

    Osteoarthritis (OA) is a chronic debilitating joint disorder of particularly high prevalence in the elderly population. Intra-articular basic calcium phosphate (BCP) crystals are present in the majority of OA joints and are associated with severe degeneration. They are known to activate macrophages, synovial fibroblasts, and articular chondrocytes, resulting in increased cell proliferation and the production of pro-inflammatory cytokines and matrix metalloproteases (MMPs). This suggests a pathogenic role in OA by causing extracellular matrix degradation and subchondral bone remodelling. There are currently no disease-modifying drugs available for crystal-associated OA; hence, the aim of this study was to explore the inflammatory pathways activated by BCP crystals in order to identify potential therapeutic targets to limit crystal-induced inflammation. Primary human macrophages and dendritic cells were stimulated with BCP crystals, and activation of spleen tyrosine kinase (Syk), phosphoinositide-3 kinase (PI3K), and mitogen-activated protein kinases (MAPKs) was detected by immunoblotting. Lipopolysaccharide (LPS)-primed macrophages were pre-treated with inhibitors of Syk, PI3K, and MAPKs prior to BCP stimulation, and cytokine production was quantified by enzyme-linked immunosorbent assay (ELISA). Aa an alternative, cells were treated with synovial fluid derived from osteoarthritic knees in the presence or absence of BCP crystals, and gene induction was assessed by real-time polymerase chain reaction (PCR). We demonstrate that exposure of primary human macrophages and dendritic cells to BCP crystals leads to activation of the membrane-proximal tyrosine kinases Syk and PI3K. Furthermore, we show that production of the pro-inflammatory cytokines interleukin (IL)-1α and IL-1β and phosphorylation of downstream MEK and ERK MAPKs is suppressed following treatment with inhibitors of Syk or PI3K. Finally, we demonstrate that treatment of macrophages with BCP crystals

  19. Crystal structure and functional characterization of a glucosamine-6-phosphate N-acetyltransferase from Arabidopsis thaliana.

    Science.gov (United States)

    Riegler, Heike; Herter, Thomas; Grishkovskaya, Irina; Lude, Anja; Ryngajllo, Malgorzata; Bolger, Marie E; Essigmann, Bernd; Usadel, Björn

    2012-04-15

    GlcNAc (N-acetylglucosamine) is an essential part of the glycan chain in N-linked glycoproteins. It is a building block for polysaccharides such as chitin, and several glucosaminoglycans and proteins can be O-GlcNAcylated. The deacetylated form, glucosamine, is an integral part of GPI (glycosylphosphatidylinositol) anchors. Both are incorporated into polymers by glycosyltransferases that utilize UDP-GlcNAc. This UDP-sugar is synthesized in a short pathway comprising four steps starting from fructose 6-phosphate. GNA (glucosamine-6-phosphate N-acetyltransferase) catalyses the second of these four reactions in the de novo synthesis in eukaryotes. A phylogenetic analysis revealed that only one GNA isoform can be found in most of the species investigated and that the most likely Arabidopsis candidate is encoded by the gene At5g15770 (AtGNA). qPCR (quantitative PCR) revealed the ubiquitous expression of AtGNA in all organs of Arabidopsis plants. Heterologous expression of AtGNA showed that it is highly active between pH 7 and 8 and at temperatures of 30-40°C. It showed Km values of 231 μM for glucosamine 6-phosphate and 33 μM for acetyl-CoA respectively and a catalytic efficiency comparable with that of other GNAs characterized. The solved crystal structure of AtGNA at a resolution of 1.5 Å (1 Å=0.1 nm) revealed a very high structural similarity to crystallized GNA proteins from Homo sapiens and Saccharomyces cerevisiae despite less well conserved protein sequence identity.

  20. Liquid crystal alignment in nanoporous anodic aluminum oxide layer for LCD panel applications.

    Science.gov (United States)

    Hong, Chitsung; Tang, Tsung-Ta; Hung, Chi-Yu; Pan, Ru-Pin; Fang, Weileun

    2010-07-16

    This paper reports the implementation and integration of a self-assembled nanoporous anodic aluminum oxide (np-AAO) film and liquid crystal (LC) on an ITO-glass substrate for liquid crystal display (LCD) panel applications. An np-AAO layer with a nanopore array acts as the vertical alignment layer to easily and uniformly align the LC molecules. Moreover, the np-AAO nanoalignment layer provides outstanding material properties, such as being inorganic with good transmittance, and colorless on ITO-glass substrates. In this application, an LCD panel, with the LC on the np-AAO nanoalignment layer, is successfully implemented on an ITO-glass substrate, and its performance is demonstrated. The measurements show that the LCD panel, consisting of an ITO-glass substrate and an np-AAO layer, has a transmittance of 60-80%. In addition, the LCD panel switches from a black state to a bright state at 3 V(rms), with a response time of 62.5 ms. In summary, this paper demonstrates the alignment of LC on an np-AAO layer for LCD applications.

  1. Intra-articular basic calcium phosphate and monosodium urate crystals inhibit anti-osteoclastogenic cytokine signalling.

    Science.gov (United States)

    Cunningham, C C; Corr, E M; McCarthy, G M; Dunne, A

    2016-12-01

    Basic calcium phosphate (BCP) and monosodium urate (MSU) crystals are particulates with potent pro-inflammatory effects, associated with osteoarthritis (OA) and gout, respectively. Bone erosion, due to increased osteoclastogenesis, is a hallmark of both arthropathies and results in severe joint destruction. The aim of this study was to investigate the effect of these endogenous particulates on anti-osteoclastogenic cytokine signalling. Human osteoclast precursors (OcP) were treated with BCP and MSU crystals prior to stimulation with Interleukin (IL-6) or Interferon (IFN-γ) and the effect on Signal Transducer and Activator of Transcription (STAT)-3 and STAT-1 activation in addition to Mitogen Activated Protein Kinase (MAPK) activation was examined by immunoblotting. Crystal-induced suppressor of cytokine signalling (SOCS) protein and SH-2 containing tyrosine phosphatase (SHP) expression was assessed by real-time polymerase chain reaction (PCR) in the presence and absence of MAPK inhibitors. Pre-treatment with BCP or MSU crystals for 1 h inhibited IL-6-induced STAT-3 activation in human OcP, while pre-treatment for 3 h inhibited IFN-γ-induced STAT-1 activation. Both crystals activated p38 and extracellular signal-regulated (ERK) MAPKs with BCP crystals also activating c-Jun N-terminal kinase (JNK). Inhibition of p38 counteracted the inhibitory effect of BCP and MSU crystals and restored STAT-3 phosphorylation. In contrast, STAT-1 phosphorylation was not restored by MAPK inhibition. Finally, both crystals potently induced the expression of SOCS-3 in a MAPK dependent manner, while BCP crystals also induced expression of SHP-1 and SHP-2. This study provides further insight into the pathogenic effects of endogenous particulates in joint arthropathies and demonstrates how they may contribute to bone erosion via the inhibition of anti-osteoclastogenic cytokine signalling. Potential targets to overcome these effects include p38 MAPK, SOCS-3 and SHP phosphatases

  2. Aluminium phosphate and phosphate-sulphate minerals in kyanite schists of the Ichetuyskoye area, West Transbaikalia, Russia: crystal chemistry and evolution

    Science.gov (United States)

    Izbrodin, Ivan A.; Ripp, German S.; Doroshkevich, Anna G.

    2011-01-01

    Aluminium phosphate and aluminium phosphate-sulphate (APS) minerals occur as disseminated crystals and fine-grained aggregates in kyanite schists near Ichetuyskoye, in the Dzhida basin (West Transbaikal region, Russia). Petrographical, mineralogical and geochemical data suggest a metamorphic evolution through prograde and retrograde stages. Lazulite-scorzalite and trolleite in association with kyanite, quartz, muscovite, paragonite, topaz, rutile, magnetite and hematite formed during the prograde stage. More than 25 minerals identified in schists are genetically related to the retrograde stage. Some phosphates and all of the APS minerals belong to the alunite, beudantite and plumbogummite groups. Electron-microprobe data reveal the presence of wide compositional variations and complex solid-solution series among the members. The main crystal-chemical variations of the APS solid-solution series in the alunite supergroup concern the relative proportions of svanbergite, woodhouseite, goyazite, crandallite, florencite-(Ce) and natroalunite. Chemical analyses of APS minerals indicate extremely high amounts of LREE, Sr, Ba, Ca and Na. In some cases, APS minerals have compositions of Ba and Ca,Ba phosphates- sulphates.

  3. Microindentation deformation of lithium dihydrogen phosphate single crystals: Microhardness measurement and indentation size effect

    Energy Technology Data Exchange (ETDEWEB)

    Iurchenko, Anton [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine); Borc, Jarosław, E-mail: j.borc@pollub.pl [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Sangwal, Keshra [Department of Applied Physics, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin (Poland); Voronov, Alexei [Institute for Single Crystals, National Academy of Sciences of Ukraine, Lenin Avenue 60, 61001 Kharkiv (Ukraine)

    2016-02-15

    The Vickers microhardness H{sub V} of the (110) and (111) as-grown faces of lithium dihydrogen phosphate (LDP) crystals was investigated as a function of applied load P. The microhardness H{sub V} of the two faces increases with load P i.e. reverse indentation size effect (reverse ISE) and the hardness of the (110) face is somewhat lower than that of the (111) face but this difference is not easily recognized for these planes due to large scatter in the data. The origin of observed ISE was analyzed using different approaches. It was found that: (1) Hays–Kendall's and Begley–Hutchinson's relations do not explain the origin of reverse ISE but Meyer's law describes the reverse ISE satisfactorily and its constants provide a link between ISE and formation of radial cracks with applied indentation load P, (2) reverse ISE is associated with tensile surface stresses, (3) despite its failure to explain reverse ISE, Begley–Hutchinson's relation is reliable to obtain load-independent hardness H{sub 0}, is 2337 MPa for LDP, and (4) the value of fracture toughness K{sub C} of LDP crystals lies between 4.7 and 12 MPa m{sup 1/2}. The load-independent hardness H{sub 0} of LDP is higher by a factor of 1.5 than that reported for undoped KDP and ADP crystals whereas its fracture toughness K{sub C} is higher by factor of about 20 than that of undoped KDP crystals. - Highlights: • Vickers indentations on the (110) and (111) faces of LDP crystals were made. • The microhardness H{sub V} was investigated as a function of applied load P. • Reverse indentation size effect was observed. • Fracture toughness K{sub C} from the radial cracks was calculated.

  4. Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, S., E-mail: arjunan_hce@yahoo.co.i [Department of Physics, Sri Ramachandra University, Porur, Chennai (India); Bhaskaran, A. [Department of Physics, Dr. Ambedkar Government College, Chennai (India); Kumar, R. Mohan; Mohan, R. [Department of Physics, Presidency College, Chennai (India); Jayavel, R. [Crystal Growth Centre, Anna University, Chennai (India)

    2010-09-17

    Research highlights: {yields} Thorium, Lanthanum and Cerium rare-earth ions were doped with L-arginine phosphate material and the crystals were grown by slow evaporation technique. {yields} The transparency of the rare-earth doped LAP crystals has enhanced compared to pure LAP. {yields} The powder SHG measurements revealed that the SHG output of rare-earth doped LAP crystals increases considerably compared to that of LAP. {yields} Vicker's hardness number of as-grown crystal of LAP is higher than that of rare-earth doped LAP crystals. - Abstract: Effect of Thorium, Lanthanum and Cerium rare-earth ions on the growth and properties of L-arginine phosphate single crystals has been reported. The incorporation of rare-earth dopants into the L-arginine phosphate crystals is confirmed by Inductively Coupled Plasma-Mass Spectroscopy analysis. The unit cell parameters for pure and rare-earth doped L-arginine phosphate crystals have been estimated by powder X-ray diffraction studies. UV-visible studies revealed the transmittance percentage and cut-off wavelengths of the grown crystals. Powder second harmonic generation measurement has been carried out for pure and doped L-arginine phosphate crystals. The dielectric behavior of the grown crystals was analyzed for different frequencies at room temperature. The mechanical properties have been determined for pure and the doped L-arginine phosphate crystals.

  5. Metal-phosphate binders

    Science.gov (United States)

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  6. Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Frank R., E-mail: frank.wagner@fresnel.fr; Natoli, Jean-Yves; Akhouayri, Hassan; Commandré, Mireille [Institut Fresnel, CNRS, Aix-Marseille Université, Ecole Centrale Marseille, Campus de St Jérôme, 13013 Marseille (France); Duchateau, Guillaume [CELIA, UMR 5107 Université Bordeaux 1-CNRS-CEA, 351 Cours de la Libération, 33405 Talence Cedex (France)

    2014-06-28

    Due to its high effective nonlinearity and the possibility to produce periodically poled crystals, potassium titanyl phosphate (KTiOPO{sub 4}, KTP) is still one of the economically important nonlinear optical materials. In this overview article, we present a large study on catastrophic nanosecond laser induced damage in this material and the very similar RbTiOPO{sub 4} (RTP). Several different systematic studies are included: multiple pulse laser damage, multi-wavelength laser damage in KTP, damage resistance anisotropy, and variations of the laser damage thresholds for RTP crystals of different qualities. All measurements were carried out in comparable experimental conditions using a 1064 nm Q-switched laser and some were repeated at 532 nm. After summarizing the experimental results, we detail the proposed model for laser damage in this material and discuss the experimental results in this context. According to the model, nanosecond laser damage is caused by light-induced generation of transient laser-damage precursors which subsequently provide free electrons that are heated by the same nanosecond pulse. We also present a stimulated Raman scattering measurement and confront slightly different models to the experimental data. Finally, the physical nature of the transient damage precursors is discussed and similarities and differences to laser damage in other crystals are pointed out.

  7. Structural matching of ferroelectric domains and associated distortion in potassium titanyl phosphate crystals

    CERN Document Server

    Pernot-Rejmankova, P; Cloetens, P; Lyford, T; Baruchel, J

    2003-01-01

    The surface deformation and atomic-level distortions associated with crystal structural matching at ferroelectric inversion domain walls are investigated in periodically poled potassium titanyl phosphate (KTP) crystals. A deformation, of the order of 10 sup - sup 8 m in scale and having the periodicity of the domains, is observed at the surfaces by optical interferometry. It is discussed in terms of the piezoelectric effect. The matching of the crystal structures at the domain walls is studied by combining the hard x-ray Fresnel phase-imaging technique with Bragg diffraction imaging methods ('Bragg-Fresnel imaging') and using synchrotron radiation. Quantitative analysis of the contrast of the Bragg-Fresnel images recorded as a function of the propagation distance is demonstrated to allow the determination of how the domains are matched at the atomic (unit cell) level, even though the spatial resolution of the images is on the scale of micrometres. The atom P(1) is determined as the linking atom for connecting...

  8. A new uranyl phosphate sheet in the crystal structure of furongite

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, Fabrice; Hatert, Frederic [Liege Univ. (Belgium). Lab. de Mineralogie; Philippo, Simon [Musee National d' Historie Naturelle, Luxembourg (Luxembourg). Section Mineralogie

    2017-06-15

    The crystal structure of furongite, Al{sub 4}[(UO{sub 2}){sub 4}(PO{sub 4}){sub 6}](OH){sub 2}(H{sub 2}O){sub 19.5}, from the Kobokobo pegmatite, Kivu, Democratic Republic of Congo, was solved for the first time. Furongite is triclinic, the space group P anti 1, Z=2, a = 12.1685(8), b = 14.1579(6), c = 17.7884(6) Aa, α = 79.822(3), β = 77.637(4), γ = 67.293(2) , and V = 2746.2(2)Aa{sup 3}. The crystal structure was refined from single crystal X-ray diffraction data to R{sub 1} = 0.0733 for 7716 unique observed reflections, and to wR{sub 2} = 0.2081 for all 12,538 unique reflections. The structure of furongite contains infinite uranyl phosphate sheets of composition [(UO{sub 2}){sub 4}(PO{sub 4}){sub 6}]{sup 10-} which are parallel to (1 0 1). The sheets are constituted by UrO{sub 5} pentagonal bipyramids and PO{sub 4} tetrahedra which share edges and vertices, and adjacent sheets are linked by a dense network of hydrogen bonds. Running through the sheets and connected mainly to the free apical oxygen atom of PO4 tetrahedra are Al octahedra connected together to form remarkable Al{sub 2}O{sub 5}(OH)(H{sub 2}O){sub 5} and Al{sub 4}O{sub 8}(OH){sub 2}(H{sub 2}O){sub 10} clusters. These Al clusters are only bonded to one sheet, and do not connect two adjacent sheets together. The topology of the uranyl phosphate sheets is related to the uranophane anion topology, and can be described as a new geometrical isomer of the uranophane group. Furongite is the first uranyl phosphate reported in nature with a U:P ratio of 2:3.

  9. Experimenting with a Visible Copper-Aluminum Displacement Reaction in Agar Gel and Observing Copper Crystal Growth Patterns to Engage Student Interest and Inquiry

    Science.gov (United States)

    Xu, Xinhua; Wu, Meifen; Wang, Xiaogang; Yang, Yangyiwei; Shi, Xiang; Wang, Guoping

    2016-01-01

    The reaction process of copper-aluminum displacement in agar gel was observed at the microscopic level with a stereomicroscope; pine-like branches of copper crystals growing from aluminum surface into gel at a constant rate were observed. Students were asked to make hypotheses on the pattern formation and design new research approaches to prove…

  10. Crystal structure, vibrational spectra and theoretical studies of L-histidinium dihydrogen phosphate-phosphoric acid

    Science.gov (United States)

    Ahmed, A. Ben; Feki, H.; Abid, Y.; Boughzala, H.; Minot, C.; Mlayah, A.

    2009-02-01

    In this work, we report a combined experimental and theoretical study on molecular structure and vibrational spectra of L-histidinium dihydrogen phosphate-phosphoric acid, with particular emphasize on the correlation between the intermolecular hydrogen bonds and the hyperpolarizability. Single crystal of L-histidinium dihydrogen phosphate-phosphoric acid has been subjected to X-ray diffraction and Raman spectroscopy. The title compound crystallises in the non-centrosymmetric space group P2 1. Raman spectra have been recorded in the frequency range [150-3350 cm -1]. To obtain a more reliable assignment of the Raman and IR spectra, we have calculated the geometry and the frequencies using HF and DFT methods. All the experimental vibrational bands have been discussed and assigned to normal mode or to combinations and overtones on the basis of our calculations. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP and BLYP) are in well agreement with the experimental data. The results of DFT-B3LYP method have shown better fit to experimental ones than HF in evaluating vibrational frequencies. To investigate microscopic second order non-linear optical behaviour of the examined complex, the electric dipole μ, the polarizability α and the hyperpolarizability β were computed using DFT//B3LYP/6-31 G(d) method. According to our calculation, the title compound exhibits non-zero β value revealing microscopic second order NLO behaviour.

  11. EPR and optical absorption studies of vanadyl impurity in zinc potassium phosphate hexahydrate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram, E-mail: ram_kripal2001@rediffmail.co [Department of Physics, University of Allahabad, Allahabad 211002 (India); Maurya, Manju, E-mail: mmanju8@yahoo.co.i [Department of Physics, University of Allahabad, Allahabad 211002 (India); Bajpai, Manisha [Department of Physics, University of Allahabad, Allahabad 211002 (India); Govind, Har [Department of Electronics, Ewing Christian College, Allahabad 211003 (India)

    2009-11-01

    Electron paramagnetic resonance (EPR) study of VO{sup 2+} doped zinc potassium phosphate hexahydrate single crystal is carried out. The angular variation of the spectra is studied in the three crystallographic planes. The principal value of spin Hamiltonian parameters g and A and the direction cosines which principal axes make with the crystallographic axes are determined. The observed values are site I: g{sub ||} =1.9664+-0.0002, g{sub perpendicular} =1.9973+-0.0002, A{sub ||} =150+-2x10{sup -4}, A{sub perpendicular} =60+-2x10{sup -4} cm{sup -1}; site II: g{sub ||} =1.9276+-0.0002, g{sub perpendicular} =1.9921+-0.0002, A{sub ||} =155+-2x10{sup -4} and A{sub perpendicular} =62+-2x10{sup -4} cm{sup -1}. By comparison of direction cosines of g from EPR with the direction cosines of different bonds obtained from crystal structure data it is ascertained that the VO{sup 2+} ion occupies Zn{sup 2+} substitutional sites. The optical absorption study of the crystal at room temperature is also carried out. The bands observed in the optical absorption spectrum are attributed to d-d transitions. The EPR results together with the optical data are employed to estimate the molecular orbital (MO) coefficients. These MO coefficients (also called bonding coefficients) are further used to discuss the nature of bonding of VO{sup 2+} ion with different ligands in the crystal.

  12. A microporous potassium vanadyl phosphate analogue of mahnertite. Hydrothermal synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Yakubovich, Olga V. [M.V. Lomonosov Moscow State Univ. (Russian Federation). Dept. of Crystallography; Russian Academy of Science, Moscow (Russian Federation). Inst. of Geology of Deposits, Petrography, Mineralogy and Geochemistry; Steele, Ian M. [Notre Dame Univ., IN (United States). Notre Dame Integrated Imaging Facility; Kiriukhina, Galina V.; Dimitrova, Olga V. [M.V. Lomonosov Moscow State Univ. (Russian Federation). Dept. of Crystallography

    2015-09-01

    The novel phase K{sub 2.5}Cu{sub 5}Cl(PO{sub 4}){sub 4}(OH){sub 0.5}(VO{sub 2}).H{sub 2}O was prepared by hydrothermal synthesis at 553 K. Its crystal structure was determined using low-temperature (100 K) single-crystal synchrotron diffraction data and refined against F{sup 2} to R = 0.035. The compound crystallizes in the tetragonal space group I4/mmm, with unit-cell parameters a =9.8120(8), c = 19.954(1) Aa, V = 1921.1(2) Aa{sup 3}, and Z = 4. Both symmetrically independent Cu{sup 2+} sites show elongated square-pyramidal coordination. The V{sup 5+} ions reside in strongly distorted five-vertex VO{sub 5} polyhedra with 50% occupancy. The structure is based on a 3D anionic framework built from Cu- and V-centered five-vertex polyhedra and PO{sub 4} tetrahedra. Channels in the [100] and [010] directions accommodate large K atoms and H{sub 2}O molecules. The compound is a new structural representative of the topology shown by the lavendulan group of copper arsenate and phosphate minerals. Their tetragonal or pseudotetragonal crystal structures are characterized by two types of 2D slabs alternating along one axis of their unit cells. One slab, described by the formula [Cu{sub 4}X(TO{sub 4}){sub 4}]{sub 8} (where X = Cl, O and T = As, P), is common to all phases, whereas the slab content of the other set differs among the group members. We suggest interpreting this family of compounds in terms of the modular concept and also consider the synthetic phase Ba(VO)Cu{sub 4}(PO{sub 4}){sub 4} as a simplest member of this polysomatic series.

  13. Crystallization and preliminary X-ray analysis of the glycerol-3-phosphate 1-acyltransferase from squash (Cucurbita moschata).

    Science.gov (United States)

    Turnbull, A P; Rafferty, J B; Sedelnikova, S E; Slabas, A R; Schierer, T P; Kroon, J T; Nishida, I; Murata, N; Simon, J W; Rice, D W

    2001-03-01

    Glycerol-3-phosphate 1-acyltransferase (E.C. 2.3.1.15; G3PAT) catalyses the incorporation of an acyl group from either acyl-acyl carrier proteins (acylACPs) or acylCoAs into the sn-1 position of glycerol 3-phosphate to yield 1-acylglycerol 3-phosphate. Crystals of squash G3PAT have been obtained by the hanging-drop method of vapour diffusion using PEG 4000 as the precipitant. These crystals are most likely to belong to space group P2(1)2(1)2(1), with approximate unit-cell parameters a = 61.1, b = 65.1, c = 103.3 A, alpha = beta = gamma = 90 degrees and a monomer in the asymmetric unit. X-ray diffraction data to 1.9 A resolution have been collected in-house using a MAR 345 imaging-plate system.

  14. Aluminum phosphate coatings

    Science.gov (United States)

    Sambasivan, Sankar; Steiner, Kimberly A.; Rangan, Krishnaswamy K.

    2007-12-25

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  15. Phosphate-intercalated Ca-Fe-layered double hydroxides: Crystal structure, bonding character, and release kinetics of phosphate

    Science.gov (United States)

    Woo, Myong A.; Woo Kim, Tae; Paek, Mi-Jeong; Ha, Hyung-Wook; Choy, Jin-Ho; Hwang, Seong-Ju

    2011-01-01

    The nitrate-form of Ca-Fe-layered double hydroxide (Ca-Fe-LDH) was synthesized via co-precipitation method, and its phosphate-intercalates were prepared by ion-exchange reaction. According to X-ray diffraction analysis, the Ca-Fe-LDH-NO 3- compound and its H 2PO 4--intercalate showed hexagonal layered structures, whereas the ion-exchange reaction with HPO 42- caused a frustration of the layer ordering of LDH. Fe K-edge X-ray absorption spectroscopy clearly demonstrated that the Ca-Fe-LDH lattice with trivalent iron ions was well-maintained after the ion-exchange with HPO 42- and H 2PO 4-. Under acidic conditions, phosphate ions were slowly released from the Ca-Fe-LDH lattice and the simultaneous release of hydroxide caused the neutralization of acidic media. Fitting analysis based on kinetic models indicated a heterogeneous diffusion process of phosphates and a distinct dependence of release rate on the charge of phosphates. This study strongly suggested that Ca-Fe-LDH is applicable as bifunctional vector for slow release of phosphate fertilizer and for the neutralization of acid soil.

  16. X-ray analysis of mechanical and thermal effects induced by femtosecond laser treatment of aluminum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Valette, S. [Laboratoire Traitement du Signal et Instrumentation, Universite Jean Monnet, UMR CNRS 5516, 10 rue Barrouin 42000 Saint-Etienne (France)]. E-mail: stephane.valette@ec-lyon.fr; Le Harzic, R. [Laboratoire Traitement du Signal et Instrumentation, Universite Jean Monnet, UMR CNRS 5516, 10 rue Barrouin 42000 Saint-Etienne (France); Audouard, E. [Laboratoire Traitement du Signal et Instrumentation, Universite Jean Monnet, UMR CNRS 5516, 10 rue Barrouin 42000 Saint-Etienne (France); Huot, N. [Laboratoire Traitement du Signal et Instrumentation, Universite Jean Monnet, UMR CNRS 5516, 10 rue Barrouin 42000 Saint-Etienne (France); Fillit, R. [Ecole Nationale Superieure des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 Saint-Etienne Cedex 2 (France); Fortunier, R. [Ecole Nationale Superieure des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 Saint-Etienne Cedex 2 (France)

    2006-04-30

    Surface marking of aluminum single crystal is performed with femtosecond laser pulses. X-ray analysis allows to measure thermal and mechanical effects induced by the femtosecond laser pulses. These effects are estimated by comparing the pole figures (crystallinity) and the broadening of the diffraction peaks (mechanical contribution) before and after the laser irradiation. The results show that the femtosecond laser treatment ensures a re-crystallization of the structure and the presence of mechanical residual stresses. The analysis of the pole figures provides the sign of a re-crystallization on smaller volumes compared to initial ones. After the laser irradiation, the crystallization is perfectly oriented like the (1 1 0) orientation of the massive sample. Moreover, following the laser treatment, we show that the crystallographic structure is purer than the initial one. We also prove that the laser effect is persistent on a typical scale of 10 {mu}m beyond the surface.

  17. Phosphate-binding protein from Polaromonas JS666: purification, characterization, crystallization and sulfur SAD phasing

    Energy Technology Data Exchange (ETDEWEB)

    Pegos, Vanessa R.; Hey, Louis; LaMirande, Jacob; Pfeffer, Rachel; Lipsh, Rosalie; Amitay, Moshe; Gonzalez, Daniel; Elias, Mikael (JCT-Israel); (UMM); (CNRS-UMR)

    2017-05-25

    Phosphate-binding proteins (PBPs) are key proteins that belong to the bacterial ABC-type phosphate transporters. PBPs are periplasmic (or membrane-anchored) proteins that capture phosphate anions from the environment and release them to the transmembrane transporter. Recent work has suggested that PBPs have evolved for high affinity as well as high selectivity. In particular, a short, unique hydrogen bond between the phosphate anion and an aspartate residue has been shown to be critical for selectivity, yet is not strictly conserved in PBPs. Here, the PBP fromPolaromonasJS666 is focused on. Interestingly, this PBP is predicted to harbor different phosphate-binding residues to currently known PBPs. Here, it is shown that the PBP fromPolaromonasJS666 is capable of binding phosphate, with a maximal binding activity at pH 8. Its structure is expected to reveal its binding-cleft configuration as well as its phosphate-binding mode. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.35 Å resolution of the PBP fromPolaromonasJS666 are reported.

  18. Twisted intra-molecular charge transfer investigations of semiorganic triglycine phosphate single crystal for non linear optical applications

    Science.gov (United States)

    Meera, M. R.; Joselin Beaula, T.; Rayar, S. L.; Bena Jothy, V.

    2017-09-01

    NLO materials are gaining importance in technologies such as optical communication, optical computing and dynamic image processing. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. A semi organic Single crystal of Triglycine Phosphate (TGP) which was grown and spectral analysis have been using FTIR and Raman spectral analysis. Natural Bond Orbital Analysis and the atomic natural charges are also predicted. HOMO LUMO energy gap value suggests the possibility of charge transfer within the molecule.

  19. Shear-mediated crystallization from amorphous calcium phosphate to bone apatite.

    Science.gov (United States)

    Niu, Xufeng; Wang, Liyang; Tian, Feng; Wang, Lizhen; Li, Ping; Feng, Qingling; Fan, Yubo

    2016-02-01

    The contribution of fluid shear stress (FSS) on the conversion of amorphous calcium phosphate (ACP) to bone apatite is investigated. The ACP precursors are prepared by using a wet-chemistry method and further exposed to the constant FSS environment with values of 0.5, 1.0, 1.5, and 2.0Pa. At the designated time points, the apatites are characterized by transmission electron microscopy, X-ray diffraction, and inductively coupled plasma-mass spectroscopy. The results show that, the low FSS (≤1.0Pa) has positive effects on the transition of ACP, characterized by the accelerated crystallization velocity and the well-organized calcium-deficient hydroxyapatite (CDHA) structure, whereas the high FSS (>1.0Pa) has negative effects on this conversion process, characterized by the poor CDHA crystal morphologies and the destroyed structures. The bioactivity evaluations further reveal that, compared with the FSS-free group, the CDHA prepared under 1.0Pa FSS for 9h presents the more biocompatible features with pre-osteoblast cells. These results are helpful for understanding the mechanism of apatite deposition in natural bone tissue.

  20. The Effect of Premixed Schedule on the Crystal Formation of Calcium Phosphate Cement-chitosan Composite with Added Tetracycline

    Institute of Scientific and Technical Information of China (English)

    Jing MAO; Yan LIU; Bin ZHOU; Liyun YAO

    2008-01-01

    In this study, calcium phosphate cements (CPC) were prepared by mixing cement powders of tetracalcium phosphate (TTCP) with a cement liquid of phosphate acid saline solution. Tetracycline (TTC)-CPC, chitosan-CPC and chitosan-TTC-CPC were investigated with different premixed schedule. It was demonstrate that both TTC and chitosan worked on the phase transition and crystal characteristics. TTCP mixed with phosphate acid saline solution had similar features of Fourier transform-infrared spectrometry (FT-IR) no matter it was mixed with chitosan or TTC or both. TTC premixed with cement liquid or powder had significant different features of FT-IR and 876 cm-1seemed to be a special peak for TTC when TTC was premixed with cement liquid. This was also supported by XRD analysis, which showed that TTC premixed with cement liquid improved phase transition of TTCP to OCP. Chitosan, as organic additive, regulates the regular crystal formation and inhibits the phase transition of TTCP to OCP, except when it is mingled with cement liquid premixed with TTC in field scanning electron microscope. It was concluded that the premixed schedule influences the crystal formation and phase transition, which may be associated with its biocompatibility and bioactivities in vivo.

  1. Zinc phosphating of 6061-Al alloy using REN as additive

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shenglin; ZHANG Xiaolin; ZHANG Mingming

    2008-01-01

    Zinc phosphate coating formed on 6061-Al alloy was studied with the help of electrochemical measurements, Fourier Transform Infrared (FTIR), and Scanning Electron Microscopy (SEM), after dipping it in phosphating solutions containing different concentrations of Rare Earth Nitrate (REN). REN, which acted as an accelerator in the phosphating solution, could catalyze the surface reaction and accelerate the phosphating process. REN mainly enabled the P in the phosphate coating to exist in the form of PO43- and promoted the hydrolysis of phosphatic acid in a liquid layer at the cathodes. This resulted in the evolution of H2 at the cathodes, which increased the local pH value and in turn drove the precipitation of the phosphate coating. Additionally, REN was adsorbed on the surface of the aluminum substrates to form a gel during the phosphating process. These gel particles were good crystal seeds, which helped to form phosphate crystal nuclei and possess the function of a nucleation agent that could decrease the phosphate crystal size. The corrosion resistance of the formed zinc phosphate coatings was improved.

  2. Combining (27)Al Solid-State NMR and First-Principles Simulations To Explore Crystal Structure in Disordered Aluminum Oxynitride.

    Science.gov (United States)

    Tu, Bingtian; Liu, Xin; Wang, Hao; Wang, Weimin; Zhai, Pengcheng; Fu, Zhengyi

    2016-12-19

    The nuclear magnetic resonance (NMR) technique gives insight into the local information in a crystal structure, while Rietveld refinement of powder X-ray diffraction (PXRD) sketches out the framework of a crystal lattice. In this work, first-principles calculations were combined with the solid-state NMR technique and Rietveld refinement to explore the crystal structure of a disordered aluminum oxynitride (γ-alon). The theoretical NMR parameters (chemical shift, δiso, quadrupolar coupling constants, CQ, and asymmetry parameter, η) of Al22.5O28.5N3.5, predicted by the gauge-including projector augmented wave (GIPAW) algorithm, were used to facilitate the analytical investigation of the (27)Al magic-angle spinning (MAS) NMR spectra of the as-prepared sample, whose formula was confirmed to be Al2.811O3.565N0.435 by quantitative analysis. The experimental δiso, CQ, and η of (27)Al showed a small discrepancy compared with theoretical models. The ratio of aluminum located at the 8a to 16d sites was calculated to be 0.531 from the relative integration of peaks in the (27)Al NMR spectra. The occupancies of aluminum at the 8a and 16d positions were determined through NMR investigations to be 0.9755 and 0.9178, respectively, and were used in the Rietveld refinement to obtain the lattice parameter and anion parameter of Al2.811O3.565N0.435. The results from (27)Al NMR investigations and PXRD structural refinement complemented each other. This work provides a powerful and accessible strategy to precisely understand the crystal structure of novel oxynitride materials with multiple disorder.

  3. INTERNATIONAL STUDY OF ALUMINUM IMPACTS ON CRYSTALLIZATION IN U.S. HIGH LEVEL WASTE GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K; David Peeler, D; Tommy Edwards, T; David Best, D; Irene Reamer, I; Phyllis Workman, P; James Marra, J

    2008-09-23

    The objective of this task was to develop glass formulations for (Department of Energy) DOE waste streams with high aluminum concentrations to avoid nepheline formation while maintaining or meeting waste loading and/or waste throughput expectations as well as satisfying critical process and product performance related constraints. Liquidus temperatures and crystallization behavior were carefully characterized to support model development for higher waste loading glasses. The experimental work, characterization, and data interpretation necessary to meet these objectives were performed among three partnering laboratories: the V.G. Khlopin Radium Institute (KRI), Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL). Projected glass compositional regions that bound anticipated Defense Waste Processing Facility (DWPF) and Hanford high level waste (HLW) glass regions of interest were developed and used to generate glass compositions of interest for meeting the objectives of this study. A thorough statistical analysis was employed to allow for a wide range of waste glass compositions to be examined while minimizing the number of glasses that had to be fabricated and characterized in the laboratory. The glass compositions were divided into two sets, with 45 in the test matrix investigated by the U.S. laboratories and 30 in the test matrix investigated by KRI. Fabrication and characterization of the US and KRI-series glasses were generally handled separately. This report focuses mainly on the US-series glasses. Glasses were fabricated and characterized by SRNL and PNNL. Crystalline phases were identified by X-ray diffraction (XRD) in the quenched and canister centerline cooled (CCC) glasses and were generally iron oxides and spinels, which are not expected to impact durability of the glass. Nepheline was detected in five of the glasses after the CCC heat treatment. Chemical composition measurements for each of the glasses were conducted

  4. Beta tricalcium phosphate ceramics with controlled crystal orientation fabricated by application of external magnetic field during the slip casting process.

    Science.gov (United States)

    Hagio, Takeshi; Yamauchi, Kazushige; Kohama, Takenori; Matsuzaki, Toshiya; Iwai, Kazuhiko

    2013-07-01

    Beta tricalcium phosphate (β-TCP) is a resorbable bioceramic that has hitherto been utilized in the medical field. Since it crystallizes in the anisotropic hexagonal system, properties such as chemical and physical ones are expected to depend on its crystal axis direction and/or on its crystal plane (anisotropy). Control of crystal orientation is thus important when used in polycrystalline form. Meanwhile, application of a strong magnetic field has been found to be a promising technique to control crystal orientation of anisotropic shape or structured crystals. In this work, we attempted to fabricate β-TCP ceramics with controlled crystal orientation by applying an external magnetic field during the slip casting process and subsequently sintering them at 1050°C, below the β-α transition temperature. Application of a vertical magnetic field increased intensities of planes perpendicular to c-plane on the top surface, while a horizontal one with simultaneous mechanical mold rotation decreased it. These results indicated that crystal orientation of β-TCP ceramics were successfully controlled by the external magnetic field and together that the magnetic susceptibility of β-TCP is χ(c[perpendicular])>χ(c//).

  5. Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab

    Science.gov (United States)

    Gorisse, M.; Benchabane, S.; Teissier, G.; Billard, C.; Reinhardt, A.; Laude, V.; Defaÿ, E.; Aïd, M.

    2011-06-01

    We report on the observation of elastic waves propagating in a two-dimensional phononic crystal composed of air holes drilled in an aluminum nitride membrane. The theoretical band structure indicates the existence of an acoustic band gap centered around 800 MHz with a relative bandwidth of 6.5% that is confirmed by gigahertz optical images of the surface displacement. Further electrical measurements and computation of the transmission reveal a much wider attenuation band that is explained by the deaf character of certain bands resulting from the orthogonality of their polarization with that of the source.

  6. Characterization and Catalytic Activity of Titanium-containing Aluminum Phosphate Prepared by Sol-gel and Nonuniform Precipitation for O-Alkylation of Catechol with Ethanol

    Institute of Scientific and Technical Information of China (English)

    PAN Chun-liu; ZHANG Wen-xiang; LI Xue-mei; JIANG Da-zhen; WU Tong-hao

    2003-01-01

    Three titanium-containing aluminum phosphate catalysts with a general formula Al0.77Ti0.23PO4 were prepared by the sol-gel method at room temperature(APTS), and a nonuniform precipitation procedure at room temperature(APTR) and under reflux(APTF), respectively. The structural features and the surface properties of the three catalysts were determined by means of the physical adsorption of nitrogen at liquid N2 temperature, XRD, UV-Vis, NH3-TPD and IR of adsorbed pyridine. The vapor phase O-alkylation of catechol with ethanol over the prepared catalysts was studied. It was found that the activity and the selectivity of these catalysts are greatly dependent on the preparation method, and catalyst APTF shows the highest activity and selectivity. The characterization evidence indicates that the weak Brnsted acid sites were more effective for the reaction.

  7. Studies on L-citrulline doped potassium dihydrogen phosphate- A non linear crystal with significant nonlinear properties

    Science.gov (United States)

    Sreevalsa, V. G.; Jayalekshmi, S.

    2014-01-01

    Potassium Dihydrogen Phosphate (KDP) single crystal is considered as one of the best representative of nonlinear optical crystals. Recently, amino acids having excellent nonlinear optical characteristics are being investigated as prospective dopants to improve the non linear optical characteristics of KDP. The present work is an attempt in this direction and L citrulline, one of the non essential amino acids showing good non linear optical characteristics is used as the dopant for KDP. Good quality crystals of L-citrulline doped KDP crystals were grown by slow evaporation technique. From the powder X-ray diffraction studies of doped KDP crystal, the structure of the doped crystals was determined by direct method and refined by Pawley method employing Topaz version program using the single crystal X-ray data for pure KDP. The lattice parameters for L citrulline doped KDP are a=7.467A0, b=7.467 A0, c=6.977 A0. The crystal falls into the tetragonal crystal system with space group I42 d. The presence of carbon and oxygen, which are primary components of amino acids, in the EDAX spectrum confirms the effectiveness of doping. The absorption spectra of the doped samples show that the crystals are transparent in the entire visible region. The second harmonic generation efficiency of the doped samples was determined by Kurtz powder technique using the Q-switched Nd:YAG laser beam and is found to be 2.2 times that of KDP. The nonlinear optical properties can be well studied by the open aperture Z scan technique. The open aperture curve exhibits a normalized transmittance valley. The nonlinear absorption coefficient β is obtained by theoretical fitting for two photon absorption. It is inferred that doping KDP with L citrulline has enhanced the nonlinearity considerably. This obviously suggests the potentiality of the crystal as an optical power limiter and also for various optical device applications.

  8. Spectroscopy and Speciation Studies on the Interactions of Aluminum (III with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    2012-08-01

    Full Text Available In this study, both experimental and theoretical approaches, including absorption spectra, fluorescence emission spectra, 1H- and 31P-NMR, electrospray ionization mass spectrometry (ESI-MS, pH-potentiometry and theoretical approaches using the BEST & SPE computer programs were applied to study the competitive complexation between ciprofloxacin (CIP and b-nicotinamide adenine dinucleotide phosphate (NADP with aluminum (III in aqueous solutions. Rank annihilation factor analysis (RAFA was used to analyze the absorption and fluorescence emission spectra of the ligands, the binary complexes and the ternary complexes. It is found, at the mM total concentration level and pH = 7.0, the bidentate mononuclear species [Al(CIP]2+ and [Al(NADP] predominate in the aqueous solutions of the Al(III-CIP and Al(III-NADP systems, and the two complexes have similar conditional stability constants. However, the pH-potentiometry results show at the mM total concentration level and pH = 7.0, the ternary species [Al(CIP(HNADP] predominates in the ternary complex system. Comparing predicted NMR spectra with the experimental NMR results, it can be concluded that for the ternary complex, CIP binds to aluminum ion between the 3-carboxylic and 4-carbonyl groups, while the binding site of oxidized coenzyme II is through the oxygen of phosphate, which is linked to adenosine ribose, instead of pyrophosphate. The results also suggested CIP has the potential to be a probe molecular for the detection of NADP and the Al(III-NADP complexes under physiological condition.

  9. 磷酸铝铬耐磨材料的制备与研究%The Preparation and Research of Wearable Material with Chrome Aluminum Phosphate Solution

    Institute of Scientific and Technical Information of China (English)

    王珏; 刘洪成; 张晓臣

    2015-01-01

    针对煤粉、热力管道高温气体冲蚀及爆管问题,以氧化铝、氧化锆、二氧化硅和磷酸铝铬溶液为主要原料,制备了一种磷酸铝铬耐磨材料,测试其剪切性能、磨耗量并观察其微观形貌。结果表明:磷酸盐基耐磨材料的室温剪切强度为3.65MPa,磨耗量为0.30g/cm2。%A kind of wearable material was prepared using aluminum oxide, zirconium dioxide, silicon dioxide and chrome aluminum phosphate solution as the main raw material for the high temperature gas erosion and burst problem on the pipeline of pulverized coal and heat power. Then we tested its shearing strength, abrasion loss and observed the microstructure. The results showed that its shear strength at room temperature was 3.65MPa, the abrasion loss was 0.30g/cm2.

  10. Effect of fluorides (KF and NaF) on the growth of dicalcium phosphate dihydrate (DCPD) crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sekar, C. [Department of Physics, Periyar University, Salem 636011, Tamilnadu (India)], E-mail: Sekar2025@gmail.com; Kanchana, P.; Nithyaselvi, R. [Department of Physics, Periyar University, Salem 636011, Tamilnadu (India); Girija, E.K. [School of Physics, Madurai Kamaraj University, Madurai 625021 (India)

    2009-05-15

    Dicalcium phosphate dihydrate (CaHPO{sub 4}.2H{sub 2}O, DCPD also known as brushite) is the major component of hard tissues like bone, teeth and a medicine for calcium supply. The effect of sodium fluoride and potassium fluoride on the crystallization of DCPD in sodium meta silicate gel has been studied at room temperature under the physiological pH (7.4). Addition of fluorides reduces the crystal size and the number of crystals grown when compared to pure system. Among the two fluorides, the KF suppresses the crystal formation more drastically than that of NaF. In both the cases, the 'Ca' content in the DCPD crystals was found to be less when compared to its pure form. The crystal morphology, elemental composition and properties of the grown crystals were analyzed using SEM-EDAX, powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermal analysis (TG-DSC)

  11. Advances in synthesis of calcium phosphate crystals with controlled size and shape.

    Science.gov (United States)

    Lin, Kaili; Wu, Chengtie; Chang, Jiang

    2014-10-01

    Calcium phosphate (CaP) materials have a wide range of applications, including biomaterials, adsorbents, chemical engineering materials, catalysts and catalyst supports and mechanical reinforcements. The size and shape of CaP crystals and aggregates play critical roles in their applications. The main inorganic building blocks of human bones and teeth are nanocrystalline CaPs; recently, much progress has been made in the application of CaP nanocrystals and their composites for clinical repair of damaged bone and tooth. For example, CaPs with special micro- and nanostructures can better imitate the biomimetic features of human bone and tooth, and this offers significantly enhanced biological performances. Therefore, the design of CaP nano-/microcrystals, and the shape and hierarchical structures of CaPs, have great potential to revolutionize the field of hard tissue engineering, starting from bone/tooth repair and augmentation to controlled drug delivery devices. Previously, a number of reviews have reported the synthesis and properties of CaP materials, especially for hydroxyapatite (HAp). However, most of them mainly focused on the characterizations and physicochemical and biological properties of HAp particles. There are few reviews about the control of particle size and size distribution of CaPs, and in particular the control of nano-/microstructures on bulk CaP ceramic surfaces, which is a big challenge technically and may have great potential in tissue engineering applications. This review summarizes the current state of the art for the synthesis of CaP crystals with controlled sizes from the nano- to the macroscale, and the diverse shapes including the zero-dimensional shapes of particles and spheres, the one-dimensional shapes of rods, fibers, wires and whiskers, the two-dimensional shapes of sheets, disks, plates, belts, ribbons and flakes and the three-dimensional (3-D) shapes of porous, hollow, and biomimetic structures similar to biological bone and tooth

  12. Crystallization of dicalcium phosphate dihydrate with presence of glutamic acid and arginine at 37 °C.

    Science.gov (United States)

    Li, Chengfeng; Ge, Xiaolu; Li, Guochang; Bai, Jiahai; Ding, Rui

    2014-08-01

    The formations of non-metabolic stones, bones and teeth were seriously related to the morphology, size and surface reactivity of dicalcium phosphate dihydrate (DCPD). Herein, a facile biomimetic mineralization method with presence of glutamic acid and arginine was employed to fabricate DCPD with well-defined morphology and adjustable crystallite size. In reaction solution containing more arginine, crystallization of DCPD occurred with faster rate of nucleation and higher density of stacked layers due to the generation of more OH(-) ions after hydrolysis of arginine at 37 °C. With addition of fluorescein or acetone, the consumption of OH(-) ions or desolvation reaction of Ca(2+) ions was modulated, which resulted in the fabrication of DCPD with adjustable crystallite sizes and densities of stacked layers. In comparison with fluorescein-loading DCPD, dicalcium phosphate anhydrate was prepared with enhanced photoluminescence properties due to the reduction of self-quenching effect and regular arrangement of encapsulated fluorescein molecules. With addition of more acetone, DCPD was prepared with smaller crystallite size via antisolvent crystallization. The simulated process with addition of amino acids under 37 °C would shed light on the dynamic process of biomineralization for calcium phosphate compounds.

