WorldWideScience

Sample records for cryptographic hash algorithm

  1. Cryptographic quantum hashing

    Science.gov (United States)

    Ablayev, F. M.; Vasiliev, A. V.

    2014-02-01

    We present a version of quantum hash functions based on non-binary discrete functions. The proposed quantum procedure is ‘classical-quantum’, that is, it takes a classical bit string as an input and produces a quantum state. The resulting function has the property of a one-way function (pre-image resistance); in addition it has properties analogous to classical cryptographic hash second pre-image resistance and collision resistance. We also show that the proposed function can be naturally used in a quantum digital signature protocol.

  2. Cryptographic quantum hashing

    International Nuclear Information System (INIS)

    Ablayev, F M; Vasiliev, A V

    2014-01-01

    We present a version of quantum hash functions based on non-binary discrete functions. The proposed quantum procedure is ‘classical-quantum’, that is, it takes a classical bit string as an input and produces a quantum state. The resulting function has the property of a one-way function (pre-image resistance); in addition it has properties analogous to classical cryptographic hash second pre-image resistance and collision resistance. We also show that the proposed function can be naturally used in a quantum digital signature protocol. (letter)

  3. Cryptographic Hash Functions

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Knudsen, Lars Ramkilde

    2010-01-01

    functions, also called message authentication codes (MACs) serve data integrity and data origin authentication in the secret key setting. The building blocks of hash functions can be designed using block ciphers, modular arithmetic or from scratch. The design principles of the popular Merkle...

  4. 76 FR 11433 - Federal Transition To Secure Hash Algorithm (SHA)-256

    Science.gov (United States)

    2011-03-02

    ... ADMINISTRATION [FAR-N-2011-01; Docket No. 2011-0083; Sequence 1] Federal Transition To Secure Hash Algorithm (SHA... acquisition community to transition to Secure Hash Algorithm SHA-256. SHA-256 is a cryptographic hash function... persons attending. Please cite ``Federal Transition to Secure Hash Algorithm SHA-256'' in all...

  5. Chaos-based hash function (CBHF) for cryptographic applications

    International Nuclear Information System (INIS)

    Amin, Mohamed; Faragallah, Osama S.; Abd El-Latif, Ahmed A.

    2009-01-01

    As the core of cryptography, hash is the basic technique for information security. Many of the hash functions generate the message digest through a randomizing process of the original message. Subsequently, a chaos system also generates a random behavior, but at the same time a chaos system is completely deterministic. In this paper, an algorithm for one-way hash function construction based on chaos theory is introduced. Theoretical analysis and computer simulation indicate that the algorithm can satisfy all performance requirements of hash function in an efficient and flexible manner and secure against birthday attacks or meet-in-the-middle attacks, which is good choice for data integrity or authentication.

  6. Chaos-based hash function (CBHF) for cryptographic applications

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Mohamed [Dept. of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511 (Egypt)], E-mail: mamin04@yahoo.com; Faragallah, Osama S. [Dept. of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952 (Egypt)], E-mail: osam_sal@yahoo.com; Abd El-Latif, Ahmed A. [Dept. of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom 32511 (Egypt)], E-mail: ahmed_rahiem@yahoo.com

    2009-10-30

    As the core of cryptography, hash is the basic technique for information security. Many of the hash functions generate the message digest through a randomizing process of the original message. Subsequently, a chaos system also generates a random behavior, but at the same time a chaos system is completely deterministic. In this paper, an algorithm for one-way hash function construction based on chaos theory is introduced. Theoretical analysis and computer simulation indicate that the algorithm can satisfy all performance requirements of hash function in an efficient and flexible manner and secure against birthday attacks or meet-in-the-middle attacks, which is good choice for data integrity or authentication.

  7. The FPGA realization of the general cellular automata based cryptographic hash functions: Performance and effectiveness

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2014-01-01

    Full Text Available In the paper the author considers hardware implementation of the GRACE-H family general cellular automata based cryptographic hash functions. VHDL is used as a language and Altera FPGA as a platform for hardware implementation. Performance and effectiveness of the FPGA implementations of GRACE-H hash functions were compared with Keccak (SHA-3, SHA-256, BLAKE, Groestl, JH, Skein hash functions. According to the performed tests, performance of the hardware implementation of GRACE-H family hash functions significantly (up to 12 times exceeded performance of the hardware implementation of previously known hash functions, and effectiveness of that hardware implementation was also better (up to 4 times.

  8. Analysis and Implementation of Cryptographic Hash Functions in Programmable Logic Devices

    Directory of Open Access Journals (Sweden)

    Tautvydas Brukštus

    2016-06-01

    Full Text Available In this day’s world, more and more focused on data pro-tection. For data protection using cryptographic science. It is also important for the safe storage of passwords for this uses a cryp-tographic hash function. In this article has been selected the SHA-256 cryptographic hash function to implement and explore, based on fact that it is now a popular and safe. SHA-256 cryp-tographic function did not find any theoretical gaps or conflict situations. Also SHA-256 cryptographic hash function used cryptographic currencies. Currently cryptographic currency is popular and their value is high. For the measurements have been chosen programmable logic integrated circuits as they less effi-ciency then ASIC. We chose Altera Corporation produced prog-rammable logic integrated circuits. Counting speed will be inves-tigated by three programmable logic integrated circuit. We will use programmable logic integrated circuits belong to the same family, but different generations. Each programmable logic integ-rated circuit made using different dimension technology. Choo-sing these programmable logic integrated circuits: EP3C16, EP4CE115 and 5CSEMA5F31. To compare calculations perfor-mances parameters are provided in the tables and graphs. Re-search show the calculation speed and stability of different prog-rammable logic circuits.

  9. SPONGENT: The Design Space of Lightweight Cryptographic Hashing

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Knezevic, Miroslav; Leander, Gregor

    2013-01-01

    construction instantiated with present-type permutations. The resulting family of hash functions is called spongent. We propose 13 spongent variants--or different levels of collision and (second) preimage resistance as well as for various implementation constraints. For each of them, we provide several ASIC...

  10. Practical Attacks on AES-like Cryptographic Hash Functions

    DEFF Research Database (Denmark)

    Kölbl, Stefan; Rechberger, Christian

    2015-01-01

    to drastically reduce the complexity of attacks to very practical values for reduced-round versions. Furthermore, we describe new and practical attacks on Whirlpool and the recently proposed GOST R hash function with one or more of the following properties: more rounds, less time/memory complexity, and more...

  11. MiMC: Efficient encryption and cryptographic hashing with minimal multiplicative complexity

    DEFF Research Database (Denmark)

    Albrecht, Martin; Grassi, Lorenzo; Rechberger, Christian

    2016-01-01

    and cryptographic hash functions is to reconsider and simplify the round function of the Knudsen-Nyberg cipher from 1995. The mapping F(x) := x3 is used as the main component there and is also the main component of our family of proposals called “MiMC”. We study various attack vectors for this construction and give...... a new attack vector that outperforms others in relevant settings. Due to its very low number of multiplications, the design lends itself well to a large class of applications, especially when the depth does not matter but the total number of multiplications in the circuit dominates all aspects...

  12. Building Modern GPU Brute-Force Collision Resistible Hash Algorithm

    Directory of Open Access Journals (Sweden)

    L. A. Nadeinsky

    2012-03-01

    Full Text Available The article considers methods of fixing storing passwords in hashed form security vulnerability. Suggested hashing algorithm is based on the specifics of architecture of modern graphics processors.

  13. Cryptanalysis of Tav-128 hash function

    DEFF Research Database (Denmark)

    Kumar, Ashish; Sanadhya, Somitra Kumar; Gauravaram, Praveen

    2010-01-01

    Many RFID protocols use cryptographic hash functions for their security. The resource constrained nature of RFID systems forces the use of light weight cryptographic algorithms. Tav-128 is one such 128-bit light weight hash function proposed by Peris-Lopez et al. for a low-cost RFID tag authentic...

  14. A Novel Perceptual Hash Algorithm for Multispectral Image Authentication

    Directory of Open Access Journals (Sweden)

    Kaimeng Ding

    2018-01-01

    Full Text Available The perceptual hash algorithm is a technique to authenticate the integrity of images. While a few scholars have worked on mono-spectral image perceptual hashing, there is limited research on multispectral image perceptual hashing. In this paper, we propose a perceptual hash algorithm for the content authentication of a multispectral remote sensing image based on the synthetic characteristics of each band: firstly, the multispectral remote sensing image is preprocessed with band clustering and grid partition; secondly, the edge feature of the band subsets is extracted by band fusion-based edge feature extraction; thirdly, the perceptual feature of the same region of the band subsets is compressed and normalized to generate the perceptual hash value. The authentication procedure is achieved via the normalized Hamming distance between the perceptual hash value of the recomputed perceptual hash value and the original hash value. The experiments indicated that our proposed algorithm is robust compared to content-preserved operations and it efficiently authenticates the integrity of multispectral remote sensing images.

  15. Cryptographic protocol security analysis based on bounded constructing algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An efficient approach to analyzing cryptographic protocols is to develop automatic analysis tools based on formal methods. However, the approach has encountered the high computational complexity problem due to reasons that participants of protocols are arbitrary, their message structures are complex and their executions are concurrent. We propose an efficient automatic verifying algorithm for analyzing cryptographic protocols based on the Cryptographic Protocol Algebra (CPA) model proposed recently, in which algebraic techniques are used to simplify the description of cryptographic protocols and their executions. Redundant states generated in the analysis processes are much reduced by introducing a new algebraic technique called Universal Polynomial Equation and the algorithm can be used to verify the correctness of protocols in the infinite states space. We have implemented an efficient automatic analysis tool for cryptographic protocols, called ACT-SPA, based on this algorithm, and used the tool to check more than 20 cryptographic protocols. The analysis results show that this tool is more efficient, and an attack instance not offered previously is checked by using this tool.

  16. A hash-based image encryption algorithm

    Science.gov (United States)

    Cheddad, Abbas; Condell, Joan; Curran, Kevin; McKevitt, Paul

    2010-03-01

    There exist several algorithms that deal with text encryption. However, there has been little research carried out to date on encrypting digital images or video files. This paper describes a novel way of encrypting digital images with password protection using 1D SHA-2 algorithm coupled with a compound forward transform. A spatial mask is generated from the frequency domain by taking advantage of the conjugate symmetry of the complex imagery part of the Fourier Transform. This mask is then XORed with the bit stream of the original image. Exclusive OR (XOR), a logical symmetric operation, that yields 0 if both binary pixels are zeros or if both are ones and 1 otherwise. This can be verified simply by modulus (pixel1, pixel2, 2). Finally, confusion is applied based on the displacement of the cipher's pixels in accordance with a reference mask. Both security and performance aspects of the proposed method are analyzed, which prove that the method is efficient and secure from a cryptographic point of view. One of the merits of such an algorithm is to force a continuous tone payload, a steganographic term, to map onto a balanced bits distribution sequence. This bit balance is needed in certain applications, such as steganography and watermarking, since it is likely to have a balanced perceptibility effect on the cover image when embedding.

  17. The LabelHash algorithm for substructure matching

    Directory of Open Access Journals (Sweden)

    Bryant Drew H

    2010-11-01

    Full Text Available Abstract Background There is an increasing number of proteins with known structure but unknown function. Determining their function would have a significant impact on understanding diseases and designing new therapeutics. However, experimental protein function determination is expensive and very time-consuming. Computational methods can facilitate function determination by identifying proteins that have high structural and chemical similarity. Results We present LabelHash, a novel algorithm for matching substructural motifs to large collections of protein structures. The algorithm consists of two phases. In the first phase the proteins are preprocessed in a fashion that allows for instant lookup of partial matches to any motif. In the second phase, partial matches for a given motif are expanded to complete matches. The general applicability of the algorithm is demonstrated with three different case studies. First, we show that we can accurately identify members of the enolase superfamily with a single motif. Next, we demonstrate how LabelHash can complement SOIPPA, an algorithm for motif identification and pairwise substructure alignment. Finally, a large collection of Catalytic Site Atlas motifs is used to benchmark the performance of the algorithm. LabelHash runs very efficiently in parallel; matching a motif against all proteins in the 95% sequence identity filtered non-redundant Protein Data Bank typically takes no more than a few minutes. The LabelHash algorithm is available through a web server and as a suite of standalone programs at http://labelhash.kavrakilab.org. The output of the LabelHash algorithm can be further analyzed with Chimera through a plugin that we developed for this purpose. Conclusions LabelHash is an efficient, versatile algorithm for large-scale substructure matching. When LabelHash is running in parallel, motifs can typically be matched against the entire PDB on the order of minutes. The algorithm is able to identify

  18. Robust hashing for 3D models

    Science.gov (United States)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  19. Automated detection and classification of cryptographic algorithms in binary programs through machine learning

    OpenAIRE

    Hosfelt, Diane Duros

    2015-01-01

    Threats from the internet, particularly malicious software (i.e., malware) often use cryptographic algorithms to disguise their actions and even to take control of a victim's system (as in the case of ransomware). Malware and other threats proliferate too quickly for the time-consuming traditional methods of binary analysis to be effective. By automating detection and classification of cryptographic algorithms, we can speed program analysis and more efficiently combat malware. This thesis wil...

  20. The hash function BLAKE

    CERN Document Server

    Aumasson, Jean-Philippe; Phan, Raphael; Henzen, Luca

    2014-01-01

    This is a comprehensive description of the cryptographic hash function BLAKE, one of the five final contenders in the NIST SHA3 competition, and of BLAKE2, an improved version popular among developers. It describes how BLAKE was designed and why BLAKE2 was developed, and it offers guidelines on implementing and using BLAKE, with a focus on software implementation.   In the first two chapters, the authors offer a short introduction to cryptographic hashing, the SHA3 competition, and BLAKE. They review applications of cryptographic hashing, they describe some basic notions such as security de

  1. Cryptanalysis of Tav-128 hash function

    DEFF Research Database (Denmark)

    Many RFID protocols use cryptographic hash functions for their security. The resource constrained nature of RFID systems forces the use of light weight cryptographic algorithms. Tav-128 is one such 128-bit light weight hash function proposed by Peris-Lopez et al. for a low-cost RFID tag...... authentication protocol. Apart from some statistical tests for randomness by the designers themselves, Tav-128 has not undergone any other thorough security analysis. Based on these tests, the designers claimed that Tav-128 does not posses any trivial weaknesses. In this article, we carry out the first third...... party security analysis of Tav-128 and show that this hash function is neither collision resistant nor second preimage resistant. Firstly, we show a practical collision attack on Tav-128 having a complexity of 237 calls to the compression function and produce message pairs of arbitrary length which...

  2. Adoption of the Hash algorithm in a conceptual model for the civil registry of Ecuador

    Science.gov (United States)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2018-04-01

    The Hash security algorithm was analyzed in order to mitigate information security in a distributed architecture. The objective of this research is to develop a prototype for the Adoption of the algorithm Hash in a conceptual model for the Civil Registry of Ecuador. The deductive method was used in order to analyze the published articles that have a direct relation with the research project "Algorithms and Security Protocols for the Civil Registry of Ecuador" and articles related to the Hash security algorithm. It resulted from this research: That the SHA-1 security algorithm is appropriate for use in Ecuador's civil registry; we adopted the SHA-1 algorithm used in the flowchart technique and finally we obtained the adoption of the hash algorithm in a conceptual model. It is concluded that from the comparison of the DM5 and SHA-1 algorithm, it is suggested that in the case of an implementation, the SHA-1 algorithm is taken due to the amount of information and data available from the Civil Registry of Ecuador; It is determined that the SHA-1 algorithm that was defined using the flowchart technique can be modified according to the requirements of each institution; the model for adopting the hash algorithm in a conceptual model is a prototype that can be modified according to all the actors that make up each organization.

  3. NESSIE: A European Approach to Evaluate Cryptographic Algorithms

    OpenAIRE

    Preneel, Bart

    2002-01-01

    The NESSIE project (New European Schemes for Signature, Integrity and Encryption) intends to put forward a portfolio containing the next generation of cryptographic primitives. These primitives will offer a higher security level than existing primitives, and/or will offer a higher confidence level, built up by an open evaluation process. Moreover, they should be better suited for the constraints of future hardware and software environments. In order to reach this goal, the project has launche...

  4. A brief history of cryptology and cryptographic algorithms

    CERN Document Server

    Dooley, John F

    2013-01-01

    The science of cryptology is made up of two halves. Cryptography is the study of how to create secure systems for communications. Cryptanalysis is the study of how to break those systems. The conflict between these two halves of cryptology is the story of secret writing. For over 2,000 years, the desire to communicate securely and secretly has resulted in the creation of numerous and increasingly complicated systems to protect one's messages. Yet for every system there is a cryptanalyst creating a new technique to break that system. With the advent of computers the cryptographer seems to final

  5. Parallel Algorithm of Geometrical Hashing Based on NumPy Package and Processes Pool

    Directory of Open Access Journals (Sweden)

    Klyachin Vladimir Aleksandrovich

    2015-10-01

    Full Text Available The article considers the problem of multi-dimensional geometric hashing. The paper describes a mathematical model of geometric hashing and considers an example of its use in localization problems for the point. A method of constructing the corresponding hash matrix by parallel algorithm is considered. In this paper an algorithm of parallel geometric hashing using a development pattern «pool processes» is proposed. The implementation of the algorithm is executed using the Python programming language and NumPy package for manipulating multidimensional data. To implement the process pool it is proposed to use a class Process Pool Executor imported from module concurrent.futures, which is included in the distribution of the interpreter Python since version 3.2. All the solutions are presented in the paper by corresponding UML class diagrams. Designed GeomNash package includes classes Data, Result, GeomHash, Job. The results of the developed program presents the corresponding graphs. Also, the article presents the theoretical justification for the application process pool for the implementation of parallel algorithms. It is obtained condition t2 > (p/(p-1*t1 of the appropriateness of process pool. Here t1 - the time of transmission unit of data between processes, and t2 - the time of processing unit data by one processor.

  6. Cryptographic framework for analyzing the privacy of recommender algorithms

    NARCIS (Netherlands)

    Tang, Qiang

    2012-01-01

    Recommender algorithms are widely used, ranging from traditional Video on Demand to a wide variety of Web 2.0 services. Unfortunately, the related privacy concerns have not received much attention. In this paper, we study the privacy concerns associated with recommender algorithms and present a

  7. An algorithm for the detection of move repetition without the use of hash-keys

    Directory of Open Access Journals (Sweden)

    Vučković Vladan

    2007-01-01

    Full Text Available This paper addresses the theoretical and practical aspects of an important problem in computer chess programming - the problem of draw detection in cases of position repetition. The standard approach used in the majority of computer chess programs is hash-oriented. This method is sufficient in most cases, as the Zobrist keys are already present due to the systemic positional hashing, so that they need not be computed anew for the purpose of draw detection. The new type of the algorithm that we have developed solves the problem of draw detection in cases when Zobrist keys are not used in the program, i.e. in cases when the memory is not hashed.

  8. The Speech multi features fusion perceptual hash algorithm based on tensor decomposition

    Science.gov (United States)

    Huang, Y. B.; Fan, M. H.; Zhang, Q. Y.

    2018-03-01

    With constant progress in modern speech communication technologies, the speech data is prone to be attacked by the noise or maliciously tampered. In order to make the speech perception hash algorithm has strong robustness and high efficiency, this paper put forward a speech perception hash algorithm based on the tensor decomposition and multi features is proposed. This algorithm analyses the speech perception feature acquires each speech component wavelet packet decomposition. LPCC, LSP and ISP feature of each speech component are extracted to constitute the speech feature tensor. Speech authentication is done by generating the hash values through feature matrix quantification which use mid-value. Experimental results showing that the proposed algorithm is robust for content to maintain operations compared with similar algorithms. It is able to resist the attack of the common background noise. Also, the algorithm is highly efficiency in terms of arithmetic, and is able to meet the real-time requirements of speech communication and complete the speech authentication quickly.

  9. A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol.

    Directory of Open Access Journals (Sweden)

    Ping Zeng

    Full Text Available In this paper, based on our previous multi-pattern uniform resource locator (URL binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on-all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications.

  10. Proposals for Iterated Hash Functions

    DEFF Research Database (Denmark)

    Knudsen, Lars Ramkilde; Thomsen, Søren Steffen

    2008-01-01

    The past few years have seen an increase in the number of attacks on cryptographic hash functions. These include attacks directed at specific hash functions, and generic attacks on the typical method of constructing hash functions. In this paper we discuss possible methods for protecting against...... some generic attacks. We also give a concrete proposal for a new hash function construction, given a secure compression function which, unlike in typical existing constructions, is not required to be resistant to all types of collisions. Finally, we show how members of the SHA-family can be turned...

  11. Proposals for iterated hash functions

    DEFF Research Database (Denmark)

    Knudsen, Lars Ramkilde; Thomsen, Søren Steffen

    2006-01-01

    The past few years have seen an increase in the number of attacks on cryptographic hash functions. These include attacks directed at specific hash functions, and generic attacks on the typical method of constructing hash functions. In this paper we discuss possible methods for protecting against...... some generic attacks. We also give a concrete proposal for a new hash function construction, given a secure compression function which, unlike in typical existing constructions, is not required to be resistant to all types of collisions. Finally, we show how members of the SHA-family can be turned...

  12. Implementation of 4-way Superscalar Hash MIPS Processor Using FPGA

    Science.gov (United States)

    Sahib Omran, Safaa; Fouad Jumma, Laith

    2018-05-01

    Due to the quick advancements in the personal communications systems and wireless communications, giving data security has turned into a more essential subject. This security idea turns into a more confounded subject when next-generation system requirements and constant calculation speed are considered in real-time. Hash functions are among the most essential cryptographic primitives and utilized as a part of the many fields of signature authentication and communication integrity. These functions are utilized to acquire a settled size unique fingerprint or hash value of an arbitrary length of message. In this paper, Secure Hash Algorithms (SHA) of types SHA-1, SHA-2 (SHA-224, SHA-256) and SHA-3 (BLAKE) are implemented on Field-Programmable Gate Array (FPGA) in a processor structure. The design is described and implemented using a hardware description language, namely VHSIC “Very High Speed Integrated Circuit” Hardware Description Language (VHDL). Since the logical operation of the hash types of (SHA-1, SHA-224, SHA-256 and SHA-3) are 32-bits, so a Superscalar Hash Microprocessor without Interlocked Pipelines (MIPS) processor are designed with only few instructions that were required in invoking the desired Hash algorithms, when the four types of hash algorithms executed sequentially using the designed processor, the total time required equal to approximately 342 us, with a throughput of 4.8 Mbps while the required to execute the same four hash algorithms using the designed four-way superscalar is reduced to 237 us with improved the throughput to 5.1 Mbps.

  13. Design and Analysis of Optimization Algorithms to Minimize Cryptographic Processing in BGP Security Protocols.

    Science.gov (United States)

    Sriram, Vinay K; Montgomery, Doug

    2017-07-01

    The Internet is subject to attacks due to vulnerabilities in its routing protocols. One proposed approach to attain greater security is to cryptographically protect network reachability announcements exchanged between Border Gateway Protocol (BGP) routers. This study proposes and evaluates the performance and efficiency of various optimization algorithms for validation of digitally signed BGP updates. In particular, this investigation focuses on the BGPSEC (BGP with SECurity extensions) protocol, currently under consideration for standardization in the Internet Engineering Task Force. We analyze three basic BGPSEC update processing algorithms: Unoptimized, Cache Common Segments (CCS) optimization, and Best Path Only (BPO) optimization. We further propose and study cache management schemes to be used in conjunction with the CCS and BPO algorithms. The performance metrics used in the analyses are: (1) routing table convergence time after BGPSEC peering reset or router reboot events and (2) peak-second signature verification workload. Both analytical modeling and detailed trace-driven simulation were performed. Results show that the BPO algorithm is 330% to 628% faster than the unoptimized algorithm for routing table convergence in a typical Internet core-facing provider edge router.

  14. Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems

    Science.gov (United States)

    Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.

    2018-03-01

    We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.

  15. Using pseudo-random number generator for making iterative algorithms of hashing data

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Vasil'ev, N.P.; Kozyrskij, B.L.

    2014-01-01

    The method of stochastic data transformation made for usage in cryptographic methods of information protection has been analyzed. The authors prove the usage of cryptographically strong pseudo-random number generators as a basis for Sponge construction. This means that the analysis of the quality of the known methods and tools for assessing the statistical security of pseudo-random number generators can be used effectively [ru

  16. Cryptographic Boolean functions and applications

    CERN Document Server

    Cusick, Thomas W

    2009-01-01

    Boolean functions are the building blocks of symmetric cryptographic systems. Symmetrical cryptographic algorithms are fundamental tools in the design of all types of digital security systems (i.e. communications, financial and e-commerce).Cryptographic Boolean Functions and Applications is a concise reference that shows how Boolean functions are used in cryptography. Currently, practitioners who need to apply Boolean functions in the design of cryptographic algorithms and protocols need to patch together needed information from a variety of resources (books, journal articles and other sources). This book compiles the key essential information in one easy to use, step-by-step reference. Beginning with the basics of the necessary theory the book goes on to examine more technical topics, some of which are at the frontier of current research.-Serves as a complete resource for the successful design or implementation of cryptographic algorithms or protocols using Boolean functions -Provides engineers and scient...

  17. Final report for LDRD Project 93633 : new hash function for data protection.

    Energy Technology Data Exchange (ETDEWEB)

    Draelos, Timothy John; Dautenhahn, Nathan; Schroeppel, Richard Crabtree; Tolk, Keith Michael; Orman, Hilarie (PurpleStreak, Inc.); Walker, Andrea Mae; Malone, Sean; Lee, Eric; Neumann, William Douglas; Cordwell, William R.; Torgerson, Mark Dolan; Anderson, Eric; Lanzone, Andrew J.; Collins, Michael Joseph; McDonald, Timothy Scott; Caskey, Susan Adele

    2009-03-01

    The security of the widely-used cryptographic hash function SHA1 has been impugned. We have developed two replacement hash functions. The first, SHA1X, is a drop-in replacement for SHA1. The second, SANDstorm, has been submitted as a candidate to the NIST-sponsored SHA3 Hash Function competition.

  18. Cryptanalysis of the LAKE Hash Family

    DEFF Research Database (Denmark)

    Biryukov, Alex; Gauravaram, Praveen; Guo, Jian

    2009-01-01

    We analyse the security of the cryptographic hash function LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By exploiting non-injectivity of some of the building primitives of LAKE, we show three different collision and near-collision attacks on the compression function. The first attac...

  19. Designing and implementing of improved cryptographic algorithm using modular arithmetic theory

    Directory of Open Access Journals (Sweden)

    Maryam Kamarzarrin

    2015-05-01

    Full Text Available Maintaining the privacy and security of people information are two most important principles of electronic health plan. One of the methods of creating privacy and securing of information is using Public key cryptography system. In this paper, we compare two algorithms, Common And Fast Exponentiation algorithms, for enhancing the efficiency of public key cryptography. We express that a designed system by Fast Exponentiation Algorithm has high speed and performance but low power consumption and space occupied compared with Common Exponentiation algorithm. Although designed systems by Common Exponentiation algorithm have slower speed and lower performance, designing by this algorithm has less complexity, and easier designing compared with Fast Exponentiation algorithm. In this paper, we will try to examine and compare two different methods of exponentiation, also observe performance Impact of these two approaches in the form of hardware with VHDL language on FPGA.

  20. RANCANG BANGUN APLIKASI ANTIVIRUS KOMPUTER DENGAN MENGGUNAKAN METODE SECURE HASH ALGORITHM 1 (SHA1 DAN HEURISTIC STRING

    Directory of Open Access Journals (Sweden)

    I Gusti Made Panji Indrawinatha

    2016-12-01

    Full Text Available Virus komputer merupakan perangkat lunak berbahaya yang dapat merusak data dan menggandakan diri pada sistem komputer. Untuk mendeteksi dan membersihkan virus dari sistem komputer, maka dibuatlah aplikasi antivirus. Dalam mendeteksi berbagai jenis virus sebuah aplikasi antivirus biasanya menggunakan beberapa metode. Pada penelitian ini akan membahas perancangan sebuah aplikasi antivirus menggunakan metode Secure Hash Algorithm 1 (SHA1 dan heuristic string sebagai metode pendeteksian virus. Dari pengujian yang dilakukan diperoleh hasil dimana saat tidak menggunakan heuristic, antivirus hanya mendeteksi 12 file dari 34 file sample virus atau memiliki tingkat akurasi pendeteksian sebesar 35%. sedangkan saat menggunakan heuristic, antivirus berhasil mendeteksi 31 file dari 34 file sample virus atau memiliki tingkat akurasi pendeteksian sebesar 91%.

  1. FSH: fast spaced seed hashing exploiting adjacent hashes.

    Science.gov (United States)

    Girotto, Samuele; Comin, Matteo; Pizzi, Cinzia

    2018-01-01

    Patterns with wildcards in specified positions, namely spaced seeds , are increasingly used instead of k -mers in many bioinformatics applications that require indexing, querying and rapid similarity search, as they can provide better sensitivity. Many of these applications require to compute the hashing of each position in the input sequences with respect to the given spaced seed, or to multiple spaced seeds. While the hashing of k -mers can be rapidly computed by exploiting the large overlap between consecutive k -mers, spaced seeds hashing is usually computed from scratch for each position in the input sequence, thus resulting in slower processing. The method proposed in this paper, fast spaced-seed hashing (FSH), exploits the similarity of the hash values of spaced seeds computed at adjacent positions in the input sequence. In our experiments we compute the hash for each positions of metagenomics reads from several datasets, with respect to different spaced seeds. We also propose a generalized version of the algorithm for the simultaneous computation of multiple spaced seeds hashing. In the experiments, our algorithm can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.6[Formula: see text] to 5.3[Formula: see text], depending on the structure of the spaced seed. Spaced seed hashing is a routine task for several bioinformatics application. FSH allows to perform this task efficiently and raise the question of whether other hashing can be exploited to further improve the speed up. This has the potential of major impact in the field, making spaced seed applications not only accurate, but also faster and more efficient. The software FSH is freely available for academic use at: https://bitbucket.org/samu661/fsh/overview.

  2. Incremental cryptography and security of public hash functions ...

    African Journals Online (AJOL)

    An investigation of incremental algorithms for crytographic functions was initiated. The problem, for collision-free hashing, is to design a scheme for which there exists an efficient “update” algorithm: this algorithm is given the hash function H, the hash h = H(M) of message M and the “replacement request” (j, m), and outputs ...

  3. DEVELOPMENT AND IMPLEMENTATION OF HASH FUNCTION FOR GENERATING HASHED MESSAGE

    Directory of Open Access Journals (Sweden)

    Amir Ghaeedi

    2016-09-01

    Full Text Available Steganography is a method of sending confidential information in a way that the existence of the channel in this communication remains secret. A collaborative approach between steganography and digital signature provides a high secure hidden data. Unfortunately, there are wide varieties of attacks that affect the quality of image steganography. Two issues that required to be addressed are large size of the ciphered data in digital signature and high bandwidth. The aim of the research is to propose a new method for producing a dynamic hashed message algorithm in digital signature and then embedded into image for enhancing robustness of image steganography with reduced bandwidth. A digital signature with smaller hash size than other hash algorithms was developed for authentication purposes. A hash function is used in the digital signature generation. The encoder function encoded the hashed message to generate the digital signature and then embedded into an image as a stego-image. In enhancing the robustness of the digital signature, we compressed or encoded it or performed both operations before embedding the data into the image. This encryption algorithm is also computationally efficient whereby for messages with the sizes less than 1600 bytes, the hashed file reduced the original file up to 8.51%.

  4. Quantum hashing is maximally secure against classical leakage

    OpenAIRE

    Huang, Cupjin; Shi, Yaoyun

    2017-01-01

    Cryptographic hash functions are fundamental primitives widely used in practice. For such a function $f:\\{0, 1\\}^n\\to\\{0, 1\\}^m$, it is nearly impossible for an adversary to produce the hash $f(x)$ without knowing the secret message $x\\in\\{0, 1\\}^n$. Unfortunately, all hash functions are vulnerable under the side-channel attack, which is a grave concern for information security in practice. This is because typically $m\\ll n$ and an adversary needs only $m$ bits of information to pass the veri...

  5. Structure Sensitive Hashing With Adaptive Product Quantization.

    Science.gov (United States)

    Liu, Xianglong; Du, Bowen; Deng, Cheng; Liu, Ming; Lang, Bo

    2016-10-01

    Hashing has been proved as an attractive solution to approximate nearest neighbor search, owing to its theoretical guarantee and computational efficiency. Though most of prior hashing algorithms can achieve low memory and computation consumption by pursuing compact hash codes, however, they are still far beyond the capability of learning discriminative hash functions from the data with complex inherent structure among them. To address this issue, in this paper, we propose a structure sensitive hashing based on cluster prototypes, which explicitly exploits both global and local structures. An alternating optimization algorithm, respectively, minimizing the quantization loss and spectral embedding loss, is presented to simultaneously discover the cluster prototypes for each hash function, and optimally assign unique binary codes to them satisfying the affinity alignment between them. For hash codes of a desired length, an adaptive bit assignment is further appended to the product quantization of the subspaces, approximating the Hamming distances and meanwhile balancing the variance among hash functions. Experimental results on four large-scale benchmarks CIFAR-10, NUS-WIDE, SIFT1M, and GIST1M demonstrate that our approach significantly outperforms state-of-the-art hashing methods in terms of semantic and metric neighbor search.

  6. Cryptographic Primitives with Quasigroup Transformations

    OpenAIRE

    Mileva, Aleksandra

    2010-01-01

    Cryptology is the science of secret communication, which consists of two complementary disciplines: cryptography and cryptanalysis. Cryptography is dealing with design and development of new primitives, algorithms and schemas for data enciphering and deciphering. For many centuries cryptographic technics have been applied in protection of secrecy and authentication in diplomatic, political and military correspondences and communications. Cryptanalysis is dealing with different attacks on c...

  7. Fast and powerful hashing using tabulation

    DEFF Research Database (Denmark)

    Thorup, Mikkel

    2017-01-01

    Randomized algorithms are often enjoyed for their simplicity, but the hash functions employed to yield the desired probabilistic guarantees are often too complicated to be practical. Here, we survey recent results on how simple hashing schemes based on tabulation provide unexpectedly strong......, linear probing and Cuckoo hashing. Next, we consider twisted tabulation where one input character is "twisted" in a simple way. The resulting hash function has powerful distributional properties: Chernoffstyle tail bounds and a very small bias for minwise hashing. This is also yields an extremely fast...... pseudorandom number generator that is provably good for many classic randomized algorithms and data-structures. Finally, we consider double tabulation where we compose two simple tabulation functions, applying one to the output of the other, and show that this yields very high independence in the classic...

  8. Five Performance Enhancements for Hybrid Hash Join

    National Research Council Canada - National Science Library

    Graefe, Goetz

    1992-01-01

    .... We discuss five performance enhancements for hybrid hash join algorithms, namely data compression, large cluster sizes and multi-level recursion, role reversal of build and probe inputs, histogram...

  9. Cache-Oblivious Hashing

    DEFF Research Database (Denmark)

    Pagh, Rasmus; Wei, Zhewei; Yi, Ke

    2014-01-01

    The hash table, especially its external memory version, is one of the most important index structures in large databases. Assuming a truly random hash function, it is known that in a standard external hash table with block size b, searching for a particular key only takes expected average t q =1...

  10. Security Analysis of Randomize-Hash-then-Sign Digital Signatures

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Knudsen, Lars Ramkilde

    2012-01-01

    At CRYPTO 2006, Halevi and Krawczyk proposed two randomized hash function modes and analyzed the security of digital signature algorithms based on these constructions. They showed that the security of signature schemes based on the two randomized hash function modes relies on properties similar...... functions, such as for the Davies-Meyer construction used in the popular hash functions such as MD5 designed by Rivest and the SHA family of hash functions designed by the National Security Agency (NSA), USA and published by NIST in the Federal Information Processing Standards (FIPS). We show an online...... 800-106. We discuss some important applications of our attacks and discuss their applicability on signature schemes based on hash functions with ‘built-in’ randomization. Finally, we compare our attacks on randomize-hash-then-sign schemes with the generic forgery attacks on the standard hash...

  11. Perceptual Audio Hashing Functions

    Directory of Open Access Journals (Sweden)

    Emin Anarım

    2005-07-01

    Full Text Available Perceptual hash functions provide a tool for fast and reliable identification of content. We present new audio hash functions based on summarization of the time-frequency spectral characteristics of an audio document. The proposed hash functions are based on the periodicity series of the fundamental frequency and on singular-value description of the cepstral frequencies. They are found, on one hand, to perform very satisfactorily in identification and verification tests, and on the other hand, to be very resilient to a large variety of attacks. Moreover, we address the issue of security of hashes and propose a keying technique, and thereby a key-dependent hash function.

  12. Large-Scale Unsupervised Hashing with Shared Structure Learning.

    Science.gov (United States)

    Liu, Xianglong; Mu, Yadong; Zhang, Danchen; Lang, Bo; Li, Xuelong

    2015-09-01

    Hashing methods are effective in generating compact binary signatures for images and videos. This paper addresses an important open issue in the literature, i.e., how to learn compact hash codes by enhancing the complementarity among different hash functions. Most of prior studies solve this problem either by adopting time-consuming sequential learning algorithms or by generating the hash functions which are subject to some deliberately-designed constraints (e.g., enforcing hash functions orthogonal to one another). We analyze the drawbacks of past works and propose a new solution to this problem. Our idea is to decompose the feature space into a subspace shared by all hash functions and its complementary subspace. On one hand, the shared subspace, corresponding to the common structure across different hash functions, conveys most relevant information for the hashing task. Similar to data de-noising, irrelevant information is explicitly suppressed during hash function generation. On the other hand, in case that the complementary subspace also contains useful information for specific hash functions, the final form of our proposed hashing scheme is a compromise between these two kinds of subspaces. To make hash functions not only preserve the local neighborhood structure but also capture the global cluster distribution of the whole data, an objective function incorporating spectral embedding loss, binary quantization loss, and shared subspace contribution is introduced to guide the hash function learning. We propose an efficient alternating optimization method to simultaneously learn both the shared structure and the hash functions. Experimental results on three well-known benchmarks CIFAR-10, NUS-WIDE, and a-TRECVID demonstrate that our approach significantly outperforms state-of-the-art hashing methods.

  13. Parallel keyed hash function construction based on chaotic maps

    International Nuclear Information System (INIS)

    Xiao Di; Liao Xiaofeng; Deng Shaojiang

    2008-01-01

    Recently, a variety of chaos-based hash functions have been proposed. Nevertheless, none of them works efficiently in parallel computing environment. In this Letter, an algorithm for parallel keyed hash function construction is proposed, whose structure can ensure the uniform sensitivity of hash value to the message. By means of the mechanism of both changeable-parameter and self-synchronization, the keystream establishes a close relation with the algorithm key, the content and the order of each message block. The entire message is modulated into the chaotic iteration orbit, and the coarse-graining trajectory is extracted as the hash value. Theoretical analysis and computer simulation indicate that the proposed algorithm can satisfy the performance requirements of hash function. It is simple, efficient, practicable, and reliable. These properties make it a good choice for hash on parallel computing platform

  14. Cryptographic analysis on the key space of optical phase encryption algorithm based on the design of discrete random phase mask

    Science.gov (United States)

    Lin, Chao; Shen, Xueju; Li, Zengyan

    2013-07-01

    The key space of phase encryption algorithm using discrete random phase mask is investigated by numerical simulation in this paper. Random phase mask with finite and discrete phase levels is considered as the core component in most practical optical encryption architectures. The key space analysis is based on the design criteria of discrete random phase mask. The role of random amplitude mask and random phase mask in optical encryption system is identified from the perspective of confusion and diffusion. The properties of discrete random phase mask in a practical double random phase encoding scheme working in both amplitude encoding (AE) and phase encoding (PE) modes are comparably analyzed. The key space of random phase encryption algorithm is evaluated considering both the encryption quality and the brute-force attack resistibility. A method for enlarging the key space of phase encryption algorithm is also proposed to enhance the security of optical phase encryption techniques.

  15. Lightweight Cryptographic Techniques

    National Research Council Canada - National Science Library

    Yuen, Horace

    2004-01-01

    The objective of this project was to develop new cryptographic techniques, and to modify the important existing ones, for applications to encryption and authentication in energy-constrained sensors...

  16. Efficient computation of hashes

    International Nuclear Information System (INIS)

    Lopes, Raul H C; Franqueira, Virginia N L; Hobson, Peter R

    2014-01-01

    The sequential computation of hashes at the core of many distributed storage systems and found, for example, in grid services can hinder efficiency in service quality and even pose security challenges that can only be addressed by the use of parallel hash tree modes. The main contributions of this paper are, first, the identification of several efficiency and security challenges posed by the use of sequential hash computation based on the Merkle-Damgard engine. In addition, alternatives for the parallel computation of hash trees are discussed, and a prototype for a new parallel implementation of the Keccak function, the SHA-3 winner, is introduced.

  17. Online Hashing for Scalable Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Peng Li

    2018-05-01

    Full Text Available Recently, hashing-based large-scale remote sensing (RS image retrieval has attracted much attention. Many new hashing algorithms have been developed and successfully applied to fast RS image retrieval tasks. However, there exists an important problem rarely addressed in the research literature of RS image hashing. The RS images are practically produced in a streaming manner in many real-world applications, which means the data distribution keeps changing over time. Most existing RS image hashing methods are batch-based models whose hash functions are learned once for all and kept fixed all the time. Therefore, the pre-trained hash functions might not fit the ever-growing new RS images. Moreover, the batch-based models have to load all the training images into memory for model learning, which consumes many computing and memory resources. To address the above deficiencies, we propose a new online hashing method, which learns and adapts its hashing functions with respect to the newly incoming RS images in terms of a novel online partial random learning scheme. Our hash model is updated in a sequential mode such that the representative power of the learned binary codes for RS images are improved accordingly. Moreover, benefiting from the online learning strategy, our proposed hashing approach is quite suitable for scalable real-world remote sensing image retrieval. Extensive experiments on two large-scale RS image databases under online setting demonstrated the efficacy and effectiveness of the proposed method.

  18. Symbolic Analysis of Cryptographic Protocols

    DEFF Research Database (Denmark)

    Dahl, Morten

    We present our work on using abstract models for formally analysing cryptographic protocols: First, we present an ecient method for verifying trace-based authenticity properties of protocols using nonces, symmetric encryption, and asymmetric encryption. The method is based on a type system...... of Gordon et al., which we modify to support fully-automated type inference. Tests conducted via an implementation of our algorithm found it to be very ecient. Second, we show how privacy may be captured in a symbolic model using an equivalencebased property and give a formal denition. We formalise...

  19. Architecture-Conscious Hashing

    NARCIS (Netherlands)

    M. Zukowski (Marcin); S. Héman (Sándor); P.A. Boncz (Peter)

    2006-01-01

    textabstractHashing is one of the fundamental techniques used to implement query processing operators such as grouping, aggregation and join. This paper studies the interaction between modern computer architecture and hash-based query processing techniques. First, we focus on extracting maximum

  20. The Grindahl Hash Functions

    DEFF Research Database (Denmark)

    Knudsen, Lars Ramkilde; Rechberger, Christian; Thomsen, Søren Steffen

    2007-01-01

    to the state. We propose two concrete hash functions, Grindahl-256 and Grindahl-512 with claimed security levels with respect to collision, preimage and second preimage attacks of 2^128 and 2^256, respectively. Both proposals have lower memory requirements than other hash functions at comparable speeds...

  1. Scalable Packet Classification with Hash Tables

    Science.gov (United States)

    Wang, Pi-Chung

    In the last decade, the technique of packet classification has been widely deployed in various network devices, including routers, firewalls and network intrusion detection systems. In this work, we improve the performance of packet classification by using multiple hash tables. The existing hash-based algorithms have superior scalability with respect to the required space; however, their search performance may not be comparable to other algorithms. To improve the search performance, we propose a tuple reordering algorithm to minimize the number of accessed hash tables with the aid of bitmaps. We also use pre-computation to ensure the accuracy of our search procedure. Performance evaluation based on both real and synthetic filter databases shows that our scheme is effective and scalable and the pre-computation cost is moderate.

