WorldWideScience

Sample records for cryolite melts distribution

  1. Dissolution kinetics for alumina in cryolite melts. Distribution of alumina in the electrolyte of industrial aluminium cells

    Energy Technology Data Exchange (ETDEWEB)

    Kobbeltvedt, Ove

    1997-12-31

    This thesis contributes to the understanding of which factors determine the rate of dissolution of alumina added to the bath in alumina reduction cells. Knowing this may help reduce the occurrences of operation interruptions and thus make it possible to produce aluminium using less energy. When alumina powder was added to a stirred cryolite melt, the alumina dissolved in two distinct main stages. In the first stage, the dissolution rate was very high, which reflects dissolution of single alumina grains that are being dispersed in the bath upon addition. In the second stage, lumps of alumina infiltrated with bath dissolved at a rate considerably slower than that of the first stage. The formation of these alumina agglomerates is the most important contributor to slow dissolution. The parameters varied in the experiments were convection, batch size, and temperature of the bath and of the added alumina. Increased gas stirring of the bath speeded up dissolution in both stages but the size of the batch was of little significance. Increasing the bath temperature had no effect in the first stage but speeded up dissolution considerably in the second stage. Compared to adding alumina at room temperature, preheating it to a high temperature (600 {sup o}C) increased the dissolution rate in the first stage while preheating to lower temperatures (100-300 {sup o}C) decreased the dissolution rate. In the second stage, preheating slowed the dissolution. The two latter phenomena of reduced dissolution rates are ascribed to the removal of moisture from the alumina upon preheating. The bath flow and the distribution of alumina in the bath were measured in four different types of cells. It was found that if a certain asymmetry of the magnetic field traverse to the cell was present, due to the presence of risers, then loops of high velocity bath flow occurred near the short ends of the cell. Thus, alumina added near the short ends is effectively transferred away from the feeding

  2. Preparation of Aluminum-Zirconium Master Alloy by Aluminothermic Reduction in Cryolite Melt

    Science.gov (United States)

    Liu, Fengguo; Ding, Chenliang; Tao, Wenju; Hu, Xianwei; Gao, Bingliang; Shi, Zhongning; Wang, Zhaowen

    2017-08-01

    Al-Zr master alloy was prepared by aluminothermic reduction in cryolite melt without alumina impurity. The Al-Zr master alloy was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The composition of the master alloy was analyzed by inductively coupled plasma optical emission spectrometry. The results indicated that Al-Zr master alloy with high purity could be obtained when byproduct Al2O3 was dissolved in the cryolite melt. The Al-Zr alloy was embedded in the Al matrix in the form of Al3Zr phase with long rod or tetragonal morphology due to temperature variation. Finally, we obtained Al-Zr alloy with 7 wt.% Zr by aluminothermic reduction for 90 min in cryolite melt at 980°C.

  3. Behaviour of iron and titanium species in cryolite-alumina melts

    OpenAIRE

    Jentoftsen, Trond Eirik

    2000-01-01

    The solubility of divalent iron oxide in cryolite-based melts was studied. Both electrochemical and chemical techniques were employed. To ensure that only divalent iron was present in solution, the melt was contained in an iron crucible under an atmosphere of argon. The experimental work included investigation of the solubility as a function of alumina concentration, temperature and cryolite ratio (CR = NaF/AlF3 molar ratio). The solubility at 1020 ºC was found to decrease from 4.17 wt% Fe in...

  4. The calcium fluoride effect on properties of cryolite melts feasible for low-temperature production of aluminum and its alloys

    Science.gov (United States)

    Tkacheva, O.; Dedyukhin, A.; Redkin, A.; Zaikov, Yu.

    2017-07-01

    The CaF2 effect on the liquidus temperature, electrical conductivity and alumina solubility in the potassium-sodium and potassium-lithium cryolite melts with cryolite ratio (CR = (nKF+nMF)/nAlF3, M = Li, Na) 1.3 was studied. The liquidus temperature in the quisi-binary system [KF-LiF-AlF3]-CaF2 changes with the same manner as in the [KF-NaF-AlF3]-CaF2. The electrical conductivity in the KF-NaF-AlF3-CaF2 melt decreases with increasing the CaF2 content, but it slightly raises with the first small addition of CaF2 into the KF-LiF-AlF3-CaF2 melts, enriched with KF, which was explained by the increased K+ ions mobility due to their relatively low ionic potential. The contribution of the Li+ cations in conductivity of the KF-LiF-AlF3-CaF2 electrolyte is not noteworthy. The Al2O3 solubility in the KF-NaF-AlF3 electrolyte rises with the increasing KF content, but the opposite tendency is observed in the cryolite mixtures containing CaF2. The insoluble compounds - KCaAl2F9 or KCaF3 - formed in the molten mixtures containing potassium and calcium ions endorse the increase of the liquidus temperature. The calcium fluoride effect on the side ledge formation in the electrolytic cell during low-temperature aluminum electrolysis is discussed.

  5. Global distribution of lunar impact melt flows

    Science.gov (United States)

    Neish, C. D.; Madden, J.; Carter, L. M.; Hawke, B. R.; Giguere, T.; Bray, V. J.; Osinski, G. R.; Cahill, J. T. S.

    2014-09-01

    In this study, we analyzed the distribution and properties of 146 craters with impact melt deposits exterior to their rims. Many of these craters were only recently discovered due to their unusual radar properties in the near-global Mini-RF data set. We find that most craters with exterior deposits of impact melt are small, ⩽20 km, and that the smallest craters have the longest melt flows relative to their size. In addition, exterior deposits of impact melt are more common in the highlands than the mare. This may be the result of differing target properties in the highlands and mare, the difference in titanium content, or the greater variation of topography in the highlands. We find that 80% of complex craters and 60% of simple craters have melt directions that are coincident or nearly coincident with the lowest point in their rim, implying that pre-existing topography plays a dominant role in melt emplacement. This is likely due to movement during crater modification (complex craters) or breached crater rims (simple craters). We also find that impact melt flows have very high circular polarization ratios compared to other features on the Moon. This suggests that their surfaces are some of the roughest material on the Moon at the centimeter to decimeter scale, even though they appear smooth at the meter scale.

  6. The Solubility of Aluminum in Cryolite-Based Electrolyte-Containing KF

    Science.gov (United States)

    Zhang, Yu; Yu, Jiangyu; Gao, Bingliang; Liu, Yibai; Hu, Xianwei; Shi, Zhongning; Wang, Zhaowen

    2016-04-01

    The solubility of aluminum in NaF-AlF3-CaF2-KF-A12O3 electrolyte system at 1253 K (980 °C) has been measured by the analysis of quenched samples saturated with aluminum. The content of the dissolved metal in the quenched melt was determined by collecting the volume of hydrogen gas when a finely crushed sample is treated with HCl. Addition of 0 to 5 pct KF has no obvious effect on the solubility of aluminum in cryolite-based melts with molar ratio of NaF/AlF3 (cryolite ratio) ranging from 2.2 to 3.0. The solubility of aluminum increases from 0.015 to 0.026 wt pct with cryolite ratio increases from 2.2 to 4.0 in the NaF-AlF3-5 wt pct CaF2-3 wt pct A12O3 electrolyte at 1253 K (980 °C). Aluminum solubility was affected by both chemical replacement reaction of Al + 3NaF = AlF3 + 3Na and physical dissolution.