  13. Numerical Simulation of Yttrium Aluminum Garnet(YAG) Single Crystal Growth by Resistance Heating Czochralski(CZ) Method

    Energy Technology Data Exchange (ETDEWEB)

    You, Myeong Hyeon; Cha, Pil Ryung [Kookmin University, Seoul (Korea, Republic of)

    2017-01-15

    Yttrium Aluminum Garnet (YAG) single crystal has received much attention as the high power solid-state laser’s key component in industrial and medical applications. Various growth methods have been proposed, and currently the induction-heating Czochralski (IHCZ) growth method is mainly used to grow YAG single crystal. Due to the intrinsic properties of the IHCZ method, however, the solid/liquid interface has a downward convex shape and a sharp tip at the center, which causes a core defect and reduces productivity. To produce YAG single crystals with both excellent quality and higher yield, it is essential to control the core defects. In this study, using computer simulations we demonstrate that the resistance-heating CZ (RHCZ) method may avoid a downward convex interface and produce core defect free YAG single crystal. We studied the effects of various design parameters on the interface shape and found that there was an optimum combination of design parameter and operating conditions that produced a flat solid-liquid interface.

  14. Electrodeposition of aluminum on aluminum surface from molten salt

    Institute of Scientific and Technical Information of China (English)

    Wenmao HUANG; Xiangyu XIA; Bin LIU; Yu LIU; Haowei WANG; Naiheng MA

    2011-01-01

    The surface morphology,microstructure and composition of the aluminum coating of the electrodeposition plates in AlC13-NaC1-KC1 molten salt with a mass ratio of 8:1:1 were investigated by SEM and EDS.The binding force was measured by splat-cooling method and bending method.The results indicate that the coatings with average thicknesses of 12 and 9 μm for both plates treated by simple grinding and phosphating are compacted,continuous and well adhered respectively. Tetramethylammonium chloride (TMAC) can effectively prevent the growth of dendritic crystal,and the anode activation may improve the adhesion of the coating. Binding force analysis shows that both aluminum coatings are strongly adhered to the substrates.

  15. The Effects of Crystal Phase and Particle Morphology of Calcium Phosphates on Proliferation and Differentiation of Human Mesenchymal Stromal Cells.

    Science.gov (United States)

    Danoux, Charlène; Pereira, Daniel; Döbelin, Nicola; Stähli, Christoph; Barralet, Jake; van Blitterswijk, Clemens; Habibovic, Pamela

    2016-07-01

    Calcium phosphate (CaP) ceramics are extensively used for bone regeneration; however, their clinical performance is still considered inferior to that of patient's own bone. To improve the performance of CaP bone graft substitutes, it is important to understand the effects of their individual properties on a biological response. The aim of this study is to investigate the effects of the crystal phase and particle morphology on the behavior of human mesenchymal stromal cells (hMSCs). To study the effect of the crystal phase, brushite, monetite, and octacalcium phosphate (OCP) are produced by controlling the precipitation conditions. Brushite and monetite are produced as plate-shaped and as needle-shaped particles, to further investigate the effect of particle morphology. Proliferation of hMSCs is inhibited on OCP as compared to brushite and monetite in either morphology. Brushite needles consistently show the lowest expression of most osteogenic markers, whereas the expression on OCP is in general high. There is a trend toward a higher expression of the osteogenic markers on plate-shaped than on needle-shaped particles for both brushite and monetite. Within the limits of CaP precipitation, these data indicate the effect of both crystal phase and particle morphology of CaPs on the behavior of hMSCs.

  16. Effects of aluminum on phosphate metabolism in rats: A possible interaction with vitamin D{sub 3} renal production

    Energy Technology Data Exchange (ETDEWEB)

    Mahieu, Stella T.; Navoni, Julio; Millen, Nestor; Contini, Maria del Carmen; Gonzalez, Marcela [Universidad Nacional del Litoral, Fisiologia Humana, Facultad de Bioquimica y Ciencias Biologicas, Santa Fe (Argentina); Elias, Maria Monica [Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Farmacologia, Departamento de Ciencias Fisiologicas, Facultad de Ciencias Bioquimicas y Farmaceuticas, Suipacha, Rosario (Argentina)

    2004-11-01

    The effect of chronic aluminum (Al) administration on the phosphorous (Pi) metabolism of different target tissues was studied. Male Wistar rats received aluminum lactate for 3 months (5.75 mg/kg bodyweight of Al, i.p., three times per week). The animals were studied at the end of the 1st, 2nd and 3rd month of treatment. They were housed individually in metabolic cages for 4 days to study Pi and calcium (Ca) balance. Daily food and water intakes were recorded for all animals and urine and feces were collected for Pi and calcium assays. After 3 months the Pi intestinal absorption and the Pi deposition in bone were studied using {sup 32}Pi. Another group of rats was treated daily for 7 days with calcitriol (0.08 {mu}g/kg body weight in sesame oil, i.p.) and the Pi balance was studied for the last 4 days. The results indicated that chronic administration of Al affected simultaneously the Pi and calcium balance, with a significant diminution of calcium and increased Pi accretion in bones, together with a diminution in the intestinal absorption of Pi. The treatment of the rats with calcitriol promoted a normalized Pi balance in Al treated rats. These findings suggest that Al could modify the Pi metabolism acting directly on intestine, kidney and bone, or indirectly through possible changes in the levels of vitamin D{sub 3}. (orig.)

  17. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2{sub 1}; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3{sub 2}. The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP.

  18. Thermal oxidation of single crystal aluminum antimonide and materials having the same

    Science.gov (United States)

    Sherohman, John William; Yee, Jick Hong; Coombs, III, Arthur William; Wu, Kuang Jen J.

    2012-12-25

    In one embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a partial vacuum atmosphere at a temperature conducive for air adsorbed molecules to desorb, surface molecule groups to decompose, and elemental Sb to evaporate from a surface of the AlSb crystal and exposing the AlSb crystal to an atmosphere comprising oxygen to form a crystalline oxide layer on the surface of the AlSb crystal. In another embodiment, a method for forming a non-conductive crystalline oxide layer on an AlSb crystal includes heat treating an AlSb crystal in a non-oxidizing atmosphere at a temperature conducive for decomposition of an amorphous oxidized surface layer and evaporation of elemental Sb from the AlSb crystal surface and forming stable oxides of Al and Sb from residual surface oxygen to form a crystalline oxide layer on the surface of the AlSb crystal.

  19. Impact of seed loading ratio on the growth kinetics of mono-ammonium phosphate under isothermal batch crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Long, Bingwen; Yang, Haotian; Ding, Yigang [Wuhan Institute of Technology, Wuhan (China)

    2016-02-15

    The effect of seed load ratio on the growth kinetics of Mono-ammonium phosphate (MAP) under isothermal batch crystallization was investigated quantitatively. A direct parameter estimation method was proposed and applied to extract the growth kinetic parameters from a simple crystallization model using our experimental solution concentration decline data. The method assured the globally best parameters to be obtained and was found less sensitive to experimental errors. The linear growth constants k{sub g} and the growth order g were found to be in the range of 1,000-2,600 μm·min{sup -1} and 0.93-1.12, respectively, for MAP crystallized at 40 .deg. C. Both parameters decreased significantly with increase of seed load ratio and k{sub g} even showed a strong linear decline trend. The effective crystallization time also decreased with the seed mass. The proposed methodology could be extended to study the effect of other operation variables such as temperature and initial supersaturation on the crystal growth rate.

  20. The effect of electron irradiation on the structure and iron speciation in sodium aluminum (iron) phosphate glasses

    Science.gov (United States)

    Stefanovsky, S. V.; Presniakov, I. A.; Sobolev, A. V.; Glazkova, I. S.; Kadyko, M. I.; Stefanovsky, O. I.

    2016-08-01

    The effect of 8 MeV electron irradiation on the structure of glasses in the series 40 Na2O, (20-x) Al2O3, x Fe2O3, 40 P2O5 (mol.%) and on the iron speciation in these samples was studied by FTIR and Mössbauer spectroscopic techniques. Irradiation up to a dose of 1.0 MGy has no appreciable effects on the character of the bonds within anionic motif of the glass network. Electron irradiation increases the fraction of aluminum in octahedral coordination. Iron in both unirradiated and irradiated glasses is present mainly as Fe(III) (60-75% of the total amount) in the glasses and partly as Fe(II) and the ratio of two forms remains constant up to a dose of 1.0 MGy.

  1. 灰铸铁中温磷化工艺和磷酸盐晶体形貌%Medium-temperature Phosphating Process and Formation and Phosphate Crystall Morphology for Grey Iron

    Institute of Scientific and Technical Information of China (English)

    李光瑾

    2014-01-01

    The high phosphorus gray iron specimens,taken from 135 diesel cylinder bush,were subjected to medium-temperature phosphating. The phosphating surface was surveyed by SEM. It was revealed that the phosphating film exhibits phosphate druse random distributed.The phosphating process,including composition of phosphating bath,phosphating temperature and time at temperature,will exert an appreciable influence on the nucleation,growth,morphology and performance of the phosphate crystals.%对取自135型柴油机气缸套的高磷灰铸铁试样进行了中温磷化处理。对磷化表面进行了扫描电镜观察。结果发现,磷化膜形态为无规律分布的磷酸盐晶簇。磷化工艺,包括磷化液成分、磷化温度和时间,对磷酸盐晶体的形核、生长、形态及性能有明显的影响。

  2. Influence of formic acid on electrical, linear and nonlinear optical properties of potassium dihydrogen phosphate (KDP) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anis, Mohd [Crystal Growth Laboratory, Department of Physics, Milliya Arts, Science and Management Science College, Beed 431122, Maharashtra (India); Shirsat, M.D. [Intelligent Material Research Laboratory, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431005,Maharashtra (India); Muley, Gajanan [Department of Physics, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra (India); Hussaini, S.S., E-mail: Shuakionline@yahoo.co.in [Crystal Growth Laboratory, Department of Physics, Milliya Arts, Science and Management Science College, Beed 431122, Maharashtra (India)

    2014-09-15

    In present investigation 0.5 and 1 mol% formic acid (FA) added potassium dihydrogen phosphate (KDP) crystals have been grown by a slow evaporation technique. The cell parameters of the grown crystals were determined using single crystal X-ray diffraction analysis. The presence of different functional groups has been qualitatively analyzed by the FT-IR spectral analysis. The optical transparency and optical constants were assessed employing UV–visible studies in the range of 200–900 nm. The wide optical band gap of 1 mol% FA added KDP has been found to be 5 eV. The frequency dependent dielectric measurements were studied for pure and KDP added FA crystals. The enhanced second harmonic generation (SHG) efficiency of grown crystals was determined by a classical Kurtz–Perry powder technique. The encouraging third order nonlinear properties were examined employing a Z-scan technique using He–Ne laser, at 632.8 nm. The effective negative index of refraction and high figure of merit (FOM) essential for laser stabilization were determined for grown crystals. - Highlights: • Study on electrical and optical properties of formic acid (FA) added KDP was reported for the first time. • Optical properties were found to be enhanced with increasing concentration of FA. • The SHG efficiency of 1 mol% FA added KDP was 1.13 times that of KDP. • The high concentration of FA contributed lower dielectric properties to KDP suitable for microelectronics applications. • The improved third order nonlinear parameters were ascertained with addition of FA in KDP crystal.

  3. Crystallization characteristics of cast aluminum alloys during a unidirectional solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Takeuchi, Shuhei

    2015-05-01

    The crystal orientation characteristics of cast Al–Si, Al–Cu and Al–Mg alloys produced by a unidirectional solidification process are examined. Two distinct crystal orientation patterns are observed: uniform and random formation. A uniform crystal orientation is created by columnar growth of α-Al dendrites in the alloys with low proportions of alloying element, e.g., the Al–Si alloy (with Si <12.6%) and the Al–Cu and Al–Mg alloys (with Cu and Mg <2%). A uniformly organized crystal orientation with [100] direction is created by columnar growth of α-Al dendrites. With increasing proportion of alloying element (>2% Cu or Mg), the uniform crystal orientations collapse in the Al–Cu and Al–Mg alloys, owing to interruption of the columnar α-Al dendrite growth as a result of different dynamics of the alloying atoms and the creation of a core for the eutectic phases. For the hypo-eutectic Al–Si alloys, a uniform crystal orientation is obtained. In contrast, a random orientation can be detected in the hyper-eutectic Al–Si alloy (15% Si), which results from interruption of the growth of the α-Al dendrites due to precipitation of primary Si particles. There is no clear effect of crystal formation on ultimate tensile strength (UTS), whereas crystal orientation does influence the material ductility, with the alloys with a uniform crystal orientation being elongated beyond their UTS points and with necking occurring in the test specimens. In contrast, the alloys with a nonuniform crystal orientation are not elongated beyond their UTS points.

  4. P-type poly-Si prepared by low-temperature aluminum-induced crystallization and doping for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Yasuhiro; Yu, Zhenrui; Morales-Acevedo, Arturo [CINVESTAV-IPN, Mexico, D.F. (Mexico)

    2000-07-01

    P-type poly-Si thin films prepared by low temperature aluminum-induced crystallization and doping are reported. The starting material was boron-doped a-Si:H prepared by PECVD on glass substrates. Aluminum layers with different thickness were evaporated on a-Si:H surface and conventional thermal annealing was performed at temperatures ranging from 300 to 550 Celsius degrees. XRD, SIMS, and Hall effect measurements were carried out to characterize the annealed Al could be crystallized at temperature as low as 300 Celsius degrees in 60 minutes. This material has high carrier concentration as well as high Hall mobility and can be used as a p-layer of seed layer for thin film poly-Si solar cells. The technique reported here is compatible with PECVD process. [Spanish] Se informa sobre la preparacion de peliculas delgadas tipo P y Poli-Si mediante la cristalizacion inducida de aluminio a baja temperatura y el dopado. El material inicial era de boro dopado y a-Si:H preparado PECVD sobre substratos de vidrio. Se evaporaron capas de aluminio de diferente espesor sobre una superficie de a-Si:H y se llevo a cabo un destemplado termico convencional a temperaturas que varian entre 300 y 500 grados Celsius. Se llevaron a cabo mediciones de XRB, SIMS y del efecto Hall para caracterizar el aluminio destemplado para que pudiera ser cristalizado a temperaturas tan bajas como 300 grados Celsius en 60 minutos. Este material tiene una alta concentracion portadora asi como una alta movilidad Hall y puede usarse como una capa de semilla para celdas solares de pelicula delgada Poli-Si. La tecnica reportada aqui es compatible con el proceso PECVD.

  5. Crystal Structures Reveal that the Reaction Mechanism of Imidazoleglycerol-Phosphate Dehydratase Is Controlled by Switching Mn(II) Coordination

    Science.gov (United States)

    Bisson, Claudine; Britton, K. Linda; Sedelnikova, Svetlana E.; Rodgers, H. Fiona; Eadsforth, Thomas C.; Viner, Russell C.; Hawkes, Tim R.; Baker, Patrick J.; Rice, David W.

    2015-01-01

    Summary Imidazoleglycerol-phosphate dehydratase (IGPD) catalyzes the Mn(II)-dependent dehydration of imidazoleglycerol phosphate (IGP) to 3-(1H-imidazol-4-yl)-2-oxopropyl dihydrogen phosphate during biosynthesis of histidine. As part of a program of herbicide design, we have determined a series of high-resolution crystal structures of an inactive mutant of IGPD2 from Arabidopsis thaliana in complex with IGP. The structures represent snapshots of the enzyme trapped at different stages of the catalytic cycle and show how substrate binding triggers a switch in the coordination state of an active site Mn(II) between six- and five-coordinate species. This switch is critical to prime the active site for catalysis, by facilitating the formation of a high-energy imidazolate intermediate. This work not only provides evidence for the molecular processes that dominate catalysis in IGPD, but also describes how the manipulation of metal coordination can be linked to discrete steps in catalysis, demonstrating one way that metalloenzymes exploit the unique properties of metal ions to diversify their chemistry. PMID:26095028

  6. Improvement of the preparation of sintered pellets of thorium phosphate-diphosphate and associated solid solutions from crystallized precursors

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, N. [Groupe de Radiochimie, Institut de Physique Nucleaire, Bat. 100, Universite Paris-Sud-11, 91406 Orsay (France); Dacheux, N. [Groupe de Radiochimie, Institut de Physique Nucleaire, Bat. 100, Universite Paris-Sud-11, 91406 Orsay (France)]. E-mail: dacheux@ipno.in2p3.fr; Wallez, G. [Laboratoire de Cristallochimie du Solide, 4 place Jussieu, Universite Pierre et Marie Curie, 75252 Paris (France); Quarton, M. [Laboratoire de Cristallochimie du Solide, 4 place Jussieu, Universite Pierre et Marie Curie, 75252 Paris (France)

    2006-06-30

    Several compositions of thorium-uranium (IV) phosphate-hydrogenphosphate hydrate (U {sub x/2}Th{sub 2-x/2}(PO{sub 4}){sub 2}(HPO{sub 4}) . H{sub 2}O, TUPHPH) were prepared starting from actinides chloride solutions and concentrated phosphoric acid. The experimental synthesis parameters were optimized in order to get the quantitative precipitation of the cations and a good crystallization state. The extensive characterization of the solids demonstrated the existence of a complete solid solution between Th and U end-members and evidenced the good homogeneity of the powders. Their behaviors during heating treatment were then checked and confirm the formation of anhydrous thorium-uranium (IV) phosphate-hydrogenphosphate (TUPHP) and {alpha}-U {sub x}Th{sub 4-x}(PO{sub 4}){sub 4}(P{sub 2}O{sub 7}) ({alpha}-TUPD) acting as intermediates. Finally, the low-temperature crystallized precursors were used in original sintering processes in order to improve the efficiency of the former cold-pressing sintering procedure.

  7. Crystallization of calcium sulfate dihydrate under simulated conditions of phosphoric acid production in the presence of aluminum and magnesium ions

    Science.gov (United States)

    Rashad, M. M.; Mahmoud, M. H. H.; Ibrahim, I. A.; Abdel-Aal, E. A.

    2004-06-01

    The effect of Al 3+ and Mg 2+ ions, as additives, on the crystallization of gypsum was studied under simulated conditions of the phosphoric acid production. Calcium hydrogen phosphate and sulfuric acid were mixed with dilute phosphoric acid at 80°C, and the turbidity of the reaction mixture was measured at different time periods to calculate the induction time of gypsum crystals formation. Addition of Al 3+ ions up to 2% decreased the induction time and increased the growth efficiency while addition of Mg 2+ increased the induction time and decreased the growth efficiency compared with in absence of additives. Interestingly, the crystals mean and median diameters were found to increase in the presence of Al 3+ and decrease in the presence of Mg 2+. The surface energy increased with Al 3+ and decreased with Mg 2+ compared to the baseline (without additives). Gypsum morphology changed from needle-like type in absence of additives to thick-rhombic in the presence of Al 3+ ions.

  8. Impact of severe cracked germanium (111 substrate on aluminum indium gallium phosphate light-emitting-diode’s electro-optical performance

    Directory of Open Access Journals (Sweden)

    Annaniah Luruthudass

    2016-01-01

    Full Text Available Cracked die is a serious failure mode in the Light Emitting Diode (LED industry – affecting LED quality and long-term reliability performance. In this paper an investigation has been carried out to find the correlation between severe cracked germanium (Ge substrate of an aluminum indium gallium phosphate (AlInGaP LED and its electro-optical performance after the Temperature Cycle (TC test. The LED dice were indented at several bond forces using a die bonder. The indented dice were analysed using a Scanning Electron Microscope (SEM. The result showed that severe cracks were observed at 180 gF onward. As the force of indentation increases, crack formation also becomes more severe thus resulting in the chipping of the substrate. The cracked dies were packaged and the TC test was performed. The results did not show any electro-optical failure or degradation, even after a 1000 cycle TC test. Several mechanically cross-sectioned cracked die LEDs, were analysed using SEM and found that no crack reached the active layer. This shows that severely cracked Ge substrate are able to withstand a −40°C/+100°C TC test up to 1000 cycles and LED optical performance is not affected. A small leakage current was observed in all of the cracked die LEDs in comparison to the reference unit. However, this value is smaller than the product specification and is of no concern.

  9. Curative effect observation of phosphate aluminum gel in the treatment of peptic ulcer disease%磷酸铝凝胶治疗消化性溃疡的效果观察

    Institute of Scientific and Technical Information of China (English)

    于伟

    2015-01-01

    Objective:To observe the curative effect of phosphate aluminum gel in the treatment of peptic ulcer.Methods:120 patients with peptic ulcer were randomly divided into two groups.The treatment group was given phosphate aluminum gel and esomeprazole.The control group was given esomeprazole.The curative effects of two groups were observed.Results:The total effective rate of the observation group was 100%,the total effective rate of the control group was 76.66%.Conclusion:The curative effect of phosphate aluminum gel and esomeprazole combined therapy is more reliable,the cure rate is significantly increased,the total efficiency is higher.%目的:观察磷酸铝凝胶治疗消化性溃疡的效果.方法:将120例消化性溃疡患者随机分为两组,治疗组给予磷酸铝凝胶与埃索美拉唑,对照组给予埃索美拉唑,观察两组患者的疗效.结果:治疗组总有效率达100%,对照组总有效率达76.66%.结论:磷酸铝凝胶与埃索美拉唑联合使用,疗效更加可靠,治愈率明显增加,总有效率更高.

  10. Structural and crystal chemical properties of rare-earth double phosphates and rare-earth titanate pyrochlores

    Science.gov (United States)

    Farmer, J. Matt

    Alkali rare-earth double phosphates have been studied for use as long-wavelength scintillators for gamma-ray detection using Si photodiodes. These compounds exhibit layered crystal structures, built from roughly hexagonal atomic layers in the sequence lanthanide, phosphate-alkali, alkali, alkali-phosphate. Details of the crystal symmetry depend on the relative sizes of the rare-earth and alkali metal ions. Single-crystal X-ray diffraction (SXRD) has been used to study these structures at room temperature for K3RE(PO4) 2 (where RE = Lu-Ce, Y, and Sc). The compound K3Lu(PO 4)2 crystallizes with a hexagonal unit cell, space group P-3. The Lu ion is six-coordinated to the oxygen atoms of the phosphate groups. Two lower-temperature phases of K3Lu(PO4) 2 were observed and characterized. The lower-temperature transition results in an increase in coordination of the Lu ion to seven fold. This new structure is isostructural with the room-temperature form of K3Yb(PO 4)2. High-temperature powder neutron diffraction and high-temperature powder XRD have revealed a large thermal expansion anisotropy for K3Lu(PO4)2. The K3RE(PO 4)2 formation enthalpies were determined using high-temperature oxide-melt solution calorimetry. The formation enthalpy from oxides becomes more exothermic with increasing rare-earth radius. Rare-earth titanates, RE2Ti2O7 (where RE = a rare-earth), with the pyrochlore structure are currently being studied for use as potential nuclear, actinide-rich waste forms. Single-crystals were synthesized using a high-temperature flux technique and characterized using single-crystal X-ray diffraction. The cubic lattice parameters display an approximately linear correlation with the RE-site cation radius. The Sm and Eu titanates exhibit a covalency increase between the REO8 and TiO6 polyhedra resulting in a deviation from the increasing linear lattice parameter through the series. Gd2Ti2O7 exhibits the lowest 48f oxygen positional parameter, an effect that can be

  11. Oxide-cladding aluminum nitride photonic crystal slab: Design and investigation of material dispersion and fabrication induced disorder

    Energy Technology Data Exchange (ETDEWEB)

    Melo, E. G., E-mail: emerdemelo@usp.br; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I. [Electronic Systems Engineering Department, University of São Paulo, CEP 05508-010 São Paulo, SP (Brazil); Carvalho, D. O. [UNESP - São Paulo State University, CEP 13874-149 São João da Boa Vista, SP (Brazil); Ferlauto, A. S. [Department of Physics, Federal University of Minas Gerais, CEP 31270-901 Belo Horizonte, MG (Brazil)

    2016-01-14

    Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials. Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.

  12. A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhang [Department of Restorative Dentistry, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road 119074, Singapore (Singapore); Neoh, Koon Gee [Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 119260, Singapore (Singapore); Kishen, Anil, E-mail: anil.kishen@utoronto.ca [Discipline of Endodontics, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON (Canada)

    2010-07-20

    Objective: The aim of this study is to induce mineralization of collagen by introducing phosphate groups onto type I collagen from eggshell membrane (ESM) by treating with sodium trimetaphosphate (STMP). This strategy is based on the hypothesis that phosphate groups introduced on collagen can mimic the nucleating role of phosphorylated non-collagenous proteins bound to collagen for inducing mineralization in natural hard tissue. Method: The collagen membrane was phosphorylated by treating it with a solution of STMP and saturated calcium hydroxide. The phosphorylated collagen was subsequently exposed to a mineralization solution and the pattern of mineralization on the surface of phosphorylated collagen substrate was analyzed. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), field emission electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and microhardness test were used to characterize the collagen substrate and the pattern of minerals formed on the collagen surface. Results: The FTIR and EDX results indicated that the phosphate groups were incorporated onto the collagen surface by treatment with STMP. During the mineralization process, the plate-like mineral, octacalcium phosphate (OCP), which was initially formed on the surface of ESM, was later transformed into needle-like hydroxyapatite (HAP) as indicated by the SEM, FESEM, EDX and XRD findings. The microhardness test displayed significant increase in the Knoop hardness number of the mineralized collagen. Conclusions: Phosphate groups can be introduced onto type I collagen surface by treating it with STMP and such phosphorylated collagen can induce the mineralization of type I collagen.

  13. Urinary stone formation: Efficacy of seed extract of Ensete superbum (Roxb.) Cheesman on growth inhibition of calcium hydrogen phosphate dihydrate crystals

    Science.gov (United States)

    Diana, K. J.; George, K. V.

    2013-01-01

    The effect of aqueous seed extract of Ensete superbum (Roxb.) Cheesman on in vitro crystallization and growth patterns of calcium hydrogen phosphate dihydrate (CaHPO4·2H2O, CHPD) crystals was studied using single diffusion gel growth technique. Reduction in growth of CHPD crystals was noticed with increasing concentrations of seed extract. The morphology of CHPD or brushite crystals was studied by microscopy. The structural changes of the treated crystals were assessed by SEM, FT-IR, XRD and TGA/DTA analysis. It is expected that this multidisciplinary approach for in vitro crystallization and characterization of CHPD crystals will provide a better explanation to develop novel strategies for prevention of urinary stones.

  14. The effect of some homopolymers on the crystallization of calcium phosphates

    Science.gov (United States)

    García-Ramos, J. V.; Carmona, P.

    1982-04-01

    Homopolymer additives (poly-L-glutamic acid, poly-L-aspartic acid and polyglycine) were examined for their effects on the crystallization of hydroxyapatite (HA) and brushite. An accelerating effect of poly-L-glutamic acid on the precipitation of HA and brushite was discovered, whereas polyacrylic acid accelerates preferentially the HA precipitation. This accelerating efficiency is shown to be correlated with structural factors. The crystal habit of HA is modified by adsorption of poly-L-aspartic acid, this habit becoming similar to that of HA crystals from renal stones.

  15. Crystal plasticity modeling of through-thickness texture heterogeneity in heavily rolled aluminum

    DEFF Research Database (Denmark)

    Delannay, Laurent; Mishin, Oleg V.

    2013-01-01

    The textures measured at different depths inside a cold rolled aluminium sheet are compared to results obtained by crystal plasticity predictions. Different assumptions about the micro-to-macro scale transitions are considered. The input texture reveals a through-thickness gradient that originate...

  16. Growth of large aluminum nitride single crystals with thermal-gradient control

    Energy Technology Data Exchange (ETDEWEB)

    Bondokov, Robert T.; Rao, Shailaja P.; Schowalter, Leo J.

    2017-02-28

    In various embodiments, non-zero thermal gradients are formed within a growth chamber both substantially parallel and substantially perpendicular to the growth direction during formation of semiconductor crystals, where the ratio of the two thermal gradients (parallel to perpendicular) is less than 10, by, e.g., arrangement of thermal shields outside of the growth chamber.

  17. Crystal structure of the Mycobacterium tuberculosis phosphate binding protein PstS3.

    Science.gov (United States)

    Ferraris, Davide M; Spallek, Ralf; Oehlmann, Wulf; Singh, Mahavir; Rizzi, Menico

    2014-09-01

    Mycobacterium tuberculosis evades host immune responses by colonizing macrophages. Intraphagosomal M. tuberculosis is exposed to environmental stresses such as reactive oxygen and nitrogen intermediates as well as acid shock and inorganic phosphate (Pi) depletion. Experimental evidence suggests that expression levels of mycobacterial protein PstS3 (Rv0928) are significantly increased when M. tuberculosis bacilli are exposed to Pi starvation. Hence, PstS3 may be important for survival of Mtb in conditions where there is limited supply of Pi. We report here the structure of PstS3 from M. tuberculosis at 2.3-Å resolution. The protein presents a structure typical for ABC phosphate transfer receptors. Comparison with its cognate receptor PstS1 showed a different pattern distribution of surface charges in proximity to the Pi recognition site, suggesting complementary roles of the two proteins in Pi uptake. © 2014 Wiley Periodicals, Inc.

  18. Spectroscopic signature of phosphate crystallization in Erbium-doped optical fibre preforms

    CERN Document Server

    Peretti, Romain; Jacquier, Bernard; Blanc, Wilfried; Dussardier, Bernard; 10.1016/j.optmat.2011.01.005

    2011-01-01

    In rare-earth-doped silica optical fibres, the homogeneous distribution of amplifying ions and part of their spectroscopic properties are usually improved by adding selected elements, such as phosphorus or aluminum, as structural modifier. In erbium ion (Er3+) doped fibres, phosphorus preferentially coordinates to Er3+ ions to form regular cages around it. However, the crystalline structures described in literature never gave particular spectroscopic signature. In this article, we report emission and excitation spectra of Er3+ in a transparent phosphorus-doped silica fibre preform. The observed line features observed at room and low temperature are attributed to ErPO4 crystallites.

  19. New insights into thorium and uranium oxo-arsenic (III/V) and oxo-phosphates (V) crystal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Na

    2015-12-11

    The fundamental chemistry of actinides is of great interest owing to the diverse number of valence states and complex coordination chemistry of the actinides. The phases based on actinides and oxo-salt fragments have been under thorough investigation in the last decades. These compounds can be widely found in nature and they affect the migration process of actinides in nature. A better understanding of the fundamental coordination chemistry of actinide compounds with oxo-salts of group V elements is not only important for understanding the actinides behavior within the migration process but can also be used to understand actinide properties in phosphate ceramics. Concerning the radioactive issues, the less radioactive early actinides (i.e. U, Th) can be taken as modeling elements to study the crystal chemistry of the transuranic elements (Np, Pu) without the major handling problems. This can be done as Th(IV) has a very similar coordination chemistry with An(IV) and U(VI) can be chosen as a modeling element for transuranic elements in higher valence states. Therefore, a systematic research on the actinides (U, Th) bearing phases with tetrahedral oxo-anions such as phosphates and arsenates have been performed in this work. High temperature (HT) solid state reaction, High pressure high temperature (HP-HT) solid state reaction and the hydrothermal method were the methods of choice for synthesizing actinide bearing oxo-arsenic(III/V) and oxo- phosphorus(V) phases in the past three years. As a result, numerous novel compounds containing actinides were obtained. The structures of all compounds were determined using single crystal X-ray diffraction data. Raman spectroscopy, EDS, DSC and high temperature powder X-ray diffraction (HT-PXRD) measurements were implemented to characterize the chemical and physical properties of the obtained compounds. The core of this dissertation is a fundamental study of the crystal chemistry of actinides (Th, U) oxo-arsenic (III/V) and oxo-phosphate

  20. Crystal orientation dependent thermoelectric properties of highly oriented aluminum-doped zinc oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2013-02-06

    We demonstrate that the thermoelectric properties of highly oriented Al-doped zinc oxide (AZO) thin films can be improved by controlling their crystal orientation. The crystal orientation of the AZO films was changed by changing the temperature of the laser deposition process on LaAlO3 (100) substrates. The change in surface termination of the LaAlO3 substrate with temperature induces a change in AZO film orientation. The anisotropic nature of electrical conductivity and Seebeck coefficient of the AZO films showed a favored thermoelectric performance in c-axis oriented films. These films gave the highest power factor of 0.26 W m−1 K−1 at 740 K.

  1. Synthesis and Crystal Structure of the First Hybrid Manganese Phosphate with 1-D Framework of Dinuclear Structure

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel hybrid manganese phosphate, [(bipy)Mn(H2PO4)2] (bipy = 2,2'-bipyridine) 1, was synthesized, and its structure is characteristic of 1-D framework involving a dinuclear structure made up of edge-sharing Mn(II) octahedra. 1 crystallizes in the monoclinic system, space group C2/c with a = 12.230(2), b = 17.800(4), c = 13.530(3)(A), β = 105.00(3)o, V = 2845.0(10)(A)3, Z = 8. Dc = 1.892 g/cm3, F(000) = 1640, Mr = 405.10, μ(MoKα) = 1.198 mm-1, R = 0.0306 and wR = 0.0657 for 2093 observed reflections (I > 2σ(I)).

  2. EPR and optical absorption study of Mn{sup 2+}-doped zinc ammonium phosphate hexahydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kripal, Ram [Department of Physics, University of Allahabad, Allahabad 211002 (India)]. E-mail: ram_kripal2001@rediffmail.com; Govind, Har [Department of Electronics, Ewing Christian College, Allahabad 211003 (India)]. E-mail: chaurasia_har@yahoo.co.in; Gupta, S.K. [EPR and IR Spectroscopy Section, Material Characterization Division, National Physical Laboratory, New Delhi 110012 (India); Arora, Manju [EPR and IR Spectroscopy Section, Material Characterization Division, National Physical Laboratory, New Delhi 110012 (India)

    2007-04-15

    EPR study of Mn{sup 2+}-doped zinc ammonium phosphate hexahydrate (ZAPH) is done at room temperature. The Mn{sup 2+} spin Hamiltonian parameters are evaluated employing a large number of resonant line positions observed for different orientations of the external magnetic field. The evaluated value of g-factor is 1.9527+/-0.0002 and the values of other parameters D, E, a, A and B (in 10{sup -4}cm{sup -1}) are, 175+/-2, 58+/-2, 10+/-1, 92+/-2 and 86+/-2, respectively. The optical absorption study of the crystal is also done. The observed bands are assigned as transitions from the {sup 6}A{sub 1g}(S) ground state to various excited quartet levels of Mn{sup 2+} ion in a cubic crystal field. These bands are fitted with four parameters: inter-electronic repulsion parameters (B and C), cubic crystal field splitting parameter (Dq), and Tree's correction ({alpha}). The values obtained for the parameters are B=917, C=2254, Dq=756 and {alpha}=76cm{sup -1}. From the data obtained the surrounding crystal field and the nature of metal-ligand bonding are discussed. The considerable decrease in the values of B and C from their free ion values indicates the existence of a fair amount of covalent bonding between the central metal ion and the ligand. On the basis of the deviations {delta}g=g-2.0023, the transfer of electrons to or from the central metal ion for bond formation is ascertained.

  3. Dynamic Crystallization: An Influence on Degree of Prior Deformation and Mechanical Strength of 6063 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Gbenebor, O.P

    2012-09-01

    Full Text Available This research is aimed at investigating the influence dynamic solidification of melts on degree of mechanical deformation and mechanical strength of 6063 aluminum alloy. Cylindrical samples of 14mm diameter and 140mm long were die cast following two techniques – vibration and static. Prior deformation via forging was imposed on each solidified sample to achieve 7%, 14%, 21% and 28% thickness reductions respectively for each casting technique. Average deformation load, average hammer velocities and the average energy absorbed were recorded. Tensile properties of each sample were studied via the use of Monsanto tensometer. Mechanical agitation of mould and its content increased the machinability of the alloy even at higer pre deformation. This was justified by the failure of the 28% reduction sample cast on static floor during machining to a tensile piece. The energy absorbed during deformation influences the tensile strength of the material. This increases with increase in percentage deformation except for 28% reduction whose magnitude was lower than that subjected to 21% reduction; vibrated samples possessed superior properties. From results obtained, vibrating a sample and subjecting to 21% pre-deformation possessed the best tensile strength.

  4. The role of grain boundary structure and crystal orientation on crack growth asymmetry in aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Adlakha, I. [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States); Tschopp, M.A. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Solanki, K.N., E-mail: kiran.solanki@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 (United States)

    2014-11-17

    Atomistic simulations have shown that the grain boundary (GB) structure affects a number of physical, mechanical, thermal, and chemical properties, which can have a profound effect on macroscopic properties of polycrystalline materials. The research objective herein is to use atomistic simulations to explore the role that GB structure and the adjacent crystallographic orientations have on the directional asymmetry of an intergranular crack (i.e. cleavage behavior is favored along one direction, while ductile behavior along the other direction of the interface) for aluminum grain boundaries. Simulation results from seven 〈110〉 symmetric tilt grain boundaries (STGBs) show that the GB structure and the associated free volume directly influence the stress–strain response, crack growth rate, and crack tip plasticity mechanisms for middle-tension (M(T)) crack propagation specimens. In particular, the structural units present within the GB promote whether a dislocation or twinning-based mechanism operates at the crack tip during intergranular fracture along certain GBs (e.g., the ‘E’ structural unit promotes twinning at the crack tip in Al). Furthermore, the crystallography of the adjacent grains, and therefore the available slip planes, can significantly affect the crack growth rates in both directions of the crack – this creates a strong directional asymmetry in the crack growth rate in the Σ11 (113) and the Σ27 (552) STGBs. Upon comparing these results with the theoretical Rice criterion, it was found that certain GBs in this study (Σ9 (221), Σ11 (332) and Σ33 (441)) show an absence of directional asymmetry in the observed crack growth behavior, in conflict with the Rice criterion. The significance of the present research is that it provides a physical basis for the role of GB character and crystallographic orientation on intergranular crack tip deformation behavior.

  5. Fractional Crystallization Model of Multicomponent Aluminum Alloys: A Case Study of Aircraft Recycling

    Science.gov (United States)

    Muñiz-Lerma, Jose Alberto; Paliwal, Manas; Jung, In-Ho; Brochu, Mathieu

    2017-04-01

    A one-dimensional numerical solidification model has been developed to predict the recovery and refining efficiency of fractional crystallization applied to a blend of aircraft Al scraps with variations of Fe and Si. The model incorporates the effective partition coefficient depending on the degree of melt stirring. Moreover, the kinetic factors that affect the formation of primary Al FCC during fractional crystallization such as solidification velocity, thermal gradient, cooling rate, and solute back-diffusion are taken into account. The simulation results suggest that the optimum solidification velocities that are able to yield the highest refining can be ranged between 1.0 × 10-6 and 1.0 × 10-5 m/s with medium to high stirring levels. The maximum recovery of refined Al has been estimated to be 31 wt pct of the initial scrap when the process is carried out at 1 × 10-6 m/s and the initial concentrations of Fe and Si are 1 and 2 pct, respectively.

  6. Fractional Crystallization Model of Multicomponent Aluminum Alloys: A Case Study of Aircraft Recycling

    Science.gov (United States)

    Muñiz-Lerma, Jose Alberto; Paliwal, Manas; Jung, In-Ho; Brochu, Mathieu

    2017-01-01

    A one-dimensional numerical solidification model has been developed to predict the recovery and refining efficiency of fractional crystallization applied to a blend of aircraft Al scraps with variations of Fe and Si. The model incorporates the effective partition coefficient depending on the degree of melt stirring. Moreover, the kinetic factors that affect the formation of primary Al FCC during fractional crystallization such as solidification velocity, thermal gradient, cooling rate, and solute back-diffusion are taken into account. The simulation results suggest that the optimum solidification velocities that are able to yield the highest refining can be ranged between 1.0 × 10-6 and 1.0 × 10-5 m/s with medium to high stirring levels. The maximum recovery of refined Al has been estimated to be 31 wt pct of the initial scrap when the process is carried out at 1 × 10-6 m/s and the initial concentrations of Fe and Si are 1 and 2 pct, respectively.

  7. Crystallization and preliminary X-ray crystallographic analysis of adenosine 5′-monophosphate deaminase (AMPD) from Arabidopsis thaliana in complex with coformycin 5′-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byung Woo [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Bingman, Craig A. [Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States); Mahnke, Donna K.; Sabina, Richard L. [Department of Biochemistry, The Medical College of Wisconsin, Milwaukee, WI 53226-4801 (United States); Phillips, George N. Jr, E-mail: phillips@biochem.wisc.edu [Department of Biochemistry, University of Wisconsin-Madison, WI 53706-1544 (United States); Center for Eukaryotic Structural Genomics (CESG), University of Wisconsin-Madison, WI 53706-1549 (United States)

    2005-08-01

    Adenosine 5′-monophosphate deaminase from A. thaliana has been crystallized in complex with coformycin 5′-phosphate. Diffraction data have been collected to 3.34 Å resolution. Adenosine 5′-monophosphate deaminase (AMPD) is a eukaryotic enzyme that converts adenosine 5′-monophosphate (AMP) to inosine 5′-monophosphate (IMP) and ammonia. AMPD from Arabidopsis thaliana (AtAMPD) was cloned into the baculoviral transfer vector p2Bac and co-transfected along with a modified baculoviral genome into Spodoptera frugiperda (Sf9) cells. The resulting recombinant baculovirus were plaque-purified, amplified and used to overexpress recombinant AtAMPD. Crystals of purified AtAMPD have been obtained to which coformycin 5′-phosphate, a transition-state inhibitor, is bound. Crystals belong to space group P6{sub 2}22, with unit-cell parameters a = b = 131.325, c = 208.254 Å, α = β = 90, γ = 120°. Diffraction data were collected to 3.34 Å resolution from a crystal in complex with coformycin 5′-phosphate and to 4.05 Å resolution from a crystal of a mercury derivative.

  8. Expression, purification, crystallization and preliminary X-ray analysis of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Paul R.; Mohammad, Shabaz; Melrose, Helen J.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase B from H. pylori has been cloned, expressed, purified and crystallized in the presence of NAD. Crystals of GAPDHB diffracted to 2.8 Å resolution and belonged to space group P6{sub 5}22, with unit-cell parameters a = b = 166.1, c = 253.1 Å. Helicobacter pylori is a dangerous human pathogen that resides in the upper gastrointestinal tract. Little is known about its metabolism and with the onset of antibiotic resistance new treatments are required. In this study, the expression, purification, crystallization and preliminary X-ray diffraction of an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase from H. pylori are reported.

  9. Molecular dynamics study of void effect on nanoimprint of single crystal aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Ying [Center for Precision Engineering, Harbin Institute of Technology, Harbin (China); Sun Tao, E-mail: spm@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin (China); Zhang Junjie; Yan Yongda [Center for Precision Engineering, Harbin Institute of Technology, Harbin (China)

    2011-06-01

    Pre-existing defects can alter mechanical behavior of materials significantly under applied load. In current study molecular dynamics (MD) simulations are performed to reveal pre-existing void effect on nanoimprint of single crystal Al thin films, such as deformation mechanism and spring back phenomenon. Current simulation results show void acts as strong barrier to dislocation motion, although plastic deformation is dominantly controlled by dislocation activities. It indicates the void volume fraction has strong influence on nanoimprint: the larger the void volume fraction, the smaller the maximum force required for initial dislocation nucleation, and the stronger the interaction between extended dislocation and void. It also demonstrates that there is a critical void volume fraction for minimum spring back, which is resulted from competition between two roles affecting dislocation annihilation.

  10. Synthesis of bulk nanostructured aluminum containing in situ crystallized amorphous particles

    Science.gov (United States)

    Zhang, Zhihui

    5083 Al containing in situ crystallized Al85Ni10La 5 amorphous particles (10% and 20% in volume fraction) was synthesized through a powder metallurgy route consisting of cold isostatic pressing, degassing and hot extrusion. The nanostructured 5083 Al powders (grain size ˜28 nm) were produced through mechanical milling in liquid nitrogen. The Al 85Ni10La5 powders were produced via gas atomization using helium gas and the fraction in the size range of compressive fracture strength of the as-extruded 10% and 20% Al85Ni10La5 composites were determined to be 1025 MPa and 837 MPa, respectively. The influence of secondary processing, i.e., swaging, following extrusion on the mechanical behavior was also studied. The coarse grain formation in cryomilled 5083 Al during the thermomechanical process was discussed and it was evident that grain rotation and coalescence played an important role in the overall mechanism.

  11. Crystal plasticity extend FEM implementation of thermal-tensile aluminum alloy

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2016-01-01

    Full Text Available Multi-level approach has been used to simulate the thermal deformation of aluminium alloy at different temperature and strain rate. The crystal plasticity model is extended in the finite element method and the thermal behaviour is integrated in the constitutive equations. Moreover, the damage evolution is also reflected in the simulation using continuum damage mechanics model. Thus, the void evolution and thermal effect could both be shown in the simulation. A new shear strain rate model is constructed with the thermal activated mechanism to describe the rate dependent behaviours during tensile test. The thermal parameters are determined in a fitting test of representative volume element to compare with the experimental data. The results prove that the mechanical tensile behaviour of 5052 aluminium alloy could be well described at different temperatures. The damage evolution process is expressed by the stress concentration and strain concentration in the finite element simulation, which are also confirmed by the experiments.