  2. Dakota - hashing from a combination of modular arithmetic and symmetric cryptography

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Knudsen, Lars Ramkilde; Thomsen, Søren Steffen

    In this paper a cryptographic hash function is proposed, where collision resistance is based upon an assumption that involves squaring modulo an RSA modulus in combination with a one-way function that does not compress its input, and may therefore be constructed from standard techniques and assum...

  3. Dakota – Hashing from a Combination of Modular Arithmetic and Symmetric Cryptography

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Knudsen, Lars Ramkilde; Thomsen, Søren Steffen

    2008-01-01

    In this paper a cryptographic hash function is proposed, where collision resistance is based upon an assumption that involves squaring modulo an RSA modulus in combination with a one-way function that does not compress its input, and may therefore be constructed from standard techniques and assum...

  4. Hashing for Statistics over K-Partitions

    DEFF Research Database (Denmark)

    Dahlgaard, Soren; Knudsen, Mathias Baek Tejs; Rotenberg, Eva

    2015-01-01

    In this paper we analyze a hash function for k-partitioning a set into bins, obtaining strong concentration bounds for standard algorithms combining statistics from each bin. This generic method was originally introduced by Flajolet and Martin [FOCS'83] in order to save a factor Ω(k) of time per...... concentration bounds on the most popular applications of k-partitioning similar to those we would get using a truly random hash function. The analysis is very involved and implies several new results of independent interest for both simple and double tabulation, e.g. A simple and efficient construction...

  5. Symmetric cryptographic protocols

    CERN Document Server

    Ramkumar, Mahalingam

    2014-01-01

    This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees.   •        Provides detailed coverage of symmetric key protocols •        Describes various applications of symmetric building blocks •        Includes strategies for constructing compact and efficient digests of dynamic databases

  6. Linear Subspace Ranking Hashing for Cross-Modal Retrieval.

    Science.gov (United States)

    Li, Kai; Qi, Guo-Jun; Ye, Jun; Hua, Kien A

    2017-09-01

    Hashing has attracted a great deal of research in recent years due to its effectiveness for the retrieval and indexing of large-scale high-dimensional multimedia data. In this paper, we propose a novel ranking-based hashing framework that maps data from different modalities into a common Hamming space where the cross-modal similarity can be measured using Hamming distance. Unlike existing cross-modal hashing algorithms where the learned hash functions are binary space partitioning functions, such as the sign and threshold function, the proposed hashing scheme takes advantage of a new class of hash functions closely related to rank correlation measures which are known to be scale-invariant, numerically stable, and highly nonlinear. Specifically, we jointly learn two groups of linear subspaces, one for each modality, so that features' ranking orders in different linear subspaces maximally preserve the cross-modal similarities. We show that the ranking-based hash function has a natural probabilistic approximation which transforms the original highly discontinuous optimization problem into one that can be efficiently solved using simple gradient descent algorithms. The proposed hashing framework is also flexible in the sense that the optimization procedures are not tied up to any specific form of loss function, which is typical for existing cross-modal hashing methods, but rather we can flexibly accommodate different loss functions with minimal changes to the learning steps. We demonstrate through extensive experiments on four widely-used real-world multimodal datasets that the proposed cross-modal hashing method can achieve competitive performance against several state-of-the-arts with only moderate training and testing time.

  7. Deep Constrained Siamese Hash Coding Network and Load-Balanced Locality-Sensitive Hashing for Near Duplicate Image Detection.

    Science.gov (United States)

    Hu, Weiming; Fan, Yabo; Xing, Junliang; Sun, Liang; Cai, Zhaoquan; Maybank, Stephen

    2018-09-01

    We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural network and load-balanced locality-sensitive hashing (LSH) indexing. We propose a deep constrained siamese hash coding neural network combined with deep feature learning. Our neural network is able to extract effective features for near duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image detection. Extensive experiments on three benchmark data sets demonstrate the effectiveness of our deep siamese hash encoding network and load-balanced LSH.

  8. Cryptographic Protocols Based on Root Extracting

    DEFF Research Database (Denmark)

    Koprowski, Maciej

    In this thesis we design new cryptographic protocols, whose security is based on the hardness of root extracting or more speci cally the RSA problem. First we study the problem of root extraction in nite Abelian groups, where the group order is unknown. This is a natural generalization of the...... complexity of root extraction, even if the algorithm can choose the "public exponent'' itself. In other words, both the standard and the strong RSA assumption are provably true w.r.t. generic algorithms. The results hold for arbitrary groups, so security w.r.t. generic attacks follows for any cryptographic...... groups. In all cases, security follows from a well de ned complexity assumption (the strong root assumption), without relying on random oracles. A smooth natural number has no big prime factors. The probability, that a random natural number not greater than x has all prime factors smaller than x1/u...

  9. An adaptive cryptographic accelerator for network storage security on dynamically reconfigurable platform

    Science.gov (United States)

    Tang, Li; Liu, Jing-Ning; Feng, Dan; Tong, Wei

    2008-12-01

    Existing security solutions in network storage environment perform poorly because cryptographic operations (encryption and decryption) implemented in software can dramatically reduce system performance. In this paper we propose a cryptographic hardware accelerator on dynamically reconfigurable platform for the security of high performance network storage system. We employ a dynamic reconfigurable platform based on a FPGA to implement a PowerPCbased embedded system, which executes cryptographic algorithms. To reduce the reconfiguration latency, we apply prefetch scheduling. Moreover, the processing elements could be dynamically configured to support different cryptographic algorithms according to the request received by the accelerator. In the experiment, we have implemented AES (Rijndael) and 3DES cryptographic algorithms in the reconfigurable accelerator. Our proposed reconfigurable cryptographic accelerator could dramatically increase the performance comparing with the traditional software-based network storage systems.

  10. Cryptographic Key Management System

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2014-02-21

    This report summarizes the outcome of U.S. Department of Energy (DOE) contract DE-OE0000543, requesting the design of a Cryptographic Key Management System (CKMS) for the secure management of cryptographic keys for the energy sector infrastructure. Prime contractor Sypris Electronics, in collaboration with Oak Ridge National Laboratories (ORNL), Electric Power Research Institute (EPRI), Valicore Technologies, and Purdue University's Center for Education and Research in Information Assurance and Security (CERIAS) and Smart Meter Integration Laboratory (SMIL), has designed, developed and evaluated the CKMS solution. We provide an overview of the project in Section 3, review the core contributions of all contractors in Section 4, and discuss bene ts to the DOE in Section 5. In Section 6 we describe the technical construction of the CKMS solution, and review its key contributions in Section 6.9. Section 7 describes the evaluation and demonstration of the CKMS solution in different environments. We summarize the key project objectives in Section 8, list publications resulting from the project in Section 9, and conclude with a discussion on commercialization in Section 10 and future work in Section 11.

  11. Elliptic net and its cryptographic application

    Science.gov (United States)

    Muslim, Norliana; Said, Mohamad Rushdan Md

    2017-11-01

    Elliptic net is a generalization of elliptic divisibility sequence and in cryptography field, most cryptographic pairings that are based on elliptic curve such as Tate pairing can be improved by applying elliptic nets algorithm. The elliptic net is constructed by using n dimensional array of values in rational number satisfying nonlinear recurrence relations that arise from elliptic divisibility sequences. The two main properties hold in the recurrence relations are for all positive integers m>n, hm +nhm -n=hm +1hm -1hn2-hn +1hn -1hm2 and hn divides hm whenever n divides m. In this research, we discuss elliptic divisibility sequence associated with elliptic nets based on cryptographic perspective and its possible research direction.

  12. One-way hash function construction based on the spatiotemporal chaotic system

    International Nuclear Information System (INIS)

    Luo Yu-Ling; Du Ming-Hui

    2012-01-01

    Based on the spatiotemporal chaotic system, a novel algorithm for constructing a one-way hash function is proposed and analysed. The message is divided into fixed length blocks. Each message block is processed by the hash compression function in parallel. The hash compression is constructed based on the spatiotemporal chaos. In each message block, the ASCII code and its position in the whole message block chain constitute the initial conditions and the key of the hash compression function. The final hash value is generated by further compressing the mixed result of all the hash compression values. Theoretic analyses and numerical simulations show that the proposed algorithm presents high sensitivity to the message and key, good statistical properties, and strong collision resistance. (general)

  13. An Ad Hoc Adaptive Hashing Technique forNon-Uniformly Distributed IP Address Lookup in Computer Networks

    Directory of Open Access Journals (Sweden)

    Christopher Martinez

    2007-02-01

    Full Text Available Hashing algorithms long have been widely adopted to design a fast address look-up process which involves a search through a large database to find a record associated with a given key. Hashing algorithms involve transforming a key inside each target data to a hash value hoping that the hashing would render the database a uniform distribution with respect to this new hash value. The close the final distribution is to uniform, the less search time would be required when a query is made. When the database is already key-wise uniformly distributed, any regular hashing algorithm, such as bit-extraction, bit-group XOR, etc., would easily lead to a statistically perfect uniform distribution after the hashing. On the other hand, if records in the database are instead not uniformly distributed as in almost all known practical applications, then even different regular hash functions would lead to very different performance. When the target database has a key with a highly skewed distributed value, performance delivered by regular hashing algorithms usually becomes far from desirable. This paper aims at designing a hashing algorithm to achieve the highest probability in leading to a uniformly distributed hash result from a non-uniformly distributed database. An analytical pre-process on the original database is first performed to extract critical information that would significantly benefit the design of a better hashing algorithm. This process includes sorting on the bits of the key to prioritize the use of them in the XOR hashing sequence, or in simple bit extraction, or even a combination of both. Such an ad hoc hash design is critical to adapting to all real-time situations when there exists a changing (and/or expanding database with an irregular non-uniform distribution. Significant improvement from simulation results is obtained in randomly generated data as well as real data.

  14. Rationality in the Cryptographic Model

    DEFF Research Database (Denmark)

    Hubacek, Pavel

    This thesis presents results in the field of rational cryptography. In the first part we study the use of cryptographic protocols to avoid mediation and binding commitment when implementing game theoretic equilibrium concepts. First, we concentrate on the limits of cryptographic cheap talk...... to implement correlated equilibria of two-player strategic games in a sequentially rational way. We show that there exist two-player games for which no cryptographic protocol can implement the mediator in a sequentially rational way; that is, without introducing empty threats. In the context of computational...... with appealing economic applications. Our implementation puts forward a notion of cryptographically blinded games that exploits the power of encryption to selectively restrict the information available to players about sampled action profiles, such that these desirable equilibria can be stably achieved...

  15. Random multispace quantization as an analytic mechanism for BioHashing of biometric and random identity inputs.

    Science.gov (United States)

    Teoh, Andrew B J; Goh, Alwyn; Ngo, David C L

    2006-12-01

    Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the Random Multispace Quantization (RMQ) of biometric and external random inputs.

  16. One-way hash function based on hyper-chaotic cellular neural network

    International Nuclear Information System (INIS)

    Yang Qunting; Gao Tiegang

    2008-01-01

    The design of an efficient one-way hash function with good performance is a hot spot in modern cryptography researches. In this paper, a hash function construction method based on cell neural network with hyper-chaos characteristics is proposed. First, the chaos sequence is gotten by iterating cellular neural network with Runge–Kutta algorithm, and then the chaos sequence is iterated with the message. The hash code is obtained through the corresponding transform of the latter chaos sequence. Simulation and analysis demonstrate that the new method has the merit of convenience, high sensitivity to initial values, good hash performance, especially the strong stability. (general)

  17. Spongent: A lightweight hash function

    DEFF Research Database (Denmark)

    Bogdanov, Andrey; Knežević, Miroslav; Leander, Gregor

    2011-01-01

    This paper proposes spongent - a family of lightweight hash functions with hash sizes of 88 (for preimage resistance only), 128, 160, 224, and 256 bits based on a sponge construction instantiated with a present-type permutation, following the hermetic sponge strategy. Its smallest implementations...

  18. On hash functions using checksums

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Kelsey, John; Knudsen, Lars Ramkilde

    2010-01-01

    We analyse the security of iterated hash functions that compute an input dependent checksum which is processed as part of the hash computation. We show that a large class of such schemes, including those using non-linear or even one-way checksum functions, is not secure against the second preimag...

  19. On hash functions using checksums

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Kelsey, John; Knudsen, Lars Ramkilde

    2008-01-01

    We analyse the security of iterated hash functions that compute an input dependent checksum which is processed as part of the hash computation. We show that a large class of such schemes, including those using non-linear or even one-way checksum functions, is not secure against the second preimag...

  20. Hash function based on piecewise nonlinear chaotic map

    International Nuclear Information System (INIS)

    Akhavan, A.; Samsudin, A.; Akhshani, A.

    2009-01-01

    Chaos-based cryptography appeared recently in the early 1990s as an original application of nonlinear dynamics in the chaotic regime. In this paper, an algorithm for one-way hash function construction based on piecewise nonlinear chaotic map with a variant probability parameter is proposed. Also the proposed algorithm is an attempt to present a new chaotic hash function based on multithreaded programming. In this chaotic scheme, the message is connected to the chaotic map using probability parameter and other parameters of chaotic map such as control parameter and initial condition, so that the generated hash value is highly sensitive to the message. Simulation results indicate that the proposed algorithm presented several interesting features, such as high flexibility, good statistical properties, high key sensitivity and message sensitivity. These properties make the scheme a suitable choice for practical applications.

  1. A novel method for one-way hash function construction based on spatiotemporal chaos

    International Nuclear Information System (INIS)

    Ren Haijun; Wang Yong; Xie Qing; Yang Huaqian

    2009-01-01

    A novel hash algorithm based on a spatiotemporal chaos is proposed. The original message is first padded with zeros if needed. Then it is divided into a number of blocks each contains 32 bytes. In the hashing process, each block is partitioned into eight 32-bit values and input into the spatiotemporal chaotic system. Then, after iterating the system for four times, the next block is processed by the same way. To enhance the confusion and diffusion effect, the cipher block chaining (CBC) mode is adopted in the algorithm. The hash value is obtained from the final state value of the spatiotemporal chaotic system. Theoretic analyses and numerical simulations both show that the proposed hash algorithm possesses good statistical properties, strong collision resistance and high efficiency, as required by practical keyed hash functions.

  2. A novel method for one-way hash function construction based on spatiotemporal chaos

    Energy Technology Data Exchange (ETDEWEB)

    Ren Haijun [College of Software Engineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China)], E-mail: jhren@cqu.edu.cn; Wang Yong; Xie Qing [Key Laboratory of Electronic Commerce and Logistics of Chongqing, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Yang Huaqian [Department of Computer and Modern Education Technology, Chongqing Education of College, Chongqing 400067 (China)

    2009-11-30

    A novel hash algorithm based on a spatiotemporal chaos is proposed. The original message is first padded with zeros if needed. Then it is divided into a number of blocks each contains 32 bytes. In the hashing process, each block is partitioned into eight 32-bit values and input into the spatiotemporal chaotic system. Then, after iterating the system for four times, the next block is processed by the same way. To enhance the confusion and diffusion effect, the cipher block chaining (CBC) mode is adopted in the algorithm. The hash value is obtained from the final state value of the spatiotemporal chaotic system. Theoretic analyses and numerical simulations both show that the proposed hash algorithm possesses good statistical properties, strong collision resistance and high efficiency, as required by practical keyed hash functions.

  3. A fingerprint key binding algorithm based on vector quantization and error correction

    Science.gov (United States)

    Li, Liang; Wang, Qian; Lv, Ke; He, Ning

    2012-04-01

    In recent years, researches on seamless combination cryptosystem with biometric technologies, e.g. fingerprint recognition, are conducted by many researchers. In this paper, we propose a binding algorithm of fingerprint template and cryptographic key to protect and access the key by fingerprint verification. In order to avoid the intrinsic fuzziness of variant fingerprints, vector quantization and error correction technique are introduced to transform fingerprint template and then bind with key, after a process of fingerprint registration and extracting global ridge pattern of fingerprint. The key itself is secure because only hash value is stored and it is released only when fingerprint verification succeeds. Experimental results demonstrate the effectiveness of our ideas.

  4. Ranking Based Locality Sensitive Hashing Enabled Cancelable Biometrics: Index-of-Max Hashing

    OpenAIRE

    Jin, Zhe; Lai, Yen-Lung; Hwang, Jung-Yeon; Kim, Soohyung; Teoh, Andrew Beng Jin

    2017-01-01

    In this paper, we propose a ranking based locality sensitive hashing inspired two-factor cancelable biometrics, dubbed "Index-of-Max" (IoM) hashing for biometric template protection. With externally generated random parameters, IoM hashing transforms a real-valued biometric feature vector into discrete index (max ranked) hashed code. We demonstrate two realizations from IoM hashing notion, namely Gaussian Random Projection based and Uniformly Random Permutation based hashing schemes. The disc...

  5. A scalable lock-free hash table with open addressing

    DEFF Research Database (Denmark)

    Nielsen, Jesper Puge; Karlsson, Sven

    2016-01-01

    and concurrent operations without any locks. In this paper, we present a new fully lock-free open addressed hash table with a simpler design than prior published work. We split hash table insertions into two atomic phases: first inserting a value ignoring other concurrent operations, then in the second phase......Concurrent data structures synchronized with locks do not scale well with the number of threads. As more scalable alternatives, concurrent data structures and algorithms based on widely available, however advanced, atomic operations have been proposed. These data structures allow for correct...

  6. Probabilistic hypergraph based hash codes for social image search

    Institute of Scientific and Technical Information of China (English)

    Yi XIE; Hui-min YU; Roland HU

    2014-01-01

    With the rapid development of the Internet, recent years have seen the explosive growth of social media. This brings great challenges in performing efficient and accurate image retrieval on a large scale. Recent work shows that using hashing methods to embed high-dimensional image features and tag information into Hamming space provides a powerful way to index large collections of social images. By learning hash codes through a spectral graph partitioning algorithm, spectral hashing (SH) has shown promising performance among various hashing approaches. However, it is incomplete to model the relations among images only by pairwise simple graphs which ignore the relationship in a higher order. In this paper, we utilize a probabilistic hypergraph model to learn hash codes for social image retrieval. A probabilistic hypergraph model offers a higher order repre-sentation among social images by connecting more than two images in one hyperedge. Unlike a normal hypergraph model, a probabilistic hypergraph model considers not only the grouping information, but also the similarities between vertices in hy-peredges. Experiments on Flickr image datasets verify the performance of our proposed approach.

  7. Algorithmic cryptanalysis

    CERN Document Server

    Joux, Antoine

    2009-01-01

    Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic

  8. Side channel analysis of some hash based MACs:A response to SHA-3 requirements

    DEFF Research Database (Denmark)

    The forthcoming NIST's Advanced Hash Standard (AHS) competition to select SHA-3 hash function requires that each candidate hash function submission must have at least one construction to support FIPS 198 HMAC application. As part of its evaluation, NIST is aiming to select either a candidate hash...... function which is more resistant to known side channel attacks (SCA) when plugged into HMAC, or that has an alternative MAC mode which is more resistant to known SCA than the other submitted alternatives. In response to this, we perform differential power analysis (DPA) on the possible smart card...... implementations of some of the recently proposed MAC alternatives to NMAC (a fully analyzed variant of HMAC) and HMAC algorithms and NMAC/HMAC versions of some recently proposed hash and compression function modes. We show that the recently proposed BNMAC and KMDP MAC schemes are even weaker than NMAC...

  9. Superposition Attacks on Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Funder, Jakob Løvstad; Nielsen, Jesper Buus

    2011-01-01

    of information. In this paper, we introduce a fundamentally new model of quantum attacks on classical cryptographic protocols, where the adversary is allowed to ask several classical queries in quantum superposition. This is a strictly stronger attack than the standard one, and we consider the security......Attacks on classical cryptographic protocols are usually modeled by allowing an adversary to ask queries from an oracle. Security is then defined by requiring that as long as the queries satisfy some constraint, there is some problem the adversary cannot solve, such as compute a certain piece...... of several primitives in this model. We show that a secret-sharing scheme that is secure with threshold $t$ in the standard model is secure against superposition attacks if and only if the threshold is lowered to $t/2$. We use this result to give zero-knowledge proofs for all of NP in the common reference...

  10. The Usefulness of Multilevel Hash Tables with Multiple Hash Functions in Large Databases

    Directory of Open Access Journals (Sweden)

    A.T. Akinwale

    2009-05-01

    Full Text Available In this work, attempt is made to select three good hash functions which uniformly distribute hash values that permute their internal states and allow the input bits to generate different output bits. These functions are used in different levels of hash tables that are coded in Java Programming Language and a quite number of data records serve as primary data for testing the performances. The result shows that the two-level hash tables with three different hash functions give a superior performance over one-level hash table with two hash functions or zero-level hash table with one function in term of reducing the conflict keys and quick lookup for a particular element. The result assists to reduce the complexity of join operation in query language from O( n2 to O( 1 by placing larger query result, if any, in multilevel hash tables with multiple hash functions and generate shorter query result.

  11. One-way hash function construction based on chaotic map network

    International Nuclear Information System (INIS)

    Yang Huaqian; Wong, K.-W.; Liao Xiaofeng; Wang Yong; Yang Degang

    2009-01-01

    A novel chaotic hash algorithm based on a network structure formed by 16 chaotic maps is proposed. The original message is first padded with zeros to make the length a multiple of four. Then it is divided into a number of blocks each contains 4 bytes. In the hashing process, the blocks are mixed together by the chaotic map network since the initial value and the control parameter of each tent map are dynamically determined by the output of its neighbors. To enhance the confusion and diffusion effect, the cipher block chaining (CBC) mode is adopted in the algorithm. Theoretic analyses and numerical simulations both show that the proposed hash algorithm possesses good statistical properties, strong collision resistance and high flexibility, as required by practical keyed hash functions.

  12. Quantum Communication Attacks on Classical Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre

    , one can show that the protocol remains secure even under such an attack. However, there are also cases where the honest players are quantum as well, even if the protocol uses classical communication. For instance, this is the case when classical multiparty computation is used as a “subroutine......In the literature on cryptographic protocols, it has been studied several times what happens if a classical protocol is attacked by a quantum adversary. Usually, this is taken to mean that the adversary runs a quantum algorithm, but communicates classically with the honest players. In several cases......” in quantum multiparty computation. Furthermore, in the future, players in a protocol may employ quantum computing simply to improve efficiency of their local computation, even if the communication is supposed to be classical. In such cases, it no longer seems clear that a quantum adversary must be limited...

  13. Quantum Communication Attacks on Classical Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre

    , one can show that the protocol remains secure even under such an attack. However, there are also cases where the honest players are quantum as well, even if the protocol uses classical communication. For instance, this is the case when classical multiparty computation is used as a “subroutine......” in quantum multiparty computation. Furthermore, in the future, players in a protocol may employ quantum computing simply to improve efficiency of their local computation, even if the communication is supposed to be classical. In such cases, it no longer seems clear that a quantum adversary must be limited......In the literature on cryptographic protocols, it has been studied several times what happens if a classical protocol is attacked by a quantum adversary. Usually, this is taken to mean that the adversary runs a quantum algorithm, but communicates classically with the honest players. In several cases...

  14. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    Science.gov (United States)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  15. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    Science.gov (United States)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196

  16. On Randomizing Hash Functions to Strengthen the Security of Digital Signatures

    DEFF Research Database (Denmark)

    Halevi and Krawczyk proposed a message randomization algorithm called RMX as a front-end tool to the hash-then-sign digital signature schemes such as DSS and RSA in order to free their reliance on the collision resistance property of the hash functions. They have shown that to forge a RMX-hash-th...... that use Davies-Meyer schemes and a variant of RMX published by NIST in its Draft Special Publication (SP) 800-106. We discuss some important applications of our attack....

  17. On randomizing hash functions to strengthen the security of digital signatures

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Knudsen, Lars Ramkilde

    2009-01-01

    Halevi and Krawczyk proposed a message randomization algorithm called RMX as a front-end tool to the hash-then-sign digital signature schemes such as DSS and RSA in order to free their reliance on the collision resistance property of the hash functions. They have shown that to forge a RMX-hash-th...... schemes that use Davies-Meyer schemes and a variant of RMX published by NIST in its Draft Special Publication (SP) 800-106. We discuss some important applications of our attack....

  18. A Symmetric Key Cryptographic Technique Through Swapping Bits in Binary Field Using p-Box Matrix

    OpenAIRE

    Subhranil Som; Soumasree Banerjee

    2014-01-01

    In this paper a symmetric key cryptographic algorithm named as “A Symmetric Key Cryptographic Technique Through Swapping Bits in Binary Field Using p-box Matrix“ is proposed. Secret sharing is a technique by which any information can be break down into small pieces. The secret can be reconstructed only when a sufficient number of pieces of shares are combined together; individual shares are of no use on their own. Traditional secret sharing scheme possesses high computational ...

  19. Constructing a one-way hash function based on the unified chaotic system

    International Nuclear Information System (INIS)

    Long Min; Peng Fei; Chen Guanrong

    2008-01-01

    A new one-way hash function based on the unified chaotic system is constructed. With different values of a key parameter, the unified chaotic system represents different chaotic systems, based on which the one-way hash function algorithm is constructed with three round operations and an initial vector on an input message. In each round operation, the parameters are processed by three different chaotic systems generated from the unified chaotic system. Feed-forwards are used at the end of each round operation and at the end of each element of the message processing. Meanwhile, in each round operation, parameter-exchanging operations are implemented. Then, the hash value of length 160 bits is obtained from the last six parameters. Simulation and analysis both demonstrate that the algorithm has great flexibility, satisfactory hash performance, weak collision property, and high security. (general)

  20. Forensic hash for multimedia information

    Science.gov (United States)

    Lu, Wenjun; Varna, Avinash L.; Wu, Min

    2010-01-01

    Digital multimedia such as images and videos are prevalent on today's internet and cause significant social impact, which can be evidenced by the proliferation of social networking sites with user generated contents. Due to the ease of generating and modifying images and videos, it is critical to establish trustworthiness for online multimedia information. In this paper, we propose novel approaches to perform multimedia forensics using compact side information to reconstruct the processing history of a document. We refer to this as FASHION, standing for Forensic hASH for informatION assurance. Based on the Radon transform and scale space theory, the proposed forensic hash is compact and can effectively estimate the parameters of geometric transforms and detect local tampering that an image may have undergone. Forensic hash is designed to answer a broader range of questions regarding the processing history of multimedia data than the simple binary decision from traditional robust image hashing, and also offers more efficient and accurate forensic analysis than multimedia forensic techniques that do not use any side information.

  1. Robust visual hashing via ICA

    International Nuclear Information System (INIS)

    Fournel, Thierry; Coltuc, Daniela

    2010-01-01

    Designed to maximize information transmission in the presence of noise, independent component analysis (ICA) could appear in certain circumstances as a statistics-based tool for robust visual hashing. Several ICA-based scenarios can attempt to reach this goal. A first one is here considered.

  2. Design and analysis of cryptographic algorithms

    DEFF Research Database (Denmark)

    Kölbl, Stefan

    . From securing our passwords and personal data to protecting mobile communication from eavesdroppers and our electronic bank transactions from manipulation. These applications would be impossible without cryptography. The main topic of this thesis is the design and security analysis of the most......In today’s world computers are ubiquitous. They can be found in virtually any industry and most households own at least one personal computer or have a mobile phone. Apart from these fairly large and complex devices, we also see computers on a much smaller scale appear in everyday objects...... to this development. However, most of this communication happens over inherently insecure channels requiring methods to protect our communication. A further issue is the vast amount of data generated, which raises serious privacy concerns. Cryptography provides the key components for protecting our communication...

  3. Threshold quantum cryptograph based on Grover's algorithm

    International Nuclear Information System (INIS)

    Du Jianzhong; Qin Sujuan; Wen Qiaoyan; Zhu Fuchen

    2007-01-01

    We propose a threshold quantum protocol based on Grover's operator and permutation operator on one two-qubit signal. The protocol is secure because the dishonest parties can only extract 2 bits from 3 bits information of operation on one two-qubit signal while they have to introduce error probability 3/8. The protocol includes a detection scheme to resist Trojan horse attack. With probability 1/2, the detection scheme can detect a multi-qubit signal that is used to replace a single-qubit signal, while it makes every legitimate qubit invariant

  4. Toward Optimal Manifold Hashing via Discrete Locally Linear Embedding.

    Science.gov (United States)

    Rongrong Ji; Hong Liu; Liujuan Cao; Di Liu; Yongjian Wu; Feiyue Huang

    2017-11-01

    Binary code learning, also known as hashing, has received increasing attention in large-scale visual search. By transforming high-dimensional features to binary codes, the original Euclidean distance is approximated via Hamming distance. More recently, it is advocated that it is the manifold distance, rather than the Euclidean distance, that should be preserved in the Hamming space. However, it retains as an open problem to directly preserve the manifold structure by hashing. In particular, it first needs to build the local linear embedding in the original feature space, and then quantize such embedding to binary codes. Such a two-step coding is problematic and less optimized. Besides, the off-line learning is extremely time and memory consuming, which needs to calculate the similarity matrix of the original data. In this paper, we propose a novel hashing algorithm, termed discrete locality linear embedding hashing (DLLH), which well addresses the above challenges. The DLLH directly reconstructs the manifold structure in the Hamming space, which learns optimal hash codes to maintain the local linear relationship of data points. To learn discrete locally linear embeddingcodes, we further propose a discrete optimization algorithm with an iterative parameters updating scheme. Moreover, an anchor-based acceleration scheme, termed Anchor-DLLH, is further introduced, which approximates the large similarity matrix by the product of two low-rank matrices. Experimental results on three widely used benchmark data sets, i.e., CIFAR10, NUS-WIDE, and YouTube Face, have shown superior performance of the proposed DLLH over the state-of-the-art approaches.

  5. Security analysis of a one-way hash function based on spatiotemporal chaos

    International Nuclear Information System (INIS)

    Wang Shi-Hong; Shan Peng-Yang

    2011-01-01

    The collision and statistical properties of a one-way hash function based on spatiotemporal chaos are investigated. Analysis and simulation results indicate that collisions exist in the original algorithm and, therefore, the original algorithm is insecure and vulnerable. An improved algorithm is proposed to avoid the collisions. (general)

  6. Handwriting: Feature Correlation Analysis for Biometric Hashes

    Science.gov (United States)

    Vielhauer, Claus; Steinmetz, Ralf

    2004-12-01

    In the application domain of electronic commerce, biometric authentication can provide one possible solution for the key management problem. Besides server-based approaches, methods of deriving digital keys directly from biometric measures appear to be advantageous. In this paper, we analyze one of our recently published specific algorithms of this category based on behavioral biometrics of handwriting, the biometric hash. Our interest is to investigate to which degree each of the underlying feature parameters contributes to the overall intrapersonal stability and interpersonal value space. We will briefly discuss related work in feature evaluation and introduce a new methodology based on three components: the intrapersonal scatter (deviation), the interpersonal entropy, and the correlation between both measures. Evaluation of the technique is presented based on two data sets of different size. The method presented will allow determination of effects of parameterization of the biometric system, estimation of value space boundaries, and comparison with other feature selection approaches.

  7. Handwriting: Feature Correlation Analysis for Biometric Hashes

    Directory of Open Access Journals (Sweden)

    Ralf Steinmetz

    2004-04-01

    Full Text Available In the application domain of electronic commerce, biometric authentication can provide one possible solution for the key management problem. Besides server-based approaches, methods of deriving digital keys directly from biometric measures appear to be advantageous. In this paper, we analyze one of our recently published specific algorithms of this category based on behavioral biometrics of handwriting, the biometric hash. Our interest is to investigate to which degree each of the underlying feature parameters contributes to the overall intrapersonal stability and interpersonal value space. We will briefly discuss related work in feature evaluation and introduce a new methodology based on three components: the intrapersonal scatter (deviation, the interpersonal entropy, and the correlation between both measures. Evaluation of the technique is presented based on two data sets of different size. The method presented will allow determination of effects of parameterization of the biometric system, estimation of value space boundaries, and comparison with other feature selection approaches.

  8. Multi-operation cryptographic engine: VLSI design and implementation

    International Nuclear Information System (INIS)

    Selimis, George; Koufopavlou, Odysseas

    2005-01-01

    The environment of smart card lacks of system resources but the commercial and economic transactions via smart cards demand the use of certificated and secure cryptographic methods. In this paper a cryptographic approach in hardware for smart cards is proposed. The proposed system supports two basic operations of cryptography, authentication and encryption. The basic component of system is the one round of DES algorithm which supports the DES, Triple DES and the ANSI X9.17 standards. The proposed system is efficient in terms of area resources and techniques for low power consumption have applied. Due to the fact that the system is for smart card applications the overall throughput outperforms the typical smart card throughput standards

  9. Remarks on Gödel's Code as a Hash Function

    Czech Academy of Sciences Publication Activity Database

    Mikuš, M.; Savický, Petr

    2010-01-01

    Roč. 47, č. 3 (2010), s. 67-80 ISSN 1210-3195 R&D Projects: GA ČR GAP202/10/1333 Institutional research plan: CEZ:AV0Z10300504 Keywords : Gödel numbering function * hash function * rational reconstruction * integer relation algorithm Subject RIV: BA - General Mathematics http://www.sav.sk/journals/uploads/0317151904m-s.pdf

  10. Cryptographic framework for document-objects resulting from multiparty collaborative transactions.

    Science.gov (United States)

    Goh, A

    2000-01-01

    Multiparty transactional frameworks--i.e. Electronic Data Interchange (EDI) or Health Level (HL) 7--often result in composite documents which can be accurately modelled using hyperlinked document-objects. The structural complexity arising from multiauthor involvement and transaction-specific sequencing would be poorly handled by conventional digital signature schemes based on a single evaluation of a one-way hash function and asymmetric cryptography. In this paper we outline the generation of structure-specific authentication hash-trees for the the authentication of transactional document-objects, followed by asymmetric signature generation on the hash-tree value. Server-side multi-client signature verification would probably constitute the single most compute-intensive task, hence the motivation for our usage of the Rabin signature protocol which results in significantly reduced verification workloads compared to the more commonly applied Rivest-Shamir-Adleman (RSA) protocol. Data privacy is handled via symmetric encryption of message traffic using session-specific keys obtained through key-negotiation mechanisms based on discrete-logarithm cryptography. Individual client-to-server channels can be secured using a double key-pair variation of Diffie-Hellman (DH) key negotiation, usage of which also enables bidirectional node authentication. The reciprocal server-to-client multicast channel is secured through Burmester-Desmedt (BD) key-negotiation which enjoys significant advantages over the usual multiparty extensions to the DH protocol. The implementation of hash-tree signatures and bi/multidirectional key negotiation results in a comprehensive cryptographic framework for multiparty document-objects satisfying both authentication and data privacy requirements.

  11. An update on the side channel cryptanalysis of MACs based on cryptographic hash functions

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Okeya, Katsuyuki

    2007-01-01

    Okeya has established that HMAC/NMAC implementations based on only Matyas-Meyer-Oseas (MMO) PGV scheme and his two refined PGV schemes are secure against side channel DPA attacks when the block cipher in these constructions is secure against these attacks. The significant result of Okeya's analys...

  12. Robust Image Hashing Using Radon Transform and Invariant Features

    Directory of Open Access Journals (Sweden)

    Y.L. Liu

    2016-09-01

    Full Text Available A robust image hashing method based on radon transform and invariant features is proposed for image authentication, image retrieval, and image detection. Specifically, an input image is firstly converted into a counterpart with a normalized size. Then the invariant centroid algorithm is applied to obtain the invariant feature point and the surrounding circular area, and the radon transform is employed to acquire the mapping coefficient matrix of the area. Finally, the hashing sequence is generated by combining the feature vectors and the invariant moments calculated from the coefficient matrix. Experimental results show that this method not only can resist against the normal image processing operations, but also some geometric distortions. Comparisons of receiver operating characteristic (ROC curve indicate that the proposed method outperforms some existing methods in classification between perceptual robustness and discrimination.

  13. Hash3: Proofs, Analysis and Implementation

    DEFF Research Database (Denmark)

    Gauravaram, Praveen

    2009-01-01

    This report outlines the talks presented at the winter school on Hash3: Proofs, Analysis, and Implementation, ECRYPT II Event on Hash Functions. In general, speakers may not write everything what they talk on the slides. So, this report also outlines such findings following the understanding of t...

  14. Multiview alignment hashing for efficient image search.

    Science.gov (United States)

    Liu, Li; Yu, Mengyang; Shao, Ling

    2015-03-01

    Hashing is a popular and efficient method for nearest neighbor search in large-scale data spaces by embedding high-dimensional feature descriptors into a similarity preserving Hamming space with a low dimension. For most hashing methods, the performance of retrieval heavily depends on the choice of the high-dimensional feature descriptor. Furthermore, a single type of feature cannot be descriptive enough for different images when it is used for hashing. Thus, how to combine multiple representations for learning effective hashing functions is an imminent task. In this paper, we present a novel unsupervised multiview alignment hashing approach based on regularized kernel nonnegative matrix factorization, which can find a compact representation uncovering the hidden semantics and simultaneously respecting the joint probability distribution of data. In particular, we aim to seek a matrix factorization to effectively fuse the multiple information sources meanwhile discarding the feature redundancy. Since the raised problem is regarded as nonconvex and discrete, our objective function is then optimized via an alternate way with relaxation and converges to a locally optimal solution. After finding the low-dimensional representation, the hashing functions are finally obtained through multivariable logistic regression. The proposed method is systematically evaluated on three data sets: 1) Caltech-256; 2) CIFAR-10; and 3) CIFAR-20, and the results show that our method significantly outperforms the state-of-the-art multiview hashing techniques.

  15. Quicksort, largest bucket, and min-wise hashing with limited independence

    DEFF Research Database (Denmark)

    Knudsen, Mathias Bæk Tejs; Stöckel, Morten

    2015-01-01

    Randomized algorithms and data structures are often analyzed under the assumption of access to a perfect source of randomness. The most fundamental metric used to measure how “random” a hash function or a random number generator is, is its independence: a sequence of random variables is said...... to be k-independent if every variable is uniform and every size k subset is independent. In this paper we consider three classic algorithms under limited independence. Besides the theoretical interest in removing the unrealistic assumption of full independence, the work is motivated by lower independence...... being more practical. We provide new bounds for randomized quicksort, min-wise hashing and largest bucket size under limited independence. Our results can be summarized as follows. Randomized Quicksort. When pivot elements are computed using a 5-independent hash function, Karloff and Raghavan, J.ACM’93...

  16. One-way Hash function construction based on the chaotic map with changeable-parameter

    International Nuclear Information System (INIS)

    Xiao Di; Liao Xiaofeng; Deng Shaojiang

    2005-01-01

    An algorithm for one-way Hash function construction based on the chaotic map with changeable-parameter is proposed in this paper. A piecewise linear chaotic map with changeable-parameter P is chosen, and cipher block chaining mode (CBC) is introduced to ensure that the parameter P in each iteration is dynamically decided by the last-time iteration value and the corresponding message bit in different positions. The final Hash value is obtained by means of the linear transform on the iteration sequence. Theoretical analysis and computer simulation indicate that our algorithm can satisfy all the performance requirements of Hash function in an efficient and flexible manner. It is practicable and reliable, with high potential to be adopted for E-commerce

  17. One-way Hash function construction based on the chaotic map with changeable-parameter

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Di [College of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China) and College of Mechanical Engineering, Chongqing University, Chongqing 400044 (China)]. E-mail: xiaodi_cqu@hotmail.com; Liao Xiaofeng [College of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China)]. E-mail: xfliao@cqu.edu.cn; Deng Shaojiang [College of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2005-04-01

    An algorithm for one-way Hash function construction based on the chaotic map with changeable-parameter is proposed in this paper. A piecewise linear chaotic map with changeable-parameter P is chosen, and cipher block chaining mode (CBC) is introduced to ensure that the parameter P in each iteration is dynamically decided by the last-time iteration value and the corresponding message bit in different positions. The final Hash value is obtained by means of the linear transform on the iteration sequence. Theoretical analysis and computer simulation indicate that our algorithm can satisfy all the performance requirements of Hash function in an efficient and flexible manner. It is practicable and reliable, with high potential to be adopted for E-commerce.

  18. Hash function based on chaotic map lattices.

    Science.gov (United States)

    Wang, Shihong; Hu, Gang

    2007-06-01

    A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.

  19. Authenticated hash tables

    DEFF Research Database (Denmark)

    Triandopoulos, Nikolaos; Papamanthou, Charalampos; Tamassia, Roberto

    2008-01-01

    Hash tables are fundamental data structures that optimally answer membership queries. Suppose a client stores n elements in a hash table that is outsourced at a remote server so that the client can save space or achieve load balancing. Authenticating the hash table functionality, i.e., verifying...... to a scheme that achieves different trade-offs---namely, constant update time and O(nε/logκε n) query time for fixed ε > 0 and κ > 0. An experimental evaluation of our solution shows very good scalability....

  20. Cracking PwdHash: A Bruteforce Attack on Client-side Password Hashing

    OpenAIRE

    Llewellyn-Jones, David; Rymer, Graham Matthew

    2017-01-01

    PwdHash is a widely-used tool for client-side password hashing. Originally released as a browser extension, it replaces the user’s password with a hash that combines both the password and the website’s domain. As a result, while the user only remembers a single secret, the passwords received are all unique for each site. We demonstrate how the hashcat password recovery tool can be extended to allow passwords generated using PwdHash to be identified and recovered, revealing the user’s master p...

  1. RFID Cryptographic Protocol Based on Cyclic Redundancy Check for High Efficiency

    Directory of Open Access Journals (Sweden)

    Nian Liu

    2014-04-01

    Full Text Available In this paper, RFID encryption protocol is proposed based on the security problems in wireless signal channel. In order to solve the privacy issues of electronic tags, the most commonly way is to improve algorithms based on Hash function. However, there are some problems that can only play roles in some specific domains. Due to the limitations in various kinds of algorithms, in this paper we put forward a new kind of agreement. When it is required to locate target labels accurately and rapidly in a movement environment, using this agreement can achieve high efficiency through combining the Hash function, the two division search algorithm and CRC check. The results show that this algorithm can accurately identify the tags with merits of low cost, execution rate and anti-attack ability etc.

  2. Compact binary hashing for music retrieval

    Science.gov (United States)

    Seo, Jin S.

    2014-03-01

    With the huge volume of music clips available for protection, browsing, and indexing, there is an increased attention to retrieve the information contents of the music archives. Music-similarity computation is an essential building block for browsing, retrieval, and indexing of digital music archives. In practice, as the number of songs available for searching and indexing is increased, so the storage cost in retrieval systems is becoming a serious problem. This paper deals with the storage problem by extending the supervector concept with the binary hashing. We utilize the similarity-preserving binary embedding in generating a hash code from the supervector of each music clip. Especially we compare the performance of the various binary hashing methods for music retrieval tasks on the widely-used genre dataset and the in-house singer dataset. Through the evaluation, we find an effective way of generating hash codes for music similarity estimation which improves the retrieval performance.

  3. Efficient hash tables for network applications.

    Science.gov (United States)

    Zink, Thomas; Waldvogel, Marcel

    2015-01-01

    Hashing has yet to be widely accepted as a component of hard real-time systems and hardware implementations, due to still existing prejudices concerning the unpredictability of space and time requirements resulting from collisions. While in theory perfect hashing can provide optimal mapping, in practice, finding a perfect hash function is too expensive, especially in the context of high-speed applications. The introduction of hashing with multiple choices, d-left hashing and probabilistic table summaries, has caused a shift towards deterministic DRAM access. However, high amounts of rare and expensive high-speed SRAM need to be traded off for predictability, which is infeasible for many applications. In this paper we show that previous suggestions suffer from the false precondition of full generality. Our approach exploits four individual degrees of freedom available in many practical applications, especially hardware and high-speed lookups. This reduces the requirement of on-chip memory up to an order of magnitude and guarantees constant lookup and update time at the cost of only minute amounts of additional hardware. Our design makes efficient hash table implementations cheaper, more predictable, and more practical.