  7. Cross-sectional study of health effects of cryolite production

    DEFF Research Database (Denmark)

    Friis, Henrik; Clausen, J; Gyntelberg, F

    1989-01-01

    A cross-sectional health study of 101 cryolite workers was performed, using spirometry and a questionnaire. Multiple regression analysis revealed a significant correlation between the index of smoking and a decrease in FEV1 (per cent). There was no significant correlation between work-related exp...

  8. Statistical distribution of thermal vacancies close to the melting point

    Energy Technology Data Exchange (ETDEWEB)

    José Pozo, María, E-mail: mariaj.pozom@gmail.com [Grupo de Nanomateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Davis, Sergio, E-mail: sdavis@gnm.cl [Grupo de Nanomateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Peralta, Joaquín, E-mail: joaquin.peralta@unab.cl [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Santiago (Chile)

    2015-01-15

    A detailed description of the statistical distribution of thermal vacancies in an homogeneous crystal near its melting point is presented, using the embedded atom model for copper as an example. As the temperature increase, the average number of thermal vacancies generated by atoms migrating to neighboring sites increases according to Arrhenius’ law. We present for the first time a model for the statistical distribution of thermal vacancies, which according to our atomistic computer simulations follow a Gamma distribution. All the simulations are carried out by classical molecular dynamics and the recognition of vacancies is achieved via a recently developed algorithm. Our results could be useful in the further development of a theory explaining the mechanism of homogeneous melting, which seems to be mediated by the accumulation of thermal vacancies near the melting point.

  9. Distribution of radionuclides during melting of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the other possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.

  10. The transported entropy of Na+ in solid state cryolite

    Science.gov (United States)

    Sharivker, V. S.; Ratkje, S. Kjelstrup

    1996-10-01

    The transported entropy of Na+ in mixtures of NaF (s) and Na3AlF6 (s) is determined from thermocell experiments. The experiments were favorably described by the electric work method. The variation observed in the thermocell electromotive force (emf) with composition can be explained from the probable path of charge transfer in the electrolyte. The transported entropies are S*cry Na+ = 140 ± 7 J K-1 mol-1 for cryolite and S*NaFNa+ = 81 ± 8 J K-1 mol-1 for sodium fluoride between 380 °C and 500 °C. The value obtained for sodium in the solid cryolite makes us predict that the transported entropy for Na+ in the molten electrolyte mixture for aluminum production is substantial and that the reversible heat effects in the aluminum electrolysis cell are the same.

  11. Polydisperse Block Copolymer Melts: Beyond the Schulz-Zimm Distribution

    Science.gov (United States)

    Lynd, Nathaniel; Hillmyer, Marc; Matsen, Mark

    2009-03-01

    Using self-consistent mean field theory, we compared the effects of polydispersity on the phase behavior of block copolymer melts possessing two distinct distributions: the Schulz-Zimm distribution (SZD), and a realistic distribution resulting from a numerical simulation of the kinetics of an equilibrium polymerization (EQD). When the polydispersity indices (PDIs) were matched, the SZD and EQD imparted significant differences in the number of chains pulling free of the interface. This resulted in large differences in domain spacing, but negligible differences in phase boundaries.

  12. Investigation of the Influence of Heat Balance Shifts on the Freeze Microstructure and Composition in Aluminum Smelting Bath System: Cryolite-CaF2-AlF3-Al2O3

    Science.gov (United States)

    Liu, Jingjing; Fallah-Mehrjardi, Ata; Shishin, Denis; Jak, Evgueni; Dorreen, Mark; Taylor, Mark

    2017-10-01

    In an aluminum electrolysis cell, the side ledge forms on side walls to protect it from the corrosive cryolitic bath. In this study, a series of laboratory analogue experiments have been carried out to investigate the microstructure and composition of side ledge (freeze linings) at different heat balance steady states. Three distinct layers are found in the freeze linings formed in the designed Cryolite-CaF2-AlF3-Al2O3 electrolyte system: a closed (columnar) crystalline layer, an open crystalline layer, and a sealing layer. This layered structure changes when the heat balance is shifted between different steady states, by melting or freezing the open crystalline layer. Phase chemistry of the freeze lining is studied in this paper to understand the side ledge formation process upon heat balance shifts. Electron probe X-ray microanalysis (EPMA) is used to characterize the microstructure and compositions of distinct phases existing in the freeze linings, which are identified as cryolite, chiolite, Ca-cryolite, and alumina. A freeze formation mechanism is further developed based on these microstructural/compositional investigations and also thermodynamic calculations through the software—FactSage. It is found that entrapped liquid channels exist in the open crystalline layer, assisting with the mass transfer between solidified crystals and bulk molten bath.

  13. A distributed energy-balance melt model of an alpine debris-covered glacier

    OpenAIRE

    Fyffe, Catriona; Reid, Tim; Brock, Benjamin; Kirkbride, Martin; Diolaiuti, Guglielmina; Smiraglia, Claudio; Diotri, Fabrizio

    2014-01-01

    Distributed energy-balance melt models have rarely been applied to glaciers with extensive supraglacial debris cover. This paper describes the development of a distributed melt model and its application to the debris-covered Miage glacier, western Italian Alps, over two summer seasons. Sub-debris melt rates are calculated using an existing debris energy-balance model (DEB-Model), and melt rates for clean ice, snow and partially debris-covered ice are calculated using standard energy-balance e...

  14. Quantification of shock-induced melting and its distribution in the Ejecta

    Science.gov (United States)

    Engelmann, J.; Wünnemann, K.; Luther, R.; Zhu, M.-H.

    2017-09-01

    In contrast to lunar regolith, which is dominated by impact melt particles (agglutinates), samples from the asteroid Itokawa (25143), collected by the Hayabusa mission, exhibit a strong deficit in agglutinates. To investigate the amount of shock-induced melting and its distribution in the ejecta we simulate hypervelocity impacts into targets with varying gravity and quantify the amount and distribution of generated melt that is ejected. We find that even at relatively low impact velocities and high target porosity (representing asteroidal condition) a significant amount of melting occurs. Our models also predict that in case of vertical impacts a significant amount of the generated melt remains inside the crater and is not ejected.

  15. Clinopyroxene REE distribution coefficients for shergottites The REE content of the Shergotty melt

    Science.gov (United States)

    Mckay, G.; Wagstaff, J.; Yang, S.-R.

    1986-01-01

    Rare-earth element (REE) distribution coefficients were measured between synthetic pyroxenes and melts similar in composition to the Shergotty intercumulus fluid. REE-doped synthetic glass samples were analyzed by means of an automated microbeam electron microprobe. The coefficients were found to exhibit a strong positive correlation with pyroxene wollastonite content. Using distribution coefficients measured for the natural phase compositions, REE abundances for the Shergotty intercumulus melt were computed.