  12. Advances in aluminum pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Sudour, Michel; Maintier, Philippe [PPG Industries France, 3 Z.A.E. Les Dix Muids, B.P. 89, F-59583 Marly (France); Simpson, Mark [PPG Industries Inc., 1200 Piedmont Troy, Michigan 48083 (United States); Quaglia, Paolo [PPG Industries Italia, Via Garavelli 21, I-15028 Quattordio (Italy)

    2004-07-01

    As automotive manufacturers continue to look for ways to reduce vehicle weight, aluminum is finding more utility as a body panel component. The substitution of cold-rolled steel and zinc-coated substrates with aluminum has led to new challenges in vehicle pretreatment. As a result, changes to traditional pretreatment chemistries and operating practices are necessary in order to produce an acceptable coating on aluminum body panels. These changes result in increased sludging and other undesirable characteristics. In addition to the chemistry changes, there are also process-related problems to consider. Many existing automotive pretreatment lines simply were not designed to handle aluminum and its increased demands on filtration and circulation equipment. To retrofit such a system is capital intensive and in addition to requiring a significant amount of downtime, may not be totally effective. Thus, the complexities of pre-treating aluminum body panels have actually had a negative effect on efforts to introduce more aluminum into new vehicle design programs. Recent research into ways of reducing the negative effects has led to a new understanding of the nature of zinc phosphate bath -aluminum interactions. Many of the issues associated with the pretreatment of aluminum have been identified and can be mitigated with only minor changes to the zinc phosphate bath chemistry. The use of low levels of soluble Fe ions, together with free fluoride, has been shown to dramatically improve the efficiency of a zinc phosphate system processing aluminum. Appearance of zinc phosphate coatings, coating weights and sludge are all benefited by this chemistry change. (authors)

  13. Polyhydroxyalkanoate-based thin films : characterization and optimization for calcium phosphate crystallization

    OpenAIRE

    Jagoda, Agnieszka Maria

    2013-01-01

    Novel polymer-inorganic composites attract scientific and commercial attention as potential biomaterials for orthopedic applications, due to the fact that currently used materials have still many drawbacks, e.g. problems with cell attachment or degradation products toxicity. Furthermore, scientific research progressively focuses on mimicking the structure and function of the body’s organs. For example, bone is a natural composite of an organic matrix (collagen) and inorganic crystals (calcium...

  14. A Efficacy Observation on Aluminum Phosphate Gel in Enema Treatment of Ulcerative Colitis%磷酸铝凝胶保留灌肠治疗溃疡性结肠炎的疗效观察

    Institute of Scientific and Technical Information of China (English)

    富翠芹

    2013-01-01

    Objective To boserve the efficacy of Aluminum Phosphate Gel in enema treatment of ulcerative colitis. Mehtod 70 cases of ulcerative colitis from our hospital were randomly divided into two groups to Clinical prospective study, 35 patients treated with aluminum phosphate Gel, Kangfuxin solution, mesalazine slow release tablets;the control group,35 patients were treated by Kangfuxin solution, mesalazine slow release tablets. Result The aluminum phosphate gel for ulcerative cilitis compared with the control group have a better effect, as a worthy treatment.%  目的探讨磷酸铝凝胶保留灌肠治疗溃疡性结肠炎的疗效。方法选择我院2011年5月至2012年5月收治的70例溃疡性结肠炎患者,随机分为实验组(n=35)与对照组(n=35)。实验组用磷酸铝凝胶、康复新液配制的灌肠液保留灌肠并口服美沙拉嗪肠溶片,对照组用康复新液灌肠并口服美沙拉嗪肠溶片。结果磷酸铝凝胶灌肠治疗溃疡性结肠炎效果优于对照组。磷酸铝凝胶治疗溃疡性结肠炎有效。

  15. The effect of crystal structure of TiO2 nanotubes on the formation of calcium phosphate coatings during biomimetic deposition

    Science.gov (United States)

    Liu, Yi; Kim, Sun; McLeod, John A.; Li, Jun; Guo, Xiaoxuan; Sham, Tsun-Kong; Liu, Lijia

    2017-02-01

    The crystallization process of bioactive calcium phosphate (CaP) species via biomimetic deposition onto anodic TiO2 nanotubes is investigated. The porous surface of nanostructured TiO2 provides an ideal substrate for CaP crystallization. The compositions of CaP coatings are studied using X-ray absorption near-edge structures (XANES) at the Ca K-edge. Using detection modes with different probing depths, both the surface of the CaP coating and the CaP-TiO2 interface are simultaneously analyzed. Calcium phosphate (CaP) species, such as hydroxyapatite (HAp), octacalcium phosphate (Ca8(HPO4)2(PO4)4·5H2O, OCP), brushite (CaHPO4·2H2O, DCPD), and amorphous calcium phosphate (ACP), are found in the CaP coatings. TiO2 nanotubes of amorphous and anatase phases are comparatively studied to determine their effect on the efficiency of CaP formation and the phase transformation among CaP species in prolonged deposition time. It is found the composition of CaP coating has a strong dependency on the crystal structure of TiO2 substrate and the kinetics (deposition time).

  16. Characterization of morphology and component of struvite pellets crystallized from sludge dewatering liquor: Effects of total suspended solid and phosphate concentrations.

    Science.gov (United States)

    Ping, Qian; Li, Yongmei; Wu, Xinghai; Yang, Lu; Wang, Lin

    2016-06-05

    A lab-scale struvite pellet crystallization system was used to study phosphorus (P) removal and recovery from sludge dewatering liquor (SDL). Influences of total suspended solids (TSS) and phosphate concentrations on P removal as well as the size, morphology, purity, and components of struvite pellets were investigated. The increase in TSS concentration resulted in not only the decreases in phosphate removal efficiency and struvite purity but also the irregular pellet morphology and broken struvite crystals. Increasing inlet PO4-P concentration enhanced PO4-P removal, average struvite pellet diameter, purity and crystal volume growth rate. Amorphous calcium phosphate (ACP), calcite, brucite and magnesium phosphate were formed as co-precipitates with struvite. However, species and quantity of co-precipitates could be variable. More calcium precipitates were easily formed at lower PO4-P concentration (48mg/L), while brucite was the main co-precipitate at higher PO4-P concentration (151mg/L). Organic compounds were involved in struvite pellets along with suspended solids during the formation of struvite. Higher TSS concentration resulted in both more species and higher contents of organic compounds in struvite pellets. Therefore, it is essential to remove suspended solids in advance so as to obtain high P-removal and harvest high-quality struvite pellets. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Crystal structure of 1-benzyl-3-methyl-1H-imidazolium hexa-fluorido-phosphate.

    Science.gov (United States)

    Hillesheim, Patrick C; Scipione, Kent A

    2014-12-01

    In the title salt, C11H13N2 (+)·PF6 (-), the dihedral angle between the planes of the imidazole and benzene rings is 84.72 (4)°. In the crystal, C-H⋯F inter-actions connect the cation and anion pairs into a three-dimensional network. Weak π-π inter-actions are observed between the imidazolium ring and the aromatic benzene ring of an adjacent mol-ecule with C⋯C and C⋯N distances ranging from 3.3714 (16) to 3.4389 (15) Å.

  18. Simulation study of directional coarsening (rafting) of gamma' in single crystal nickel-aluminum

    Science.gov (United States)

    Zhou, Ning

    Dislocation propagation in and work hardening of gamma channels and directional coarsening (rafting) of gamma' precipitates are the major microscopic processes taking place during high temperature deformation of single crystal Ni-base superalloys. Understanding of those processes is crucial for developing improved models of creep and fatigue of turbine blades in aircraft engines. Recent investigations of rafting in superalloys demonstrate clearly the importance of elastic modulus difference between the gamma and gamma' phases and dislocation-level activities in the gamma-channels in determining the kinetic pathway of the processes. The elastic modulus difference can lead to the non-uniform distribution of stresses through the interaction with the lattice misfit and external load. While work hardening in the gamma channels has a direct effect on differentiation of the stress state in the vertical and horizontal channels and on gamma/gamma' interface coherency and energy, and hence influences the diffusive flow and morphological changes of the gamma/gamma' microstructure. In turn, changes in particle shape and coherency of the interface alter the local stress state and thereby the Peach-Koehler force on dislocations. Although existing models treating these processes separately can offer a qualitative explanation about the direction of rafting for typical superalloys, a complete quantitative understanding of rafting phenomena requires these processes to be treated simultaneously in a common framework because of their intimate coupling. The objective of this thesis is to develop an integrated computational approach in simulating simultaneous evolution of both gamma/gamma' microstructure and dislocations in an elastically anisotropic and inhomogeneous system by using a single, consistent phase field methodology. In particular, the phase field dislocation model is used to simulate the initial dislocation gamma channel filling process and calculate stress distribution

  19. Syntheses, characterization, crystal structure and manetic properties of copper(Ⅱ) a, b-unsaturated carboxylate complexes with trimethyl phosphate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two ternary complexes Cu2A4[OP(OCH3)3]2 (A represents CH2== CH-COO- and CH2==C(CH3)-COO-) have been synthesized, and elemental analyses, IR, ESR, electronic reflectance spectra and magnetic studies were carried out. The single crystal X-ray diffraction shows that Cu2[CH2== C(CH3)-COO]4[OP(OCH3)3]2 is triclinic, with space group P, a = 1.05128(13), b = 1.7559(5), c = 1.94479(3) nm, α = 91.263(14)°, β = 102.559(6)°, γ = 106.339(13)°, Z = 4 and R = 0.0668. Two copper(Ⅱ) atoms are bridged by four a-methacrylate groups, and each copper(Ⅱ) atom is coordi-nated with a trimethyl phosphate molecule in the axial posi-tion, forming a distorted square pyramidal configuration. The symmetric center is between the two copper(Ⅱ) atoms, and the Cu-Cu bond distance is 0.26098(6) nm. The Cu-Cu distance and magnetic studies suggest that there exist an-tiferromagnetic interactions between the two copper(Ⅱ) atoms.

  20. Cloning, expression, purification, crystallization and preliminary X-ray studies of a pyridoxine 5′-phosphate oxidase from Mycobacterium smegmatis

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Colin J., E-mail: colin.jackson@csiro.au; Taylor, Matthew C.; Tattersall, David B.; French, Nigel G. [CSIRO Entomology, Black Mountain, ACT 2601 (Australia); Carr, Paul D.; Ollis, David L. [Research School of Chemistry, Australian National University, ACT 0200 (Australia); Russell, Robyn J.; Oakeshott, John G. [CSIRO Entomology, Black Mountain, ACT 2601 (Australia)

    2008-05-01

    Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation. Pyridoxine 5′-phosphate oxidases (PNPOxs) are known to catalyse the terminal step in pyridoxal 5′-phosphate biosynthesis in a flavin mononucleotide-dependent manner in humans and Escherichia coli. Recent reports of a putative PNPOx from Mycobacterium tuberculosis, Rv1155, suggest that the cofactor or catalytic mechanism may differ in Mycobacterium species. To investigate this, a putative PNPOx from M. smegmatis, Msmeg-3380, has been cloned. This enzyme has been recombinantly expressed in E. coli and purified to homogeneity. Good-quality crystals of selenomethionine-substituted Msmeg-3380 were obtained by the hanging-drop vapour-diffusion technique and diffracted to 1.2 Å using synchrotron radiation.

  1. Modeling the material properties at the onset of damage initiation in bulk potassium dihydrogen phosphate crystals

    Science.gov (United States)

    Demos, Stavros G.; Feit, Michael D.; Duchateau, Guillaume

    2014-10-01

    A model simulating transient optical properties during laser damage in the bulk of KDP/DKDP crystals is presented. The model was developed and tested using as a benchmark its ability to reproduce the well-documented damage initiation behaviors but most importantly, the salient behavior of the wavelength dependence of the damage threshold. The model involves two phases. During phase I, the model assumes a moderate localized initial absorption that is strongly enhanced during the laser pulse via excited state absorption and thermally driven generation of additional point defects in the surrounding material. The model suggests that during a fraction of the pulse duration, the host material around the defect cluster is transformed into a strong absorber that leads to significant increase of the local temperature. During phase II, the model suggests that the excitation pathway consists mainly of one photon absorption events within a quasicontinuum of short-lived vibronic defect states spanning the band gap that was generated after the initial localized heating of the material due to thermal quenching of the excited state lifetimes. The width of the transition (steps) between different number of photons is governed by the instantaneous temperature, which was estimated using the experimental data. The model also suggests that the critical physical parameter prior to initiation of breakdown is the conduction band electron density. This model, employing very few free parameters, for the first time is able to quantitatively reproduce the wavelength dependence of the damage initiation threshold, and thus provides important insight into the physical processes involved.

  2. 铁铝柱撑膨润土组成特征及其磷吸附性能研究%Removal of Phosphate from Aqueous Solutions by Iron-and Aluminum-pillared Bentonites

    Institute of Scientific and Technical Information of China (English)

    干方群; 杭小帅; 马毅杰; 何宏伟; 李康祥; 龙翔

    2012-01-01

    In this study, several iron- and aluminum- pillared bentonites were synthesized and characterized, and their potentials for removing phosphate from aqueous solutions were evaluated using adsorption isotherms. The five Fe-/Al- pillared bentonites were: (1)iron-pillared bentonites with two different iron contents(Fe1-Mt and Fe10-Mt),(2)hydroxyl-iron pillared bentonite(FeOx-Mt),(3)hydroxyl-aluminum pillared bentonite(A10x-Mt) and (4)hydroxyl-iron/aluminum pillared bentonite( AlFe-Mt), respectively. Results showed that both iron- and a-luminum- pillaring could increase the inter-lamellar spacing, of which the hydroxyl-iron/aluminum pillared bentonite had the highest inter lamellar spacing, approximately twice as much as that of the untreated bentonite. Phosphate adsorption isotherms by pillared bentonites could be well described by either Freundlich or Langmuir equations. Adsorption results indicated that pillared bentonites exhibited greatly enhanced capabilities for removing phosphate than that of the untreated bentonite(qm=1.05 mg·g-1), with the FeOx-Mt having the highest maximum adsorption capacity(~12.03 mg·g-1), followed by Fe10-Mt(8.14 mg·g-1), AlFe-Mt(8.01 mg·g-1), AlOx-Mt(7.92 mg·g-1), Fe1-Mt(4.83 mg·g-1), respectively. The results suggested that the phosphate adsorption capacities of the pillared bentonites were related to the content of iron and aluminum oxides and the existing form of iron, as well as to their interlayer spacings.%利用天然膨润土合成了铁柱撑膨润土(Fe1-Mt、Fe10-Mt)、羟基铁膨润土(FeOx-Mt)、羟基铝膨润土(AlOx-Mt)和羟基铝铁膨润土复合体(AlFe-Mt),对其化学组成和矿物组成等特征进行分析,比较了5种不同铁铝柱撑膨润土对磷污染水体的吸附净化性能,并通过等温吸附试验探讨了柱撑膨润土对磷的吸附机制.结果发现,不同铁铝柱撑均可以增加天然膨润土的层间距,其中以羟基铝铁膨润土复合体的层间距增加最明显,

  3. Growth, theoretical and optical studies on potassium dihydrogen phosphate (KDP) single crystals by modified Sankaranarayanan-Ramasamy (mSR) method

    Energy Technology Data Exchange (ETDEWEB)

    Robert, R. [Department of Physics, Government Arts College, Krishnagiri (India); Justin Raj, C. [Department of Physics, FET, Saveetha University, Chennai 602 105 (India); Krishnan, S. [Department of Physics, R.M.K. Engineering College, Kavareipettai 602 106 (India); Jerome Das, S., E-mail: sjeromedas2004@yahoo.co [Department of Physics, Loyola College, Chennai 600 034 (India)

    2010-01-01

    Transparent single crystals of potassium dihydrogen phosphate (KDP) were grown by modified Sankaranarayanan-Ramasamy (SR) method. The band gap energy for the KDP crystals was calculated from optical transmission spectrum. The theoretical calculations to determine the optical constants of the material and a technique for photonic band gap tuning, which is essentially required to develop the optoelectronic devices, were determined using the optical studies. Further, the Vicker's micro hardness as well as parameters such as fracture toughness (K{sub c}), brittleness index (B) and yield strength (sigma{sub v}) are presented.

  4. Polarized infrared reflectance spectra of brushite (CaHPO4·2H2O) crystal investigation of the phosphate stretching modes.

    Science.gov (United States)

    Mevellec, Jean-Yves; Quillard, Sophie; Deniard, Philippe; Mekmene, Omar; Gaucheron, Frédéric; Bouler, Jean-Michel; Buisson, Jean-Pierre

    2013-07-01

    Polarized infrared (IR) reflectance measurements at near-normal incidence were recorded from the ac-plane of a monoclinic brushite (CaHPO4·2H2O) crystal in the 800-1200 cm(-1) spectral range (P-O stretching modes). The adjustment of these data, on the basis of a dispersion analysis (DA) model for monoclinic case, allowed the determination of oscillators parameters for the four P-O stretching observed modes of the phosphate group.

  5. Polarized infrared reflectance spectra of brushite (CaHPO4ṡ2H2O) crystal investigation of the phosphate stretching modes

    Science.gov (United States)

    Mevellec, Jean-Yves; Quillard, Sophie; Deniard, Philippe; Mekmene, Omar; Gaucheron, Frédéric; Bouler, Jean-Michel; Buisson, Jean-Pierre

    2013-07-01

    Polarized infrared (IR) reflectance measurements at near-normal incidence were recorded from the ac-plane of a monoclinic brushite (CaHPO4ṡ2H2O) crystal in the 800-1200 cm-1 spectral range (P-O stretching modes). The adjustment of these data, on the basis of a dispersion analysis (DA) model for monoclinic case, allowed the determination of oscillators parameters for the four P-O stretching observed modes of the phosphate group.

  6. Effect of NH4-N/P and Ca/P molar ratios on the reactive crystallization of calcium phosphates for phosphorus recovery from wastewater

    Science.gov (United States)

    Vasenko, Liubov; Qu, Haiyan

    2017-02-01

    In this work, the effects of operational parameters, initial phosphorus concentration and molar ratios of Ca/P and NH4-N/P (further in the text N/P), on the nature and purity of precipitated phosphorus products have been investigated in an artificial system that mimics the supernatant in wastewater treatment plants. Metastable zone width was determined for two target phosphorus products: DCPD (dicalcium phosphate dihydrate) and HAp (hydroxyapatite) in the range of pH 4.5 - 7. HAp crystallizes at final pH higher than 6.3 while DCPD crystallizes at the final pH in between 4.7 and 5.7. At the final pH 5.7 - 6.3 and at pH lower than 4.7 the mixtures of DCPD and HAp were obtained. It was observed that N/P ratio affects not only the metastable zone width but also the kinetics of crystal growth for both DCPD and HAp: the higher the N/P ratio, the lower is the growth rate for both P-products. Investigation of the effect of Ca/P and N/P ratios on the nucleation and crystal growth of DCPD in batch crystallization experiment was performed. It showed that at high supersaturation level, crystals with larger median size can be obtained at higher N/P ratio despite the negative effects of N/P ratio on the growth rate of the crystals.

  7. Influence of foreign metal ions on crystal growth and morphology of brushite (CaHPO 4, 2H 2O) and its transformation to octacalcium phosphate and apatite

    Science.gov (United States)

    Lundager Madsen, Hans E.

    2008-05-01

    Brushite, forming tabular crystals, has been precipitated at 25 °C in the presence of each of 14 different di- and trivalent metal ions. The influence of these ions at micromolar concentrations on the solvent-mediated phase transformation of brushite to more basic calcium phosphates has been studied as well. The effect of additives on brushite crystallization was pH-dependent, which could be related to the presence or absence of amorphous precipitate. In the latter case the course of the crystallization process could be followed by recording pH as function of time. For half of the additives kinetic analysis was possible and showed that the crystal growth mechanism is surface nucleation. Edge free energy is lowered in the presence of an additive. Zn favoured aggregates, and the transition metals with the exceptions of Mn(II), Co(II) and Cu(II) favoured irregular growth. Zn inhibited lateral growth, as did Cd and Cr(III) at low and Cu(II) at high pH. Most of the ions have a marked effect on the transformation to octacalcium phosphate (OCP) and hydroxyapatite (HAP) as well. In both cases Cu(II) and Zn are strong inhibitors, whereas Pb(II) is a moderate promotor. Fe in both oxidation states, Co(II), Mn(II) and Sr are intermediate in effect on phase transformation. Inhibition may be caused by adsorbed foreign ions impeding growth of nuclei or by poisoning of the substrate for heterogeneous nucleation, i.e. brushite crystals. Promotion is explained by the formation of nuclei with suitable crystal structure, e.g. apatite/pyromorphite (Ca,Pb) 5OH(PO 4) 3 in the case of Pb.

  8. An experimental study of the corrosion and precipitation of aluminum in the presence of trisodium phosphate buffer following a loss of coolant accident (LOCA) scenario

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry J. [Department of Civil Engineering, University of New Mexico (United States); Leavitt, Janet J. [Department of Civil Engineering, University of New Mexico (United States); Alion Science and Technology (United States); Hammond, Kyle; Mitchell, Lana [Department of Civil Engineering, University of New Mexico (United States); Kee, Ernie [South Texas Project Nuclear Operating Company (STPNOC) (United States); Blandford, Edward D., E-mail: edb@unm.edu [Department of Nuclear Engineering, University of New Mexico (United States)

    2015-02-15

    Highlights: • Experimental head loss testing was conducted by aggressively promoting corrosion in loss of coolant accidents. • Blender-processed debris beds have higher head loss but tend to be less reproducible than NEI-processed debris beds. • Precipitation was observed from aluminum concentration and turbidity measurements. • Precipitation results were compared to predictions from Visual MINTEQ. - Abstract: This paper presents the results of an integrated chemical effects experiment of head loss across the sump pump screen with fibrous debris bed over a non-prototypical 10-day post-LOCA incident window. The corrosion head loss experiments (CHLE) is a reduced scaled integral effects testing facility built at the University of New Mexico (UNM) to investigate potential chemical effects on head loss across prepared fibrous debris beds. The results in this paper come from two integral effect tests performed at UNM in order to determine the chemical effects on head loss induced by a zinc source effect and an aluminum precipitation effect (T3: without Zn source case, T4: with Zn source case in containment). The tests were performed with a large surface area of aluminum coupons in the testing facility for an extended period of elevated temperature to accelerate corrosion above that expected under prototypical conditions. These conditions were sufficient to force aluminum precipitation to occur and induce the onset of chemical effects on debris bed head loss. The head loss behavior on two different types of fiber debris beds (blender-processed and NEI-processed debris bed) was evaluated in this study. It was found that the blender-processed bed is much more sensitive in filtering than the NEI-processed bed and consequently had a much higher head loss value across the beds. Aluminum precipitation was observed, with aluminum concentration and turbidity measurements, to form starting on day 7 in Test T3 and on day 6 in Test T4. The onset of aluminum precipitation

  9. Synthesis and crystal structure of 4-fluorobenzylammonium dihydrogen phosphate, [FC6H4CH2NH3]H2PO4

    Directory of Open Access Journals (Sweden)

    Ali Rayes

    2016-12-01

    Full Text Available The asymmetric unit of the title salt, [p-FC6H4CH2NH3]+·H2PO4−, contains one 4-fluorobenzylammonium cation and one dihydrogen phosphate anion. In the crystal, the H2PO4− anions are linked by O—H...O hydrogen bonds to build corrugated layers extending parallel to the ab plane. The FC6H4CH2NH3+ cations lie between these anionic layers to maximize the electrostatic interactions and are linked to the H2PO4− anions through N—H...O hydrogen bonds, forming a three-dimensional supramolecular network. Two hydrogen atoms belonging to the dihydrogen phosphate anion are statistically occupied due to disorder along the OH...HO direction.

  10. Effect of biomolecules from human renal matrix of calcium oxalate monohydrate (CaOx stones on in vitro calcium phosphate crystallization

    Directory of Open Access Journals (Sweden)

    Priyadarshini Pathak

    2010-10-01

    Full Text Available PURPOSE: Investigate the activity of high and low molecular weight biomolecules present in the matrix of human calcium oxalate (CaOx stones not only on the initial mineral phase formation of calcium and phosphate (CaP but also on its growth and demineralization of the preformed mineral phase. MATERIALS AND METHODS: Surgically removed renal stones were analyzed by Fourier Transform Infra Red (FTIR spectroscopy and only CaOx stones were extracted with 0.05M EGTA, 1 mM PMSF and 1% ß-mercaptoethanol. Renal CaOx stone extract was separated into > 10 kDa and 10 kDa and 10 kDa fraction lane. CONCLUSION: Both high and low molecular weight biomolecules extracted from human renal matrix of calcium oxalate (CaOx stones have a significant influence on calcium and phosphate (CaP crystallization.

  11. CATALYST ACTIVITY MAINTENANCE FOR THE LIQUID PHASE SYNTHESIS GAS-TO-DIMETHYL ETHER PROCESS PART II: DEVELOPMENT OF ALUMINUM PHOSPHATE AS THE DEHYDRATION CATALYST FOR THE SINGLE-STEP LIQUID PHASE SYNGAS-TO-DME PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Xiang-Dong Peng

    2002-05-01

    At the heart of the single-step liquid phase syngas-to-DME process (LPDME{trademark}) is a catalyst system that can be active as well as stable. In the Alternative Fuels I program, a dual-catalyst system containing a Cu-based commercial methanol synthesis catalyst (BASF S3-86) and a commercial dehydration material ({gamma}-alumina) was demonstrated. It provided the productivity and selectivity expected from the LPDME process. However, the catalyst system deactivated too rapidly to warrant a viable commercial process [1]. The mechanistic investigation in the early part of the DOE's Alternative Fuels II program revealed that the accelerated catalyst deactivation under LPDME conditions is due to detrimental interaction between the methanol synthesis catalyst and methanol dehydration catalyst [2,3]. The interaction was attributed to migration of Cu- and/or Zn-containing species from the synthesis catalyst to the dehydration catalyst. Identification of a dehydration catalyst that did not lead to this detrimental interaction while retaining adequate dehydration activity was elusive. Twenty-nine different dehydration materials were tested, but none showed the desired performance [2]. The search came to a turning point when aluminum phosphate was tested. This amorphous material is prepared by precipitating a solution containing Al(NO{sub 3}){sub 3} and H{sub 3}PO{sub 4} with NH{sub 4}OH, followed by washing, drying and calcination. The aluminum phosphate catalyst has adequate dehydration activity and good stability. It can co-exist with the Cu-based methanol synthesis catalyst without negatively affecting the latter catalyst's stability. This report documents the details of the development of this catalyst. These include initial leads, efforts in improving activity and stability, investigation and development of the best preparation parameters and procedures, mechanistic understanding and resulting preparation guidelines, and the accomplishments of this work.

  12. Crystal structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase from the hyperthermophile Thermotoga maritima for insights into the coordination of conformational changes and an inhibitor binding.

    Science.gov (United States)

    Takenoya, Mihoko; Ohtaki, Akashi; Noguchi, Keiichi; Endo, Kiwamu; Sasaki, Yasuyuki; Ohsawa, Kanju; Yajima, Shunsuke; Yohda, Masafumi

    2010-06-01

    Isopentenyl diphosphate is a precursor of various isoprenoids and is produced by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids of plants, protozoa and many eubacteria. A key enzyme in the MEP pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), has been shown to be the target of fosmidomycin, which works as an antimalarial, antibacterial and herbicidal compound. In this paper, we report studies of kinetics and the crystal structures of the thermostable DXR from the hyperthermophile Thermotoga maritima. Unlike the mesophilic DXRs, Thermotoga DXR (tDXR) showed activity only with Mg(2+) at its growth temperature. We solved the crystal structures of tDXR with and without fosmidomycin. The structure without fosmidomycin but unexpectedly bound with 2-methyl-2,4-pentanediol (MPD), revealing a new extra space available for potential drug design. This structure adopted the closed form by rigid domain rotation but without the flexible loop over the active site, which was considered as a novel conformation. Further, the conserved Asp residue responsible for cation binding seemed to play an important role in adjusting the position of fosmidomycin. Taken together, our kinetic and the crystal structures illustrate the binding mode of fosmidomycin that leads to its slow, tight binding according to the conformational changes of DXR.

  13. Crystal Structures of the Iron–Sulfur Cluster-Dependent Quinolinate Synthase in Complex with Dihydroxyacetone Phosphate, Iminoaspartate Analogues, and Quinolinate

    Energy Technology Data Exchange (ETDEWEB)

    Fenwick, Michael K. [Cornell Univ., Ithaca, NY (United States); Ealick, Steven E. [Cornell Univ., Ithaca, NY (United States)

    2016-07-12

    The quinolinate synthase of prokaryotes and photosynthetic eukaryotes, NadA, contains a [4Fe-4S] cluster with unknown function. We report crystal structures of Pyrococcus horikoshii NadA in complex with dihydroxyacetone phosphate (DHAP), iminoaspartate analogues, and quinolinate. DHAP adopts a nearly planar conformation and chelates the [4Fe-4S] cluster via its keto and hydroxyl groups. The active site architecture suggests that the cluster acts as a Lewis acid in enediolate formation, like zinc in class II aldolases. The DHAP and putative iminoaspartate structures suggest a model for a condensed intermediate. The ensemble of structures suggests a two-state system, which may be exploited in early steps.

  14. Clinical biochemistry of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    King, S.W.; Savory, J.; Wills, M.R.

    1981-05-01

    Aluminum toxicity has been implicated in the pathogenesis of a number of clinical disorders in patients with chronic renal failure on long-term intermittent hemodialysis treatment. The predominant disorders have been those involving either bone (osteomalacic dialysis osteodystrophy) or brain (dialysis encephalopathy). In nonuremic patients, an increased brain aluminum concentration has been implicated as a neurotoxic agent in the pathogenesis of Alzheimer's disease and was associated with experimental neurofibrillary degeneration in animals. The brain aluminum concentrations of patients dying with the syndrome of dialysis encephalopathy (dialysis dementia) are significantly higher than in dialyzed patients without the syndrome and in nondialyzed patients. Two potential sources for the increased tissue content of aluminum in patients on hemodialysis have been proposed: (1) intestinal absorption from aluminum containing phosphate-binding gels, and (2) transfer across the dialysis membrane from aluminum in the water used to prepare the dialysate. These findings, coupled with our everyday exposure to the ubiquitous occurrence of aluminum in nature, have created concerns over the potential toxicity of this metal.

  15. Phosphate Mines, Jordan

    Science.gov (United States)

    2008-01-01

    Jordan's leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. The Jordan Phosphate Mines Company is the sole producer, having started operations in 1935. In addition to mining activities, the company produces phosphoric acid (for fertilizers, detergents, pharmaceuticals), diammonium phosphate (for fertilizer), sulphuric acid (many uses), and aluminum fluoride (a catalyst to make aluminum and magnesium). The image covers an area of 27.5 x 49.4 km, was acquired on September 17, 2005, and is located near 30.8 degrees north latitude, 36.1 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  16. Complete Transmetalation in a Metal-Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media.

    Science.gov (United States)

    Asha, K S; Bhattacharjee, Rameswar; Mandal, Sukhendu

    2016-09-12

    A complete transmetalation has been achieved on a barium metal-organic framework (MOF), leading to the isolation of a new Tb-MOF in a single-crystal (SC) to single-crystal (SC) fashion. It leads to the transformation of an anionic framework with cations in the pore to one that is neutral. The mechanistic studies proposed a core-shell metal exchange through dissociation of metal-ligand bonds. This Tb-MOF exhibits enhanced photoluminescence and acts as a selective sensor for phosphate anion in aqueous medium. Thus, this work not only provides a method to functionalize a MOF that can have potential application in sensing but also elucidates the formation mechanism of the resulting MOF.

  17. Effect of the ion-beam bombardment and annealing temperature on sol-gel derived yttrium aluminum oxide film as liquid crystal alignment layer

    Science.gov (United States)

    Jeong, Hae-Chang; Heo, Gi-Seok; Kim, Eun-Mi; Lee, Ju Hwan; Han, Jeong-Min; Seo, Dae-Shik

    2017-02-01

    We demonstrated a homogeneous liquid-crystal (LC) alignment state on yttrium aluminum oxide (YAlO) films, where the alignment was induced by ion-beam (IB) irradiation. Topographical analysis was performed by atomic force microscopy as a function of annealing temperature. Higher annealing temperatures yielded a smoother surface, accompanied by reduced light scattering. Transparency in the visible region increased on the surface fabricated at higher annealing temperatures. LC alignment mechanism was determined by X-ray diffraction (XRD) analysis. Moreover, IB-irradiated YAlO films annealed at temperatures greater than 200 °C exhibited good thermal stability and low capacitance-voltage hysteresis. The IB-irradiated YAlO films are suitable as alternative alignment layers in advanced LC display applications.

  18. Crystal structures of the water and acetone monosolvates of bis-[4'-(pyridin-4-yl)-2,2':6',2''-terpyridine]-manganese(II) bis-(hexa-fluorido-phosphate).

    Science.gov (United States)

    Lourenço, Leandro M O; Almeida Paz, Filipe A; Fernandes, José A

    2015-04-01

    The crystal structures of bis-[4'-(pyridin-4-yl)-2,2':6',2''-terpyridine]-man-gan-ese(II) bis-(hexa-fluorido-phosphate) monohydrate, [Mn(C20H14N4)2](PF6)2·H2O, (1), and bis-[4'-(pyridin-4-yl)-2,2':6',2''-terpyridine]-manganese(II) bis(hexa-fluorido-phosphate) acetone monosolvate, (2), [Mn(C20H14N4)2](PF6)2·CH3COCH3, are described. At 150 K, (1) and (2) have monoclinic (P21/c) and ortho-rhom-bic (C2221) symmetries, respectively. Both structures exhibit octahedrally coordinated Mn(II) atoms and disorder. They display weak inter-actions, such as C-H⋯F, C-H⋯N, C-H⋯π, F⋯π and π-π. The twofold rotation axis in the molecule of (2) is coincident with a twofold rotation axis of the crystal.

  19. Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter

    OpenAIRE

    Khan, Saeed R.; Glenton, Patricia A.

    2008-01-01

    The most common theories about the pathogenesis of idiopathic kidney stones consider precipitation of calcium phosphate (CaP) within the kidneys critical for the development of the disease. We decided to test the hypothesis that a CaP substrate can promote the deposition of calcium oxalate (CaOx) in the kidneys. Experimental hyperoxaluria was induced by feeding glyoxylate to male mice with knockout (KO) of NaPi IIa (Npt2a), a sodium-phosphate cotransporter. Npt2a KO mice are hypercalciuric an...

  20. Discussion about magnesium phosphating

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-07-01

    Full Text Available The paper describes results from recently published research focused on production of non-conventional magnesium phosphate Mg3(PO42・4H2O – bobierrite, or MgHPO4・3H2O – newberyite coating for both magnesium alloys and/or mild steel. This new kind of coating is categorized in the context of current state of phosphating technology and its potential advantages and crystal structure is discussed. At the same time, the suitable comparison techniques for magnesium phosphate coating and conventional zinc phosphate coating are discussed.

  1. EFFECT OF ALKYL CHAIN ASYMMETRY ON THE FUSION AND CRYSTALLIZATION BEHAVIOR OF VESICLES FORMED FROM DI-N-ALKYL PHOSPHATES

    NARCIS (Netherlands)

    STREEFLAND, L; WAGENAAR, A; HOEKSTRA, D; ENGBERTS, JBFN

    1993-01-01

    Fusion of vesicles formed from synthetic, asymmetric (i.e mixed-chain) sodium di-n-alkyl phosphates (1-6) has been studied with a resonance energy transfer assay for lipid mixing and with transmission electron microscopy. Fusion was induced by Ca2+ ions above the Lalpha --> Lbeta phase transition te

  2. 磷酸铝凝胶治疗小儿急性腹泻病的临床疗效观察%Observation of Clinical Effect of Aluminum Phosphate Gel in Treatment of Children with Acute Diarrhea

    Institute of Scientific and Technical Information of China (English)

    郭易苗; 方艳; 罗颂; 何周康

    2015-01-01

    目的:探讨磷酸铝凝胶对小儿急性腹泻病的临床治疗效果。方法选择我院2013年7月至2014年8月收治的260例小儿急性腹泻病患儿为研究对象,随机分为对照组和观察组各130例。对照组患儿给予对症治疗,观察组在对症治疗的基础上给予磷酸铝凝胶治疗,比较两组的临床疗效以及腹泻、发热、脱水、呕吐等症状缓解时间。结果观察组的总有效率为95.38%,显著高于对照组的73.08%,差异具有统计学意义(P<0.05)。观察组呕吐、腹泻、发热及脱水等症状缓解时间均显著短于对照组,差异具有统计学意义(P<0.05)。结论小儿急性腹泻治疗在常规用药基础上加磷酸铝凝胶,可提高治疗效果,缩短见效时间,促进患者远期预后。%Objective To investigate the clinical effect of aluminum phosphate gel in the treatment of children with acute diarrhea. Methods 260 cases of children with acute diarrhea admitted to our hospital from July 2013 to August 2014 were selected as research objects and randomly divided into control group and observation group, with 130 cases in each group. The control group was given with symptomatic treatment, the observation group was treated with aluminum phosphate gel on the basis of symptomatic treatment. The clinical effect, alleviation time of diarrhea, fever, dehydration and emesis were compared between the two groups. Results The total effective rate of the observation group was 95.38%, significantly higher than 73.08% of the control group, with statistical difference (P <0.05). The alleviation time of diarrhea, fever, dehydration and emesis in the observation group were significantly shorter than those in the control group, with statistical difference (P<0.05). Conclusions For children with acute diarrhea, aluminum phosphate gel on the basis of conventional medicine can improve the therapeutic effect, shorten the response time and promote the long-term prognosis of

  3. 废刻蚀液与低品位磷矿为原料磷复肥的制备%Preparation of phosphate and compound fertilizer by phosphorite and waste aluminum etching liquid

    Institute of Scientific and Technical Information of China (English)

    毕亚凡; 牟林琳; 徐俊虎; 李亮

    2013-01-01

    为了实现电子行业废酸液资源化和低品位磷矿的高效利用,以废铝刻蚀液和品位为18.34%磷矿为研究对象,制备磷复肥.采用电感耦合等离子原子发射光谱法测定了铝刻蚀液中主要阳离子组成及浓度,X射线荧光光谱法分析了实验磷矿的化学组成及浓度.通过分析产品的有效磷、游离酸以及磷矿石的分解率,研究了分解反应温度、液固比和熟化时间等工艺参数对制备磷复肥过程的影响.结果表明,废铝刻蚀液中有害离子浓度均达到肥料生产用酸的标准,该废铝刻蚀液可作为农用化肥生产的混酸原料;废铝刻蚀液与低品位磷矿粉生产磷复肥是可行的,制得的磷复肥产品中五氧化二磷含量为22.42%,氮含量为0.43%;废铝刻蚀液中的醋酸也参与了反应,但对制备的产品质量无明显的影响;初步确定最佳工艺条件是:反应温度85℃、液固比0.71、熟化时间为14天.利用废铝刻蚀液直接作为磷复肥生产原料,不仅废物得以资源化利用,也降低废渣的产生量,同时也为中低品位磷矿资源利用途径提供了参考.%To realize the recycling use of waste acid fluid and high effective utilization of low-grade phosphorite,phosphate and compound fertilizer were prepared by waste aluminum etching liquid and phosphorite with content of 18.34%.Composition and concentration of main cations of the waste aluminum etching liquid were tested by inductively coupled plasma optical emission spectrometer.Chemical composition and concentration of the experimental phosphorite were analyzed by X-ray fluorescence spectrometer.Reaction temperature,liquid-solid ratio,and curing time were studied during the productive process of the phosphate and compound fertilizer by analyzing available phosphorous and free acid of the prepared fertilizer and decomposition rate of phosphorite.The experimental results show that concentration of harmful ions of the waste

  4. Methods for synthesizing microporous crystals and microporous crystal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Prabir; Severance, Michael; Sun, Chenhu

    2017-02-07

    A method of making a microporous crystal material, comprising: a. forming a mixture comprising NaOH, water, and one or more of an aluminum source, a silicon source, and a phosphate source, whereupon the mixture forms a gel; b. heating the gel for a first time period, whereupon a first volume of water is removed from the gel and micoroporous crystal nuclei form, the nuclei having a framework; and c.(if a membrane is to be formed) applying the gel to a solid support seeded with microporous crystals having a framework that is the same as the framework of the nuclei; d. heating the gel for a second time period. during which a second volume of water is added to the gel; wherein the rate of addition of the second volume of water is between about 0.5 and about 2.0 fold the rate of removal of the first volume of water.

  5. Methods for synthesizing microporous crystals and microporous crystal membranes

    Science.gov (United States)

    Dutta, Prabir; Severance, Michael; Sun, Chenhu

    2017-02-07

    A method of making a microporous crystal material, comprising: a. forming a mixture comprising NaOH, water, and one or more of an aluminum source, a silicon source, and a phosphate source, whereupon the mixture forms a gel; b. heating the gel for a first time period, whereupon a first volume of water is removed from the gel and micoroporous crystal nuclei form, the nuclei having a framework; and c.(if a membrane is to be formed) applying the gel to a solid support seeded with microporous crystals having a framework that is the same as the framework of the nuclei; d. heating the gel for a second time period. during which a second volume of water is added to the gel; wherein the rate of addition of the second volume of water is between about 0.5 and about 2.0 fold the rate of removal of the first volume of water.

  6. MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P 2O 5 and TiO 2 nucleants

    Science.gov (United States)

    Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.

    2010-06-01

    Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li 2O-4.0Al 2O 3-68.6SiO 2-3.0K 2O-2.6B 2O 3-0.5P 2O 5-0.9TiO 2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li 2SiO 3) is the first phase to c form followed by cristobalite (SiO 2) and lithium disilicate (Li 2Si 2O 5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li 3PO 4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li 3PO 4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO 4 ( M=B, Al or Ti) complexes. The presence of BO 3 and BO 4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO 3) increases at the expense of tetrahedrally coordinated B (BO 4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.

  7. Crystal structure of bis-(1,3-di-meth-oxy-imidazolin-2-yl-idene)silver(I) hexa-fluorido-phosphate, N-heterocyclic carbene (NHC) complex.

    Science.gov (United States)

    Rietzler, Barbara; Laus, Gerhard; Kahlenberg, Volker; Schottenberger, Herwig

    2015-12-01

    The title salt, [Ag(C5H8N2O2)2]PF6, was obtained by deprotonation and metalation of 1,3-di-meth-oxy-imidazolium hexa-fluorido-phosphate using silver(I) oxide in methanol. The C-Ag-C angle in the cation is 178.1 (2)°, and the N-C-N angles are 101.1 (4) and 100.5 (4)°. The meth-oxy groups adopt an anti conformation. In the crystal, anions (A) are sandwiched between cations (C) in a layered arrangement {C…A…C} n stacked along [001]. Within a C…A…C layer, the hexafluoridophosphate anions accept several C-H⋯F hydrogen bonds from the cationic complex.

  8. Crystal structure of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase complexed with an analogue of 1,3-bisphospho-d-glyceric acid.

    Science.gov (United States)

    Ladame, Sylvain; Castilho, Marcelo S; Silva, Carlos H T P; Denier, Colette; Hannaert, Véronique; Périé, Jacques; Oliva, Glaucius; Willson, Michèle

    2003-11-01

    We report here the first crystal structure of a stable isosteric analogue of 1,3-bisphospho-d-glyceric acid (1,3-BPGA) bound to the catalytic domain of Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) in which the two phosphoryl moieties interact with Arg249. This complex possibly illustrates a step of the catalytic process by which Arg249 may induce compression of the product formed, allowing its expulsion from the active site. Structural modifications were introduced into this isosteric analogue and the respective inhibitory effects of the resulting diphosphorylated compounds on T. cruzi and Trypanosoma brucei gGAPDHs were investigated by enzymatic inhibition studies, fluorescence spectroscopy, site-directed mutagenesis, and molecular modelling. Despite the high homology between the two trypanomastid gGAPDHs (> 95%), we have identified specific interactions that could be used to design selective irreversible inhibitors against T. cruzi gGAPDH.

  9. Predicting laser-induced bulk damage and conditioning for deuterated potassium di-hydrogen phosphate crystals using ADM (absorption distribution model)

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Z M; Spaeth, M L; Manes, K; Adams, J J; Carr, C W

    2010-02-26

    We present an empirical model that describes the experimentally observed laser-induced bulk damage and conditioning behavior in deuterated Potassium dihydrogen Phosphate (DKDP) crystals in a self-consistent way. The model expands on an existing nanoabsorber precursor model and the multi-step absorption mechanism to include two populations of absorbing defects, one with linear absorption and another with nonlinear absorption. We show that this model connects previously uncorrelated small-beam damage initiation probability data to large-beam damage density measurements over a range of ns pulse widths relevant to ICF lasers such as the National Ignition Facility (NIF). In addition, this work predicts the damage behavior of laser-conditioned DKDP and explains the upper limit to the laser conditioning effect. The ADM model has been successfully used during the commissioning and early operation of the NIF.

  10. Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte.

    Science.gov (United States)

    Sundaram, Manickam Minakshi; Watcharatharapong, Teeraphat; Chakraborty, Sudip; Ahuja, Rajeev; Duraisamy, Shanmughasundaram; Rao, Penki Tirupathi; Munichandraiah, Nookala

    2015-12-14

    Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn(1/3)Co(1/3)Ni(1/3)PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a non-aqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.

  11. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  12. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite.

    Science.gov (United States)

    Wei, Wei; Cui, Jing; Wei, Zhenggui

    2014-06-01

    Understanding the effects of low molecular weight organic acids (LMWOAs) on the transformation of Pb(II) to geochemically stable pyromorphite (PY) by apatite materials (AMs), has considerable benefits for risk assessment and remediation strategies for contaminated water and soil. In this study, we systematically investigated the immobilization of Pb(II) from aqueous solution by natural phosphate rock (PR) and different crystallized hydroxyapatite (HAp) in the absence and presence of LMWOAs (oxalic, malic and citric acids). The results indicated that the effectiveness of PR and HAp in immobilizing Pb(II) followed in descending order by HAp2 (the poorly crystallized HAp), HAp1 (the well crystallized HAp) and PR, regardlessof the presence of LMWOAs. The presence of malic and citric acids significantly decreased the immobilizationefficiency of Pb(II) by HAp1 and PR, clarifying the lower adsorption affinities of Pb(II)-organic acid complexes on HAp1 and PR rather than Pb(II) ion. On thecontrary, oxalic acid could markedly enhance the removal of Pb(II) from aqueous solution by HAp1 and PR through the formation of lead oxalate, which was confirmed by FT-IR and XRDanalysis. Results also showed that LMWOAs had little promoting or inhibiting effect on the immobilization of Pb(II) by HAp2. This study suggested that the ubiquity of LMWOAs in natural environments could retard the transformation efficiency of Pb(II) to PY by AMs, especiallyin thepresenceof oxalic acid, and the poorly crystallized HAp2 had great potential to remediate Pb(II)-contaminated water and soil due to its insusceptibility to LMWOAs.

  13. Effect of partial crystallization on the structural and Er3+ luminescence properties of phosphate-based glasses

    Science.gov (United States)

    Gestraud, C.; Glorieux, B.; Massera, J.; Petit, L.; Fargues, A.; Dussauze, M.; Cardinal, T.; Hupa, L.

    2017-02-01

    In this paper, the impact of B2O3, ZnO and TiO2 addition on the structure, Er3+ luminescence and crystallization of glasses in the Er2O3sbnd P2O5sbnd CaOsbnd SrOsbnd Na2O glass system is reported. The thermal properties of the as-prepared glasses were recorded using a DTA and the structure of the glasses prior to and after heat treatment was analyzed using Raman and IR spectroscopies. Crystallization of the glass after heat treatments was confirmed by the presence of sharp peaks in the XRD patterns. Based on the XRD pattern, two different crystalline phases are suspected to precipitate, the composition of which depends on the glass composition. From the spectroscopic properties of the glasses, the Er3+ ions are not suspected to be incorporated in the crystals.