  4. Enhanced Matrix Power Function for Cryptographic Primitive Construction

    Directory of Open Access Journals (Sweden)

    Eligijus Sakalauskas

    2018-02-01

    Full Text Available A new enhanced matrix power function (MPF is presented for the construction of cryptographic primitives. According to the definition in previously published papers, an MPF is an action of two matrices powering some base matrix on the left and right. The MPF inversion equations, corresponding to the MPF problem, are derived and have some structural similarity with classical multivariate quadratic (MQ problem equations. Unlike the MQ problem, the MPF problem seems to be more complicated, since its equations are not defined over the field, but are represented as left–right action of two matrices defined over the infinite near-semiring on the matrix defined over the certain infinite, additive, noncommuting semigroup. The main results are the following: (1 the proposition of infinite, nonsymmetric, and noncommuting algebraic structures for the construction of the enhanced MPF, satisfying associativity conditions, which are necessary for cryptographic applications; (2 the proof that MPF inversion is polynomially equivalent to the solution of a certain kind of generalized multivariate quadratic (MQ problem which can be reckoned as hard; (3 the estimation of the effectiveness of direct MPF value computation; and (4 the presentation of preliminary security analysis, the determination of the security parameter, and specification of its secure value. These results allow us to make a conjecture that enhanced MPF can be a candidate one-way function (OWF, since the effective (polynomial-time inversion algorithm for it is not yet known. An example of the application of the proposed MPF for the Key Agreement Protocol (KAP is presented. Since the direct MPF value is computed effectively, the proposed MPF is suitable for the realization of cryptographic protocols in devices with restricted computation resources.

  5. Efficient tabling of structured data with enhanced hash-consing

    DEFF Research Database (Denmark)

    Zhou, Neng-Fa; Have, Christian Theil

    2012-01-01

    techniques, called input sharing and hash code memoization, for reducing the time complexity by avoiding computing hash codes for certain terms. The improved system is able to eliminate the extra linear factor in the old system for processing sequences, thus significantly enhancing the scalability...... uses hash tables, but also systems that use tries such as XSB and YAP. In this paper, we apply hash-consing to tabling structured data in B-Prolog. While hash-consing can reduce the space consumption when sharing is effective, it does not change the time complexity. We enhance hash-consing with two...

  6. A Verifiable Language for Cryptographic Protocols

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Rosenkilde

    We develop a formal language for specifying cryptographic protocols in a structured and clear manner, which allows verification of many interesting properties; in particular confidentiality and integrity. The study sheds new light on the problem of creating intuitive and human readable languages...

  7. On Boolean functions with generalized cryptographic properties

    NARCIS (Netherlands)

    Braeken, A.; Nikov, V.S.; Nikova, S.I.; Preneel, B.; Canteaut, A.; Viswanathan, K.

    2004-01-01

    By considering a new metric, we generalize cryptographic properties of Boolean functions such as resiliency and propagation characteristics. These new definitions result in a better understanding of the properties of Boolean functions and provide a better insight in the space defined by this metric.

  8. Protecting Cryptographic Memory against Tampering Attack

    DEFF Research Database (Denmark)

    Mukherjee, Pratyay

    In this dissertation we investigate the question of protecting cryptographic devices from tampering attacks. Traditional theoretical analysis of cryptographic devices is based on black-box models which do not take into account the attacks on the implementations, known as physical attacks. In prac......In this dissertation we investigate the question of protecting cryptographic devices from tampering attacks. Traditional theoretical analysis of cryptographic devices is based on black-box models which do not take into account the attacks on the implementations, known as physical attacks....... In practice such attacks can be executed easily, e.g. by heating the device, as substantiated by numerous works in the past decade. Tampering attacks are a class of such physical attacks where the attacker can change the memory/computation, gains additional (non-black-box) knowledge by interacting...... with the faulty device and then tries to break the security. Prior works show that generically approaching such problem is notoriously difficult. So, in this dissertation we attempt to solve an easier question, known as memory-tampering, where the attacker is allowed tamper only with the memory of the device...

  9. Local Deep Hashing Matching of Aerial Images Based on Relative Distance and Absolute Distance Constraints

    Directory of Open Access Journals (Sweden)

    Suting Chen

    2017-12-01

    Full Text Available Aerial images have features of high resolution, complex background, and usually require large amounts of calculation, however, most algorithms used in matching of aerial images adopt the shallow hand-crafted features expressed as floating-point descriptors (e.g., SIFT (Scale-invariant Feature Transform, SURF (Speeded Up Robust Features, which may suffer from poor matching speed and are not well represented in the literature. Here, we propose a novel Local Deep Hashing Matching (LDHM method for matching of aerial images with large size and with lower complexity or fast matching speed. The basic idea of the proposed algorithm is to utilize the deep network model in the local area of the aerial images, and study the local features, as well as the hash function of the images. Firstly, according to the course overlap rate of aerial images, the algorithm extracts the local areas for matching to avoid the processing of redundant information. Secondly, a triplet network structure is proposed to mine the deep features of the patches of the local image, and the learned features are imported to the hash layer, thus obtaining the representation of a binary hash code. Thirdly, the constraints of the positive samples to the absolute distance are added on the basis of the triplet loss, a new objective function is constructed to optimize the parameters of the network and enhance the discriminating capabilities of image patch features. Finally, the obtained deep hash code of each image patch is used for the similarity comparison of the image patches in the Hamming space to complete the matching of aerial images. The proposed LDHM algorithm evaluates the UltraCam-D dataset and a set of actual aerial images, simulation result demonstrates that it may significantly outperform the state-of-the-art algorithm in terms of the efficiency and performance.

  10. Type-Based Automated Verification of Authenticity in Asymmetric Cryptographic Protocols

    DEFF Research Database (Denmark)

    Dahl, Morten; Kobayashi, Naoki; Sun, Yunde

    2011-01-01

    Gordon and Jeffrey developed a type system for verification of asymmetric and symmetric cryptographic protocols. We propose a modified version of Gordon and Jeffrey's type system and develop a type inference algorithm for it, so that protocols can be verified automatically as they are, without any...... type annotations or explicit type casts. We have implemented a protocol verifier SpiCa based on the algorithm, and confirmed its effectiveness....

  11. ANALISA FUNGSI HASH DALAM ENKRIPSI IDEA UNTUK KEAMANAN RECORD INFORMASI

    Directory of Open Access Journals (Sweden)

    Ramen Antonov Purba

    2014-02-01

    Full Text Available Issues of security and confidentiality of data is very important to organization or individual. If the data in a network of computers connected with a public network such as the Internet. Of course a very important data is viewed or hijacked by unauthorized persons. Because if this happens we will probably corrupted data can be lost even that will cause huge material losses. This research discusses the security system of sending messages/data using the encryption aims to maintain access of security a message from the people who are not authorized/ eligible. Because of this delivery system is very extensive security with the scope then this section is limited only parsing the IDEA Algorithm with hash functions, which include encryption, decryption. By combining the encryption IDEA methods (International Data Encryption Algorithm to encrypt the contents of the messages/data with the hash function to detect changes the content of messages/data is expected security level to be better. Results from this study a software that can perform encryption and decryption of messages/data, generate the security key based on the message/data is encrypted.

  12. Feature hashing for fast image retrieval

    Science.gov (United States)

    Yan, Lingyu; Fu, Jiarun; Zhang, Hongxin; Yuan, Lu; Xu, Hui

    2018-03-01

    Currently, researches on content based image retrieval mainly focus on robust feature extraction. However, due to the exponential growth of online images, it is necessary to consider searching among large scale images, which is very timeconsuming and unscalable. Hence, we need to pay much attention to the efficiency of image retrieval. In this paper, we propose a feature hashing method for image retrieval which not only generates compact fingerprint for image representation, but also prevents huge semantic loss during the process of hashing. To generate the fingerprint, an objective function of semantic loss is constructed and minimized, which combine the influence of both the neighborhood structure of feature data and mapping error. Since the machine learning based hashing effectively preserves neighborhood structure of data, it yields visual words with strong discriminability. Furthermore, the generated binary codes leads image representation building to be of low-complexity, making it efficient and scalable to large scale databases. Experimental results show good performance of our approach.

  13. Using Compilers to Enhance Cryptographic Product Development

    Science.gov (United States)

    Bangerter, E.; Barbosa, M.; Bernstein, D.; Damgård, I.; Page, D.; Pagter, J. I.; Sadeghi, A.-R.; Sovio, S.

    Developing high-quality software is hard in the general case, and it is significantly more challenging in the case of cryptographic software. A high degree of new skill and understanding must be learnt and applied without error to avoid vulnerability and inefficiency. This is often beyond the financial, manpower or intellectual resources avail-able. In this paper we present the motivation for the European funded CACE (Computer Aided Cryptography Engineering) project The main objective of CACE is to provide engineers (with limited or no expertise in cryptography) with a toolbox that allows them to generate robust and efficient implementations of cryptographic primitives. We also present some preliminary results already obtained in the early stages of this project, and discuss the relevance of the project as perceived by stakeholders in the mobile device arena.

  14. Cryptographic key generation using handwritten signature

    OpenAIRE

    Freire, Manuel R.; Fiérrez, Julián; Ortega-García, Javier

    2006-01-01

    M. Freire-Santos ; J. Fierrez-Aguilar ; J. Ortega-Garcia; "Cryptographic key generation using handwritten signature", Biometric Technology for Human Identification III, Proc. SPIE 6202 (April 17, 2006); doi:10.1117/12.665875. Copyright 2006 Society of Photo‑Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of...

  15. Discriminative Projection Selection Based Face Image Hashing

    Science.gov (United States)

    Karabat, Cagatay; Erdogan, Hakan

    Face image hashing is an emerging method used in biometric verification systems. In this paper, we propose a novel face image hashing method based on a new technique called discriminative projection selection. We apply the Fisher criterion for selecting the rows of a random projection matrix in a user-dependent fashion. Moreover, another contribution of this paper is to employ a bimodal Gaussian mixture model at the quantization step. Our simulation results on three different databases demonstrate that the proposed method has superior performance in comparison to previously proposed random projection based methods.

  16. Securing ad hoc wireless sensor networks under Byzantine attacks by implementing non-cryptographic method

    Directory of Open Access Journals (Sweden)

    Shabir Ahmad Sofi

    2017-05-01

    Full Text Available Ad Hoc wireless sensor network (WSN is a collection of nodes that do not need to rely on predefined infrastructure to keep the network connected. The level of security and performance are always somehow related to each other, therefore due to limited resources in WSN, cryptographic methods for securing the network against attacks is not feasible. Byzantine attacks disrupt the communication between nodes in the network without regard to its own resource consumption. This paper discusses the performance of cluster based WSN comparing LEACH with Advanced node based clusters under byzantine attacks. This paper also proposes an algorithm for detection and isolation of the compromised nodes to mitigate the attacks by non-cryptographic means. The throughput increases after using the algorithm for isolation of the malicious nodes, 33% in case of Gray Hole attack and 62% in case of Black Hole attack.

  17. Generating cryptographic keys by radioactive decays

    International Nuclear Information System (INIS)

    Grupen, Claus; Maurer, Ingo; Schmidt, Dieter; Smolik, Ludek

    2001-01-01

    We are presenting a new method for the generation of statistically genuine random bitstream with very high frequency which can be employed for cryptographic purposes. The method uses the feature of statistically unpredictable radioactive decays as the source of randomness. The measured quantity is the time distance between the responses of a small ionisation chamber due to the recording of ionising decay products. This time measurement is converted into states representing 0o r 1. The data generated in our experiment successfully passed FIPS PUB 140-1 and die hard statistical tests. For the simulation of systematic effects Monte Carlo techniques were used

  18. Hashing in computer science fifty years of slicing and dicing

    CERN Document Server

    Konheim, Alan G

    2009-01-01

    Written by one of the developers of the technology, Hashing is both a historical document on the development of hashing and an analysis of the applications of hashing in a society increasingly concerned with security. The material in this book is based on courses taught by the author, and key points are reinforced in sample problems and an accompanying instructor s manual. Graduate students and researchers in mathematics, cryptography, and security will benefit from this overview of hashing and the complicated mathematics that it requires

  19. Cryptographic Key Management and Critical Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, Robert K [ORNL

    2014-05-01

    The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) CyberSecurity for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing CyberSecurity for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system

  20. Cryptanalysis of an Iterated Halving-based hash function: CRUSH

    DEFF Research Database (Denmark)

    Bagheri, Nasour; Henricksen, Matt; Knudsen, Lars Ramkilde

    2009-01-01

    Iterated Halving has been suggested as a replacement to the Merkle–Damgård (MD) construction in 2004 anticipating the attacks on the MDx family of hash functions. The CRUSH hash function provides a specific instantiation of the block cipher for Iterated Halving. The authors identify structural pr...

  1. Neighborhood Discriminant Hashing for Large-Scale Image Retrieval.

    Science.gov (United States)

    Tang, Jinhui; Li, Zechao; Wang, Meng; Zhao, Ruizhen

    2015-09-01

    With the proliferation of large-scale community-contributed images, hashing-based approximate nearest neighbor search in huge databases has aroused considerable interest from the fields of computer vision and multimedia in recent years because of its computational and memory efficiency. In this paper, we propose a novel hashing method named neighborhood discriminant hashing (NDH) (for short) to implement approximate similarity search. Different from the previous work, we propose to learn a discriminant hashing function by exploiting local discriminative information, i.e., the labels of a sample can be inherited from the neighbor samples it selects. The hashing function is expected to be orthogonal to avoid redundancy in the learned hashing bits as much as possible, while an information theoretic regularization is jointly exploited using maximum entropy principle. As a consequence, the learned hashing function is compact and nonredundant among bits, while each bit is highly informative. Extensive experiments are carried out on four publicly available data sets and the comparison results demonstrate the outperforming performance of the proposed NDH method over state-of-the-art hashing techniques.

  2. Low-power cryptographic coprocessor for autonomous wireless sensor networks

    Science.gov (United States)

    Olszyna, Jakub; Winiecki, Wiesław

    2013-10-01

    The concept of autonomous wireless sensor networks involves energy harvesting, as well as effective management of system resources. Public-key cryptography (PKC) offers the advantage of elegant key agreement schemes with which a secret key can be securely established over unsecure channels. In addition to solving the key management problem, the other major application of PKC is digital signatures, with which non-repudiation of messages exchanges can be achieved. The motivation for studying low-power and area efficient modular arithmetic algorithms comes from enabling public-key security for low-power devices that can perform under constrained environment like autonomous wireless sensor networks. This paper presents a cryptographic coprocessor tailored to the autonomous wireless sensor networks constraints. Such hardware circuit is aimed to support the implementation of different public-key cryptosystems based on modular arithmetic in GF(p) and GF(2m). Key components of the coprocessor are described as GEZEL models and can be easily transformed to VHDL and implemented in hardware.

  3. Distributed hash table theory, platforms and applications

    CERN Document Server

    Zhang, Hao; Xie, Haiyong; Yu, Nenghai

    2013-01-01

    This SpringerBrief summarizes the development of Distributed Hash Table in both academic and industrial fields. It covers the main theory, platforms and applications of this key part in distributed systems and applications, especially in large-scale distributed environments. The authors teach the principles of several popular DHT platforms that can solve practical problems such as load balance, multiple replicas, consistency and latency. They also propose DHT-based applications including multicast, anycast, distributed file systems, search, storage, content delivery network, file sharing and c

  4. Cryptographic Trust Management Requirements Specification: Version 1.1

    Energy Technology Data Exchange (ETDEWEB)

    Edgar, Thomas W.

    2009-09-30

    The Cryptographic Trust Management (CTM) Project is being developed for Department of Energy, OE-10 by the Pacific Northwest National Laboratory (PNNL). It is a component project of the NSTB Control Systems Security R&D Program.

  5. Multi-biometrics based cryptographic key regeneration scheme

    OpenAIRE

    Kanade , Sanjay Ganesh; Petrovska-Delacrétaz , Dijana; Dorizzi , Bernadette

    2009-01-01

    International audience; Biometrics lack revocability and privacy while cryptography cannot detect the user's identity. By obtaining cryptographic keys using biometrics, one can achieve the properties such as revocability, assurance about user's identity, and privacy. In this paper, we propose a multi-biometric based cryptographic key regeneration scheme. Since left and right irises of a person are uncorrelated, we treat them as two independent biometrics and combine in our system. We propose ...

  6. Side channel analysis of some hash based MACs: A response to SHA-3 requirements

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Okeya, Katsuyuki

    2008-01-01

    The forthcoming NIST's Advanced Hash Standard (AHS) competition to select SHA-3 hash function requires that each candidate hash function submission must have at least one construction to support FIPS 198 HMAC application. As part of its evaluation, NIST is aiming to select either a candidate hash...

  7. Locality-sensitive Hashing without False Negatives

    DEFF Research Database (Denmark)

    Pagh, Rasmus

    2016-01-01

    We consider a new construction of locality-sensitive hash functions for Hamming space that is covering in the sense that is it guaranteed to produce a collision for every pair of vectors within a given radius r. The construction is efficient in the sense that the expected number of hash collisions......(n)/k, where n is the number of points in the data set and k ∊ N, and differs from it by at most a factor ln(4) in the exponent for general values of cr. As a consequence, LSH-based similarity search in Hamming space can avoid the problem of false negatives at little or no cost in efficiency. Read More: http...... between vectors at distance cr, for a given c > 1, comes close to that of the best possible data independent LSH without the covering guarantee, namely, the seminal LSH construction of Indyk and Motwani (FOCS ′98). The efficiency of the new construction essentially matches their bound if cr = log...

  8. Data Collision Prevention with Overflow Hashing Technique in Closed Hash Searching Process

    Science.gov (United States)

    Rahim, Robbi; Nurjamiyah; Rafika Dewi, Arie

    2017-12-01

    Hash search is a method that can be used for various search processes such as search engines, sorting, machine learning, neural network and so on, in the search process the possibility of collision data can happen and to prevent the occurrence of collision can be done in several ways one of them is to use Overflow technique, the use of this technique perform with varying length of data and this technique can prevent the occurrence of data collisions.

  9. Research on the Maritime Communication Cryptographic Chip’s Compiler Optimization

    Directory of Open Access Journals (Sweden)

    Sheng Li

    2017-08-01

    Full Text Available In the process of ocean development, the technology for maritime communication system is a hot research field, of which information security is vital for the normal operation of the whole system, and that is also one of the difficulties in the research of maritime communication system. In this paper, a kind of maritime communication cryptographic SOC(system on chip is introduced, and its compiler framework is put forward through analysis of working mode and problems faced by compiler front end. Then, a loop unrolling factor calculating algorithm based on queue theory, named UFBOQ (unrolling factor based on queue, is proposed to make parallel optimization in the compiler frontend with consideration of the instruction memory capacity limit. Finally, the scalar replacement method is used to optimize unrolled code to solve the memory access latency on the parallel computing efficiency, for continuous data storage characteristics of cryptographic algorithm. The UFBOQ algorithm and scalar replacement prove effective and appropriate, of which the effect achieves the linear speedup.

  10. Secure and Efficient Regression Analysis Using a Hybrid Cryptographic Framework: Development and Evaluation.

    Science.gov (United States)

    Sadat, Md Nazmus; Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman

    2018-03-05

    Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. ©Md Nazmus Sadat, Xiaoqian Jiang, Md Momin Al Aziz, Shuang Wang, Noman Mohammed. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2018.

  11. FBC: a flat binary code scheme for fast Manhattan hash retrieval

    Science.gov (United States)

    Kong, Yan; Wu, Fuzhang; Gao, Lifa; Wu, Yanjun

    2018-04-01

    Hash coding is a widely used technique in approximate nearest neighbor (ANN) search, especially in document search and multimedia (such as image and video) retrieval. Based on the difference of distance measurement, hash methods are generally classified into two categories: Hamming hashing and Manhattan hashing. Benefitting from better neighborhood structure preservation, Manhattan hashing methods outperform earlier methods in search effectiveness. However, due to using decimal arithmetic operations instead of bit operations, Manhattan hashing becomes a more time-consuming process, which significantly decreases the whole search efficiency. To solve this problem, we present an intuitive hash scheme which uses Flat Binary Code (FBC) to encode the data points. As a result, the decimal arithmetic used in previous Manhattan hashing can be replaced by more efficient XOR operator. The final experiments show that with a reasonable memory space growth, our FBC speeds up more than 80% averagely without any search accuracy loss when comparing to the state-of-art Manhattan hashing methods.

  12. Model-based recognition of 3-D objects by geometric hashing technique

    International Nuclear Information System (INIS)

    Severcan, M.; Uzunalioglu, H.

    1992-09-01

    A model-based object recognition system is developed for recognition of polyhedral objects. The system consists of feature extraction, modelling and matching stages. Linear features are used for object descriptions. Lines are obtained from edges using rotation transform. For modelling and recognition process, geometric hashing method is utilized. Each object is modelled using 2-D views taken from the viewpoints on the viewing sphere. A hidden line elimination algorithm is used to find these views from the wire frame model of the objects. The recognition experiments yielded satisfactory results. (author). 8 refs, 5 figs

  13. On Cryptographic Information Security in Cloud Infrastructures: PKI and IBE Methods

    Directory of Open Access Journals (Sweden)

    Konstantin Grigorevich Kogos

    2014-05-01

    Full Text Available The application of cryptographic security methods in cloud infrastructure information security is analyzed. The cryptographic problems in cloudy infrastructures are chosen; the appropriate protocols are investigated; the appropriate mathematical problems are examined.

  14. Improved security analysis of Fugue-256

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Bagheri, Nasour; Knudsen, Lars Ramkilde

    2011-01-01

    Fugue is a cryptographic hash function designed by Halevi, Hall and Jutla and was one of the fourteen hash algorithms of the second round of NIST’s SHA3 hash competition. We consider Fugue-256, the 256-bit instance of Fugue. Fugue-256 updates a state of 960 bits with a round transformation R para...

  15. Modelling Cryptographic Keys in Dynamic Epistemic Logic with DEMO

    NARCIS (Netherlands)

    H. van Ditmarsch (Hans); D.J.N. van Eijck (Jan); F.A.G. Sietsma (Floor); S.E. Simon (Sunil); not CWI et al; J.B. Perez; not CWI et al

    2012-01-01

    textabstractIt is far from obvious to find logical counterparts to cryptographic protocol primitives. In logic, a common assumption is that agents are perfectly rational and have no computational limitations. This creates a dilemma. If one merely abstracts from computational aspects, protocols

  16. A Key Management Method for Cryptographically Enforced Access Control

    NARCIS (Netherlands)

    Zych, Anna; Petkovic, Milan; Jonker, Willem; Fernández-Medina, Eduardo; Yagüe, Mariemma I.

    Cryptographic enforcement of access control mechanisms relies on encrypting protected data with the keys stored by authorized users. This approach poses the problem of the distribution of secret keys. In this paper, a key management scheme is presented where each user stores a single key and is

  17. Efficient key management for cryptographically enforced access control

    NARCIS (Netherlands)

    Zych, Anna; Petkovic, Milan; Jonker, Willem

    Cryptographic enforcement of access control mechanisms relies on encrypting protected data with the keys stored by authorized users. This approach poses the problem of the distribution of secret keys. In this paper, a key management scheme is presented where each user stores a single key and is

  18. 75 FR 52798 - State-07, Cryptographic Clearance Records

    Science.gov (United States)

    2010-08-27

    ... Information Programs and Services, A/GIS/ IPS, Department of State, SA-2, 515 22nd Street, NW., Washington, DC... Department of State and Agency for International Development who have applied for cryptographic clearances as... that apply to all of its Privacy Act systems of records. These notices appear in the form of a...

  19. The Cryptographic Implications of the LinkedIn Data Breach

    OpenAIRE

    Gune, Aditya

    2017-01-01

    Data security and personal privacy are difficult to maintain in the Internet age. In 2012, professional networking site LinkedIn suffered a breach, compromising the login of over 100 million accounts. The passwords were cracked and sold online, exposing the authentication credentials millions of users. This manuscript dissects the cryptographic failures implicated in the breach, and explores more secure methods of storing passwords.

  20. IMPLEMENTATION OF NEURAL - CRYPTOGRAPHIC SYSTEM USING FPGA

    Directory of Open Access Journals (Sweden)

    KARAM M. Z. OTHMAN

    2011-08-01

    Full Text Available Modern cryptography techniques are virtually unbreakable. As the Internet and other forms of electronic communication become more prevalent, electronic security is becoming increasingly important. Cryptography is used to protect e-mail messages, credit card information, and corporate data. The design of the cryptography system is a conventional cryptography that uses one key for encryption and decryption process. The chosen cryptography algorithm is stream cipher algorithm that encrypt one bit at a time. The central problem in the stream-cipher cryptography is the difficulty of generating a long unpredictable sequence of binary signals from short and random key. Pseudo random number generators (PRNG have been widely used to construct this key sequence. The pseudo random number generator was designed using the Artificial Neural Networks (ANN. The Artificial Neural Networks (ANN providing the required nonlinearity properties that increases the randomness statistical properties of the pseudo random generator. The learning algorithm of this neural network is backpropagation learning algorithm. The learning process was done by software program in Matlab (software implementation to get the efficient weights. Then, the learned neural network was implemented using field programmable gate array (FPGA.

  1. Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing.

    Science.gov (United States)

    Zhao, Yingwen; Fu, Guangyuan; Wang, Jun; Guo, Maozu; Yu, Guoxian

    2018-02-23

    Gene Ontology (GO) uses structured vocabularies (or terms) to describe the molecular functions, biological roles, and cellular locations of gene products in a hierarchical ontology. GO annotations associate genes with GO terms and indicate the given gene products carrying out the biological functions described by the relevant terms. However, predicting correct GO annotations for genes from a massive set of GO terms as defined by GO is a difficult challenge. To combat with this challenge, we introduce a Gene Ontology Hierarchy Preserving Hashing (HPHash) based semantic method for gene function prediction. HPHash firstly measures the taxonomic similarity between GO terms. It then uses a hierarchy preserving hashing technique to keep the hierarchical order between GO terms, and to optimize a series of hashing functions to encode massive GO terms via compact binary codes. After that, HPHash utilizes these hashing functions to project the gene-term association matrix into a low-dimensional one and performs semantic similarity based gene function prediction in the low-dimensional space. Experimental results on three model species (Homo sapiens, Mus musculus and Rattus norvegicus) for interspecies gene function prediction show that HPHash performs better than other related approaches and it is robust to the number of hash functions. In addition, we also take HPHash as a plugin for BLAST based gene function prediction. From the experimental results, HPHash again significantly improves the prediction performance. The codes of HPHash are available at: http://mlda.swu.edu.cn/codes.php?name=HPHash. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Deep Hashing Based Fusing Index Method for Large-Scale Image Retrieval

    Directory of Open Access Journals (Sweden)

    Lijuan Duan

    2017-01-01

    Full Text Available Hashing has been widely deployed to perform the Approximate Nearest Neighbor (ANN search for the large-scale image retrieval to solve the problem of storage and retrieval efficiency. Recently, deep hashing methods have been proposed to perform the simultaneous feature learning and the hash code learning with deep neural networks. Even though deep hashing has shown the better performance than traditional hashing methods with handcrafted features, the learned compact hash code from one deep hashing network may not provide the full representation of an image. In this paper, we propose a novel hashing indexing method, called the Deep Hashing based Fusing Index (DHFI, to generate a more compact hash code which has stronger expression ability and distinction capability. In our method, we train two different architecture’s deep hashing subnetworks and fuse the hash codes generated by the two subnetworks together to unify images. Experiments on two real datasets show that our method can outperform state-of-the-art image retrieval applications.

  3. Hash function construction using weighted complex dynamical networks

    International Nuclear Information System (INIS)

    Song Yu-Rong; Jiang Guo-Ping

    2013-01-01

    A novel scheme to construct a hash function based on a weighted complex dynamical network (WCDN) generated from an original message is proposed in this paper. First, the original message is divided into blocks. Then, each block is divided into components, and the nodes and weighted edges are well defined from these components and their relations. Namely, the WCDN closely related to the original message is established. Furthermore, the node dynamics of the WCDN are chosen as a chaotic map. After chaotic iterations, quantization and exclusive-or operations, the fixed-length hash value is obtained. This scheme has the property that any tiny change in message can be diffused rapidly through the WCDN, leading to very different hash values. Analysis and simulation show that the scheme possesses good statistical properties, excellent confusion and diffusion, strong collision resistance and high efficiency. (general)

  4. On another two cryptographic identities in universal Osborn loops

    Directory of Open Access Journals (Sweden)

    T. G. Jaiyéolá

    2010-03-01

    Full Text Available In this study, by establishing an identity for universal Osborn loops, two other identities (of degrees 4 and 6 are deduced from it and they are recognized and recommended for cryptography in a similar spirit in which the cross inverse property (of degree 2 has been used by Keedwell following the fact that it was observed that universal Osborn loops that do not have the 3-power associative property or weaker forms of; inverse property, power associativity and diassociativity to mention a few, will have cycles (even long ones. These identities are found to be cryptographic in nature for universal Osborn loops and thereby called cryptographic identities. They were also found applicable to security patterns, arrangements and networks which the CIP may not be applicable to.

  5. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.

    Science.gov (United States)

    Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong

    Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep

  6. Analysis and improvement for the performance of Baptista's cryptographic scheme

    International Nuclear Information System (INIS)

    Wei Jun; Liao Xiaofeng; Wong, K.W.; Zhou Tsing; Deng Yigui

    2006-01-01

    Based on Baptista's chaotic cryptosystem, we propose a secure and robust chaotic cryptographic scheme after investigating the problems found in this cryptosystem as well as its variants. In this proposed scheme, a subkey array generated from the key and the plaintext is adopted to enhance the security. Some methods are introduced to increase the efficiency. Theoretical analyses and numerical simulations indicate that the proposed scheme is secure and efficient for practical use

  7. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  8. Visual hashing of digital video : applications and techniques

    NARCIS (Netherlands)

    Oostveen, J.; Kalker, A.A.C.M.; Haitsma, J.A.; Tescher, A.G.

    2001-01-01

    his paper present the concept of robust video hashing as a tool for video identification. We present considerations and a technique for (i) extracting essential perceptual features from a moving image sequences and (ii) for identifying any sufficiently long unknown video segment by efficiently

  9. “Robots in Space” Multiagent Problem: Complexity, Information and Cryptographic Aspects

    Directory of Open Access Journals (Sweden)

    A. Yu. Bernstein

    2013-01-01

    Full Text Available We study a multiagent algorithmic problem that we call Robot in Space (RinS: There are n ≥ 2 autonomous robots, that need to agree without outside interference on distribution of shelters, so that straight pathes to the shelters will not intersect. The problem is closely related to the assignment problem in Graph Theory, to the convex hull problem in Combinatorial Geometry, or to the path-planning problem in Artificial Intelligence. Our algorithm grew up from a local search solution of the problem suggested by E.W. Dijkstra. We present a multiagent anonymous and scalable algorithm (protocol solving the problem, give an upper bound for the algorithm, prove (manually its correctness, and examine two communication aspects of the RinS problem — the informational and cryptographic. We proved that (1 there is no protocol that solves the RinS, which transfers a bounded number of bits, and (2 suggested the protocol that allows robots to check whether their paths intersect, without revealing additional information about their relative positions (with respect to shelters. The present paper continues the research presented in Mars Robot Puzzle (a Multiagent Approach to the Dijkstra Problem (by E.V. Bodin, N.O. Garanina, and N.V. Shilov, published in Modeling and analysis of information systems, 18(2, 2011.

  10. Review and Analysis of Cryptographic Schemes Implementing Threshold Signature

    Directory of Open Access Journals (Sweden)

    Anastasiya Victorovna Beresneva

    2015-03-01

    Full Text Available This work is devoted to the study of threshold signature schemes. The systematization of the threshold signature schemes was done, cryptographic constructions based on interpolation Lagrange polynomial, ellipt ic curves and bilinear pairings were investigated. Different methods of generation and verification of threshold signatures were explored, e.g. used in a mobile agents, Internet banking and e-currency. The significance of the work is determined by the reduction of the level of counterfeit electronic documents, signed by certain group of users.

  11. Cryptographic pseudo-random sequence from the spatial chaotic map

    International Nuclear Information System (INIS)

    Sun Fuyan; Liu Shutang

    2009-01-01

    A scheme for pseudo-random binary sequence generation based on the spatial chaotic map is proposed. In order to face the challenge of using the proposed PRBS in cryptography, the proposed PRBS is subjected to statistical tests which are the well-known FIPS-140-1 in the area of cryptography, and correlation properties of the proposed sequences are investigated. The proposed PRBS successfully passes all these tests. Results of statistical testing of the sequences are found encouraging. The results of statistical tests suggest strong candidature for cryptographic applications.

  12. Algorithms

    Indian Academy of Sciences (India)

    to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...

  13. Design of cryptographically secure AES like S-Box using second-order reversible cellular automata for wireless body area network applications

    Science.gov (United States)

    Rafi Ahamed, Shaik

    2016-01-01

    In biomedical, data security is the most expensive resource for wireless body area network applications. Cryptographic algorithms are used in order to protect the information against unauthorised access. Advanced encryption standard (AES) cryptographic algorithm plays a vital role in telemedicine applications. The authors propose a novel approach for design of substitution bytes (S-Box) using second-order reversible one-dimensional cellular automata (RCA2) as a replacement to the classical look-up-table (LUT) based S-Box used in AES algorithm. The performance of proposed RCA2 based S-Box and conventional LUT based S-Box is evaluated in terms of security using the cryptographic properties such as the nonlinearity, correlation immunity bias, strict avalanche criteria and entropy. Moreover, it is also shown that RCA2 based S-Boxes are dynamic in nature, invertible and provide high level of security. Further, it is also found that the RCA2 based S-Box have comparatively better performance than that of conventional LUT based S-Box. PMID:27733924

  14. Design of cryptographically secure AES like S-Box using second-order reversible cellular automata for wireless body area network applications.

    Science.gov (United States)

    Gangadari, Bhoopal Rao; Rafi Ahamed, Shaik

    2016-09-01

    In biomedical, data security is the most expensive resource for wireless body area network applications. Cryptographic algorithms are used in order to protect the information against unauthorised access. Advanced encryption standard (AES) cryptographic algorithm plays a vital role in telemedicine applications. The authors propose a novel approach for design of substitution bytes (S-Box) using second-order reversible one-dimensional cellular automata (RCA 2 ) as a replacement to the classical look-up-table (LUT) based S-Box used in AES algorithm. The performance of proposed RCA 2 based S-Box and conventional LUT based S-Box is evaluated in terms of security using the cryptographic properties such as the nonlinearity, correlation immunity bias, strict avalanche criteria and entropy. Moreover, it is also shown that RCA 2 based S-Boxes are dynamic in nature, invertible and provide high level of security. Further, it is also found that the RCA 2 based S-Box have comparatively better performance than that of conventional LUT based S-Box.

  15. NHash: Randomized N-Gram Hashing for Distributed Generation of Validatable Unique Study Identifiers in Multicenter Research.

    Science.gov (United States)

    Zhang, Guo-Qiang; Tao, Shiqiang; Xing, Guangming; Mozes, Jeno; Zonjy, Bilal; Lhatoo, Samden D; Cui, Licong

    2015-11-10

    A unique study identifier serves as a key for linking research data about a study subject without revealing protected health information in the identifier. While sufficient for single-site and limited-scale studies, the use of common unique study identifiers has several drawbacks for large multicenter studies, where thousands of research participants may be recruited from multiple sites. An important property of study identifiers is error tolerance (or validatable), in that inadvertent editing mistakes during their transmission and use will most likely result in invalid study identifiers. This paper introduces a novel method called "Randomized N-gram Hashing (NHash)," for generating unique study identifiers in a distributed and validatable fashion, in multicenter research. NHash has a unique set of properties: (1) it is a pseudonym serving the purpose of linking research data about a study participant for research purposes; (2) it can be generated automatically in a completely distributed fashion with virtually no risk for identifier collision; (3) it incorporates a set of cryptographic hash functions based on N-grams, with a combination of additional encryption techniques such as a shift cipher; (d) it is validatable (error tolerant) in the sense that inadvertent edit errors will mostly result in invalid identifiers. NHash consists of 2 phases. First, an intermediate string using randomized N-gram hashing is generated. This string consists of a collection of N-gram hashes f1, f2, ..., fk. The input for each function fi has 3 components: a random number r, an integer n, and input data m. The result, fi(r, n, m), is an n-gram of m with a starting position s, which is computed as (r mod |m|), where |m| represents the length of m. The output for Step 1 is the concatenation of the sequence f1(r1, n1, m1), f2(r2, n2, m2), ..., fk(rk, nk, mk). In the second phase, the intermediate string generated in Phase 1 is encrypted using techniques such as shift cipher. The result

  16. Simultenious binary hash and features learning for image retrieval

    Science.gov (United States)

    Frantc, V. A.; Makov, S. V.; Voronin, V. V.; Marchuk, V. I.; Semenishchev, E. A.; Egiazarian, K. O.; Agaian, S.

    2016-05-01

    Content-based image retrieval systems have plenty of applications in modern world. The most important one is the image search by query image or by semantic description. Approaches to this problem are employed in personal photo-collection management systems, web-scale image search engines, medical systems, etc. Automatic analysis of large unlabeled image datasets is virtually impossible without satisfactory image-retrieval technique. It's the main reason why this kind of automatic image processing has attracted so much attention during recent years. Despite rather huge progress in the field, semantically meaningful image retrieval still remains a challenging task. The main issue here is the demand to provide reliable results in short amount of time. This paper addresses the problem by novel technique for simultaneous learning of global image features and binary hash codes. Our approach provide mapping of pixel-based image representation to hash-value space simultaneously trying to save as much of semantic image content as possible. We use deep learning methodology to generate image description with properties of similarity preservation and statistical independence. The main advantage of our approach in contrast to existing is ability to fine-tune retrieval procedure for very specific application which allow us to provide better results in comparison to general techniques. Presented in the paper framework for data- dependent image hashing is based on use two different kinds of neural networks: convolutional neural networks for image description and autoencoder for feature to hash space mapping. Experimental results confirmed that our approach has shown promising results in compare to other state-of-the-art methods.

  17. Speaker Linking and Applications using Non-Parametric Hashing Methods

    Science.gov (United States)

    2016-09-08

    nonparametric estimate of a multivariate density function,” The Annals of Math- ematical Statistics , vol. 36, no. 3, pp. 1049–1051, 1965. [9] E. A. Patrick...Speaker Linking and Applications using Non-Parametric Hashing Methods† Douglas Sturim and William M. Campbell MIT Lincoln Laboratory, Lexington, MA...with many approaches [1, 2]. For this paper, we focus on using i-vectors [2], but the methods apply to any embedding. For the task of speaker QBE and

  18. The legal response to illegal "hash clubs" in Denmark

    DEFF Research Database (Denmark)

    Asmussen, V.; Moesby-Johansen, C.

    2004-01-01

    Fra midten af 1990'erne er der skudt en række hashklubber op i Danmark. Overordnet er der to slags klubber: salgssteder og væresteder. De første klubber er udelukkende organiseret om salget af hash, mens de andre er klubber, hvor man både kan købe hashen og opholde sig på stedet for at deltage i ...

  19. Improving the security of a parallel keyed hash function based on chaotic maps

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Di, E-mail: xiaodi_cqu@hotmail.co [College of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China); Liao Xiaofeng [College of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China); Wang Yong [College of Computer Science and Engineering, Chongqing University, Chongqing 400044 (China)] [College of Economy and Management, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

    2009-11-23

    In this Letter, we analyze the cause of vulnerability of the original parallel keyed hash function based on chaotic maps in detail, and then propose the corresponding enhancement measures. Theoretical analysis and computer simulation indicate that the modified hash function is more secure than the original one. At the same time, it can keep the parallel merit and satisfy the other performance requirements of hash function.

  20. Improving the security of a parallel keyed hash function based on chaotic maps

    International Nuclear Information System (INIS)

    Xiao Di; Liao Xiaofeng; Wang Yong

    2009-01-01

    In this Letter, we analyze the cause of vulnerability of the original parallel keyed hash function based on chaotic maps in detail, and then propose the corresponding enhancement measures. Theoretical analysis and computer simulation indicate that the modified hash function is more secure than the original one. At the same time, it can keep the parallel merit and satisfy the other performance requirements of hash function.

  1. Designing an ASIP for cryptographic pairings over Barreto-Naehrig curves

    NARCIS (Netherlands)

    Kammler, D.; Zhang, D.; Schwabe, P.; Scharwaechter, H.; Langenberg, M.; Auras, D.; Ascheid, G.; Mathar, R.; Clavier, C.; Gaj, K.

    2009-01-01

    This paper presents a design-space exploration of an application-specific instruction-set processor (ASIP) for the computation of various cryptographic pairings over Barreto-Naehrig curves (BN curves). Cryptographic pairings are based on elliptic curves over finite fields—in the case of BN curves a

  2. Collision analysis of one kind of chaos-based hash function

    International Nuclear Information System (INIS)

    Xiao Di; Peng Wenbing; Liao Xiaofeng; Xiang Tao

    2010-01-01

    In the last decade, various chaos-based hash functions have been proposed. Nevertheless, the corresponding analyses of them lag far behind. In this Letter, we firstly take a chaos-based hash function proposed very recently in Amin, Faragallah and Abd El-Latif (2009) as a sample to analyze its computational collision problem, and then generalize the construction method of one kind of chaos-based hash function and summarize some attentions to avoid the collision problem. It is beneficial to the hash function design based on chaos in the future.

  3. sPECTRA: a Precise framEwork for analyzing CrypTographic vulneRabilities in Android apps

    OpenAIRE

    Gajrani, J.; Tripathi, M.; Laxmi, V.; Gaur, M. S.; Conti, M.; Rajarajan, M.

    2017-01-01

    The majority of Android applications (apps) deals with user's personal data. Users trust these apps and allow them to access all sensitive data. Cryptography, when employed in an appropriate way, can be used to prevent misuse of data. Unfortunately, cryptographic libraries also include vulnerable cryptographic services. Since Android app developers may not be cryptographic experts, this makes apps become the target of various attacks due to cryptographic vulnerabilities. In this work, we pres...

  4. Algorithms

    Indian Academy of Sciences (India)

    ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...

  5. Formalizing the Relationship Between Commitment and Basic Cryptographic Primitives

    Directory of Open Access Journals (Sweden)

    S. Sree Vivek

    2016-11-01

    Full Text Available Signcryption is a cryptographic primitive which offers the functionality of both digital signature and encryption with lower combined computational cost. On the other hand, commitment scheme allows an entity to commit to a value, where the entity reveals the committed value later during a decommit phase. In this paper, we explore the connection between commitment schemes, public key encryption, digital signatures and signcryption. We establish formal relationship between commitment and the other primitives. Our main result is that we show signcryption can be used as a commitment scheme with appropriate security notions. We show that if the underlying signcryption scheme is IND-CCA2 secure, then the hiding property of the commitment scheme is satisfied. Similarly, we show that if the underlying signcryption scheme is unforgeable, then the relaxed biding property of the commitment scheme is satisfied. Moreover, we prove that if the underlying signcryption scheme is NM-CCA2, then the commitment scheme is non-malleable.

  6. Cryptographic Key Management in Delay Tolerant Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Sofia Anna Menesidou

    2017-06-01

    Full Text Available Since their appearance at the dawn of the second millennium, Delay or Disruption Tolerant Networks (DTNs have gradually evolved, spurring the development of a variety of methods and protocols for making them more secure and resilient. In this context, perhaps, the most challenging problem to deal with is that of cryptographic key management. To the best of our knowledge, the work at hand is the first to survey the relevant literature and classify the various so far proposed key management approaches in such a restricted and harsh environment. Towards this goal, we have grouped the surveyed key management methods into three major categories depending on whether the particular method copes with (a security initialization, (b key establishment, and (c key revocation. We have attempted to provide a concise but fairly complete evaluation of the proposed up-to-date methods in a generalized way with the aim of offering a central reference point for future research.