  16. Simulation of snow distribution and melt under cloudy conditions in an Alpine watershed

    Directory of Open Access Journals (Sweden)

    H.-Y. Li

    2011-07-01

    Full Text Available An energy balance method and remote-sensing data were used to simulate snow distribution and melt in an alpine watershed in northwestern China within a complete snow accumulation-melt period. The spatial energy budgets were simulated using meteorological observations and a digital elevation model of the watershed. A linear interpolation method was used to estimate the daily snow cover area under cloudy conditions, using Moderate Resolution Imaging Spectroradiometer (MODIS data. Hourly snow distribution and melt, snow cover extent and daily discharge were included in the simulated results. The root mean square error between the measured snow-water equivalent samplings and the simulated results is 3.2 cm. The Nash and Sutcliffe efficiency statistic (NSE between the measured and simulated discharges is 0.673, and the volume difference (Dv is 3.9 %. Using the method introduced in this article, modelling spatial snow distribution and melt runoff will become relatively convenient.

  17. Environmental monitoring at the cryolite mine in Ivittuut, South Greenland, in 2010

    DEFF Research Database (Denmark)

    Johansen, Poul; Asmund, Gert; Riget, Frank Farsø

    This report evaluates the pollution in Arsuk Fjord at Ivittuut in South Greenland based on environmental studies conducted in 2010. The area is polluted by lead and zinc caused by the mining of cryolite that took place from 1854 to 1987. The 2010 study shows that the lead pollution of the fjord...

  18. Elongational Dynamics of Narrow Molar Mass Distribution Linear and Branched Polystyrene Melts

    Science.gov (United States)

    Rasmussen, Henrik Koblitz; Skov, Anne Ladegaard; Nielsen, Jens Kromann; Laille, Philippe; Hassager, Ole

    2008-07-01

    The startup of uni-axial elongational flow followed by stress relaxation as well as reversed bi-axial flow has been measured for narrow molar mass distribution (NMMD) linear (Mw = 145 kg/mole) and branched multi-arm polystyrene melts, using the filament stretching rheometer. The branched polystyrene melt was a multiarm An-C-C-An pom-pom polystyrene with an estimated average number of arms of n = 2.5. The molar mass of each arm is about 28 kg/mole with an overall molar mass of Mw = 280 kg/mole. The principle of time-strain separability fails completely to describe the dynamic elongation data. Similarly the Doi-Edwards model with any `stretch evolution' equation is not capable of capturing the reversed dynamic of NMMD melts. An integral molecular stress function constitutive formulation within the `interchain pressure' concept, seem to agree with all experiments for linear melts.

  19. Evaluation of cryolite from pitinga (Amazonas-Brazil as a source of hydrogen fluoride

    Directory of Open Access Journals (Sweden)

    Jéssica F. Paulino

    2016-05-01

    Full Text Available This paper reports the use of cryolite from the Pitinga Mine (Amazonas state, Brazil as raw material in hydrogen fluoride production. Samples were initially characterized by chemical and mineralogical analyses. They presented low silica content (< 4 wt.%. After milling, cryolite samples were digested with concentrated sulfuric acid under stirring (200 rpm and variable temperature, time and liquid to solid ratio conditions. Under the best experimental conditions (140 °C, 3-5 h, 96 wt.% of fluorine was recovered as hydrogen fluoride. The application of a 23 full factorial design showed that temperature and reaction time were relevant parameters during leaching, whereas liquid to solid ratio was not statistically significant.

  20. Snow Dunes: A Controlling Factor of Melt Pond Distribution on Arctic Sea Ice

    Science.gov (United States)

    Petrich, Chris; Eicken, Hajo; Polashenski, Christopher M.; Sturm, Matthew; Harbeck, Jeremy P.; Perovich, Donald K.; Finnegan, David C.

    2012-01-01

    The location of snow dunes over the course of the ice-growth season 2007/08 was mapped on level landfast first-year sea ice near Barrow, Alaska. Landfast ice formed in mid-December and exhibited essentially homogeneous snow depths of 4-6 cm in mid-January; by early February distinct snow dunes were observed. Despite additional snowfall and wind redistribution throughout the season, the location of the dunes was fixed by March, and these locations were highly correlated with the distribution of meltwater ponds at the beginning of June. Our observations, including ground-based light detection and ranging system (lidar) measurements, show that melt ponds initially form in the interstices between snow dunes, and that the outline of the melt ponds is controlled by snow depth contours. The resulting preferential surface ablation of ponded ice creates the surface topography that later determines the melt pond evolution.

  1. Changing distributions of sea ice melt and meteoric water west of the Antarctic Peninsula

    Science.gov (United States)

    Meredith, Michael P.; Stammerjohn, Sharon E.; Venables, Hugh J.; Ducklow, Hugh W.; Martinson, Douglas G.; Iannuzzi, Richard A.; Leng, Melanie J.; van Wessem, Jan Melchior; Reijmer, Carleen H.; Barrand, Nicholas E.

    2017-05-01

    The Western Antarctic Peninsula has recently undergone rapid climatic warming, with associated decreases in sea ice extent and duration, and increases in precipitation and glacial discharge to the ocean. These shifts in the freshwater budget can have significant consequences on the functioning of the regional ecosystem, feedbacks on regional climate, and sea-level rise. Here we use shelf-wide oxygen isotope data from cruises in four consecutive Januaries (2011-2014) to distinguish the freshwater input from sea ice melt separately from that due to meteoric sources (precipitation plus glacial discharge). Sea ice melt distributions varied from minima in 2011 of around 0 % up to maxima in 2014 of around 4-5%. Meteoric water contribution to the marine environment is typically elevated inshore, due to local glacial discharge and orographic effects on precipitation, but this enhanced contribution was largely absent in January 2013 due to anomalously low precipitation in the last quarter of 2012. Both sea ice melt and meteoric water changes are seen to be strongly influenced by changes in regional wind forcing associated with the Southern Annular Mode and the El Niño-Southern Oscillation phenomenon, which also impact on net sea ice motion as inferred from the isotope data. A near-coastal time series of isotope data collected from Rothera Research Station reproduces well the temporal pattern of changes in sea ice melt, but less well the meteoric water changes, due to local glacial inputs and precipitation effects.

  2. The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle

    Science.gov (United States)

    Novella, Davide; Frost, Daniel J.; Hauri, Erik H.; Bureau, Helene; Raepsaet, Caroline; Roberge, Mathilde

    2014-08-01

    The partitioning of H2O between a mantle peridotite assemblage and low degree hydrous melt has been investigated at 6 GPa (corresponding to ∼180 km depth) at a temperature of 1400 °C. Peridotite mineral phases were analysed from 6 melting experiments performed in a natural chemical system. The experiments contained ∼80 wt% of a low degree hydrous melt that was obtained through a series of experiments where the melt composition was iteratively adjusted until saturation with the appropriate peridotite assemblage was achieved. The melt is fluid-undersaturated at the conditions of the experiment. Ion microprobe measurements of the mineral phases indicate olivine H2O concentrations of 434±61 ppm wt and average clinopyroxene (cpx) concentrations of 1268±173 ppm wt H2O. Orthopyroxene (opx) and garnet contain 700±46 ppm wt and 347±83 ppm wt H2O, respectively. The H2O content of the hydrous melts was determined by mass balance to be 11±0.5 wt% H2O. H2O partition coefficients between minerals and melt (DH2Omin/melt=XH2Omin/XH2Omelt) are 0.0040±0.0006 for olivine, 0.0064±0.0004 for opx, 0.0115±0.0016 for cpx and 0.0032±0.0008 for garnet. Using the determined H2O partition coefficients the onset and extent of melting at conditions equivalent to 180 km below mid-ocean ridges was determined as a function of mantle H2O content. Current estimates for the H2O content of the depleted mantle (50-200 ppm wt H2O) are insufficient to induce mantle melting at this depth, which requires ∼700 ppm wt H2O to produce 0.1% melting and 1600 ppm wt H2O for 1% melting, along an adiabat with a potential temperature of 1327 °C. Melting can occur at these conditions within the mantle source of ocean island basalts, which are estimated to contain up to 900 ppm wt H2O. If adiabatic temperatures are 200 °C higher within such plume related sources, then melt fractions of over 1% can be reached at 180 km depth. In addition, a model for the distribution of H2O between peridotite mineral