  14. Color Tunable and Upconversion Luminescence in Yb-Tm Co-Doped Yttrium Phosphate Inverse Opal Photonic Crystals.

    Science.gov (United States)

    Wang, Siqin; Qiu, Jianbei; Wang, Qi; Zhou, Dacheng; Yang, Zhengwen

    2016-04-01

    For this paper, YPO4: Tm, Yb inverse opals with the photonic band gaps at 475 nm and 655 nm were prepared by polystyrene colloidal crystal templates. We investigated the influence of photonic band gaps on the Tm-Yb upconversion emission which was in the YPO4: Tm Yb inverse opal photonic crystals. Comparing with the reference sample, significant suppression of both the blue and red upconversion luminescence of Tm3+ ions were observed in the inverse opals. The color purity of the blue emission was improved in the inverse opal by the suppression of red upconversion emission. Additionally, mechanism of upconversion emission in the inverse opal was discussed. We believe that the present work will be valuable for not only the foundational study of upconversion emission modification but also the development of new optical devices in upconversion lighting and display.

  15. Synthesis, crystal structure and electrical proprieties of new phosphate KCoP{sub 3}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Ben Smida, Y., E-mail: Youssef_smida@yahoo.fr [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Matériaux et Cristallochimie, El Manar II, 2092 Tunis (Tunisia); Guesmi, A. [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Matériaux et Cristallochimie, El Manar II, 2092 Tunis (Tunisia); Université de Tunis El Manar, Institut Préparatoire aux Etudes d’Ingénieurs d’El Manar, El Manar II, 2092 Tunis (Tunisia); Georges, S. [Université de Savoie – Université Joseph Fourier, Laboratoire d’Electrochimie et de Physicochimie des Matériaux et des Interfaces LEPMI, UMR 5279, CNRS – Grenoble INP-BP75, 38402 Saint Martin d’Hères (France); Zid, M.F. [Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Matériaux et Cristallochimie, El Manar II, 2092 Tunis (Tunisia)

    2015-01-15

    Crystals of new tricyclophosphate KCoP{sub 3}O{sub 9} have been grown from solid state reaction and characterized by single crystal X-ray diffraction. KCoP{sub 3}O{sub 9} crystallizes in the hexagonal system, space group P6{sup ¯}c2, with a=6.616 (7) Å; c=9.788 (3) Å; V=371.06 (13) Å{sup 3}, Z=2. The final agreement factors are R=0.014, ωR=0.038, S(F{sup 2})=1.231. The structure of the title compound can be described as a three-dimensional framework built up of corner sharing CoO{sub 6} and PO{sub 4} polyhedra containing wide tunnels oriented along [001] direction and others, less broad, along [100] and [010] directions. The structural model was validated by bond valence sum (BVS) and charge distribution (CD) methods. Ball milling was used to reduce the particles sizes of the synthesized powder. At the optimal sintering temperature of 800 °C, a relative density of 85% was obtained. The microstructure was characterized by scanning electron microscopy. The electrical conductivity was 8.4×10{sup −7} S cm{sup −1} and 1.7×10{sup −4} S cm{sup −1} at 480 °C and 680 °C respectively. The activation energy deduced from the slope is 2.2 eV at low temperature region and 1.2 eV at high temperature region. The BVS model is extended to simulate the ionic migration pathways of alkali cations in the anionic framework. The BVS calculation shows one-dimensional pathways migration along c-axis. - Graphical abstract: 1D pathways link K atoms along c-axis with bond valence mismatch |ΔV(K)|=0.8 v.u. - Highlights: • A new single crystal KCoP{sub 3}O{sub 9} was grown by solid state reaction and its structure determined by single-crystal X-ray diffraction. • The purity polycrystalline of KCoP{sub 3}O{sub 9} sample was verified by Rietveld refinement. • The CIS measurements were optimized and the obtained spectra were fitted by electrical equivalent circuits. • The conduction pathways for the K{sup +} cations are simulated by means of the bond valence sum model.

  16. Evaluation of the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material; Avaliacao in vivo do desempenho de compositos de alumina/fosfato de calcio (CaPs) como material de reconstrucao ossea

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, P.M.; Lima, M.G.; Costa, A.C. [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Pallone, E.M. [Universidade de Sao Paulo (FZEA/USP), Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos; Kiminami, R.H. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2016-07-01

    This study aims to evaluate the in vivo performance of composite aluminum/calcium phosphate (CAPs) as bone reconstruction material. To this end, mass CAPs relative to the total weight of Al2O3 prepared Al{sub 2}O{sub 3}/CAPs using percentage of 0, 10, 20 and 30% composites. The composites characterized were by X-ray diffraction, scanning electron microscopy with scanning. After implanted in rabbit tibia randomly divided were into two groups, each with nine rabbits, according to the euthanasia period (30 days after surgery). After euthanasia was performed radiographic and histological evaluation of the grafted areas. The results confirm that the compounds Al{sub 2}O{sub 3}/CAPs presented major phase of alumina and the second phase calcium pyrophosphate. Increasing the concentration of CAPs on alumina promoted with a reduction in density and increase in porosity, as well as an increase in grain size and heterogeneity in the microstructure. Upon radiographic examination of the tibiae of the nine (9) rabbits score was observed with grade 3, or similar radiopacity presented by the remaining cortical bone. It shown was that the tibiae of rabbits with the implant showed the presence of foreign material (composite), well delimited with bone formation and bone proliferation around the implants. At the point where the composite in 30 days' time of sacrifice, there was no observable sign of infection was established, since there were observed no cellular infiltration, no rejection of the implant, concluding that the biocompatible composite was studied. (author)

  17. The effects of chrome aluminum phosphate solution on the Al2O3-ZrO2-SiO2 wearable system%磷酸铝铬溶液对Al2O3-ZrO2-SiO2耐磨体系的影响

    Institute of Scientific and Technical Information of China (English)

    王珏; 刘晓东; 于倩; 刘洪成; 张晓臣

    2015-01-01

    A kind of coating wearable material was prepared using aluminum oxide, zirconium dioxide, silicon dioxide and chrome aluminum phosphate solution as the main raw material for the high temperature gas erosion and burst problem on the pipeline of pulverized coal and heat power. The effects of chrome aluminum phosphate solution on the adhesive property of coating wearable material were researched by shearing test. The thermo-mechanical behavior of hardening reaction, the thermal weight loss and the micro-topography of the formed material were analyzed using DSC, TG and SEM. The results showed that the shear strength increased with adding chrome aluminum phosphate solution, and the material with adding 10% chrome aluminum phosphate solution showed the shear strength of 3.43MPa, however the density of the formed material decreased, the density of the formed material with adding 10wt% chrome aluminum phosphate solution decreased 30% compared with the formed material without adding chrome aluminum phosphate solution. The hardening reaction occurred mainly between 140℃~150℃. The shear strength decreased 40% on average of the material and solid particles had sintering effect after heat treatment 1 hour at 500℃. The weight loss rate was less than 10%at 800℃.%针对煤粉、热力管道高温气体冲蚀及爆管问题,以氧化铝、二氧化锆、二氧化硅和磷酸铝铬溶液为主要原料,制备了一种涂覆耐磨材料,通过剪切测试研究了磷酸铝铬溶液对涂覆耐磨材料黏结性能的影响,应用DSC、TG、SEM等测试手段对硬化反应的热力学行为、硬化成型材料热失重的和微观形貌进行分析。结果表明:添加磷酸铝铬溶液可使剪切强度提高,添加10%磷酸铝铬溶液后常温剪切强度可达3.43MPa,但是成型材料的密度有所下降,与未添加磷酸铝铬溶液的成型材料相比,添加10%磷酸铝铬溶液后成型材料密度下降30%。硬化反应主要发生在140

  18. Crystal structure of (3-carb-oxy-prop-yl)tri-phenyl-phospho-nium hexa-fluorido-phosphate.

    Science.gov (United States)

    Hillesheim, Patrick C; Scipione, Kent A; Stokes, Sean L

    2014-11-01

    In the title mol-ecular salt, C22H22O2P(+)·PF6 (-), the side chain of the cation adopts an anti-gauche conformation [P-C-C-C and C-C-C-C torsion angles = -179.11 (10) and -77.18 (16)°, respectively]. In the crystal, the cations are linked into carb-oxy-lic acid inversion dimers by pairs of O-H⋯O hydrogen bonds. Weak C-H⋯F and C-H⋯(F,F) hydrogen bonds connect the components into a three-dimensional network, but there are no aromatic π-π stacking inter-actions.

  19. Effects of aluminum substitution on the crystal structure and magnetic properties in Zn{sub 2}Y-type hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenfei; Yang, Jing, E-mail: jyang@ee.ecnu.edu.cn, E-mail: xdtang@sist.ecnu.edu.cn; Bai, Wei; Zhang, Yuanyuan; Tang, Kai; Duan, Chun-gang; Chu, Junhao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Rd., Shanghai 200241 (China); Tang, Xiaodong, E-mail: jyang@ee.ecnu.edu.cn, E-mail: xdtang@sist.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Rd., Shanghai 200241 (China); Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Rd., Shanghai 200050 (China)

    2015-05-07

    Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22} (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22}, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (H{sub C}) and the saturation magnetization (M{sub S}) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher

  20. Synthesis, crystal structure, and ionic conductivity of a new layered metal phosphate, Li2Sr2Al(PO4)3

    Science.gov (United States)

    Kim, Sung-Chul; Kwak, Hyun-Jung; Yoo, Chung-Yul; Yun, Hoseop; Kim, Seung-Joo

    2016-11-01

    A new layered metal phosphate, Li2Sr2Al(PO4)3, was synthesized in the form of either a single-crystal or polycrystalline powder using the molten hydroxide flux method or a solid-state reaction, respectively. Li2Sr2Al(PO4)3 crystallizes to the P21/n (Z=4) monoclinic space group with lattice parameters a≈4.95 Å, b≈22.06 Å, c≈8.63 Å, and β≈91.5°. The structure is composed of stacked [LiSrAl(PO4)2] layers alternating regularly with [LiSrPO4] layers. In the [LiSrAl(PO4)2] sublattice, the AlO6 octahedra and PO4 tetrahedra are tilted cooperatively to form an anionic, corrugated, two-dimensional [Al(PO4)2]3- framework that can be regarded as a "distorted-glaserite" structure. The [LiSrPO4] sublattice is that of a layered block containing a six-membered ring formed from alternating linkages of LiO4 and PO4 tetrahedra. The six-membered rings show a boat-type arrangement with the up(U) or down(D) pointing sequence, UUDUUD. The interspace between the two sublattices generates a two-dimensional pathway for Li+ ion conduction. The impedance measurement indicated that Li2Sr2Al(PO4)3 had a moderate ion conductivity (σ≈1.30×10-4 S cm-1 at 667 K), with an activation energy Ea≈1.02 eV.

  1. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    Science.gov (United States)

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  2. The system CaHPO 4·2H 2O-CaSO 4·2H 2O: crystallizations from calcium phosphate solutions in the presence of SO 2-4

    Science.gov (United States)

    Rinaudo, C.; Lanfranco, A. M.; Franchini-Angela, M.

    1994-09-01

    The crystallization from solutions of 36 × 10 -3M in [Ca] 2- = [HPO 4] 2-, with ratios [SO 4] 2-/[HPO 4] 2- ranging from 0.11 to 1, was studied at 25°C. When [SO 4] 2- was present in the starting solutions in small amounts (ratios 0.11-0.43), only brushite, twinned following the [010] direction, crystallized. The morphology and habit of the crystals were strongly dependent on the supersaturation of the solution. Higher concentrations in [SO 4] 2- (ratios 0.66-1) allowed the crystallization, on the brushite first precipitated, of a phase showing, by EDS and X-ray analyses, a calcium sulphate phosphate hydrate composition.

  3. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-02-19

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups—bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2)—are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  4. Routes to new hafnium(IV) tetraaryl porphyrins and crystal structures of unusual phosphate-, sulfate-, and peroxide-bridged dimers.

    Science.gov (United States)

    Falber, Alexander; Todaro, Louis; Goldberg, Israel; Favilla, Michael V; Drain, Charles Michael

    2008-01-21

    New routes for the synthesis of mono tetraaryl porphyrinato hafnium(IV) complexes, Hf(IV)Por(L)(2), are reported, where the secondary ligands, L, are determined by the method of purification. These synthetic routes cater to the solubility of the macrocycles and provide access to Hf(IV) complexes of meso tetraaryl porphyrins bearing diverse functional groups such as phenyl, tolyl, pyridyl, pentafluorophenyl, and carboxyphenyl. The latter three derivatives significantly expand the repertoire of hafnium porphyrinates. One route refluxes the porphyrin with HfCl(4) in 1-chloronaphthalene or in a mixed solvent of 1-chloronaphthalene and o-cresol. A second, solventless method is also reported wherein the porphyrin is mixed with Hf(cp)(2)Cl(2) and heated to give the metalated porphyrin in good yields. Simultaneous purification and formation of stable porphyrinato hafnium(IV) diacetate complexes, Hf(Por)OAc(2), is accomplished by elution over silica gel using 3-5% acetic acid in the eluent. Exchange of the acetate ligands for other oxo-bearing ligands can be nearly quantitative, such as p-aminobenzoate (PABA), pentanoate (pent), or octanoate (oct). Notably, we find that two to three of a variety of small multitopic dianions such as peroxo (O(2)(-2)), SO(4)(-2), and HPO(4)(-2) serve to bridge between two Hf(Por) moieties to form stable dimers. The crystal structures of this library of Hf(Por) complexes are reported, and we note that careful analysis of crystallography data reveals (Por)Hf(micro-eta(2)-O(2))(2)Hf(Por) rather than four bridging oxo or hydroxy ions.

  5. Sodium Phosphate

    Science.gov (United States)

    Sodium phosphate is used in adults 18 years of age or older to empty the colon (large intestine, bowel) ... view of the walls of the colon. Sodium phosphate is in a class of medications called saline ...

  6. Phosphate salts

    Science.gov (United States)

    ... levels that are too high, and for preventing kidney stones. They are also taken for treating osteomalacia (often ... But intravenous phosphate salts should not be used. Kidney stones (nephrolithiasis). Taking potassium phosphate by mouth might help ...

  7. Comparison of efficacy of the phosphate binders nicotinic acid and sevelamer hydrochloride in hemodialysis patients

    National Research Council Canada - National Science Library

    Ahmadi, Farrokhlagha; Shamekhi, Fatemeh; Lessan-Pezeshki, Mahbob; Khatami, Mohammad Reza

    2012-01-01

    ...), and must be controlled with the use of phosphate binders. Studies comparing the effects of sevelamer and nicotinic acid, both similar non-calcium and non-aluminum phosphate binders, are not available...

  8. Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistant Staphylococcus aureus Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Seetharamappa, Jaldappagari [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom); Department of Chemistry, Karnatak University, Pavate Nagar, Dharwad 580 003, Karnataka State (India); Oke, Muse; Liu, Huanting; McMahon, Stephen A.; Johnson, Kenneth A.; Carter, Lester; Dorward, Mark; Zawadzki, Michal [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom); Overton, Ian M.; Niekirk, C. A. Johannes van [Scottish Structural Facility and School of Life Sciences Research, University of Dundee, Dow Street, Dundee DD1 5EH,Scotland (United Kingdom); Graham, Shirley; Botting, Catherine H.; Taylor, Garry L.; White, Malcolm F. [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom); Barton, Geoffrey J. [Scottish Structural Facility and School of Life Sciences Research, University of Dundee, Dow Street, Dundee DD1 5EH,Scotland (United Kingdom); Coote, Peter J.; Naismith, James H., E-mail: naismith@st-andrews.ac.uk [Scottish Structural Facility and Centre for Biomolecular Sciences, The University, St Andrews KY16 9ST,Scotland (United Kingdom)

    2007-05-01

    As part of work on S. aureus, the crystallization of Sar2028, a protein that is upregulated in MRSA, is reported. Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5′-phosphate-dependent aminotransferase with a molecular weight of 48 168 Da, was overexpressed in methicillin-resistant Staphylococcus aureus compared with a methicillin-sensitive strain. The protein was expressed in Escherichia coli, purified and crystallized. The protein crystallized in a primitive orthorhombic Laue group with unit-cell parameters a = 83.6, b = 91.3, c = 106.0 Å, α = β = γ = 90°. Analysis of the systematic absences along the three principal axes indicated the space group to be P2{sub 1}2{sub 1}2{sub 1}. A complete data set was collected to 2.5 Å resolution.

  9. Aluminum alloy

    Science.gov (United States)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  10. Preparation and Properties of Magnesium Hydroxide/Aluminum Hydroxide/Melamine Phosphate Filled Flame Retardant Silicone Rubber%氢氧化镁/氢氧化铝/三聚氰胺磷酸盐协效无卤膨胀型阻燃硅橡胶的制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    李兴建; 张宜恒; 孙道兴

    2013-01-01

    以碱催化平衡聚合法制备的a,ω二羟基聚二甲基硅氧烷为基胶,制备氢氧化镁/氢氧化铝/三聚氰胺磷酸盐(MP)协效无卤膨胀型阻燃硅橡胶,并对其结构和性能进行研究.结果表明:氢氧化镁/氢氧化铝/MP可产生阻燃协同作用,能够使复合硅橡胶的阻燃性能、热稳定性能和抑烟性能进一步增强.氢氧化镁/氢氧化铝/MP阻燃硅橡胶不仅具有优异的阻燃性能,还能保持良好的物理性能,当复合阻燃剂氢氧化镁/氢氧化铝/MP并用比为12/18/30时,复合硅橡胶的综合性能最佳.%The magnesium hydroxide/aluminum hydroxide/melamine phosphate(MP) filled retardant silicone rubber was prepared by using α,ω-dihydroxy polydimethylsiloxane,which was prepared by equilibrium polymerization by using alkaline catalyst,and the structure and properties of the flame retardant silicone rubber were investigated.The results showed that,the magnesium hydroxide/aluminum hydroxide/MP flame retardants possessed excellent synergistic flame retardant effect,and the flame retardancy,thermal stability and smoke suppression of silicone rubber composite were improved.The magnesium hydroxide/aluminum hydroxide/MP flame retardant silicone rubber also possessed good physical properties.As the magnesium hydroxide/aluminum hydroxide/MP blend ratio was 12/18/30,the comprehensive properties of the silicone rubber composite was the best.

  11. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage

    OpenAIRE

    Alezi, Dalal; Belmabkhout, Youssef; Suyetin, Mikhail; Bhatt, Prashant M.; Weseliński, Łukasz J.; Solovyeva, Vera; Adil, Karim; Spanopoulos, Ioannis; Trikalitis, Pantelis N.; Emwas, Abdul-Hamid; Eddaoudi, Mohamed

    2015-01-01

    The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal–organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first tim...

  12. 6061铝合金无铬磷酸盐稀土转化膜的腐蚀性研究%Study on the Corrosion Resistance of Chromium -Free Phosphate Rare Earth Conversion Coating on 6061 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    李红玲; 孟志芬; 韩延安; 娄淑芳; 李杰; 李文静

    2012-01-01

    测试了磷酸盐转化膜和稀土促进的转化膜在不同pH溶液中的极化曲线、时间-电位曲线和电化学阻抗谱(EIS),对磷酸盐转化膜的耐蚀性能进行了研究.电化学测试表明:稀土磷酸盐处理后的铝合金试样的阳极极化电流下降;交流阻抗测试结果显示:由稀土促进生成的磷酸盐化学转化膜具有较大的极化电阻,二者都说明经稀土促进的转化膜的耐腐蚀性能得到了加强.%The corrosion resistance of phosphate conversion coating was studied by the polarization curves, time - potential curves and electrochemical impedance spectroscopy of phosphate conversion coating in solutions with different pH values. Electrochemical tests showed that anodic polarization current of alumi num alloy treated by rare earth phosphate declined and AC impedance test results indicated that phosphate conversion coating activated by rare earth gave a large polarization resistance. Both indicated that the corro sion resistance of phosphate conversion coating activated by rare earth were enhanced.

  13. Crystal Structure And Magnetic Property of the Complex of Hydrogen-bonded Two-dimensional Layer Copper(Ⅱ) Acrylate with Trimethyl Phosphate

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ Copper carboxylate complexes play an important role in catalysing the enzymatic activities[1-4], and the phosphate has an especial use in DNA recognition[5]. Indeed the report about copper carboxylate complexes with phosphate ligands is rare. A chain structure supramolecule [Cu2(CH2CH-COO)4(H2O)2]n has been reported recently[6], in which a Cu2(CH2CH-COO)4(H2O)2 unit is linked by four O(water)-H...O(carboxyl) hydrogen bonds with two adjacent units(Fig.1). In this work a layer structure complex {Cu2(CH2CH-COO)4(H2O)2[OP(OCH3)3]}n was synthesized by means of hydrogen-bonded assembly approach between complex [Cu2(CH2CH-COO)4(H2O)2]n with trimethyl phosphate(TMP).

  14. Study of the surface crystallization and resistance to dissolution of niobium phosphate glasses for nuclear waste immobilization; Estudo da cristalizacao superficial e da resistencia a dissolucao de vidros niobofosfatos visando a imobilizacao de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Heveline

    2008-07-01

    The surface crystallization and the dissolution rate of three phosphate glass compositions containing different amounts of niobium oxide were studied. The glasses were named Nb30, Nb37, and Nb44 according to the nominal content of niobium oxide in the glass composition. The three compositions were evaluated keeping the P{sub 2}O{sub 5}/K{sub 2}O ratio constant and varying the amount of Nb{sub 2}O{sub 5}. These glasses were produced by melting appropriate chemical compounds at 1500 deg C for 0.5 hour. The crystalline phases which were nucleated on the glass surface after heat treatment were determined by X-ray diffraction. The crystalline structures depend on the amount of niobium oxide in the glass composition. The crystal morphologies were observed by using an optical microscope, and their characteristics are specific for each kind of crystalline phase. The crystal growth rate and the surface nuclei density were determined for each glass composition, and they depend on each crystalline phase nucleated on the surface. From the differential thermal analysis curves it was determined that the Nb44 glass containing 46.5 mol por cent of niobium oxide is the most thermally stable against crystallization when compared to the Nb30 and Nb37 glasses. According to the activation energies determined for crystal growth on the surface of each glass type, the Nb44 glass can also be considered the most resistant one against crystallization. The dissolution rate for the Nb44 glass after 14 days immersed in an aqueous solution with pH equals to 7 at 90 deg C is the lowest (9.0 x 10{sup -7} g. cm{sup -2} . day{sup -1}) when compared to the other two glass compositions. The dissolution rates in acidic and neutral solutions of all studied glasses meet the international standards for materials which can be used in the immobilization of nuclear wastes. (author)

  15. Polytypic transformations of aluminum hydroxide: A mechanistic investigation

    Institute of Scientific and Technical Information of China (English)

    Thimmasandra Narayan Ramesh

    2012-01-01

    The diffusion of ammonia vapors into a solution of aluminum nitrate or ferric nitrate results in the precipitation of their respective hydroxides and oxyhydroxides.Polymorphic phase formation of aluminum hydroxide is controlled by the rate of crystallization.The PXRD patterns of products obtained via vapor phase diffusion revealed that poorly ordered aluminum hydroxide is formed during the initial stages of crystallization.After 8 days,the formation of the bayerite phase of aluminum hydroxide was observed.Upon prolonged exposure to ammonia vapors,bayerite was transformed into gibbsite.The infrared spectrum of the product confirmed the presence of different polytypic phases of aluminum hydroxide.The results demonstrated that the crystal structure of metal hydroxides is controlled by the rate of crystallization,nature of the metal ion,site selectivity and specificity and preparative conditions.

  16. Synthesis, crystal structure, vibrational spectroscopy and expected magnetic properties of a new bismuth nickel phosphate Ni(BiO)2(PO4)(OH) with a namibite-type structure

    Science.gov (United States)

    Aksenov, Sergey M.; Mironov, Vladimir S.; Borovikova, Elena Yu.; Yamnova, Natalia A.; Gurbanova, Olga A.; Volkov, Anatoly S.; Dimitrova, Olga V.; Deyneko, Dina V.

    2017-01-01

    Single crystals of a novel Bisbnd Ni phosphate Ni(BiO)2(PO4)(OH) were synthesized by a hydrothermal method in Bi2O3sbnd NiOsbnd K2Osbnd P2O5 system and characterized by X-ray structure analysis and IR and Raman spectroscopy. This compound crystallizes in a namibite type structure with triclinic unit-cell parameters, a = 6.3220 (3) Å, b = 6.9043 (4) Å, c = 7.5641 (5) Å, α = 90.483 (5)°, β = 107.219 (5)°, γ = 110.758 (5)°; V = 292.51 (3) Å3; space group P 1 bar(No. 2). Crystal structure is refined to final R1 = 4.09 using 1637 I > 2σ(I). The structure contains infinite chains {Ni(OH)(PO4)}∞ built of corner-sharing NiO6 octahedra. Microscopic calculations of the intra- and interchain J (Nisbnd Ni) exchange parameters suggests possible S = 1 antiferromagnet chain behavior of this compound at low temperatures.

  17. The catalytic mechanism of indole-3-glycerol phosphate synthase: crystal structures of complexes of the enzyme from Sulfolobus solfataricus with substrate analogue, substrate, and product.

    Science.gov (United States)

    Hennig, Michael; Darimont, B D; Jansonius, J N; Kirschner, K

    2002-06-07

    Indoleglycerol phosphate synthase catalyzes the ring closure of an N-alkylated anthranilate to a 3-alkyl indole derivative, a reaction requiring Lewis acid catalysis in vitro. Here, we investigated the enzymatic reaction mechanism through X-ray crystallography of complexes of the hyperthermostable enzyme from Sulfolobus solfataricus with the substrate 1-(o-carboxyphenylamino) 1-deoxyribulose 5-phosphate, a substrate analogue and the product indole-3-glycerol phosphate. The substrate and the substrate analogue are bound to the active site in a similar, extended conformation between the previously identified phosphate binding site and a hydrophobic pocket for the anthranilate moiety. This binding mode is unproductive, because the carbon atoms that are to be joined are too far apart. The indole ring of the bound product resides in a second hydrophobic pocket adjacent to that of the anthranilate moiety of the substrate. Although the hydrophobic moiety of the substrate moves during catalysis from one hydrophobic pocket to the other, the triosephosphate moiety remains rigidly bound to the same set of hydrogen-bonding residues. Simultaneously, the catalytically important residues Lys53, Lys110 and Glu159 maintain favourable distances to the atoms of the ligand undergoing covalent changes. On the basis of these data, the structures of two putative catalytic intermediates were modelled into the active site. This new structural information and the modelling studies provide further insight into the mechanism of enzyme-catalyzed indole synthesis. The charged epsilon-amino group of Lys110 is the general acid, and the carboxylate group of Glu159 is the general base. Lys53 guides the substrate undergoing conformational transitions during catalysis, by forming a salt-bridge to the carboxylate group of its anthranilate moiety.

  18. Study of the influence of K+, Mg2+, SO 4 2- and CO3 2- ions in the biomimetic crystallization of amorphous calcium phosphate (ACP) and conversion into octacalcium phosphate (OCP)

    OpenAIRE

    Anahí Herrera Aparecida; Marcus Vinícius Lia Fook; Márcio Luis dos Santos; Antonio Carlos Guastaldi

    2007-01-01

    The crystallization of hydroxyapatite (HA) in aqueous solution can be described by the mechanism ACP -> OCP -> HA. In this work, it was studied the influence of K+, Mg2+, SO4(2-) and CO3(2-) ions in the formation of ACP and in its conversion to OCP, using biomimetic coatings on metallic substrates of commercially pure titanium (Ti c.p.). The results showed that Mg2+ and CO3(2-) ions favored both the formation of ACP and its conversion to OCP. Differently, K+ and SO4(2-) ions did not influence...

  19. Calculation of the dielectric constant ɛ and first nonlinear susceptibility χ(2) of crystalline potassium dihydrogen phosphate by the coupled perturbed Hartree-Fock and coupled perturbed Kohn-Sham schemes as implemented in the CRYSTAL code

    Science.gov (United States)

    Lacivita, Valentina; Rérat, Michel; Kirtman, Bernard; Ferrero, Mauro; Orlando, Roberto; Dovesi, Roberto

    2009-11-01

    The high-frequency dielectric ɛ and the first nonlinear electric susceptibility χ(2) tensors of crystalline potassium dihydrogen phosphate (KH2PO4) are calculated by using the coupled perturbed Hartree-Fock and Kohn-Sham methods as implemented in the CRYSTAL code. The effect of basis sets of increasing size on ɛ and χ(2) is explored. Five different levels of theory, namely, local-density approximation, generalized gradient approximation (PBE), hybrids (B3LYP and PBE0), and HF are compared using the experimental and theoretical structures corresponding not only to the tetragonal geometry I4d2 at room temperature but also to the orthorhombic phase Fdd2 at low temperature. Comparison between the two phases and their optical behavior is made. The calculated results for the tetragonal phase are in good agreement with the experimental data.

  20. Ab initio study of Al(III) adsorption on stepped {100} surfaces of KDP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Salter, E A; Wierzbicki, A; Land, T A

    2004-04-01

    Crystals of potassium dihydrogen phosphate (KH{sub 2}PO{sub 4}, KDP) are grown in large scale for use as nonlinear material in laser components. Traces of trivalent metal impurities are often added to the supernatant to achieve habit control during crystal growth, selectively inhibiting the growth of the {l_brace}100{r_brace} face. Model systems representing AlPO{sub 4}-doped KDP {l_brace}100{r_brace} stepped surfaces are prepared and studied using ab initio quantum methods. Results of Hartree-Fock partial optimizations are presented, including estimated energies of ion pair binding to the steps. We find that the PO{sub 4}{sup 3-} ion takes a position not unlike that of a standard phosphate in the crystal lattice, while the aluminum atom is displaced far from a K{sup +} ion position to establish coordinations with the PO{sub 4}{sup 3-} ion and to bind with another lattice-bound phosphate. Our optimized structures suggest that it is the formation of a fourth coordination of Al(III) to a third phosphate ion from solution, or perhaps from a nearby position in the lattice, that disrupts further deposition, pinning the steps.

  1. Study of Acid Phosphatase in Solubilization of Inorganic Phosphates by Piriformospora indica.

    Science.gov (United States)

    Seshagiri, Swetha; Tallapragada, Padmavathi

    2017-01-02

    Phosphorus is an essential plant macronutrient present in the soil. Only a small portion of phosphorus in soil is taken up by plants and the rest of it becomes unavailable to plants as it is immobilized. Phosphate solubilizing microorganisms play a vital role in converting the insoluble form of phosphates to the soluble form. The present paper reports the solubilization of tricalcium phosphate, rock phosphate, single super phosphate, zinc phosphate and aluminum phosphate by Piriformospora indica with the production of organic acids as well as acid phosphatase. The amount of phosphate released (4.73 mg ml(-1)) and titratable acidity (0.12%) was found to be the highest in the case of single super phosphate as compared to other phosphate sources. High performance liquid chromatography (HPLC) revealed the presence of oxalic acid, lactic acid, citric acid and succinic acid in the media. Highest phosphatase activity was observed with the cell membrane extract of the organism in the presence of zinc phosphate.

  2. Laser-assisted one-pot fabrication of calcium phosphate-based submicrospheres with internally crystallized magnetite nanoparticles through chemical precipitation.

    Science.gov (United States)

    Nakamura, Maki; Oyane, Ayako; Sakamaki, Ikuko; Ishikawa, Yoshie; Shimizu, Yoshiki; Kawaguchi, Kenji

    2015-04-14

    In this paper, we have further developed our simple (one-pot) and rapid (short irradiation time) laser fabrication process of submicrometer spheres composed of amorphous calcium iron phosphate. In our previous process, laser irradiation was applied to a calcium phosphate (CaP) reaction mixture supplemented with ferric ions (Fe(3+)) as a light-absorbing agent. Because the intention of the present study was to fabricate magnetite-encapsulated CaP-based submicrometer spheres, ferrous ions (Fe(2+)) were used as a light-absorbing agent rather than ferric ions. The ferrous ions served as a light-absorbing agent and facilitated the fabrication of submicrometer and micrometer spheres of amorphous calcium iron phosphate. The sphere formation and growth were better promoted by the use of ferrous ions as compared with the use of ferric ions. The chemical composition of the spheres was controllable through adjustment of the experimental conditions. By the addition of sodium hydroxide to the CaP reaction mixture supplemented with ferrous ions, fabrication of CaP-based magnetic submicrometer spheres was successfully achieved. Numerous magnetite and wüstite nanoparticles were coprecipitated or segregated into the CaP-based spherical amorphous matrix via light-material interaction during the CaP precipitation process. The magnetic properties of the magnetite and wüstite formed in the CaP-based spheres were investigated by magnetization measurements. The present process and the resulting CaP-based spheres are expected to have great potential for biomedical applications.

  3. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    Science.gov (United States)

    Zweiacker, K.; McKeown, J. T.; Liu, C.; LaGrange, T.; Reed, B. W.; Campbell, G. H.; Wiezorek, J. M. K.

    2016-08-01

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ˜1.3 m s-1 to ˜2.5 m s-1 during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s-1 have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  4. Melting, growth, and faceting of lead precipitates in aluminum

    DEFF Research Database (Denmark)

    Gråbæk, L.; Bohr, J.; Andersen, H.H.

    1992-01-01

    Aluminum single crystals cut in the direction were implanted with 2 x 10(20) m-2 Pb+ ions at 75 or 150 keV. The implanted insoluble lead precipitated as epitaxially oriented crystallites in the aluminum matrix. The precipitates were studied by x-ray diffraction at Riso, DESY, and Brookhaven...

  5. Demonstration of Crystal Structure.

    Science.gov (United States)

    Neville, Joseph P.

    1985-01-01

    Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)

  6. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  7. The missing hydrate AlF3·6H2Odbnd [Al(H2O)6]F3: Ionothermal synthesis, crystal structure and characterization of aluminum fluoride hexahydrate

    Science.gov (United States)

    Wang, Guangmei; Mudring, Anja-Verena

    2016-11-01

    AlF3 is a strong Lewis acid and several hydrates of it are known, namely the monohydrate, the trihydrate (of which two polymorphs have been described) and the nonohydrate, which forms in the abundance of water, as well as a more complex fluoride of composition Al0.82□0.18F2.46(H2O)0.54 whose structure has been related to the ReO3 type. The monohydrate features edge connected [AlF6] octahedra, in the tri- and nonahydrate mixed F/O coordination of aluminum is observed. Here we report on a new aluminium fluoride hydrate, AlF3·6H2O, which could be obtained via ionothermal synthesis in the ionic liquid n-hexyl-pyridinium tetrafluoroborate. The ionic liquid serves in the synthesis of AlF3·6H2O as the reaction partner (fluoride source) and solvent. Overmore it controls the water activity allowing access to the missing AlF3·6H2O. Single-crystal X-ray diffraction analysis of AlF3·6H2O shows that it crystallizes in the anti-Li3Bi-type of structure according to F3[Al(H2O)6] (Fm-3m, a = 893.1(2) pm, Z = 4) featuring hexaaqua aluminium(III) cations and isolated fluoride anions. The compound was further characterized by powder X-ray diffraction, TG/DTA, IR analyses.

  8. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum Based soc-MOF for CH4, O2 and CO2 Storage

    KAUST Repository

    Alezi, Dalal

    2015-09-28

    The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum based Metal-Organic Frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized, namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-properties relationship, we performed a molecular simulation study and evaluated the methane storage performance of Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes in a wide range of pressure and temperature conditions.

  9. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage.

    Science.gov (United States)

    Alezi, Dalal; Belmabkhout, Youssef; Suyetin, Mikhail; Bhatt, Prashant M; Weseliński, Łukasz J; Solovyeva, Vera; Adil, Karim; Spanopoulos, Ioannis; Trikalitis, Pantelis N; Emwas, Abdul-Hamid; Eddaoudi, Mohamed

    2015-10-21

    The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum-based metal-organic frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized: namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm(3) (STP)/cm(3) (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-property relationship, we performed a molecular simulation study and evaluated the methane storage performance of the Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes under a wide range of pressure and temperature conditions.

  10. Crystal structures and magnetic properties of iron (III)-based phosphates: Na{sub 4}NiFe(PO{sub 4}){sub 3} and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Essehli, Rachid, E-mail: rachid_essehli@yahoo.fr [Laboratory of Mineral Solid and Analytical Chemistry ' LCSMA' , Department of Chemistry, Faculty of Sciences, University Mohamed I, Po. Box 717, 60000 Oujda (Morocco); Bali, Brahim El [Laboratory of Mineral Solid and Analytical Chemistry ' LCSMA' , Department of Chemistry, Faculty of Sciences, University Mohamed I, Po. Box 717, 60000 Oujda (Morocco); Benmokhtar, Said [LCMS, Laboratoire de Chimie des Materiaux Solides, Departement de chimie, Faculte des Sciences Ben M' SIK, Casablanca (Morocco); Bouziane, Khalid [Physics Department, College of Science, Sultan Qaboos University, PO Box 36, Postal Code 123 Al Khod, Sultanate of Oman (Oman); Manoun, Bouchaib [Laboratoire de Physico-Chimie des Materiaux, Departement de Chimie, FST Errachidia, University Moulay Ismail, B.P. 509 Boutalamine, Errachidia (Morocco); Abdalslam, Mouner Ahmed [Materials Science, Technical University Darmstadt, Darmstadt (Germany); Ehrenberg, Helmut [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)

    2011-01-28

    Graphical abstract: A perspective view of the Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3} structure along the [0 0 1] direction. Both compounds seem to exibit antiferromagnetic interactions between magnetic entities at low temperature. Display Omitted Research highlights: > Nasicon and Alluaudite compounds, Iron(III)-based phosphates, Crystal structures of Na{sub 4}NiFe(PO{sub 4}){sub 3} and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3}. > Magnetism behaviours of Na{sub 4}NiFe(PO{sub 4}){sub 3} and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3}. > Antiferromagnetism interactions. > Mossbauer spectroscopy. - Abstract: Crystal structures from two new phosphates Na{sub 4}NiFe(PO{sub 4}){sub 3} (I) and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3} (II) have been determined by single crystal X-ray diffraction analysis. Compound (I) crystallizes in a rhombohedral system (S. G: R-3c, Z = 6, a = 8.7350(9) A, c = 21.643(4) A, R{sub 1} = 0.041, wR{sub 2}=0.120). Compound (II) crystallizes in a monoclinic system (S. G: C2/c, Z = 4, a = 11.729(7) A, b = 12.433(5) A, c = 6.431(2) A, {beta} = 113.66(4){sup o}, R{sub 1} = 0.043, wR{sub 2}=0.111). The three-dimensional structure of (I) is closely related to the Nasicon structural type, consisting of corner sharing [(Ni/Fe)O{sub 6}] octahedra and [PO{sub 4}] tetrahedra forming [NiFe(PO{sub 4}){sub 3}]{sup 4+} units which align in chains along the c-axis. The Na{sup +} cations fill up trigonal antiprismatic sites within these chains. The crystal structure of (II) belongs to the alluaudite type. Its open framework results from [Ni{sub 2}O{sub 10}] units of edge-sharing [NiO{sub 6}] octahedra, which alternate with [FeO{sub 6}] octahedra that form infinite chains. Coordination of these chains yields two distinct tunnels in which site Na{sup +}. The magnetization data of compound (I) reveal antiferromagnetic (AFM) interactions by the onset of deviations from a Curie-Weiss behaviour at low temperature as confirmed by Moessbauer measurements performed at 4.2 K. The

  11. Investigation of mixed alkaline earth phosphates. Synthesis and crystal structure of CaBa(HPO 4) 2: A new mixed alkaline earth hydrogenmonophosphate

    Science.gov (United States)

    Taker, L. B.; Chabchoub, S.; Smiri-Dogguy, L.

    1999-01-01

    Hydrothermal synthesis, IR characterization and X-ray single-crystal structure are reported for CaBa(HPO 4) 2. It crystallizes in the monoclinic system, space group P2 1/a (N∘14) with a = 9.470(2) Å, b = 7.930(1) Å, c = 9.865(1) Å, β = 115.78(1)°, V = 667.1(2) Å 3 and Z = 4. The refinement of data leads to R = 0.0331 for 1131 observed reflections [I > 4σ(I)]. The crystal structure of CaBa(HPO 4) 2 is built up from corner-and/or edge-sharing BaO 9 polyhedra, CaO 7 pentagonal bipyramids and (H)PO 4 tetrahedra giving rise to a three-dimensional network. The HPO 42- groups are located in layers parallel to the ab plane at z ~ 0 and z ~ 1/2. Interleaved barium and calcium cations ensure the cohesion between these sheets. Hydrogen bonds contribute to the stability of the structure.

  12. [Distribution model of aluminum species in drinking water basing on the reaction kinetics].

    Science.gov (United States)

    Wang, Wen-dong; Yang, Hong-wei; Wang, Xiao-chang; Jiang, Jing; Zhu, Wan-peng; Jiang, Zhan-peng

    2010-04-01

    The effects of excess aluminum on water distribution system and human health were mainly attributable to the presences of some aluminum species in drinking water. A prediction model for the concentrations of aluminum species was developed using three-layer front feedback artificial neural network method. Results showed that the reaction rates of both inorganic monomeric aluminum and soluble aluminum varied with reaction time and water quality parameters, such as water temperature, pH, total aluminum, fluoride, phosphate and silicate. Their reaction orders were both three. The reaction kinetic parameters of inorganic monomeric aluminum and soluble aluminum could be predicted effectively applying artificial neural network; the correlation coefficients of k and 1/C0(2) between calculated value and predicted value were both greater than 0.999. Aluminum species prediction results in the drinking water of City M showed that when the concentration of total aluminum was less than 0.05 mg x L(-1), the relative prediction error was large for inorganic monomeric aluminum. When the concentration of total aluminum was above 0.05 mg x L(-1), the model could predict inorganic monomeric aluminum and soluble aluminum concentrations effectively, with relative prediction errors of +/- 15% and +/- 10% respectively.

  13. Phosphate binders in chronic kidney disease: a systematic review of recent data.

    Science.gov (United States)

    Floege, Jürgen

    2016-06-01

    Hyperphosphatemia is common in chronic kidney disease (CKD) and is treated by dietary measures, dialysis techniques and/or phosphate binders. For the present review PubMed was searched for new publications on phosphate binders appearing between January 2010 and October 2015. This review summarizes the latest information on non-pharmacological measures and their problems in lowering phosphate in CKD patients, effects of phosphate binders on morbidity and mortality, adherence to phosphate binder therapy as well as new information on specific aspects of the various phosphate binders on the market: calcium acetate, calcium carbonate, magnesium-containing phosphate binders, polymeric phosphate binders (sevelamer, bixalomer, colestilan), lanthanum carbonate, ferric citrate, sucroferric oxyhydroxide, aluminum-containing phosphate binders, and new compounds in development. The review also briefly covers the emerging field of drugs targeting intestinal phosphate transporters.

  14. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Energy Technology Data Exchange (ETDEWEB)

    Cau Dit Coumes, C., E-mail: celine.cau-dit-coumes@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Lambertin, D.; Lahalle, H.; Antonucci, P. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DEN/MAR/DTCD/SPDE, BP17171, 30207 Bagnols-sur-Cèze cedex (France); Cannes, C.; Delpech, S. [Institut de Physique Nucléaire, CNRS, Univ. Paris-Sud 11, 91406 Orsay Cedex (France)

    2014-10-15

    Highlights: • Binders capable of reducing the pore solution pH compared with Portland cements are reviewed. • The binders are then tested against aluminum corrosion. • Corrosion of aluminum metal is minimal with magnesium phosphate cement. • The H{sub 2} release can be reduced still further by adding LiNO{sub 3} to the mixing solution. • Electrochemical characterizations show that aluminum tends to a passive state. - Abstract: In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  15. Identification of novel scaffolds for potential anti-Helicobacter pylori agents based on the crystal structure of H. pylori 3-deoxy-d-manno-octulosonate 8-phosphate synthase (HpKDO8PS).

    Science.gov (United States)

    Cho, Sujin; Im, Hookang; Lee, Ki-Young; Chen, Jie; Kang, Hae Ju; Yoon, Hye-Jin; Min, Kyung Hoon; Lee, Kang Ro; Park, Hyun-Ju; Lee, Bong-Jin

    2016-01-27

    The crystal structure of 3-deoxy-d-manno-octulosonate-8-phosphate synthase (KDO8PS) from Helicobacter pylori (HpKDO8PS) was determined alone and within various complexes, revealing an extra helix (HE) that is absent in the structures of KDO8PS from other organisms. In contrast to the metal coordination of the KDO8PS enzyme from Aquifex aeolicus, HpKDO8PS is specifically coordinated with Cd(2+) or Zn(2+) ions, and isothermal titration calorimetry (ITC) and differential scanning fluorimetry (DSF) revealed that Cd(2+) thermally stabilizes the protein structure more efficiently than Zn(2+). In the substrate-bound structure, water molecules play a key role in fixing residues in the proper configuration to achieve a compact structure. Using the structures of HpKDO8PS and API [arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP) bisubstrate inhibitor], we generated 21 compounds showing potential HpKDO8PS-binding properties via in silico virtual screening. The capacity of three, avicularin, hyperin, and MC181, to bind to HpKDO8PS was confirmed through saturation transfer difference (STD) experiments, and we identified their specific ligand binding modes by combining competition experiments and docking simulation analysis. Hyperin was confirmed to bind to the A5P binding site, primarily via hydrophilic interaction, whereas MC181 bound to both the PEP and A5P binding sites through hydrophilic and hydrophobic interactions. These results were consistent with the epitope mapping by STD. Our results are expected to provide clues for the development of HpKDO8PS inhibitors.

  16. Modeling of the effects of different substrate materials on the residual thermal stresses in the aluminum nitride crystal grown by sublimation

    Science.gov (United States)

    Lee, R. G.; Idesman, A.; Nyakiti, L.; Chaudhuri, J.

    2009-02-01

    A three-dimensional numerical finite element modeling method is applied to compare interfacial residual thermal stress distribution in AlN single crystals grown by using different substrates such as silicon carbide, boron nitride, tungsten, tantalum carbide, and niobium carbide. A dimensionless coordinate system is used which reduces the numbers of computations and hence simplifies the stress analysis. All components of the stress distribution, both in the film and in the substrate, including the normal stress along the growth direction as well as in-plane normal stresses and shear stresses are fully investigated. This information about the stress distribution provides insight into understanding and controlling the AlN single crystal growth by the sublimation technique. The normal stress in the film at the interface along the growth direction and the shear stresses are zero except at the edges, whereas in-plane stresses are nonzero. The in-plane stresses are compressive when TaC and NbC substrates are used. A small compressive stress might be beneficial in prohibiting crack growth in the film. The compressive stress in the AlN is lower for the TaC substrate than that for the NbC. Tensile in-plane stresses are formed in the AlN for 6H-SiC, BN, and W substrates. This tensile stress in the film is detrimental as it will assist in the crack growth. The stress concentration at the edges of the AlN film at the interface is compressive in nature when TaC and NbC are used as a substrate. This causes the film to bend downward (i.e., convex shape) and assist it to adhere to the substrate. The AlN film curves upward or in a concave shape when SiC, BN, and W substrates are used since the stress concentration at the edges of the AlN film is tensile at the interface and this may cause detachment of the film from the substrate.