  7. Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing

    Science.gov (United States)

    Li-Chee-Ming, J.; Armenakis, C.

    2017-05-01

    This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.

  8. Cryptanalysis of Lin et al.'s Efficient Block-Cipher-Based Hash Function

    NARCIS (Netherlands)

    Liu, Bozhong; Gong, Zheng; Chen, Xiaohong; Qiu, Weidong; Zheng, Dong

    2010-01-01

    Hash functions are widely used in authentication. In this paper, the security of Lin et al.'s efficient block-cipher-based hash function is reviewed. By using Joux's multicollisions and Kelsey et al.'s expandable message techniques, we find the scheme is vulnerable to collision, preimage and second

  9. Authentication codes from ε-ASU hash functions with partially secret keys

    NARCIS (Netherlands)

    Liu, S.L.; Tilborg, van H.C.A.; Weng, J.; Chen, Kefei

    2014-01-01

    An authentication code can be constructed with a family of e-Almost strong universal (e-ASU) hash functions, with the index of hash functions as the authentication key. This paper considers the performance of authentication codes from e-ASU, when the authentication key is only partially secret. We

  10. Range-efficient consistent sampling and locality-sensitive hashing for polygons

    DEFF Research Database (Denmark)

    Gudmundsson, Joachim; Pagh, Rasmus

    2017-01-01

    Locality-sensitive hashing (LSH) is a fundamental technique for similarity search and similarity estimation in high-dimensional spaces. The basic idea is that similar objects should produce hash collisions with probability significantly larger than objects with low similarity. We consider LSH for...... or union of a set of preprocessed polygons. Curiously, our consistent sampling method uses transformation to a geometric problem....

  11. Linear-XOR and Additive Checksums Don't Protect Damgard-Merkle Hashes

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Kelsey, John

    2008-01-01

    We consider the security of Damg\\aa{}rd-Merkle variants which compute linear-XOR or additive checksums over message blocks, intermediate hash values, or both, and process these checksums in computing the final hash value. We show that these Damg\\aa{}rd-Merkle variants gain almost no security...

  12. Cryptanalysis of the 10-Round Hash and Full Compression Function of SHAvite-3-512

    DEFF Research Database (Denmark)

    Gauravaram, Praveen; Leurent, Gaëtan; Mendel, Florian

    2010-01-01

    In this paper, we analyze SHAvite-3-512 hash function, as proposed for round 2 of the SHA-3 competition. We present cryptanalytic results on 10 out of 14 rounds of the hash function SHAvite-3-512, and on the full 14 round compression function of SHAvite-3-512. We show a second preimage attack on ...

  13. The suffix-free-prefix-free hash function construction and its indifferentiability security analysis

    DEFF Research Database (Denmark)

    Bagheri, Nasour; Gauravaram, Praveen; Knudsen, Lars R.

    2012-01-01

    In this paper, we observe that in the seminal work on indifferentiability analysis of iterated hash functions by Coron et al. and in subsequent works, the initial value $$(IV)$$ of hash functions is fixed. In addition, these indifferentiability results do not depend on the Merkle–Damgård (MD) str...

  14. HashLearn Now: Mobile Tutoring in India

    OpenAIRE

    Arun Kumar Agariya; Binay Krishna Shivam; Shashank Murali; Jyoti Tikoria

    2016-01-01

    Looking at today’s competitive exams scenario, a single mark may lead to a differentiation of rank in multiples of hundreds or even thousands. Looking at this problem from student’s perspective this article discusses the role of anywhere, anytime help for the students in getting answers for their problems on a real-time basis from the application known as HashLearn Now. The smart phones usage by students clearly signifies the importance of this application for getting their queries answered b...

  15. A model of quantum communication device for quantum hashing

    International Nuclear Information System (INIS)

    Vasiliev, A

    2016-01-01

    In this paper we consider a model of quantum communications between classical computers aided with quantum processors, connected by a classical and a quantum channel. This type of communications implying both classical and quantum messages with moderate use of quantum processing is implicitly used in many quantum protocols, such as quantum key distribution or quantum digital signature. We show that using the model of a quantum processor on multiatomic ensembles in the common QED cavity we can speed up quantum hashing, which can be the basis of quantum digital signature and other communication protocols. (paper)

  16. Algorithms

    Indian Academy of Sciences (India)

    algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).

  17. Algorithms

    Indian Academy of Sciences (India)

    algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...

  18. Security of Cooperative Intelligent Transport Systems: Standards, Threats Analysis and Cryptographic Countermeasures

    Directory of Open Access Journals (Sweden)

    Elyes Ben Hamida

    2015-07-01

    Full Text Available Due to the growing number of vehicles on the roads worldwide, road traffic accidents are currently recognized as a major public safety problem. In this context, connected vehicles are considered as the key enabling technology to improve road safety and to foster the emergence of next generation cooperative intelligent transport systems (ITS. Through the use of wireless communication technologies, the deployment of ITS will enable vehicles to autonomously communicate with other nearby vehicles and roadside infrastructures and will open the door for a wide range of novel road safety and driver assistive applications. However, connecting wireless-enabled vehicles to external entities can make ITS applications vulnerable to various security threats, thus impacting the safety of drivers. This article reviews the current research challenges and opportunities related to the development of secure and safe ITS applications. It first explores the architecture and main characteristics of ITS systems and surveys the key enabling standards and projects. Then, various ITS security threats are analyzed and classified, along with their corresponding cryptographic countermeasures. Finally, a detailed ITS safety application case study is analyzed and evaluated in light of the European ETSI TC ITS standard. An experimental test-bed is presented, and several elliptic curve digital signature algorithms (ECDSA are benchmarked for signing and verifying ITS safety messages. To conclude, lessons learned, open research challenges and opportunities are discussed.

  19. Algorithms

    Indian Academy of Sciences (India)

    will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...

  20. Physically unclonable cryptographic primitives using self-assembled carbon nanotubes

    Science.gov (United States)

    Hu, Zhaoying; Comeras, Jose Miguel M. Lobez; Park, Hongsik; Tang, Jianshi; Afzali, Ali; Tulevski, George S.; Hannon, James B.; Liehr, Michael; Han, Shu-Jen

    2016-06-01

    Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.

  1. Cryptographically supported NFC tags in medication for better inpatient safety.

    Science.gov (United States)

    Özcanhan, Mehmet Hilal; Dalkılıç, Gökhan; Utku, Semih

    2014-08-01

    Reliable sources report that errors in drug administration are increasing the number of harmed or killed inpatients, during healthcare. This development is in contradiction to patient safety norms. A correctly designed hospital-wide ubiquitous system, using advanced inpatient identification and matching techniques, should provide correct medicine and dosage at the right time. Researchers are still making grouping proof protocol proposals based on the EPC Global Class 1 Generation 2 ver. 1.2 standard tags, for drug administration. Analyses show that such protocols make medication unsecure and hence fail to guarantee inpatient safety. Thus, the original goal of patient safety still remains. In this paper, a very recent proposal (EKATE) upgraded by a cryptographic function is shown to fall short of expectations. Then, an alternative proposal IMS-NFC which uses a more suitable and newer technology; namely Near Field Communication (NFC), is described. The proposed protocol has the additional support of stronger security primitives and it is compliant to ISO communication and security standards. Unlike previous works, the proposal is a complete ubiquitous system that guarantees full patient safety; and it is based on off-the-shelf, new technology products available in every corner of the world. To prove the claims the performance, cost, security and scope of IMS-NFC are compared with previous proposals. Evaluation shows that the proposed system has stronger security, increased patient safety and equal efficiency, at little extra cost.

  2. Cryptographically Secure Multiparty Computation and Distributed Auctions Using Homomorphic Encryption

    Directory of Open Access Journals (Sweden)

    Anunay Kulshrestha

    2017-12-01

    Full Text Available We introduce a robust framework that allows for cryptographically secure multiparty computations, such as distributed private value auctions. The security is guaranteed by two-sided authentication of all network connections, homomorphically encrypted bids, and the publication of zero-knowledge proofs of every computation. This also allows a non-participant verifier to verify the result of any such computation using only the information broadcasted on the network by each individual bidder. Building on previous work on such systems, we design and implement an extensible framework that puts the described ideas to practice. Apart from the actual implementation of the framework, our biggest contribution is the level of protection we are able to guarantee from attacks described in previous work. In order to provide guidance to users of the library, we analyze the use of zero knowledge proofs in ensuring the correct behavior of each node in a computation. We also describe the usage of the library to perform a private-value distributed auction, as well as the other challenges in implementing the protocol, such as auction registration and certificate distribution. Finally, we provide performance statistics on our implementation of the auction.

  3. System using data compression and hashing adapted for use for multimedia encryption

    Science.gov (United States)

    Coffland, Douglas R [Livermore, CA

    2011-07-12

    A system and method is disclosed for multimedia encryption. Within the system of the present invention, a data compression module receives and compresses a media signal into a compressed data stream. A data acquisition module receives and selects a set of data from the compressed data stream. And, a hashing module receives and hashes the set of data into a keyword. The method of the present invention includes the steps of compressing a media signal into a compressed data stream; selecting a set of data from the compressed data stream; and hashing the set of data into a keyword.

  4. Rotation invariant deep binary hashing for fast image retrieval

    Science.gov (United States)

    Dai, Lai; Liu, Jianming; Jiang, Aiwen

    2017-07-01

    In this paper, we study how to compactly represent image's characteristics for fast image retrieval. We propose supervised rotation invariant compact discriminative binary descriptors through combining convolutional neural network with hashing. In the proposed network, binary codes are learned by employing a hidden layer for representing latent concepts that dominate on class labels. A loss function is proposed to minimize the difference between binary descriptors that describe reference image and the rotated one. Compared with some other supervised methods, the proposed network doesn't have to require pair-wised inputs for binary code learning. Experimental results show that our method is effective and achieves state-of-the-art results on the CIFAR-10 and MNIST datasets.

  5. Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning

    KAUST Repository

    Al-Harbi, Razen; Abdelaziz, Ibrahim; Kalnis, Panos; Mamoulis, Nikos; Ebrahim, Yasser; Sahli, Majed

    2016-01-01

    State-of-the-art distributed RDF systems partition data across multiple computer nodes (workers). Some systems perform cheap hash partitioning, which may result in expensive query evaluation. Others try to minimize inter-node communication, which

  6. HashDist: Reproducible, Relocatable, Customizable, Cross-Platform Software Stacks for Open Hydrological Science

    Science.gov (United States)

    Ahmadia, A. J.; Kees, C. E.

    2014-12-01

    Developing scientific software is a continuous balance between not reinventing the wheel and getting fragile codes to interoperate with one another. Binary software distributions such as Anaconda provide a robust starting point for many scientific software packages, but this solution alone is insufficient for many scientific software developers. HashDist provides a critical component of the development workflow, enabling highly customizable, source-driven, and reproducible builds for scientific software stacks, available from both the IPython Notebook and the command line. To address these issues, the Coastal and Hydraulics Laboratory at the US Army Engineer Research and Development Center has funded the development of HashDist in collaboration with Simula Research Laboratories and the University of Texas at Austin. HashDist is motivated by a functional approach to package build management, and features intelligent caching of sources and builds, parametrized build specifications, and the ability to interoperate with system compilers and packages. HashDist enables the easy specification of "software stacks", which allow both the novice user to install a default environment and the advanced user to configure every aspect of their build in a modular fashion. As an advanced feature, HashDist builds can be made relocatable, allowing the easy redistribution of binaries on all three major operating systems as well as cloud, and supercomputing platforms. As a final benefit, all HashDist builds are reproducible, with a build hash specifying exactly how each component of the software stack was installed. This talk discusses the role of HashDist in the hydrological sciences, including its use by the Coastal and Hydraulics Laboratory in the development and deployment of the Proteus Toolkit as well as the Rapid Operational Access and Maneuver Support project. We demonstrate HashDist in action, and show how it can effectively support development, deployment, teaching, and

  7. Object-Location-Aware Hashing for Multi-Label Image Retrieval via Automatic Mask Learning.

    Science.gov (United States)

    Huang, Chang-Qin; Yang, Shang-Ming; Pan, Yan; Lai, Han-Jiang

    2018-09-01

    Learning-based hashing is a leading approach of approximate nearest neighbor search for large-scale image retrieval. In this paper, we develop a deep supervised hashing method for multi-label image retrieval, in which we propose to learn a binary "mask" map that can identify the approximate locations of objects in an image, so that we use this binary "mask" map to obtain length-limited hash codes which mainly focus on an image's objects but ignore the background. The proposed deep architecture consists of four parts: 1) a convolutional sub-network to generate effective image features; 2) a binary "mask" sub-network to identify image objects' approximate locations; 3) a weighted average pooling operation based on the binary "mask" to obtain feature representations and hash codes that pay most attention to foreground objects but ignore the background; and 4) the combination of a triplet ranking loss designed to preserve relative similarities among images and a cross entropy loss defined on image labels. We conduct comprehensive evaluations on four multi-label image data sets. The results indicate that the proposed hashing method achieves superior performance gains over the state-of-the-art supervised or unsupervised hashing baselines.

  8. Practical security and privacy attacks against biometric hashing using sparse recovery

    Science.gov (United States)

    Topcu, Berkay; Karabat, Cagatay; Azadmanesh, Matin; Erdogan, Hakan

    2016-12-01

    Biometric hashing is a cancelable biometric verification method that has received research interest recently. This method can be considered as a two-factor authentication method which combines a personal password (or secret key) with a biometric to obtain a secure binary template which is used for authentication. We present novel practical security and privacy attacks against biometric hashing when the attacker is assumed to know the user's password in order to quantify the additional protection due to biometrics when the password is compromised. We present four methods that can reconstruct a biometric feature and/or the image from a hash and one method which can find the closest biometric data (i.e., face image) from a database. Two of the reconstruction methods are based on 1-bit compressed sensing signal reconstruction for which the data acquisition scenario is very similar to biometric hashing. Previous literature introduced simple attack methods, but we show that we can achieve higher level of security threats using compressed sensing recovery techniques. In addition, we present privacy attacks which reconstruct a biometric image which resembles the original image. We quantify the performance of the attacks using detection error tradeoff curves and equal error rates under advanced attack scenarios. We show that conventional biometric hashing methods suffer from high security and privacy leaks under practical attacks, and we believe more advanced hash generation methods are necessary to avoid these attacks.

  9. Secure method for biometric-based recognition with integrated cryptographic functions.

    Science.gov (United States)

    Chiou, Shin-Yan

    2013-01-01

    Biometric systems refer to biometric technologies which can be used to achieve authentication. Unlike cryptography-based technologies, the ratio for certification in biometric systems needs not to achieve 100% accuracy. However, biometric data can only be directly compared through proximal access to the scanning device and cannot be combined with cryptographic techniques. Moreover, repeated use, improper storage, or transmission leaks may compromise security. Prior studies have attempted to combine cryptography and biometrics, but these methods require the synchronization of internal systems and are vulnerable to power analysis attacks, fault-based cryptanalysis, and replay attacks. This paper presents a new secure cryptographic authentication method using biometric features. The proposed system combines the advantages of biometric identification and cryptographic techniques. By adding a subsystem to existing biometric recognition systems, we can simultaneously achieve the security of cryptographic technology and the error tolerance of biometric recognition. This method can be used for biometric data encryption, signatures, and other types of cryptographic computation. The method offers a high degree of security with protection against power analysis attacks, fault-based cryptanalysis, and replay attacks. Moreover, it can be used to improve the confidentiality of biological data storage and biodata identification processes. Remote biometric authentication can also be safely applied.

  10. Secure Method for Biometric-Based Recognition with Integrated Cryptographic Functions

    Directory of Open Access Journals (Sweden)

    Shin-Yan Chiou

    2013-01-01

    Full Text Available Biometric systems refer to biometric technologies which can be used to achieve authentication. Unlike cryptography-based technologies, the ratio for certification in biometric systems needs not to achieve 100% accuracy. However, biometric data can only be directly compared through proximal access to the scanning device and cannot be combined with cryptographic techniques. Moreover, repeated use, improper storage, or transmission leaks may compromise security. Prior studies have attempted to combine cryptography and biometrics, but these methods require the synchronization of internal systems and are vulnerable to power analysis attacks, fault-based cryptanalysis, and replay attacks. This paper presents a new secure cryptographic authentication method using biometric features. The proposed system combines the advantages of biometric identification and cryptographic techniques. By adding a subsystem to existing biometric recognition systems, we can simultaneously achieve the security of cryptographic technology and the error tolerance of biometric recognition. This method can be used for biometric data encryption, signatures, and other types of cryptographic computation. The method offers a high degree of security with protection against power analysis attacks, fault-based cryptanalysis, and replay attacks. Moreover, it can be used to improve the confidentiality of biological data storage and biodata identification processes. Remote biometric authentication can also be safely applied.

  11. UQlust: combining profile hashing with linear-time ranking for efficient clustering and analysis of big macromolecular data.

    Science.gov (United States)

    Adamczak, Rafal; Meller, Jarek

    2016-12-28

    Advances in computing have enabled current protein and RNA structure prediction and molecular simulation methods to dramatically increase their sampling of conformational spaces. The quickly growing number of experimentally resolved structures, and databases such as the Protein Data Bank, also implies large scale structural similarity analyses to retrieve and classify macromolecular data. Consequently, the computational cost of structure comparison and clustering for large sets of macromolecular structures has become a bottleneck that necessitates further algorithmic improvements and development of efficient software solutions. uQlust is a versatile and easy-to-use tool for ultrafast ranking and clustering of macromolecular structures. uQlust makes use of structural profiles of proteins and nucleic acids, while combining a linear-time algorithm for implicit comparison of all pairs of models with profile hashing to enable efficient clustering of large data sets with a low memory footprint. In addition to ranking and clustering of large sets of models of the same protein or RNA molecule, uQlust can also be used in conjunction with fragment-based profiles in order to cluster structures of arbitrary length. For example, hierarchical clustering of the entire PDB using profile hashing can be performed on a typical laptop, thus opening an avenue for structural explorations previously limited to dedicated resources. The uQlust package is freely available under the GNU General Public License at https://github.com/uQlust . uQlust represents a drastic reduction in the computational complexity and memory requirements with respect to existing clustering and model quality assessment methods for macromolecular structure analysis, while yielding results on par with traditional approaches for both proteins and RNAs.

  12. Refined repetitive sequence searches utilizing a fast hash function and cross species information retrievals

    Directory of Open Access Journals (Sweden)

    Reneker Jeff

    2005-05-01

    Full Text Available Abstract Background Searching for small tandem/disperse repetitive DNA sequences streamlines many biomedical research processes. For instance, whole genomic array analysis in yeast has revealed 22 PHO-regulated genes. The promoter regions of all but one of them contain at least one of the two core Pho4p binding sites, CACGTG and CACGTT. In humans, microsatellites play a role in a number of rare neurodegenerative diseases such as spinocerebellar ataxia type 1 (SCA1. SCA1 is a hereditary neurodegenerative disease caused by an expanded CAG repeat in the coding sequence of the gene. In bacterial pathogens, microsatellites are proposed to regulate expression of some virulence factors. For example, bacteria commonly generate intra-strain diversity through phase variation which is strongly associated with virulence determinants. A recent analysis of the complete sequences of the Helicobacter pylori strains 26695 and J99 has identified 46 putative phase-variable genes among the two genomes through their association with homopolymeric tracts and dinucleotide repeats. Life scientists are increasingly interested in studying the function of small sequences of DNA. However, current search algorithms often generate thousands of matches – most of which are irrelevant to the researcher. Results We present our hash function as well as our search algorithm to locate small sequences of DNA within multiple genomes. Our system applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. We discuss our incorporation of the Gene Ontology (GO database into these algorithms. We conduct an exhaustive time analysis of our system for various repetitive sequence lengths. For instance, a search for eight bases of sequence within 3.224 GBases on 49 different chromosomes takes 1.147 seconds on average. To illustrate the relevance of the search results, we conduct a search with and without added annotation terms for the

  13. SIMPL Systems, or: Can We Design Cryptographic Hardware without Secret Key Information?

    Science.gov (United States)

    Rührmair, Ulrich

    This paper discusses a new cryptographic primitive termed SIMPL system. Roughly speaking, a SIMPL system is a special type of Physical Unclonable Function (PUF) which possesses a binary description that allows its (slow) public simulation and prediction. Besides this public key like functionality, SIMPL systems have another advantage: No secret information is, or needs to be, contained in SIMPL systems in order to enable cryptographic protocols - neither in the form of a standard binary key, nor as secret information hidden in random, analog features, as it is the case for PUFs. The cryptographic security of SIMPLs instead rests on (i) a physical assumption on their unclonability, and (ii) a computational assumption regarding the complexity of simulating their output. This novel property makes SIMPL systems potentially immune against many known hardware and software attacks, including malware, side channel, invasive, or modeling attacks.

  14. SEMANTIC SEGMENTATION OF BUILDING ELEMENTS USING POINT CLOUD HASHING

    Directory of Open Access Journals (Sweden)

    M. Chizhova

    2018-05-01

    Full Text Available For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect into different building types and structural elements (dome, nave, transept etc., including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling.

  15. Hash-chain-based authentication for IoT

    Directory of Open Access Journals (Sweden)

    Antonio PINTO

    2016-12-01

    Full Text Available The number of everyday interconnected devices continues to increase and constitute the Internet of Things (IoT. Things are small computers equipped with sensors and wireless communications capabilities that are driven by energy constraints, since they use batteries and may be required to operate over long periods of time. The majority of these devices perform data collection. The collected data is stored on-line using web-services that, sometimes, operate without any special considerations regarding security and privacy. The current work proposes a modified hash-chain authentication mechanism that, with the help of a smartphone, can authenticate each interaction of the devices with a REST web-service using One Time Passwords (OTP while using open wireless networks. Moreover, the proposed authentication mechanism adheres to the stateless, HTTP-like behavior expected of REST web-services, even allowing the caching of server authentication replies within a predefined time window. No other known web-service authentication mechanism operates in such manner.

  16. Parameter-free Locality Sensitive Hashing for Spherical Range Reporting

    DEFF Research Database (Denmark)

    Ahle, Thomas Dybdahl; Pagh, Rasmus; Aumüller, Martin

    2017-01-01

    We present a data structure for *spherical range reporting* on a point set S, i.e., reporting all points in S that lie within radius r of a given query point q. Our solution builds upon the Locality-Sensitive Hashing (LSH) framework of Indyk and Motwani, which represents the asymptotically best...... solutions to near neighbor problems in high dimensions. While traditional LSH data structures have several parameters whose optimal values depend on the distance distribution from q to the points of S, our data structure is parameter-free, except for the space usage, which is configurable by the user...... query time bounded by O(t(n/t)ρ), where t is the number of points to report and ρ∈(0,1) depends on the data distribution and the strength of the LSH family used. We further present a parameter-free way of using multi-probing, for LSH families that support it, and show that for many such families...

  17. SECOM: A novel hash seed and community detection based-approach for genome-scale protein domain identification

    KAUST Repository

    Fan, Ming

    2012-06-28

    With rapid advances in the development of DNA sequencing technologies, a plethora of high-throughput genome and proteome data from a diverse spectrum of organisms have been generated. The functional annotation and evolutionary history of proteins are usually inferred from domains predicted from the genome sequences. Traditional database-based domain prediction methods cannot identify novel domains, however, and alignment-based methods, which look for recurring segments in the proteome, are computationally demanding. Here, we propose a novel genome-wide domain prediction method, SECOM. Instead of conducting all-against-all sequence alignment, SECOM first indexes all the proteins in the genome by using a hash seed function. Local similarity can thus be detected and encoded into a graph structure, in which each node represents a protein sequence and each edge weight represents the shared hash seeds between the two nodes. SECOM then formulates the domain prediction problem as an overlapping community-finding problem in this graph. A backward graph percolation algorithm that efficiently identifies the domains is proposed. We tested SECOM on five recently sequenced genomes of aquatic animals. Our tests demonstrated that SECOM was able to identify most of the known domains identified by InterProScan. When compared with the alignment-based method, SECOM showed higher sensitivity in detecting putative novel domains, while it was also three orders of magnitude faster. For example, SECOM was able to predict a novel sponge-specific domain in nucleoside-triphosphatase (NTPases). Furthermore, SECOM discovered two novel domains, likely of bacterial origin, that are taxonomically restricted to sea anemone and hydra. SECOM is an open-source program and available at http://sfb.kaust.edu.sa/Pages/Software.aspx. © 2012 Fan et al.

  18. SECOM: A novel hash seed and community detection based-approach for genome-scale protein domain identification

    KAUST Repository

    Fan, Ming; Wong, Ka-Chun; Ryu, Tae Woo; Ravasi, Timothy; Gao, Xin

    2012-01-01

    With rapid advances in the development of DNA sequencing technologies, a plethora of high-throughput genome and proteome data from a diverse spectrum of organisms have been generated. The functional annotation and evolutionary history of proteins are usually inferred from domains predicted from the genome sequences. Traditional database-based domain prediction methods cannot identify novel domains, however, and alignment-based methods, which look for recurring segments in the proteome, are computationally demanding. Here, we propose a novel genome-wide domain prediction method, SECOM. Instead of conducting all-against-all sequence alignment, SECOM first indexes all the proteins in the genome by using a hash seed function. Local similarity can thus be detected and encoded into a graph structure, in which each node represents a protein sequence and each edge weight represents the shared hash seeds between the two nodes. SECOM then formulates the domain prediction problem as an overlapping community-finding problem in this graph. A backward graph percolation algorithm that efficiently identifies the domains is proposed. We tested SECOM on five recently sequenced genomes of aquatic animals. Our tests demonstrated that SECOM was able to identify most of the known domains identified by InterProScan. When compared with the alignment-based method, SECOM showed higher sensitivity in detecting putative novel domains, while it was also three orders of magnitude faster. For example, SECOM was able to predict a novel sponge-specific domain in nucleoside-triphosphatase (NTPases). Furthermore, SECOM discovered two novel domains, likely of bacterial origin, that are taxonomically restricted to sea anemone and hydra. SECOM is an open-source program and available at http://sfb.kaust.edu.sa/Pages/Software.aspx. © 2012 Fan et al.

  19. Analysis of cryptographic mechanisms used in ransomware CryptXXX v3

    Directory of Open Access Journals (Sweden)

    Michał Glet

    2016-12-01

    Full Text Available The main purpose of this paper was to analysis how malicious software is using cryptographic mechanisms. Reverse engineering were applied in order to discover mechanisms used in ransomware CryptXXX v3. At the end were given some useful advices how to improve CryptXXX.[b]Keyword:[/b] ransomware, software engineering, reverse engineering, RC4, RSA, malicious software

  20. A novel, privacy-preserving cryptographic approach for sharing sequencing data

    Science.gov (United States)

    Cassa, Christopher A; Miller, Rachel A; Mandl, Kenneth D

    2013-01-01

    Objective DNA samples are often processed and sequenced in facilities external to the point of collection. These samples are routinely labeled with patient identifiers or pseudonyms, allowing for potential linkage to identity and private clinical information if intercepted during transmission. We present a cryptographic scheme to securely transmit externally generated sequence data which does not require any patient identifiers, public key infrastructure, or the transmission of passwords. Materials and methods This novel encryption scheme cryptographically protects participant sequence data using a shared secret key that is derived from a unique subset of an individual’s genetic sequence. This scheme requires access to a subset of an individual’s genetic sequence to acquire full access to the transmitted sequence data, which helps to prevent sample mismatch. Results We validate that the proposed encryption scheme is robust to sequencing errors, population uniqueness, and sibling disambiguation, and provides sufficient cryptographic key space. Discussion Access to a set of an individual’s genotypes and a mutually agreed cryptographic seed is needed to unlock the full sequence, which provides additional sample authentication and authorization security. We present modest fixed and marginal costs to implement this transmission architecture. Conclusions It is possible for genomics researchers who sequence participant samples externally to protect the transmission of sequence data using unique features of an individual’s genetic sequence. PMID:23125421

  1. CWI cryptanalyst discovers new cryptographic attack variant in Flame spy malware

    NARCIS (Netherlands)

    M.M.J. Stevens (Marc); R.J.F. Cramer (Ronald)

    2012-01-01

    htmlabstractCryptanalyst Marc Stevens from the Centrum Wiskunde & Informatica (CWI) in Amsterdam, known for breaking the https security in 2008 using a cryptanalytic attack on MD5, analyzed the recent Flame virus this week. He discovered that for this spy malware an as yet unknown cryptographic

  2. RETRACTED: The Application of Symmetric Key Cryptographic Algorithms in Wireless Sensor Networks

    Science.gov (United States)

    Si, Lingling; Ji, Zhigang; Wang, Zhihui

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Publisher. The authors have plagiarized a paper that had already appeared in "Queen's 25th Biennial Symposium on Communications", page 168-172, print ISBN 978-1-4244-5709-0, http://dx.doi.org/10.1109/BSC.2010.5472979. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  3. Retraction notice to: "The Application of Symmetric Key Cryptographic Algorithms in Wireless Sensor Networks"

    Science.gov (United States)

    Si, Lingling; Ji, Zhigang; Wang, Zhihui

    This article has been retracted: please see Elsevier Policy on Article Withdrawal. This article has been retracted at the request of the Publisher. The authors have plagiarized a paper that had already appeared in "Queen's 25th Biennial Symposium on Communications", page 168-172, print ISBN 978-1-4244-5709-0. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.

  4. An Analysis of the Computer Security Ramifications of Weakened Asymmetric Cryptographic Algorithms

    Science.gov (United States)

    2012-06-01

    OpenVPN (Yonan). TLS (and by extension SSL) obviously rely on encryption to provide the confidentiality, integrity and authentication services it...Secure Shell (SSH) Transport Layer Protocol.” IETF, Jan. 2006. <tools.ietf.org/html/rfc4253> Yonan, James, and Mattock. " OpenVPN ." SourceForge...11 May 2012. <http://sourceforge.net/projects/ openvpn /> 92 REPORT DOCUMENTATION PAGE Form Approved OMB No. 074-0188 The public reporting

  5. Internal differential collision attacks on the reduced-round Grøstl-0 hash function

    DEFF Research Database (Denmark)

    Ideguchi, Kota; Tischhauser, Elmar Wolfgang; Preneel, Bart

    2014-01-01

    . This results in collision attacks and semi-free-start collision attacks on the Grøstl-0 hash function and compression function with reduced rounds. Specifically, we show collision attacks on the Grøstl-0-256 hash function reduced to 5 and 6 out of 10 rounds with time complexities 248 and 2112 and on the Grøstl......-0-512 hash function reduced to 6 out of 14 rounds with time complexity 2183. Furthermore, we demonstrate semi-free-start collision attacks on the Grøstl-0-256 compression function reduced to 8 rounds and the Grøstl-0-512 compression function reduced to 9 rounds. Finally, we show improved...

  6. Techniques for Performance Improvement of Integer Multiplication in Cryptographic Applications

    Directory of Open Access Journals (Sweden)

    Robert Brumnik

    2014-01-01

    Full Text Available The problem of arithmetic operations performance in number fields is actively researched by many scientists, as evidenced by significant publications in this field. In this work, we offer some techniques to increase performance of software implementation of finite field multiplication algorithm, for both 32-bit and 64-bit platforms. The developed technique, called “delayed carry mechanism,” allows to preventing necessity to consider a significant bit carry at each iteration of the sum accumulation loop. This mechanism enables reducing the total number of additions and applies the modern parallelization technologies effectively.

  7. Evaluation of Information Leakage from Cryptographic Hardware via Common-Mode Current

    Science.gov (United States)

    Hayashi, Yu-Ichi; Homma, Naofumi; Mizuki, Takaaki; Sugawara, Takeshi; Kayano, Yoshiki; Aoki, Takafumi; Minegishi, Shigeki; Satoh, Akashi; Sone, Hideaki; Inoue, Hiroshi

    This paper presents a possibility of Electromagnetic (EM) analysis against cryptographic modules outside their security boundaries. The mechanism behind the information leakage is explained from the view point of Electromagnetic Compatibility: electric fluctuation released from cryptographic modules can conduct to peripheral circuits based on ground bounce, resulting in radiation. We demonstrate the consequence of the mechanism through experiments where the ISO/IEC standard block cipher AES (Advanced Encryption Standard) is implemented on an FPGA board and EM radiations from power and communication cables are measured. Correlation Electromagnetic Analysis (CEMA) is conducted in order to evaluate the information leakage. The experimental results show that secret keys are revealed even though there are various disturbing factors such as voltage regulators and AC/DC converters between the target module and the measurement points. We also discuss information-suppression techniques as electrical-level countermeasures against such CEMAs.

  8. Cryptographic applications of analytic number theory complexity lower bounds and pseudorandomness

    CERN Document Server

    2003-01-01

    The book introduces new ways of using analytic number theory in cryptography and related areas, such as complexity theory and pseudorandom number generation. Key topics and features: - various lower bounds on the complexity of some number theoretic and cryptographic problems, associated with classical schemes such as RSA, Diffie-Hellman, DSA as well as with relatively new schemes like XTR and NTRU - a series of very recent results about certain important characteristics (period, distribution, linear complexity) of several commonly used pseudorandom number generators, such as the RSA generator, Blum-Blum-Shub generator, Naor-Reingold generator, inversive generator, and others - one of the principal tools is bounds of exponential sums, which are combined with other number theoretic methods such as lattice reduction and sieving - a number of open problems of different level of difficulty and proposals for further research - an extensive and up-to-date bibliography Cryptographers and number theorists will find th...

  9. The generation of shared cryptographic keys through channel impulse response estimation at 60 GHz.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Derek P.; Forman, Michael A.; Dowdle, Donald Ryan

    2010-09-01

    Methods to generate private keys based on wireless channel characteristics have been proposed as an alternative to standard key-management schemes. In this work, we discuss past work in the field and offer a generalized scheme for the generation of private keys using uncorrelated channels in multiple domains. Proposed cognitive enhancements measure channel characteristics, to dynamically change transmission and reception parameters as well as estimate private key randomness and expiration times. Finally, results are presented on the implementation of a system for the generation of private keys for cryptographic communications using channel impulse-response estimation at 60 GHz. The testbed is composed of commercial millimeter-wave VubIQ transceivers, laboratory equipment, and software implemented in MATLAB. Novel cognitive enhancements are demonstrated, using channel estimation to dynamically change system parameters and estimate cryptographic key strength. We show for a complex channel that secret key generation can be accomplished on the order of 100 kb/s.

  10. Construction of secure and fast hash functions using nonbinary error-correcting codes

    DEFF Research Database (Denmark)

    Knudsen, Lars Ramkilde; Preneel, Bart

    2002-01-01

    constructions based on block ciphers such as the Data Encryption Standard (DES), where the key size is slightly smaller than the block size; IDEA, where the key size is twice the block size; Advanced Encryption Standard (AES), with a variable key size; and to MD4-like hash functions. Under reasonable...

  11. Rebound Attacks on the Reduced Grøstl Hash Function

    DEFF Research Database (Denmark)

    Mendel, Florian; Rechberger, C.; Schlaffer, Martin

    2010-01-01

    Grøstl is one of 14 second round candidates of the NIST SHA-3 competition. Cryptanalytic results on the wide-pipe compression function of Grøstl-256 have already been published. However, little is known about the hash function, arguably a much more interesting cryptanalytic setting. Also, Grøstl...

  12. Secure Method for Biometric-Based Recognition with Integrated Cryptographic Functions

    OpenAIRE

    Chiou, Shin-Yan

    2013-01-01

    Biometric systems refer to biometric technologies which can be used to achieve authentication. Unlike cryptography-based technologies, the ratio for certification in biometric systems needs not to achieve 100% accuracy. However, biometric data can only be directly compared through proximal access to the scanning device and cannot be combined with cryptographic techniques. Moreover, repeated use, improper storage, or transmission leaks may compromise security. Prior studies have attempted to c...

  13. Physically Unclonable Cryptographic Primitives by Chemical Vapor Deposition of Layered MoS2.

    Science.gov (United States)

    Alharbi, Abdullah; Armstrong, Darren; Alharbi, Somayah; Shahrjerdi, Davood

    2017-12-26

    Physically unclonable cryptographic primitives are promising for securing the rapidly growing number of electronic devices. Here, we introduce physically unclonable primitives from layered molybdenum disulfide (MoS 2 ) by leveraging the natural randomness of their island growth during chemical vapor deposition (CVD). We synthesize a MoS 2 monolayer film covered with speckles of multilayer islands, where the growth process is engineered for an optimal speckle density. Using the Clark-Evans test, we confirm that the distribution of islands on the film exhibits complete spatial randomness, hence indicating the growth of multilayer speckles is a spatial Poisson process. Such a property is highly desirable for constructing unpredictable cryptographic primitives. The security primitive is an array of 2048 pixels fabricated from this film. The complex structure of the pixels makes the physical duplication of the array impossible (i.e., physically unclonable). A unique optical response is generated by applying an optical stimulus to the structure. The basis for this unique response is the dependence of the photoemission on the number of MoS 2 layers, which by design is random throughout the film. Using a threshold value for the photoemission, we convert the optical response into binary cryptographic keys. We show that the proper selection of this threshold is crucial for maximizing combination randomness and that the optimal value of the threshold is linked directly to the growth process. This study reveals an opportunity for generating robust and versatile security primitives from layered transition metal dichalcogenides.

  14. Fast Implementation of Two Hash Algorithms on nVidia CUDA GPU

    OpenAIRE

    Lerchundi Osa, Gorka

    2009-01-01

    Projecte fet en col.laboració amb Norwegian University of Science and Technology. Department of Telematics User needs increases as time passes. We started with computers like the size of a room where the perforated plaques did the same function as the current machine code object does and at present we are at a point where the number of processors within our graphic device unit it’s not enough for our requirements. A change in the evolution of computing is looming. We are in a t...

  15. GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments

    Science.gov (United States)

    Chen, Zhanlong; Wu, Xin-cai; Wu, Liang

    2008-12-01

    Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the

  16. Super-Encryption Implementation Using Monoalphabetic Algorithm and XOR Algorithm for Data Security

    Science.gov (United States)

    Rachmawati, Dian; Andri Budiman, Mohammad; Aulia, Indra

    2018-03-01

    The exchange of data that occurs offline and online is very vulnerable to the threat of data theft. In general, cryptography is a science and art to maintain data secrecy. An encryption is a cryptography algorithm in which data is transformed into cipher text, which is something that is unreadable and meaningless so it cannot be read or understood by other parties. In super-encryption, two or more encryption algorithms are combined to make it more secure. In this work, Monoalphabetic algorithm and XOR algorithm are combined to form a super- encryption. Monoalphabetic algorithm works by changing a particular letter into a new letter based on existing keywords while the XOR algorithm works by using logic operation XOR Since Monoalphabetic algorithm is a classical cryptographic algorithm and XOR algorithm is a modern cryptographic algorithm, this scheme is expected to be both easy-to-implement and more secure. The combination of the two algorithms is capable of securing the data and restoring it back to its original form (plaintext), so the data integrity is still ensured.

  17. HASH: the Hong Kong/AAO/Strasbourg Hα planetary nebula database

    International Nuclear Information System (INIS)

    Parker, Quentin A; Bojičić, Ivan S; Frew, David J

    2016-01-01

    By incorporating our major recent discoveries with re-measured and verified contents of existing catalogues we provide, for the first time, an accessible, reliable, on-line SQL database for essential, up-to date information for all known Galactic planetary nebulae (PNe). We have attempted to: i) reliably remove PN mimics/false ID's that have biased previous studies and ii) provide accurate positions, sizes, morphologies, multi-wavelength imagery and spectroscopy. We also provide a link to CDS/Vizier for the archival history of each object and other valuable links to external data. With the HASH interface, users can sift, select, browse, collate, investigate, download and visualise the entire currently known Galactic PNe diversity. HASH provides the community with the most complete and reliable data with which to undertake new science. (paper)

  18. EFFICIENCY ANALYSIS OF HASHING METHODS FOR FILE SYSTEMS IN USER MODE

    Directory of Open Access Journals (Sweden)

    E. Y. Ivanov

    2013-05-01

    Full Text Available The article deals with characteristics and performance of interaction protocols between virtual file system and file system, their influence on processing power of microkernel operating systems. User mode implementation of ext2 file system for MINIX 3 OS is used to show that in microkernel operating systems file object identification time might increase up to 26 times in comparison with monolithic systems. Therefore, we present efficiency analysis of various hashing methods for file systems, running in user mode. Studies have shown that using hashing methods recommended in this paper it is possible to achieve competitive performance of the considered component of I/O stacks in microkernel and monolithic operating systems.

  19. Cryptanalysis on a parallel keyed hash function based on chaotic maps

    International Nuclear Information System (INIS)

    Guo Wei; Wang Xiaoming; He Dake; Cao Yang

    2009-01-01

    This Letter analyzes the security of a novel parallel keyed hash function based on chaotic maps, proposed by Xiao et al. to improve the efficiency in parallel computing environment. We show how to devise forgery attacks on Xiao's scheme with differential cryptanalysis and give the experiment results of two kinds of forgery attacks firstly. Furthermore, we discuss the problem of weak keys in the scheme and demonstrate how to utilize weak keys to construct collision.

  20. MULTIMEDIA DATA TRANSMISSION THROUGH TCP/IP USING HASH BASED FEC WITH AUTO-XOR SCHEME

    OpenAIRE

    R. Shalin; D. Kesavaraja

    2012-01-01

    The most preferred mode for communication of multimedia data is through the TCP/IP protocol. But on the other hand the TCP/IP protocol produces huge packet loss unavoidable due to network traffic and congestion. In order to provide a efficient communication it is necessary to recover the loss of packets. The proposed scheme implements Hash based FEC with auto XOR scheme for this purpose. The scheme is implemented through Forward error correction, MD5 and XOR for providing efficient transmissi...

  1. Correlation Immunity, Avalanche Features, and Other Cryptographic Properties of Generalized Boolean Functions

    Science.gov (United States)

    2017-09-01

    satisfying the strict avalanche criterion,” Discrete Math ., vol. 185, pp. 29–39, 1998. [2] R.C. Bose, “On some connections between the design of... Discrete Appl. Math ., vol. 149, pp. 73–86, 2005. [11] T.W. Cusick and P. Stănică, Cryptographic Boolean Functions and Applications, 2nd ed., San Diego...Stănică, “Bisecting binomial coefficients,” Discrete Appl. Math ., vol. 227, pp. 70–83, 2017. [28] T. Martinsen, W. Meidl, and P. Stănică, “Generalized

  2. Detection of beamsplitting attack in a quantum cryptographic channel based on photon number statistics monitoring

    International Nuclear Information System (INIS)

    Gaidash, A A; Egorov, V I; Gleim, A V

    2014-01-01

    Quantum cryptography in theory allows distributing secure keys between two users so that any performed eavesdropping attempt would be immediately discovered. However, in practice an eavesdropper can obtain key information from multi-photon states when attenuated laser radiation is used as a source. In order to overcome this possibility, it is generally suggested to implement special cryptographic protocols, like decoy states or SARG04. We present an alternative method based on monitoring photon number statistics after detection. This method can therefore be used with any existing protocol

  3. MEANING OF THE BITCOIN CRYPTOGRAPHIC CURRENCY AS A MEDIUM OF EXCHANGE

    Directory of Open Access Journals (Sweden)

    Łukasz Dopierała

    2014-06-01

    Full Text Available This article presents one of the new elements of virtual reality, which is the Bitcoin cryptocurrency. This thesis focuses on the condition and perspectives on development of the trading function of this instrument. The authors discuss the legal aspects of functioning of the Bitcoin, conduct a SWOT analysis of this cryptocurrency as a medium of exchange, and examin the scale of use of Bitcoin in transaction purposes. As of March 1, 2014 the trading system gradually develops and the strengths of this cryptographic currency outweigh its weaknesses, but the future of Bitcoin as a medium of exchange is difficult to determine.