  3. Do-Fluoride "Cryolite By- product Carbon White" Awarded the 13th China Excellent Patent Award%Do-Fluoride "Cryolite By- product Carbon White" Awarded the 13th China Excellent Patent Award

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On November 4, the results of the 13th China Patent Awards were publicized by the State Intellectual Property Office of the People's Republic of China. The patent of "production method of cryolite by-product carbon white" declared by Henan Province Jiaozuo Do-Fluoride Company was awarded China Excellent Patent Award.

  4. Impact of ice melting on distribution of particulate sterols in glacial fjords of Chilean Patagonia

    Science.gov (United States)

    Gutiérrez, Marcelo H.; Riquelme, Pablo; Pantoja, Silvio

    2016-04-01

    We analyzed variability in abundance and composition of sterols in waters of the fjord adjacent to glacier Jorge Montt, one of the fastest retreated glaciers in Patagonian Icefields. The study was carried out between August 2012 and November 2013 under different meltwater scenarios. Distribution of sterols in surface and bottom waters was determined by Gas Chromatography coupled to Mass Spectrometry. Sterol concentration ranged from 18 to 1726 ng/L in surface and bottom waters and was positive correlated with chlorophyll-a concentration. Under high melting conditions in austral summer, surface meltwaters showed high concentrations of sterols and were dominated by methylene-cholesterol, a representative sterol of centric diatoms. In the area near open ocean and in austral autumn, winter and spring in proglacial fjord, lower sterol concentrations in surface waters were accompanied by other microalgae sterols and an increase in relative abundance of plant sterols, evidencing a different source of organic matter. In autumn, when high meltwater flux was also evidenced, presence of stanols and an uncommon tri-unsaturated sterol suggests influence of meltwaters in composition of sterols in the downstream fjord. We conclude that ice melting can modify sterol composition by setting conditions for development of a singular phytoplankton population able to thrive in surface meltwater and by carrying glacier organic matter into Patagonian glacial fjords. In projected ice melting scenario, these changes in organic matter quantity and quality can potentially affect availability of organic substrates for heterotrophic activity and trophic status of glacial fjords. This research was funded by COPAS Sur-Austral (PFB-31)

  5. A pilot-scale study of cryolite precipitation from high fluoride-containing wastewater in a reaction-separation integrated reactor.

    Science.gov (United States)

    Jiang, Ke; Zhou, Kanggen; Yang, Youcai; Du, Hu

    2013-07-01

    Fluoride removal by traditional precipitation generates huge amounts of a water-rich sludge with low quality, which has no commercial or industrial value. The present study evaluated the feasibility of recovering fluoride as low water content cryolite from industrial fluoride-containing wastewater. A novel pilot-scale reaction-separation integrated reactor was designed. The results showed that the seed retention time in the reactor was prolonged to strengthen the induced crystallization process. The particle size of cryolite increased with increasing seed retention time, which decreased the water content. The recovery rate of cryolite was above 75% under an influent fluoride concentration of 3500 mg/L, a reaction temperature of 500C, and an influent flow of 40 L/hr. The cryolite products that precipitated from the reactor were small in volume, large in particle size, low in water content, high in crystal purity, and recyclable.

  6. Response of Cryolite-Based Bath to a Shift in Heat Input/output Balance

    Science.gov (United States)

    Liu, Jingjing; Taylor, Mark; Dorreen, Mark

    2017-04-01

    A technology for low amperage potline operation is now recognized as a competitive advantage for the aluminum smelting industry in order to align smelter operations with the power and aluminum price markets. This study investigates the cryolite-based bath response to heat balance shifts when the heat extraction from the bath is adjusted to different levels in a laboratory analogue. In the analogue experiments, the heat balance shift is driven by a graphite `cold finger' heat exchanger, which can control the heat extraction from the analogue, and a corresponding change in heat input from the furnace which maintains the control temperature of the lab "cell." This paper reports the first experimental results from shifting the steady state of the lab cell heat balance, and investigates the effects on the frozen ledge and bath superheat. The lab cell energy balances are compared with energy balances in a published industrial cell model.

  7. The effect of crystallization conditions on tantalum distribution in molybdenum and tungsten during electron beam zone melting

    Directory of Open Access Journals (Sweden)

    J. K. Skotnicova

    2014-04-01

    Full Text Available The distribution of tantalum in molybdenum and tungsten single crystals during electron beam floating zone melting under different crystallization conditions was investigated. The performed line chemical analysis of specimens proved creation of tantalum micro segregation, so-called growth striations, which showed themselves on concentration profiles as periodically alternating areas with increased and decreased concentrations of tantalum. The existence of these chemical inhomogeneities suggests that stationary conditions of the crystal growth were disturbed during the zone melting, i.e. fluctuations of microscopic rate of growth occurred due to convection in the melt. The determined effective distribution coefficients of tantalum in molybdenum and tungsten approach to calculated theoretical values of the equilibrium distribution coefficient.

  8. New investigation of distribution imaging and content uniformity of very low dose drugs using hot-melt extrusion method.

    Science.gov (United States)

    Park, Jun-Bom; Kang, Chin-Yang; Kang, Wie-Soo; Choi, Han-Gon; Han, Hyo-Kyung; Lee, Beom-Jin

    2013-12-31

    The content uniformity of low dose drugs in dosage forms is very important for quality assurance. The aim of this study was to prepare uniformly and homogeneously distributed dosage forms of very low-dose drugs using twin screw hot-melt extrusion (HME) and to investigate the distribution of drugs using instrumental analyses. For the feasibility of HME method, a very low amount of coumarin-6, a fluorescent dye, was used to visualize distribution images using confocal laser scanning microscope (CLSM). Limaprost, tamsulosin and glimepiride were then used as low-dose model drugs to study the applicability of HME for content uniformity and distribution behaviors. Hydrophilic thermosensitive polymers with low melting point, such as Poloxamer188 and polyethylene glycol (PEG) 6000, were chosen as carriers. The melt extrusion was carried out around 50°C, at which both carriers were easily dissolved but model drugs remained in solid form. The physicochemical properties of the hot-melt extrudates, including differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR), were measured. Content uniformity of the drugs was also checked by HPLC. CLSM imaging showed that model drugs were well distributed throughout the hot-melt extrudate, giving better content uniformity with low batch-to-batch variations compared with simple physical mixtures. DSC, PXRD and FT-IR data showed that there was no interaction or interference between model drugs and thermosensitive polymers. The current HME methods could be used to prepare uniformly distributed and reproducible solid dosage forms containing very low dose drugs for further pharmaceutical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Computation and measurement of air temperature distribution of an industrial melt blowing die

    Directory of Open Access Journals (Sweden)

    Wu Li-Li

    2014-01-01

    Full Text Available The air flow field of the dual slot die on an HDF-6D melt blowing non-woven equipment is computed numerically. A temperature measurement system is built to measure air temperatures. The computation results tally with the measured results proving the correctness of the computation. The results have great valuable significance in the actual melt blowing production.