  17. Aluminum extraction from aluminum industrial wastes

    Science.gov (United States)

    Amer, A. M.

    2010-05-01

    Aluminum dross tailings, an industrial waste from the Egyptian Aluminum Company (Egyptalum), was used to produce two types of alums: aluminum sulfate alum (Al2(SO4)3·12H2O) and ammonium aluminum alum {(NH4)2SO4AL2 (SO4)3·24H2O}. This was carried out in two processes. The first involves leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of aluminum sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purified aluminum dross tailings thus produced. This was carried out in an autoclave. The effects of temperature, time of reaction, and acid concentration on pressure leaching and extraction processes were studied in order to specify the optimum conditions to be applied in the bench scale production as well as the kinetics of leaching process.

  18. Crystal structure, magnetic and magnetocaloric properties of aluminum-doped La{sub 0.6}Sr{sub 0.4}MnO{sub 3} perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Elhamza, Amal; Dhahri, J. [Universite de Monastir, Laboratoire de la Matiere Condensee et des Nanosciences, Monastir (Tunisia); Rhouma, F.I.H. [Centre de Recherche des Sciences et Technologies de l' Energie, Laboratoire de Photovoltaique de Semi-Conducteurs et de Nanostructures, Hammam-Lif (Tunisia); Hlil, E.K. [CNRS-Universite Joseph Fourier, Institut Neel, Grenoble (France)

    2017-05-15

    In this paper, we report on the structural, magnetic and magnetocaloric properties of a series of nanocrystallines La{sub 0.6}Sr{sub 0.4}Mn{sub 1-x}Al{sub x}O{sub 3} (0 ≤ x ≤ 0.2) which were prepared by the sol-gel method. The X-ray powder diffraction showed that all our synthesized samples were of a single phase and have crystallized in the hexagonal symmetry with R anti 3c space group. Magnetic measurements showed that the sample exhibits a ferromagnetic-to-paramagnetic phase transition at a Curie temperature close to 206 K. The maximum value of the magnetic entropy change vertical stroke ΔS{sub M}{sup max} vertical stroke was found to be 1.09 J kg{sup -1} K{sup -1} for an applied magnetic field of 5T. At this value of magnetic field, the relative cooling power was 141 J kg{sup -1}. Our result on magnetocaloric properties suggests that La{sub 0.6}Sr{sub 0.4}Mn{sub 1-x}Al{sub x}O{sub 3} nanopowder with (0 ≤ x ≤ 0.2) is attractive as a potential refrigerant for high-temperature magnetic refrigeration. (orig.)

  19. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: nonaqueous fluids development, optical finish, and laser damage performance at 1064 nm and 532 nm

    Energy Technology Data Exchange (ETDEWEB)

    Menapace, J A; Ehrmann, P R; Bickel, R C

    2009-11-05

    Over the past year we have been working on specialized MR fluids for polishing KDP crystals. KDP is an extremely difficult material to conventionally polish due to its water solubility, low hardness, and temperature sensitivity. Today, KDP crystals are finished using single-point diamond turning (SPDT) tools and nonaqueous lubricants/coolants. KDP optics fabricated using SPDT, however, are limited to surface corrections due to tool/method characteristics with surface quality driven by microroughness from machine pitch, speed, force, and diamond tool character. MRF polishing offers a means to circumvent many of these issues since it is deterministic which makes the technique practical for surface and transmitted wavefront correction, is low force, and is temperature independent. What is lacking is a usable nonaqueous MR fluid that is chemically and physically compatible with KDP which can be used for polishing and subsequently cleaned from the optical surface. In this study, we will present the fluid parameters important in the design and development of nonaqueous MR fluid formulations capable of polishing KDP and how these parameters affect MRF polishing. We will also discuss requirements peculiar to successful KDP polishing and how they affect optical figure/finish and laser damage performance at 1064 nm and 532 nm.

  20. ALUMINUM BOX BUNDLING PRESS

    Directory of Open Access Journals (Sweden)

    Iosif DUMITRESCU

    2015-05-01

    Full Text Available In municipal solid waste, aluminum is the main nonferrous metal, approximately 80- 85% of the total nonferrous metals. The income per ton gained from aluminum recuperation is 20 times higher than from glass, steel boxes or paper recuperation. The object of this paper is the design of a 300 kN press for aluminum box bundling.

  1. Mixed domain models for the distribution of aluminum in high silica zeolite SSZ-13.

    Science.gov (United States)

    Prasad, Subramanian; Petrov, Maria

    2013-01-01

    High silica zeolite SSZ-13 with Si/Al ratios varying from 11 to 17 was characterized by aluminum-27 and silicon-29 NMR spectroscopy. Aluminum-27 MAS and MQMAS NMR data indicated that in addition to tetrahedral aluminum sites, a fraction of aluminum sites are present in distorted tetrahedral environments. Although in samples of SSZ-13 having high Si/Al ratios all aluminum atoms are expected to be isolated, silicon-29 NMR spectra revealed that in addition to isolated aluminum atoms (Si(1Al)), non-isolated aluminum atoms (Si(2Al)) exist in the crystals. To model these contributions of the various aluminum atoms, a mixed-domain distribution was developed, using double-six membered rings (D6R) as the basic building units of SSZ-13. A combination of different ideal domains, one containing isolated and the other with non-isolated aluminum sites, has been found to describe the experimental silicon-29 NMR data.

  2. Elaboration of thorium uranium phosphate-diphosphate({beta}-TUPD) and {beta}-TUPD/monazite composite materials from crystallized precursors: sintering and study of the long term behavior of the ceramics; Elaboration de phosphate-diphosphate de thorium et d'uranium ({beta}-PDTU) et de materiaux composites {beta}-PDTU/Monazite a partir de precurseurs cristallises. Etudes du frittage et de la durabilite chimique

    Energy Technology Data Exchange (ETDEWEB)

    Clavier, N

    2004-11-01

    Thorium Phosphate-Diphosphate ({beta}-TPD) is actually considered as potential host matrix for the immobilization of radionuclides, and especially actinides, in the field of an underground repository. The studies reported in this work are based on the precipitation of the Thorium Phosphate Hydrogen-Phosphate Hydrate (TPHPH) as a precursor of {beta}-TPD. The crystal structure of TPHPH was solved then the reactions involved during its transformation into {beta}-TPD were established. It allows us to put in evidence a new monoclinic variety of TPD, called {alpha}-TPD, acting as intermediate of reaction. Moreover, the existence of a complete solid solution between TPHPH and UPHPH was demonstrated.The experimental conditions of sintering leading to an optimal densification of the pellets were determined. The relative density of the samples was always between 95 and 100% of the calculated value while a significant improvement of the homogeneity of the samples was noted. By this way, the process based on the precipitation of low-temperature crystallized precursors followed by their heat treatment at high temperature was applied to the preparation of {beta}-TUPD/Monazite based composites in the aim to incorporate simultaneously tri- and tetravalent actinides. The chemical durability of {beta}-TUPD sintered samples was evaluated. The normalized leaching rates determined in several experimental conditions revealed the good resistance of the solids to aqueous alteration. Moreover, the normalized dissolution rates exhibited a low dependence to temperature, pH as well as to several ions present in the leachate. For all the samples, thorium was quickly precipitated as a neo-formed phosphate phase identified to TPHPH. (author)

  3. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    Science.gov (United States)

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  4. Removal of coagulant aluminum from water treatment residuals by acid.

    Science.gov (United States)

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed.

  5. Molten salt flux synthesis and crystal structure of a new open-framework uranyl phosphate Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}: Spectroscopic characterization and cationic mobility studies

    Energy Technology Data Exchange (ETDEWEB)

    Yagoubi, S., E-mail: said.yagoubi@cea.fr [LEEL SIS2M UMR 3299 CEA-CNRS-Université Paris-Sud 11, CEA Saclay, F-91191 Gif-Sur-Yvette (France); Renard, C.; Abraham, F. [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d’Ascq Cedex (France); Obbade, S. [Laboratoire d’Electrochimie et de Physicochimie des Matériaux et des Interfaces, LEPMI, UMR 5279, CNRS-Grenoble INP-UdS-UJF, 1130 Rue de la Piscine, BP75, 38402 Saint-Martin d’Hères (France)

    2013-04-15

    The reaction of triuranyl diphosphate tetrahydrate precursor (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}(H{sub 2}O){sub 4} with a CsI flux at 750 °C yields a yellow single crystals of new compound Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}. The crystal structure (monoclinic, space group C2/c, a=13.6261 (13) Å, b=8.1081(8) Å, c=12.3983(12) Å, β=114.61(12)°, V=1245.41(20) Å{sup 3} with Z=4) has been solved using direct methods and Fourier difference techniques. A full-matrix least-squares refinement on the basis of F{sup 2} yielded R1=0.028 and wR2=0.071 for 79 parameters and 1352 independent reflections with I≥2σ(I) collected on a BRUKER AXS diffractometer with MoKα radiation and a charge-coupled device detector. The crystal structure is built by two independent uranium atoms in square bipyramidal coordination, connected by two opposite corners to form infinite chains {sup 1}{sub ∞}[UO{sub 5}] and by one phosphorus atom in a tetrahedral environment PO{sub 4}. The two last entities {sup 1}{sub ∞}[UO{sub 5}] and PO{sub 4} are linked by sharing corners to form a three-dimensional structure presenting different types of channels occupied by Cs{sup +} alkaline cations. Their mobility within the tunnels were studied between 280 and 800 °C and compared with other tunneled uranyl minerals. The infrared spectrum shows a good agreement with the values inferred from the single crystal structure analysis of uranyl phosphate compound. - Graphical abstract: Arrhenius plot of the electrical conductivity of tunneled compounds Cs{sub 3}U{sub 2}PO{sub 10} and CsU{sub 2}Nb{sub 2}O{sub 11.5}. Highlights: ► The reaction of (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}(H{sub 2}O){sub 4} in excess of molten CsI leads to single-crystals of new tunneled compound Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}. ► Ionic conductivity measurements and crystal structure analysis indicate a strong connection of the Cs{sup +} cations to the tunnels. ► A low symmetry in Cs{sub 3}(UO{sub 2

  6. Synthesis of alpha-aluminum oxide and hafnium-doped beta-nickel aluminide coatings on single crystal nickel-based superalloy by chemical vapor deposition

    Science.gov (United States)

    He, Limin

    Thermal barrier coatings (TBCs) are widely used for air-cooled turbine components in advanced aircraft engines and power generation systems. The dominant failure mode observed in TBCs is progressive fracture of the metal-oxide interface upon oxidation and thermal cycling. Two potential coating methods for improving TBC performance were studied: (1) preparing a high-quality alpha-Al 2O3 coating layer on the surface of a single crystal Ni-based superalloy (Rene N5) to extend the oxidative stability of the interface and (2) doping beta-NiAl bond coating with a small amount of Hf to improve the adhesion of thermally grown oxide (TGO) at the interface. In the first coating method, a novel chemical vapor deposition (CVD) procedure was developed using AlCl3, CO2 and H 2 as precursors. A critical part of this procedure was a short-time pre-oxidation step (1 min) with CO2 and H2 in the CVD chamber, prior to introducing the AlCl3, vapor. Without this pre-oxidation step, extensive whisker formation was observed on the alloy surface. Characterization results showed that the pre-oxidation step resulted in the formation of a continuous oxide layer (˜50 nm) on the alloy surface. The outer part of this layer (˜20 nm) appeared to contain mixed oxides whereas the inner part (˜30 nm) consisted of alpha-Al2O3 as a dominant major phase and theta-Al2O3 as a minor phase. It appeared that the preferential nucleation of beta-Al2O3 in the pre-oxidized layer was promoted by: (1) rapid heating (˜10 sec) of the alloy surface to the temperature region, where alpha-Al 2O3 was expected to nucleate instead of metastable Al 2O3 phases, (2) the low oxygen pressure environment of the pre-oxidation step which kept the rate of oxidation low, and (3) contamination of the CVD chamber with HfCl4. It appeared that the role of HfCl 4 was to enhance the preferential nucleation of alpha-Al2O 3 in the pre-oxidized layer. In our second coating method, we utilized the dynamic versatility of CVD as an avenue

  7. Crystal growth, structure, and properties, of a new oxovanadium(IV) phosphate material, [H2en]4[V7P8O35(OH)6(H2O)]·3H2O prepared via a mild one step hydrothermal route

    Science.gov (United States)

    Cortese, Anthony J.; Smith, Mark D.; zur Loye, Hans-Conrad

    2016-10-01

    One new oxovanadium(IV) phosphate material, [H2en]4[V7P8O35(OH)6(H2O)]·3H2O was prepared utilizing a one step, mild hydrothermal route involving ethylenediamine as the reducing agent. The compound was structurally characterized by single crystal and powder X-ray diffraction methods and found to crystallize in the monoclinic space group C2/c. The temperature dependence of the magnetic susceptibility of was measured and found to be paramagnetic down to 2 K. The compound was further characterized by IR and UV-Vis spectroscopies.

  8. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.

    Science.gov (United States)

    González-Segura, Lilian; Rudiño-Piñera, Enrique; Muñoz-Clares, Rosario A; Horjales, Eduardo

    2009-01-16

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit

  9. In vivo bone aluminum measurements in patients with renal disease

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, K.J.; Kelleher, S.P.

    1986-01-01

    Contamination of the dialysis solution with trace amounts of aluminum and long-term use of aluminum-based phosphate binders have led to increased body burden of aluminum in patients with end-stage renal disease. A significant clinical problem associated with aluminum-overload is the early diagnosis of aluminum-induced dialysis dementia and osteomalacic osteodystrophy. There are few, if any, blood or urine indices that provide an early monitor of this bone disease, especially in the asymptomatic patient. Although a bone biopsy is usually the basis for the final clinical diagnosis, this procedure is not recommended for routine monitoring of patients. The present technique demonstrates the direct in vivo measurement of bone aluminum levels in patients with renal failure. The interference normally present from activation of bone phosphorus is eliminated by using a thermal/epithermal neutron beam. For the clinical management of the patients, the Al/Ca ratio for the hand may be more useful than an absolute measurement of the total body or skeletal aluminum burden. The relationship between the increased serum Al levels following disferrioxamine infusion and the direct in vivo measurement of bone aluminum using the Al/Ca ratio are currently under investigation. The neutron activation procedure presented in this pilot study is a promising new technique with an immediate clinical application. 5 refs., 3 figs., 1 tab.

  10. Aluminium phosphate sulphate minerals (APS) associated with proterozoic unconformity-type uranium deposits: crystal-chemical characterisation and petrogenetic significance; Les sulfates phosphates d'aluminium hydrates (APS) dans l'environnement des gisements d'uranium associes a une discordance proterozoique: caracterisation cristallochimique et signification petrogenetique

    Energy Technology Data Exchange (ETDEWEB)

    Gaboreau, St

    2005-07-01

    Aluminium phosphate sulfate minerals (APS) are particularly widespread and spatially associated with hydrothermal clay alteration in both the East Alligator River Uranium Field (Northern Territory, Australia) and the Athabasca basin (Saskatchewan, Canada), in the environment of proterozoic unconformity-related uranium deposits (URUD). The purpose of this study is both: 1) to characterize the nature and the origin of the APS minerals on both sides of the middle proterozoic unconformity between the overlying sandstones and the underlying metamorphic basement rocks that host the uranium ore bodies, 2) to improve our knowledge on the suitability of these minerals to indicate the paleo-conditions (redox, pH) at which the alteration processes relative to the uranium deposition operated. The APS minerals result from the interaction of oxidising and relatively acidic fluids with aluminous host rocks enriched in monazite. Several APS-bearing clay assemblages and APS crystal-chemistry have also been distinguished as a function of the distance from the uranium ore bodies or from the structural discontinuities which drained the hydrothermal solutions during the mineralisation event. One of the main results of this study is that the index mineral assemblages, used in the recent literature to describe the alteration zones around the uranium ore bodies, can be theoretically predicted by a set of thermodynamic calculations which simulate different steps of fluid-rock interaction processes related to a downward penetrating of hyper-saline, oxidizing and acidic diagenetic fluids through the lower sandstone units of the basins and then into the metamorphic basement rocks. The above considerations and the fact that APS with different crystal-chemical compositions crystallized in a range of fO{sub 2} and pH at which uranium can either be transported in solution or precipitated as uraninite in the host-rocks make these minerals not only good markers of the degree of alteration of the

  11. An investigation of iron phosphate glasses

    Science.gov (United States)

    Fang, Xiangyu

    The effect of melting history on the iron redox equilibrium, structure, crystallization and properties of a binary iron phosphate glass with a 40Fe 2O3-60P2O5, mol%, batch composition were investigated. The structure and properties of single and mixed alkali iron phosphate glasses were also studied. Mossbauer, Raman and infrared spectroscopy were used to determine the changes in the concentration of iron ions and phosphate units in the structure. Differential thermal analysis, X-ray diffraction and thermogravimetric analysis were used to investigate crystallization. Density, molar volume, thermal expansion, dc electrical conductivity and dielectric constant and loss tangent were measured. The heat capacity and glass transition behavior of the glasses was also measured by the differential scanning calorimeter method. The effect of the melting temperature is stronger than the melting time on the concentration of Fe2+ ions in iron phosphate glasses. The pyrophosphate network in iron phosphate glasses and their general properties do not change either with melting temperature and time or with adding up to 20 mol% of single and mixed alkali oxides. The dissolution rate (in deionized water) of these glasses is generally very low (˜10-9 g/cm2/min) and nearly independent of the relative concentration of Fe 2+ or Fe3+ ions. The dissolution rate of the iron phosphate glasses containing 20 mol% of single or mixed alkali oxide can be comparable to that of window glass. There is no mixed alkali effect in the iron phosphate glasses. The crystallization tendency indicates that the glass structure becomes closer to that of crystalline Fe3(P2O 7)2 with increasing concentration of Fe2+ ions in the glass. The large fragility parameters indicates that the iron phosphate glasses belong in the category of the fragile glass-forming liquids.

  12. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    Science.gov (United States)

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik

    2016-08-22

    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization.

  13. Aspects of aluminum toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, C.D.; Savory, J.; Wills, M.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1990-06-01

    Aluminum is the most abundant metal in the earth's crust. The widespread occurrence of aluminum, both in the environment and in foodstuffs, makes it virtually impossible for man to avoid exposure to this metal ion. Attention was first drawn to the potential role of aluminum as a toxic metal over 50 years ago, but was dismissed as a toxic agent as recently as 15 years ago. The accumulation of aluminum, in some patients with chronic renal failure, is associated with the development of toxic phenomena; dialysis encephalopathy, osteomalacic dialysis osteodystrophy, and an anemia. Aluminum accumulation also occurs in patients who are not on dialysis, predominantly infants and children with immature or impaired renal function. Aluminum has also been implicated as a toxic agent in the etiology of Alzheimer's disease, Guamiam amyotrophic lateral sclerosis, and parkinsonism-dementia. 119 references.

  14. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  15. Conversion of Marine Structures to Calcium Phosphate Materials: Mechanisms of Conversion Using Two Different Phosphate Solutions

    OpenAIRE

    Macha, Innocent J.; Grossin, David; Ben-Nissan, Besim

    2016-01-01

    International audience; Marine structure, coralline materials were converted to calcium phosphate using twodifferent phosphate solutions. The aim was to study the conversion mechanisms under acidic andbasic environment at moderate conditions of temperature. Crystal growth and morphology ofconverted corals were characterized by XRD and SEM respectively. The results suggested thatunder acidic conditions (H3PO4), dissolution and precipitation control and direct the crystalformation and morpholog...

  16. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces.

    LENUS (Irish Health Repository)

    Colombo, John S

    2012-09-01

    This study investigated the influence of smooth, roughened, and tricalcium phosphate (TCP)-coated roughened titanium-aluminum-vanadium (Ti-6Al-4V) surfaces on the osteogenic potential of rat bone marrow stromal cells (BMSCs).

  17. Lamella settler crystallizer

    Science.gov (United States)

    Maimoni, Arturo

    1990-01-01

    A crystallizer which incorporates a lamella settler and which is particularly applicable for use in batteries and power cells for electric vehicles or stationary applications. The lamella settler can be utilized for coarse particle separation or for agglomeration, and is particularly applicable to aluminum-air batteries or power cells for solving the hydrargillite (aluminum-hydroxide) removal problems from such batteries. This invention provides the advantages of very low energy consumption, turbulence, shear, cost and maintenance. Thus, due to the low shear and low turbulence of this invention, it is particularly effective in the control of aluminum hydroxide particle size distribution in the various sections of an aluminum-air system, as well as in other electrochemical systems requiring separation for phases of different densities.

  18. Aluminum Alloy and Article Cast Therefrom

    Science.gov (United States)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14 - 25.0, Copper 5.5 - 8.0, Iron 0.05 - 1.2, Magnesium 0.5 - 1.5, Nickel 0.05 - 0.9, Manganese 0.05 - 1.0, Titanium 0.05 - 1.2, Zirconium 0.05 - 1.2, Vanadium 0.05 - 1.2, Zinc 0.05 - 0.9, Phosphorus 0.001 - 0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10 - 25, and the copper-to-magnesium ratio is 4 - 15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2, crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.

  19. Is the Aluminum Hypothesis Dead?

    OpenAIRE

    Lidsky, Theodore I.

    2014-01-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed w...

  20. High energy density aluminum battery

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  1. High energy density aluminum battery

    Science.gov (United States)

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  2. Phosphate homeostasis and disorders.

    Science.gov (United States)

    Manghat, P; Sodi, R; Swaminathan, R

    2014-11-01

    Recent studies of inherited disorders of phosphate metabolism have shed new light on the understanding of phosphate metabolism. Phosphate has important functions in the body and several mechanisms have evolved to regulate phosphate balance including vitamin D, parathyroid hormone and phosphatonins such as fibroblast growth factor-23 (FGF23). Disorders of phosphate homeostasis leading to hypo- and hyperphosphataemia are common and have clinical and biochemical consequences. Notably, recent studies have linked hyperphosphataemia with an increased risk of cardiovascular disease. This review outlines the recent advances in the understanding of phosphate homeostasis and describes the causes, investigation and management of hypo- and hyperphosphataemia.

  3. Is the Aluminum Hypothesis dead?

    Science.gov (United States)

    Lidsky, Theodore I

    2014-05-01

    The Aluminum Hypothesis, the idea that aluminum exposure is involved in the etiology of Alzheimer disease, dates back to a 1965 demonstration that aluminum causes neurofibrillary tangles in the brains of rabbits. Initially the focus of intensive research, the Aluminum Hypothesis has gradually been abandoned by most researchers. Yet, despite this current indifference, the Aluminum Hypothesis continues to attract the attention of a small group of scientists and aluminum continues to be viewed with concern by some of the public. This review article discusses reasons that mainstream science has largely abandoned the Aluminum Hypothesis and explores a possible reason for some in the general public continuing to view aluminum with mistrust.

  4. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  5. [The solubilization of four insoluble phosphates by some microorganisms].

    Science.gov (United States)

    Zhao, Xiaorong; Lin, Qimei; Li, Baoguo

    2002-04-01

    Four insoluble phosphates of ferric phosphate (Fe-P), aluminum phosphate (Al-P), fluorapatite (FAP) and rock phosphate (RP) were used as a sole phosphorus resource for some phosphate-solubilizing microorganisms. It was found that there was significant difference in solubilizing these phosphates by the tested isolates. The fungi normally were more powerful than the bacteria in dissolving the phsophates. The microorganisms generally solubilized more phosphate when supplied with NO3- than with NH4+. However, the isolates of 2TCiF2 and 4TCiF6 had much higher capacity to solubilize FAP and Al-P respectively in NH4+ medium. Most of the isolates solubilized readily FAP and RP, and then Al-P. Ferric phosphate was the least soluble to these isolates. Only isolate 2TCiF2 showed strong ability to solubilize Fe-P. In particular, two Aspergillus sp. had much higher capacity of dissolving Fe-P when suppled with NO3-. The isolates of Evwinia sp. 4TCRi22 and Enterobacter sp. 1TCRi15 had higher capacity of solubilizing FAP. But two Arthrobacter sp. showed the highest activity in RP medium. It is supposed that complexion of organic acids with metals may be the main reason for these isolates to solubilize the phosphates. However, other chelant substances may be much more important for Enterobacter sp. and Erwinia sp. to release phosphorus from the phsphates.

  6. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Science.gov (United States)

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials.

  7. Evaluation of intestinal phosphate binding to improve the safety profile of oral sodium phosphate bowel cleansing.

    Directory of Open Access Journals (Sweden)

    Stef Robijn

    Full Text Available Prior to colonoscopy, bowel cleansing is performed for which frequently oral sodium phosphate (OSP is used. OSP results in significant hyperphosphatemia and cases of acute kidney injury (AKI referred to as acute phosphate nephropathy (APN; characterized by nephrocalcinosis are reported after OSP use, which led to a US-FDA warning. To improve the safety profile of OSP, it was evaluated whether the side-effects of OSP could be prevented with intestinal phosphate binders. Hereto a Wistar rat model of APN was developed. OSP administration (2 times 1.2 g phosphate by gavage with a 12h time interval induced bowel cleansing (severe diarrhea and significant hyperphosphatemia (21.79 ± 5.07 mg/dl 6h after the second OSP dose versus 8.44 ± 0.97 mg/dl at baseline. Concomitantly, serum PTH levels increased fivefold and FGF-23 levels showed a threefold increase, while serum calcium levels significantly decreased from 11.29 ± 0.53 mg/dl at baseline to 8.68 ± 0.79 mg/dl after OSP. OSP administration induced weaker NaPi-2a staining along the apical proximal tubular membrane. APN was induced: serum creatinine increased (1.5 times baseline and nephrocalcinosis developed (increased renal calcium and phosphate content and calcium phosphate deposits on Von Kossa stained kidney sections. Intestinal phosphate binding (lanthanum carbonate or aluminum hydroxide was not able to attenuate the OSP induced side-effects. In conclusion, a clinically relevant rat model of APN was developed. Animals showed increased serum phosphate levels similar to those reported in humans and developed APN. No evidence was found for an improved safety profile of OSP by using intestinal phosphate binders.

  8. The aluminum smelting process.

    Science.gov (United States)

    Kvande, Halvor

    2014-05-01

    This introduction to the industrial primary aluminum production process presents a short description of the electrolytic reduction technology, the history of aluminum, and the importance of this metal and its production process to modern society. Aluminum's special qualities have enabled advances in technologies coupled with energy and cost savings. Aircraft capabilities have been greatly enhanced, and increases in size and capacity are made possible by advances in aluminum technology. The metal's flexibility for shaping and extruding has led to architectural advances in energy-saving building construction. The high strength-to-weight ratio has meant a substantial reduction in energy consumption for trucks and other vehicles. The aluminum industry is therefore a pivotal one for ecological sustainability and strategic for technological development.

  9. Metal-induced crystallization fundamentals and applications

    CERN Document Server

    Wang, Zumin; Mittemeijer, Eric J

    2014-01-01

    Introduction to Metal-Induced CrystallizationAtomic Mechanisms and Interface Thermodynamics of Metal-Induced Crystallization of Amorphous Semiconductors at Low TemperaturesThermodynamics and Kinetics of Layer Exchange upon Low-Temperature Annealing Amorphous Si/Polycrystalline Al Layered StructuresMetal-Induced Crystallization by Homogeneous Insertion of Metallic Species in Amorphous SemiconductorsAluminum-Induced Crystallization: Applications in Photovoltaic TechnologiesApplications of Metal-Induced Crystallization for Advanced Flat-Panel DisplaysLaser-Assisted Meta

  10. Phosphate Rock Fertilizer in Acid Soil:Comparing Phosphate Extraction Methods for Measuring Dissolution

    Institute of Scientific and Technical Information of China (English)

    T.S.ANSUMANA-KAWA; WANGGUANGHUO

    1998-01-01

    Three phosphate extraction methods were used to investigate the dissolution,availability and transfo-mation of Kunyang phosphate rock(KPR) in two surface acid soils.Dissolution was determined by measuring the increase in the amounts of soluble and adsorbed inorganic phosphate fractions,and did not differ signifi-cantly among the three methods.Significant correlations were obtained among P fractions got by the three extraction methods.Dissolution continued until the end of the 90-day incubation period.At the end of the period,much of the applied phosphate recovered in both soils were in the Al- and Fe-P or in the hydroxide-and bicarbonate-extractable inorganic P fractions.The dissolution of KPR in the two soils was also similar: increased addition of phosphate rock resulted in decreased dissolution.The similarity in the order and extent of dissolution in the two soils was probably due to the similarity in each soil of several factors that are known to influence phosphate rock dissolution,namely low CEC,pH,P level,and base status;and high clay and free iron and aluminum oxide contents.The results suggested that KPR could be an aternative P source in the soils are not limiting.

  11. Chloroquine Phosphate Oral

    Science.gov (United States)

    Chloroquine phosphate is in a class of drugs called antimalarials and amebicides. It is used to prevent and treat ... Chloroquine phosphate comes as a tablet to take by mouth. For prevention of malaria in adults, one dose is ...

  12. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps red ...

  13. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    Science.gov (United States)

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  14. Thermal stability and oil absorption of aluminum hydroxide treated by dry modification with phosphoric acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The dry modification of aluminum hydroxide powders with phosphoric acid and the effects of modification of technological conditions on thermal stability, morphology and oil absorption of aluminum hydroxide powders were investigated. The results show that the increase of mass ratio of phosphoric acid to aluminum hydroxide, the decrease of mass concentration of phosphoric acid and prolongation of mixing time are favorable to the improvement of thermal stability of aluminum hydroxide; when the mass ratio of phosphoric acid to aluminum hydroxide is 5:100, the mass concentration of phosphoric acid is 200 g/L and the mixing time is 10 min, the initial temperature of loss of crystal water in aluminum hydroxide rises from about 192.10 to 208.66 ℃2,but the dry modification results in the appearance of agglomeration and macro-aggregate in the modified powders, and the oil absorption of modified powders becomes higher than that of original aluminum hydroxide.

  15. Growth of ZSM-5 crystals within hollow β-zeolite

    Institute of Scientific and Technical Information of China (English)

    Qing Hu Zeng; Xiang Bai; Jia Jun Zheng; Jia Qi Chen; Rui Feng Li

    2011-01-01

    A zeolite composite composed of ZSM-5 and β-zeolites has been synthesized by a procedure of the nucleation and crystallization of ZSM-5 zeolite in the hollow β-zeolite. The property of β-zeolite crystals with aluminum-poor interior and aluminum-rich outer rim results in silicon extraction favorably in the aluminum-poor bulk rather than the aluminum-rich external surface. Subsequently, alkaline treatment of β-zeolite crystals during the second-step synthesis leads to a preferential dissolution of the aluminum-poor center and the formation of hollow β-zeolite crystals. ZSM-5 zeolite crystals are therefore embedded and grown within the hollow β-zeolite. The catalytic activities of Co-Hβ, Co-HZSM-5 and Co-HZSM-5/BEA are investigated during the reaction of methane catalytic reduction NO in the presence of O2.

  16. Why nature chose phosphates.

    Science.gov (United States)

    Westheimer, F H

    1987-03-06

    Phosphate esters and anhydrides dominate the living world but are seldom used as intermediates by organic chemists. Phosphoric acid is specially adapted for its role in nucleic acids because it can link two nucleotides and still ionize; the resulting negative charge serves both to stabilize the diesters against hydrolysis and to retain the molecules within a lipid membrane. A similar explanation for stability and retention also holds for phosphates that are intermediary metabolites and for phosphates that serve as energy sources. Phosphates with multiple negative charges can react by way of the monomeric metaphosphate ion PO3- as an intermediate. No other residue appears to fulfill the multiple roles of phosphate in biochemistry. Stable, negatively charged phosphates react under catalysis by enzymes; organic chemists, who can only rarely use enzymatic catalysis for their reactions, need more highly reactive intermediates than phosphates.

  17. Transmission spectra study of sulfate substituted potassium dihydrogen phosphate

    KAUST Repository

    LI, LIANG

    2013-04-18

    Potassium dihydrogen phosphate (KDP) crystals with different amounts of sulfate concentration were grown and the transmittance spectrum was studied. A crystal with high sulfate replacement density exhibits heavy absorption property in the ultraviolet region which confirms and agrees well with former results. © 2013 Astro Ltd.

  18. Corrosion Inhibitors for Aluminum.

    Science.gov (United States)

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  19. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  20. CORROSION PROTECTION OF ALUMINUM

    Science.gov (United States)

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  1. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    Science.gov (United States)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T. R.; Govindaraj, R.; Govindan Kutty, K. V.; Vasudeva Rao, P. R.

    2014-09-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe3+/Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300-700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass.

  2. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  3. Aluminum, parathyroid hormone, and osteomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Burnatowska-Hledin, M.A.; Kaiser, L.; Mayor, G.H.

    1983-01-01

    Aluminum exposure in man is unavoidable. The occurrence of dialysis dementia, vitamin D-resistant osteomalacia, and hypochromic microcytic anemia in dialysis patients underscores the potential for aluminum toxicity. Although exposure via dialysate and hyperalimentation leads to significant tissue aluminum accumulation, the ubiquitous occurrence of aluminum and the severe pathology associated with large aluminum burdens suggest that smaller exposures via the gastrointestinal tract and lungs could represent an important, though largely unrecognized, public health problem. It is clear that some aluminum absorption occurs with the ingestion of small amounts of aluminum in the diet and medicines, and even greater aluminum absorption is seen in individuals consuming large amounts of aluminum present in antacids. Aluminum absorption is enhanced in the presence of elevated circulating parathyroid hormone. In addition, elevated PTH leads to the preferential deposition of aluminum in brain and bone. Consequently, PTH is likely to be involved in the pathogenesis of toxicities in those organs. PTH excess also seems to lead to the deposition of aluminum in the parathyroid gland. The in vitro demonstration that aluminum inhibits parathyroid hormone release is consistent with the findings of a euparathyroid state in dialysis patients with aluminum related vitamin D-resistant osteomalacia. Nevertheless, it seems likely that hyperparathyroidism is at least initially involved in the pathogenesis of aluminum neurotoxicity and osteomalacia; the increases in tissue aluminum stores are followed by suppression of parathyroid hormone release, which is required for the evolution of osteomalacia. Impaired renal function is not a prerequisite for increased tissue aluminum burdens, nor for aluminum-related organ toxicity. Consequently, it is likely that these diseases will be observed in populations other than those with chronic renal disease.

  4. Deposition of calcium phosphate coatings using condensed phosphates (P2O7(4-) and P3O10(5-)) as phosphate source through induction heating.

    Science.gov (United States)

    Zhou, Huan; Hou, Saisai; Zhang, Mingjie; Yang, Mengmeng; Deng, Linhong; Xiong, Xinbo; Ni, Xinye

    2016-12-01

    In present work condensed phosphates (P2O7(4-) and P3O10(5-)) were used as phosphate source in induction heating to deposit calcium phosphate coatings. The phase, morphology, and composition of different phosphate-related coatings were characterized and compared using XRD, FTIR, and SEM analyses. Results showed that P2O7(4-)formed calcium pyrophosphate hydrate coatings with interconnected cuboid-like particles. The as-deposited calcium tripolyphosphate hydrate coating with P3O10(5-) was mainly composed of flower-like particles assembled by plate-like crystals. The bioactivity and cytocompatibility of the coatings were also studied. Moreover, the feasibility of using hybrid phosphate sources for preparing and depositing coatings onto magnesium alloy was investigated.

  5. Solid state NMR study calcium phosphate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Miquel, J.L.; Facchini, L.; Legrand, A.P. (Laboratoire de Physique Quantique, Paris (France). CNRS, URA421, ESPCI); Rey, C. (CNRS, Toulouse (France). ENSC. Laboratoire de Physico-chimie des Solides); Lemaitre, J. (EPF Lausanne (France). Laboratoire de Technologie des Poudres)

    1990-04-01

    High-resolution {sup 31}P and {sup 1}H NMR spectra at 40 and 121 MHz {sup 31}P and 300 MHz {sup 1}H of synthetic and biological samples of calcium phosphates have been obtained by magic angle spinning (MAS) at spinning speeds up to 6.5 kHz, and high power proton decoupling. The samples include crystalline hydroxyapatite, a deficient hydroxyapatite characterized by a Ca/P atomic ratio of 1.5, a poorly crystallized hydroxyapatite, monetite, brushite, octacalcium phosphate, {beta}-tricalcium phosphate and rabbit femoral bone. The interactions between nuclei in unlike structures and the mobility of acid protons are discussed. (author). 11 refs.; 2 figs.; 1 tab.

  6. Defect recovery in aluminum irradiated with protons at 20 K

    DEFF Research Database (Denmark)

    Linderoth, S.; Rajainmäki, H.; Nieminen, R. M.

    1987-01-01

    Aluminum single crystals have been irradiated with 7.0-MeV protons at 20 K. The irradiation damage and its recovery are studied with positron-lifetime spectroscopy between 20 and 500 K. Stage-I recovery is observed at 40 K. At 240 K, loss of freely migrating vacancies is observed. Hydrogen...

  7. Fabrication of aluminum foam from aluminum scrap Hamza

    Directory of Open Access Journals (Sweden)

    O. A. Osman1 ,

    2015-02-01

    Full Text Available In this study the optimum parameters affecting the preparation of aluminum foam from recycled aluminum were studied, these parameters are: temperature, CaCO3 to aluminum scrap wt. ratio as foaming agent, Al2O3 to aluminum scrap wt. ratio as thickening agent, and stirring time. The results show that, the optimum parameters are the temperature ranged from 800 to 850oC, CaCO3 to aluminum scrap wt. ratio was 5%, Al2O3 to aluminum scrap wt. ratio was 3% and stirring time was 45 second with stirring speed 1200 rpm. The produced foam apparent densities ranged from 0.40-0.60 g/cm3. The microstructure of aluminum foam was examined by using SEM, EDX and XRD, the results show that, the aluminum pores were uniformly distributed along the all matrices and the cell walls covered by thin oxide film.

  8. Synthesis of Renewable Energy Materials, Sodium Aluminum Hydride by Grignard Reagent of Al

    Directory of Open Access Journals (Sweden)

    Jun-qin Wang

    2015-01-01

    Full Text Available The research on hydrogen generation and application has attracted widespread attention around the world. This paper is to demonstrate that sodium aluminum hydride can be synthesized under simple and mild reaction condition. Being activated through organics, aluminum powder reacts with hydrogen and sodium hydride to produce sodium aluminum hydride under atmospheric pressure. The properties and composition of the sample were characterized by FTIR, XRD, SEM, and so forth. The results showed that the product through this synthesis method is sodium aluminum hydride, and it has higher purity, perfect crystal character, better stability, and good hydrogen storage property. The reaction mechanism is also discussed in detail.

  9. Activation energy for mullitization of gel fibres obtained from aluminum isopropoxide

    Indian Academy of Sciences (India)

    Hongbin Tan; Yaping Ding; Haihong Zhang; Jianfeng Yang; Guanjun Qiao

    2012-10-01

    Gel fibres of mullite precursor were prepared from an aqueous solution of aluminum nitrate (AN), aluminum isopropoxide (AIP) and tetraethylorthosilicate (TEOS). A 4:1 molar ratio of aluminum isopropoxide and aluminum nitrate was optimized to obtain spinnable precursor sol for synthesis of fibres. Thermogravimetry–differential scanning calorimetry (TG–DSC), Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) analyses were used to characterize properties of the gel and ceramic fibres. The precursor gel completely transformed to mullite at 1200 °C. The activation energy of mullite crystallization was 993.5 kJ/mol by the Kissinger equation.

  10. Nitrate and phosphate removal through enhanced bioretention media: mesocosm study.

    Science.gov (United States)

    Palmer, Eric T; Poor, Cara J; Hinman, Curtis; Stark, John D

    2013-09-01

    Bioretention is an evolving type of Green Stormwater Infrastructure (GSI) designed to attenuate peak flows, reduce stormwater volume, and treat stormwater. This article examines the capabilities of a bioretention soil mixture of sand and compost enhanced with aluminum-based drinking water treatment residuals to reduce nutrients from stormwater runoff. Columns with and without a saturation zone and vegetation were compared to examine their role in removing nitrate and ortho-phosphate from stormwater. Results show that utilization of a saturation zone can significantly reduce nitrate in effluent water (71% compared to 33% without a saturated zone), even in a newly constructed system. However, ortho-phosphate reduction was significantly better in the columns without a saturated zone (80%) compared to columns with (67%). Plants did not significantly improve removal. This suggests amendments such as aluminum-based water treatment residuals for phosphorus removal and a saturation zone for nitrogen removal are needed during the initial establishment period.

  11. Crystallization from Gels

    Science.gov (United States)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  12. 磷酸铝凝胶联合葡萄糖酸锌片治疗婴幼儿急性非细菌性腹泻的临床疗效%Effect of aluminum phosphate gel and zinc gluconate tablets in treating acute nonbacterial diarrhea in infants

    Institute of Scientific and Technical Information of China (English)

    许朝晖; 耿岚岚; 杨敏; 李慧雯; 方铁夫

    2016-01-01

    目的 探讨磷酸铝凝胶(洁维乐)联合葡萄糖酸锌片治疗婴幼儿急性非细菌性腹泻的临床疗效.方法 选取 2013—2014 年广州市妇女儿童医疗中心收治的婴幼儿急性非细菌性腹泻患儿 120 例,按随机数字表法分为洁维乐组(A 组),蒙脱石散剂组(B 组),洁维乐加锌组(C 组),各 40 例.A 组患儿予以洁维乐治疗,B 组患儿予以蒙脱石散剂治疗,C 组患儿予以洁维乐联合葡萄糖酸锌片治疗.观察 3 组患儿临床疗效及不良反应发生情况.结果 A 组患儿总有效率高于 B 组,C 组患儿总有效率高于 A、B 组,差异有统计学意义(P < 0. 05);3 组患儿均未发生严重不良反应.结论 洁维乐联合葡萄糖酸锌片治疗婴幼儿急性非细菌性腹泻的临床疗效显著,且不良反应少.%Objective To explore the effect aluminum phosphate gel(drug treatsment)and zinc gluconate tablets in treating acute nonbacterial diarrhea in infants. Methods A total of 120 children with acute nonbacterial diarrhea in infants were selected in Guangzhou Women and Children's Medical Center from 2013 to 2014,according to random number table method, they were divided into drug treatsment group(A group),smectite powder group(B group)and drug treatsment and zinc group (C group),40 cases in each group. A group were given drug treatsment treatment,B group were given smectite powder treat-ment,C group were given drug treatsment and zinc gluconate tablets treatment. Clinical effect and incidence condition of adverse reaction in three group compared. Results The total effective rate of group A was higher than that of B,the total effective rate of C group was higher than those of A,B group(P < 0. 05);the three groups had no adverse reactions during treatment. Con-clusion Drug treatsment and zinc gluconate tablets have notable curative effect in the treatment of acute nonbacterial diarrhea in infants,has less adverse reaction

  13. China’s Aluminum Resources

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The aluminum industry makes one of the keyindustries in China’s industrial and agriculturalmodernization and features a high degree ofrelevance with all industries.Of all the 124existing industries in China,113 use aluminum,representing an industrial relevance rate of91%.The consumption of aluminum is also ofhigh relevance with China’s GDP.

  14. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  15. Effect of Rare Earth Element Ce on Microstructure and Properties of Aluminum Rod for Electrical Purpose

    Institute of Scientific and Technical Information of China (English)

    Li Pengfei; Wang Yunli; Gao Xizhu; Wang Zaiyun

    2004-01-01

    The effect of rare earth element Ce on microstructure, electrical conductivity and mechanical properties was studied.Using optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffractometer, the microstructure and phase composition of aluminum rod for electrical purpose were measured and analyzed.The results indicate that rare earth element Ce can considerably refine grain size of aluminum rod for electrical purpose,improve the regular distribution pattern of the impurity, such as silicon and iron which present in the aluminum matrix,form stable metal compound with pernicious impurity.This metal compound precipitates on the crystal boundary.As a result, the solid solubility of impurity in aluminum reduce, and the electrical conductivity of aluminum rod for electrical purpose is improved.It is found that the mechanical properties of aluminum rod for electrical purpose are improved by rare earth element in certain range of RE addition.

  16. Radioactivity of phosphate mineral products

    OpenAIRE

    Mitrović Branislava; Vitorović Gordana; Stojanović Mirjana; Vitorović Duško

    2011-01-01

    The phosphate industry is one of the biggest polluters of the environment with uranium. Different products are derived after processing phosphoric ore, such as mineral and phosphate fertilizers and phosphate mineral supplements (dicalcium-and monocalcium phosphate) for animal feeding. Phosphate mineral additives used in animal food may contain a high activity of uranium. Research in this study should provide an answer to the extent in which phosphate minera...

  17. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  18. Aluminum for Plasmonics

    Science.gov (United States)

    2014-01-01

    in plasmon-enhanced light harvesting,14 photocatalysis ,511 surface- enhanced spectroscopies,1216 optics-based sensing,1722 nonlinear optics,2326...optical response of Al nanoparticles has appeared inconsistent relative to calculated spectra, even forwell-characterized geometries. Some studies have...model- ing their optical response. These results pro- vide a method for estimating the metallic purity of aluminum nanoparticles directly from their

  19. Investigation of Phosphate Retention in some Allophanic and Non-Allophanic Nano-Clays from Karaj Formation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Monajjem

    2017-02-01

    and iron oxides from the soil, clay fraction was prepared for X-ray diffraction analyses. The nanoclay fraction was extracted using the method described by Li and Hu (2003. The specific surface area were determined using EGME method. Different forms of extractable aluminum, including pyrophosphate (Alp and ammonium oxalate (Alo extractable forms, as well as silica extractable by ammonium oxalate (Sio were measured. Routine chemical analyses for organic carbon (OC, cation exchange capacity (CEC were determined by standard methods. Particle size distribution was determined by the hydrometer method (after ultrasound dispersion. Allophane percentage was calculated using the formula provided in the soils under study by Mizota and Van Reeuwijk (1989. Nano particles were inspected using scanning electron microscope (SEM. Results and Discussion: The studied soils were classified as Entisols, Andisols and Inceptisols. The results showed that the bulk of soil mineralogy was consisted of combination of illitic, chloritic, smectite and hydroxy interlayer minerals. In addition to sesquioxides, the crystallization degree of soil minerals was also important in phosphate retention. Results of SEM studies of Andisols implied the existence of different types of aluminosilicate nano particles as nano ball (Allophane, nano tubes (imogolite and smectitic minerals. Hollow spherical structure was proposed for allophane. According to the SEM results, nano particles extracted from non andic soils were dominated by layered silicates (probably montmorillonite. Among physical properties which are effective on phosphate retention, the shape, size and porosity of the particles can be mentioned, all of which have impacts on the specific surface area of the particles. Soils with higher amounts of Alp and Sio were comprised more nanoclay (25,8 g per kg and higher phosphate retention (%55. Various mechanisms were suggested by soil scientists for phosphate sorption on allophane (Nanoclays. Some of are

  20. Cathodic phosphate coating containing nano zinc particles on magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A technology for preparation of a cathodic phosphate coating mainly containing nano metallic zinc particles and phosphate compounds on magnesium alloy was developed.The influence of cathodic current density on the microstructure of the cathodic phosphate coating Was investigated.The results show that the crystals of the coating are finer and the microstructures of the outer surface of the coatings are zigzag at the cathodic density of 0.2-0.5 A/dm2.The content of nano metallic zinc particles in the coating decreases with the increase of the thickness of the coatings and tends to be zero when the coating thickness is 4.14 μm.The cathodic phosphate coating was applied to be a transition coating for improving the adhesion between the paints and the magnesium alloys.The formation mechanism of the cathodic phosphate coating was investigated as well.