  4. Simulation-Based Performance Evaluation of Predictive-Hashing Based Multicast Authentication Protocol

    Directory of Open Access Journals (Sweden)

    Seonho Choi

    2012-12-01

    Full Text Available A predictive-hashing based Denial-of-Service (DoS resistant multicast authentication protocol was proposed based upon predictive-hashing, one-way key chain, erasure codes, and distillation codes techniques [4, 5]. It was claimed that this new scheme should be more resistant to various types of DoS attacks, and its worst-case resource requirements were derived in terms of coarse-level system parameters including CPU times for signature verification and erasure/distillation decoding operations, attack levels, etc. To show the effectiveness of our approach and to analyze exact resource requirements in various attack scenarios with different parameter settings, we designed and implemented an attack simulator which is platformindependent. Various attack scenarios may be created with different attack types and parameters against a receiver equipped with the predictive-hashing based protocol. The design of the simulator is explained, and the simulation results are presented with detailed resource usage statistics. In addition, resistance level to various types of DoS attacks is formulated with a newly defined resistance metric. By comparing these results to those from another approach, PRABS [8], we show that the resistance level of our protocol is greatly enhanced even in the presence of many attack streams.

  5. Cryptographic Protocols:

    DEFF Research Database (Denmark)

    Geisler, Martin Joakim Bittel

    cryptography was thus concerned with message confidentiality and integrity. Modern cryptography cover a much wider range of subjects including the area of secure multiparty computation, which will be the main topic of this dissertation. Our first contribution is a new protocol for secure comparison, presented...... implemented the comparison protocol in Java and benchmarks show that is it highly competitive and practical. The biggest contribution of this dissertation is a general framework for secure multiparty computation. Instead of making new ad hoc implementations for each protocol, we want a single and extensible...... in Chapter 2. Comparisons play a key role in many systems such as online auctions and benchmarks — it is not unreasonable to say that when parties come together for a multiparty computation, it is because they want to make decisions that depend on private information. Decisions depend on comparisons. We have...

  6. Parallel Algorithms for the Exascale Era

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Laboratory

    2016-10-19

    New parallel algorithms are needed to reach the Exascale level of parallelism with millions of cores. We look at some of the research developed by students in projects at LANL. The research blends ideas from the early days of computing while weaving in the fresh approach brought by students new to the field of high performance computing. We look at reproducibility of global sums and why it is important to parallel computing. Next we look at how the concept of hashing has led to the development of more scalable algorithms suitable for next-generation parallel computers. Nearly all of this work has been done by undergraduates and published in leading scientific journals.

  7. Two-phase hybrid cryptography algorithm for wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Rawya Rizk

    2015-12-01

    Full Text Available For achieving security in wireless sensor networks (WSNs, cryptography plays an important role. In this paper, a new security algorithm using combination of both symmetric and asymmetric cryptographic techniques is proposed to provide high security with minimized key maintenance. It guarantees three cryptographic primitives, integrity, confidentiality and authentication. Elliptical Curve Cryptography (ECC and Advanced Encryption Standard (AES are combined to provide encryption. XOR-DUAL RSA algorithm is considered for authentication and Message Digest-5 (MD5 for integrity. The results show that the proposed hybrid algorithm gives better performance in terms of computation time, the size of cipher text, and the energy consumption in WSN. It is also robust against different types of attacks in the case of image encryption.

  8. Investigation of Current State of Crytpography and Theoretical Implementation of a Cryptographic System for the Combat Service Support Control System.

    Science.gov (United States)

    1987-05-01

    34 Advances in Crypt g: Proceedings of CRYPTO 84,r o ... .. .. _ __...o ... .. ... ....... ed. by G.R. Blakely and D. Chaum . [Wagn84b] Wagner, Neal R...in Distributed Computer Systems," IEEE Trans. on Computers, Vol. C-35, No. 7, Jul. 86, pp. 583-590. Gifford, David K., "Cryptographic Sealing for

  9. Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning

    KAUST Repository

    Al-Harbi, Razen

    2016-02-08

    State-of-the-art distributed RDF systems partition data across multiple computer nodes (workers). Some systems perform cheap hash partitioning, which may result in expensive query evaluation. Others try to minimize inter-node communication, which requires an expensive data preprocessing phase, leading to a high startup cost. Apriori knowledge of the query workload has also been used to create partitions, which, however, are static and do not adapt to workload changes. In this paper, we propose AdPart, a distributed RDF system, which addresses the shortcomings of previous work. First, AdPart applies lightweight partitioning on the initial data, which distributes triples by hashing on their subjects; this renders its startup overhead low. At the same time, the locality-aware query optimizer of AdPart takes full advantage of the partitioning to (1) support the fully parallel processing of join patterns on subjects and (2) minimize data communication for general queries by applying hash distribution of intermediate results instead of broadcasting, wherever possible. Second, AdPart monitors the data access patterns and dynamically redistributes and replicates the instances of the most frequent ones among workers. As a result, the communication cost for future queries is drastically reduced or even eliminated. To control replication, AdPart implements an eviction policy for the redistributed patterns. Our experiments with synthetic and real data verify that AdPart: (1) starts faster than all existing systems; (2) processes thousands of queries before other systems become online; and (3) gracefully adapts to the query load, being able to evaluate queries on billion-scale RDF data in subseconds.

  10. An adaptive secret key-directed cryptographic scheme for secure transmission in wireless sensor networks

    International Nuclear Information System (INIS)

    Muhammad, K.; Jan, Z.; Khan, Z

    2015-01-01

    Wireless Sensor Networks (WSNs) are memory and bandwidth limited networks whose main goals are to maximize the network lifetime and minimize the energy consumption and transmission cost. To achieve these goals, different techniques of compression and clustering have been used. However, security is an open and major issue in WSNs for which different approaches are used, both in centralized and distributed WSNs' environments. This paper presents an adaptive cryptographic scheme for secure transmission of various sensitive parameters, sensed by wireless sensors to the fusion center for further processing in WSNs such as military networks. The proposed method encrypts the sensitive captured data of sensor nodes using various encryption procedures (bitxor operation, bits shuffling, and secret key based encryption) and then sends it to the fusion center. At the fusion center, the received encrypted data is decrypted for taking further necessary actions. The experimental results with complexity analysis, validate the effectiveness and feasibility of the proposed method in terms of security in WSNs. (author)

  11. Cryptographic robustness of a quantum cryptography system using phase-time coding

    International Nuclear Information System (INIS)

    Molotkov, S. N.

    2008-01-01

    A cryptographic analysis is presented of a new quantum key distribution protocol using phase-time coding. An upper bound is obtained for the error rate that guarantees secure key distribution. It is shown that the maximum tolerable error rate for this protocol depends on the counting rate in the control time slot. When no counts are detected in the control time slot, the protocol guarantees secure key distribution if the bit error rate in the sifted key does not exceed 50%. This protocol partially discriminates between errors due to system defects (e.g., imbalance of a fiber-optic interferometer) and eavesdropping. In the absence of eavesdropping, the counts detected in the control time slot are not caused by interferometer imbalance, which reduces the requirements for interferometer stability.

  12. UnoHop: Efficient Distributed Hash Table with O(1 Lookup Performance

    Directory of Open Access Journals (Sweden)

    Herry Sitepu

    2008-05-01

    Full Text Available Distributed Hash Tables (DHTs with O(1 lookup performance strive to minimize the maintenance traffic which required for propagating membership changes information (events. These events distribution allows each node in the peer-to-peer network maintains accurate routing tables with complete membership information. We present UnoHop, a novel DHT protocol with O(1 lookup performance. The protocol uses an efficient mechanism to distribute events through a dissemination tree that constructed dynamically rooted at the node that detect the events. Our protocol produces symmetric bandwidth usage at all nodes while decreasing the events propagation delay.

  13. MULTIMEDIA DATA TRANSMISSION THROUGH TCP/IP USING HASH BASED FEC WITH AUTO-XOR SCHEME

    Directory of Open Access Journals (Sweden)

    R. Shalin

    2012-09-01

    Full Text Available The most preferred mode for communication of multimedia data is through the TCP/IP protocol. But on the other hand the TCP/IP protocol produces huge packet loss unavoidable due to network traffic and congestion. In order to provide a efficient communication it is necessary to recover the loss of packets. The proposed scheme implements Hash based FEC with auto XOR scheme for this purpose. The scheme is implemented through Forward error correction, MD5 and XOR for providing efficient transmission of multimedia data. The proposed scheme provides transmission high accuracy, throughput and low latency and loss.

  14. A hash based mutual RFID tag authentication protocol in telecare medicine information system.

    Science.gov (United States)

    Srivastava, Keerti; Awasthi, Amit K; Kaul, Sonam D; Mittal, R C

    2015-01-01

    Radio Frequency Identification (RFID) is a technology which has multidimensional applications to reduce the complexity of today life. Everywhere, like access control, transportation, real-time inventory, asset management and automated payment systems etc., RFID has its enormous use. Recently, this technology is opening its wings in healthcare environments, where potential applications include patient monitoring, object traceability and drug administration systems etc. In this paper, we propose a secure RFID-based protocol for the medical sector. This protocol is based on hash operation with synchronized secret. The protocol is safe against active and passive attacks such as forgery, traceability, replay and de-synchronization attack.

  15. Comparison of Various Similarity Measures for Average Image Hash in Mobile Phone Application

    Science.gov (United States)

    Farisa Chaerul Haviana, Sam; Taufik, Muhammad

    2017-04-01

    One of the main issue in Content Based Image Retrieval (CIBR) is similarity measures for resulting image hashes. The main key challenge is to find the most benefits distance or similarity measures for calculating the similarity in term of speed and computing costs, specially under limited computing capabilities device like mobile phone. This study we utilize twelve most common and popular distance or similarity measures technique implemented in mobile phone application, to be compared and studied. The results show that all similarity measures implemented in this study was perform equally under mobile phone application. This gives more possibilities for method combinations to be implemented for image retrieval.

  16. Energy efficient security in MANETs: a comparison of cryptographic and artificial immune systems

    International Nuclear Information System (INIS)

    Mazhar, N.

    2010-01-01

    MANET is characterized by a set of mobile nodes in an inherently insecure environment, having limited battery capacities. Provisioning of energy efficient security in MANETs is, therefore, an open problem for which a number of solutions have been proposed. In this paper, we present an overview and comparison of the MANET security at routing layer by using the cryptographic and Artificial Immune System (AIS) approaches. The BeeAdHoc protocol, which is a Bio-inspired MANET routing protocol based on the foraging principles of honey bee colony, is taken as case study. We carry out an analysis of the three security frameworks that we have proposed earlier for securing BeeAdHoc protocol; one based on asymmetric key encryption, i.e BeeSec, and the other two using the AIS approach, i.e BeeAIS based on self non-self discrimination from adaptive immune system and BeeAIS-DC based on Dendritic Cell (DC) behavior from innate immune system. We extensively evaluate the performance of the three protocols through network simulations in ns-2 and compare with BeeAdHoc, the base protocol, as well as with state-of-the-art MANET routing protocols DSR and AODV. Our results clearly indicate that AIS based systems provide security at much lower cost to energy as compared with the cryptographic systems. Moreover, the use of dendritic cells and danger signals instead of the classical self non-self discrimination allows to detect the non-self antigens with greater accuracy. Based on the results of this investigation, we also propose a composite AIS model for BeeAdHoc security by combining the concepts from both the adaptive and the innate immune systems by modelling the attributes and behavior of the B-cells and DCs. (author)

  17. Embedded Platform for Automatic Testing and Optimizing of FPGA Based Cryptographic True Random Number Generators

    Directory of Open Access Journals (Sweden)

    M. Varchola

    2009-12-01

    Full Text Available This paper deals with an evaluation platform for cryptographic True Random Number Generators (TRNGs based on the hardware implementation of statistical tests for FPGAs. It was developed in order to provide an automatic tool that helps to speed up the TRNG design process and can provide new insights on the TRNG behavior as it will be shown on a particular example in the paper. It enables to test sufficient statistical properties of various TRNG designs under various working conditions on the fly. Moreover, the tests are suitable to be embedded into cryptographic hardware products in order to recognize TRNG output of weak quality and thus increase its robustness and reliability. Tests are fully compatible with the FIPS 140 standard and are implemented by the VHDL language as an IP-Core for vendor independent FPGAs. A recent Flash based Actel Fusion FPGA was chosen for preliminary experiments. The Actel version of the tests possesses an interface to the Actel’s CoreMP7 softcore processor that is fully compatible with the industry standard ARM7TDMI. Moreover, identical tests suite was implemented to the Xilinx Virtex 2 and 5 in order to compare the performance of the proposed solution with the performance of already published one based on the same FPGAs. It was achieved 25% and 65% greater clock frequency respectively while consuming almost equal resources of the Xilinx FPGAs. On the top of it, the proposed FIPS 140 architecture is capable of processing one random bit per one clock cycle which results in 311.5 Mbps throughput for Virtex 5 FPGA.

  18. A comprehensive evaluation of alignment algorithms in the context of RNA-seq.

    Directory of Open Access Journals (Sweden)

    Robert Lindner

    Full Text Available Transcriptome sequencing (RNA-Seq overcomes limitations of previously used RNA quantification methods and provides one experimental framework for both high-throughput characterization and quantification of transcripts at the nucleotide level. The first step and a major challenge in the analysis of such experiments is the mapping of sequencing reads to a transcriptomic origin including the identification of splicing events. In recent years, a large number of such mapping algorithms have been developed, all of which have in common that they require algorithms for aligning a vast number of reads to genomic or transcriptomic sequences. Although the FM-index based aligner Bowtie has become a de facto standard within mapping pipelines, a much larger number of possible alignment algorithms have been developed also including other variants of FM-index based aligners. Accordingly, developers and users of RNA-seq mapping pipelines have the choice among a large number of available alignment algorithms. To provide guidance in the choice of alignment algorithms for these purposes, we evaluated the performance of 14 widely used alignment programs from three different algorithmic classes: algorithms using either hashing of the reference transcriptome, hashing of reads, or a compressed FM-index representation of the genome. Here, special emphasis was placed on both precision and recall and the performance for different read lengths and numbers of mismatches and indels in a read. Our results clearly showed the significant reduction in memory footprint and runtime provided by FM-index based aligners at a precision and recall comparable to the best hash table based aligners. Furthermore, the recently developed Bowtie 2 alignment algorithm shows a remarkable tolerance to both sequencing errors and indels, thus, essentially making hash-based aligners obsolete.

  19. MinHash-Based Fuzzy Keyword Search of Encrypted Data across Multiple Cloud Servers

    Directory of Open Access Journals (Sweden)

    Jingsha He

    2018-05-01

    Full Text Available To enhance the efficiency of data searching, most data owners store their data files in different cloud servers in the form of cipher-text. Thus, efficient search using fuzzy keywords becomes a critical issue in such a cloud computing environment. This paper proposes a method that aims at improving the efficiency of cipher-text retrieval and lowering storage overhead for fuzzy keyword search. In contrast to traditional approaches, the proposed method can reduce the complexity of Min-Hash-based fuzzy keyword search by using Min-Hash fingerprints to avoid the need to construct the fuzzy keyword set. The method will utilize Jaccard similarity to rank the results of retrieval, thus reducing the amount of calculation for similarity and saving a lot of time and space overhead. The method will also take consideration of multiple user queries through re-encryption technology and update user permissions dynamically. Security analysis demonstrates that the method can provide better privacy preservation and experimental results show that efficiency of cipher-text using the proposed method can improve the retrieval time and lower storage overhead as well.

  20. MATCHING AERIAL IMAGES TO 3D BUILDING MODELS BASED ON CONTEXT-BASED GEOMETRIC HASHING

    Directory of Open Access Journals (Sweden)

    J. Jung

    2016-06-01

    Full Text Available In this paper, a new model-to-image framework to automatically align a single airborne image with existing 3D building models using geometric hashing is proposed. As a prerequisite process for various applications such as data fusion, object tracking, change detection and texture mapping, the proposed registration method is used for determining accurate exterior orientation parameters (EOPs of a single image. This model-to-image matching process consists of three steps: 1 feature extraction, 2 similarity measure and matching, and 3 adjustment of EOPs of a single image. For feature extraction, we proposed two types of matching cues, edged corner points representing the saliency of building corner points with associated edges and contextual relations among the edged corner points within an individual roof. These matching features are extracted from both 3D building and a single airborne image. A set of matched corners are found with given proximity measure through geometric hashing and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on co-linearity equations. The result shows that acceptable accuracy of single image's EOP can be achievable by the proposed registration approach as an alternative to labour-intensive manual registration process.

  1. Fast Structural Alignment of Biomolecules Using a Hash Table, N-Grams and String Descriptors

    Directory of Open Access Journals (Sweden)

    Robert Preissner

    2009-04-01

    Full Text Available This work presents a generalized approach for the fast structural alignment of thousands of macromolecular structures. The method uses string representations of a macromolecular structure and a hash table that stores n-grams of a certain size for searching. To this end, macromolecular structure-to-string translators were implemented for protein and RNA structures. A query against the index is performed in two hierarchical steps to unite speed and precision. In the first step the query structure is translated into n-grams, and all target structures containing these n-grams are retrieved from the hash table. In the second step all corresponding n-grams of the query and each target structure are subsequently aligned, and after each alignment a score is calculated based on the matching n-grams of query and target. The extendable framework enables the user to query and structurally align thousands of protein and RNA structures on a commodity machine and is available as open source from http://lajolla.sf.net.

  2. 76 FR 7817 - Announcing Draft Federal Information Processing Standard 180-4, Secure Hash Standard, and Request...

    Science.gov (United States)

    2011-02-11

    ...-02] Announcing Draft Federal Information Processing Standard 180-4, Secure Hash Standard, and Request... and request for comments. SUMMARY: This notice announces the Draft Federal Information Processing..., Information Technology Laboratory, Attention: Comments on Draft FIPS 180-4, 100 Bureau Drive--Stop 8930...

  3. A Cryptographic SoC for Robust Protection of Secret Keys in IPTV DRM Systems

    Science.gov (United States)

    Lee, Sanghan; Yang, Hae-Yong; Yeom, Yongjin; Park, Jongsik

    The security level of an internet protocol television (IPTV) digital right management (DRM) system ultimately relies on protection of secret keys. Well known devices for the key protection include smartcards and battery backup SRAMs (BB-SRAMs); however, these devices could be vulnerable to various physical attacks. In this paper, we propose a secure and cost-effective design of a cryptographic system on chip (SoC) that integrates the BB-SRAM with a cell-based design technique. The proposed SoC provides robust safeguard against the physical attacks, and satisfies high-speed and low-price requirements of IPTV set-top boxes. Our implementation results show that the maximum encryption rate of the SoC is 633Mb/s. In order to verify the data retention capabilities, we made a prototype chip using 0.18µm standard cell technology. The experimental results show that the integrated BB-SRAM can reliably retain data with a 1.4µA leakage current.

  4. BIX Certificates: Cryptographic Tokens for Anonymous Transactions Based on Certificates Public Ledger

    Directory of Open Access Journals (Sweden)

    Sead Muftic

    2016-12-01

    Full Text Available With the widespread use of Internet, Web, and mobile technologies, a new category of applications and transactions that requires anonymity is gaining increased interest and importance. Examples of such new applications are innovative payment systems, digital notaries, electronic voting, documents sharing, electronic auctions, medical applications, and many others. In addition to anonymity, these applications and transactions also require standard security services: identification, authentication, and authorization of users and protection of their transactions. Providing those services in combination with anonymity is an especially challenging issue, because all security services require explicit user identification and authentication. To solve this issue and enable applications with security and also anonymity we introduce a new type of cryptographically encapsulated objects called BIX certificates. “BIX” is an abbreviation for “Blockchain Information Exchange.” Their purpose is equivalent to X.509 certificates: to support security services for users and transactions, but also enhanced with anonymity. This paper describes the structure and attributes of BIX certificate objects and all related protocols for their creation, distribution, and use. The BIX Certification Infrastructure (BCI as a distributed public ledger is also briefly described.

  5. A Dynamic Linear Hashing Method for Redundancy Management in Train Ethernet Consist Network

    Directory of Open Access Journals (Sweden)

    Xiaobo Nie

    2016-01-01

    Full Text Available Massive transportation systems like trains are considered critical systems because they use the communication network to control essential subsystems on board. Critical system requires zero recovery time when a failure occurs in a communication network. The newly published IEC62439-3 defines the high-availability seamless redundancy protocol, which fulfills this requirement and ensures no frame loss in the presence of an error. This paper adopts these for train Ethernet consist network. The challenge is management of the circulating frames, capable of dealing with real-time processing requirements, fast switching times, high throughout, and deterministic behavior. The main contribution of this paper is the in-depth analysis it makes of network parameters imposed by the application of the protocols to train control and monitoring system (TCMS and the redundant circulating frames discarding method based on a dynamic linear hashing, using the fastest method in order to resolve all the issues that are dealt with.

  6. A Reusable Software Copy Protection Using Hash Result and Asymetrical Encryption

    Directory of Open Access Journals (Sweden)

    Aswin Wibisurya

    2014-12-01

    Full Text Available Desktop application is one of the most popular types of application being used in computer due to the one time install simplicity and the quick accessibility from the moment the computer being turned on. Limitation of the copy and usage of desktop applications has long been an important issue to application providers. For security concerns, software copy protection is usually integrated with the application. However, developers seek to reuse the copy protection component of the software. This paper proposes an approach of reusable software copy protection which consists of a certificate validator on the client computer and a certificate generator on the server. The certificate validator integrity is protected using hashing result while all communications are encrypted using asymmetrical encryption to ensure the security of this approach.

  7. A hybrid cloud read aligner based on MinHash and kmer voting that preserves privacy

    Science.gov (United States)

    Popic, Victoria; Batzoglou, Serafim

    2017-05-01

    Low-cost clouds can alleviate the compute and storage burden of the genome sequencing data explosion. However, moving personal genome data analysis to the cloud can raise serious privacy concerns. Here, we devise a method named Balaur, a privacy preserving read mapper for hybrid clouds based on locality sensitive hashing and kmer voting. Balaur can securely outsource a substantial fraction of the computation to the public cloud, while being highly competitive in accuracy and speed with non-private state-of-the-art read aligners on short read data. We also show that the method is significantly faster than the state of the art in long read mapping. Therefore, Balaur can enable institutions handling massive genomic data sets to shift part of their analysis to the cloud without sacrificing accuracy or exposing sensitive information to an untrusted third party.

  8. Matching Aerial Images to 3D Building Models Using Context-Based Geometric Hashing

    Directory of Open Access Journals (Sweden)

    Jaewook Jung

    2016-06-01

    Full Text Available A city is a dynamic entity, which environment is continuously changing over time. Accordingly, its virtual city models also need to be regularly updated to support accurate model-based decisions for various applications, including urban planning, emergency response and autonomous navigation. A concept of continuous city modeling is to progressively reconstruct city models by accommodating their changes recognized in spatio-temporal domain, while preserving unchanged structures. A first critical step for continuous city modeling is to coherently register remotely sensed data taken at different epochs with existing building models. This paper presents a new model-to-image registration method using a context-based geometric hashing (CGH method to align a single image with existing 3D building models. This model-to-image registration process consists of three steps: (1 feature extraction; (2 similarity measure; and matching, and (3 estimating exterior orientation parameters (EOPs of a single image. For feature extraction, we propose two types of matching cues: edged corner features representing the saliency of building corner points with associated edges, and contextual relations among the edged corner features within an individual roof. A set of matched corners are found with given proximity measure through geometric hashing, and optimal matches are then finally determined by maximizing the matching cost encoding contextual similarity between matching candidates. Final matched corners are used for adjusting EOPs of the single airborne image by the least square method based on collinearity equations. The result shows that acceptable accuracy of EOPs of a single image can be achievable using the proposed registration approach as an alternative to a labor-intensive manual registration process.

  9. An implementation of super-encryption using RC4A and MDTM cipher algorithms for securing PDF Files on android

    Science.gov (United States)

    Budiman, M. A.; Rachmawati, D.; Parlindungan, M. R.

    2018-03-01

    MDTM is a classical symmetric cryptographic algorithm. As with other classical algorithms, the MDTM Cipher algorithm is easy to implement but it is less secure compared to modern symmetric algorithms. In order to make it more secure, a stream cipher RC4A is added and thus the cryptosystem becomes super encryption. In this process, plaintexts derived from PDFs are firstly encrypted with the MDTM Cipher algorithm and are encrypted once more with the RC4A algorithm. The test results show that the value of complexity is Θ(n2) and the running time is linearly directly proportional to the length of plaintext characters and the keys entered.

  10. A Hash Based Remote User Authentication and Authenticated Key Agreement Scheme for the Integrated EPR Information System.

    Science.gov (United States)

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi; Wang, Chun-Cheng

    2015-11-01

    To protect patient privacy and ensure authorized access to remote medical services, many remote user authentication schemes for the integrated electronic patient record (EPR) information system have been proposed in the literature. In a recent paper, Das proposed a hash based remote user authentication scheme using passwords and smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various passive and active attacks. However, in this paper, we found that Das's authentication scheme is still vulnerable to modification and user duplication attacks. Thereafter we propose a secure and efficient authentication scheme for the integrated EPR information system based on lightweight hash function and bitwise exclusive-or (XOR) operations. The security proof and performance analysis show our new scheme is well-suited to adoption in remote medical healthcare services.

  11. Implementation of Rivest Shamir Adleman Algorithm (RSA) and Vigenere Cipher In Web Based Information System

    Science.gov (United States)

    Aryanti, Aryanti; Mekongga, Ikhthison

    2018-02-01

    Data security and confidentiality is one of the most important aspects of information systems at the moment. One attempt to secure data such as by using cryptography. In this study developed a data security system by implementing the cryptography algorithm Rivest, Shamir Adleman (RSA) and Vigenere Cipher. The research was done by combining Rivest, Shamir Adleman (RSA) and Vigenere Cipher cryptographic algorithms to document file either word, excel, and pdf. This application includes the process of encryption and decryption of data, which is created by using PHP software and my SQL. Data encryption is done on the transmit side through RSA cryptographic calculations using the public key, then proceed with Vigenere Cipher algorithm which also uses public key. As for the stage of the decryption side received by using the Vigenere Cipher algorithm still use public key and then the RSA cryptographic algorithm using a private key. Test results show that the system can encrypt files, decrypt files and transmit files. Tests performed on the process of encryption and decryption of files with different file sizes, file size affects the process of encryption and decryption. The larger the file size the longer the process of encryption and decryption.

  12. Implementation of Rivest Shamir Adleman Algorithm (RSA and Vigenere Cipher In Web Based Information System

    Directory of Open Access Journals (Sweden)

    Aryanti Aryanti

    2018-01-01

    Full Text Available Data security and confidentiality is one of the most important aspects of information systems at the moment. One attempt to secure data such as by using cryptography. In this study developed a data security system by implementing the cryptography algorithm Rivest, Shamir Adleman (RSA and Vigenere Cipher. The research was done by combining Rivest, Shamir Adleman (RSA and Vigenere Cipher cryptographic algorithms to document file either word, excel, and pdf. This application includes the process of encryption and decryption of data, which is created by using PHP software and my SQL. Data encryption is done on the transmit side through RSA cryptographic calculations using the public key, then proceed with Vigenere Cipher algorithm which also uses public key. As for the stage of the decryption side received by using the Vigenere Cipher algorithm still use public key and then the RSA cryptographic algorithm using a private key. Test results show that the system can encrypt files, decrypt files and transmit files. Tests performed on the process of encryption and decryption of files with different file sizes, file size affects the process of encryption and decryption. The larger the file size the longer the process of encryption and decryption.

  13. Power efficient and high performance VLSI architecture for AES algorithm

    Directory of Open Access Journals (Sweden)

    K. Kalaiselvi

    2015-09-01

    Full Text Available Advanced encryption standard (AES algorithm has been widely deployed in cryptographic applications. This work proposes a low power and high throughput implementation of AES algorithm using key expansion approach. We minimize the power consumption and critical path delay using the proposed high performance architecture. It supports both encryption and decryption using 256-bit keys with a throughput of 0.06 Gbps. The VHDL language is utilized for simulating the design and an FPGA chip has been used for the hardware implementations. Experimental results reveal that the proposed AES architectures offer superior performance than the existing VLSI architectures in terms of power, throughput and critical path delay.

  14. An Access Control Protocol for Wireless Sensor Network Using Double Trapdoor Chameleon Hash Function

    Directory of Open Access Journals (Sweden)

    Tejeshwari Thakur

    2016-01-01

    Full Text Available Wireless sensor network (WSN, a type of communication system, is normally deployed into the unattended environment where the intended user can get access to the network. The sensor nodes collect data from this environment. If the data are valuable and confidential, then security measures are needed to protect them from the unauthorized access. This situation requires an access control protocol (ACP in the design of sensor network because of sensor nodes which are vulnerable to various malicious attacks during the authentication and key establishment and the new node addition phase. In this paper, we propose a secured ACP for such WSN. This protocol is based on Elliptic Curve Discrete Log Problem (ECDLP and double trapdoor chameleon hash function which secures the WSN from malicious attacks such as node masquerading attack, replay attack, man-in-the-middle attack, and forgery attacks. Proposed ACP has a special feature known as session key security. Also, the proposed ACP is more efficient as it requires only one modular multiplication during the initialization phase.

  15. User characteristics and effect profile of Butane Hash Oil: An extremely high-potency cannabis concentrate.

    Science.gov (United States)

    Chan, Gary C K; Hall, Wayne; Freeman, Tom P; Ferris, Jason; Kelly, Adrian B; Winstock, Adam

    2017-09-01

    Recent reports suggest an increase in use of extremely potent cannabis concentrates such as Butane Hash Oil (BHO) in some developed countries. The aims of this study were to examine the characteristics of BHO users and the effect profiles of BHO. Anonymous online survey in over 20 countries in 2014 and 2015. Participants aged 18 years or older were recruited through onward promotion and online social networks. The overall sample size was 181,870. In this sample, 46% (N=83,867) reported using some form of cannabis in the past year, and 3% reported BHO use (n=5922). Participants reported their use of 7 types of cannabis in the past 12 months, the source of their cannabis, reasons for use, use of other illegal substances, and lifetime diagnosis for depression, anxiety and psychosis. Participants were asked to rate subjective effects of BHO and high potency herbal cannabis. Participants who reported a lifetime diagnosis of depression (OR=1.15, p=0.003), anxiety (OR=1.72, pcannabis. BHO users also reported stronger negative effects and less positive effects when using BHO than high potency herbal cannabis (pcannabis. Copyright © 2017. Published by Elsevier B.V.

  16. Data Recovery of Distributed Hash Table with Distributed-to-Distributed Data Copy

    Science.gov (United States)

    Doi, Yusuke; Wakayama, Shirou; Ozaki, Satoshi

    To realize huge-scale information services, many Distributed Hash Table (DHT) based systems have been proposed. For example, there are some proposals to manage item-level product traceability information with DHTs. In such an application, each entry of a huge number of item-level IDs need to be available on a DHT. To ensure data availability, the soft-state approach has been employed in previous works. However, this does not scale well against the number of entries on a DHT. As we expect 1010 products in the traceability case, the soft-state approach is unacceptable. In this paper, we propose Distributed-to-Distributed Data Copy (D3C). With D3C, users can reconstruct the data as they detect data loss, or even migrate to another DHT system. We show why it scales well against the number of entries on a DHT. We have confirmed our approach with a prototype. Evaluation shows our approach fits well on a DHT with a low rate of failure and a huge number of data entries.

  17. A Robust and Effective Smart-Card-Based Remote User Authentication Mechanism Using Hash Function

    Science.gov (United States)

    Odelu, Vanga; Goswami, Adrijit

    2014-01-01

    In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme. PMID:24892078

  18. LSHSIM: A Locality Sensitive Hashing based method for multiple-point geostatistics

    Science.gov (United States)

    Moura, Pedro; Laber, Eduardo; Lopes, Hélio; Mesejo, Daniel; Pavanelli, Lucas; Jardim, João; Thiesen, Francisco; Pujol, Gabriel

    2017-10-01

    Reservoir modeling is a very important task that permits the representation of a geological region of interest, so as to generate a considerable number of possible scenarios. Since its inception, many methodologies have been proposed and, in the last two decades, multiple-point geostatistics (MPS) has been the dominant one. This methodology is strongly based on the concept of training image (TI) and the use of its characteristics, which are called patterns. In this paper, we propose a new MPS method that combines the application of a technique called Locality Sensitive Hashing (LSH), which permits to accelerate the search for patterns similar to a target one, with a Run-Length Encoding (RLE) compression technique that speeds up the calculation of the Hamming similarity. Experiments with both categorical and continuous images show that LSHSIM is computationally efficient and produce good quality realizations. In particular, for categorical data, the results suggest that LSHSIM is faster than MS-CCSIM, one of the state-of-the-art methods.

  19. A Robust and Effective Smart-Card-Based Remote User Authentication Mechanism Using Hash Function

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Das

    2014-01-01

    Full Text Available In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme.

  20. A robust and effective smart-card-based remote user authentication mechanism using hash function.

    Science.gov (United States)

    Das, Ashok Kumar; Odelu, Vanga; Goswami, Adrijit

    2014-01-01

    In a remote user authentication scheme, a remote server verifies whether a login user is genuine and trustworthy, and also for mutual authentication purpose a login user validates whether the remote server is genuine and trustworthy. Several remote user authentication schemes using the password, the biometrics, and the smart card have been proposed in the literature. However, most schemes proposed in the literature are either computationally expensive or insecure against several known attacks. In this paper, we aim to propose a new robust and effective password-based remote user authentication scheme using smart card. Our scheme is efficient, because our scheme uses only efficient one-way hash function and bitwise XOR operations. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. We perform the simulation for the formal security analysis using the widely accepted AVISPA (Automated Validation Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. Furthermore, our scheme supports efficiently the password change phase always locally without contacting the remote server and correctly. In addition, our scheme performs significantly better than other existing schemes in terms of communication, computational overheads, security, and features provided by our scheme.

  1. An enhanced biometric authentication scheme for telecare medicine information systems with nonce using chaotic hash function.

    Science.gov (United States)

    Das, Ashok Kumar; Goswami, Adrijit

    2014-06-01

    Recently, Awasthi and Srivastava proposed a novel biometric remote user authentication scheme for the telecare medicine information system (TMIS) with nonce. Their scheme is very efficient as it is based on efficient chaotic one-way hash function and bitwise XOR operations. In this paper, we first analyze Awasthi-Srivastava's scheme and then show that their scheme has several drawbacks: (1) incorrect password change phase, (2) fails to preserve user anonymity property, (3) fails to establish a secret session key beween a legal user and the server, (4) fails to protect strong replay attack, and (5) lacks rigorous formal security analysis. We then a propose a novel and secure biometric-based remote user authentication scheme in order to withstand the security flaw found in Awasthi-Srivastava's scheme and enhance the features required for an idle user authentication scheme. Through the rigorous informal and formal security analysis, we show that our scheme is secure against possible known attacks. In addition, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks, including the replay and man-in-the-middle attacks. Our scheme is also efficient as compared to Awasthi-Srivastava's scheme.

  2. A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm

    Science.gov (United States)

    Thirer, Nonel

    2013-05-01

    With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.

  3. Integral computer-generated hologram via a modified Gerchberg-Saxton algorithm

    International Nuclear Information System (INIS)

    Wu, Pei-Jung; Lin, Bor-Shyh; Chen, Chien-Yue; Huang, Guan-Syun; Deng, Qing-Long; Chang, Hsuan T

    2015-01-01

    An integral computer-generated hologram, which modulates the phase function of an object based on a modified Gerchberg–Saxton algorithm and compiles a digital cryptographic diagram with phase synthesis, is proposed in this study. When the diagram completes position demultiplexing decipherment, multi-angle elemental images can be reconstructed. Furthermore, an integral CGH with a depth of 225 mm and a visual angle of ±11° is projected through the lens array. (paper)

  4. Associations between butane hash oil use and cannabis-related problems.

    Science.gov (United States)

    Meier, Madeline H

    2017-10-01

    High-potency cannabis concentrates are increasingly popular in the United States, and there is concern that use of high-potency cannabis might increase risk for cannabis-related problems. However, little is known about the potential negative consequences of concentrate use. This study reports on associations between past-year use of a high-potency cannabis concentrate, known as butane hash oil (BHO), and cannabis-related problems. A sample of 821 college students were recruited to complete a survey about their health and behavior. Participants who had used cannabis in the past year (33%, n=273) completed questions about their cannabis use, including their use of BHO and cannabis-related problems in eight domains: physical dependence, impaired control, academic-occupational problems, social-interpersonal problems, self-care problems, self-perception, risk behavior, and blackouts. Approximately 44% (n=121) of past-year cannabis users had used BHO in the past year. More frequent BHO use was associated with higher levels of physical dependence (RR=1.8, pcannabis-related academic/occupational problems (RR=1.5, p=0.004), poor self-care (RR=1.3, p=0.002), and cannabis-related risk behavior (RR=1.2, p=0.001). After accounting for sociodemographic factors, age of onset of cannabis use, sensation seeking, overall frequency of cannabis use, and frequency of other substance use, BHO use was still associated with higher levels of physical dependence (RR=1.2, p=0.014). BHO use is associated with greater physiological dependence on cannabis, even after accounting for potential confounders. Longitudinal research is needed to determine if cannabis users with higher levels of physiological dependence seek out BHO and/or if BHO use increases risk for physiological dependence. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Centralized Cryptographic Key Management and Critical Risk Assessment - CRADA Final Report For CRADA Number NFE-11-03562

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, R. K. [ORNL; Peters, Scott [Sypris Electronics, LLC

    2014-05-28

    The Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) Cyber Security for Energy Delivery Systems (CSEDS) industry led program (DE-FOA-0000359) entitled "Innovation for Increasing Cyber Security for Energy Delivery Systems (12CSEDS)," awarded a contract to Sypris Electronics LLC to develop a Cryptographic Key Management System for the smart grid (Scalable Key Management Solutions for Critical Infrastructure Protection). Oak Ridge National Laboratory (ORNL) and Sypris Electronics, LLC as a result of that award entered into a CRADA (NFE-11-03562) between ORNL and Sypris Electronics, LLC. ORNL provided its Cyber Security Econometrics System (CSES) as a tool to be modified and used as a metric to address risks and vulnerabilities in the management of cryptographic keys within the Advanced Metering Infrastructure (AMI) domain of the electric sector. ORNL concentrated our analysis on the AMI domain of which the National Electric Sector Cyber security Organization Resource (NESCOR) Working Group 1 (WG1) has documented 29 failure scenarios. The computational infrastructure of this metric involves system stakeholders, security requirements, system components and security threats. To compute this metric, we estimated the stakes that each stakeholder associates with each security requirement, as well as stochastic matrices that represent the probability of a threat to cause a component failure and the probability of a component failure to cause a security requirement violation. We applied this model to estimate the security of the AMI, by leveraging the recently established National Institute of Standards and Technology Interagency Report (NISTIR) 7628 guidelines for smart grid security and the International Electrotechnical Commission (IEC) 63351, Part 9 to identify the life cycle for cryptographic key management, resulting in a vector that assigned to each stakeholder an estimate of their average loss in terms of dollars per day of system

  6. Evaluating privacy-preserving record linkage using cryptographic long-term keys and multibit trees on large medical datasets.

    Science.gov (United States)

    Brown, Adrian P; Borgs, Christian; Randall, Sean M; Schnell, Rainer

    2017-06-08

    Integrating medical data using databases from different sources by record linkage is a powerful technique increasingly used in medical research. Under many jurisdictions, unique personal identifiers needed for linking the records are unavailable. Since sensitive attributes, such as names, have to be used instead, privacy regulations usually demand encrypting these identifiers. The corresponding set of techniques for privacy-preserving record linkage (PPRL) has received widespread attention. One recent method is based on Bloom filters. Due to superior resilience against cryptographic attacks, composite Bloom filters (cryptographic long-term keys, CLKs) are considered best practice for privacy in PPRL. Real-world performance of these techniques using large-scale data is unknown up to now. Using a large subset of Australian hospital admission data, we tested the performance of an innovative PPRL technique (CLKs using multibit trees) against a gold-standard derived from clear-text probabilistic record linkage. Linkage time and linkage quality (recall, precision and F-measure) were evaluated. Clear text probabilistic linkage resulted in marginally higher precision and recall than CLKs. PPRL required more computing time but 5 million records could still be de-duplicated within one day. However, the PPRL approach required fine tuning of parameters. We argue that increased privacy of PPRL comes with the price of small losses in precision and recall and a large increase in computational burden and setup time. These costs seem to be acceptable in most applied settings, but they have to be considered in the decision to apply PPRL. Further research on the optimal automatic choice of parameters is needed.

  7. Privacy-Preserving and Scalable Service Recommendation Based on SimHash in a Distributed Cloud Environment

    Directory of Open Access Journals (Sweden)

    Yanwei Xu

    2017-01-01

    Full Text Available With the increasing volume of web services in the cloud environment, Collaborative Filtering- (CF- based service recommendation has become one of the most effective techniques to alleviate the heavy burden on the service selection decisions of a target user. However, the service recommendation bases, that is, historical service usage data, are often distributed in different cloud platforms. Two challenges are present in such a cross-cloud service recommendation scenario. First, a cloud platform is often not willing to share its data to other cloud platforms due to privacy concerns, which decreases the feasibility of cross-cloud service recommendation severely. Second, the historical service usage data recorded in each cloud platform may update over time, which reduces the recommendation scalability significantly. In view of these two challenges, a novel privacy-preserving and scalable service recommendation approach based on SimHash, named SerRecSimHash, is proposed in this paper. Finally, through a set of experiments deployed on a real distributed service quality dataset WS-DREAM, we validate the feasibility of our proposal in terms of recommendation accuracy and efficiency while guaranteeing privacy-preservation.

  8. Secure Hashing of Dynamic Hand Signatures Using Wavelet-Fourier Compression with BioPhasor Mixing and Discretization

    Directory of Open Access Journals (Sweden)

    Wai Kuan Yip

    2007-01-01

    Full Text Available We introduce a novel method for secure computation of biometric hash on dynamic hand signatures using BioPhasor mixing and discretization. The use of BioPhasor as the mixing process provides a one-way transformation that precludes exact recovery of the biometric vector from compromised hashes and stolen tokens. In addition, our user-specific discretization acts both as an error correction step as well as a real-to-binary space converter. We also propose a new method of extracting compressed representation of dynamic hand signatures using discrete wavelet transform (DWT and discrete fourier transform (DFT. Without the conventional use of dynamic time warping, the proposed method avoids storage of user's hand signature template. This is an important consideration for protecting the privacy of the biometric owner. Our results show that the proposed method could produce stable and distinguishable bit strings with equal error rates (EERs of and for random and skilled forgeries for stolen token (worst case scenario, and for both forgeries in the genuine token (optimal scenario.

  9. Scalable Content Authentication in H.264/SVC Videos Using Perceptual Hashing based on Dempster-Shafer theory

    Directory of Open Access Journals (Sweden)

    Ye Dengpan

    2012-09-01

    Full Text Available The content authenticity of the multimedia delivery is important issue with rapid development and widely used of multimedia technology. Till now many authentication solutions had been proposed, such as cryptology and watermarking based methods. However, in latest heterogeneous network the video stream transmission has been coded in scalable way such as H.264/SVC, there is still no good authentication solution. In this paper, we firstly summarized related works and proposed a scalable content authentication scheme using a ratio of different energy (RDE based perceptual hashing in Q/S dimension, which is used Dempster-Shafer theory and combined with the latest scalable video coding (H.264/SVC construction. The idea of aldquo;sign once and verify in scalable wayardquo; can be realized. Comparing with previous methods, the proposed scheme based on perceptual hashing outperforms previous works in uncertainty (robustness and efficiencies in the H.264/SVC video streams. At last, the experiment results verified the performance of our scheme.

  10. VIRTEX-5 Fpga Implementation of Advanced Encryption Standard Algorithm

    Science.gov (United States)

    Rais, Muhammad H.; Qasim, Syed M.