  10. Statistical topography as a mechanistic model for the geometry & size distribution of tidal mud puddles, Arctic melt ponds, & terrestrial lakes

    Science.gov (United States)

    Barry, Brendan

    2015-11-01

    Studies over the last decade have reported power law distributions for the sizes of terrestrial lakes & Arctic melt ponds, as well as relationships between their area & the fractal dimension of their contours. These systems are important for the climate system, in terms of carbon cycling & ice-albedo feedback, respectively; these distributions offer promise for improved quantification & description of their influence. However, a mechanistic explanation of their distribution is lacking, & both systems remain difficult to observe logistically. Here we report 1) a simple mechanistic model for the distribution of lakes & melt ponds, based on statistical topography, which neatly predicts their distribution & the relationship between area & fractal dimension, as well as 2) the existence of a similar phenomena in tidal mud flats. Data was collected at low tide in a tidal bed near Damariscotta, Maine, which reveals a power law size distribution over a large dynamic range & a well-defined compatible fractal dimension. This data set significantly extends the observed spatiotemporal range of such phenomena, & suggests this easily observable system may be an ideal model for lakes & melt ponds. MIT-WHOI Jiont Program, Physical Oceanography.

  11. High seismic attenuation at a mid-ocean ridge reveals the distribution of deep melt.

    Science.gov (United States)

    Eilon, Zachary C; Abers, Geoffrey A

    2017-05-01

    At most mid-ocean ridges, a wide region of decompression melting must be reconciled with a narrow neovolcanic zone and the establishment of full oceanic crustal thickness close to the rift axis. Two competing paradigms have been proposed to explain melt focusing: narrow mantle upwelling due to dynamic effects related to in situ melt or wide mantle upwelling with lateral melt transport in inclined channels. Measurements of seismic attenuation provide a tool for identifying and characterizing the presence of melt and thermal heterogeneity in the upper mantle. We use a unique data set of teleseismic body waves recorded on the Cascadia Initiative's Amphibious Array to simultaneously measure seismic attenuation and velocity across an entire oceanic microplate. We observe maximal differential attenuation and the largest delays ([Formula: see text] s and δTS ~ 2 s) in a narrow zone seismic quality factor (Qs ≤ 25) is among the lowest observed worldwide. Models harnessing experimentally derived anelastic scaling relationships require a 150-km-deep subridge region containing up to 2% in situ melt. The low viscosity and low density associated with this deep, narrow melt column provide the conditions for dynamic mantle upwelling, explaining a suite of geophysical observations at ridges, including electrical conductivity and shear velocity anomalies.

  12. Real-time qualitative study of forsterite crystal - Melt lithium distribution by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Lebedev, V. F.; Makarchuk, P. S.; Stepanov, D. N.

    2017-11-01

    A factor of lithium distribution between single-crystal forsterite (Cr,Li:Mg2SiO4) and its melt are studied by laser-induced breakdown spectroscopy. Lithium content in the crystalline phase is found to achieve a saturation at relatively low Li concentration in the melt (about 0.02%wt.). An algorithm and software are developed for real-time analysis of the studied spectra of lithium trace amounts at wide variation of the plasma radiation intensity. The analyzed plasma spectra processing method is based on the calculation of lithium emission part in the total emission of the target plasma for each recorded spectrum followed by the error estimation for the series of measurements in the normal distribution approximation.

  13. Effect of Anodic Polarization on Layer-Growth of Fe-Ni-Cr Anodes in Cryolite-Alumina Melts

    Science.gov (United States)

    Ndong, GermainKouma; Xue, Jilai; Feng, Luxing; Zhu, Jun

    High-temperature corrosion behaviors of Fe-Ni-Cr alloy as inert anodes for aluminum electrolysis have been studied. The effect of anodic overpotential on layer growth of anodic surface is specially considered. The corrosion layers on the anodes tested were analyzed using XRD and SEM-EDS to provide a fundamental understanding of the layers growth at metallic anode surface. The dissolution of the scale layers on the metal anode occurred with low overpotential, while AlxM3-xO4 spinel phase within the scale layers was found with an increased overpotential. A mixture of multiple MyO layers existed on the anode substrate. The results may be useful for understanding and controlling the corrosion behaviors of Fe-Ni-Cr anode for potential application in aluminum electrolysis.

  14. Distribution of /sup 124/Sb and /sup 110/Ag in iron, cobalt and copper in arc zone melting

    Energy Technology Data Exchange (ETDEWEB)

    Kuchar, L.; Wozniakova, B.; Duzi, P.; Drapala, J. (Vysoka Skola Banska, Ostrava (Czechoslovakia). Katedra Nezeleznych Kovu a Jaderne Metalurgie)

    1978-01-01

    The radionuclide of the admixture under study was metallurgically alloyed into the base metal in a concentration of 10/sup -3/ to 10/sup -5/ per cent and zone melting proceeded using arc equipment. The radionuclide concentration measurement was done using the slot method allowing statistical study of the admixture in the base material and the calculation of the values of the efficient distribution coefficient. The value of the efficient distribution coefficient of /sup 124/Sb in iron was determined to be ksub(ef)=0.775 as the mean value for an iron ingot melted six times at a feed speed of 2.7x10/sup -3/ cm.s/sup -1/, which corresponded to the steady-state distribution coefficient of k/sub 0/=0.3. Similarly, for /sup 110/Ag in copper, ksub(ef)=0.885 for a feed speed of 4x10/sup -3/ cm.s/sup -1/, ksub(ef)=0.742 for a speed of 2x10/sup -3/ cm.s/sup -1/. The steady-state distribution coefficient k/sub 0/=0.3. For /sup 110/Ag and /sup 124/Sb in copper the respective coefficients were k/sub 0/=0.01 and k/sub 0/=0.1.

  15. Role of melt behavior in modifying oxidation distribution using an interface incorporated model in selective laser melting of aluminum-based material

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Dongdong, E-mail: dongdonggu@nuaa.edu.cn; Dai, Donghua [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016 (China); Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016 (China)

    2016-08-28

    A transient three dimensional model for describing the molten pool dynamics and the response of oxidation film evolution in the selective laser melting of aluminum-based material is proposed. The physical difference in both sides of the scan track, powder-solid transformation and temperature dependent physical properties are taken into account. It shows that the heat energy tends to accumulate in the powder material rather than in the as-fabricated part, leading to the formation of the asymmetrical patterns of the temperature contour and the attendant larger dimensions of the molten pool in the powder phase. As a higher volumetric energy density is applied (≥1300 J/mm{sup 3}), a severe evaporation is produced with the upward direction of velocity vector in the irradiated powder region while a restricted operating temperature is obtained in the as-fabricated part. The velocity vector continuously changes from upward direction to the downward one as the scan speed increases from 100 mm/s to 300 mm/s, promoting the generation of the debris of the oxidation films and the resultant homogeneous distribution state in the matrix. For the applied hatch spacing of 50 μm, a restricted remelting phenomenon of the as-fabricated part is produced with the upward direction of the convection flow, significantly reducing the turbulence of the thermal-capillary convection on the breaking of the oxidation films, and therefore, the connected oxidation films through the neighboring layers are typically formed. The morphology and distribution of the oxidation are experimentally acquired, which are in a good agreement with the results predicted by simulation.