  1. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1 – Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Kerry J., E-mail: howe@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Mitchell, Lana, E-mail: lmitchell@alionscience.com [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kim, Seung-Jun, E-mail: skim@lanl.gov [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Blandford, Edward D., E-mail: edb@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kee, Ernest J., E-mail: erniekee@gmail.com [South Texas Project Nuclear Operating Company, P.O. Box 270, Wadsworth, TX 77483 (United States)

    2015-10-15

    Highlights: • Trisodium phosphate (TSP) causes aluminum corrosion to cease after 24 h of exposure. • Chloride, iron, and copper have a minimal effect on the rate of aluminum corrosion when TSP is present. • Zinc can reduce the rate of aluminum corrosion when TSP is present. • Aluminum occasionally precipitates at concentrations lower than the calculated solubility for Al(OH){sub 3}. • Corrosion and solubility equations can be used to calculate the solids generated during a LOCA. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum from metallic aluminum surfaces under conditions representative of the containment pool following a postulated loss of coolant accident at a nuclear power generating facility. The experiments showed that TSP is capable of passivating the aluminum surface and preventing continued corrosion after about 24 h at the conditions tested. A correlation that describes the rate of corrosion including the passivation effect was developed from the bench experiments and validated with a separate set of experiments from a different test system. The saturation concentration of aluminum was shown to be well described by the solubility of amorphous aluminum hydroxide for the majority of cases, but instances have been observed when aluminum precipitates at concentrations lower than the calculated aluminum hydroxide solubility. Based on the experimental data and previous literature, an equation was developed to calculate the saturation concentration of aluminum as a function of pH and temperature under conditions representative of a loss of coolant accident (LOCA) in a TSP-buffered pressurized water reactor (PWR) containment. The corrosion equation and precipitation equation can be used in concert with each other to calculate the quantity of solids that would form as a function of time during a LOCA if the temperature and pH profiles were known.

  2. Development of hydrocyclones for aluminum/air battery applications

    Science.gov (United States)

    Newman, M.

    1984-04-01

    An aluminum air battery consists of three main components: a galvanic cell stack fueled by aluminum and water, a crystallizer (a fluidized bed), and a hydro-cyclone, to separate electrolyte from aluminum trihydroxide. The crystallizer stabilizes the electrolyte by extracting excess aluminum trihydroxide. A separator (the hydrocyclone) is necessary to divert heavy particles to the crystallizer while recycling fine particles to the cells. A hydrocyclone suited to this application was developed based on the design of a commercially available unit, the PC-1, manufactured by Krebs Engineers of Menlo Park. Information supplied by Krebs indicated that a cut point of 15 micrometers could be achieved. At time intervals of 120, 240 and 360 minutes of testing, the particle size cut point remained constant at 20.2-25.4 micrometers. The separation coefficient was .47, .48 and .51, respectively. The discrepancy between the actual and the anticipated results is most likely due to variance from suggested sizing and the use of a tangential feed instead of the involuted feed of the Krebs design.

  3. 赤泥晶种法诱导磷酸铵镁结晶回收模拟废水中磷的可行性研究%Feasibility study on phosphate recovery as struvite from synthetic wastewater by red mud-seeded crystallization

    Institute of Scientific and Technical Information of China (English)

    胡怡; 宋永会; 钱锋

    2013-01-01

    The physical and chemical properties of red mud were analyzed, and the effects of process conditions on the crystallization of magnesium ammonium phosphate (MAP) for phosphorus recovery from synthetic wastewater with red mud as a seed crystal, were investigated. The results showed that the red mud used is non-porous or macroporous material. The red mud could give out alkaline liquor and ions in solution. The main compositions of red mud were Ca, Al, Si, Mg, etc. The red mud as seed crystal benefited the process of MAP crystallization. Under the conditions of initial phosphate concentration of 90 mg/L, N: Ma: P molar ratio of 1: 1: 1, without pH value controlling, stirring time of 30 min, stirring speed of 180 rpm, and precipitation time of 30 min, the 60~80 mesh of red mud and 8 g/L seed dosage were preferable conditions for phosphorus recovery. The reuse of red mud seed crystal had little effect on phosphorus recovery. The product could be an efficient slow release fertilizer.%对赤泥的理化性质进行了分析,探索了以赤泥为晶种磷酸铵镁(MAP)结晶法从模拟废水中回收磷工艺.结果表明,经过研磨的赤泥颗粒属无孔物质或者大孔物质;将赤泥溶于水时有碱液和离子溶出,赤泥的主要化学成分为Ca、Al、Si和Mg等元素.投加赤泥晶种有利于磷酸铵镁结晶的形成.在初始磷酸盐浓度为90 mg/L、N:Mg∶P摩尔比为1∶1∶1、不调节pH值、搅拌时间30 min、搅拌速度180 r/min、沉淀时间30 min条件下,赤泥粒径为60~80目、投加量为8 g/L时,以赤泥作为晶种诱导磷酸铵镁结晶回收磷的效果最优.干燥晶种的使用次数对磷酸根离子的回收率影响不大.所得结晶产物是一种很好的缓释肥.

  4. Selection of a mineral binder with potentialities for the stabilization/solidification of aluminum metal

    Science.gov (United States)

    Cau Dit Coumes, C.; Lambertin, D.; Lahalle, H.; Antonucci, P.; Cannes, C.; Delpech, S.

    2014-10-01

    In a strongly alkaline medium, such as that encountered in conventional cementitious materials based on Portland cement, aluminum metal is corroded, with continued production of hydrogen. In order to develop a mineral matrix having enhanced compatibility with aluminum, a literature review was first undertaken to identify binders capable of reducing the pore solution pH compared with Portland cement. An experimental study was then carried out to measure the hydrogen production resulting from corrosion of aluminum metal rods encapsulated in the different selected cement pastes. The best results were achieved with magnesium phosphate cement, which released very little hydrogen over the duration of the study. This production could be reduced still further by adding a corrosion inhibitor (lithium nitrate) to the mixing solution. Open circuit potential measurement and Electrochemical Impedance Spectroscopy of aluminum electrode encapsulated in two pastes based on Portland cement and magnesium phosphate cement showed different redox behaviors. In the Portland cement paste, the electrochemical data confirmed the corrosion of aluminum whereas this latter tended to a passive state in the magnesium phosphate binder.

  5. Performance Comparison of Steam-Based and Chromate Conversion Coatings on Aluminum Alloy 6060

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    In this study, oxide layers generated on aluminum alloy 6060(UNS A96060) using a steam-based process were compared with conventional chromate and chromate-phosphate conversion coatings. Chemical composition and microstructure of the conversion coatings were investigated and their corrosion perfor...

  6. Controlled crystallization of hydroxyapatite under hexadecylamine self-assembled monolayer

    Institute of Scientific and Technical Information of China (English)

    黄苏萍; 周科朝; 刘咏; 黄伯云

    2003-01-01

    The role of self-assembled monolayer in inducing the crystal growth was investigated by X-ray diffractions (XRD), and scanning electron microscopy (SEM). Results show that crystallization in the absence of monolayer results in a mixture of poorly crystallized calcium phosphates, including hydroxyapatite (HAP) and octacalcium phosphate (OCP), while the presence of self-assembled monolayer gives rise to oriented and well crystallized HAP crystals. Moreover, the HAP crystal grows very quickly under the self-assembled monolayer, whereas very little calcium phosphate crystals grow without the monolayer. It is rationalized that the hexadecylamine monolayer with high polarity and charged density leads to increase supersaturation and lower the interfacial energy, which attributes to the HAP crystals nucleation. On the other hand, the positive headgroups construct the ordered "recognized site" with distinct size and topology, which results in the oriented HAP crystals deposit.

  7. Phosphate control in dialysis.

    Science.gov (United States)

    Cupisti, Adamasco; Gallieni, Maurizio; Rizzo, Maria Antonietta; Caria, Stefania; Meola, Mario; Bolasco, Piergiorgio

    2013-10-04

    Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease-mineral and bone disorder (CKD-MBD) management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive-convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P) mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200-300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source. Finally, boiling should be the preferred cooking procedure, because it induces food demineralization, including phosphate loss. The integrated approach outlined in this article should be actively adapted as a therapeutic alliance by clinicians, dieticians, and patients for an effective control of phosphate balance in dialysis patients.

  8. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    Science.gov (United States)

    Bertram, F.; Zhang, F.; Evertsson, J.; Carlà, F.; Pan, J.; Messing, M. E.; Mikkelsen, A.; Nilsson, J.-O.; Lundgren, E.

    2014-07-01

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  9. In situ anodization of aluminum surfaces studied by x-ray reflectivity and electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, F., E-mail: florian.bertram@sljus.lu.se; Evertsson, J.; Messing, M. E.; Mikkelsen, A.; Lundgren, E. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Zhang, F.; Pan, J. [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas väg 51, 10044 Stockholm (Sweden); Carlà, F. [ESRF, B. P. 220, 38043 Grenoble (France); Nilsson, J.-O. [Sapa Technology, Kanalgatan 1, 612 31 Finspång (Sweden)

    2014-07-21

    We present results from the anodization of an aluminum single crystal [Al(111)] and an aluminum alloy [Al 6060] studied by in situ x-ray reflectivity, in situ electrochemical impedance spectroscopy and ex situ scanning electron microscopy. For both samples, a linear increase of oxide film thickness with increasing anodization voltage was found. However, the slope is much higher in the single crystal case, and the break-up of the oxide film grown on the alloy occurs at a lower anodization potential than on the single crystal. The reasons for these observations are discussed as are the measured differences observed for x-ray reflectivity and electrochemical impedance spectroscopy.

  10. Thermo-optical characteristics of DKDP crystal

    Science.gov (United States)

    Mironov, E. A.; Vyatkin, A. G.; Starobor, A. V.; Palashov, O. V.

    2017-03-01

    This letter presents a theoretical and experimental investigation of thermally induced polarization distortions occurring in an optical element made of c-cut tetragonal crystals. Two material characteristics were defined for this class of crystals: the optical anisotropy parameter ξ and the thermo-optical constant Q. These were generalized with analogous characteristics of elastically isotropic cubic crystals. The experimental investigation of these characteristics for popular tetragonal deuterated potassium dihydrogen phosphate (DKDP) crystal was carried out.

  11. Aluminum microstructures on anodic alumina for aluminum wiring boards.

    Science.gov (United States)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2010-03-01

    The paper demonstrates simple methods for the fabrication of aluminum microstructures on the anodic oxide film of aluminum. The aluminum sheets were first engraved (patterned) either by laser beam or by embossing to form deep grooves on the surface. One side of the sheet was then anodized, blocking the other side by using polymer mask to form the anodic alumina. Because of the lower thickness at the bottom part of the grooves, the part was completely anodized before the complete oxidation of the other parts. Such selectively complete anodizing resulted in the patterns of metallic aluminum on anodic alumina. Using the technique, we fabricated microstructures such as line patterns and a simple wiring circuit-board-like structure on the anodic alumina. The aluminum microstructures fabricated by the techniques were embedded in anodic alumina/aluminum sheet, and this technique is promising for applications in electronic packaging and devices.

  12. Aluminum Alloy 7050 Extrusions.

    Science.gov (United States)

    1977-03-01

    Artificial Aging Conditions 250 A-l Fatigue Crack Growth Data for C5A Extruded Panel, 7050-T7351X, L-T Orientation, R=0.1 254 A-2 Fatigue...cooldd aluminum and steel bottom blocks (Figure 2) were fabricated for use with this tooling. Metal was melted in a 10,000-lb capacity open- hearth ...time factor, effects of heating through this temperature range to the maximum artificial agirg temperature are additive. The solution of the

  13. Effect of silicate pretreatment, post-sealing and additives on corrosion resistance of phosphated galvanized steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sodium silicate (water glass) pretreatment before phosphating, silicate post-sealing after phosphating and adding silicate to a traditional phosphating solution were respectively carried out to obtain the improved phosphate coatings with high corrosion resistance and coverage on hot-dip galvanized(HDG) steel. The corrosion resistance, morphology and chemical composition of the coatings were investigated using neutral salt spray(NSS) tests, scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results show that pretreatment HDG steel with silicate solutions, phosphate coatings with finer crystals and higher coverage are formed and the corrosion resistance is enhanced. Adding silicate to a traditional phosphating solution, the surface morphology of the coatings is nearly unchanged. The corrosion resistance of the coatings is mainly dependent on phosphating time.Phosphating for a longer time (such as 5 min), the corrosion resistance, increasing with concentration of silicate, is improved significantly. Post-sealing the phosphated HDG steel with silicate solutions, the pores among the zinc phosphate crystals are sealed with the films containing Si, P, O and Zn and the continuous composite coatings are formed. The corrosion resistance of the composite coatings, related to the pH value, contents of hydrated gel of silica and Si2O52- and post-sealing time, is increased markedly. The improved coatings with optimal corrosion resistance are obtained for phosphating 5 min and post-sealing with 5 g/L silicate solution for 10 min.

  14. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres.

    Science.gov (United States)

    Cao, Feng; Li, Dongxu

    2010-03-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe(3+), which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 degrees C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  15. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  16. Structure of RNA 3'-phosphate cyclase bound to substrate RNA.

    Science.gov (United States)

    Desai, Kevin K; Bingman, Craig A; Cheng, Chin L; Phillips, George N; Raines, Ronald T

    2014-10-01

    RNA 3'-phosphate cyclase (RtcA) catalyzes the ATP-dependent cyclization of a 3'-phosphate to form a 2',3'-cyclic phosphate at RNA termini. Cyclization proceeds through RtcA-AMP and RNA(3')pp(5')A covalent intermediates, which are analogous to intermediates formed during catalysis by the tRNA ligase RtcB. Here we present a crystal structure of Pyrococcus horikoshii RtcA in complex with a 3'-phosphate terminated RNA and adenosine in the AMP-binding pocket. Our data reveal that RtcA recognizes substrate RNA by ensuring that the terminal 3'-phosphate makes a large contribution to RNA binding. Furthermore, the RNA 3'-phosphate is poised for in-line attack on the P-N bond that links the phosphorous atom of AMP to N(ε) of His307. Thus, we provide the first insights into RNA 3'-phosphate termini recognition and the mechanism of 3'-phosphate activation by an Rtc enzyme.

  17. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.

    Science.gov (United States)

    Xin, Renlong; Leng, Yang; Chen, Jiyong; Zhang, Qiyi

    2005-11-01

    Formation of calcium phosphate (Ca-P) on various bioceramic surfaces in simulated body fluid (SBF) and in rabbit muscle sites was investigated. The bioceramics were sintered porous solids, including bioglass, glass-ceramics, hydroxyapatite, alpha-tricalcium phosphate and beta-tricalcium phosphate. The ability of inducing Ca-P formation was compared among the bioceramics. The Ca-P crystal structures were identified using single-crystal diffraction patterns in transmission electron microscopy. The examination results show that ability of inducing Ca-P formation in SBF was similar among bioceramics, but considerably varied among bioceramics in vivo. Sintered beta-tricalcium phosphate exhibited a poor ability of inducing Ca-P formation both in vitro and in vivo. Octacalcium phosphate (OCP) formed on the surfaces of bioglass, A-W, hydroxyapatite and alpha-tricalcium phosphate in vitro and in vivo. Apatite formation in physiological environments cannot be confirmed as a common feature of bioceramics.

  18. Characterization, Leaching, and Filtration Testing for Tributyl Phosphate (TBP, Group 7) Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matthew K.; Billing, Justin M.; Blanchard, David L.; Buck, Edgar C.; Casella, Amanda J.; Casella, Andrew M.; Crum, J. V.; Daniel, Richard C.; Draper, Kathryn E.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.; Swoboda, Robert G.

    2009-03-09

    .A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. The tributyl phosphate sludge (TBP, Group 7) is the subject of this report. The Group 7 waste was anticipated to be high in phosphorus as well as aluminum in the form of gibbsite. Both are believed to exist in sufficient quantities in the Group 7 waste to address leaching behavior. Thus, the focus of the Group 7 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  19. Aluminum Carbothermic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Marshall J.

    2005-03-31

    This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry

  20. Extracting aluminum from dross tailings

    Science.gov (United States)

    Amer, A. M.

    2002-11-01

    Aluminum dross tailings, an industrial waste, from the Egyptian Aluminium Company (Egyptalum) was used to produce two types of alums: aluminum-sulfate alum [itAl2(SO4)3.12H2O] and ammonium-aluminum alum [ (NH 4)2SO4AL2(SO4)3.24H2O]. This was carried out in two processes. The first process is leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of solute sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purifi ed aluminum dross tailings thus produced. The effects of temperature, time of reaction, and acid concentration on leaching and extraction processes were studied. The product alums were analyzed using x-ray diffraction and thermal analysis techniques.

  1. Aggregation of Calcium Phosphate and Oxalate Phases in the Formation of Renal Stones

    OpenAIRE

    2014-01-01

    The majority of human kidney stones are comprised of multiple calcium oxalate monohydrate (COM) crystals encasing a calcium phosphate nucleus. The physiochemical mechanism of nephrolithiasis has not been well determined on the molecular level; this is crucial to the control and prevention of renal stone formation. This work investigates the role of phosphate ions on the formation of calcium oxalate stones; recent work has identified amorphous calcium phosphate (ACP) as a rapidly forming initi...

  2. Laser assisted foaming of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kathuria, Y.P. [Laser X Co. Ltd., Aichi (Japan)

    2001-09-01

    Recently aluminum foams have evoked considerable interest as an alternative material owing to their wide range of applications ranging from microelectronics, through automobiles to aerospace industries. The manufacturing techniques and characterization methods for aluminum foams require further development to achieve effective and economical use of this material. In this communication the authors demonstrate the feasibility of unidirectional and localized expansion of the aluminum foam using the Nd-YAG/CO{sub 2} laser and powder metallurgy. (orig.)

  3. Phosphate control in dialysis

    Directory of Open Access Journals (Sweden)

    Cupisti A

    2013-10-01

    Full Text Available Adamasco Cupisti,1 Maurizio Gallieni,2 Maria Antonietta Rizzo,2 Stefania Caria,3 Mario Meola,4 Piergiorgio Bolasco31Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; 2Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, Milan, Italy; 3Territorial Department of Nephrology and Dialysis, ASL Cagliari, Italy; 4Sant'Anna School of Advanced Studies, University of Pisa, Pisa, ItalyAbstract: Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source

  4. Effect of Phosphate, Fluoride, and Nitrate on Gibbsite Dissolution Rate and Solubility

    Energy Technology Data Exchange (ETDEWEB)

    Herting, Daniel L. [Washington River Protection Solutions LLC (United States)

    2014-01-29

    Laboratory tests have been completed with simulated tank waste samples to investigate the effects of phosphate, fluoride, and nitrate on the dissolution rate and equilibrium solubility of gibbsite in sodium hydroxide solution at 22 and 40{degrees}C. Results are compared to relevant literature data and to computer model predictions. The presence of sodium nitrate (3 M) caused a reduction in the rate of gibbsite dissolution in NaOH, but a modest increase in the equilibrium solubility of aluminum. The increase in solubility was not as large, though, as the increase predicted by the computer model. The presence of phosphate, either as sodium phosphate or sodium fluoride phosphate, had a negligible effect on the rate of gibbsite dissolution, but caused a slight increase in aluminum solubility. The magnitude of the increased solubility, relative to the increase caused by sodium nitrate, suggests that the increase is due to ionic strength (or water activity) effects, rather than being associated with the specific ion involved. The computer model predicted that phosphate would cause a slight decrease in aluminum solubility, suggesting some Al-PO4 interaction. No evidence was found of such an interaction.

  5. An introduction to computational crystallography: the relationship between aluminum-based spinel structures and their morphologies

    Institute of Scientific and Technical Information of China (English)

    施尔畏; 元如林; 陈之战; 郑燕青; 童怀水; 李汶军; 仲维卓

    2003-01-01

    The computational crystallography is proposed. Its basic concept and research method are systematically introduced, with aluminum-based spinel (ABS) as an example, through (ⅰ) selecting basic crystal structural unit, (ⅱ) determining the mathematical expression of crystal structure, (ⅲ) computing the stability energy of growth unit and finding out which is (are) favorable one(s), and (ⅳ) describing the formation process of crystal morphology. The morphology of ABS deduced from the computation is in excellent agreement with that from hydrothermal experiments.

  6. Aluminum decreases the glutathione regeneration by the inhibition of NADP-isocitrate dehydrogenase in mitochondria.

    Science.gov (United States)

    Murakami, Keiko; Yoshino, Masataka

    2004-12-15

    Effect of aluminum on the NADPH supply and glutathione regeneration in mitochondria was analyzed. Reduced glutathione acted as a principal scavenger of reactive oxygen species in mitochondria. Aluminum inhibited the regeneration of glutathione from the oxidized form, and the effect was due to the inhibition of NADP-isocitrate dehydrogenase the only enzyme supplying NADPH in mitochondria. In cytosol, aluminum inhibited the glutathione regeneration dependent on NADPH supply by malic enzyme and NADP-isocitrate dehydrogenase, but did not affect the glucose 6-phosphate dehydrogenase dependent glutathione formation. Aluminum can cause oxidative damage on cellular biological processes by inhibiting glutathione regeneration through the inhibition of NADPH supply in mitochondria, but only a little inhibitory effect on the glutathione generation in cytosol.

  7. Dynamic Property of Aluminum Foam

    Directory of Open Access Journals (Sweden)

    S Irie

    2016-09-01

    Full Text Available Aluminum in the foam of metallic foam is in the early stage of industrialization. It has various beneficial characteristics such as being lightweight, heat resistance, and an electromagnetic radiation shield. Therefore, the use of aluminum foam is expected to reduce the weight of equipment for transportation such as the car, trains, and aircraft. The use as energy absorption material is examined. Moreover aluminum foam can absorb the shock wave, and decrease the shock of the blast. Many researchers have reported about aluminum foam, but only a little information is available for high strain rates (103 s-1 or more. Therefore, the aluminum foam at high strain rates hasn't been not characterized yet. The purpose in this research is to evaluate the behavior of the aluminum form in the high-strain rate. In this paper, the collision test on high strain rate of the aluminum foam is investigated. After experiment, the numerical analysis model will be made. In this experiment, a powder gun was used to generate the high strain rate in aluminum foam. In-situ PVDF gauges were used for measuring pressure and the length of effectiveness that acts on the aluminum foam. The aluminum foam was accelerated to about 400 m/s from deflagration of single component powder and the foam were made to collide with the PVDF gauge. The high strain rate deformation of the aluminum form was measured at two collision speeds. As for the result, pressure was observed to go up rapidly when about 70% was compressed. From this result, it is understood that complete crush of the cell is caused when the relative volume is about 70%. In the next stage, this data will be compared with the numerical analysis.

  8. Neurofibrillary pathology and aluminum in Alzheimer's disease

    OpenAIRE

    Shin, R. W.; Lee, V.M.Y.; Trojanowski, J.Q.

    1995-01-01

    Since the first reports of aluminum-induced neurofibrillary degeneration in experimental animals, extensive studies have been performed to clarify the role played by aluminum in the pathogenesis of Alzheimer's disease (AD). Additional evidence implicating aluminum in AD includes elevated levels of aluminum in the AD brain, epidemiological data linking aluminum exposure to AD, and interactions between aluminum and protein components in the pathological lesions o...

  9. Microstructure and properties of vacuum counter-pressure cast aluminum alloy

    OpenAIRE

    YAN Qing-song; Yu, Huan; WEI Bo-kang

    2006-01-01

    The microstructure and properties of vacuum counter-pressure cast aluminum alloy were studied. Results indicated that under the condition of vacuum counter-pressure, liquid melts fill mould cavity under the vacuum and crystallize under high pressure which have very good effect on nucleation and solidification feeding. Compared with gravity casting, the microstructure of vacuum counter-pressure cast aluminum alloy is much finer and more uniformly distributed. Mechanical properties of vacuum co...

  10. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  11. Substitution of lithium for magnesium, zinc, and aluminum in Li{sub 15}Si{sub 4}: crystal structures, thermodynamic properties, as well as {sup 6}Li and {sup 7}Li NMR spectroscopy of Li{sub 15}Si{sub 4} and Li{sub 15-x}M{sub x}Si{sub 4} (M=Mg, Zn, and Al)

    Energy Technology Data Exchange (ETDEWEB)

    Baran, Volodymyr; Faessler, Thomas F. [Department Chemie, Technische Universitaet Muenchen, Garching (Germany); Wuellen, Leo van [Department of Physics, University of Augsburg (Germany)

    2016-05-04

    An investigation into the substitution effects in Li{sub 15}Si{sub 4}, which is discussed as metastable phase that forms during electrochemical charging and discharging cycles in silicon anode materials, is presented. The novel partial substitution of lithium by magnesium and zinc is reported and the results are compared to those obtained for aluminum substitution. The new lithium silicides Li{sub 14}MgSi{sub 4} (1) and Li{sub 14.05}Zn{sub 0.95}Si{sub 4} (2) were synthesized by high-temperature reactions and their crystal structures were determined from single-crystal data. The magnetic properties and thermodynamic stabilities were investigated and compared with those of Li{sub 14.25}Al{sub 0.75}Si{sub 4} (3). The substitution of a small amount of Li in metastable Li{sub 15}Si{sub 4} for more electron-rich metals, such as Mg, Zn, or Al, leads to a vast increase in the thermodynamic stability of the resulting ternary compounds{sub .} The {sup 6,7}Li NMR chemical shift and spin relaxation time T{sub 1}-NMR spectroscopy behavior at low temperatures indicate an increasing contribution of the conduction electrons to these NMR spectroscopy parameters in the series for 1-3. However, the increasing thermal stability of the new ternary phases is accompanied by a decrease in Li diffusivity, with 2 exhibiting the lowest activation energy for Li mobility with values of 56, 60, and 62 kJ mol{sup -1} for 2, Li{sub 14.25}Al{sub 0.75}Si{sub 14}, and 1, respectively. The influence of the metastable property of Li{sub 15}Si{sub 4} on NMR spectroscopy experiments is highlighted. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Upconversion luminescence in Yb 3+-doped yttrium aluminum garnets

    Science.gov (United States)

    Xu, Xiaodong; Zhao, Zhiwei; Song, Pingxin; Jiang, Benxue; Zhou, Guoqing; Xu, Jun; Deng, Peizhen; Bourdet, Gilbert; Christophe Chanteloup, Jean; Zou, Ji-Ping; Fulop, Annabelle

    2005-03-01

    In this paper, we present results on upconversion luminescence performed on Yb 3+-doped yttrium aluminum garnets under 940 nm excitation. The upconversion luminescence was ascribed to Yb 3+ cooperative luminescence and the presence of rare earth impurity ions. The cooperative luminescence spectra as a function of Yb concentration were measured and the emission intensity variation with Yb concentration was discussed. Yb 3+ energy migration quenched the cooperative luminescence of Yb:YAG crystals with doping level over 15 at%.

  13. Low temperature aluminum soldering analysis

    Energy Technology Data Exchange (ETDEWEB)

    Peterkort, W.G.

    1976-09-01

    The investigation of low temperature aluminum soldering included the collection of spread factor and dihedral angle data for several solder alloys and a study of flux effects on aluminum. Selected solders were subjected to environmental tests and evaluated on the basis of tensile strength, joint resistance, visual appearance, and metallurgical analysis. A production line method for determining adequate flux removal was developed.

  14. Ballistic Evaluation of 2060 Aluminum

    Science.gov (United States)

    2016-05-24

    experiments in Experimental Facilities (EFs) 108 and 106, as well as John Hogan of ARL/AMB, Hugh Walter of Bowhead Science and Technology, and David Handshoe...new aluminum (Al)-based monocoque armored-vehicle hulls such as those of the M2 Bradley Infantry Fighting Vehicles. Also in 2012 the Aluminum

  15. Aluminum Nanoholes for Optical Biosensing

    Directory of Open Access Journals (Sweden)

    Carlos Angulo Barrios

    2015-07-01

    Full Text Available Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (biosensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (biosensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  16. On the mineral characteristics and geochemistry of the Florida phosphate of Four Corners and Hardee County mines

    Science.gov (United States)

    Baghdady, Ashraf R.; Howari, Fares M.; Al-Wakeel, Mohamed I.

    2016-08-01

    The Florida phosphate deposits in Four Corners and Hardee County mines are composed mainly of phosphate minerals and quartz in addition to subordinate proportions of feldspars, dolomite, calcite, gypsum, kaolinite, attapulgite and montmorillonite. These phosphorites contain three structurally different types of mudclasts: massive mudclasts, mudclasts with concentric structure and mudclasts consisting of agglomerates of apatite microparticles. The latter are represented by particles resembling phosphatized fossil bacteria associated with microbial filaments, and hollow apatite particles having surfacial coatings and connected to microbial filaments. The Florida phosphate particles are reworked and vary in mineral composition, color and shape. They are composed of a mixture of well-crystalline species including carbonate fluorapatite (francolite), carbonate apatite and fluorapatite. The color variation of the phosphate particles is related to difference in mineral composition, extent of diagenetic effects and reworking. The light-colored mudclasts are characterized by the presence of carbonate apatite and aluminum hydroxide phosphate minerals, whereas the dark mudclasts are rich in iron aluminum hydroxide phosphate minerals. The Florida phosphorites are suggested to be formed partially by authigenetic precipitation, replacement of the sea floor carbonate and diatomite, and microbial processes. With respect to elemental geochemistry, the analyzed particles contain small percentages of sulfur and iron which are related to the occurrence of pyrite. Traces of silica and alumina are recorded which may be attributed to the diagenetic. Some of the tested particles are relatively rich in phosphorous, fluorine, calcium, and magnesium, while poor in silicon, potassium and sulfur. Whereas, the bioclasts (especially teeth) are relatively rich in calcium, phosphorous and fluorine while poor in silicon, aluminum, magnesium and potassium. Hence, the microchemical analyses revealed

  17. Electrodeposition of aluminum and aluminum-magnesium alloys at room temperature

    Institute of Scientific and Technical Information of China (English)

    阚洪敏; 祝跚珊; 张宁; 王晓阳

    2015-01-01

    Electrodeposition of aluminum from benzene-tetrahydrofuran−AlCl3−LiAlH4 was studied at room temperature. Galvanostatic electrolysis was used to investigate the effect of various parameters on deposit morphology and crystal size, including current density, temperature, molar ratio of benzene/tetrahydrofuran and stirring speed. The deposit microstructure was adjusted by changing the parameters, and the optimum operating conditions were determined. Dense, bright and adherent aluminum coatings were obtained over a wide range of current densities (10−25 mA/cm2), molar ratio of benzene and tetrahydrofuran (4:1 to 7:8) and stirring speeds (200−500 r/min). Smaller grain sizes and well-adhered deposits were obtained at lower temperatures. Aluminum-magnesium alloys could potentially be used as hydrogen storage materials. A novel method for Al−Mg deposition was proposed by using pure Mg anodes in the organic solvents system benzene-tetrahydrofuran−AlCl3−LiAlH4. XRD shows that the aluminum−magnesium alloys are mainly Al3Mg2 and Al12Mg17.

  18. Crystal structure of a sodium, zinc and iron(III-based non-stoichiometric phosphate with an alluaudite-like structure: Na1.67Zn1.67Fe1.33(PO43

    Directory of Open Access Journals (Sweden)

    Jamal Khmiyas

    2015-06-01

    Full Text Available The new title compound, disodium dizinc iron(III tris(phosphate, Na1.67Zn1.67Fe1.33(PO43, which belongs to the alluaudite family, has been synthesized by solid-state reactions. In this structure, all atoms are in general positions except for four, which are located on special positions of the C2/c space group. This structure is characterized by cation substitutional disorder at two sites, one situated on the special position 4e (2 and the other on the general position 8f. The 4e site is partially occupied by Na+ [0.332 (3], whereas the 8f site is entirely filled by a mixture of Fe and Zn. The full-occupancy sodium and zinc atoms are located at the Wyckoff positions on the inversion center 4a (-1 and on the twofold rotation axis 4e, respectively. Refinement of the occupancy ratios, bond-valence analysis and the electrical neutrality requirement of the structure lead to the given composition for the title compound. The three-dimensional framework of this structure consists of kinked chains of edge-sharing octahedra stacked parallel to [10-1]. The chains are formed by a succession of trimers based on [ZnO6] octahedra and the mixed-cation FeIII/ZnII [(Fe/ZnO6] octahedra [FeIII:ZnIII ratio 0.668 (3/0.332 (3]. Continuous chains are held together by PO4 phosphate groups, forming polyhedral sheets perpendicular to [010]. The stacked sheets delimit two types of tunnels parallel to the c axis in which the sodium cations are located. Each Na+ cation is coordinated by eight O atoms. The disorder of Na in the tunnel might presage ionic mobility for this material.

  19. Wettability of Aluminum on Alumina

    Science.gov (United States)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  20. Hot Extrusion of Aluminum Chips

    Science.gov (United States)

    Tekkaya, A. Erman; Güley, Volkan; Haase, Matthias; Jäger, Andreas

    The process of hot extrusion is a promising approach for the direct recycling of aluminum machining chips to aluminum profiles. The presented technology is capable of saving energy, as remelting of aluminum chips can be avoided. Depending on the deformation route and process parameters, the chip-based aluminum extradates showed mechanical properties comparable or superior to cast aluminum billets extruded under the same conditions. Using different metal flow schemes utilizing different extrusion dies the mechanical properties of the profiles extruded from chips can be improved. The energy absorption capacity of the profiles the rectangular hollow profiles extruded from chips and as-cast billets were analyzed using the drop hammer test set-up. The formability of the profiles extruded from chips and as-cast material were compared using tube bending tests in a three-roller-bending machine.

  1. Hydrothermal Synthesis, Crystal Structure and Fluorescent Property of a Novel Mo(Ⅴ) Phosphate [Zn(Mov6P4O31H10)2(C4H14N3)2]·2C4H13N3·8H2O

    Institute of Scientific and Technical Information of China (English)

    WEI Chun-Xia; CHEN Jian-Xin; ZHANG Zhi-Chun; LAN Ting-Yan; HUANG Yuan-Biao; LI Zhong-Shui; ZHANG Wen-Jie

    2006-01-01

    A new molybdenum phosphate [Zn(Mov6P4O31H10)2(C4H14N3)2]·2C4H13N3·8H2O 1 (C4H13N3 = diethylenetriamine) has been synthesized under hydrothermal condition. Single-crystal X-ray diffraction reveals that compound 1 crystallizes in the monoclinic, space group P21/n, a =13.1679(3), b = 22.1240(6), c = 13.6146(3) (A), β = 103.4847(7)°, V = 3856.95(16) (A)3,C16H90N12O70P8ZnMo12, Mr = 3035.41, Z = 2, Dc = 2.614 g/cm3, μ = 2.483 mm-1, F(000) = 2968, S = 1.014, the final R = 0.0196 and wR = 0.0506 for 7486 observed reflections (I > 2σ(Ⅰ)). Compound 1 consists of two identical rings of six edge-sharing MoO6 octahedra interconnected by one ZnO6 octahedron, whereas the PO4 tetrahedra which share their apices with the MoO6 octahedra are only located on one side of each Mo6 ring. The 2-charge of polyanion [Zn(Mov6P4O31H10)2]2- unit is compensated in the crystal by two mono-protonated diethylenetriamines (C4H14N3)+. By hydrogen bonding interactions the polyanion of compound 1 is interconnected to form pseudo three dimensional molybdophosphate. Other characterizations by elemental analyses, IR spectrum and fluorescent spectrum are also described.

  2. Computer simulations of laser-induced melting of aluminum

    Science.gov (United States)

    Tang, Hong; Bai, Mingze; Dou, Yusheng; Ran, Qi; Lo, Glenn V.

    2013-04-01

    Laser-induced solid-to-liquid phase transitions in 100 nm aluminum film were simulated using a hybrid model that combines molecular dynamics (MD) with a continuum description of the laser excitation and a two-temperature method (TTM) to model the relaxation of conduction band electrons. When the laser fluence provides more energy than needed for a complete melting of the film, the phase transition is characterized by an ultrafast collapse of the crystal structure within 2-3 ps. Otherwise, the transition involves a homogeneous nucleation and growth of liquid zones inside the crystal and a heterogeneous propagation of transition fronts from the external surfaces or nucleated liquid zones.

  3. Research on Uncrystallized Phosphating Film

    Institute of Scientific and Technical Information of China (English)

    TANG En-jun; XING Ze-kuan

    2004-01-01

    This article excogitated a kind of uncrystallized phosphating film bears wearing capacity goodly by adding Ca2 + in normal phosphating solution. This technology is very useful to protect steel parts working in oil from abrasion.

  4. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition in which ...

  5. Thermally highly stable amorphous zinc phosphate intermediates during the formation of zinc phosphate hydrate.

    Science.gov (United States)

    Bach, Sven; Celinski, Vinicius R; Dietzsch, Michael; Panthöfer, Martin; Bienert, Ralf; Emmerling, Franziska; Schmedt auf der Günne, Jörn; Tremel, Wolfgang

    2015-02-18

    The mechanisms by which amorphous intermediates transform into crystalline materials are still poorly understood. Here we attempt to illuminate the formation of an amorphous precursor by investigating the crystallization process of zinc phosphate hydrate. This work shows that amorphous zinc phosphate (AZP) nanoparticles precipitate from aqueous solutions prior to the crystalline hopeite phase at low concentrations and in the absence of additives at room temperature. AZP nanoparticles are thermally stable against crystallization even at 400 °C (resulting in a high temperature AZP), but they crystallize rapidly in the presence of water if the reaction is not interrupted. X-ray powder diffraction with high-energy synchrotron radiation, scanning and transmission electron microscopy, selected area electron diffraction, and small-angle X-ray scattering showed the particle size (≈20 nm) and confirmed the noncrystallinity of the nanoparticle intermediates. Energy dispersive X-ray, infrared, and Raman spectroscopy, inductively coupled plasma mass spectrometry, and optical emission spectrometry as well as thermal analysis were used for further compositional characterization of the as synthesized nanomaterial. (1)H solid-state NMR allowed the quantification of the hydrogen content, while an analysis of (31)P{(1)H} C rotational echo double resonance spectra permitted a dynamic and structural analysis of the crystallization pathway to hopeite.

  6. Hualu Aluminum Will Construct Large Coal-Power-Aluminum Aluminum Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The reporter learned from relevant departments of Baiyin City that in order to further push forward industrial upgrading,fulfill expansion and consolidation of the enterprise,Gansu Hualu Aluminum Co.,Ltd(Hualu Aluminum)will implement Out-Of-City-Into-Park project,

  7. Practical application of phosphate treatment

    Energy Technology Data Exchange (ETDEWEB)

    Caravaggio, Mike [Integrated Chemistry Solutions Pte. Ltd., Singapore (Singapore)

    2011-05-15

    Phosphate treatment has been applied to subcritical fossil power boilers for well over half a century, as well as being used frequently in heat recovery steam generators. The use of this treatment has evolved over the decades, with the operating sodium to phosphate ratio being the defining factor for the evolution of the treatment. The evolving prescribed sodium to phosphate ratios have been based on the scientific research results and operating experience available at the time, and in the latest EPRI Guidelines issued in 2004 are set at a minimum sodium to phosphate ratio of 3:1, with provision to add up to 1 mg . L{sup -1} of additional free caustic. The ratio limitation has always been set in an effort to minimize the potential for corrosion caused by the potential misapplication of the treatment. Typically, the operating ranges for phosphate treatments are depicted on an x-y plot with the x-axis the phosphate concentration and the y-axis the corrected pH value based on the maximum sodium to phosphate ratio allowed for by the treatment. These operating range plots define the theoretical operating range of a phosphate treatment. This paper briefly discusses the origin of the current phosphate control limits in the EPRI Guidelines, discusses phosphate chemistry, outlines the limitations involved when applying a phosphate treatment and provides additional practical guidance for overcoming these limitations and minimizing the potential for corrosion induced by the incorrect application of a phosphate treatment. (orig.)

  8. Grain fragmentation in ultrasonic-assisted TIG weld of pure aluminum.

    Science.gov (United States)

    Chen, Qihao; Lin, Sanbao; Yang, Chunli; Fan, Chenglei; Ge, Hongliang

    2017-11-01

    Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain

  9. Microstructure and property of zinc phosphate coating on die-casting magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    LI Guang-yu; LIAN Jian-she; NIU Li-yuan; JIANG Zhong-hao

    2006-01-01

    A surface treatment method was described, which can form a uniform and dense phosphate conversion coating on the die -casting magnesium alloy AZ91D in a non-chromate and non-nitrite bath. The coating consists of Zn3(PO4)2-4H2O, Zn, AlPO4 and MgZn2(PO4)2 analyzed by XRD. The SEM results show that the microstructure of the zinc phosphate coating transfers from flower-like to slab-like crystals with the increase of immersion time of magnesium alloy samples in the phosphating bath. The zinc phosphate coating formed in the bath with immersion time of 1 min is denser because metallic Zn and insoluble phosphate crystals co-deposit on the magnesium alloy surface and the growth of the crystals are restricted by each others. The zinc phosphate coating on the magnesium alloy is used as the base layer for further cataphoric and powder paintings. The cataphoric painting on AZ91D alloy based on phosphate coating has similar adhesion and corrosion-resistance to that based on the chromate conversion coating. But for powder painting, the former exhibits better adhesion property than the latter, due to the uneven microstructure and the enough thickness of the phosphate coating.

  10. Morphology Changing at Incipient Crystallization Condition

    Science.gov (United States)

    Toshima, Takeshi; Hamai, Ryo; Fujita, Saya; Takemura, Yuka; Takamatsu, Saori; Tafu, Masamoto

    2015-04-01

    Brushite (Dicalcium phosphate dihydrate, (DCPD), CaHPO4·2H2O) is one of key components in calcium phosphate system due to wide attractive material not only as bioceramics but also environmental materials. Morphology of DCPD crystals is important factor when one uses its functionality with chemical reaction; because its surface crystal face, shape and size rule the chemical reactivity, responsiveness. Moreover, physical properties are also changed the morphology; such as cohesion, dispersiveness, permeability and so on. If one uses DCPD crystals as environmental renovation materials to catch the fluoride ions, their shape require 020 crystal surfaces; which usually restricts their shape as plate-like structure. After the chemical reaction, the shape of sludge is not good for handling due to their agglutinate property. Therefore searching an effective parameter and developing the method to control the morphology of DCPD crystals is required. In past, we reported that initial concentration and pH value of starting solution, prepared by dissolving calcium nitrate, Ca(NO3)2 and ammonium dihydrogen phosphate, NH4H2PO4, changes the morphology of DCPD crystals and phase diagram of morphology of DCPD crystal depend on those parameter. The DCPD crystallization shows unique behaviour; products obtained higher initial concentration form single crystal-like structure and under lower condition, they form agglomerate crystal-like structure. These results contradict usual crystallization. Here we report that the effect of mixing process of two solutions. The morphology of DCPD crystals is changed from plate structure to petal structure by the arrangement. Our result suggests that morphology of DCPD crystals strongly depends at incipient crystallization condition and growth form is controllable by setting initial crystallization condition.

  11. Spray Rolling Aluminum Strip

    Energy Technology Data Exchange (ETDEWEB)

    Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

    2006-05-10

    Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

  12. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  13. The role of brushite and octacalcium phosphate in apatite formation.

    Science.gov (United States)

    Johnsson, M S; Nancollas, G H

    1992-01-01

    Studies of apatite mineral formation are complicated by the possibility of forming several calcium phosphate phases. The least soluble, hydroxyapatite (HAP), is preferentially formed under neutral or basic conditions. In more acidic solutions phases such as dicalcium phosphate dihydrate (Brushite, DCPD) and octacalcium phosphate (OCP) are often found. Even under ideal HAP precipitation conditions the precipitates are generally nonstoichiometric, suggesting the formation of calcium-deficient apatites. Both DCPD and OCP have been implicated as possible precursors to the formation of apatite. This may occur by the initial precipitation of DCPD and/or OCP followed by transformation to a more apatitic phase. Although DCPD and OCP are often detected during in vitro crystallization, in vivo studies of bone formation rarely show the presence of these acidic calcium phosphate phases. In the latter case the situation is more complicated, since a large number of ions and molecules are present that can be incorporated into the crystal lattice or adsorbed at the crystallite surfaces. In biological apatite, DCPD and OCP are usually detected only during pathological calcification where the pH is often relatively low. In normal in vivo calcifications these phases have not been found, suggesting the involvement of other precursors or the formation of an initial amorphous calcium phosphate phase (ACP) followed by transformation to apatite.

  14. Subsurface Aluminum Nitride Formation in Iron-Aluminum Alloys

    Science.gov (United States)

    Bott, June H.

    Transformation-induced plasticity (TRIP) steels containing higher amounts of aluminum than conventional steels are ideal for structural automotive parts due to their mechanical properties. However, the aluminum tends to react with any processing environment at high temperatures and therefore presents significant challenges during manufacturing. One such challenge occurs during secondary cooling, reheating, and hot-rolling and is caused by a reaction with nitrogen-rich atmospheres wherein subsurface aluminum nitride forms in addition to internal and external oxides. The nitrides are detrimental to mechanical properties and cause surface cracks. It is important to understand how these nitrides and oxides form and their consequences for the quality of steel products. This study looks at model iron-aluminum (up to 8 wt.% aluminum) alloys and uses confocal laser scanning microscopy, x-ray diffraction, scanning electron microscopy with energy dispersive x-ray spectrometry, and transmission electron microscopy to study the effect of various conditions on the growth and development of these precipitates in a subsurface oxygen-depleted region. By using model alloys and controlling the experimental atmosphere, this study is able to understand some of the more fundamental materials science behind aluminum nitride formation in aluminum-rich iron alloys and the relationship between internal nitride and oxide precipitation and external oxide scale morphology and composition. The iron-aluminum alloys were heated in N2 atmospheres containing oxygen impurities. It was found that nitrides formed when bulk aluminum content was below 8 wt.% when oxygen was sufficiently depleted due to the internal oxidation. In the samples containing 1 wt.% aluminum, the depth of the internal oxide and nitride zones were in agreement with a diffusion-based model. Increasing aluminum content to 3 and 5 wt% had the effects of modifying the surface-oxide scale composition and increasing its continuity

  15. Rapidly solidified aluminum alloy powder

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.S.; Chun, B.S.; Won, C.W.; Lee, B.S.; Kim, H.K.; Ryu, M. [Chungnam National Univ., Taejon (Korea, Republic of); Antolovich, S.D. [Washington State Univ., Pullman, WA (United States)

    1997-01-01

    Miniaturization and weight reduction are becoming increasingly important in the fabrication of vehicles. In particular, aluminum-silicon alloys are the logical choice for automotive parts such as pistons and cylinders liners because of their excellent wear resistance and low coefficient of thermal expansion. However, it is difficult to produce aluminum-silicon alloys with silicon contents greater than 20 wt% via ingot metallurgy, because strength is drastically reduced by the coarsening of primary silicon particles. This article describes an investigation of rapid solidification powder metallurgy techniques developed in an effort to prevent coarsening of the primary silicon particles in aluminum-silicon alloys.