    2010-06-01

    In this paper, we present an implementation of Advanced Encryption Standard (AES) cryptographic algorithm using state-of-the-art Virtex-5 Field Programmable Gate Array (FPGA). The design is coded in Very High Speed Integrated Circuit Hardware Description Language (VHDL). Timing simulation is performed to verify the functionality of the designed circuit. Performance evaluation is also done in terms of throughput and area. The design implemented on Virtex-5 (XC5VLX50FFG676-3) FPGA achieves a maximum throughput of 4.34 Gbps utilizing a total of 399 slices.

  11. A neural algorithm for a fundamental computing problem.

    Science.gov (United States)

    Dasgupta, Sanjoy; Stevens, Charles F; Navlakha, Saket

    2017-11-10

    Similarity search-for example, identifying similar images in a database or similar documents on the web-is a fundamental computing problem faced by large-scale information retrieval systems. We discovered that the fruit fly olfactory circuit solves this problem with a variant of a computer science algorithm (called locality-sensitive hashing). The fly circuit assigns similar neural activity patterns to similar odors, so that behaviors learned from one odor can be applied when a similar odor is experienced. The fly algorithm, however, uses three computational strategies that depart from traditional approaches. These strategies can be translated to improve the performance of computational similarity searches. This perspective helps illuminate the logic supporting an important sensory function and provides a conceptually new algorithm for solving a fundamental computational problem. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Optimized Data Indexing Algorithms for OLAP Systems

    Directory of Open Access Journals (Sweden)

    Lucian BORNAZ

    2010-12-01

    Full Text Available The need to process and analyze large data volumes, as well as to convey the information contained therein to decision makers naturally led to the development of OLAP systems. Similarly to SGBDs, OLAP systems must ensure optimum access to the storage environment. Although there are several ways to optimize database systems, implementing a correct data indexing solution is the most effective and less costly. Thus, OLAP uses indexing algorithms for relational data and n-dimensional summarized data stored in cubes. Today database systems implement derived indexing algorithms based on well-known Tree, Bitmap and Hash indexing algorithms. This is because no indexing algorithm provides the best performance for any particular situation (type, structure, data volume, application. This paper presents a new n-dimensional cube indexing algorithm, derived from the well known B-Tree index, which indexes data stored in data warehouses taking in consideration their multi-dimensional nature and provides better performance in comparison to the already implemented Tree-like index types.

  13. A comparative study of Message Digest 5(MD5) and SHA256 algorithm

    Science.gov (United States)

    Rachmawati, D.; Tarigan, J. T.; Ginting, A. B. C.

    2018-03-01

    The document is a collection of written or printed data containing information. The more rapid advancement of technology, the integrity of a document should be kept. Because of the nature of an open document means the document contents can be read and modified by many parties so that the integrity of the information as a content of the document is not preserved. To maintain the integrity of the data, it needs to create a mechanism which is called a digital signature. A digital signature is a specific code which is generated from the function of producing a digital signature. One of the algorithms that used to create the digital signature is a hash function. There are many hash functions. Two of them are message digest 5 (MD5) and SHA256. Those both algorithms certainly have its advantages and disadvantages of each. The purpose of this research is to determine the algorithm which is better. The parameters which used to compare that two algorithms are the running time and complexity. The research results obtained from the complexity of the Algorithms MD5 and SHA256 is the same, i.e., ⊖ (N), but regarding the speed is obtained that MD5 is better compared to SHA256.

  14. Encryption algorithms for databases

    Directory of Open Access Journals (Sweden)

    Doina FUSARU

    2010-06-01

    Full Text Available For most cases, people use an ecrypted mode when sending personal information to a server, via an electronic form.  Whenever shopping is done online, the browser uses cryptographic methods to send to the server the credit card number and private information. Thanks to the surprising development of the Internet, and not to the structural models (OSI and TCP/IP this technology is based on, the electronic commerce requires quality, security, reliability and, above all, the possibility of implementing all such concepts. It is interesting that none of the widely used cryptographic systems is mathematically demonstrated to be safe. As a matter of fact, the entire technology of cryptography is based on mathematical problems that are still unanswered to. Looking at the above, the study of the cryptographic and security methods, as well as finding strong crypto-systems is still a pivotal issue.

  15. Adaptive sampling algorithm for detection of superpoints

    Institute of Scientific and Technical Information of China (English)

    CHENG Guang; GONG Jian; DING Wei; WU Hua; QIANG ShiQiang

    2008-01-01

    The superpoints are the sources (or the destinations) that connect with a great deal of destinations (or sources) during a measurement time interval, so detecting the superpoints in real time is very important to network security and management. Previous algorithms are not able to control the usage of the memory and to deliver the desired accuracy, so it is hard to detect the superpoints on a high speed link in real time. In this paper, we propose an adaptive sampling algorithm to detect the superpoints in real time, which uses a flow sample and hold module to reduce the detection of the non-superpoints and to improve the measurement accuracy of the superpoints. We also design a data stream structure to maintain the flow records, which compensates for the flow Hash collisions statistically. An adaptive process based on different sampling probabilities is used to maintain the recorded IP ad dresses in the limited memory. This algorithm is compared with the other algo rithms by analyzing the real network trace data. Experiment results and mathematic analysis show that this algorithm has the advantages of both the limited memory requirement and high measurement accuracy.

  16. Algorithming the Algorithm

    DEFF Research Database (Denmark)

    Mahnke, Martina; Uprichard, Emma

    2014-01-01

    Imagine sailing across the ocean. The sun is shining, vastness all around you. And suddenly [BOOM] you’ve hit an invisible wall. Welcome to the Truman Show! Ever since Eli Pariser published his thoughts on a potential filter bubble, this movie scenario seems to have become reality, just with slight...... changes: it’s not the ocean, it’s the internet we’re talking about, and it’s not a TV show producer, but algorithms that constitute a sort of invisible wall. Building on this assumption, most research is trying to ‘tame the algorithmic tiger’. While this is a valuable and often inspiring approach, we...

  17. An evaluation of multi-probe locality sensitive hashing for computing similarities over web-scale query logs.

    Directory of Open Access Journals (Sweden)

    Graham Cormode

    Full Text Available Many modern applications of AI such as web search, mobile browsing, image processing, and natural language processing rely on finding similar items from a large database of complex objects. Due to the very large scale of data involved (e.g., users' queries from commercial search engines, computing such near or nearest neighbors is a non-trivial task, as the computational cost grows significantly with the number of items. To address this challenge, we adopt Locality Sensitive Hashing (a.k.a, LSH methods and evaluate four variants in a distributed computing environment (specifically, Hadoop. We identify several optimizations which improve performance, suitable for deployment in very large scale settings. The experimental results demonstrate our variants of LSH achieve the robust performance with better recall compared with "vanilla" LSH, even when using the same amount of space.

  18. Meet-in-the-Middle Preimage Attacks on Hash Modes of Generalized Feistel and Misty Schemes with SP Round Function

    Science.gov (United States)

    Moon, Dukjae; Hong, Deukjo; Kwon, Daesung; Hong, Seokhie

    We assume that the domain extender is the Merkle-Damgård (MD) scheme and he message is padded by a ‘1’, and minimum number of ‘0’s, followed by a fixed size length information so that the length of padded message is multiple of block length. Under this assumption, we analyze securities of the hash mode when the compression function follows the Davies-Meyer (DM) scheme and the underlying block cipher is one of the plain Feistel or Misty scheme or the generalized Feistel or Misty schemes with Substitution-Permutation (SP) round function. We do this work based on Meet-in-the-Middle (MitM) preimage attack techniques, and develop several useful initial structures.

  19. Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks

    Science.gov (United States)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2017-12-01

    The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.

  20. Novel Quantum Encryption Algorithm Based on Multiqubit Quantum Shift Register and Hill Cipher

    International Nuclear Information System (INIS)

    Khalaf, Rifaat Zaidan; Abdullah, Alharith Abdulkareem

    2014-01-01

    Based on a quantum shift register, a novel quantum block cryptographic algorithm that can be used to encrypt classical messages is proposed. The message is encoded and decoded by using a code generated by the quantum shift register. The security of this algorithm is analysed in detail. It is shown that, in the quantum block cryptographic algorithm, two keys can be used. One of them is the classical key that is used in the Hill cipher algorithm where Alice and Bob use the authenticated Diffie Hellman key exchange algorithm using the concept of digital signature for the authentication of the two communicating parties and so eliminate the man-in-the-middle attack. The other key is generated by the quantum shift register and used for the coding of the encryption message, where Alice and Bob share the key by using the BB84 protocol. The novel algorithm can prevent a quantum attack strategy as well as a classical attack strategy. The problem of key management is discussed and circuits for the encryption and the decryption are suggested

  1. On cryptographic security of end-to-end encrypted connections in WhatsApp and Telegram messengers

    Directory of Open Access Journals (Sweden)

    Sergey V. Zapechnikov

    2017-11-01

    Full Text Available The aim of this work is to analyze the available possibilities for improving secure messaging with end-to-end connections under conditions of external violator actions and distrusted service provider. We made a comparative analysis of cryptographic security mechanisms for two widely used messengers: Telegram and WhatsApp. It was found that Telegram is based on MTProto protocol, while WhatsApp is based on the alternative Signal protocol. We examine the specific features of messengers implementation associated with random number generation on the most popular Android mobile platform. It was shown that Signal has better security properties. It is used in several other popular messengers such as TextSecure, RedPhone, GoogleAllo, FacebookMessenger, Signal along with WhatsApp. A number of possible attacks on both messengers were analyzed in details. In particular, we demonstrate that the metadata are poorly protected in both messengers. Metadata security may be one of the goals for further studies.

  2. CRYPTOGRAPHIC SECURE CLOUD STORAGE MODEL WITH ANONYMOUS AUTHENTICATION AND AUTOMATIC FILE RECOVERY

    Directory of Open Access Journals (Sweden)

    Sowmiya Murthy

    2014-10-01

    Full Text Available We propose a secure cloud storage model that addresses security and storage issues for cloud computing environments. Security is achieved by anonymous authentication which ensures that cloud users remain anonymous while getting duly authenticated. For achieving this goal, we propose a digital signature based authentication scheme with a decentralized architecture for distributed key management with multiple Key Distribution Centers. Homomorphic encryption scheme using Paillier public key cryptosystem is used for encrypting the data that is stored in the cloud. We incorporate a query driven approach for validating the access policies defined by an individual user for his/her data i.e. the access is granted to a requester only if his credentials matches with the hidden access policy. Further, since data is vulnerable to losses or damages due to the vagaries of the network, we propose an automatic retrieval mechanism where lost data is recovered by data replication and file replacement with string matching algorithm. We describe a prototype implementation of our proposed model.

  3. k-Nearest Neighbors Algorithm in Profiling Power Analysis Attacks

    Directory of Open Access Journals (Sweden)

    Z. Martinasek

    2016-06-01

    Full Text Available Power analysis presents the typical example of successful attacks against trusted cryptographic devices such as RFID (Radio-Frequency IDentifications and contact smart cards. In recent years, the cryptographic community has explored new approaches in power analysis based on machine learning models such as Support Vector Machine (SVM, RF (Random Forest and Multi-Layer Perceptron (MLP. In this paper, we made an extensive comparison of machine learning algorithms in the power analysis. For this purpose, we implemented a verification program that always chooses the optimal settings of individual machine learning models in order to obtain the best classification accuracy. In our research, we used three datasets, the first containing the power traces of an unprotected AES (Advanced Encryption Standard implementation. The second and third datasets are created independently from public available power traces corresponding to a masked AES implementation (DPA Contest v4. The obtained results revealed some interesting facts, namely, an elementary k-NN (k-Nearest Neighbors algorithm, which has not been commonly used in power analysis yet, shows great application potential in practice.

  4. Enhanced K-means clustering with encryption on cloud

    Science.gov (United States)

    Singh, Iqjot; Dwivedi, Prerna; Gupta, Taru; Shynu, P. G.

    2017-11-01

    This paper tries to solve the problem of storing and managing big files over cloud by implementing hashing on Hadoop in big-data and ensure security while uploading and downloading files. Cloud computing is a term that emphasis on sharing data and facilitates to share infrastructure and resources.[10] Hadoop is an open source software that gives us access to store and manage big files according to our needs on cloud. K-means clustering algorithm is an algorithm used to calculate distance between the centroid of the cluster and the data points. Hashing is a algorithm in which we are storing and retrieving data with hash keys. The hashing algorithm is called as hash function which is used to portray the original data and later to fetch the data stored at the specific key. [17] Encryption is a process to transform electronic data into non readable form known as cipher text. Decryption is the opposite process of encryption, it transforms the cipher text into plain text that the end user can read and understand well. For encryption and decryption we are using Symmetric key cryptographic algorithm. In symmetric key cryptography are using DES algorithm for a secure storage of the files. [3

  5. PDES, Fips Standard Data Encryption Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Nessett, D N [Lawrence Livermore National Laboratory (United States)

    1991-03-26

    Description of program or function: PDES performs the National Bureau of Standards FIPS Pub. 46 data encryption/decryption algorithm used for the cryptographic protection of computer data. The DES algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under control of a 64-bit key. The key is generated in such a way that each of the 56 bits used directly by the algorithm are random and the remaining 8 error-detecting bits are set to make the parity of each 8-bit byte of the key odd, i. e. there is an odd number of '1' bits in each 8-bit byte. Each member of a group of authorized users of encrypted computer data must have the key that was used to encipher the data in order to use it. Data can be recovered from cipher only by using exactly the same key used to encipher it, but with the schedule of addressing the key bits altered so that the deciphering process is the reverse of the enciphering process. A block of data to be enciphered is subjected to an initial permutation, then to a complex key-dependent computation, and finally to a permutation which is the inverse of the initial permutation. Two PDES routines are included; both perform the same calculation. One, identified as FDES.MAR, is designed to achieve speed in execution, while the other identified as PDES.MAR, presents a clearer view of how the algorithm is executed

  6. PDES, Fips Standard Data Encryption Algorithm

    International Nuclear Information System (INIS)

    Nessett, D.N.

    1991-01-01

    Description of program or function: PDES performs the National Bureau of Standards FIPS Pub. 46 data encryption/decryption algorithm used for the cryptographic protection of computer data. The DES algorithm is designed to encipher and decipher blocks of data consisting of 64 bits under control of a 64-bit key. The key is generated in such a way that each of the 56 bits used directly by the algorithm are random and the remaining 8 error-detecting bits are set to make the parity of each 8-bit byte of the key odd, i. e. there is an odd number of '1' bits in each 8-bit byte. Each member of a group of authorized users of encrypted computer data must have the key that was used to encipher the data in order to use it. Data can be recovered from cipher only by using exactly the same key used to encipher it, but with the schedule of addressing the key bits altered so that the deciphering process is the reverse of the enciphering process. A block of data to be enciphered is subjected to an initial permutation, then to a complex key-dependent computation, and finally to a permutation which is the inverse of the initial permutation. Two PDES routines are included; both perform the same calculation. One, identified as FDES.MAR, is designed to achieve speed in execution, while the other identified as PDES.MAR, presents a clearer view of how the algorithm is executed

  7. AUTHENTICATION ALGORITHM FOR PARTICIPANTS OF INFORMATION INTEROPERABILITY IN PROCESS OF OPERATING SYSTEM REMOTE LOADING ON THIN CLIENT

    Directory of Open Access Journals (Sweden)

    Y. A. Gatchin

    2016-05-01

    Full Text Available Subject of Research.This paper presents solution of authentication problem for all components of information interoperabilityin process of operation system network loading on thin client from terminal server. System Definition. In the proposed solution operation system integrity check is made by hardware-software module, including USB-token with protected memory for secure storage of cryptographic keys and loader. The key requirement for the solution is mutual authentication of four participants: terminal server, thin client, token and user. We have created two algorithms for the problem solution. The first of the designed algorithms compares the encrypted one-time password (random number with the reference value stored in the memory of the token and updates this number in case of successful authentication. The second algorithm uses the public and private keys of the token and the server. As a result of cryptographic transformation, participants are authenticated and the secure channel is formed between the token, thin client and terminal server. Main Results. Additional research was carried out to find out if the designed algorithms meet the necessary requirements. Criteria used included applicability in a multi-access terminal system architecture, potential threats evaluation and overall system security. According to analysis results, it is recommended to use the algorithm based on PKI due to its high scalability and usability. High level of data security is proved as a result of asymmetric cryptography application with the guarantee that participants' private keys are never sent in the authentication process. Practical Relevance. The designed PKI-based algorithm allows solving the problem with the use of cryptographic algorithms according to state standard even in its absence on asymmetric cryptography. Thus, it can be applied in the State Information Systems with increased requirements to information security.

  8. Authentication and Encryption Using Modified Elliptic Curve Cryptography with Particle Swarm Optimization and Cuckoo Search Algorithm

    Science.gov (United States)

    Kota, Sujatha; Padmanabhuni, Venkata Nageswara Rao; Budda, Kishor; K, Sruthi

    2018-05-01

    Elliptic Curve Cryptography (ECC) uses two keys private key and public key and is considered as a public key cryptographic algorithm that is used for both authentication of a person and confidentiality of data. Either one of the keys is used in encryption and other in decryption depending on usage. Private key is used in encryption by the user and public key is used to identify user in the case of authentication. Similarly, the sender encrypts with the private key and the public key is used to decrypt the message in case of confidentiality. Choosing the private key is always an issue in all public key Cryptographic Algorithms such as RSA, ECC. If tiny values are chosen in random the security of the complete algorithm becomes an issue. Since the Public key is computed based on the Private Key, if they are not chosen optimally they generate infinity values. The proposed Modified Elliptic Curve Cryptography uses selection in either of the choices; the first option is by using Particle Swarm Optimization and the second option is by using Cuckoo Search Algorithm for randomly choosing the values. The proposed algorithms are developed and tested using sample database and both are found to be secured and reliable. The test results prove that the private key is chosen optimally not repetitive or tiny and the computations in public key will not reach infinity.

  9. Cost analysis of hash collisions : will quantum computers make SHARCS obsolete?

    NARCIS (Netherlands)

    Bernstein, D.J.

    2009-01-01

    Current proposals for special-purpose factorization hardware will become obsolete if large quantum computers are built: the number-field sieve scales much more poorly than Shor's quantum algorithm for factorization. Will all special-purpose cryptanalytic hardware become obsolete in a post-quantum

  10. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  11. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  12. Architecture for the Secret-Key BC3 Cryptography Algorithm

    Directory of Open Access Journals (Sweden)

    Arif Sasongko

    2011-08-01

    Full Text Available Cryptography is a very important aspect in data security. The focus of research in this field is shifting from merely security aspect to consider as well the implementation aspect. This paper aims to introduce BC3 algorithm with focus on its hardware implementation. It proposes architecture for the hardware implementation for this algorithm. BC3 algorithm is a secret-key cryptography algorithm developed with two considerations: robustness and implementation efficiency. This algorithm has been implemented on software and has good performance compared to AES algorithm. BC3 is improvement of BC2 and AE cryptographic algorithm and it is expected to have the same level of robustness and to gain competitive advantages in the implementation aspect. The development of the architecture gives much attention on (1 resource sharing and (2 having single clock for each round. It exploits regularity of the algorithm. This architecture is then implemented on an FPGA. This implementation is three times smaller area than AES, but about five times faster. Furthermore, this BC3 hardware implementation has better performance compared to BC3 software both in key expansion stage and randomizing stage. For the future, the security of this implementation must be reviewed especially against side channel attack.

  13. A novel method to design S-box based on chaotic map and genetic algorithm

    International Nuclear Information System (INIS)

    Wang, Yong; Wong, Kwok-Wo; Li, Changbing; Li, Yang

    2012-01-01

    The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes. -- Highlights: ► The problem of constructing S-box is transformed to a Traveling Salesman Problem. ► We present a new method for designing S-box based on chaos and genetic algorithm. ► The proposed algorithm is effective in generating strong S-boxes.

  14. A novel method to design S-box based on chaotic map and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong, E-mail: wangyong_cqupt@163.com [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Wong, Kwok-Wo [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong (Hong Kong); Li, Changbing [Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Li, Yang [Department of Automatic Control and Systems Engineering, The University of Sheffield, Mapping Street, S1 3DJ (United Kingdom)

    2012-01-30

    The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes. -- Highlights: ► The problem of constructing S-box is transformed to a Traveling Salesman Problem. ► We present a new method for designing S-box based on chaos and genetic algorithm. ► The proposed algorithm is effective in generating strong S-boxes.

  15. GATHERING TECHNOLOGY BASED ON REGEX WEB PAGE DENOISING HASH ALIGNMENTS WEB CRAWLER WITHOUT LANDING THE MICRO - BLOG ABUNDANT%基于 Regex 网页去噪 Hash 比对的网络爬虫无登陆微博采集技术

    Institute of Scientific and Technical Information of China (English)

    陈宇; 孟凡龙; 刘培玉; 朱振方

    2015-01-01

    针对当前微博采集无精确去噪方法和微博无法无登陆采集现象,笔者提出了基于 Regex 网页去噪 Hash 对比的网络爬虫采集方案并利用插件采集实现了无登陆采集。该方法通过 Regex 构建 DFA 和 NFA 模型来去除网页噪声,通过 Hash 对比对确定采集页面,并通过插件权限提升实现无登陆技术。有效的避免了 Hash 值的变化与网页内容变化产生偏离的现象,解决了网络爬虫虚拟登录时多次对 URL 采集造成的身份认证问题。实验表明,该方法可以实时快速的获取微博信息,为舆情数据分析提供批量精准的数据。%In view of the current micro - blog acquisition without accurate denoising method and unable abundantly the non - debarkation gathering phenomenon,we present a web crawler acquisition scheme of Regex Webpage denoising Hash based on comparison and realize no landing collection by using plug - in acquisition. The method of Regex to construct DFA and NFA model to remove Webpage noise,comparing the Hash to determine the collection page,and the plug - in privilege without landing techniques are presented. Experiments show that,this method quickly gets micro - blog information in real time,and provides,accurate data for the mass public opinion data analysis.

  16. DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key Generation.

    Science.gov (United States)

    Kalsi, Shruti; Kaur, Harleen; Chang, Victor

    2017-12-05

    Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don't exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.

  17. Development of a cellulose-based insulating composite material for green buildings: Case of treated organic waste (paper, cardboard, hash)

    Science.gov (United States)

    Ouargui, Ahmed; Belouaggadia, Naoual; Elbouari, Abdeslam; Ezzine, Mohammed

    2018-05-01

    Buildings are responsible for 36% of the final energy consumption in Morocco [1-2], and a reduction of this energy consumption of buildings is a priority for the kingdom in order to reach its energy saving goals. One of the most effective actions to reduce energy consumption is the selection and development of innovative and efficient building materials [3]. In this work, we present an experimental study of the effect of adding treated organic waste (paper, cardboard, hash) on mechanical and thermal properties of cement and clay bricks. Thermal conductivity, specific heat and mechanical resistance were investigated in terms of content and size additives. Soaking time and drying temperature were also taken into account. The results reveal that thermal conductivity decreases as well in the case of the paper-cement mixture as that of the paper-clay and seems to stabilize around 40%. In the case of the composite paper-cement, it is found that, for an additives quantity exceeding 15%, the compressive strength exceeds the standard for the hollow non-load bearing masonry. However, the case of paper-clay mixture seems to give more interesting results, related to the compressive strength, for a mass composition of 15% in paper. Given the positive results achieved, it seems possible to use these composites for the construction of walls, ceilings and roofs of housing while minimizing the energy consumption of the building.

  18. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  19. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of

  20. Cryptographic Combinatorial Securities Exchanges

    Science.gov (United States)

    Thorpe, Christopher; Parkes, David C.

    We present a useful new mechanism that facilitates the atomic exchange of many large baskets of securities in a combinatorial exchange. Cryptography prevents information about the securities in the baskets from being exploited, enhancing trust. Our exchange offers institutions who wish to trade large positions a new alternative to existing methods of block trading: they can reduce transaction costs by taking advantage of other institutions’ available liquidity, while third party liquidity providers guarantee execution—preserving their desired portfolio composition at all times. In our exchange, institutions submit encrypted orders which are crossed, leaving a “remainder”. The exchange proves facts about the portfolio risk of this remainder to third party liquidity providers without revealing the securities in the remainder, the knowledge of which could also be exploited. The third parties learn either (depending on the setting) the portfolio risk parameters of the remainder itself, or how their own portfolio risk would change if they were to incorporate the remainder into a portfolio they submit. In one setting, these third parties submit bids on the commission, and the winner supplies necessary liquidity for the entire exchange to clear. This guaranteed clearing, coupled with external price discovery from the primary markets for the securities, sidesteps difficult combinatorial optimization problems. This latter method of proving how taking on the remainder would change risk parameters of one’s own portfolio, without revealing the remainder’s contents or its own risk parameters, is a useful protocol of independent interest.

  1. Porovnání současných a nových hašovacích funkcí

    OpenAIRE

    Suchan, Martin

    2007-01-01

    The goal of this study is to present comparison of today's most widely used cryptographic hash functions and compare them with drafts of new hash functions, which are being currently developed for Advanced Hash Standard competition. This study also includes implementation of all described functions in programming language C#.

  2. Low Power S-Box Architecture for AES Algorithm using Programmable Second Order Reversible Cellular Automata: An Application to WBAN.

    Science.gov (United States)

    Gangadari, Bhoopal Rao; Ahamed, Shaik Rafi

    2016-12-01

    In this paper, we presented a novel approach of low energy consumption architecture of S-Box used in Advanced Encryption Standard (AES) algorithm using programmable second order reversible cellular automata (RCA 2 ). The architecture entails a low power implementation with minimal delay overhead and the performance of proposed RCA 2 based S-Box in terms of security is evaluated using the cryptographic properties such as nonlinearity, correlation immunity bias, strict avalanche criteria, entropy and also found that the proposed architecture is secure enough for cryptographic applications. Moreover, the proposed AES algorithm architecture simulation studies show that energy consumption of 68.726 nJ, power dissipation of 3.856 mW for 0.18- μm at 13.69 MHz and energy consumption of 29.408 nJ, power dissipation of 1.65 mW for 0.13- μm at 13.69 MHz. The proposed AES algorithm with RCA 2 based S-Box shows a reduction power consumption by 50 % and energy consumption by 5 % compared to best classical S-Box and composite field arithmetic based AES algorithm. Apart from that, it is also shown that RCA 2 based S-Boxes are dynamic in nature, invertible, low power dissipation compared to that of LUT based S-Box and hence suitable for Wireless Body Area Network (WBAN) applications.

  3. Enforcing Security Mechanisms in the IP-Based Internet of Things: An Algorithmic Overview

    Directory of Open Access Journals (Sweden)

    Luca Veltri

    2013-04-01

    Full Text Available The Internet of Things (IoT refers to the Internet-like structure of billions of interconnected constrained devices, denoted as “smart objects”. Smart objects have limited capabilities, in terms of computational power and memory, and might be battery-powered devices, thus raising the need to adopt particularly energy efficient technologies. Among the most notable challenges that building interconnected smart objects brings about, there are standardization and interoperability. The use of IP has been foreseen as the standard for interoperability for smart objects. As billions of smart objects are expected to come to life and IPv4 addresses have eventually reached depletion, IPv6 has been identified as a candidate for smart-object communication. The deployment of the IoT raises many security issues coming from (i the very nature of smart objects, e.g., the adoption of lightweight cryptographic algorithms, in terms of processing and memory requirements; and (ii the use of standard protocols, e.g., the need to minimize the amount of data exchanged between nodes. This paper provides a detailed overview of the security challenges related to the deployment of smart objects. Security protocols at network, transport, and application layers are discussed, together with lightweight cryptographic algorithms proposed to be used instead of conventional and demanding ones, in terms of computational resources. Security aspects, such as key distribution and security bootstrapping, and application scenarios, such as secure data aggregation and service authorization, are also discussed.

  4. A chimeric fusion of the hASH1 and EZH2 promoters mediates high and specific reporter and suicide gene expression and cytotoxicity in small cell lung cancer cells

    DEFF Research Database (Denmark)

    Poulsen, T.T.; Pedersen, N.; Juel, H.

    2008-01-01

    Transcriptionally targeted gene therapy is a promising experimental modality for treatment of systemic malignancies such as small cell lung cancer (SCLC). We have identified the human achaete-scute homolog 1 (hASH1) and enhancer of zeste homolog 2 (EZH2) genes as highly upregulated in SCLC compar...

  5. Architecture for the Secret-Key BC3 Cryptography Algorithm

    Directory of Open Access Journals (Sweden)

    Arif Sasongko

    2014-11-01

    Full Text Available Cryptography is a very important aspect in data security. The focus of research in this field is shifting from merely security aspect to consider as well the  implementation  aspect.  This  paper  aims  to  introduce  BC3  algorithm  with focus  on  its  hardware  implementation.  It  proposes  an  architecture  for  the hardware  implementation  for  this  algorithm.  BC3  algorithm  is  a  secret-key cryptography  algorithm  developed  with  two  considerations:  robustness  and implementation  efficiency.  This  algorithm  has  been  implemented  on  software and has good performance compared to AES algorithm. BC3 is improvement of BC2 and AE cryptographic algorithm and it is expected to have the same level of robustness and to gain competitive advantages in the implementation aspect. The development of the architecture gives much attention on (1 resource sharing and (2  having  single  clock  for  each  round.  It  exploits  regularity  of  the  algorithm. This architecture is then implemented on an FPGA. This implementation is three times smaller area than AES, but about five times faster. Furthermore, this BC3 hardware  implementation  has  better  performance  compared  to  BC3  software both in key expansion stage and randomizing stage. For the future, the security of this implementation must be reviewed especially against side channel attack.

  6. Authenticity techniques for PACS images and records

    Science.gov (United States)

    Wong, Stephen T. C.; Abundo, Marco; Huang, H. K.

    1995-05-01

    Along with the digital radiology environment supported by picture archiving and communication systems (PACS) comes a new problem: How to establish trust in multimedia medical data that exist only in the easily altered memory of a computer. Trust is characterized in terms of integrity and privacy of digital data. Two major self-enforcing techniques can be used to assure the authenticity of electronic images and text -- key-based cryptography and digital time stamping. Key-based cryptography associates the content of an image with the originator using one or two distinct keys and prevents alteration of the document by anyone other than the originator. A digital time stamping algorithm generates a characteristic `digital fingerprint' for the original document using a mathematical hash function, and checks that it has not been modified. This paper discusses these cryptographic algorithms and their appropriateness for a PACS environment. It also presents experimental results of cryptographic algorithms on several imaging modalities.

  7. Algorithmic alternatives

    International Nuclear Information System (INIS)

    Creutz, M.

    1987-11-01

    A large variety of Monte Carlo algorithms are being used for lattice gauge simulations. For purely bosonic theories, present approaches are generally adequate; nevertheless, overrelaxation techniques promise savings by a factor of about three in computer time. For fermionic fields the situation is more difficult and less clear. Algorithms which involve an extrapolation to a vanishing step size are all quite closely related. Methods which do not require such an approximation tend to require computer time which grows as the square of the volume of the system. Recent developments combining global accept/reject stages with Langevin or microcanonical updatings promise to reduce this growth to V/sup 4/3/

  8. Combinatorial algorithms

    CERN Document Server

    Hu, T C

    2002-01-01

    Newly enlarged, updated second edition of a valuable text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discusses binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. 153 black-and-white illus. 23 tables.Newly enlarged, updated second edition of a valuable, widely used text presents algorithms for shortest paths, maximum flows, dynamic programming and backtracking. Also discussed are binary trees, heuristic and near optimums, matrix multiplication, and NP-complete problems. New to this edition: Chapter 9

  9. Hashing, Randomness and Dictionaries

    DEFF Research Database (Denmark)

    Pagh, Rasmus

    to the similarity to a bookshelf dictionary, which contains a set of words and has an explanation associated with each word. In the static version of the problem the set is fixed, whereas in the dynamic version, insertions and deletions of elements are possible. The approach taken is that of the theoretical...

  10. Derandomization, Hashing and Expanders

    DEFF Research Database (Denmark)

    Ruzic, Milan

    . The central question in this area of computational complexity is \\P=BPP?". Instead of derandomizing whole complexity classes, one may work on derandomizing concrete problems. This approach trades generality for possibility of having much better performance bounds. There are a few common techniques...

  11. A novel image encryption algorithm based on a 3D chaotic map

    Science.gov (United States)

    Kanso, A.; Ghebleh, M.

    2012-07-01

    Recently [Solak E, Çokal C, Yildiz OT Biyikoǧlu T. Cryptanalysis of Fridrich's chaotic image encryption. Int J Bifur Chaos 2010;20:1405-1413] cryptanalyzed the chaotic image encryption algorithm of [Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifur Chaos 1998;8(6):1259-1284], which was considered a benchmark for measuring security of many image encryption algorithms. This attack can also be applied to other encryption algorithms that have a structure similar to Fridrich's algorithm, such as that of [Chen G, Mao Y, Chui, C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 2004;21:749-761]. In this paper, we suggest a novel image encryption algorithm based on a three dimensional (3D) chaotic map that can defeat the aforementioned attack among other existing attacks. The design of the proposed algorithm is simple and efficient, and based on three phases which provide the necessary properties for a secure image encryption algorithm including the confusion and diffusion properties. In phase I, the image pixels are shuffled according to a search rule based on the 3D chaotic map. In phases II and III, 3D chaotic maps are used to scramble shuffled pixels through mixing and masking rules, respectively. Simulation results show that the suggested algorithm satisfies the required performance tests such as high level security, large key space and acceptable encryption speed. These characteristics make it a suitable candidate for use in cryptographic applications.

  12. Enhanced diffie-hellman algorithm for reliable key exchange

    Science.gov (United States)

    Aryan; Kumar, Chaithanya; Vincent, P. M. Durai Raj

    2017-11-01

    The Diffie -Hellman is one of the first public-key procedure and is a certain way of exchanging the cryptographic keys securely. This concept was introduced by Ralph Markel and it is named after Whitfield Diffie and Martin Hellman. Sender and Receiver make a common secret key in Diffie-Hellman algorithm and then they start communicating with each other over the public channel which is known to everyone. A number of internet services are secured by Diffie -Hellman. In Public key cryptosystem, the sender has to trust while receiving the public key of the receiver and vice-versa and this is the challenge of public key cryptosystem. Man-in-the-Middle attack is very much possible on the existing Diffie-Hellman algorithm. In man-in-the-middle attack, the attacker exists in the public channel, the attacker receives the public key of both sender and receiver and sends public keys to sender and receiver which is generated by his own. This is how man-in-the-middle attack is possible on Diffie-Hellman algorithm. Denial of service attack is another attack which is found common on Diffie-Hellman. In this attack, the attacker tries to stop the communication happening between sender and receiver and attacker can do this by deleting messages or by confusing the parties with miscommunication. Some more attacks like Insider attack, Outsider attack, etc are possible on Diffie-Hellman. To reduce the possibility of attacks on Diffie-Hellman algorithm, we have enhanced the Diffie-Hellman algorithm to a next level. In this paper, we are extending the Diffie -Hellman algorithm by using the concept of the Diffie -Hellman algorithm to get a stronger secret key and that secret key is further exchanged between the sender and the receiver so that for each message, a new secret shared key would be generated. The second secret key will be generated by taking primitive root of the first secret key.

  13. Autodriver algorithm

    Directory of Open Access Journals (Sweden)

    Anna Bourmistrova

    2011-02-01

    Full Text Available The autodriver algorithm is an intelligent method to eliminate the need of steering by a driver on a well-defined road. The proposed method performs best on a four-wheel steering (4WS vehicle, though it is also applicable to two-wheel-steering (TWS vehicles. The algorithm is based on coinciding the actual vehicle center of rotation and road center of curvature, by adjusting the kinematic center of rotation. The road center of curvature is assumed prior information for a given road, while the dynamic center of rotation is the output of dynamic equations of motion of the vehicle using steering angle and velocity measurements as inputs. We use kinematic condition of steering to set the steering angles in such a way that the kinematic center of rotation of the vehicle sits at a desired point. At low speeds the ideal and actual paths of the vehicle are very close. With increase of forward speed the road and tire characteristics, along with the motion dynamics of the vehicle cause the vehicle to turn about time-varying points. By adjusting the steering angles, our algorithm controls the dynamic turning center of the vehicle so that it coincides with the road curvature center, hence keeping the vehicle on a given road autonomously. The position and orientation errors are used as feedback signals in a closed loop control to adjust the steering angles. The application of the presented autodriver algorithm demonstrates reliable performance under different driving conditions.

  14. Algoritmi selektivnog šifrovanja - pregled sa ocenom performansi / Selective encryption algorithms: Overview with performance evaluation

    Directory of Open Access Journals (Sweden)

    Boriša Ž. Jovanović

    2010-10-01

    Full Text Available Digitalni multimedijalni sadržaj postaje zastupljeniji i sve više se razmenjuje putem računarskih mreža i javnih kanala (satelitske komunikacije, bežične mreže, internet, itd. koji predstavljaju nebezbedne medijume za prenos informacija osetljive sadržine. Sve više na značaju dobijaju mehanizmi kriptološke zaštite slika i video sadržaja. Tradicionalni sistemi kriptografske obrade u sistemima za prenos ovih vrsta informacija garantuju visok stepen sigurnosti, ali i imaju svoje nedostatke - visoku cenu implementacije i znatno kašnjenje u prenosu podataka. Pomenuti nedostaci se prevazilaze primenom algoritama selektivnog šifrovanja. / Digital multimedia content is becoming widely used and increasingly exchanged over computer network and public channels (satelite, wireless networks, Internet, etc. which is unsecured transmission media for ex changing that kind of information. Mechanisms made to encrypt image and video data are becoming more and more significant. Traditional cryptographic techniques can guarantee a high level of security but at the cost of expensive implementation and important transmission delays. These shortcomings can be exceeded using selective encryption algorithms. Introduction In traditional image and video content protection schemes, called fully layered, the whole content is first compressed. Then, the compressed bitstream is entirely encrypted using a standard cipher (DES - Data Encryption Algorithm, IDEA - International Data Encryption Algorithm, AES - Advanced Encryption Algorithm etc.. The specific characteristics of this kind of data, high-transmission rate with limited bandwidth, make standard encryption algorithms inadequate. Another limitation of traditional systems consists of altering the whole bitstream syntax which may disable some codec functionalities on the delivery site coder and decoder on the receiving site. Selective encryption is a new trend in image and video content protection. As its

  15. Murasaki: a fast, parallelizable algorithm to find anchors from multiple genomes.

    Directory of Open Access Journals (Sweden)

    Kris Popendorf

    Full Text Available BACKGROUND: With the number of available genome sequences increasing rapidly, the magnitude of sequence data required for multiple-genome analyses is a challenging problem. When large-scale rearrangements break the collinearity of gene orders among genomes, genome comparison algorithms must first identify sets of short well-conserved sequences present in each genome, termed anchors. Previously, anchor identification among multiple genomes has been achieved using pairwise alignment tools like BLASTZ through progressive alignment tools like TBA, but the computational requirements for sequence comparisons of multiple genomes quickly becomes a limiting factor as the number and scale of genomes grows. METHODOLOGY/PRINCIPAL FINDINGS: Our algorithm, named Murasaki, makes it possible to identify anchors within multiple large sequences on the scale of several hundred megabases in few minutes using a single CPU. Two advanced features of Murasaki are (1 adaptive hash function generation, which enables efficient use of arbitrary mismatch patterns (spaced seeds and therefore the comparison of multiple mammalian genomes in a practical amount of computation time, and (2 parallelizable execution that decreases the required wall-clock and CPU times. Murasaki can perform a sensitive anchoring of eight mammalian genomes (human, chimp, rhesus, orangutan, mouse, rat, dog, and cow in 21 hours CPU time (42 minutes wall time. This is the first single-pass in-core anchoring of multiple mammalian genomes. We evaluated Murasaki by comparing it with the genome alignment programs BLASTZ and TBA. We show that Murasaki can anchor multiple genomes in near linear time, compared to the quadratic time requirements of BLASTZ and TBA, while improving overall accuracy. CONCLUSIONS/SIGNIFICANCE: Murasaki provides an open source platform to take advantage of long patterns, cluster computing, and novel hash algorithms to produce accurate anchors across multiple genomes with

  16. Algorithmic Self

    DEFF Research Database (Denmark)

    Markham, Annette

    This paper takes an actor network theory approach to explore some of the ways that algorithms co-construct identity and relational meaning in contemporary use of social media. Based on intensive interviews with participants as well as activity logging and data tracking, the author presents a richly...... layered set of accounts to help build our understanding of how individuals relate to their devices, search systems, and social network sites. This work extends critical analyses of the power of algorithms in implicating the social self by offering narrative accounts from multiple perspectives. It also...... contributes an innovative method for blending actor network theory with symbolic interaction to grapple with the complexity of everyday sensemaking practices within networked global information flows....

  17. EFFICIENT ADAPTIVE STEGANOGRAPHY FOR COLOR IMAGESBASED ON LSBMR ALGORITHM

    Directory of Open Access Journals (Sweden)

    B. Sharmila

    2012-02-01

    Full Text Available Steganography is the art of hiding the fact that communication is taking place, by hiding information in other medium. Many different carrier file formats can be used, but digital images are the most popular because of their frequent use on the Internet. For hiding secret information in images, there exists a large variety of steganographic techniques. The Least Significant Bit (LSB based approach is a simplest type of steganographic algorithm. In all the existing approaches, the decision of choosing the region within a cover image is performed without considering the relationship between image content and the size of secret message. Thus, the plain regions in the cover will be ruin after data hiding even at a low data rate. Hence choosing the edge region for data hiding will be a solution. Many algorithms are deal with edges in images for data hiding. The Paper 'Edge adaptive image steganography based on LSBMR algorithm' is a LSB steganography presented the results of algorithms on gray-scale images only. This paper presents the results of analyzing the performance of edge adaptive steganography for colored images (JPEG. The algorithms have been slightly modified for colored image implementation and are compared on the basis of evaluation parameters like peak signal noise ratio (PSNR and mean square error (MSE. This method can select the edge region depending on the length of secret message and difference between two consecutive bits in the cover image. For length of message is short, only small edge regions are utilized while on leaving other region as such. When the data rate increases, more regions can be used adaptively for data hiding by adjusting the parameters. Besides this, the message is encrypted using efficient cryptographic algorithm which further increases the security.

  18. Parallel algorithms

    CERN Document Server

    Casanova, Henri; Robert, Yves

    2008-01-01

    ""…The authors of the present book, who have extensive credentials in both research and instruction in the area of parallelism, present a sound, principled treatment of parallel algorithms. … This book is very well written and extremely well designed from an instructional point of view. … The authors have created an instructive and fascinating text. The book will serve researchers as well as instructors who need a solid, readable text for a course on parallelism in computing. Indeed, for anyone who wants an understandable text from which to acquire a current, rigorous, and broad vi

  19. Algorithm 865

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Reid, John K.; Wasniewski, Jerzy

    2007-01-01

    We present subroutines for the Cholesky factorization of a positive-definite symmetric matrix and for solving corresponding sets of linear equations. They exploit cache memory by using the block hybrid format proposed by the authors in a companion article. The matrix is packed into n(n + 1)/2 real...... variables, and the speed is usually better than that of the LAPACK algorithm that uses full storage (n2 variables). Included are subroutines for rearranging a matrix whose upper or lower-triangular part is packed by columns to this format and for the inverse rearrangement. Also included is a kernel...

  20. An Experimental Evaluation of the DQ-DHT Algorithm in a Grid Information Service

    Science.gov (United States)

    Papadakis, Harris; Trunfio, Paolo; Talia, Domenico; Fragopoulou, Paraskevi

    DQ-DHT is a resource discovery algorithm that combines the Dynamic Querying (DQ) technique used in unstructured peer-to-peer networks with an algorithm for efficient broadcast over a Distributed Hash Table (DHT). Similarly to DQ, DQ-DHT dynamically controls the query propagation on the basis of the desired number of results and the popularity of the resource to be located. Differently from DQ, DQ-DHT exploits the structural properties of a DHT to avoid message duplications, thus reducing the amount of network traffic generated by each query. The goal of this paper is to evaluate experimentally the amount of traffic generated by DQ-DHT compared to the DQ algorithm in a Grid infrastructure. A prototype of a Grid information service, which can use both DQ and DQ-DHT as resource discovery algorithm, has been implemented and deployed on the Grid'5000 infrastructure for evaluation. The experimental results presented in this paper show that DQ-DHT significantly reduces the amount of network traffic generated during the discovery process compared to the original DQ algorithm.