  16. High seismic attenuation at a mid-ocean ridge reveals the distribution of deep melt

    Science.gov (United States)

    Eilon, Z.; Abers, G. A.

    2016-12-01

    Measurements of seismic velocity and attenuation provide complementary constraints on the thermal and compositional character of the Earth's interior. In particular, observations of attenuation hold promise for identifying and characterizing the presence of melt and thermal heterogeneity in the upper mantle. By measuring relative phase and amplitude spectra of teleseismic body waves recorded on three years of Cascadia Initiative ocean-bottom seismometers, we calculate differential attenuation across an entire oceanic plate, exploiting the unprecedented coverage from ridge to trench. This study comprises the most detailed body wave interrogation of mid-ocean ridge attenuation to date. We find a strong age-dependency to the apparent attenuation and travel time: maximal attenuation and delays (Δt*S 1.7 s and δTS 2 s) are observed at stations ≤50 km from the Juan de Fuca and Gorda ridge axes, and lowest attenuation is seen at stations on 4-8 Ma crust. The high attenuation implies quality factor (Q) on the order of 20 beneath the mid-ocean ridge - comparable to the lowest Q previously recorded worldwide, in the Lau back-arc. Observed phase spectra, absolute amplitudes, and travel times are not compatible with extrinsic sources of apparent attenuation (scattering or focusing) and imply anelastic dissipation in shear. The increase in ∆t* between 0-4 Ma of the spreading centers is inconsistent with a purely thermal control on attenuation. Rather, several lines of evidence point to a large, localized contribution from deep (>60 km) melt beneath the spreading centers, while the gradual diminution in attenuation with crustal age hints at ponded sub-lithospheric melt 50-100 km off axis. Simple synthetic models harnessing experimentally-derived anelastic scaling relationships indicate that the observations can be satisfied by a sub-ridge region in which up to 2% in situ melt enhances diffusivity and reduces diffusion creep shear viscosity by three orders of magnitude over

  17. The Influence of Constitutional Supercooling on the Distribution of Te-Particles in Melt-Grown CZT

    Science.gov (United States)

    Henager, Charles H.; Alvine, Kyle J.; Bliss, Mary; Riley, Brian J.; Stave, Jean A.

    2015-11-01

    A section of a vertical gradient freeze Cd0.9Zn0.1Te boule approximately 2100 mm3 with a planar area of 300 mm2 was prepared and examined using transmitted infrared microscopy at various magnifications to determine the three-dimensional spatial and size distributions of Te-particles over large longitudinal and radial length scales. Te-particle density distributions were determined as a function of longitudinal and radial positions in these strips and exhibited a multi-modal log-normal size density distribution that indicated a slight preference for increasing size with longitudinal growth time, while showing a pronounced cellular network structure. Higher magnification images revealed a typical Rayleigh-instability pearl string morphology with large and small satellite droplets. This study includes solidification experiments in small crucibles of 30:70 mixtures of Cd:Te performed over a wide range of cooling rates which clearly demonstrated a growth instability with Te-particle capture that is suggested to be responsible for one of the peaks in the size distribution using size discrimination visualization. The results are discussed with regard to a manifold Te-particle genesis history as Te-particle direct capture from melt-solid growth instabilities due to constitutional supercooling and as Te-particle formation from the breakup of Te-ribbons via a Rayleigh-Plateau instability.

  18. Sea Ice Pressure Ridge Height Distributions for the Arctic Ocean in Winter, Just Prior to Melt

    Science.gov (United States)

    Duncan, K.; Farrell, S. L.; Richter-Menge, J.; Hutchings, J.; Dominguez, R.; Connor, L. N.

    2016-12-01

    Pressure ridges are one of the most dominant morphological features of the Arctic sea ice pack. An impediment to navigation, pressure ridges are also of climatological interest since they impact the mass, energy and momentum transfer budgets for the Arctic Ocean. Understanding the regional and seasonal distributions of ridge sail heights, and their variability, is important for quantifying total sea ice mass, and for improved treatment of sea ice dynamics in high-resolution numerical models. Observations of sail heights from airborne and ship-based platforms have been documented in previous studies, however studies with both high spatial and temporal resolution, across multiple regions of the Arctic, are only recently possible with the advent of dedicated airborne surveys of the Arctic Ocean. In this study we present results from the high-resolution Digital Mapping System (DMS), flown as part of NASA's Operation IceBridge missions. We use DMS imagery to calculate ridge sail heights, derived from the shadows they cast combined with the solar elevation angle and the known pixel size of each image. Our analyses describe sea ice conditions at the end of winter, during the months of March and April, over a period spanning seven years, from 2010 to 2016. The high spatial resolution (0.1m) and temporal extent (seven years) of the DMS data set provides, for the first time, the full sail-height distributions of both first-year and multi-year sea ice. We present the inter-annual variability in sail height distributions for both the Central Arctic and the Beaufort and Chukchi Seas. We validate our results via comparison with spatially coincident high-resolution SAR imagery and airborne laser altimeter elevations.

  19. Frequency and distribution of winter melt events from passive microwave satellite data in the pan-Arctic, 1988-2013

    Science.gov (United States)

    Wang, Libo; Toose, Peter; Brown, Ross; Derksen, Chris

    2016-11-01

    This study presents an algorithm for detecting winter melt events in seasonal snow cover based on temporal variations in the brightness temperature difference between 19 and 37 GHz from satellite passive microwave measurements. An advantage of the passive microwave approach is that it is based on the physical presence of liquid water in the snowpack, which may not be the case with melt events inferred from surface air temperature data. The algorithm is validated using in situ observations from weather stations, snow pit measurements, and a surface-based passive microwave radiometer. The validation results indicate the algorithm has a high success rate for melt durations lasting multiple hours/days and where the melt event is preceded by warm air temperatures. The algorithm does not reliably identify short-duration events or events that occur immediately after or before periods with extremely cold air temperatures due to the thermal inertia of the snowpack and/or overpass and resolution limitations of the satellite data. The results of running the algorithm over the pan-Arctic region (north of 50° N) for the 1988-2013 period show that winter melt events are relatively rare, totaling less than 1 week per winter over most areas, with higher numbers of melt days (around two weeks per winter) occurring in more temperate regions of the Arctic (e.g., central Québec and Labrador, southern Alaska and Scandinavia). The observed spatial pattern is similar to winter melt events inferred with surface air temperatures from the ERA-Interim (ERA-I) and Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis datasets. There was little evidence of trends in winter melt event frequency over 1988-2013 with the exception of negative trends over northern Europe attributed to a shortening of the duration of the winter period. The frequency of winter melt events is shown to be strongly correlated to the duration of winter period. This must be taken into