  16. ATR-FTIR investigation on the complexation of myo-inositol hexaphosphate with aluminum hydroxide.

    Science.gov (United States)

    Guan, Xiao-Hong; Shang, Chii; Zhu, Jun; Chen, Guang-Hao

    2006-01-15

    The adsorption isotherm of and the pH effect on the adsorption of myo-inositol hexaphosphate (myo-IP6) on amorphous aluminum hydroxide was investigated. It was found that the adsorption isotherm of myo-IP6 on aluminum hydroxide could be well fitted with the Freundlich isotherm. The amount of myo-IP6 adsorbed remained almost constant in the range of pH 4.0 to 7.0, but it decreased considerably as the initial pH was over 7. The adsorption of myo-IP6 resulted in an increase in the pH level due to the release of OH(-) ions, which suggested that the adsorption of myo-IP6 on aluminum hydroxide was caused by a ligand exchange reaction. ATR-FTIR analysis of myo-IP6 in solution and adsorbed on aluminum hydroxide at different pH were performed. The ATR-FTIR investigation indicated that myo-IP6 was adsorbed onto aluminum hydroxide by forming inner-sphere complexes and adsorption facilitated the deprotonation of phosphate groups. The asymmetric vibration of the PO bond in AlPO(-)(3) appearing at a lower frequency than that in the terminal HPO(-)(3) indicated that Al bound to the O atom not as strongly as the H atom did. The ATR-FTIR investigation and theoretical calculation (with the Gaussian 03 program) revealed that three of the six phosphate groups in myo-IP6 molecules were bound to aluminum hydroxide while the other three remained free when myo-IP6 was adsorbed on aluminum hydroxide.

  17. Biomediated continuous release phosphate fertilizer

    Science.gov (United States)

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  18. Frozen delivery of brushite calcium phosphate cements.

    Science.gov (United States)

    Grover, Liam M; Hofmann, Michael P; Gbureck, Uwe; Kumarasami, Balamurgan; Barralet, Jake E

    2008-11-01

    Calcium phosphate cements typically harden following the combination of a calcium phosphate powder component with an aqueous solution to form a matrix consisting of hydroxyapatite or brushite. The mixing process can be very important to the mechanical properties exhibited by cement materials and consequently when used clinically, since they are usually hand-mixed their mechanical properties are prone to operator-induced variability. It is possible to reduce this variability by pre-mixing the cement, e.g. by replacing the aqueous liquid component with non-reactive glycerol. Here, for the first time, we report the formation of three different pre-mixed brushite cement formulations formed by freezing the cement pastes following combination of the powder and liquid components. When frozen and stored at -80 degrees C or less, significant degradation in compression strength did not occur for the duration of the study (28 days). Interestingly, in the case of the brushite cement formed from the combination of beta-tricalcium phosphate with 2 M orthophosphoric acid solution, freezing the cement paste had the effect of increasing mean compressive strength fivefold (from 4 to 20 MPa). The increase in compression strength was accompanied by a reduction in the setting rate of the cement. As no differences in porosity or degree of reaction were observed, strength improvement was attributed to a modification of crystal morphology and a reduction in damage caused to the cement matrix during manipulation.

  19. Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-jun; ZHOU Dong-mei; SUN Rui-juan

    2005-01-01

    Glyphosate (GPS) is a non-selective, post-mergence herbicide that is widely used throughout the world. Due to the similar molecular structures of glyphosate and phosphate, adsorption of glyphosate on soil is easily affected by coexisting phosphate, especially when phosphate is applied at a significant rate in farmland. This paper studied the effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils including two variable charge soils and one permanent charge soil. The results indicated that Freundlich equations used to simulate glyphosate adsorption isotherms gave high correlation coefficients(0.990-0.998) with K values of 2751, 2451 and 166 for the zhuanhong soil(ZH soil, Laterite), red soil(RS, Udic Ferrisol) and Wushan paddy soil(WS soil, Anthrosol),respectively. The more the soil iron and aluminum oxides and clay contained, the more glyphosate adsorbed. The presence of phosphate significantly decreased the adsorption of glyphosate to the soils by competing with glyphosate for adsorption sites of soils. Meanwhile, the effects of phosphate on adsorption of glyphosate on the two variable charge soils were more significant than that on the permanent charge soil. When phosphate and glyphosate were added in the soils in different orders, the adsorption quantities of glyphosate on the soils were different, which followed GPS-soil>GPS-P-soil = GPS-soil-P > P-soil-GPS, meaning a complex interaction occurred among glyphosate,phosphate and the soils.

  20. Parenteral drug products containing aluminum as an ingredient or a contaminant: Response to Food and Drug Administration notice of intent and request for information. ASCN/A. S. P. E. N. Working Group on Standards for Aluminum Content of Parenteral Nutrition Solutions

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    Aluminum remains a significant contaminant of total parenteral nutrition (TPN) solutions and may be elevated in bone, urine, and plasma of infants receiving TPN. Aluminum accumulation in tissues of uremic patients and adult TPN patients has been associated with low-turnover bone disease. Furthermore, aluminum has also been linked with encephalopathy and anemia in uremic patients and with hepatic cholestasis in experimental animals. Because of the toxic effects of aluminum, the Food and Drug Administration (FDA) recently published a notice of intent to set an upper limit of 25 micrograms/L for aluminum in large-volume parenterals and to require manufacturers of small-volume parenterals, such as calcium and phosphate salts, to measure aluminum content and note this content on the package label. The ASCN/A.S.P.E.N. Working Group on Standards for Aluminum Content of Parenteral Nutrition Solutions supports these intentions and further urges the FDA to require that cumulative aluminum intake in terms of safe, unsafe, and toxic quantities of aluminum per kilogram be made known to physicians and pharmacists preparing the TPN solutions, to ensure that manufacturers use appropriate control procedures in aluminum measurements, and to employ a standard unit of aluminum measurement.

  1. Microbial mineralization of struvite: a promising process to overcome phosphate sequestering crisis.

    Science.gov (United States)

    Sinha, Arvind; Singh, Amit; Kumar, Sumit; Khare, Sunil Kumar; Ramanan, Arunachalam

    2014-05-01

    Due to extensive exploitation of non-renewable phosphate minerals, their natural reserves will exhaust very soon. This necessitates looking for alternatives and an efficient methodology through which indispensable phosphorus can be harvested back. The current study was undertaken to explore the potential of a metallophilic bacterium Enterobacter sp. EMB19 for the recovery of phosphorus as phosphate rich mineral. A very low phosphate concentration strategy was adopted. The process led to the mineralization of phosphorus as homogeneous struvite crystals. For each gram of Epsom salt added, the cells effectively mineralized about 20% of the salt into struvite. The effect of different inorganic sources, culture profile and plausible mechanism involved in crystal formation was also explored. The synthesized struvite crystals typically possessed a prismatic crystal habit. The characterization and identification of the crystals were done using single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), energy dispersive X-ray analysis (EDAX) and fourier transform infrared (FTIR). The thermal characteristics were studied using thermo gravimetric analysis (TGA) and differential scanning calorimetric (DSC) processes. The synthesis of struvite by this bacterium seems to be a promising and viable strategy since it serves dual purpose (i) obtaining phosphorus and nitrogen rich fertilizer and (ii) conservation of natural phosphate reserves. This study is very significant in the sense that the process may be used for harvesting and synthesizing other valuable minerals. Also, it will provide new insights into phosphate biomineralization mechanisms.

  2. Investigation of k-struvite formation in magnesium phosphate cements

    OpenAIRE

    LE ROUZIC, Mathieu; Chaussadent, Thierry; Stefan, Lavinia; PLATRET, Gérard

    2014-01-01

    Magnesium phosphate cements can be used as an alternative of Portland cements for the stabilization/solidification (S/S) process of specific wastes like mercury, lead, … These cements are based on the reaction between magnesium oxide (MgO) and monopotassium phosphate (KH2PO4) mixed with water which leads to the formation of the solid skeleton of the matrix: MgO + KH2PO4 + 5H2O  MgKPO4.6H2O. The development of k-struvite crystals (MgKPO4.6H2O) leads to the setting of these ...

  3. Phosphates in pallasite meteorites as probes of mantle processes in small planetary bodies

    Science.gov (United States)

    Davis, Andrew M.; Olsen, Edward J.

    1991-01-01

    Trace element analyses of the phosphates minerals in stony-iron pallasite meteorites are used here to investigate the magmatic history of the silicate portions of pallasites. In Eagle Station and seven other pallasites, the phosphates have relatively low concentrations of REEs and are strongly enriched in heavy relative to light REE. These patterns are consistent with formation of phosphate by subsolidus reactions between metal and silicate, in which phosphate inherits the REE pattern of olivine. In Springwater and Santa Rosalia, calcium-rich phosphates have higher concentrations of REE, are enriched in light relative to heavy REE, and have negative europium anomalies. These patterns are consistent with crystallization of phosphate from a europium-depleted chondritic liquid. This is unlikely to have happened near the base of the differentiating parent-body mantle; it suggests that some pallasites may come from regions of their parent bodies much nearer the surface than the core-mantle boundary.

  4. Improved Electrocoagulation Reactor for Rapid Removal of Phosphate from Wastewater

    KAUST Repository

    Tian, Yushi

    2016-11-01

    A new three-electrode electrocoagulation reactor was investigated to increase the rate of removal of phosphate from domestic wastewater. Initially, two electrodes (graphite plate and air cathode) were connected with 0.5 V of voltage applied for a short charging time (∼10 s). The direction of the electric field was then reversed, by switching the power supply lead from the anode to the cathode, and connecting the other lead to a sacrificial aluminum mesh anode for removal of phosphate by electrocoagulation. The performance of this process, called a reverse-electric field, air cathode electrocoagulation (REAEC) reactor, was tested using domestic wastewater as a function of charging time and electrocoagulation time. REAEC wastewater treatment removed up to 98% of phosphate in 15 min (inert electrode working time of 10 s, current density of 1 mA/cm2, and 15 min total electrocoagulation time), which was 6% higher than that of the control (no inert electrode). The energy demand varied from 0.05 kWh/m3 for 85% removal in 5 min, to 0.14 kwh/m3 for 98% removal in 15 min. These results indicate that the REAEC can reduce the energy demands and treatment times compared to conventional electrocoagulation processes for phosphate removal from wastewater.

  5. Synthesis and Characterization of Metal Phosphates for Photocatalytic Applications

    KAUST Repository

    Al-Sabban, Bedour

    2012-07-01

    Solar energy is the most abundant efficient and important source of renewable energy. The objective of this study is to develop highly efficient visible light responsive photocatalysts for overall water splitting. This is done by using silver or copper containing materials. Phosphate compounds have caught much attention due to their rigid structure, thermal stability and resistance to chemical attacks. Solid phosphates can be prepared by direct solid-state reaction between metal cations and phosphate anions at high temperatures. Double metal phosphates of the Nasion-type structure had shown further technological importance. It has been reported that well-crystallized double metal phosphate particles have excellent ordering and cationic conduction channels in the Nasicon framework. In this study, several Nasion-type structured materials have been synthesized by solid-state method (e.g. CuTi2(PO4)3 and AgTi2(PO4)3) heated up under different temperatures (400–1100C) in N2 or air atmosphere. These materials were characterized by XRD, SEM, DR-UV-Vis spectroscopy and tested for photocatalytic applications. A new method for direct synthesis of photoelectrode on Ti Plate had been demonstrated. Further investigations on controlling the size and morphology for better performance of single and double metal phosphates will be done.

  6. Aluminum, the genetic apparatus of the human CNS and Alzheimer's disease (AD).

    Science.gov (United States)

    Pogue, A I; Lukiw, W J

    2016-06-01

    The genomes of eukaryotes orchestrate their expression to ensure an effective, homeostatic and functional gene signaling program, and this includes fundamentally altered patterns of transcription during aging, development, differentiation and disease. These actions constitute an extremely complex and intricate process as genetic operations such as transcription involve the very rapid translocation and polymerization of ribonucleotides using RNA polymerases, accessory transcription protein complexes and other interrelated chromatin proteins and genetic factors. As both free ribonucleotides and polymerized single-stranded RNA chains, ribonucleotides are highly charged with phosphate, and this genetic system is extremely vulnerable to disruption by a large number of electrostatic forces, and primarily by cationic metals such as aluminum. Aluminum has been shown by independent researchers to be particularly genotoxic to the genetic apparatus, and it has become reasonably clear that aluminum disturbs genetic signaling programs in the CNS that bear a surprising resemblance to those observed in Alzheimer's disease (AD) brain. This paper will focus on a discussion of two molecular-genetic aspects of aluminum genotoxicity: (1) the observation that micro-RNA (miRNA)-mediated global gene expression patterns in aluminum-treated transgenic animal models of AD (Tg-AD) strongly resemble those found in AD; and (2) the concept of "human biochemical individuality" and the hypothesis that individuals with certain gene expression patterns may be especially sensitive and perhaps predisposed to aluminum genotoxicity.

  7. Preparation and mechanism of calcium phosphate coatings on chemical modified carbon fibers by biomineralization

    Institute of Scientific and Technical Information of China (English)

    HUANG Su-ping; ZHOU Ke-chao; LI Zhi-you

    2008-01-01

    In order to prepare HA coatings on the carbon fibers, chemical modification and biomineralization processes were applied. The phase components, morphologies, and possible growth mechanism of calcium phosphate were studied by infrared spectroscopy(IR), X-ray diffractometry(XRD) and scanning electron microscopy(SEM). The results show that calcium phosphate coating on carbon fibers can be obtained by biomineralization. But the phase components and morphologies of calcium phosphate coatings are different due to different modification methods. Plate-like CaHPO4-2H2O (DCPD) crystals grow from one site of the active centre by HNO3 treatment. While on the para-aminobenzoic acid treated fibers, the coating is composed of nano-structural HA crystal homogeneously. This is because the -COOH functional groups of para-aminobenzoic acid graft on fibers, with negative charge and arranged structure, accelerating the HA crystal nucleation and crystallization on the carbon fibers.

  8. In vitro aging of a calcium phosphate cement.

    Science.gov (United States)

    Bohner, M; Merkle, H P; Lemaître, J

    2000-03-01

    Cement samples made of beta-tricalcium phoshate (beta-TCP), phosphoric acid (PA) and water mixtures were incubated in several aqueous solutions to determine their stability over time. The effects of the cement composition and the incubating temperature were investigated in more detail. The cement samples contained mostly dicalcium phosphate dihydrate (DCPD) and remnants of beta-TCP crystals. Depending on the initial cement composition, a certain amount of dicalcium phosphate (DCP) crystals were formed. The larger the initial PA concentration, the larger the DCP amount. After setting, the cement composition was stable for at least 16 days up to 60 degrees C. Above that temperature, the DCPD crystals decomposed into DCP crystals. The latter reaction provoked a decrease of the pH of the incubation solution, phenomenon expected for a cement sample containing an excess of PA. As the cement samples contained an excess of beta-TCP, it was postulated that beta-TCP crystals became so covered by DCP or DCPD crystals during setting that the setting reaction was stopped prematurely. The latter phenomenon gave a good explanation for the low pH values measured in the incubation solutions.

  9. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.;

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....

  10. DESIGN AND APPLICATION OF TRANSPARENT AND TRANSLUCENT ENAMELS ON ALUMINUM

    Directory of Open Access Journals (Sweden)

    H. AHMADI MOGHADDAM

    2012-09-01

    Full Text Available Transparent and opaque glass enamels for aluminum plates were designed with a minimum or with no heavy atom oxides such as lead and bismuth oxides. The thermal properties of the enamels were studied by DTA and their stability as measured by the difference of glass transition and crystallization onset temperatures was determined. Bending and rapid deformation (impact tests indicated the interfacial adhesion. The enamel/aluminum interfacial qualities were viewed and examined by scanning electron microscopy (SEM. A large amount of NaF and P2O5 in their formulation created opaque enamels. The three methods of melt dipping, pouring, and sintering were used to apply layers of enamels on aluminum plates. The novelty of the pouring and spreading method and its advantages over other methods, were in the use of lower stability and higher melting point enamels, without thermally/mechanically damaging the aluminum. Observations suggested that the interfacial contact and adhesion properties were good, particularly with the transparent or glassy state enamels.

  11. Electrochemical system including lamella settler crystallizer

    Science.gov (United States)

    Maimoni, Arturo

    1988-01-01

    A crystallizer which incorporates a lamella settler and which is particularly applicable for use in batteries and power cells for electric vehicles or stationary applications. The lamella settler can be utilized for coarse particle separation or for agglomeration, and is particularly applicable to aluminum-air batteries or power cells for solving the hydrargillite (aluminum-hydroxide) removal problems from such batteries. This invention provides the advantages of very low energy consumption, turbulence, shear, cost and maintenance. Thus, due to the low shear and low turbulence of this invention, it is particularly effective in the control of aluminum hydroxide particle size distribution in the various sections of an aluminum-air system, as will as in other elecrochemical systems requiring separation for phases of different densities.

  12. INFLUENCE OF THE COMPOSITION OF PHOSPHATE ROCK ON THE AMOUNT OF WATER-INSOLUBLE PHOSPHATE IMPURITIES IN SEMI-HYDRATE PHOSPHOGYPSUM

    Directory of Open Access Journals (Sweden)

    Nora Kybartiene

    2015-03-01

    Full Text Available In this work a chemical and mineral composition of phosphate rock and phosphogypsum was investigated in order to identify which impurities of phosphate rock prevent natural phosphates from decomposing in full during the production of phosphoric acid and increase the amount of water-insoluble phosphate impurities in phosphogypsum. The analysis of X-ray diffraction (XRF, X-ray fluorescence (XRD, scanning electron microscopy with energy dispersive X-Ray spectrometry (SEM-EDS and granulometry was carried out. The results showed that phosphate rocks (Kovdor and Kirovsk apatites and the semi-hydrate phosphogypsums differ by their chemical composition. The apatites and phosphogypsums differ in the amount of the major components, as well as other components (MgO, Al2O3, SrO, BaO, ZrO2, Ln2O3. In phosphate rock, Ln2O3 can be found in the composition of the mineral monazite. The SEM-EDS analysis revealed that the minerals of the apatite group and monazite form aggregate crystals. Monazite dissolves in sulphuric and phosphoric acids very marginal, therefore it prevents the apatites from full decomposition, thus influencing the quantity of insoluble phosphates in semi-hydrate phosphogypsum. The higher is the amount of minerals containing Ln2O3 in phosphate rock, the more water-insoluble phosphates remain in phosphogypsum. It was found that influence of Ln2O3 impurity is significant higher than influence of particles size of apatite.

  13. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Thurmer, M.B.; Diehl, C.E.; Vieira, R.S.; Coelho, W.T.G.; Santos, L.A., E-mail: monicathurmer@yahoo.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia de Materiais

    2012-07-01

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  14. Invisible Display in Aluminum

    DEFF Research Database (Denmark)

    Prichystal, Jan Phuklin; Hansen, Hans Nørgaard; Bladt, Henrik Henriksen

    2005-01-01

    Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish for an integ...... be obtained by shining light from the backside of the workpiece. When there is no light from the backside, the front surface seems totally untouched. This was achieved by laser ablation with ultra-short pulses.......Bang & Olufsen a/s has been working with ideas for invisible integration of displays in metal surfaces. Invisible integration of information displays traditionally has been possible by placing displays behind transparent or semitransparent materials such as plastic or glass. The wish...... for an integrated display in a metal surface is often ruled by design and functionality of a product. The integration of displays in metal surfaces requires metal removal in order to clear the area of the display to some extent. The idea behind an invisible display in Aluminum concerns the processing of a metal...

  15. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  16. Pyridoxal phosphate-dependent neonatal epileptic encephalopathy.

    Science.gov (United States)

    Bagci, S; Zschocke, J; Hoffmann, G F; Bast, T; Klepper, J; Müller, A; Heep, A; Bartmann, P; Franz, A R

    2008-03-01

    Pyridox(am)ine-5'-phosphate oxidase converts pyridoxine phosphate and pyridoxamine phosphate to pyridoxal phosphate, a cofactor in many metabolic reactions, including neurotransmitter synthesis. A family with a mutation in the pyridox(am)ine-5'-phosphate oxidase gene presenting with neonatal seizures unresponsive to pyridoxine and anticonvulsant treatment but responsive to pyridoxal phosphate is described. Pyridoxal phosphate should be considered in neonatal epileptic encephalopathy unresponsive to pyridoxine.

  17. Pyridoxal phosphate-dependent neonatal epileptic encephalopathy

    OpenAIRE

    2009-01-01

    Pyridox(am)ine-5′-phosphate oxidase converts pyridoxine phosphate and pyridoxamine phosphate to pyridoxal phosphate, a cofactor in many metabolic reactions, including neurotransmitter synthesis. A family with a mutation in the pyridox(am)ine-5′-phosphate oxidase gene presenting with neonatal seizures unresponsive to pyridoxine and anticonvulsant treatment but responsive to pyridoxal phosphate is described. Pyridoxal phosphate should be considered in neonatal epileptic encephalopathy unrespons...

  18. Formation of liquid inclusion induced light scatter in KDP (DKDP) crystals

    Institute of Scientific and Technical Information of China (English)

    孙洵; 孙大亮; 许心光; 王正平; 付有君; 王圣来; 曾红; 李毅平; 于锡玲; 高樟寿

    2001-01-01

    We describe in this paper the formation of liquid inclusion induced light scatter in potassium dihydrogen phosphate (KDP) crystal and deuterated potassium dihydrogen phosphate (DKDP) crystals. The measurement has been done with an atomic force microscope (AFM). The mechanism of formation of liquid inclusion scatter has been proposed and the effect of super-saturation discussed.

  19. MAGNESIUM MONO POTASSIUM PHOSPHATE GROUT FOR P-REACTOR VESSEL IN-SITU DECOMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-01-05

    The objective of this report is to document laboratory testing of magnesium mono potassium phosphate grouts for P-Reactor vessel in-situ decommissioning. Magnesium mono potassium phosphate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout (pH of about 12.4). A less alkaline material ({<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere. Fresh and cured properties were measured for: (1) commercially blended magnesium mono potassium phosphate packaged grouts, (2) commercially available binders blended with inert fillers at SRNL, (3) grouts prepared from technical grade MgO and KH{sub 2}PO{sub 4} and inert fillers (quartz sands, Class F fly ash), and (4) Ceramicrete{reg_sign} magnesium mono potassium phosphate-based grouts prepared at Argonne National Laboratory. Boric acid was evaluated as a set retarder in the magnesium mono potassium phosphate mixes.

  20. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  1. Low-aluminum content iron-aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J. [and others

    1995-06-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10 and iron = 83.71. The ignots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot-worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  2. Nevadaite, (Cu2+, Al, V3+)6 [Al8 (PO4)8 F8] (OH 2 (H2O)22, a new phosphate mineral species from the Gold Quarry mine, Carlin, Eureka County, Nevada: description and crystal structure

    Science.gov (United States)

    Cooper, M.A.; Hawthorne, F.C.; Roberts, Andrew C.; Foord, E.E.; Erd, Richard C.; Evans, H.T.; Jensen, M.C.

    2004-01-01

    Nevadaite, (Cu2+, ???, Al, V3+)6 (PO4)8 F8 (OH)2 (H2O)22, is a new supergene mineral species from the Gold Quarry mine, near Carlin, Eureka County, Nevada, U.S.A. Nevadaite forms radiating clusters to 1 mm of prismatic crystals, locally covering surfaces more that 2 cm across; individual crystals are elongate on [001] with a length:width ratio of > 10:1 and a maximum diameter of ???30 ??m. It also occurs as spherules and druses associated with colorless to purple-black fluellite, colorless wavellite, strengitevariscite, acicular maroon-to-red hewettite, and rare anatase, kazakhstanite, tinticite, leucophosphite, torbernite and tyuyamunite. Nevadaite is pale green to turquoise blue with a pale powder-blue streak and a vitreous luster; it does not fluoresce under ultra-violet light. It has no cleavage, a Mohs hardness of ???3, is brittle with a conchoidal fracture, and has measured and calculated densities of 2.54 and 2.55 g/cm3, respectively. Nevadaite is biaxial negative, with ?? 1.540, ?? 1.548, ?? 1.553, 2V(obs.) = 76??, 2V(calc.) = 76??, pleochroic with X pale greenish blue, Y very pale greenish blue, Z blue, and with absorption Z ??? X > Y and orientation X = c, Y = a, Z = b. Nevadaite is orthorhombic, space group P21mn, a 12.123(2), b 18.999(2), c 4.961(1) A?? , V 1142.8(2) A??3, Z = 1, a:b:c = 0.6391:1:0.2611. The strongest seven lines in the X-ray powder-diffraction pattern [d in A??(I)(hkl)] are: 6.077(10)(200), 5.618(9)(130), 9.535(8)(020), 2.983(6)(241), 3.430(4)(041), 2.661(4)(061 , and 1.844(4)(352). A chemical analysis with an electron microprobe gave P2O5 32.54, Al2O3 27.07, V2O3 4.24, Fe2O3 0.07, CuO 9.24, ZnO 0.11, F 9.22, H2O (calc.) 23.48, OH ??? F -3.88, sum 102.09 wt.%; the valence states of V and Fe, and the amount of H2O, were determined by crystal-structure analysis. The resulting empirical formula on the basis of 63.65 anions (including 21.65 H2O pfu) is (CU2+2.00 Zn0.02 V3+0.98 Fe3+0.01 Al1.15)??4.16 Al8 P7.90 O32 [F8.37 (OH 1.63]??10 (H2O

  3. Preparation and Characterization of Low-Dielectric Glass Composite with Aluminum Borate

    Science.gov (United States)

    Jean, Jau-Ho; Hwang, Shiang-Po

    1994-10-01

    The effect of aluminum borate ( Al18B4O33) on crystallization and thermal expansion of Pyrex borosilicate glass has been studied. X-ray diffraction (XRD) results show that with 40 vol% aluminum borate, the precipitation of cristobalite in the Pyrex borosilicate glass is completely inhibited. This result is further evidenced by the linear thermal expansion measurement in which, in contrast to the system without aluminum borate, the thermal expansion coefficient remains unchanged with sintering time and is close to that of silicon, 3×10-6 K-1. Moreover, the composite with 40 vol% aluminum borate has a dielectric constant of 5.2 and a dielectric loss of 0.8% at 1 MHz.

  4. Strontium zirconate as silicon and aluminum scavenger in yttria stabilized zirconia

    DEFF Research Database (Denmark)

    Andersen, Thomas; Hansen, Karin Vels; Chorkendorff, Ib

    2011-01-01

    Here we report on strontium zirconate as a getter for silicon dioxide and aluminum oxide in yttria stabilized zirconia (YSZ) single crystals for cleaning purposes. YSZ single crystals were covered with strontium zirconate powder and heat treated at 1450°C in water vapor. After treatment the YSZ s...... materials at elevated temperatures and prove a route to remove trace bulk impurities in YSZ....

  5. The Crystal Structure of a Ternary Complex of Betaine Aldehyde Dehydrogenase from Pseudomonas aeruginosa Provides New Insight Into the Reaction Mechansim and Shows A Novel Binding Mode of the 2'-Phosphate of NADP+ and A Novel Cation Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Segura, L.; Rudino-Pinera, E; Munoz-Clares, R; Horjales, E

    2009-01-01

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)+-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors-abundant at infection sites-and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP+ and one of the even fewer that require K+ ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP+ and K+ ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the 'oxyanion hole.' The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2?-phosphate of the NADP+, thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K+ binding sites per subunit. One is

  6. Synthesis and controllable wettability of micro- and nanostructured titanium phosphate thin films formed on titanium plates.

    Science.gov (United States)

    Yada, Mitsunori; Inoue, Yuko; Sakamoto, Ayako; Torikai, Toshio; Watari, Takanori

    2014-05-28

    The hydrothermal treatment of a titanium plate in a mixed aqueous solution of hydrogen peroxide and aqueous phosphoric acid under different conditions results in the formation of various titanium phosphate thin films. The films have various crystal structures such as Ti2O3(H2PO4)2·2H2O, α-titanium phosphate (Ti(HPO4)2·H2O), π-titanium phosphate (Ti2O(PO4)2·H2O), or low-crystallinity titanium phosphate and different morphologies that have not been previously reported such as nanobelts, microflowers, nanosheets, nanorods, or nanoplates. The present study also suggests the mechanisms behind the formation of these thin films. The crystal structure and morphology of the titanium phosphate thin films depend strongly on the concentration of the aqueous hydrogen peroxide solution, the amount of phosphoric acid, and the reaction temperature. In particular, hydrogen peroxide plays an important role in the formation of the titanium phosphate thin films. Moreover, controllable wettability of the titanium phosphate thin films, including superhydrophilicity and superhydrophobicity, is reported. Superhydrophobic surfaces with controllable adhesion to water droplets are obtained on π-titanium phosphate nanorod thin films modified with alkylamine molecules. The adhesion force between a water droplet and the thin film depends on the alkyl chain length of the alkylamine and the duration of ultraviolet irradiation utilized for photocatalytic degradation.

  7. Characterization of iron-phosphate-silicate chemical garden structures.

    Science.gov (United States)

    Barge, Laura M; Doloboff, Ivria J; White, Lauren M; Stucky, Galen D; Russell, Michael J; Kanik, Isik

    2012-02-28

    Chemical gardens form when ferrous chloride hydrate seed crystals are added or concentrated solutions are injected into solutions of sodium silicate and potassium phosphate. Various precipitation morphologies are observed depending on silicate and phosphate concentrations, including hollow plumes, bulbs, and tubes. The growth of precipitates is controlled by the internal osmotic pressure, fluid buoyancy, and membrane strength. Additionally, rapid bubble-led growth is observed when silicate concentrations are high. ESEM/EDX analysis confirms compositional gradients within the membranes, and voltage measurements across the membranes during growth show a final potential of around 150-200 mV, indicating that electrochemical gradients are maintained across the membranes as growth proceeds. The characterization of chemical gardens formed with iron, silicate, and phosphate, three important components of an early earth prebiotic hydrothermal system, can help us understand the properties of analogous structures that likely formed at submarine alkaline hydrothermal vents in the Hadean-structures offering themselves as the hatchery of life.

  8. Equilibrium relations in the system TiO{sub 2}/V{sub 2}O{sub 5}/P{sub 2}O{sub 5} and crystal structure of a NASICON-related vanadyl(V) titanium(IV) phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Titlbach, Sven; Hoffbauer, Wilfried [Institut fuer Anorganische Chemie der Universitaet Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn (Germany); Glaum, Robert, E-mail: rglaum@uni-bonn.de [Institut fuer Anorganische Chemie der Universitaet Bonn, Gerhard-Domagk-Str. 1, D-53121 Bonn (Germany)

    2012-12-15

    Vanadyl(V)-titanium-orthophosphate (V{sup V}O)Ti{sup IV}{sub 6}(PO{sub 4}){sub 9} is formed by solid state reactions in the temperature range 525{<=}{theta}{<=}780 Degree-Sign C. At higher temperature decomposition into V{sub 2}O{sub 5} and the hitherto unknown solid solution Ti(P{sub 1-x}V{sub x}){sub 2}O{sub 7} (0{<=}x{<=}0.23; 0.30{<=}x{<=}0.43) is observed. The process of phase formation has been monitored by MAS-NMR ({sup 31}P, {sup 51}V) spectroscopy. Equilibrium phase relations in the quaternary system TiO{sub 2}/VO{sub 2.5}/PO{sub 2.5} have been determined. A structure analysis from X-ray single-crystal data (P6{sub 3}/m (No. 176), Z=2; a=8.4438(3) A, c=22.215(1) A, 14 independent atoms, 87 variables, 2066 unique reflections, R1=0.032, wR2=0.084) shows the relationship of (V{sup V}O)Ti{sup IV}{sub 6}(PO{sub 4}){sub 9} to the NASICON structure family. In marked contrast to the other members of this family [Ti{sup IV}{sub 2}O{sub 9}] double-octahedra and strongly distorted tetrahedral [(V{sup V}=O)O{sub 3}] groups are observed besides isolated [Ti{sup IV}O{sub 6}] octahedra and phosphate tetrahedra. The structure model is in agreement with the results from MAS-NMR ({sup 31}P, {sup 51}V) spectroscopy. - Graphical abstract: (V{sup V}O)Ti{sup IV}{sub 6}(PO{sub 4}){sub 9} belongs to the NASICON structure family. Its structure contains [Ti{sup IV}{sub 2}O{sub 9}] double-octahedra and unprecedented, strongly distorted tetrahedral [(V{sup V}=O)O{sub 3}] groups, in stark contrast to other members of this family. The structure model is in agreement with the results from MAS-NMR ({sup 31}P, {sup 51}V) spectroscopy. Highlights: Black-Right-Pointing-Pointer Equilibrium relations for the subsolidus have been established for the system TiO{sub 2}/V{sub 2}O{sub 5}/P{sub 2}O{sub 5}. Black-Right-Pointing-Pointer Phase formation has been monitored by XRPD as well as by {sup 31}P- and {sup 51}-MAS-NMR. Black-Right-Pointing-Pointer A solid solution Ti(P{sub 1-x}V{sub x}){sub 2}O

  9. Resorption Rate Tunable Bioceramic: Si, Zn-Modified Tricalcium Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiang [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This dissertation is organized in an alternate format. Several manuscripts which have already been published or are to be submitted for publication have been included as separate chapters. Chapter 1 is a general introduction which describes the dissertation organization and introduces the human bone and ceramic materials as bone substitute. Chapter 2 is the background and literature review on dissolution behavior of calcium phosphate, and discussion of motivation for this research. Chapter 3 is a manuscript entitled ''Si,Zn-modified tricalcium phosphate: a phase composition and crystal structure study'', which was published in ''Key Engineering Materials'' [1]. Chapter 4 gives more crystal structure details by neutron powder diffraction, which identifies the position for Si and Zn substitution and explains the stabilization mechanism of the structure. A manuscript entitled ''Crystal structure analysis of Si, Zn-modified Tricalcium phosphate by Neutron Powder Diffraction'' will be submitted to Biomaterials [2]. Chapter 5 is a manuscript, entitled ''Dissolution behavior and cytotoxicity test of Si, Zn-modified tricalcium phosphate'', which is to be submitted to Biomaterials [3]. This paper discusses the additives effect on the dissolution behavior of TCP, and cytotoxicity test result is also included. Chapter 6 is the study of hydrolysis process of {alpha}-tricalcium phosphate in the simulated body fluid, and the phase development during drying process is discussed. A manuscript entitled ''Hydrolysis of {alpha}-tricalcium phosphate in simulated body fluid and phase transformation during drying process'' is to be submitted to Biomaterials [4]. Ozan Ugurlu is included as co-authors in these two papers due to his TEM contributions. Appendix A is the general introduction of the materials synthesis, crystal structure and preliminary dissolution result. A manuscript entitled

  10. Recrystallization behavior of high purity aluminum at 300 ℃

    Institute of Scientific and Technical Information of China (English)

    DU Yu-xuan; ZHANG Xin-ming; YE Ling-ying; LUO Zhi-hui

    2006-01-01

    The recrystallization behavior of 98.5% cold rolled high purity aluminum foils annealed at 300 ℃ was investigated, and the evolution of the microstructures was followed by electron back scattered diffraction(EBSD). The results show that the recrystallization process of the high purity aluminum foils at 300 ℃ is a mixture of discontinuous- and continuous-recrystallization.The orientations of the recrystallization nuclei include not only the cube orientation, but also other orientations such as some near deformation texture components which are the results of strong recovery process. However, such continuously recrystallized grains are usually associated with relatively high free energy, so they would be consumed by the discontinuously-recrystallized grains (cube-oriented grains) in subsequent annealing. On the other hand, the pattern quality index of recrystallized grains shows dependence on the crystal orientation which might introduce some errors into evaluating volume fraction of recrystallization by integrating pattern quality index of EBSD.

  11. Radiation induced defects and thermoluminescence mechanism in aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, K.; Kobayashi, T.; Awata, T. [Naruto Univ. of Education, Tokushima (Japan); Okada, M. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Nakagawa, M. [Kagawa Univ., Faculty of Education, Takamatsu, Kagawa (Japan)

    2001-01-01

    The thermoluminescence of the irradiated aluminum oxides were measured to study the radiation induced defects and their behaviors. Neutron and {gamma}-ray irradiation were performed for a shingle crystal of the high purity aluminum oxide. The thermoluminescence glow curve and its activation energy were measured. The spectroscopy measurement on the thermoluminescence and the absorption are also carried out. The observed 430 and 340 nm peaks are discussed relating to the F{sup +} and F centers, respectively. Activation state of the F center transits to 3P state through 1P state by emitting phonons. Trapped electron on 3P state emits phonon of 2.9 eV (430 nm) during transition to the ground state. The above reaction can be written by the equation. F{sup +} + e {yields} (F){sup *} {yields} F + h{nu}(2.9 eV, 470 nm). (Katsuta, H.)

  12. Crystal science fundamentals

    OpenAIRE

    Ramachandran, V.; Halfpenny, PJ; Roberts, KJ

    2017-01-01

    The fundamentals of crystal science notably crystallography, crystal chemistry, crystal defects, crystal morphology and the surface chemistry of crystals are introduced with particular emphasis on organic crystals.

  13. In situ sol-gel preparation of porous alumina monoliths for chromatographic separations of adenosine phosphates.

    Science.gov (United States)

    Zajickova, Zuzana; Rubi, Emir; Svec, Frantisek

    2011-06-03

    A method enabling the in situ preparation of porous alumina monoliths within 100 μm i.d. fused silica capillaries has been developed. These monoliths were prepared using the sol-gel process from a mixture consisting of an inorganic aluminum salt, a porogen, an epoxide, and a solvent. We investigated the effects of varying the preparation conditions on the physical characteristics of the monoliths with respect to their potential application in chromatographic separations. The best columns were obtained from a mixture of aluminum chloride hexahydrate, N,N-dimethylformamide, water, ethanol and propylene oxide. Adenosine phosphates were then separated in the optimized column with retention increasing according to number of phosphate functionalities.

  14. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    Science.gov (United States)

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  15. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, L; Andersen, K E; Egsgaard, Helge

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri-m-cr...

  16. Quantitative characterization of morphological evolution in Q=2 Potts model aluminum thin films

    NARCIS (Netherlands)

    Alsem, DH; Stach, EA; de Hosson, JTM; Aziz, MJ; Bartelt, NC; Berbezier,; Hannon, JB; Hearne, SJ

    2003-01-01

    In this research, we have focused on the morphological evolution of a model metal film / silicon substrate system. When aluminum (Al) is physical vapor deposited on (100) oriented single crystal silicon (Si) at 280degreesC it grows heteroepitaxially. Crystallographically, the resulting films are a P

  17. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  18. Nutritional influences on the solubilization of metal phosphate by ericoid mycorrhizal fungi.

    Science.gov (United States)

    Gibson, Brian R; Mitchell, Derek T

    2004-08-01

    Four ericoid mycobionts (two isolates of Hymenoscyphus ericae, and two dark, sterile ericoid mycobionts isolated from metal-contaminated mine sites) were grown on solid agar plates supplemented with zinc phosphate (0.25 %) containing different forms of nitrogen (nitrate, ammonium or alanine) and different concentrations of carbon (glucose) and phosphorus (K2HPO4). The influence of nutrient variation on solubilizing ability of the fungi was assessed by measuring the zones of solubilization appearing beneath the growing colonies. All four mycobionts were capable of zinc phosphate solubilization in the presence of all three nitrogen sources and in media containing no nitrogen. No solubilization was observed at 0 mM glucose-C but was observed with increasing glucose concentration from 300 to 600 mM C. Increasing phosphorus concentration (0-5 mM P) had no effect on the solubilizing ability of the isolates. All but one of the mycobionts were capable of solubilizing calcium phosphate (CaHPO4), while no solubilization was observed in media containing aluminium phosphate (AlPO4), iron phosphate (FePO4 x 4H2O) or copper phosphate (Cu3O8P2 x 2H2O) under conditions which were found to be optimal for zinc phosphate solubilization. Under conditions of glucose at 300 mM C and alanine as the N source in the zinc phosphate-amended agar medium, one of the mycobionts produced new crystals, which were morphologically distinct from the original zinc phosphate crystals. It is concluded that medium composition influences the metal-phosphate solubilizing ability of ericoid mycobionts. The results are discussed in relation to the possible mechanisms involved in solubilization and the potential benefits of metal-phosphate solubilization to ericoid mycobionts and their host plants.

  19. Gorceixite from Catalão, Goiás, Brazil: Rietveld Crystal Structure Refinement

    Directory of Open Access Journals (Sweden)

    Viviane Carillo Ferrari

    2007-10-01

    Full Text Available Gorceixite is an abundant aluminum phosphate in Brazilian laterite phosphate ores and is one of the most importantgangue minerals. Catalão I mine, Goiás, Brazil, one of the biggest phosphate mines in Brazil, contains great amounts ofgorceixite, whose structural formula, as suggested by microprobe analysis, is (Ba0.76Ca0.19Sr0.10Ce0.01Σ1.06(Al2.74Fe3+0.25Σ2.99(P0.96Si0.03Σ0.99O4(PO3OH(OH6.02. Its crystal structure, rich in Ca, Sr, and Fe, was refined by the Rietveld method appliedto X-ray powder diffraction data for trigonal and monoclinic structural models. The statistical parameters for the two modelsare so similar that they do not allow clear distinction of which is the better structural model for gorceixite. The cell parametersobtained for the trigonal model, space group R3m, are a = 7.0791(3 Å, c = 17.089(1 Å, V = 741.68(7 Å3, Z = 3, and for themonoclinic model, space group Cm, a =12.195(8 Å, b = 7.040(5 Å, c = 7.055(5 Å, β = 125.19(5°, V = 495 Å3, Z = 2.A particular feature of the Catalão gorceixite is the replacement of some Al in the X-site by Fe3+, with minor distortions incrystallochemical sites. These features may alter physical-chemical mineral characteristics, such as density and heavy metalretention capacity.

  20. Mechanistic study of inhibition of levofloxacin absorption by aluminum hydroxide.

    Science.gov (United States)

    Tanaka, M; Kurata, T; Fujisawa, C; Ohshima, Y; Aoki, H; Okazaki, O; Hakusui, H

    1993-10-01

    The mechanisms of reduction in absorption of levofloxacin (LVFX) by coadministration of aluminum hydroxide were studied. The partition coefficient of LVFX (0.1 mM) between chloroform and phosphate buffer (pH 5.0) was reduced by 60 to 70% with the addition of metal ions such as Cu2+, Al3+, and Fe2+ (0.8 mM), which indicated the formation of LVFX-metal ion chelates. However, there was no significant difference in absorption from rat intestine between the synthetic LVFX-Al3+ (1:1) chelate (6.75 mM) and LVFX (6.75 mM) in an in situ recirculation experiment. On the other hand, Al(NO3)3 (1.5 mM) significantly inhibited the absorption of LVFX (1.5 mM) by 20% of the control in the in situ ligated loop experiment, in which partial precipitation of aluminum hydroxide was observed in the dosing solution. Data for adsorption of LVFX and ofloxacin (OFLX) from aqueous solution by aluminum hydroxide were shown to fit Langmuir plots, and the adsorptive capacities (rmax) and the K values were 7.0 mg/g and 1.77 x 10(4) M-1 for LVFX and 7.4 mg/g and 1.42 x 10(4) M-1 for OFLX, respectively. The rate of adsorption of several quinolones (50 microM) onto aluminum hydroxide (2.5 mg/ml) followed the order norfloxacin (NFLX) (72.0%) > enoxacin (ENX) (61.0%) > OFLX (47.2%) approximately LVFX (48.1%). The elution rate of adsorbed quinolones with water followed the rank order LVFX (17.9%) approximately OFLX (20.9%) approximately ENX (18.3%) > NFLX (11.9%). These results strongly suggest that adsorption of quinolones by aluminum hydroxide reprecipitated in the small intestine would play an important role in the reduced bioavailability of quinolones after coadministration with aluminum-containing antacids.

  1. Hydrous non-crystalline phosphates: structure, function and a new white pigment

    OpenAIRE

    ROSSETO, Renato; Santos, Ádamo C. M. A. dos; Galembeck, Fernando

    2006-01-01

    Hydrated non-crystalline inorganic solids are often neglected due to the limited comprehension of their complex physico-chemical and structural properties. However, these non-crystalline materials exhibit a rich and varied chemistry, interesting for scientific and technological reasons. This work reviews general aspects of formation of hydrated non-crystalline solids, with special emphasis on aluminum (poly)phosphate materials. Precursors and concentration variations, temperature, ageing and ...

  2. Crystal structure of (2,11-di-aza-[3.3](2,6)pyridino-phane-κ (4) N,N',N'',N''')(1,6,7,12-tetra-aza-perylene-κ (2) N (1),N (12))ruthenium(II) bis-(hexa-fluorido-phosphate) aceto-nitrile 1.422-solvate.

    Science.gov (United States)

    Brietzke, Thomas; Rottke, Falko Otto; Kelling, Alexandra; Schilde, Uwe; Holdt, Hans-Jürgen

    2014-10-01

    In the title compound, [Ru(C14H16N4)(C16H8N4)](PF6)2·1.422CH3CN, discrete dimers of complex cations, [Ru(L-N4H2)tape](2+) are formed {L-N4H2 = 2,11-di-aza-[3.3](2,6)pyridino-phane; tape = 1,6,7,12-tetra-aza-perylene}, held together by π-π stacking inter-actions via the tape ligand moieties with a centroid-centroid distance of 3.49 (2) Å, assisted by hydrogen bonds between the non-coordinating tape ligand α,α'-di-imine unit and the amine proton of a 2,11-di-aza-[3.3](2,6)-pyridino-phane ligand of the opposite complex cation. The combination of these inter-actions leads to an unusual nearly face-to-face π-π stacking mode. Additional weak C-H⋯N, C-H⋯F, N-H⋯F and P-F⋯π-ring (tape, py) (with F⋯centroid distances of 2.925-3.984 Å) inter-actions are found, leading to a three-dimensional architecture. The Ru(II) atom is coordinated in a distorted octa-hedral geometry, particularly manifested by the Namine-Ru-Namine angle of 153.79 (10)°. The counter-charge is provided by two hexa-fluorido-phosphate anions and the asymmetric unit is completed by aceto-nitrile solvent mol-ecules of crystallization. Disorder was observed for both the hexa-fluorido-phosphate anions as well as the aceto-nitrile solvate mol-ecules, with occupancies for the major moieties of 0.801 (6) for one of the PF6 anions, and a shared occupancy of 0.9215 (17) for the second PF6 anion and a partially occupied aceto-nitrile mol-ecule. A second CH3CN mol-ecule is fully occupied, but 1:1 disordered across a crystallographic inversion center.

  3. Synthesis and characterization of uranium (IV) phosphate-hydrogenphosphate hydrate and cerium (IV) phosphate-hydrogenphosphate hydrate

    Science.gov (United States)

    Brandel, V.; Clavier, N.; Dacheux, N.