  1. Critical analysis of the Bennett-Riedel attack on secure cryptographic key distributions via the Kirchhoff-Law-Johnson-noise scheme.

    Directory of Open Access Journals (Sweden)

    Laszlo B Kish

    Full Text Available Recently, Bennett and Riedel (BR (http://arxiv.org/abs/1303.7435v1 argued that thermodynamics is not essential in the Kirchhoff-law-Johnson-noise (KLJN classical physical cryptographic exchange method in an effort to disprove the security of the KLJN scheme. They attempted to demonstrate this by introducing a dissipation-free deterministic key exchange method with two batteries and two switches. In the present paper, we first show that BR's scheme is unphysical and that some elements of its assumptions violate basic protocols of secure communication. All our analyses are based on a technically unlimited Eve with infinitely accurate and fast measurements limited only by the laws of physics and statistics. For non-ideal situations and at active (invasive attacks, the uncertainly principle between measurement duration and statistical errors makes it impossible for Eve to extract the key regardless of the accuracy or speed of her measurements. To show that thermodynamics and noise are essential for the security, we crack the BR system with 100% success via passive attacks, in ten different ways, and demonstrate that the same cracking methods do not function for the KLJN scheme that employs Johnson noise to provide security underpinned by the Second Law of Thermodynamics. We also present a critical analysis of some other claims by BR; for example, we prove that their equations for describing zero security do not apply to the KLJN scheme. Finally we give mathematical security proofs for each BR-attack against the KLJN scheme and conclude that the information theoretic (unconditional security of the KLJN method has not been successfully challenged.

  2. Critical analysis of the Bennett-Riedel attack on secure cryptographic key distributions via the Kirchhoff-Law-Johnson-noise scheme.

    Science.gov (United States)

    Kish, Laszlo B; Abbott, Derek; Granqvist, Claes G

    2013-01-01

    Recently, Bennett and Riedel (BR) (http://arxiv.org/abs/1303.7435v1) argued that thermodynamics is not essential in the Kirchhoff-law-Johnson-noise (KLJN) classical physical cryptographic exchange method in an effort to disprove the security of the KLJN scheme. They attempted to demonstrate this by introducing a dissipation-free deterministic key exchange method with two batteries and two switches. In the present paper, we first show that BR's scheme is unphysical and that some elements of its assumptions violate basic protocols of secure communication. All our analyses are based on a technically unlimited Eve with infinitely accurate and fast measurements limited only by the laws of physics and statistics. For non-ideal situations and at active (invasive) attacks, the uncertainly principle between measurement duration and statistical errors makes it impossible for Eve to extract the key regardless of the accuracy or speed of her measurements. To show that thermodynamics and noise are essential for the security, we crack the BR system with 100% success via passive attacks, in ten different ways, and demonstrate that the same cracking methods do not function for the KLJN scheme that employs Johnson noise to provide security underpinned by the Second Law of Thermodynamics. We also present a critical analysis of some other claims by BR; for example, we prove that their equations for describing zero security do not apply to the KLJN scheme. Finally we give mathematical security proofs for each BR-attack against the KLJN scheme and conclude that the information theoretic (unconditional) security of the KLJN method has not been successfully challenged.

  3. A novel algorithm for thermal image encryption.

    Science.gov (United States)

    Hussain, Iqtadar; Anees, Amir; Algarni, Abdulmohsen

    2018-04-16

    Thermal images play a vital character at nuclear plants, Power stations, Forensic labs biological research, and petroleum products extraction. Safety of thermal images is very important. Image data has some unique features such as intensity, contrast, homogeneity, entropy and correlation among pixels that is why somehow image encryption is trickier as compare to other encryptions. With conventional image encryption schemes it is normally hard to handle these features. Therefore, cryptographers have paid attention to some attractive properties of the chaotic maps such as randomness and sensitivity to build up novel cryptosystems. That is why, recently proposed image encryption techniques progressively more depends on the application of chaotic maps. This paper proposed an image encryption algorithm based on Chebyshev chaotic map and S8 Symmetric group of permutation based substitution boxes. Primarily, parameters of chaotic Chebyshev map are chosen as a secret key to mystify the primary image. Then, the plaintext image is encrypted by the method generated from the substitution boxes and Chebyshev map. By this process, we can get a cipher text image that is perfectly twisted and dispersed. The outcomes of renowned experiments, key sensitivity tests and statistical analysis confirm that the proposed algorithm offers a safe and efficient approach for real-time image encryption.

  4. Algorithmic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, W.

    1990-12-13

    In this paper complex adaptive systems are defined by a self- referential loop in which objects encode functions that act back on these objects. A model for this loop is presented. It uses a simple recursive formal language, derived from the lambda-calculus, to provide a semantics that maps character strings into functions that manipulate symbols on strings. The interaction between two functions, or algorithms, is defined naturally within the language through function composition, and results in the production of a new function. An iterated map acting on sets of functions and a corresponding graph representation are defined. Their properties are useful to discuss the behavior of a fixed size ensemble of randomly interacting functions. This function gas'', or Turning gas'', is studied under various conditions, and evolves cooperative interaction patterns of considerable intricacy. These patterns adapt under the influence of perturbations consisting in the addition of new random functions to the system. Different organizations emerge depending on the availability of self-replicators.

  5. Optimization of incremental structure from motion combining a random k-d forest and pHash for unordered images in a complex scene

    Science.gov (United States)

    Zhan, Zongqian; Wang, Chendong; Wang, Xin; Liu, Yi

    2018-01-01

    On the basis of today's popular virtual reality and scientific visualization, three-dimensional (3-D) reconstruction is widely used in disaster relief, virtual shopping, reconstruction of cultural relics, etc. In the traditional incremental structure from motion (incremental SFM) method, the time cost of the matching is one of the main factors restricting the popularization of this method. To make the whole matching process more efficient, we propose a preprocessing method before the matching process: (1) we first construct a random k-d forest with the large-scale scale-invariant feature transform features in the images and combine this with the pHash method to obtain a value of relatedness, (2) we then construct a connected weighted graph based on the relatedness value, and (3) we finally obtain a planned sequence of adding images according to the principle of the minimum spanning tree. On this basis, we attempt to thin the minimum spanning tree to reduce the number of matchings and ensure that the images are well distributed. The experimental results show a great reduction in the number of matchings with enough object points, with only a small influence on the inner stability, which proves that this method can quickly and reliably improve the efficiency of the SFM method with unordered multiview images in complex scenes.

  6. Protecting privacy in a clinical data warehouse.

    Science.gov (United States)

    Kong, Guilan; Xiao, Zhichun

    2015-06-01

    Peking University has several prestigious teaching hospitals in China. To make secondary use of massive medical data for research purposes, construction of a clinical data warehouse is imperative in Peking University. However, a big concern for clinical data warehouse construction is how to protect patient privacy. In this project, we propose to use a combination of symmetric block ciphers, asymmetric ciphers, and cryptographic hashing algorithms to protect patient privacy information. The novelty of our privacy protection approach lies in message-level data encryption, the key caching system, and the cryptographic key management system. The proposed privacy protection approach is scalable to clinical data warehouse construction with any size of medical data. With the composite privacy protection approach, the clinical data warehouse can be secure enough to keep the confidential data from leaking to the outside world. © The Author(s) 2014.

  7. Evaluation of Four Encryption Algorithms for Viability, Reliability and Performance Estimation

    Directory of Open Access Journals (Sweden)

    J. B. Awotunde

    2016-12-01

    Full Text Available Data and information in storage, in transit or during processing are found in various computers and computing devices with wide range of hardware specifications. Cryptography is the knowledge of using codes to encrypt and decrypt data. It enables one to store sensitive information or transmit it across computer in a more secured ways so that it cannot be read by anyone except the intended receiver. Cryptography also allows secure storage of sensitive data on any computer. Cryptography as an approach to computer security comes at a cost in terms of resource utilization such as time, memory and CPU usability time which in some cases may not be in abundance to achieve the set out objective of protecting data. This work looked into the memory construction rate, different key size, CPU utilization time period and encryption speed of the four algorithms to determine the amount of computer resource that is expended and how long it takes each algorithm to complete its task. Results shows that key length of the cryptographic algorithm is proportional to the resource utilization in most cases as found out in the key length of Blowfish, AES, 3DES and DES algorithms respectively. Further research can be carried out in order to determine the power utilization of each of these algorithms.

  8. A Secure Alignment Algorithm for Mapping Short Reads to Human Genome.

    Science.gov (United States)

    Zhao, Yongan; Wang, Xiaofeng; Tang, Haixu

    2018-05-09

    The elastic and inexpensive computing resources such as clouds have been recognized as a useful solution to analyzing massive human genomic data (e.g., acquired by using next-generation sequencers) in biomedical researches. However, outsourcing human genome computation to public or commercial clouds was hindered due to privacy concerns: even a small number of human genome sequences contain sufficient information for identifying the donor of the genomic data. This issue cannot be directly addressed by existing security and cryptographic techniques (such as homomorphic encryption), because they are too heavyweight to carry out practical genome computation tasks on massive data. In this article, we present a secure algorithm to accomplish the read mapping, one of the most basic tasks in human genomic data analysis based on a hybrid cloud computing model. Comparing with the existing approaches, our algorithm delegates most computation to the public cloud, while only performing encryption and decryption on the private cloud, and thus makes the maximum use of the computing resource of the public cloud. Furthermore, our algorithm reports similar results as the nonsecure read mapping algorithms, including the alignment between reads and the reference genome, which can be directly used in the downstream analysis such as the inference of genomic variations. We implemented the algorithm in C++ and Python on a hybrid cloud system, in which the public cloud uses an Apache Spark system.

  9. On Federated and Proof Of Validation Based Consensus Algorithms In Blockchain

    Science.gov (United States)

    Ambili, K. N.; Sindhu, M.; Sethumadhavan, M.

    2017-08-01

    Almost all real world activities have been digitized and there are various client server architecture based systems in place to handle them. These are all based on trust on third parties. There is an active attempt to successfully implement blockchain based systems which ensures that the IT systems are immutable, double spending is avoided and cryptographic strength is provided to them. A successful implementation of blockchain as backbone of existing information technology systems is bound to eliminate various types of fraud and ensure quicker delivery of the item on trade. To adapt IT systems to blockchain architecture, an efficient consensus algorithm need to be designed. Blockchain based on proof of work first came up as the backbone of cryptocurrency. After this, several other methods with variety of interesting features have come up. In this paper, we conduct a survey on existing attempts to achieve consensus in block chain. A federated consensus method and a proof of validation method are being compared.

  10. DNA-based watermarks using the DNA-Crypt algorithm

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  11. DNA-based watermarks using the DNA-Crypt algorithm

    Directory of Open Access Journals (Sweden)

    Barnekow Angelika

    2007-05-01

    Full Text Available Abstract Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  12. DNA-based watermarks using the DNA-Crypt algorithm.

    Science.gov (United States)

    Heider, Dominik; Barnekow, Angelika

    2007-05-29

    The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.

  13. Massively parallel algorithms for trace-driven cache simulations

    Science.gov (United States)

    Nicol, David M.; Greenberg, Albert G.; Lubachevsky, Boris D.

    1991-01-01

    Trace driven cache simulation is central to computer design. A trace is a very long sequence of reference lines from main memory. At the t(exp th) instant, reference x sub t is hashed into a set of cache locations, the contents of which are then compared with x sub t. If at the t sup th instant x sub t is not present in the cache, then it is said to be a miss, and is loaded into the cache set, possibly forcing the replacement of some other memory line, and making x sub t present for the (t+1) sup st instant. The problem of parallel simulation of a subtrace of N references directed to a C line cache set is considered, with the aim of determining which references are misses and related statistics. A simulation method is presented for the Least Recently Used (LRU) policy, which regradless of the set size C runs in time O(log N) using N processors on the exclusive read, exclusive write (EREW) parallel model. A simpler LRU simulation algorithm is given that runs in O(C log N) time using N/log N processors. Timings are presented of the second algorithm's implementation on the MasPar MP-1, a machine with 16384 processors. A broad class of reference based line replacement policies are considered, which includes LRU as well as the Least Frequently Used and Random replacement policies. A simulation method is presented for any such policy that on any trace of length N directed to a C line set runs in the O(C log N) time with high probability using N processors on the EREW model. The algorithms are simple, have very little space overhead, and are well suited for SIMD implementation.

  14. Petri Nets in Cryptographic Protocols

    DEFF Research Database (Denmark)

    Crazzolara, Federico; Winskel, Glynn

    2001-01-01

    A process language for security protocols is presented together with a semantics in terms of sets of events. The denotation of process is a set of events, and as each event specifies a set of pre and postconditions, this denotation can be viewed as a Petri net. By means of an example we illustrate...

  15. Cryptographic Aspects of Quantum Reading

    Directory of Open Access Journals (Sweden)

    Gaetana Spedalieri

    2015-04-01

    Full Text Available Besides achieving secure communication between two spatially-separated parties,another important issue in modern cryptography is related to secure communication intime, i.e., the possibility to confidentially store information on a memory for later retrieval.Here we explore this possibility in the setting of quantum reading, which exploits quantumentanglement to efficiently read data from a memory whereas classical strategies (e.g., basedon coherent states or their mixtures cannot retrieve any information. From this point ofview, the technique of quantum reading can provide a new form of technological security fordata storage.

  16. Modal Logics for Cryptographic Processes

    DEFF Research Database (Denmark)

    Frendrup, U.; Huttel, Hans; Jensen, N. J.

    2002-01-01

    We present three modal logics for the spi-calculus and show that they capture strong versions of the environment sensitive bisimulation introduced by Boreale et al. Our logics differ from conventional modal logics for process calculi in that they allow us to describe the knowledge of an attacker ...

  17. Mechanical Verification of Cryptographic Protocols

    Science.gov (United States)

    Cheng, Xiaochun; Ma, Xiaoqi; Huang, Scott C.-H.; Cheng, Maggie

    Information security is playing an increasingly important role in modern society, driven especially by the uptake of the Internet for information transfer. Large amount of information is transmitted everyday through the Internet, which is often the target of malicious attacks. In certain areas, this issue is vital. For example, military departments of governments often transmit a great amount of top-secret data, which, if divulged, could become a huge threat to the public and to national security. Even in our daily life, it is also necessary to protect information. Consider e-commerce systems as an example. No one is willing to purchase anything over the Internet before being assured that all their personal and financial information will always be kept secure and will never be leaked to any unauthorised person or organisation.

  18. Quantum Security of Cryptographic Primitives

    OpenAIRE

    Gagliardoni, Tommaso

    2017-01-01

    We call quantum security the area of IT security dealing with scenarios where one or more parties have access to quantum hardware. This encompasses both the fields of post-quantum cryptography (that is, traditional cryptography engineered to be resistant against quantum adversaries), and quantum cryptography (that is, security protocols designed to be natively run on a quantum infrastructure, such as quantum key distribution). Moreover, there exist also hybrid models, where traditional crypto...

  19. Pseudo-deterministic Algorithms

    OpenAIRE

    Goldwasser , Shafi

    2012-01-01

    International audience; In this talk we describe a new type of probabilistic algorithm which we call Bellagio Algorithms: a randomized algorithm which is guaranteed to run in expected polynomial time, and to produce a correct and unique solution with high probability. These algorithms are pseudo-deterministic: they can not be distinguished from deterministic algorithms in polynomial time by a probabilistic polynomial time observer with black box access to the algorithm. We show a necessary an...

  20. Combination of Rivest-Shamir-Adleman Algorithm and End of File Method for Data Security

    Science.gov (United States)

    Rachmawati, Dian; Amalia, Amalia; Elviwani

    2018-03-01

    Data security is one of the crucial issues in the delivery of information. One of the ways which used to secure the data is by encoding it into something else that is not comprehensible by human beings by using some crypto graphical techniques. The Rivest-Shamir-Adleman (RSA) cryptographic algorithm has been proven robust to secure messages. Since this algorithm uses two different keys (i.e., public key and private key) at the time of encryption and decryption, it is classified as asymmetric cryptography algorithm. Steganography is a method that is used to secure a message by inserting the bits of the message into a larger media such as an image. One of the known steganography methods is End of File (EoF). In this research, the cipher text resulted from the RSA algorithm is compiled into an array form and appended to the end of the image. The result of the EoF is the image which has a line with black gradations under it. This line contains the secret message. This combination of cryptography and steganography in securing the message is expected to increase the security of the message, since the message encryption technique (RSA) is mixed with the data hiding technique (EoF).

  1. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.

    Science.gov (United States)

    Vandersypen, L M; Steffen, M; Breyta, G; Yannoni, C S; Sherwood, M H; Chuang, I L

    The number of steps any classical computer requires in order to find the prime factors of an l-digit integer N increases exponentially with l, at least using algorithms known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes. Quantum computers, however, could factor integers in only polynomial time, using Shor's quantum factoring algorithm. Although important for the study of quantum computers, experimental demonstration of this algorithm has proved elusive. Here we report an implementation of the simplest instance of Shor's algorithm: factorization of N = 15 (whose prime factors are 3 and 5). We use seven spin-1/2 nuclei in a molecule as quantum bits, which can be manipulated with room temperature liquid-state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to systems containing many quantum bits, but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum computers. In particular, we present a simple, parameter-free but predictive model of decoherence effects in our system.

  2. Putting Wings on SPHINCS

    DEFF Research Database (Denmark)

    Kölbl, Stefan

    2018-01-01

    SPHINCS is a recently proposed stateless hash-based signature scheme and promising candidate for a post-quantum secure digital signature scheme. In this work we provide a comparison of the performance when instantiating SPHINCS with different cryptographic hash functions on both recent Intel...

  3. A Fast Approximate Algorithm for Mapping Long Reads to Large Reference Databases.

    Science.gov (United States)

    Jain, Chirag; Dilthey, Alexander; Koren, Sergey; Aluru, Srinivas; Phillippy, Adam M

    2018-04-30

    Emerging single-molecule sequencing technologies from Pacific Biosciences and Oxford Nanopore have revived interest in long-read mapping algorithms. Alignment-based seed-and-extend methods demonstrate good accuracy, but face limited scalability, while faster alignment-free methods typically trade decreased precision for efficiency. In this article, we combine a fast approximate read mapping algorithm based on minimizers with a novel MinHash identity estimation technique to achieve both scalability and precision. In contrast to prior methods, we develop a mathematical framework that defines the types of mapping targets we uncover, establish probabilistic estimates of p-value and sensitivity, and demonstrate tolerance for alignment error rates up to 20%. With this framework, our algorithm automatically adapts to different minimum length and identity requirements and provides both positional and identity estimates for each mapping reported. For mapping human PacBio reads to the hg38 reference, our method is 290 × faster than Burrows-Wheeler Aligner-MEM with a lower memory footprint and recall rate of 96%. We further demonstrate the scalability of our method by mapping noisy PacBio reads (each ≥5 kbp in length) to the complete NCBI RefSeq database containing 838 Gbp of sequence and >60,000 genomes.

  4. Hamiltonian Algorithm Sound Synthesis

    OpenAIRE

    大矢, 健一

    2013-01-01

    Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.

  5. Progressive geometric algorithms

    NARCIS (Netherlands)

    Alewijnse, S.P.A.; Bagautdinov, T.M.; de Berg, M.T.; Bouts, Q.W.; ten Brink, Alex P.; Buchin, K.A.; Westenberg, M.A.

    2015-01-01

    Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms

  6. Progressive geometric algorithms

    NARCIS (Netherlands)

    Alewijnse, S.P.A.; Bagautdinov, T.M.; Berg, de M.T.; Bouts, Q.W.; Brink, ten A.P.; Buchin, K.; Westenberg, M.A.

    2014-01-01

    Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms

  7. The Algorithmic Imaginary

    DEFF Research Database (Denmark)

    Bucher, Taina

    2017-01-01

    the notion of the algorithmic imaginary. It is argued that the algorithmic imaginary – ways of thinking about what algorithms are, what they should be and how they function – is not just productive of different moods and sensations but plays a generative role in moulding the Facebook algorithm itself...... of algorithms affect people's use of these platforms, if at all? To help answer these questions, this article examines people's personal stories about the Facebook algorithm through tweets and interviews with 25 ordinary users. To understand the spaces where people and algorithms meet, this article develops...

  8. The BR eigenvalue algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Geist, G.A. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.; Howell, G.W. [Florida Inst. of Tech., Melbourne, FL (United States). Dept. of Applied Mathematics; Watkins, D.S. [Washington State Univ., Pullman, WA (United States). Dept. of Pure and Applied Mathematics

    1997-11-01

    The BR algorithm, a new method for calculating the eigenvalues of an upper Hessenberg matrix, is introduced. It is a bulge-chasing algorithm like the QR algorithm, but, unlike the QR algorithm, it is well adapted to computing the eigenvalues of the narrowband, nearly tridiagonal matrices generated by the look-ahead Lanczos process. This paper describes the BR algorithm and gives numerical evidence that it works well in conjunction with the Lanczos process. On the biggest problems run so far, the BR algorithm beats the QR algorithm by a factor of 30--60 in computing time and a factor of over 100 in matrix storage space.

  9. Algorithmically specialized parallel computers

    CERN Document Server

    Snyder, Lawrence; Gannon, Dennis B

    1985-01-01

    Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster

  10. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks.

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting

    2015-06-26

    Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.

  11. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sandeep Pirbhulal

    2015-06-01

    Full Text Available Body Sensor Network (BSN is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG, Photoplethysmography (PPG, Electrocardiogram (ECG, etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA, Data Encryption Standard (DES and Rivest Shamir Adleman (RSA. Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption.

  12. An Efficient Biometric-Based Algorithm Using Heart Rate Variability for Securing Body Sensor Networks

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; Mukhopadhyay, Subhas Chandra; Li, Chunyue; Wang, Yumei; Li, Guanglin; Wu, Wanqing; Zhang, Yuan-Ting

    2015-01-01

    Body Sensor Network (BSN) is a network of several associated sensor nodes on, inside or around the human body to monitor vital signals, such as, Electroencephalogram (EEG), Photoplethysmography (PPG), Electrocardiogram (ECG), etc. Each sensor node in BSN delivers major information; therefore, it is very significant to provide data confidentiality and security. All existing approaches to secure BSN are based on complex cryptographic key generation procedures, which not only demands high resource utilization and computation time, but also consumes large amount of energy, power and memory during data transmission. However, it is indispensable to put forward energy efficient and computationally less complex authentication technique for BSN. In this paper, a novel biometric-based algorithm is proposed, which utilizes Heart Rate Variability (HRV) for simple key generation process to secure BSN. Our proposed algorithm is compared with three data authentication techniques, namely Physiological Signal based Key Agreement (PSKA), Data Encryption Standard (DES) and Rivest Shamir Adleman (RSA). Simulation is performed in Matlab and results suggest that proposed algorithm is quite efficient in terms of transmission time utilization, average remaining energy and total power consumption. PMID:26131666

  13. Quantum Computation and Algorithms

    International Nuclear Information System (INIS)

    Biham, O.; Biron, D.; Biham, E.; Grassi, M.; Lidar, D.A.

    1999-01-01

    It is now firmly established that quantum algorithms provide a substantial speedup over classical algorithms for a variety of problems, including the factorization of large numbers and the search for a marked element in an unsorted database. In this talk I will review the principles of quantum algorithms, the basic quantum gates and their operation. The combination of superposition and interference, that makes these algorithms efficient, will be discussed. In particular, Grover's search algorithm will be presented as an example. I will show that the time evolution of the amplitudes in Grover's algorithm can be found exactly using recursion equations, for any initial amplitude distribution

  14. Fermion cluster algorithms

    International Nuclear Information System (INIS)

    Chandrasekharan, Shailesh

    2000-01-01

    Cluster algorithms have been recently used to eliminate sign problems that plague Monte-Carlo methods in a variety of systems. In particular such algorithms can also be used to solve sign problems associated with the permutation of fermion world lines. This solution leads to the possibility of designing fermion cluster algorithms in certain cases. Using the example of free non-relativistic fermions we discuss the ideas underlying the algorithm

  15. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  16. A verified LLL algorithm

    NARCIS (Netherlands)

    Divasón, Jose; Joosten, Sebastiaan; Thiemann, René; Yamada, Akihisa

    2018-01-01

    The Lenstra-Lenstra-Lovász basis reduction algorithm, also known as LLL algorithm, is an algorithm to find a basis with short, nearly orthogonal vectors of an integer lattice. Thereby, it can also be seen as an approximation to solve the shortest vector problem (SVP), which is an NP-hard problem,

  17. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  18. VISUALIZATION OF PAGERANK ALGORITHM

    OpenAIRE

    Perhaj, Ervin

    2013-01-01

    The goal of the thesis is to develop a web application that help users understand the functioning of the PageRank algorithm. The thesis consists of two parts. First we develop an algorithm to calculate PageRank values of web pages. The input of algorithm is a list of web pages and links between them. The user enters the list through the web interface. From the data the algorithm calculates PageRank value for each page. The algorithm repeats the process, until the difference of PageRank va...

  19. Parallel sorting algorithms

    CERN Document Server

    Akl, Selim G

    1985-01-01

    Parallel Sorting Algorithms explains how to use parallel algorithms to sort a sequence of items on a variety of parallel computers. The book reviews the sorting problem, the parallel models of computation, parallel algorithms, and the lower bounds on the parallel sorting problems. The text also presents twenty different algorithms, such as linear arrays, mesh-connected computers, cube-connected computers. Another example where algorithm can be applied is on the shared-memory SIMD (single instruction stream multiple data stream) computers in which the whole sequence to be sorted can fit in the

  20. Modified Clipped LMS Algorithm

    Directory of Open Access Journals (Sweden)

    Lotfizad Mojtaba

    2005-01-01

    Full Text Available Abstract A new algorithm is proposed for updating the weights of an adaptive filter. The proposed algorithm is a modification of an existing method, namely, the clipped LMS, and uses a three-level quantization ( scheme that involves the threshold clipping of the input signals in the filter weight update formula. Mathematical analysis shows the convergence of the filter weights to the optimum Wiener filter weights. Also, it can be proved that the proposed modified clipped LMS (MCLMS algorithm has better tracking than the LMS algorithm. In addition, this algorithm has reduced computational complexity relative to the unmodified one. By using a suitable threshold, it is possible to increase the tracking capability of the MCLMS algorithm compared to the LMS algorithm, but this causes slower convergence. Computer simulations confirm the mathematical analysis presented.

  1. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  2. Maximize Minimum Utility Function of Fractional Cloud Computing System Based on Search Algorithm Utilizing the Mittag-Leffler Sum

    Directory of Open Access Journals (Sweden)

    Rabha W. Ibrahim

    2018-01-01

    Full Text Available The maximum min utility function (MMUF problem is an important representative of a large class of cloud computing systems (CCS. Having numerous applications in practice, especially in economy and industry. This paper introduces an effective solution-based search (SBS algorithm for solving the problem MMUF. First, we suggest a new formula of the utility function in term of the capacity of the cloud. We formulate the capacity in CCS, by using a fractional diffeo-integral equation. This equation usually describes the flow of CCS. The new formula of the utility function is modified recent active utility functions. The suggested technique first creates a high-quality initial solution by eliminating the less promising components, and then develops the quality of the achieved solution by the summation search solution (SSS. This method is considered by the Mittag-Leffler sum as hash functions to determine the position of the agent. Experimental results commonly utilized in the literature demonstrate that the proposed algorithm competes approvingly with the state-of-the-art algorithms both in terms of solution quality and computational efficiency.

  3. Introduction to Evolutionary Algorithms

    CERN Document Server

    Yu, Xinjie

    2010-01-01

    Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti

  4. Recursive forgetting algorithms

    DEFF Research Database (Denmark)

    Parkum, Jens; Poulsen, Niels Kjølstad; Holst, Jan

    1992-01-01

    In the first part of the paper, a general forgetting algorithm is formulated and analysed. It contains most existing forgetting schemes as special cases. Conditions are given ensuring that the basic convergence properties will hold. In the second part of the paper, the results are applied...... to a specific algorithm with selective forgetting. Here, the forgetting is non-uniform in time and space. The theoretical analysis is supported by a simulation example demonstrating the practical performance of this algorithm...

  5. Explaining algorithms using metaphors

    CERN Document Server

    Forišek, Michal

    2013-01-01

    There is a significant difference between designing a new algorithm, proving its correctness, and teaching it to an audience. When teaching algorithms, the teacher's main goal should be to convey the underlying ideas and to help the students form correct mental models related to the algorithm. This process can often be facilitated by using suitable metaphors. This work provides a set of novel metaphors identified and developed as suitable tools for teaching many of the 'classic textbook' algorithms taught in undergraduate courses worldwide. Each chapter provides exercises and didactic notes fo

  6. Algorithms in Algebraic Geometry

    CERN Document Server

    Dickenstein, Alicia; Sommese, Andrew J

    2008-01-01

    In the last decade, there has been a burgeoning of activity in the design and implementation of algorithms for algebraic geometric computation. Some of these algorithms were originally designed for abstract algebraic geometry, but now are of interest for use in applications and some of these algorithms were originally designed for applications, but now are of interest for use in abstract algebraic geometry. The workshop on Algorithms in Algebraic Geometry that was held in the framework of the IMA Annual Program Year in Applications of Algebraic Geometry by the Institute for Mathematics and Its

  7. Shadow algorithms data miner

    CERN Document Server

    Woo, Andrew

    2012-01-01

    Digital shadow generation continues to be an important aspect of visualization and visual effects in film, games, simulations, and scientific applications. This resource offers a thorough picture of the motivations, complexities, and categorized algorithms available to generate digital shadows. From general fundamentals to specific applications, it addresses shadow algorithms and how to manage huge data sets from a shadow perspective. The book also examines the use of shadow algorithms in industrial applications, in terms of what algorithms are used and what software is applicable.

  8. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  9. Quick fuzzy backpropagation algorithm.

    Science.gov (United States)

    Nikov, A; Stoeva, S

    2001-03-01

    A modification of the fuzzy backpropagation (FBP) algorithm called QuickFBP algorithm is proposed, where the computation of the net function is significantly quicker. It is proved that the FBP algorithm is of exponential time complexity, while the QuickFBP algorithm is of polynomial time complexity. Convergence conditions of the QuickFBP, resp. the FBP algorithm are defined and proved for: (1) single output neural networks in case of training patterns with different targets; and (2) multiple output neural networks in case of training patterns with equivalued target vector. They support the automation of the weights training process (quasi-unsupervised learning) establishing the target value(s) depending on the network's input values. In these cases the simulation results confirm the convergence of both algorithms. An example with a large-sized neural network illustrates the significantly greater training speed of the QuickFBP rather than the FBP algorithm. The adaptation of an interactive web system to users on the basis of the QuickFBP algorithm is presented. Since the QuickFBP algorithm ensures quasi-unsupervised learning, this implies its broad applicability in areas of adaptive and adaptable interactive systems, data mining, etc. applications.

  10. Portfolios of quantum algorithms.

    Science.gov (United States)

    Maurer, S M; Hogg, T; Huberman, B A

    2001-12-17

    Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can find the solution of hard problems only probabilistically. Thus the efficiency of the algorithms has to be characterized by both the expected time to completion and the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-satisfiability.

  11. Algorithm 426 : Merge sort algorithm [M1

    NARCIS (Netherlands)

    Bron, C.

    1972-01-01

    Sorting by means of a two-way merge has a reputation of requiring a clerically complicated and cumbersome program. This ALGOL 60 procedure demonstrates that, using recursion, an elegant and efficient algorithm can be designed, the correctness of which is easily proved [2]. Sorting n objects gives

  12. Composite Differential Search Algorithm

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2014-01-01

    Full Text Available Differential search algorithm (DS is a relatively new evolutionary algorithm inspired by the Brownian-like random-walk movement which is used by an organism to migrate. It has been verified to be more effective than ABC, JDE, JADE, SADE, EPSDE, GSA, PSO2011, and CMA-ES. In this paper, we propose four improved solution search algorithms, namely “DS/rand/1,” “DS/rand/2,” “DS/current to rand/1,” and “DS/current to rand/2” to search the new space and enhance the convergence rate for the global optimization problem. In order to verify the performance of different solution search methods, 23 benchmark functions are employed. Experimental results indicate that the proposed algorithm performs better than, or at least comparable to, the original algorithm when considering the quality of the solution obtained. However, these schemes cannot still achieve the best solution for all functions. In order to further enhance the convergence rate and the diversity of the algorithm, a composite differential search algorithm (CDS is proposed in this paper. This new algorithm combines three new proposed search schemes including “DS/rand/1,” “DS/rand/2,” and “DS/current to rand/1” with three control parameters using a random method to generate the offspring. Experiment results show that CDS has a faster convergence rate and better search ability based on the 23 benchmark functions.

  13. Algorithms and Their Explanations

    NARCIS (Netherlands)

    Benini, M.; Gobbo, F.; Beckmann, A.; Csuhaj-Varjú, E.; Meer, K.

    2014-01-01

    By analysing the explanation of the classical heapsort algorithm via the method of levels of abstraction mainly due to Floridi, we give a concrete and precise example of how to deal with algorithmic knowledge. To do so, we introduce a concept already implicit in the method, the ‘gradient of

  14. Finite lattice extrapolation algorithms

    International Nuclear Information System (INIS)

    Henkel, M.; Schuetz, G.

    1987-08-01

    Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)

  15. Recursive automatic classification algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, E V; Dorofeyuk, A A

    1982-03-01

    A variational statement of the automatic classification problem is given. The dependence of the form of the optimal partition surface on the form of the classification objective functional is investigated. A recursive algorithm is proposed for maximising a functional of reasonably general form. The convergence problem is analysed in connection with the proposed algorithm. 8 references.

  16. Graph Colouring Algorithms

    DEFF Research Database (Denmark)

    Husfeldt, Thore

    2015-01-01

    This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...

  17. 8. Algorithm Design Techniques

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Algorithms - Algorithm Design Techniques. R K Shyamasundar. Series Article Volume 2 ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  18. Geometric approximation algorithms

    CERN Document Server

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  19. Group leaders optimization algorithm

    Science.gov (United States)

    Daskin, Anmer; Kais, Sabre

    2011-03-01

    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multi-dimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N 2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for a two-qubit Grover search algorithm which is a quantum algorithm providing quadratic speedup over the classical counterpart.

  20. Fast geometric algorithms

    International Nuclear Information System (INIS)

    Noga, M.T.

    1984-01-01

    This thesis addresses a number of important problems that fall within the framework of the new discipline of Computational Geometry. The list of topics covered includes sorting and selection, convex hull algorithms, the L 1 hull, determination of the minimum encasing rectangle of a set of points, the Euclidean and L 1 diameter of a set of points, the metric traveling salesman problem, and finding the superrange of star-shaped and monotype polygons. The main theme of all the work was to develop a set of very fast state-of-the-art algorithms that supersede any rivals in terms of speed and ease of implementation. In some cases existing algorithms were refined; for others new techniques were developed that add to the present database of fast adaptive geometric algorithms. What emerges is a collection of techniques that is successful at merging modern tools developed in analysis of algorithms with those of classical geometry

  1. Totally parallel multilevel algorithms

    Science.gov (United States)

    Frederickson, Paul O.

    1988-01-01

    Four totally parallel algorithms for the solution of a sparse linear system have common characteristics which become quite apparent when they are implemented on a highly parallel hypercube such as the CM2. These four algorithms are Parallel Superconvergent Multigrid (PSMG) of Frederickson and McBryan, Robust Multigrid (RMG) of Hackbusch, the FFT based Spectral Algorithm, and Parallel Cyclic Reduction. In fact, all four can be formulated as particular cases of the same totally parallel multilevel algorithm, which are referred to as TPMA. In certain cases the spectral radius of TPMA is zero, and it is recognized to be a direct algorithm. In many other cases the spectral radius, although not zero, is small enough that a single iteration per timestep keeps the local error within the required tolerance.

  2. Governance by algorithms

    Directory of Open Access Journals (Sweden)

    Francesca Musiani

    2013-08-01

    Full Text Available Algorithms are increasingly often cited as one of the fundamental shaping devices of our daily, immersed-in-information existence. Their importance is acknowledged, their performance scrutinised in numerous contexts. Yet, a lot of what constitutes 'algorithms' beyond their broad definition as “encoded procedures for transforming input data into a desired output, based on specified calculations” (Gillespie, 2013 is often taken for granted. This article seeks to contribute to the discussion about 'what algorithms do' and in which ways they are artefacts of governance, providing two examples drawing from the internet and ICT realm: search engine queries and e-commerce websites’ recommendations to customers. The question of the relationship between algorithms and rules is likely to occupy an increasingly central role in the study and the practice of internet governance, in terms of both institutions’ regulation of algorithms, and algorithms’ regulation of our society.

  3. Where genetic algorithms excel.

    Science.gov (United States)

    Baum, E B; Boneh, D; Garrett, C

    2001-01-01

    We analyze the performance of a genetic algorithm (GA) we call Culling, and a variety of other algorithms, on a problem we refer to as the Additive Search Problem (ASP). We show that the problem of learning the Ising perceptron is reducible to a noisy version of ASP. Noisy ASP is the first problem we are aware of where a genetic-type algorithm bests all known competitors. We generalize ASP to k-ASP to study whether GAs will achieve "implicit parallelism" in a problem with many more schemata. GAs fail to achieve this implicit parallelism, but we describe an algorithm we call Explicitly Parallel Search that succeeds. We also compute the optimal culling point for selective breeding, which turns out to be independent of the fitness function or the population distribution. We also analyze a mean field theoretic algorithm performing similarly to Culling on many problems. These results provide insight into when and how GAs can beat competing methods.

  4. Network-Oblivious Algorithms

    DEFF Research Database (Denmark)

    Bilardi, Gianfranco; Pietracaprina, Andrea; Pucci, Geppino

    2016-01-01

    A framework is proposed for the design and analysis of network-oblivious algorithms, namely algorithms that can run unchanged, yet efficiently, on a variety of machines characterized by different degrees of parallelism and communication capabilities. The framework prescribes that a network......-oblivious algorithm be specified on a parallel model of computation where the only parameter is the problem’s input size, and then evaluated on a model with two parameters, capturing parallelism granularity and communication latency. It is shown that for a wide class of network-oblivious algorithms, optimality...... of cache hierarchies, to the realm of parallel computation. Its effectiveness is illustrated by providing optimal network-oblivious algorithms for a number of key problems. Some limitations of the oblivious approach are also discussed....

  5. Fast parallel molecular algorithms for DNA-based computation: solving the elliptic curve discrete logarithm problem over GF2.

    Science.gov (United States)

    Li, Kenli; Zou, Shuting; Xv, Jin

    2008-01-01

    Elliptic curve cryptographic algorithms convert input data to unrecognizable encryption and the unrecognizable data back again into its original decrypted form. The security of this form of encryption hinges on the enormous difficulty that is required to solve the elliptic curve discrete logarithm problem (ECDLP), especially over GF(2(n)), n in Z+. This paper describes an effective method to find solutions to the ECDLP by means of a molecular computer. We propose that this research accomplishment would represent a breakthrough for applied biological computation and this paper demonstrates that in principle this is possible. Three DNA-based algorithms: a parallel adder, a parallel multiplier, and a parallel inverse over GF(2(n)) are described. The biological operation time of all of these algorithms is polynomial with respect to n. Considering this analysis, cryptography using a public key might be less secure. In this respect, a principal contribution of this paper is to provide enhanced evidence of the potential of molecular computing to tackle such ambitious computations.

  6. Algorithms in Singular

    Directory of Open Access Journals (Sweden)

    Hans Schonemann

    1996-12-01

    Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].

  7. A New Modified Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Medha Gupta

    2016-07-01

    Full Text Available Nature inspired meta-heuristic algorithms studies the emergent collective intelligence of groups of simple agents. Firefly Algorithm is one of the new such swarm-based metaheuristic algorithm inspired by the flashing behavior of fireflies. The algorithm was first proposed in 2008 and since then has been successfully used for solving various optimization problems. In this work, we intend to propose a new modified version of Firefly algorithm (MoFA and later its performance is compared with the standard firefly algorithm along with various other meta-heuristic algorithms. Numerical studies and results demonstrate that the proposed algorithm is superior to existing algorithms.

  8. Magnet sorting algorithms

    International Nuclear Information System (INIS)

    Dinev, D.

    1996-01-01

    Several new algorithms for sorting of dipole and/or quadrupole magnets in synchrotrons and storage rings are described. The algorithms make use of a combinatorial approach to the problem and belong to the class of random search algorithms. They use an appropriate metrization of the state space. The phase-space distortion (smear) is used as a goal function. Computational experiments for the case of the JINR-Dubna superconducting heavy ion synchrotron NUCLOTRON have shown a significant reduction of the phase-space distortion after the magnet sorting. (orig.)

  9. Compact data structure and scalable algorithms for the sparse grid technique

    KAUST Repository

    Murarasu, Alin

    2011-01-01

    The sparse grid discretization technique enables a compressed representation of higher-dimensional functions. In its original form, it relies heavily on recursion and complex data structures, thus being far from well-suited for GPUs. In this paper, we describe optimizations that enable us to implement compression and decompression, the crucial sparse grid algorithms for our application, on Nvidia GPUs. The main idea consists of a bijective mapping between the set of points in a multi-dimensional sparse grid and a set of consecutive natural numbers. The resulting data structure consumes a minimum amount of memory. For a 10-dimensional sparse grid with approximately 127 million points, it consumes up to 30 times less memory than trees or hash tables which are typically used. Compared to a sequential CPU implementation, the speedups achieved on GPU are up to 17 for compression and up to 70 for decompression, respectively. We show that the optimizations are also applicable to multicore CPUs. Copyright © 2011 ACM.

  10. Algorithms for parallel computers

    International Nuclear Information System (INIS)

    Churchhouse, R.F.

    1985-01-01

    Until relatively recently almost all the algorithms for use on computers had been designed on the (usually unstated) assumption that they were to be run on single processor, serial machines. With the introduction of vector processors, array processors and interconnected systems of mainframes, minis and micros, however, various forms of parallelism have become available. The advantage of parallelism is that it offers increased overall processing speed but it also raises some fundamental questions, including: (i) which, if any, of the existing 'serial' algorithms can be adapted for use in the parallel mode. (ii) How close to optimal can such adapted algorithms be and, where relevant, what are the convergence criteria. (iii) How can we design new algorithms specifically for parallel systems. (iv) For multi-processor systems how can we handle the software aspects of the interprocessor communications. Aspects of these questions illustrated by examples are considered in these lectures. (orig.)

  11. Fluid structure coupling algorithm

    International Nuclear Information System (INIS)

    McMaster, W.H.; Gong, E.Y.; Landram, C.S.; Quinones, D.F.

    1980-01-01

    A fluid-structure-interaction algorithm has been developed and incorporated into the two-dimensional code PELE-IC. This code combines an Eulerian incompressible fluid algorithm with a Lagrangian finite element shell algorithm and incorporates the treatment of complex free surfaces. The fluid structure and coupling algorithms have been verified by the calculation of solved problems from the literature and from air and steam blowdown experiments. The code has been used to calculate loads and structural response from air blowdown and the oscillatory condensation of steam bubbles in water suppression pools typical of boiling water reactors. The techniques developed have been extended to three dimensions and implemented in the computer code PELE-3D

  12. Algorithmic phase diagrams

    Science.gov (United States)

    Hockney, Roger

    1987-01-01

    Algorithmic phase diagrams are a neat and compact representation of the results of comparing the execution time of several algorithms for the solution of the same problem. As an example, the recent results are shown of Gannon and Van Rosendale on the solution of multiple tridiagonal systems of equations in the form of such diagrams. The act of preparing these diagrams has revealed an unexpectedly complex relationship between the best algorithm and the number and size of the tridiagonal systems, which was not evident from the algebraic formulae in the original paper. Even so, for a particular computer, one diagram suffices to predict the best algorithm for all problems that are likely to be encountered the prediction being read directly from the diagram without complex calculation.