  20. Phase transition from cubic to monoclinic phase in cryolite (NH sub 4) sub 3 ScF sub 6 - investigation by Raman spectroscopy

    CERN Document Server

    Vtyurin, A N; Afanasev, M L; Belyu, A; Shebanin, A P

    2001-01-01

    The studies on the transition from the cubic to monoclinic phase in the (NH sub 4) sub 3 ScF sub 6 cryolite crystal are accomplished through the Raman spectroscopy method. The sharp anomalies of frequencies and half-widths of the RS lines, corresponding to the internal oscillations of the ScF sub 6 sup 3 sup + ions, and also the lattice oscillations were observed; the condensation of the soft lattice node was not identified. The conclusion is made that the studied phase transition is connected mainly with the orientation ordering of these ions

  1. Flocculation alters the distribution and flux of melt-water supplied sediments and nutrients in the Arctic

    DEFF Research Database (Denmark)

    Markussen, Thor Nygaard; Andersen, Thorbjørn Joest; Ernstsen, Verner Brandbyge

    In the Arctic, thawing permafrost and increased melting of glaciers are important drivers for changes in fine-grained sediment supply and biogeochemical fluxes from land to sea. Flocculation of particles is a controlling factor for the magnitude of fluxes and deposition rates in the marine...... environment but comparatively little is known about the flocculation processes in the Arctic. We investigated flocculation dynamics from a melt-water river in the inner Disko Fjord, West Greenland. A novel, laser-illuminated camera system significantly improved the particle size measurement capabilities...... and settling tubes were sampled to enable sub-sampling of different floc size fractions. Flocculation was observed during periods with low turbulent shear and also at the front of the fresh water plume resulting in significant volumes of large sized flocs at depth below the plume. The floc sizes and volumes...

  2. Basal terraces on melting ice shelves

    National Research Council Canada - National Science Library

    Dutrieux, Pierre; Stewart, Craig; Jenkins, Adrian; Nicholls, Keith W; Corr, Hugh F. J; Rignot, Eric; Steffen, Konrad

    2014-01-01

    Ocean waters melt the margins of Antarctic and Greenland glaciers, and individual glaciers' responses and the integrity of their ice shelves are expected to depend on the spatial distribution of melt...

  3. Melting ice

    Science.gov (United States)

    Benedetto, Elmo

    2018-01-01

    In this brief frontline, we want to describe the well-known fact that, when freshwater ice melts, the freshwater liquid level does not change. In the Italian Ministerial programs, fluid statics is introduced in the three years of middle school (students of 11–13 years) and during the first two years of high school (14–15 years). The Italian textbooks do not clearly explain why the abovementioned phenomenon occurs. The explanations are qualitative and they may lead to misinterpretation. I have noted that the students are very curious about this phenomenon. They sought a demonstration from books and from the web; and when they do not find it they asked me. Moreover, they have allowed me to observe that there are contradictory statements about the melting of icebergs. Some authors claim that they would not raise the sea-level, others say the opposite. Honestly speaking, I had never thought about this phenomenon and in classroom I tried to give them proof, expressing my opinion about the melting of icebergs.

  4. Agglomeration and size distribution of debris in DEFOR-A experiments with Bi{sub 2}O{sub 3}–WO{sub 3} corium simulant melt

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Karbojian, Aram, E-mail: aram@safety.sci.kth.se; Tran, Chi-Thanh, E-mail: thanh@safety.sci.kth.se; Villanueva, Walter, E-mail: walter@safety.sci.kth.se

    2013-10-15

    Highlights: • Debris agglomeration in case of melt pouring into a coolant is experimentally investigated. • The effects of jet diameter, melt superheat and water subcooling are addressed. • Most influential factor which can significantly increase fraction of agglomerates is melt superheat. • Rapid decrease of the fraction of agglomerates as a function of water depth is obtained in all cases. • Provided data is valuable for model development and code validation. -- Abstract: Flooding of lower drywell has been adopted as a cornerstone of severe accident management strategy in Nordic type Boiling Water Reactors (BWR). It is assumed that the melt ejected into a deep pool of water will fragment, quench and form a porous debris bed coolable by natural circulation. If debris bed is not coolable, then dryout and possibly re-melting of the debris can occur. Melt attack on the containment basemat can threaten containment integrity. Agglomeration of melt debris and formation of solid “cake” regions provide a negative impact on coolability of the porous debris bed. In this work we present results of experimental investigation on the fraction of agglomerated debris obtained in the process of hot binary oxidic melt pouring into a pool of water. The Debris Bed Formation and Agglomeration (DEFOR-A) experiments provide data about the effects of the pool depth and water subcooling, melt jet diameter, and initial melt superheat on the fraction of agglomerated debris. The data presents first systematic study of the debris agglomeration phenomena and facilitates understanding of underlying physics which is necessary for development and validation of computational codes to enable prediction of the debris bed coolability in different scenarios of melt release.

  5. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils

    Directory of Open Access Journals (Sweden)

    Bootello, M. A.

    2016-09-01

    Full Text Available The composition and distribution of fatty acids in triacylglycerol (TAG molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.La composición y distribución de los ácidos grasos en las moléculas de triglicéridos se consideran factores determinantes en las propiedades físicas de los aceites y grasas. La distribución de ácidos grasos en un determinado aceite o grasa puede caracterizarse mediante un coeficiente de asimetría α, calculado a partir de las composiciones de triglicéridos y de ácidos grasos en la posición sn-2 de la molécula de triglicérido mediante hidrólisis con lipasa. El aceite de girasol alto oleico-alto esteárico es una grasa estable y saludable, adecuada para reemplazar a los aceites vegetales hidrogenados y fracciones de palma en muchos productos alimentarios, como grasas plásticas y grasas de confitería. En el presente trabajo, se formularon diferentes aceites alto oleico-alto esteárico con diferente distribución de los ácidos grasos saturados en

  6. Prevalence of human papillomavirus infection and genotype distribution determined by the cyclic-catcher melting temperature analysis in Korean medical checkup population.

    Science.gov (United States)

    Kim, Yun-Jee; Kwon, Min-Jung; Woo, Hee-Yeon; Paik, Soon-Young

    2013-10-01

    Although cytology screening has reduced the incidence and mortality rate of cervical cancer significantly, its usefulness is limited to samples from the site of the lesion, resulting in its low sensitivity and unsuitability for use in medical checkups. The purpose of the present study was to evaluate the prevalence of HPV infection using genotype distribution and to analyze the correlation of the HPV DNA test results with cytological results. We also evaluated the benefits of quantitative information obtained from cyclic-catcher melting temperature analysis (CMTA) in screening for cervical cancer. We performed cyclic-CMTA using Anyplex™ II HPV28 Detection in combination with cervical cytology for 2,181 subjects. The following HPV positivity types were detected using cyclic-CMTA and HPV positivity was found to increase together with the severity of the cytology results: (1) For 419 HPV positive specimens, HPV DNA was detected in 18.1% of normal specimens, 78.3% of ASCUS, and all of LSIL and HSIL; (2) high-risk HPV DNAs were detected in 63.3% of normal (N=547), 65.9% of ASCUS (N=41), 76.9% of LSIL (N=13), and 88.9% of HSIL (N=9) among total detected HPV DNA regardless multiple detection; (3) multiple HPV genotypes were detected in 4.8% of normal specimens (N=2,146), 52.2% of ASCUS (N=23), 57.1% of LSIL (N=7), and 40.0% of HSIL (N=5). In addition, a high level of viral DNA was observed using cyclic-CMTA in all specimens beyond the LSIL stage according to cytology, while only 6% of specimens with normal cytology showed a correlation with viral quantitation by cyclic-CMTA. The combination of HPV genotyping with a quantitative assay and cytology will allow for a more accurate diagnosis of cervical cancer.