    2005-04-01

    A new uranium (IV) phosphate of proposed formula U 2(PO 4) 2HPO 4·H 2O, i.e. uranium phosphate-hydrogenphosphate hydrate (UPHPH), was synthesized in autoclave and/or in polytetrafluoroethylene closed containers at 150 °C by three ways: from uranium (IV) hydrochloric solution and phosphoric acid, from uranium dioxide and phosphoric acid and by transformation of the uranium hydrogenphosphate hydrate U(HPO 4) 2· nH 2O. The new product appears similar to the previously published thorium phosphate-hydrogenphosphate hydrate Th 2(PO 4) 2HPO 4·H 2O (TPHPH). From preliminary studies, it was found that UPHPH crystallizes in monoclinic system ( a=2.1148(7) nm, b=0.6611(2) nm, c=0.6990(3) nm, β=91.67(3)° and V=0.9768(10) nm). Heated under inert atmosphere, this compound is decomposed above 400 °C into uranium phosphate-triphosphate U 2(PO 4)P 3O 10, uranium diphosphate α-UP 2O 7 and diuranium oxide phosphate U 2O(PO 4) 2. Crystallized cerium (IV) phosphate-hydrogenphosphate hydrate Ce 2(PO 4) 2HPO 4·H 2O (CePHPH) was also synthesized from (NH 4) 2Ce(NO 3) 6 and phosphoric acid solutions by the same method (monoclinic system: a=2.1045(5) nm, b=0.6561(2) nm, c=0.6949(2) nm, β=91.98(1)° and V=0.9588(9) nm). When heating above 600 °C, cerium (IV) is reduced into Ce (III) and forms a mixture of CePO 4 (monazite structure) and CeP 3O 9.

  4. Light weight phosphate cements

    Science.gov (United States)

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  5. Environmental Control over the Primary Aluminum Industry

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> To strengthen environmental control over theprimary aluminum industry,the State Environ-mental Protection Administration of China hasrecently issued a notice addressing the follow-ing points:Strengthening environmental control over theexisting primary aluminum companies

  6. Decreasing residual aluminum level in drinking water

    Institute of Scientific and Technical Information of China (English)

    王志红; 崔福义

    2004-01-01

    The relativity of coagulant dosage, residual turbidity, temperature, pH etc. with residual aluminum concentration were investigated, and several important conclusions were achieved. Firstly, dosage of alum-coagulant or PAC1 influences residual aluminum concentration greatly. There is an optimal-dosage-to-aluminum, a bit less than the optimal-dosage-to-turbidity. Secondly, it proposes that decreasing residual aluminum concentration can be theoretically divided into two methods, either decreasing (even removing) the concentration of particulate aluminum component, or decreasing dissolved aluminum. In these tests there is an optimal value of residual turbidity of postprecipitation at 7.0 NTU. Thirdly, residual aluminum level will increase while water temperature goes higher. At the last, optimal pH value corresponds a minimum dissolved aluminum at a given turbidity. Data shows the optimal pH value decreases with water temperature's increasing.

  7. 21 CFR 172.310 - Aluminum nicotinate.

    Science.gov (United States)

    2010-04-01

    ... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be safely... additive, expressed as niacin, shall appear on the label of the food additive container or on that of...

  8. ALUMINUM REMOVAL FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION - LABORATORY SCALE VALIDATION ON WASTE SIMULANTS TEST REPORT

    Energy Technology Data Exchange (ETDEWEB)

    SAMS T; HAGERTY K

    2011-01-27

    To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH){sub 4}) as lithium hydrotalcite (Li{sub 2}CO{sub 3}.4Al(OH){sub 3}.3H{sub 2}O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

  9. Copper scandium zirconium phosphate

    DEFF Research Database (Denmark)

    Bond, Andrew David; Warner, Terence Edwin

    2013-01-01

    The title compound, with nominal formula Cu(2)ScZr(PO(4))(3), has a beige coloration and displays fast Cu(+) cation conduction at elevated temperatures. It adopts a NASICON-type structure in the space group R3c. The examined crystal was an obverse-reverse twin with approximately equal twin compon......, but no movement into or out of the M2 site. Free refinement of the Cu site-occupancy factors suggests that the formula of the crystal is Cu(1.92(1))ScZr(PO(4))(3), which is consistent with the low-level presence of Cu(2+) exclusively in the M2 site....

  10. The effect of zinc on the aluminum anode of the aluminum-air battery

    Science.gov (United States)

    Tang, Yougen; Lu, Lingbin; Roesky, Herbert W.; Wang, Laiwen; Huang, Baiyun

    Aluminum is an ideal material for batteries, due to its excellent electrochemical performance. Herein, the effect of zinc on the aluminum anode of the aluminum-air battery, as an additive for aluminum alloy and electrolytes, has been studied. The results show that zinc can decrease the anodic polarization, restrain the hydrogen evolution and increase the anodic utilization rate.

  11. OPTIMIZING AN ALUMINUM EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Mohammed Ali Hajeeh

    2013-01-01

    Full Text Available Minimizing the amount of scrap generated in an aluminum extrusion process. An optimizing model is constructed in order to select the best cutting patterns of aluminum logs and billets of various sizes and shapes. The model applied to real data obtained from an existing extrusion factory in Kuwait. Results from using the suggested model provided substantial reductions in the amount of scrap generated. Using sound mathematical approaches contribute significantly in reducing waste and savings when compared to the existing non scientific techniques.

  12. Calcium phosphate bioceramics induce mineralization modulated by proteins.

    Science.gov (United States)

    Wang, Kefeng; Leng, Yang; Lu, Xiong; Ren, Fuzeng

    2013-08-01

    Proteins play an important role in the process of biomineralization, which is considered the critical process of new bone formation. The calcium phosphate (Ca-P) mineralization happened on hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and biphasic calcium phosphate (BCP) when proteins presented were investigated systematically. The results reveal that the presence of protein in the revised simulated body fluid (RSBF) did not alter the shape and crystal structure of the precipitated micro-crystals in the Ca-P layer formed on the three types of bioceramics. However, the morphology of the Ca-P precipitates was regulated but the structure of Ca-P crystal was unchanged in vivo. The presence of proteins always inhibits Ca-P mineralization in RSBF and the degree of inhibitory effect is concentration dependent. Furthermore, Protein presence can increase the possibility of HA precipitation in vitro and in vivo. The results obtained in this study can be helpful for better understanding the mechanism of biomineralization induced by the Ca-P bioceramics.

  13. Optimization of calcium phosphate fine ceramic powders preparation

    Science.gov (United States)

    Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.

    2013-12-01

    The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.

  14. Amorphous calcium phosphate and its application in dentistry

    Directory of Open Access Journals (Sweden)

    Sun Wei-bin

    2011-07-01

    Full Text Available Abstract Amorphous Calcium Phosphate (ACP is an essential mineral phase formed in mineralized tissues and the first commercial product as artificial hydroxyapatite. ACP is unique among all forms of calcium phosphates in that it lacks long-range, periodic atomic scale order of crystalline calcium phosphates. The X-ray diffraction pattern is broad and diffuse with a maximum at 25 degree 2 theta, and no other different features compared with well-crystallized hydroxyapatite. Under electron microscopy, its morphological form is shown as small spheroidal particles in the scale of tenths nanometer. In aqueous media, ACP is easily transformed into crystalline phases such as octacalcium phosphate and apatite due to the growing of microcrystalline. It has been demonstrated that ACP has better osteoconductivity and biodegradability than tricalcium phosphate and hydroxyapatite in vivo. Moreover, it can increase alkaline phosphatase activities of mesoblasts, enhance cell proliferation and promote cell adhesion. The unique role of ACP during the formation of mineralized tissues makes it a promising candidate material for tissue repair and regeneration. ACP may also be a potential remineralizing agent in dental applications. Recently developed ACP-filled bioactive composites are believed to be effective anti-demineralizing/remineralizing agents for the preservation and repair of tooth structures. This review provides an overview of the development, structure, chemical composition, morphological characterization, phase transformation and biomedical application of ACP in dentistry.

  15. Electrochemical Behavior of Aluminum in Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    CHEN; Hui; ZHU; Li-yang; LIN; Ru-shan; TAN; Hong-bin; HE; Hui

    2013-01-01

    Aluminum is one of cladding materials for nuclear fuel,it is important to investigate the electrolytic dissolution of aluminum in nitric acid.The electrochemical impedance spectroscopy,polarization curve and cyclic voltammetry cure of anodic aluminum electrode in nitric acid under various conditions were collected(Fig.1).It turns out,under steady state,the thickness of the passivated film of aluminum

  16. Crystallo-chemical analyses of calcium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Sakae, Toshiro; Hayakawa, Tohru; Maruyama, Fumiaki; Nemoto, Kimiya; Kozawa, Yukishige [Nihon Univ., Matsudo, Chiba (Japan). School of Dentistry

    1997-12-01

    Several analytical techniques, methodology and their practical data processing were briefly described to investigate the crystallographic properties of calcium phosphates which are encountered in the field of dental sciences. The applied analytical techniques were X-ray fluorescence spectrometry (XFS), energy dispersive spectrometry (EDS), Fourier transform infrared spectrometry (FT-IR) and X-ray diffraction (XRD). The used materials were tetracalcium phosphate, hydroxyapatite, fluorapatite, {alpha}-tricalcium phosphate, {beta}-tricalcium phosphate, octacalcium phosphate, monetite, brushite and monocalcium phosphate monohydrate. (author)

  17. Guangxi Aluminum Giant Made Investment in Changfeng

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>A aluminum processing and supporting project (450,000 tons) of Hefei Guangyin Aluminum Company kicked off in Xiatang Town of Changfeng County recently. It is a project jointly invested by Guangxi Investment Group and Guangxi Baise Guangyin Aluminum in Xiatang Town of Changfeng County.

  18. Recovering aluminum from aluminum dross in a DC electric-arc rotary furnace

    Science.gov (United States)

    Tzonev, Tz.; Lucheva, B.

    2007-11-01

    The recycling of aluminum scrap and dross yields significant economic and energy savings, as well environmental benefits. The recovery of aluminum depends on many factors. The aim of this work is to experimentally investigate aluminum recovery under different conditions. In this study, aluminum dross was processed in a direct-current electric-arc rotary furnace. The presence of crushing refractory bodies during processing was found to increase the degree of aluminum recovery by about ten percent.

  19. Effect of pyrophosphate on the light scatter in KDP crystal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Pyrophosphate doped potassium dihydrogen phosphate (KDP) crystal was grown from aqueous solution by the temperature lowering method. Light scatter in KDP crystal was detected with the ultramicroscopic method. The light scatter in KDP crystal was aggravated when pyrophosphate was doped into the growth solution, which was distributed ununiformly in prism and pyramidal sectors of KDP crystal. Different effects of pyrophosphate on prism and pyramidal sectors of KDP crystal can explain this case. The transmission in this crystal was measured, showing that pyrophosphate affects the transmission evidently.

  20. Folding of RNA tertiary structure: Linkages between backbone phosphates, ions, and water.

    Science.gov (United States)

    Draper, David E

    2013-12-01

    The functional forms of many RNAs have compact architectures. The placement of phosphates within such structures must be influenced not only by the strong electrostatic repulsion between phosphates, but also by networks of interactions between phosphates, water, and mobile ions. This review first explores what has been learned of the basic thermodynamic constraints on these arrangements from studies of hydration and ions in simple DNA molecules, and then gives an overview of what is known about ion and water interactions with RNA structures. A brief survey of RNA crystal structures identifies several interesting architectures in which closely spaced phosphates share hydration shells or phosphates are buried in environments that provide intramolecular hydrogen bonds or site-bound cations. Formation of these structures must require strong coupling between the uptake of ions and release of water.

  1. High Methane Storage Capacity in Aluminum Metal–Organic Frameworks

    OpenAIRE

    Gándara, Felipe; Furukawa, Hiroyasu; Lee, Seungkyu; Yaghi, Omar M.

    2014-01-01

    The use of porous materials to store natural gas in vehicles requires large amounts of methane per unit of volume. Here we report the synthesis, crystal structure and methane adsorption properties of two new aluminum metal–organic frameworks, MOF-519 and MOF-520. Both materials exhibit permanent porosity and high methane volumetric storage capacity: MOF-519 has a volumetric capacity of 200 and 279 cm3 cm–3 at 298 K and 35 and 80 bar, respectively, and MOF-520 has a volumetric capacity of 162 ...

  2. Expanding sapphyrin: towards selective phosphate binding.

    Science.gov (United States)

    Katayev, Evgeny A; Boev, Nikolay V; Myshkovskaya, Ekaterina; Khrustalev, Victor N; Ustynyuk, Yu A

    2008-01-01

    The anion-templated syntheses and binding properties of novel macrocyclic oligopyrrole receptors in which pyrrole rings are linked through amide or imine bonds are described. The efficient synthesis was accomplished by anion-templated [1+1] Schiff-base condensation and acylation macrocyclization reactions. Free receptors and their host-guest complexes with hydrochloric acid, acetic acid, tetrabutylammonium chloride, and hydrogen sulfate were analyzed by single-crystal X-ray diffraction analysis. Stability constants with different tetrabutylammonium salts of inorganic acids were determined by standard 1H NMR and UV/Vis titration techniques in [D6]DMSO/0.5% water solution. According to the titration data, receptors containing three pyrrole rings (10 and 12) exhibit high affinity (log Ka=5-7) for bifluoride, acetate, and dihydrogen phosphate, and interact weakly with chloride and hydrogen sulfate. The amido-bipyrrole receptors 11 and 13 with four pyrrole rings exhibit 10(4)- and 10(2)-fold selectivity for dihydrogen phosphate, respectively, as inferred from competitive titrations in the presence of tetrabutylammonium acetate.

  3. Aluminum break-point contacts

    NARCIS (Netherlands)

    Heinemann, Martina; Groot, R.A. de

    1997-01-01

    Ab initio molecular dynamics is used to study the contribution of a single Al atom to an aluminum breakpoint contact during the final stages of breaking and the initial stages of the formation of such a contact. A hysteresis effect is found in excellent agreement with experiment and the form of the

  4. A Method of Lyophilizing Vaccines Containing Aluminum Salts into a Dry Powder Without Causing Particle Aggregation or Decreasing the Immunogenicity Following Reconstitution

    Science.gov (United States)

    Li, Xinran; Thakkar, Sachin G.; Ruwona, Tinashe B.; Williams, Robert O.; Cui, Zhengrong

    2015-01-01

    Many currently licensed and commercially available human vaccines contain aluminum salts as vaccine adjuvants. A major limitation with these vaccines is that they must not be exposed to freezing temperatures during transport or storage such that the liquid vaccine freezes, because freezing causes irreversible coagulation that damages the vaccines (e.g., loss of efficacy). Therefore, vaccines that contain aluminum salts as adjuvants are formulated as liquid suspensions and are required to be kept in cold chain (2–8°C) during transport and storage. Formulating vaccines adjuvanted with aluminum salts into dry powder that can be readily reconstituted before injection may address the limitation. Spray freeze-drying of vaccines with low concentrations of aluminum salts and high concentrations of trehalose alone, or a mixture of sugars and amino acids, as excipients can convert vaccines containing aluminum salts into dry powder, but fails to preserve the particle size and/or immunogenicity of the vaccines. In the present study, using ovalbumin as a model antigen adsorbed onto aluminum hydroxide or aluminum phosphate, a commercially available tetanus toxoid vaccine adjuvanted with potassium alum, a human hepatitis B vaccine adjuvanted with aluminum hydroxide, and a human papillomavirus vaccine adjuvanted with aluminum hydroxyphosphate sulfate, it was shown that vaccines containing a relatively high concentration of aluminum salts (i.e., up to ~1%, w/v, of aluminum hydroxide) can be converted into a dry powder by thin-film freezing followed by removal of the frozen solvent by lyophilization while using low levels of trehalose (i.e., as low as 2% w/v) as an excipient. Importantly, the thin-film freeze-drying process did not cause particle aggregation, nor decreased the immunogenicity of the vaccines. Moreover, repeated freezing-and-thawing of the dry vaccine powder did not cause aggregation. Thin-film freeze-drying is a viable platform technology to produce dry powders of

  5. Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine.

    Science.gov (United States)

    Chai, Bo; Wu, Yan; Liu, Pengming; Liu, Biao; Gao, Meiying

    2011-02-01

    The use of microorganisms to solubilize elemental phosphorus from insoluble rock phosphate is a promising method to greatly reduce not only environmental pollution but also production costs. Phosphate-solubilizing microorganisms were isolated from soils in China, and a fungus strain (PSM11-5) from a soil sample from an alum mine, with the highest phosphate solubilization potential, was selected and identified as a Penicillium sp. Strain PSM11-5 could grow in buffered medium with pH values between 3.0 and 8.0 and showed phosphate solubilizing activity at pH values from 5.0 to 8.0. It also exhibited a degree of tolerance to the heavy metal ions, Cd(2+), Co(2+), and Cr(6+). PSM11-5 could rapidly solubilize tricalcium phosphate, and a high phosphate-solubilizing efficiency of 98% was achieved in an optimized medium. The strain could solubilize rock phosphate and aluminum phosphate with a solubilizing efficiency of approximately 74.5%, but did not solubilize iron phosphate. Solubilization of phosphate depended on acidification. Analysis of PSM11-5 culture supernatants by capillary electrophoresis showed that tricalcium phosphate was solubilized to PO(4) (3-) and Ca(2+) , and that the organic acid produced by the fungus was mainly gluconic acid at approximately ca. 13 g l(-1). In addition, PSM11-5 produced ca. 830 mg l(-1) of citric acid when it was used to solubilize rock phosphate. These excellent properties of strain PSM11-5 suggest that the fungus has potential for agricultural and industrial utilization.

  6. Growth and corrosion resistance of molybdate modified zinc phosphate conversion coatings on hot-dip galvanized steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The modified zinc phosphate conversion coatings(ZPC) were formed on hot-dip galvanized(HDG) steel when 1.0 g/L sodium molybdate were added in a traditional zinc phosphate solution. The growth performance and corrosion resistance of the modified ZPC were investigated by SEM, open circuit potential(OCP), mass gain, potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) measurements and compared with those of the traditional ZPC. The results show that if sodium molybdate is added in a traditional zinc phosphate solution, the nucleation of zinc phosphate crystals is increased obviously; zinc phosphate crystals are changed from bulky acicular to fine flake and a more compact ZPC is obtained. Moreover, the mass gain and coverage of the modified ZPC are also boosted. The corrosion resistance of ZPI is increased with an increase in coverage, and thus the corrosion protection ability of the modified ZPC for HDG steel is more outstanding than that of the traditional ZPC.

  7. Tetramethylammonium dihydrogen phosphate hemihydrate

    Directory of Open Access Journals (Sweden)

    Kyoko Fujita

    2009-04-01

    Full Text Available In the crystal structure of the title compound, C4H12N+·H2PO4−·0.5H2O, the anions form an infinite hydrogen-bonded chain along the [1overline{1}0] direction. The anion chains are connected by water molecules, which lie on crystallographic twofold rotation axes, through O—H...O hydrogen bonds. These hydrogen bonds are almost perpendicular to the other hydrogen bonds which create an assembled structure of anions. In addition, C—H...O hydrogen bonds between anions and cations are observed.

  8. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, Lars; Andersen, Klaus E.; Egsgaard, Helge

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri......-m-cresyl phosphate, but no reaction to tri-p-cresyl phosphate. Gas chromatography of the tricresyl phosphate 5% pet. patch test material supplied from Trolab showed that it contained a mixture of a wide range of triaryl phosphates, including 0.08% triphenyl phosphate which is above the threshold for detecting...... triphenyl phosphate allergy in our patient....

  9. Aluminum-induced granulomas in a tattoo

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, N.; Lyberg, T.; Hensten-Pettersen, A.

    1989-05-01

    A patient who developed localized, granulomatous reactions in a tattoo is described. With the use of scanning electron microscopy and energy dispersive x-ray microanalysis, both aluminum and titanium particles were found in the involved skin sections. Intradermal provocation testing with separate suspensions of aluminum and titanium induced a positive response only in the case of aluminum. Examination by scanning electron microscopy and energy dispersive x-ray microanalysis of the provoked response established aluminum as the only nonorganic element present in the test site tissue. This is the first report of confirmed aluminum-induced, delayed-hypersensitivity granulomas in a tattoo.

  10. Precipitation of calcium phosphate at 40° C from neutral solution

    Science.gov (United States)

    Lundager Madsen, Hans E.; Christensson, Finn

    1991-12-01

    Calcium phosphate formation was studied in the pH range 5brushite (CaHPO 4·2H 2O) is the role product, and octacalcium phosphate predominates at low concentrations. ACP is subsequently transformed into brushite or apatite (Ca 5OH(PO 4) 3), the latter always crytocrystalline, but brushite crystals often redissolve and leave apatite as the end product. The formation and evolution of precipitates are chiefly governed by solubilities of the different crystalline phases; for apatite, the excess solubility of small crystals as determined by the Gibbs-Kelvin equation plays an important role.

  11. 现代磷化质量控制%Quality control of modern phosphating Part III-Troubleshooting

    Institute of Scientific and Technical Information of China (English)

    唐春华

    2014-01-01

    The problems occurred during normal temperature lightweight iron phosphate or iron-zinc phosphate conversion, normal or low temperature zinc phosphate conversion, moderate temperature zinc phosphate conversion, moderate temperature zinc phosphate conversion for shot-blasted fasteners, zinc phosphate conversion for cold-worked parts, moderate and high temperature black Zn-Mn-Ca and Mn-Ca phosphate conversion, and chemical oxidation (chromate or chromate-phosphate conversion) for aluminum and its alloys were analyzed. The corresponding treatment methods were presented.%分析了造成常温轻质磷酸铁或磷酸锌-铁浸渍磷化,常(低)温锌系浸渍磷化,中温锌系浸渍磷化,紧固件抛丸中温锌系浸渍磷化,冷加工件锌系浸渍磷化,中高温黑色Zn-Mn-Ca系、Mn-Ca系浸渍磷化,铝及铝合金化学氧化(铬氧化和铬磷化)等磷化工艺中出现各种质量问题的因素,给出了相应的处理方法。

  12. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.

    2017-07-01

    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  13. Variability of nitrate and phosphate

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Sundar, D.

    Nitrate and phosphate are important elements of the biogeochemical system of an estuary. Observations carried out during the dry season April-May 2002, and March 2003 and wet season September 2002, show temporal and spatial variability of these two...

  14. Recent advances in phosphate biosensors.

    Science.gov (United States)

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-07-01

    A number of biosensors have been developed for phosphate analysis particularly, concerning its negative impact within the environmental and biological systems. Enzymatic biosensors comprising either a single or multiple enzymatic system have been extensively used for the direct and indirect analysis of phosphate ions. Furthermore, some non-enzymatic biosensors, such as affinity-based biosensors, provide an alternative analytical approach with a higher selectivity. This article reviews the recent advances in the field of biosensor developed for phosphate estimation in clinical and environmental samples, concerning the techniques involved, and the sensitivity toward phosphate ions. The biosensors have been classified and discussed on the basis of the number of enzymes used to develop the analytical system, and a comparative analysis has been performed.

  15. Multilayer Clad Plate of Stainless Steel/Aluminum/Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    YUAN Jiawei; PANG Yuhua; LI Ting

    2011-01-01

    The 3, 5, 20 layer clad plate from austenitic stainless steel, pure aluminum and aluminum alloy sheets were fabricated in different ways. The stretch and interface properties were measured. The result shows that 20 layer clad plate is better than the others. Well-bonded clad plate was successfully obtained in the following procedure: Basic clad sheet from 18 layer A11060/A13003sheets was firstly obtained with an initial rolling reduction of 44% at 450 ℃, followed by annealing at 300 ℃, and then with reduction of 50% at 550 ℃ from STS304 on each side. The best 20 layer clad plate was of 129 MPa bonding strength and 225 MPa stretch strength.

  16. Hydrogen storage in sodium aluminum hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  17. Functionalizing Designer DNA Crystals

    Science.gov (United States)

    Chandrasekaran, Arun Richard

    Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine

  18. Modeling dissolution in aluminum alloys

    Science.gov (United States)

    Durbin, Tracie Lee

    2005-07-01

    Aluminum and its alloys are used in many aspects of modern life, from soda cans and household foil to the automobiles and aircraft in which we travel. Aluminum alloy systems are characterized by good workability that enables these alloys to be economically rolled, extruded, or forged into useful shapes. Mechanical properties such as strength are altered significantly with cold working, annealing, precipitation-hardening, and/or heat-treatments. Heat-treatable aluminum alloys contain one or more soluble constituents such as copper, lithium, magnesium, silicon and zinc that individually, or with other elements, can form phases that strengthen the alloy. Microstructure development is highly dependent on all of the processing steps the alloy experiences. Ultimately, the macroscopic properties of the alloy depend strongly on the microstructure. Therefore, a quantitative understanding of the microstructural changes that occur during thermal and mechanical processing is fundamental to predicting alloy properties. In particular, the microstructure becomes more homogeneous and secondary phases are dissolved during thermal treatments. Robust physical models for the kinetics of particle dissolution are necessary to predict the most efficient thermal treatment. A general dissolution model for multi-component alloys has been developed using the front-tracking method to study the dissolution of precipitates in an aluminum alloy matrix. This technique is applicable to any alloy system, provided thermodynamic and diffusion data are available. Treatment of the precipitate interface is explored using two techniques: the immersed-boundary method and a new technique, termed here the "sharp-interface" method. The sharp-interface technique is based on a variation of the ghost fluid method and eliminates the need for corrective source terms in the characteristic equations. In addition, the sharp-interface method is shown to predict the dissolution behavior of precipitates in aluminum

  19. 21 CFR 573.320 - Diammonium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diammonium phosphate. 573.320 Section 573.320 Food... Additive Listing § 573.320 Diammonium phosphate. The food additive diammonium phosphate may be safely used... crude protein from diammonium phosphate, adequate directions for use and a prominent statement,...

  20. 21 CFR 184.1434 - Magnesium phosphate.

    Science.gov (United States)

    2010-04-01

    ... solution of magnesite with phosphoric acid. (b) Magnesium phosphate, dibasic, meets the specifications of... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes...

  1. Combined in situ PM-IRRAS/QCM studies of water adsorption on plasma modified aluminum oxide/aluminum substrates

    Science.gov (United States)

    Giner, Ignacio; Maxisch, Michael; Kunze, Christian; Grundmeier, Guido

    2013-10-01

    Water adsorption on plasma modified oxyhydroxide covered aluminum surfaces was analyzed by means of a set-up combining in situ photoelastic modulated infrared reflection absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance (QCM) in a low-temperature plasma cell. The chemical structure of the surface before and after the plasma treatment was moreover characterized by means of X-ray photoelectron spectroscopy (XPS) analysis. The surface chemistry of oxide covered aluminum was modified by oxidative and reductive low-temperature plasma pre-treatments. The Ar-plasma treatment reduced the surface hydroxyl density and effectively removed adsorbed organic contaminations. Surface modification by means of a water plasma treatment led to an increased surface hydroxyl density as well as an increase of the thickness of the native oxide film. The adsorption of water at atmospheric pressures on plasma modified aluminum surfaces led to a superimposition of reversible water layer adsorption and a simultaneous increase of the oxyhydroxide film thickness as a result of a chemisorption process. The amount of physisorbed water increased with the surface hydroxyl density whereas the chemisorption process was most significant for the surface after Ar-plasma treatment and almost negligible for the already water plasma treated surface.

  2. Synthesis of SAPO-56 with controlled crystal size

    Science.gov (United States)

    Wu, Ting; Feng, Xuhui; Carreon, Maria L.; Carreon, Moises A.

    2017-03-01

    Herein, we present the hydrothermal synthesis of SAPO-56 crystals with relatively controlled crystal/particle size. The effects of water content, aluminum source, gel composition, stirring, crystallization temperature and time, as well as the incorporation of crystal growth inhibitors during synthesis were systematically investigated. The synthesized SAPO-56 crystals displayed BET surface areas as high as ˜630 m2 g-1 with relative narrow size distribution in the ˜5-60 μm range. Nitrogen BET surface areas in the 451 to 631 m2 g-1 range were observed. Decreasing the crystallization temperature from 220 to 210 °C helped to decrease the average SAPO-56 crystal size. Diluted gel compositions promoted the formation of smaller crystals. Crystal growth inhibitors were found to be helpful in reducing crystal size and narrow the size distribution. Specifically, ˜5 μm SAPO-56 crystals displaying narrow size distribution were synthesized employing aluminum-tri-sec-butoxide as Al source, high water content, and high stirring rates.

  3. Fast rate fracture of aluminum using high intensity lasers

    Science.gov (United States)

    Dalton, Douglas Allen

    Laser induced shock experiments were performed to study the dynamics of various solid state material processes, including shock-induced melt, fast rate fracture, and elastic to plastic response. Fast rate fracture and dynamic yielding are greatly influenced by microstructural features such as grain boundaries, impurity particles and alloying atoms. Fast fracture experiments using lasers are aimed at studying how material microstructure affects the tensile fracture characteristics at strain rates above 106 s-1. We used the Z-Beamlet Laser at Sandia National Laboratories to drive shocks via ablation and we measured the maximum tensile stress of aluminum targets with various microstructures. Using a velocity interferometer and sample recovery, we are able to measure the maximum tensile stress and determine the source of fracture initiation in these targets. We have explored the role that grain size, impurity particles and alloying in aluminum play in dynamic yielding and spall fracture at tensile strain rates of ˜3x106 s-1. Preliminary results and analysis indicated that material grain size plays a vital role in the fracture morphology and spall strength results. In a study with single crystal aluminum specimens, velocity measurements and fracture analysis revealed that a smaller amplitude tensile stress was initiated by impurity particles; however, these particles served no purpose in dynamic yielding. An aluminum-magnesium alloy with various grain sizes presented the lowest spall strength, but the greatest dynamic yield strength. Fracture mode in this alloy was initiated by both grain boundaries and impurity particles. With respect to dynamic yielding, alloying elements such as magnesium serve to decrease the onset of plastic response. The fracture stress and yield stress showed no evidence of grain size dependence. Hydrodynamic simulations with material strength models are used to compare with our experiments. In order to study the strain rate dependence of spall

  4. Inducing Mineral Precipitation in Groundwater by Addition of Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Karen E. Wright; Yoshiko Fujita; Thomas Hartmann; Mark Conrad

    2011-10-01

    Induced precipitation of phosphate minerals to scavenge trace metals and radionuclides from groundwater is a potential remediation approach for contaminated aquifers. Phosphate minerals can sequester trace elements by primary mineral formation, solid solution formation and/or adsorption, and they are poorly soluble under many environmental conditions, making them attractive for long-term sustainable remediation. The success of such engineered schemes will depend on the particular mineral phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for induced phosphate mineral precipitation rely on the stimulation of native groundwater populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 ml-1) within the precipitation medium. We also tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). The experiments showed that the general progression of mineral precipitation was similar under all of the conditions, with initial formation of amorphous calcium carbonate, and transformation to poorly crystalline hydroxyapatite (HAP) by the end of the week-long experiments. The presence of the bacterial cells appeared to delay precipitation, although by the end of 7 days the overall extent of precipitation was similar for all of the treatments. The stoichiometry of the final precipitates as well as results of Rietveld refinement of x-ray diffraction data indicated that the treatments including organic acids and bacterial cells resulted in increased distortion of the HAP crystal lattice, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the phosphate minerals was decreased in the treatments

  5. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    Science.gov (United States)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  6. Diffusion-bonded beryllium aluminum optical structures

    Science.gov (United States)

    Grapes, Thomas F.

    2003-12-01

    Beryllium aluminum material can present significant advantages for optical support structures. A likely advantage of beryllium aluminum compared to aluminum or titanium for such structures is its higher specific stiffness. However, beryllium aluminum material is significantly more expensive than most competing materials. The cost problem with beryllium aluminum is exacerbated if fabrication methods that result in near net shape parts are not used. Near net shape methods result in the least amount of material "thrown away" in the fabrication process. Casting is a primary example of near net shape manufacturing that is appropriate for some optical support structures. Casting aluminum, and other materials as well, is common. Casting of beryllium aluminum is very difficult, however, and has not had significant success. Diffusion bonding - a different approach for achieving near net shape beryllium aluminum optical support structures, was pursued and accomplished. Diffusion bonding is a term used to describe the joining of solid metal pieces under high temperature and pressure, but without melting. Three different optical support structures were designed and built of beryllium aluminum using diffusion bonding. Relatively small solid beryllium aluminum pieces were arranged together and then joined under hot isostatic pressure conditions. The resulting relatively large pressure bonded part was then machined to achieve the final product. Significant cost savings as compared to machining the part from a solid block were realized. Difficulties achieving diffusion bonds in complex joints were experienced and addressed.

  7. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  8. Aluminum/air electrochemical cells

    OpenAIRE

    Wang, Lei; 王雷

    2014-01-01

    Aluminum (Al) is a very promising energy carrier given its high capacity and energy density, low cost, earth abundance and environmental benignity. The Al/air battery as a kind of metal/air electrochemical cell attracts tremendous attention. Traditional Al/air batteries suffer from the self-corrosion and related safety problems. In this work, three new approaches were investigated to tackle these challenges and to develop high-performance Al/air cells: (1) incorporate an additional hydrogen/a...

  9. Mechanisms of Antigen Adsorption Onto an Aluminum-Hydroxide Adjuvant Evaluated by High-Throughput Screening.

    Science.gov (United States)

    Jully, Vanessa; Mathot, Frédéric; Moniotte, Nicolas; Préat, Véronique; Lemoine, Dominique

    2016-06-01

    The adsorption mechanism of antigen on aluminum adjuvant can affect antigen elution at the injection site and hence the immune response. Our aim was to evaluate adsorption onto aluminum hydroxide (AH) by ligand exchange and electrostatic interactions of model proteins and antigens, bovine serum albumin (BSA), β-casein, ovalbumin (OVA), hepatitis B surface antigen, and tetanus toxin (TT). A high-throughput screening platform was developed to measure adsorption isotherms in the presence of electrolytes and ligand exchange by a fluorescence-spectroscopy method that detects the catalysis of 6,8-difluoro-4-methylumbelliferyl phosphate by free hydroxyl groups on AH. BSA adsorption depended on predominant electrostatic interactions. Ligand exchange contributes to the adsorption of β-casein, OVA, hepatitis B surface antigen, and TT onto AH. Based on relative surface phosphophilicity and adsorption isotherms in the presence of phosphate and fluoride, the capacities of the proteins to interact with AH by ligand exchange followed the trend: OVA < β-casein < BSA < TT. This could be explained by both the content of ligands available in the protein structure for ligand exchange and the antigen's molecular weight. The high-throughput screening platform can be used to better understand the contributions of ligand exchange and electrostatic attractions governing the interactions between an antigen adsorbed onto aluminum-containing adjuvant. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Purification technology of molten aluminum

    Institute of Scientific and Technical Information of China (English)

    孙宝德; 丁文江; 疏达; 周尧和

    2004-01-01

    Various purification methods were explored to eliminate the dissolved hydrogen and nonmetallic inclusions from molten aluminum alloys. A novel rotating impeller head with self-oscillation nozzles or an electromagnetic valve in the gas circuit was used to produce pulse gas currents for the rotary impeller degassing method. Water simulation results show that the size of gas bubbles can be decreased by 10%-20% as compared with the constant gas current mode. By coating ceramic filters or particles with active flux or enamels, composite filters were used to filter the scrap A356 alloy and pure aluminum. Experimental results demonstrate that better filtration efficiency and operation performance can be obtained. Based on numerical calculations, the separation efficiency of inclusions by high frequency magnetic field can be significantly improved by using a hollow cylinder-like separator or utilizing the effects of secondary flow of the melt in a square separator. A multi-stage and multi-media purification platform based on these methods was designed and applied in on-line processing of molten aluminum alloys. Mechanical properties of the processed scrap A356 alloy are greatly improved by the composite purification.

  11. Microbial corrosion of aluminum alloy.

    Science.gov (United States)

    Yang, S S; Chen, C Y; Wei, C B; Lin, Y T

    1996-11-01

    Several microbes were isolated from the contaminated fuel-oil in Taiwan and the microbial corrosion of aluminum alloy A356-T6 was tested by MIL-STD-810E test method. Penicillium sp. AM-F5 and Cladosporium resinac ATCC 22712 had significant adsorption and pitting on the surface of aluminum alloy, Pseudomonas acruginosa AM-B5 had weak adsorption and some precipitation in the bottom, and Candida sp. AM-Y1 had the less adsorption and few cavities formation on the surface. pH of the aqueous phase decreased 0.3 to 0.7 unit for 4 months of incubation. The corrosion of aluminum alloy was very significant in the cultures of Penicillium sp. AM-F2, Penicillium sp. AM-F5 and C. resinac ATCC 22712. The major metabolites in the aqueous phase with the inoculation of C. resinac were citric acid and oxalic acid, while succinic acid and fumaric acid were the minors.

  12. Synthesis of calcium phosphates nanoparticles in liotropic liquid crystals

    OpenAIRE

    Daniella Dias Palombino de Campos

    2012-01-01

    Resumo: Sistemas auto-organizados, preparados com surfactantes nonilfenil etoxilados com diferentes tamanhos de cadeia etoxilada, foram utilizados para sintetizar nanopartículas de hidroxiapatita (HAP - Ca5(PO4)3OH), que é o fosfato de cálcio majoritariamente presente nos tecidos mineralizados dos vertebrados. O efeito do tamanho do grupo etoxilado do surfactante foi avaliado tanto na formação dos sistemas auto-organizados quanto nas propriedades das partículas de HAP precipitadas in situ nes...

  13. Structural characterization of a ribose-5-phosphate isomerase B from the pathogenic fungus Coccidioides immitis

    Directory of Open Access Journals (Sweden)

    Leibly David J

    2011-10-01

    Full Text Available Abstract Background Ribose-5-phosphate isomerase is an enzyme that catalyzes the interconversion of ribose-5-phosphate and ribulose-5-phosphate. This family of enzymes naturally occurs in two distinct classes, RpiA and RpiB, which play an important role in the pentose phosphate pathway and nucleotide and co-factor biogenesis. Results Although RpiB occurs predominantly in bacteria, here we report crystal structures of a putative RpiB from the pathogenic fungus Coccidioides immitis. A 1.9 Å resolution apo structure was solved by combined molecular replacement and single wavelength anomalous dispersion (SAD phasing using a crystal soaked briefly in a solution containing a high concentration of iodide ions. RpiB from C. immitis contains modest sequence and high structural homology to other known RpiB structures. A 1.8 Å resolution phosphate-bound structure demonstrates phosphate recognition and charge stabilization by a single positively charged residue whereas other members of this family use up to five positively charged residues to contact the phosphate of ribose-5-phosphate. A 1.7 Å resolution structure was obtained in which the catalytic base of C. immitis RpiB, Cys76, appears to form a weakly covalent bond with the central carbon of malonic acid with a bond distance of 2.2 Å. This interaction may mimic that formed by the suicide inhibitor iodoacetic acid with RpiB. Conclusion The C. immitis RpiB contains the same fold and similar features as other members of this class of enzymes such as a highly reactive active site cysteine residue, but utilizes a divergent phosphate recognition strategy and may recognize a different substrate altogether.

  14. Biomimetic calcium phosphate coatings on recombinant spider silk fibres

    Energy Technology Data Exchange (ETDEWEB)

    Yang Liang; Habibovic, Pamela; Van Blitterswijk, Clemens A [Department of Tissue Regeneration, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Hedhammar, My; Johansson, Jan [Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, the Biomedical Centre, Box 575, 751 23 Uppsala (Sweden); Blom, Tobias; Leifer, Klaus [Department of Engineering Sciences, Uppsala University, Box 534, S-751 21 Uppsala (Sweden)

    2010-08-01

    Calcium phosphate ceramic coatings, applied on surfaces of metallic and polymeric biomaterials, can improve their performance in bone repair and regeneration. Spider silk is biocompatible, strong and elastic, and hence an attractive biomaterial for applications in connective tissue repair. Recently, artificial spider silk, with mechanical and structural characteristics similar to those of native spider silk, has been produced from recombinant minispidroins. In the present study, supersaturated simulated body fluid was used to deposit calcium phosphate coatings on recombinant spider silk fibres. The mineralization process was followed in time using scanning electron microscopy equipped with an energy dispersive x-ray (EDX) detector and Raman spectroscope. Focused ion beam technology was used to produce a cross section of a coated fibre, which was further analysed by EDX. Preliminary in vitro experiments using a culture of bone marrow-derived human mesenchymal stem cells (hMSCs) on coated fibres were also performed. This study showed that recombinant spider silk fibres were successfully coated with a homogeneous and thick crystalline calcium phosphate layer. In the course of the mineralization process from modified simulated body fluid, sodium chloride crystals were first deposited on the silk surface, followed by the deposition of a calcium phosphate layer. The coated silk fibres supported the attachment and growth of hMSCs.

  15. Axion Crystals

    CERN Document Server

    Ozaki, Sho

    2016-01-01

    The low-energy effective theories for gapped insulators are classified by three parameters: permittivity $\\epsilon$, permeability $\\mu$, and theta angle $\\theta$. Crystals with periodic $\\epsilon$ are known as photonic crystals. We here study the band structure of photons in a new type of crystals with periodic $\\theta$ (modulo $2\\pi$) in space, which we call the axion crystals. We find that the axion crystals have a number of new properties that the usual photonic crystals do not possess, such as the helicity-dependent photonic band gaps and the nonrelativistic gapless dispersion relation at small momentum. We briefly discuss possible realizations of axion crystals in condensed matter systems as well as high-energy physics.

  16. Hexane cracking over steamed phosphated zeolite H-ZSM-5: promotional effect on catalyst performance and stability.

    Science.gov (United States)

    van der Bij, Hendrik E; Meirer, Florian; Kalirai, Sam; Wang, Jian; Weckhuysen, Bert M

    2014-12-15

    The nature behind the promotional effect of phosphorus on the catalytic performance and hydrothermal stability of zeolite H-ZSM-5 has been studied using a combination of (27) Al and (31) P MAS NMR spectroscopy, soft X-ray absorption tomography and n-hexane catalytic cracking, complemented with NH3 temperature-programmed desorption and N2 physisorption. Phosphated H-ZSM-5 retains more acid sites and catalytic cracking activity after steam treatment than its non-phosphated counterpart, while the selectivity towards propylene is improved. It was established that the stabilization effect is twofold. First, the local framework silico-aluminophosphate (SAPO) interfaces, which form after phosphatation, are not affected by steam and hold aluminum atoms fixed in the zeolite lattice, preserving the pore structure of zeolite H-ZSM-5. Second, the four-coordinate framework aluminum can be forced into a reversible sixfold coordination by phosphate. These species remain stationary in the framework under hydrothermal conditions as well. Removal of physically coordinated phosphate after steam-treatment leads to an increase in the number of strong acid sites and increased catalytic activity. We propose that the improved selectivity towards propylene during catalytic cracking can be attributed to local SAPO interfaces located at channel intersections, where they act as impediments in the formation of bulky carbenium ions and therefore suppress the bimolecular cracking mechanism.

  17. Optical Transmittance of Anodically Oxidized Aluminum Alloy

    Science.gov (United States)

    Saito, Mitsunori; Shiga, Yasunori; Miyagi, Mitsunobu; Wada, Kenji; Ono, Sachiko

    1995-06-01

    Optical transmittance and anisotropy of anodic oxide films that were made from pure aluminum and an aluminum alloy (A5052) were studied. The alloy oxide film exhibits an enhanced polarization function, particularly when anodization is carried out at a large current density. It was revealed by chemical analysis that the alloy oxide film contains a larger amount of unoxidized aluminum than the pure-aluminum oxide film. The polarization function can be elucidated by considering unoxidized aluminum particles that are arranged in the columnar structure of the alumina film. Electron microscope observation showed that many holes exist in the alloy oxide film, around which columnar cells are arranged irregularly. Such holes and irregular cell arrangement cause the increase in the amount of unoxidized aluminum, and consequently induces scattering loss.

  18. [Link between aluminum neurotoxicity and neurodegenerative disorders].

    Science.gov (United States)

    Kawahara, Masahiro

    2016-07-01

    Aluminum is an old element that has been known for a long time, but some of its properties are only now being discovered. Although environmentally abundant, aluminum is not essential for life; in fact, because of its specific chemical properties, aluminum inhibits more than 200 biologically important functions and exerts various adverse effects in plants, animals, and humans. Aluminum is a widely recognized neurotoxin. It has been suggested that there is a relationship between exposure to aluminum and neurodegenerative diseases, including dialysis encephalopathy, amyotrophic lateral sclerosis and parkinsonism dementia in the Kii Peninsula and Guam, as well as Alzheimer' s disease: however, this claim remains to be verified. In this chapter, we review the detailed characteristics of aluminum neurotoxicity and the link between Alzheimer' s disease and other neurodegenerative diseases, based on recent findings on metal-metal interactions and the functions of metalloproteins in synapses.

  19. COMPARATIVE ANALYSIS OF STEEL AND ALUMINUM STRUCTURES

    Directory of Open Access Journals (Sweden)

    Josip Peko

    2016-12-01

    Full Text Available This study examined steel and aluminum variants of modern exhibition structures in which the main design requirements include low weight (increased span/depth ratio, transportation, and construction and durability (resistance to corrosion. This included a design situation in which the structural application of aluminum alloys provided an extremely convenient and practical solution. Viability of an aluminum structure depends on several factors and requires a detailed analysis. The overall conclusion of the study indicated that aluminum can be used as a structural material and as a viable alternative to steel for Croatian snow and wind load values and evidently in cases in which positive properties of aluminum are required for structural design. Furthermore, a structural fire analysis was conducted for an aluminum variant structure by using a zone model for realistic fire analysis. The results suggested that passive fire protection for the main structural members was not required in the event of areal fire with duration of 60 min.

  20. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.

    Science.gov (United States)

    Pikal-Cleland, Katherine A; Cleland, Jeffrey L; Anchordoquy, Thomas J; Carpenter, John F

    2002-09-01

    Previous studies have established that the selective precipitation of a less soluble buffer component during freezing can induce a significant pH shift in the freeze concentrate. During freezing of sodium phosphate solutions, crystallization of the disodium salt can produce a pH decrease as great as 3 pH units which can dramatically affect protein stability. The objective of our study was to determine how the presence of glycine (0-500 mM), a commonly used bulking agent in pharmaceutical protein formulations, affects the pH changes normally observed during freezing in sodium phosphate buffer solutions and to determine whether these pH changes contribute to instability of model proteins in glycine/phosphate formulations. During freezing in sodium phosphate buffers, the presence of glycine significantly influenced the pH. Glycine at the lower concentrations (phosphate buffer, possibly by reducing the nucleation rate of salt and thereby decreasing the extent of buffer salt crystallization. The presence of glycine at higher concentration (> 100 mM) in the sodium phosphate buffer resulted in a more complete crystallization of the disodium salt as indicated by the frozen pH values closer to the equilibrium value (pH 3.6). Although high concentrations of glycine can facilitate more buffer salt crystallization and these pH shifts may prove to be potentially damaging to the protein, glycine, in its amorphous state, can also act to stabilize a protein via the preferential exclusion mechanism.