  13. Diagnostic Algorithm Benchmarking

    Science.gov (United States)

    Poll, Scott

    2011-01-01

    A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.

  14. Inclusive Flavour Tagging Algorithm

    International Nuclear Information System (INIS)

    Likhomanenko, Tatiana; Derkach, Denis; Rogozhnikov, Alex

    2016-01-01

    Identifying the flavour of neutral B mesons production is one of the most important components needed in the study of time-dependent CP violation. The harsh environment of the Large Hadron Collider makes it particularly hard to succeed in this task. We present an inclusive flavour-tagging algorithm as an upgrade of the algorithms currently used by the LHCb experiment. Specifically, a probabilistic model which efficiently combines information from reconstructed vertices and tracks using machine learning is proposed. The algorithm does not use information about underlying physics process. It reduces the dependence on the performance of lower level identification capacities and thus increases the overall performance. The proposed inclusive flavour-tagging algorithm is applicable to tag the flavour of B mesons in any proton-proton experiment. (paper)

  15. Unsupervised learning algorithms

    CERN Document Server

    Aydin, Kemal

    2016-01-01

    This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering,...

  16. Vector Network Coding Algorithms

    OpenAIRE

    Ebrahimi, Javad; Fragouli, Christina

    2010-01-01

    We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...

  17. Optimization algorithms and applications

    CERN Document Server

    Arora, Rajesh Kumar

    2015-01-01

    Choose the Correct Solution Method for Your Optimization ProblemOptimization: Algorithms and Applications presents a variety of solution techniques for optimization problems, emphasizing concepts rather than rigorous mathematical details and proofs. The book covers both gradient and stochastic methods as solution techniques for unconstrained and constrained optimization problems. It discusses the conjugate gradient method, Broyden-Fletcher-Goldfarb-Shanno algorithm, Powell method, penalty function, augmented Lagrange multiplier method, sequential quadratic programming, method of feasible direc

  18. Classification of Encrypted Web Traffic Using Machine Learning Algorithms

    Science.gov (United States)

    2013-06-01

    DPI devices to block certain websites; Yu, Cong, Chen, and Lei [52] suggest hashing the domains of pornographic and illegal websites so ISPs can...Zhenming Lei. “Blocking pornographic , illegal websites by internet host domain using FPGA and Bloom Filter”. Network Infrastructure and Digital Content

  19. From Genetics to Genetic Algorithms

    Indian Academy of Sciences (India)

    Genetic algorithms (GAs) are computational optimisation schemes with an ... The algorithms solve optimisation problems ..... Genetic Algorithms in Search, Optimisation and Machine. Learning, Addison-Wesley Publishing Company, Inc. 1989.

  20. Algorithmic Principles of Mathematical Programming

    NARCIS (Netherlands)

    Faigle, Ulrich; Kern, Walter; Still, Georg

    2002-01-01

    Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear

  1. RFID Location Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Zi Min

    2016-01-01

    Full Text Available With the development of social services, people’s living standards improve further requirements, there is an urgent need for a way to adapt to the complex situation of the new positioning technology. In recent years, RFID technology have a wide range of applications in all aspects of life and production, such as logistics tracking, car alarm, security and other items. The use of RFID technology to locate, it is a new direction in the eyes of the various research institutions and scholars. RFID positioning technology system stability, the error is small and low-cost advantages of its location algorithm is the focus of this study.This article analyzes the layers of RFID technology targeting methods and algorithms. First, RFID common several basic methods are introduced; Secondly, higher accuracy to political network location method; Finally, LANDMARC algorithm will be described. Through this it can be seen that advanced and efficient algorithms play an important role in increasing RFID positioning accuracy aspects.Finally, the algorithm of RFID location technology are summarized, pointing out the deficiencies in the algorithm, and put forward a follow-up study of the requirements, the vision of a better future RFID positioning technology.

  2. Modified Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Surafel Luleseged Tilahun

    2012-01-01

    Full Text Available Firefly algorithm is one of the new metaheuristic algorithms for optimization problems. The algorithm is inspired by the flashing behavior of fireflies. In the algorithm, randomly generated solutions will be considered as fireflies, and brightness is assigned depending on their performance on the objective function. One of the rules used to construct the algorithm is, a firefly will be attracted to a brighter firefly, and if there is no brighter firefly, it will move randomly. In this paper we modify this random movement of the brighter firefly by generating random directions in order to determine the best direction in which the brightness increases. If such a direction is not generated, it will remain in its current position. Furthermore the assignment of attractiveness is modified in such a way that the effect of the objective function is magnified. From the simulation result it is shown that the modified firefly algorithm performs better than the standard one in finding the best solution with smaller CPU time.

  3. Improved multivariate polynomial factoring algorithm

    International Nuclear Information System (INIS)

    Wang, P.S.

    1978-01-01

    A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient problem, the bad-zero problem and the occurrence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorithm named EEZ is described. Bascially it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store then the original algorithm. Machine examples with comparative timing are included

  4. A Parallel Butterfly Algorithm

    KAUST Repository

    Poulson, Jack; Demanet, Laurent; Maxwell, Nicholas; Ying, Lexing

    2014-01-01

    The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.

  5. A Parallel Butterfly Algorithm

    KAUST Repository

    Poulson, Jack

    2014-02-04

    The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform (Equation Presented.) at large numbers of target points when the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of α and per-process inverse bandwidth of β, executes in at most (Equation Presented.) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively. © 2014 Society for Industrial and Applied Mathematics.

  6. Agency and Algorithms

    Directory of Open Access Journals (Sweden)

    Hanns Holger Rutz

    2016-11-01

    Full Text Available Although the concept of algorithms has been established a long time ago, their current topicality indicates a shift in the discourse. Classical definitions based on logic seem to be inadequate to describe their aesthetic capabilities. New approaches stress their involvement in material practices as well as their incompleteness. Algorithmic aesthetics can no longer be tied to the static analysis of programs, but must take into account the dynamic and experimental nature of coding practices. It is suggested that the aesthetic objects thus produced articulate something that could be called algorithmicity or the space of algorithmic agency. This is the space or the medium – following Luhmann’s form/medium distinction – where human and machine undergo mutual incursions. In the resulting coupled “extimate” writing process, human initiative and algorithmic speculation cannot be clearly divided out any longer. An observation is attempted of defining aspects of such a medium by drawing a trajectory across a number of sound pieces. The operation of exchange between form and medium I call reconfiguration and it is indicated by this trajectory. 

  7. Algebraic dynamics algorithm: Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG ShunJin; ZHANG Hua

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  8. Algebraic dynamics algorithm:Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  9. Detection of algorithmic trading

    Science.gov (United States)

    Bogoev, Dimitar; Karam, Arzé

    2017-10-01

    We develop a new approach to reflect the behavior of algorithmic traders. Specifically, we provide an analytical and tractable way to infer patterns of quote volatility and price momentum consistent with different types of strategies employed by algorithmic traders, and we propose two ratios to quantify these patterns. Quote volatility ratio is based on the rate of oscillation of the best ask and best bid quotes over an extremely short period of time; whereas price momentum ratio is based on identifying patterns of rapid upward or downward movement in prices. The two ratios are evaluated across several asset classes. We further run a two-stage Artificial Neural Network experiment on the quote volatility ratio; the first stage is used to detect the quote volatility patterns resulting from algorithmic activity, while the second is used to validate the quality of signal detection provided by our measure.

  10. Handbook of Memetic Algorithms

    CERN Document Server

    Cotta, Carlos; Moscato, Pablo

    2012-01-01

    Memetic Algorithms (MAs) are computational intelligence structures combining multiple and various operators in order to address optimization problems.  The combination and interaction amongst operators evolves and promotes the diffusion of the most successful units and generates an algorithmic behavior which can handle complex objective functions and hard fitness landscapes.   “Handbook of Memetic Algorithms” organizes, in a structured way, all the the most important results in the field of MAs since their earliest definition until now.  A broad review including various algorithmic solutions as well as successful applications is included in this book. Each class of optimization problems, such as constrained optimization, multi-objective optimization, continuous vs combinatorial problems, uncertainties, are analysed separately and, for each problem,  memetic recipes for tackling the difficulties are given with some successful examples. Although this book contains chapters written by multiple authors, ...

  11. Algorithms in invariant theory

    CERN Document Server

    Sturmfels, Bernd

    2008-01-01

    J. Kung and G.-C. Rota, in their 1984 paper, write: "Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics". The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.

  12. The Retina Algorithm

    CERN Multimedia

    CERN. Geneva; PUNZI, Giovanni

    2015-01-01

    Charge particle reconstruction is one of the most demanding computational tasks found in HEP, and it becomes increasingly important to perform it in real time. We envision that HEP would greatly benefit from achieving a long-term goal of making track reconstruction happen transparently as part of the detector readout ("detector-embedded tracking"). We describe here a track-reconstruction approach based on a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature ('RETINA algorithm'). It turns out that high-quality tracking in large HEP detectors is possible with very small latencies, when this algorithm is implemented in specialized processors, based on current state-of-the-art, high-speed/high-bandwidth digital devices.

  13. Vulnerability of advanced encryption standard algorithm to differential power analysis attacks implemented on ATmega-128 microcontroller

    CSIR Research Space (South Africa)

    Mpalane, Kealeboga

    2016-09-01

    Full Text Available A wide variety of cryptographic embedded devices including smartcards, ASICs and FPGAs must be secure against breaking in. However, these devices are vulnerable to side channel attacks. A side channel attack uses physical attributes...

  14. Named Entity Linking Algorithm

    Directory of Open Access Journals (Sweden)

    M. F. Panteleev

    2017-01-01

    Full Text Available In the tasks of processing text in natural language, Named Entity Linking (NEL represents the task to define and link some entity, which is found in the text, with some entity in the knowledge base (for example, Dbpedia. Currently, there is a diversity of approaches to solve this problem, but two main classes can be identified: graph-based approaches and machine learning-based ones. Graph and Machine Learning approaches-based algorithm is proposed accordingly to the stated assumptions about the interrelations of named entities in a sentence and in general.In the case of graph-based approaches, it is necessary to solve the problem of identifying an optimal set of the related entities according to some metric that characterizes the distance between these entities in a graph built on some knowledge base. Due to limitations in processing power, to solve this task directly is impossible. Therefore, its modification is proposed. Based on the algorithms of machine learning, an independent solution cannot be built due to small volumes of training datasets relevant to NEL task. However, their use can contribute to improving the quality of the algorithm. The adaptation of the Latent Dirichlet Allocation model is proposed in order to obtain a measure of the compatibility of attributes of various entities encountered in one context.The efficiency of the proposed algorithm was experimentally tested. A test dataset was independently generated. On its basis the performance of the model was compared using the proposed algorithm with the open source product DBpedia Spotlight, which solves the NEL problem.The mockup, based on the proposed algorithm, showed a low speed as compared to DBpedia Spotlight. However, the fact that it has shown higher accuracy, stipulates the prospects for work in this direction.The main directions of development were proposed in order to increase the accuracy of the system and its productivity.

  15. Law and Order in Algorithmics

    NARCIS (Netherlands)

    Fokkinga, M.M.

    1992-01-01

    An algorithm is the input-output effect of a computer program; mathematically, the notion of algorithm comes close to the notion of function. Just as arithmetic is the theory and practice of calculating with numbers, so is ALGORITHMICS the theory and practice of calculating with algorithms. Just as

  16. A cluster algorithm for graphs

    NARCIS (Netherlands)

    S. van Dongen

    2000-01-01

    textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)

  17. Algorithms for Reinforcement Learning

    CERN Document Server

    Szepesvari, Csaba

    2010-01-01

    Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'

  18. Animation of planning algorithms

    OpenAIRE

    Sun, Fan

    2014-01-01

    Planning is the process of creating a sequence of steps/actions that will satisfy a goal of a problem. The partial order planning (POP) algorithm is one of Artificial Intelligence approach for problem planning. By learning G52PAS module, I find that it is difficult for students to understand this planning algorithm by just reading its pseudo code and doing some exercise in writing. Students cannot know how each actual step works clearly and might miss some steps because of their confusion. ...

  19. Secondary Vertex Finder Algorithm

    CERN Document Server

    Heer, Sebastian; The ATLAS collaboration

    2017-01-01

    If a jet originates from a b-quark, a b-hadron is formed during the fragmentation process. In its dominant decay modes, the b-hadron decays into a c-hadron via the electroweak interaction. Both b- and c-hadrons have lifetimes long enough, to travel a few millimetres before decaying. Thus displaced vertices from b- and subsequent c-hadron decays provide a strong signature for a b-jet. Reconstructing these secondary vertices (SV) and their properties is the aim of this algorithm. The performance of this algorithm is studied with tt̄ events, requiring at least one lepton, simulated at 13 TeV.

  20. Parallel Algorithms and Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-16

    This is a powerpoint presentation on parallel algorithms and patterns. A parallel algorithm is a well-defined, step-by-step computational procedure that emphasizes concurrency to solve a problem. Examples of problems include: Sorting, searching, optimization, matrix operations. A parallel pattern is a computational step in a sequence of independent, potentially concurrent operations that occurs in diverse scenarios with some frequency. Examples are: Reductions, prefix scans, ghost cell updates. We only touch on parallel patterns in this presentation. It really deserves its own detailed discussion which Gabe Rockefeller would like to develop.

  1. Randomized Filtering Algorithms

    DEFF Research Database (Denmark)

    Katriel, Irit; Van Hentenryck, Pascal

    2008-01-01

    of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed...... in the expected sense. The second scheme is a Las Vegas algorithm using filtering triggers: Its effectiveness is the same as enforcing are consistency after every domain event, while in the expected case it is faster by a factor of m/n, where n and m are, respectively, the number of nodes and edges...

  2. An Ordering Linear Unification Algorithm

    Institute of Scientific and Technical Information of China (English)

    胡运发

    1989-01-01

    In this paper,we present an ordering linear unification algorithm(OLU).A new idea on substituteion of the binding terms is introduced to the algorithm,which is able to overcome some drawbacks of other algorithms,e.g.,MM algorithm[1],RG1 and RG2 algorithms[2],Particularly,if we use the directed eyclie graphs,the algoritm needs not check the binding order,then the OLU algorithm can also be aplied to the infinite tree data struceture,and a higher efficiency can be expected.The paper focuses upon the discussion of OLU algorithm and a partial order structure with respect to the unification algorithm.This algorithm has been implemented in the GKD-PROLOG/VAX 780 interpreting system.Experimental results have shown that the algorithm is very simple and efficient.

  3. New Optimization Algorithms in Physics

    CERN Document Server

    Hartmann, Alexander K

    2004-01-01

    Many physicists are not aware of the fact that they can solve their problems by applying optimization algorithms. Since the number of such algorithms is steadily increasing, many new algorithms have not been presented comprehensively until now. This presentation of recently developed algorithms applied in physics, including demonstrations of how they work and related results, aims to encourage their application, and as such the algorithms selected cover concepts and methods from statistical physics to optimization problems emerging in theoretical computer science.

  4. A propositional CONEstrip algorithm

    NARCIS (Netherlands)

    E. Quaeghebeur (Erik); A. Laurent; O. Strauss; B. Bouchon-Meunier; R.R. Yager (Ronald)

    2014-01-01

    textabstractWe present a variant of the CONEstrip algorithm for checking whether the origin lies in a finitely generated convex cone that can be open, closed, or neither. This variant is designed to deal efficiently with problems where the rays defining the cone are specified as linear combinations

  5. Modular Regularization Algorithms

    DEFF Research Database (Denmark)

    Jacobsen, Michael

    2004-01-01

    The class of linear ill-posed problems is introduced along with a range of standard numerical tools and basic concepts from linear algebra, statistics and optimization. Known algorithms for solving linear inverse ill-posed problems are analyzed to determine how they can be decomposed into indepen...

  6. Efficient graph algorithms

    Indian Academy of Sciences (India)

    Shortest path problems. Road network on cities and we want to navigate between cities. . – p.8/30 ..... The rest of the talk... Computing connectivities between all pairs of vertices good algorithm wrt both space and time to compute the exact solution. . – p.15/30 ...

  7. The Copenhagen Triage Algorithm

    DEFF Research Database (Denmark)

    Hasselbalch, Rasmus Bo; Plesner, Louis Lind; Pries-Heje, Mia

    2016-01-01

    is non-inferior to an existing triage model in a prospective randomized trial. METHODS: The Copenhagen Triage Algorithm (CTA) study is a prospective two-center, cluster-randomized, cross-over, non-inferiority trial comparing CTA to the Danish Emergency Process Triage (DEPT). We include patients ≥16 years...

  8. de Casteljau's Algorithm Revisited

    DEFF Research Database (Denmark)

    Gravesen, Jens

    1998-01-01

    It is demonstrated how all the basic properties of Bezier curves can be derived swiftly and efficiently without any reference to the Bernstein polynomials and essentially with only geometric arguments. This is achieved by viewing one step in de Casteljau's algorithm as an operator (the de Casteljau...

  9. Algorithms in ambient intelligence

    NARCIS (Netherlands)

    Aarts, E.H.L.; Korst, J.H.M.; Verhaegh, W.F.J.; Weber, W.; Rabaey, J.M.; Aarts, E.

    2005-01-01

    We briefly review the concept of ambient intelligence and discuss its relation with the domain of intelligent algorithms. By means of four examples of ambient intelligent systems, we argue that new computing methods and quantification measures are needed to bridge the gap between the class of

  10. General Algorithm (High level)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. General Algorithm (High level). Iteratively. Use Tightness Property to remove points of P1,..,Pi. Use random sampling to get a Random Sample (of enough points) from the next largest cluster, Pi+1. Use the Random Sampling Procedure to approximate ci+1 using the ...

  11. Comprehensive eye evaluation algorithm

    Science.gov (United States)

    Agurto, C.; Nemeth, S.; Zamora, G.; Vahtel, M.; Soliz, P.; Barriga, S.

    2016-03-01

    In recent years, several research groups have developed automatic algorithms to detect diabetic retinopathy (DR) in individuals with diabetes (DM), using digital retinal images. Studies have indicated that diabetics have 1.5 times the annual risk of developing primary open angle glaucoma (POAG) as do people without DM. Moreover, DM patients have 1.8 times the risk for age-related macular degeneration (AMD). Although numerous investigators are developing automatic DR detection algorithms, there have been few successful efforts to create an automatic algorithm that can detect other ocular diseases, such as POAG and AMD. Consequently, our aim in the current study was to develop a comprehensive eye evaluation algorithm that not only detects DR in retinal images, but also automatically identifies glaucoma suspects and AMD by integrating other personal medical information with the retinal features. The proposed system is fully automatic and provides the likelihood of each of the three eye disease. The system was evaluated in two datasets of 104 and 88 diabetic cases. For each eye, we used two non-mydriatic digital color fundus photographs (macula and optic disc centered) and, when available, information about age, duration of diabetes, cataracts, hypertension, gender, and laboratory data. Our results show that the combination of multimodal features can increase the AUC by up to 5%, 7%, and 8% in the detection of AMD, DR, and glaucoma respectively. Marked improvement was achieved when laboratory results were combined with retinal image features.

  12. Enhanced sampling algorithms.

    Science.gov (United States)

    Mitsutake, Ayori; Mori, Yoshiharu; Okamoto, Yuko

    2013-01-01

    In biomolecular systems (especially all-atom models) with many degrees of freedom such as proteins and nucleic acids, there exist an astronomically large number of local-minimum-energy states. Conventional simulations in the canonical ensemble are of little use, because they tend to get trapped in states of these energy local minima. Enhanced conformational sampling techniques are thus in great demand. A simulation in generalized ensemble performs a random walk in potential energy space and can overcome this difficulty. From only one simulation run, one can obtain canonical-ensemble averages of physical quantities as functions of temperature by the single-histogram and/or multiple-histogram reweighting techniques. In this article we review uses of the generalized-ensemble algorithms in biomolecular systems. Three well-known methods, namely, multicanonical algorithm, simulated tempering, and replica-exchange method, are described first. Both Monte Carlo and molecular dynamics versions of the algorithms are given. We then present various extensions of these three generalized-ensemble algorithms. The effectiveness of the methods is tested with short peptide and protein systems.

  13. Algorithm Theory - SWAT 2006

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 10th Scandinavian Workshop on Algorithm Theory, SWAT 2006, held in Riga, Latvia, in July 2006. The 36 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 154 submissions. The papers address all...

  14. Optimal Quadratic Programming Algorithms

    CERN Document Server

    Dostal, Zdenek

    2009-01-01

    Quadratic programming (QP) is one technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This title presents various algorithms for solving large QP problems. It is suitable as an introductory text on quadratic programming for graduate students and researchers

  15. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  16. Python algorithms mastering basic algorithms in the Python language

    CERN Document Server

    Hetland, Magnus Lie

    2014-01-01

    Python Algorithms, Second Edition explains the Python approach to algorithm analysis and design. Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques. The book deals with some of the most important and challenging areas of programming and computer science in a highly readable manner. It covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data struc

  17. The Algorithm for Algorithms: An Evolutionary Algorithm Based on Automatic Designing of Genetic Operators

    Directory of Open Access Journals (Sweden)

    Dazhi Jiang

    2015-01-01

    Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.

  18. Reactive Collision Avoidance Algorithm

    Science.gov (United States)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  19. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  20. Treatment Algorithm for Ameloblastoma

    Directory of Open Access Journals (Sweden)

    Madhumati Singh

    2014-01-01

    Full Text Available Ameloblastoma is the second most common benign odontogenic tumour (Shafer et al. 2006 which constitutes 1–3% of all cysts and tumours of jaw, with locally aggressive behaviour, high recurrence rate, and a malignant potential (Chaine et al. 2009. Various treatment algorithms for ameloblastoma have been reported; however, a universally accepted approach remains unsettled and controversial (Chaine et al. 2009. The treatment algorithm to be chosen depends on size (Escande et al. 2009 and Sampson and Pogrel 1999, anatomical location (Feinberg and Steinberg 1996, histologic variant (Philipsen and Reichart 1998, and anatomical involvement (Jackson et al. 1996. In this paper various such treatment modalities which include enucleation and peripheral osteotomy, partial maxillectomy, segmental resection and reconstruction done with fibula graft, and radical resection and reconstruction done with rib graft and their recurrence rate are reviewed with study of five cases.

  1. An Algorithmic Diversity Diet?

    DEFF Research Database (Denmark)

    Sørensen, Jannick Kirk; Schmidt, Jan-Hinrik

    2016-01-01

    With the growing influence of personalized algorithmic recommender systems on the exposure of media content to users, the relevance of discussing the diversity of recommendations increases, particularly as far as public service media (PSM) is concerned. An imagined implementation of a diversity...... diet system however triggers not only the classic discussion of the reach – distinctiveness balance for PSM, but also shows that ‘diversity’ is understood very differently in algorithmic recommender system communities than it is editorially and politically in the context of PSM. The design...... of a diversity diet system generates questions not just about editorial power, personal freedom and techno-paternalism, but also about the embedded politics of recommender systems as well as the human skills affiliated with PSM editorial work and the nature of PSM content....

  2. DAL Algorithms and Python

    CERN Document Server

    Aydemir, Bahar

    2017-01-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS detector at the Large Hadron Collider (LHC) at CERN is composed of a large number of distributed hardware and software components. TDAQ system consists of about 3000 computers and more than 25000 applications which, in a coordinated manner, provide the data-taking functionality of the overall system. There is a number of online services required to configure, monitor and control the ATLAS data taking. In particular, the configuration service is used to provide configuration of above components. The configuration of the ATLAS data acquisition system is stored in XML-based object database named OKS. DAL (Data Access Library) allowing to access it's information by C++, Java and Python clients in a distributed environment. Some information has quite complicated structure, so it's extraction requires writing special algorithms. Algorithms available on C++ programming language and partially reimplemented on Java programming language. The goal of the projec...

  3. Genetic algorithm essentials

    CERN Document Server

    Kramer, Oliver

    2017-01-01

    This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.

  4. Boosting foundations and algorithms

    CERN Document Server

    Schapire, Robert E

    2012-01-01

    Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

  5. Stochastic split determinant algorithms

    International Nuclear Information System (INIS)

    Horvatha, Ivan

    2000-01-01

    I propose a large class of stochastic Markov processes associated with probability distributions analogous to that of lattice gauge theory with dynamical fermions. The construction incorporates the idea of approximate spectral split of the determinant through local loop action, and the idea of treating the infrared part of the split through explicit diagonalizations. I suggest that exact algorithms of practical relevance might be based on Markov processes so constructed

  6. Quantum gate decomposition algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Slepoy, Alexander

    2006-07-01

    Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.

  7. KAM Tori Construction Algorithms

    Science.gov (United States)

    Wiesel, W.

    In this paper we evaluate and compare two algorithms for the calculation of KAM tori in Hamiltonian systems. The direct fitting of a torus Fourier series to a numerically integrated trajectory is the first method, while an accelerated finite Fourier transform is the second method. The finite Fourier transform, with Hanning window functions, is by far superior in both computational loading and numerical accuracy. Some thoughts on applications of KAM tori are offered.

  8. Irregular Applications: Architectures & Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Feo, John T.; Villa, Oreste; Tumeo, Antonino; Secchi, Simone

    2012-02-06

    Irregular applications are characterized by irregular data structures, control and communication patterns. Novel irregular high performance applications which deal with large data sets and require have recently appeared. Unfortunately, current high performance systems and software infrastructures executes irregular algorithms poorly. Only coordinated efforts by end user, area specialists and computer scientists that consider both the architecture and the software stack may be able to provide solutions to the challenges of modern irregular applications.

  9. Large scale tracking algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Ross L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Joshua Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melgaard, David Kennett [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pitts, Todd Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zollweg, Joshua David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Dylan Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nandy, Prabal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitlow, Gary L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bender, Daniel A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  10. NEUTRON ALGORITHM VERIFICATION TESTING

    International Nuclear Information System (INIS)

    COWGILL, M.; MOSBY, W.; ARGONNE NATIONAL LABORATORY-WEST

    2000-01-01

    Active well coincidence counter assays have been performed on uranium metal highly enriched in 235 U. The data obtained in the present program, together with highly enriched uranium (HEU) metal data obtained in other programs, have been analyzed using two approaches, the standard approach and an alternative approach developed at BNL. Analysis of the data with the standard approach revealed that the form of the relationship between the measured reals and the 235 U mass varied, being sometimes linear and sometimes a second-order polynomial. In contrast, application of the BNL algorithm, which takes into consideration the totals, consistently yielded linear relationships between the totals-corrected reals and the 235 U mass. The constants in these linear relationships varied with geometric configuration and level of enrichment. This indicates that, when the BNL algorithm is used, calibration curves can be established with fewer data points and with more certainty than if a standard algorithm is used. However, this potential advantage has only been established for assays of HEU metal. In addition, the method is sensitive to the stability of natural background in the measurement facility

  11. Convex hull ranking algorithm for multi-objective evolutionary algorithms

    NARCIS (Netherlands)

    Davoodi Monfrared, M.; Mohades, A.; Rezaei, J.

    2012-01-01

    Due to many applications of multi-objective evolutionary algorithms in real world optimization problems, several studies have been done to improve these algorithms in recent years. Since most multi-objective evolutionary algorithms are based on the non-dominated principle, and their complexity

  12. Mobile Device Based Dynamic Key Management Protocols for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chin-Ling Chen

    2015-01-01

    Full Text Available In recent years, wireless sensor network (WSN applications have tended to transmit data hop by hop, from sensor nodes through cluster nodes to the base station. As a result, users must collect data from the base station. This study considers two different applications: hop by hop transmission of data from cluster nodes to the base station and the direct access to cluster nodes data by mobile users via mobile devices. Due to the hardware limitations of WSNs, some low-cost operations such as symmetric cryptographic algorithms and hash functions are used to implement a dynamic key management. The session key can be updated to prevent threats of attack from each communication. With these methods, the data gathered in wireless sensor networks can be more securely communicated. Moreover, the proposed scheme is analyzed and compared with related schemes. In addition, an NS2 simulation is developed in which the experimental results show that the designed communication protocol is workable.

  13. Quantum-secured blockchain

    OpenAIRE

    Kiktenko, E. O.; Pozhar, N. O.; Anufriev, M. N.; Trushechkin, A. S.; Yunusov, R. R.; Kurochkin, Y. V.; Lvovsky, A. I.; Fedorov, A. K.

    2017-01-01

    Blockchain is a distributed database which is cryptographically protected against malicious modifications. While promising for a wide range of applications, current blockchain platforms rely on digital signatures, which are vulnerable to attacks by means of quantum computers. The same, albeit to a lesser extent, applies to cryptographic hash functions that are used in preparing new blocks, so parties with access to quantum computation would have unfair advantage in procuring mining rewards. H...

  14. Foundations of genetic algorithms 1991

    CERN Document Server

    1991-01-01

    Foundations of Genetic Algorithms 1991 (FOGA 1) discusses the theoretical foundations of genetic algorithms (GA) and classifier systems.This book compiles research papers on selection and convergence, coding and representation, problem hardness, deception, classifier system design, variation and recombination, parallelization, and population divergence. Other topics include the non-uniform Walsh-schema transform; spurious correlations and premature convergence in genetic algorithms; and variable default hierarchy separation in a classifier system. The grammar-based genetic algorithm; condition

  15. THE APPROACHING TRAIN DETECTION ALGORITHM

    OpenAIRE

    S. V. Bibikov

    2015-01-01

    The paper deals with detection algorithm for rail vibroacoustic waves caused by approaching train on the background of increased noise. The urgency of algorithm development for train detection in view of increased rail noise, when railway lines are close to roads or road intersections is justified. The algorithm is based on the method of weak signals detection in a noisy environment. The information statistics ultimate expression is adjusted. We present the results of algorithm research and t...

  16. Combinatorial optimization algorithms and complexity

    CERN Document Server

    Papadimitriou, Christos H

    1998-01-01

    This clearly written, mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NP-complete problems, more. All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering.

  17. Essential algorithms a practical approach to computer algorithms

    CERN Document Server

    Stephens, Rod

    2013-01-01

    A friendly and accessible introduction to the most useful algorithms Computer algorithms are the basic recipes for programming. Professional programmers need to know how to use algorithms to solve difficult programming problems. Written in simple, intuitive English, this book describes how and when to use the most practical classic algorithms, and even how to create new algorithms to meet future needs. The book also includes a collection of questions that can help readers prepare for a programming job interview. Reveals methods for manipulating common data structures s

  18. PACE: Proactively Secure Accumulo with Cryptographic Enforcement

    Science.gov (United States)

    2017-05-27

    will be replaced with the values from the decrypted destination field. PACE encrypts data using AES and supports the following modes: CTR, CFB, CBC, OFB...2) Searchable Encryption : PACE also support searching for encrypted data. This is done using AES in SIV mode [11] to provide deterministic encryption ...row ”Alphabet”), then the search term is encrypted deterministically, and that term is searched on the server. Because AES does not preserve the

  19. Recursion vs. Replication in Simple Cryptographic Protocols

    DEFF Research Database (Denmark)

    Huttel, Hans; Srba, Jiri

    2005-01-01

    We use some recent techniques from process algebra to draw several conclusions about the well studied class of ping-pong protocols introduced by Dolev and Yao. In particular we show that all nontrivial properties, including reachability and equivalence checking wrt. the whole van Glabbeek's spect...... of messages in the sense of Amadio, Lugiez and Vanackere. We conclude by showing that reachability analysis for a replicative variant of the protocol becomes decidable....

  20. Recursion Versus Replication in Simple Cryptographic Protocols

    DEFF Research Database (Denmark)

    Hüttel, Hans; Srba, Jiri

    2005-01-01

    We use some very recent techniques from process algebra to draw interesting conclusions about the well studied class of ping-pong protocols introduced by Dolev and Yao. In particular we show that all nontrivial properties, including reachability and equivalence checking wrt. the whole van Glabbee...

  1. Cryptographic Techniques for Privacy Preserving Identity

    Science.gov (United States)

    2011-05-13

    has been done to investigate the privacy implications of stylometry, however. Several researchers have considered whether the author of an academic ...Interface and Classification Society of North America, 2005. [66] H. Maurer, F. Kappe, and B. Zaka. Plagiarism —a survey. Journal of Universal Com- puter

  2. Cryptographically-Enhanced Privacy for Recommender Systems

    NARCIS (Netherlands)

    Jeckmans, Arjan

    2014-01-01

    Automated recommender systems are used to help people find interesting content or persons in the vast amount of information available via the internet. There are different types of recommender systems, for example collaborative filtering systems and content-based recommender systems. However, all

  3. A Formal Language for Cryptographic Protocol Requirements

    Science.gov (United States)

    1996-01-01

    L;KAB; AgKBS ; fA; TAgKAB (4) B sends to A: fTA + 1gKAB Here A and B are two principals. By sending the rst message, A requests of the...A: CertB; fAKBgKA ; algchoiceB; fmd (fAKBgKA ; algchoiceB ; NA; alglistA)gK1 B (3) A sends to B: fAKAgKB ; fmd (fAKAgKB ; fAKBgKA)gK1 A CertX is a...alglistA 3. B sends to C: CertB ; fAKBgKC ; algchoiceB; fmd (fAKBgKC ; algchoiceB ; NA; alglistA)gK1 B (intercepted by I) 4. IB sends to A : CertB

  4. Data Security Using Cryptographic Approach | Okoro | Information ...

    African Journals Online (AJOL)

    The need for data security in Information and Communications Technology (ICT) can not be overemphasized. In this paper, the use of symmetric and asymmetric key cryptographies to clearly achieve the required protection by means of prime number system and modular multiplicative inverse has been highlighted and ...

  5. CryptosFS: Fast Cryptographic Secure NFS

    OpenAIRE

    O'Shanahan, Declan

    2000-01-01

    The issue of security in file-systems is as relevant today as when the first file system was developed. Current file system implementations rely heavily on centralised security mechanisms such as access control lists. The problem of security in file systems was made more complicated by the introduction of remote access to files. Storing information on a remote server has the potential to introduce additional security weaknesses into the file system model. The client, the commun...

  6. Deep Learning Based Cryptographic Primitive Classification

    OpenAIRE

    Hill, Gregory D.; Bellekens, Xavier J. A.

    2017-01-01

    Cryptovirological augmentations present an immediate, incomparable threat. Over the last decade, the substantial proliferation of crypto-ransomware has had widespread consequences for consumers and organisations alike. Established preventive measures perform well, however, the problem has not ceased. Reverse engineering potentially malicious software is a cumbersome task due to platform eccentricities and obfuscated transmutation mechanisms, hence requiring smarter, more efficient detection s...

  7. Attack strategies on quantum cryptographic protocols

    International Nuclear Information System (INIS)

    Schauer, S.; Suda, M.

    2006-01-01

    Full text: Quantum key distribution (QKD) and quantum authentication (QA) have been a topic of extensive research in the last 20 years. In course of that many attacks on QKD and QA protocols have been studied. Among these, Zhang, Lee and Guo presented an attack on a QKD protocol using entanglement swapping. Based on that strategy we take a look at other protocols to inspect how much information an adversary may get if he shares entanglement with either one or both parties. We will present some protocols where an adversary can even get full information about the key using entanglement. (author)

  8. On Protocol Security in the Cryptographic Model

    DEFF Research Database (Denmark)

    Nielsen, Jesper Buus

    you as possible. This is the general problem of secure multiparty computation. The usual way of formalizing the problem is to say that a number of parties who do not trust each other wish to compute some function of their local inputs, while keeping their inputs as secret as possible and guaranteeing...... the channels by which they communicate. A general solution to the secure multiparty computation problem is a compiler which given any feasible function describes an efficient protocol which allows the parties to compute the function securely on their local inputs over an open network. Over the past twenty...... years the secure multiparty computation problem has been the subject of a large body of research, both research into the models of multiparty computation and research aimed at realizing general secure multiparty computation. The main approach to realizing secure multiparty computation has been based...

  9. Efficient GPS Position Determination Algorithms

    National Research Council Canada - National Science Library

    Nguyen, Thao Q

    2007-01-01

    ... differential GPS algorithm for a network of users. The stand-alone user GPS algorithm is a direct, closed-form, and efficient new position determination algorithm that exploits the closed-form solution of the GPS trilateration equations and works...

  10. Algorithmic approach to diagram techniques

    International Nuclear Information System (INIS)

    Ponticopoulos, L.

    1980-10-01

    An algorithmic approach to diagram techniques of elementary particles is proposed. The definition and axiomatics of the theory of algorithms are presented, followed by the list of instructions of an algorithm formalizing the construction of graphs and the assignment of mathematical objects to them. (T.A.)

  11. Selfish Gene Algorithm Vs Genetic Algorithm: A Review

    Science.gov (United States)

    Ariff, Norharyati Md; Khalid, Noor Elaiza Abdul; Hashim, Rathiah; Noor, Noorhayati Mohamed

    2016-11-01

    Evolutionary algorithm is one of the algorithms inspired by the nature. Within little more than a decade hundreds of papers have reported successful applications of EAs. In this paper, the Selfish Gene Algorithms (SFGA), as one of the latest evolutionary algorithms (EAs) inspired from the Selfish Gene Theory which is an interpretation of Darwinian Theory ideas from the biologist Richards Dawkins on 1989. In this paper, following a brief introduction to the Selfish Gene Algorithm (SFGA), the chronology of its evolution is presented. It is the purpose of this paper is to present an overview of the concepts of Selfish Gene Algorithm (SFGA) as well as its opportunities and challenges. Accordingly, the history, step involves in the algorithm are discussed and its different applications together with an analysis of these applications are evaluated.

  12. Honing process optimization algorithms

    Science.gov (United States)

    Kadyrov, Ramil R.; Charikov, Pavel N.; Pryanichnikova, Valeria V.

    2018-03-01

    This article considers the relevance of honing processes for creating high-quality mechanical engineering products. The features of the honing process are revealed and such important concepts as the task for optimization of honing operations, the optimal structure of the honing working cycles, stepped and stepless honing cycles, simulation of processing and its purpose are emphasized. It is noted that the reliability of the mathematical model determines the quality parameters of the honing process control. An algorithm for continuous control of the honing process is proposed. The process model reliably describes the machining of a workpiece in a sufficiently wide area and can be used to operate the CNC machine CC743.

  13. Opposite Degree Algorithm and Its Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Guang Yue

    2015-12-01

    Full Text Available The opposite (Opposite Degree, referred to as OD algorithm is an intelligent algorithm proposed by Yue Xiaoguang et al. Opposite degree algorithm is mainly based on the concept of opposite degree, combined with the idea of design of neural network and genetic algorithm and clustering analysis algorithm. The OD algorithm is divided into two sub algorithms, namely: opposite degree - numerical computation (OD-NC algorithm and opposite degree - Classification computation (OD-CC algorithm.

  14. Fast algorithm for Morphological Filters

    International Nuclear Information System (INIS)

    Lou Shan; Jiang Xiangqian; Scott, Paul J

    2011-01-01

    In surface metrology, morphological filters, which evolved from the envelope filtering system (E-system) work well for functional prediction of surface finish in the analysis of surfaces in contact. The naive algorithms are time consuming, especially for areal data, and not generally adopted in real practice. A fast algorithm is proposed based on the alpha shape. The hull obtained by rolling the alpha ball is equivalent to the morphological opening/closing in theory. The algorithm depends on Delaunay triangulation with time complexity O(nlogn). In comparison to the naive algorithms it generates the opening and closing envelope without combining dilation and erosion. Edge distortion is corrected by reflective padding for open profiles/surfaces. Spikes in the sample data are detected and points interpolated to prevent singularities. The proposed algorithm works well both for morphological profile and area filters. Examples are presented to demonstrate the validity and superiority on efficiency of this algorithm over the naive algorithm.

  15. Recognition algorithms in knot theory

    International Nuclear Information System (INIS)

    Dynnikov, I A

    2003-01-01

    In this paper the problem of constructing algorithms for comparing knots and links is discussed. A survey of existing approaches and basic results in this area is given. In particular, diverse combinatorial methods for representing links are discussed, the Haken algorithm for recognizing a trivial knot (the unknot) and a scheme for constructing a general algorithm (using Haken's ideas) for comparing links are presented, an approach based on representing links by closed braids is described, the known algorithms for solving the word problem and the conjugacy problem for braid groups are described, and the complexity of the algorithms under consideration is discussed. A new method of combinatorial description of knots is given together with a new algorithm (based on this description) for recognizing the unknot by using a procedure for monotone simplification. In the conclusion of the paper several problems are formulated whose solution could help to advance towards the 'algorithmization' of knot theory

  16. Hybrid Cryptosystem Using Tiny Encryption Algorithm and LUC Algorithm

    Science.gov (United States)

    Rachmawati, Dian; Sharif, Amer; Jaysilen; Andri Budiman, Mohammad

    2018-01-01

    Security becomes a very important issue in data transmission and there are so many methods to make files more secure. One of that method is cryptography. Cryptography is a method to secure file by writing the hidden code to cover the original file. Therefore, if the people do not involve in cryptography, they cannot decrypt the hidden code to read the original file. There are many methods are used in cryptography, one of that method is hybrid cryptosystem. A hybrid cryptosystem is a method that uses a symmetric algorithm to secure the file and use an asymmetric algorithm to secure the symmetric algorithm key. In this research, TEA algorithm is used as symmetric algorithm and LUC algorithm is used as an asymmetric algorithm. The system is tested by encrypting and decrypting the file by using TEA algorithm and using LUC algorithm to encrypt and decrypt the TEA key. The result of this research is by using TEA Algorithm to encrypt the file, the cipher text form is the character from ASCII (American Standard for Information Interchange) table in the form of hexadecimal numbers and the cipher text size increase by sixteen bytes as the plaintext length is increased by eight characters.

  17. Online Planning Algorithm

    Science.gov (United States)

    Rabideau, Gregg R.; Chien, Steve A.

    2010-01-01

    AVA v2 software selects goals for execution from a set of goals that oversubscribe shared resources. The term goal refers to a science or engineering request to execute a possibly complex command sequence, such as image targets or ground-station downlinks. Developed as an extension to the Virtual Machine Language (VML) execution system, the software enables onboard and remote goal triggering through the use of an embedded, dynamic goal set that can oversubscribe resources. From the set of conflicting goals, a subset must be chosen that maximizes a given quality metric, which in this case is strict priority selection. A goal can never be pre-empted by a lower priority goal, and high-level goals can be added, removed, or updated at any time, and the "best" goals will be selected for execution. The software addresses the issue of re-planning that must be performed in a short time frame by the embedded system where computational resources are constrained. In particular, the algorithm addresses problems with well-defined goal requests without temporal flexibility that oversubscribes available resources. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. Thereby enabling shorter response times and greater autonomy for the system under control.

  18. Algorithmic Relative Complexity

    Directory of Open Access Journals (Sweden)

    Daniele Cerra

    2011-04-01

    Full Text Available Information content and compression are tightly related concepts that can be addressed through both classical and algorithmic information theories, on the basis of Shannon entropy and Kolmogorov complexity, respectively. The definition of several entities in Kolmogorov’s framework relies upon ideas from classical information theory, and these two approaches share many common traits. In this work, we expand the relations between these two frameworks by introducing algorithmic cross-complexity and relative complexity, counterparts of the cross-entropy and relative entropy (or Kullback-Leibler divergence found in Shannon’s framework. We define the cross-complexity of an object x with respect to another object y as the amount of computational resources needed to specify x in terms of y, and the complexity of x related to y as the compression power which is lost when adopting such a description for x, compared to the shortest representation of x. Properties of analogous quantities in classical information theory hold for these new concepts. As these notions are incomputable, a suitable approximation based upon data compression is derived to enable the application to real data, yielding a divergence measure applicable to any pair of strings. Example applications are outlined, involving authorship attribution and satellite image classification, as well as a comparison to similar established techniques.

  19. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  20. Optimal Fungal Space Searching Algorithms.

    Science.gov (United States)

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.