  7. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Directory of Open Access Journals (Sweden)

    Massimiliano Tirone

    2017-10-01

    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  8. Analyzing dynamics of snow distribution and melt runoff in a meso-scaled watershed using the AgroEcoSystem-Watershed (AgES-W) model

    Science.gov (United States)

    Kunz, A.; Helmschrot, J.; Green, T. R.

    2013-12-01

    The seasonal snow cover in the western mountain regions of the United States functions as the primary supply and storage of water. Water management in these areas is often based on empirical relationships between point measurements of snow water equivalent (SWE) at selected sites and associated stream discharge. With a climate shifting towards more rain and less snow, due to the global warming, the patterns of snow deposition, and consequently the timing of melt, soil water content and the flow in streams and rivers will most likely alter. As a consequence, the established relationships between measured SWE and runoff will become unstable and unreliable, and consequently impacting the water resource management in this area. To better assess and understand the spatial and temporal dimension of altered snow cover on runoff generation in the intermountain region of the western United States, we set up the distributed hydrological AgroEcoSystem-Watershed (AgES-W) model for the Reynolds Creek Experimental Watershed (239 km2) in the Owyhee Mountains of Idaho. The study area with elevations ranging from 1101 to 2241 m is dominated by granitic and volcanic rocks and lake sediments. Deep moist soils allowing for mountain big sagebrush aspen and subalpine fir are found at higher elevations, whereas shallow, arid soils supporting sagebrush-grassland communities are common at lower elevations. Precipitation in the region varies from 230 mm at the lower elevations in the north up to 1100 mm in the higher regions at the southern margin south. The mean annual streamflow at the outlet is 0.56 m3/s. Since the Reynolds Creek Experimental Watershed (RCEW) was selected as a test basin in 1959, a comprehensive hydro-climatological network provides long-term records of daily snow, precipitation, temperature and streamflow measurements. Thus, we used a 30-year data record to calibrate and validate the AgES-W model to three nested sub-basins within the test site. First results show

  9. Modelling the runoff regime of the glacierised upper Aconcagua River Basin using a distributed hydrological model: a multi-criteria approach for simulations of glacier and snow melt contributions to streamflow

    Science.gov (United States)

    Ragettli, Silvan; Pellicciotti, Francesca; Molnar, Darcy; Rimkus, Stefan; Helbing, Jakob; Escobar, Fernando; Burlando, Paolo

    2010-05-01

    In the Central Andes of Chile the interactions between snow, glaciers and water resources are governed by a distinct climatological forcing. Summers are dry and stable, with precipitation close to zero, low relative humidity and intense solar radiation. During the summer months, water originates almost exclusively from snow and ice melt. Evidence of glaciers retreat and changes in the seasonal snow cover suggests that climate change might have an impact on the water resources in the area. We use the physically-based, spatially-distributed hydrological model TOPKAPI to study the processes governing the exchange between the climate, snow and ice in the upper Aconcagua River Basin. The model incorporates the melting of snow and ice based on a simplified energy-balance approach (ETI model) and the routing of melt water through the glacial system. The model has numerous empirical parameters used in the computation of the single components of the hydrological cycle, the determination of which might lead to problems of equifinality. To address this issue we set up a rigorous calibration procedure that allows calibration of the main model parameters in three different steps by separating parameters governing distinct processes. We evaluate the parameters' transferability in time and investigate the differences in model parameters and performance that result from applying the model at different spatial scales. The model ability to simulate the relevant processes is tested against a data set of meteorological data, measurements of surface ablation and glacier runoff at the snout of the Juncal Norte Glacier during two ablation seasons. Modelled snow height is compared to snow maps derived from terrestrial photos. Results show that the magnitude of snow and icemelt rates on the glacier tongue is correctly reproduced, but simulations at higher elevation have a larger uncertainty. Crucial factors affecting model performance are the model ability to simulate the redistribution of

  10. Submarine melt rates under Greenland's ice tongues

    Science.gov (United States)

    Wilson, Nat; Straneo, Fiametta; Heimbach, Patrick; Cenedese, Claudia

    2017-04-01

    The few remaining ice tongues (ice-shelf like extensions) of Greenland's glaciers are undergoing rapid changes with potential implications for the stability of the ice sheet. Submarine melting is recognized as a major contributor to mass loss, yet the magnitude and spatial distribution of melt are poorly known or understood. Here, we use high resolution satellite imagery to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues: Ryder Glacier, Petermann Glacier and Nioghalvfjerdsbræ (79 North Glacier). We find that submarine plus aerial melt approximately balance the ice flux from the grounded ice sheet for the first two while at Nioghalvfjerdsbræ the total melt flux exceeds the inflow of ice indicating thinning of the ice tongue. We also show that melt rates under the ice tongues vary considerably, exceeding 60 m yr-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. Using derived melt rates, we test simplified melt parameterizations appropriate for ice sheet models and find the best agreement with those that incorporate ice tongue geometry in the form of depth and slope.

  11. Earth-based 12.6-cm wavelength radar mapping of the Moon: New views of impact melt distribution and mare physical properties

    Science.gov (United States)

    Campbell, Bruce A.; Carter, Lynn M.; Campbell, Donald B.; Nolan, Michael; Chandler, John; Ghent, Rebecca R.; Ray Hawke, B.; Anderson, Ross F.; Wells, Kassandra

    2010-08-01

    We present results of a campaign to map much of the Moon's near side using the 12.6-cm radar transmitter at Arecibo Observatory and receivers at the Green Bank Telescope. These data have a single-look spatial resolution of about 40 m, with final maps averaged to an 80-m, four-look product to reduce image speckle. Focused processing is used to obtain this high spatial resolution over the entire region illuminated by the Arecibo beam. The transmitted signal is circularly polarized, and we receive reflections in both senses of circular polarization; measurements of receiver thermal noise during periods with no lunar echoes allow well-calibrated estimates of the circular polarization ratio (CPR) and the four-element Stokes vector. Radiometric calibration to values of the backscatter coefficient is ongoing. Radar backscatter data for the Moon provide information on regolith dielectric and physical properties, with particular sensitivity to ilmenite content and surface or buried rocks with diameter of about one-tenth the radar wavelength and larger. Average 12.6-cm circular polarization ratio (CPR) values for low- to moderate-TiO 2 mare basalt deposits are similar to those of rough terrestrial lava flows. We attribute these high values to abundant few-centimeter diameter rocks from small impacts and a significant component of subsurface volume scattering. An outflow deposit, inferred to be impact melt, from Glushko crater has CPR values near unity at 12.6-cm and 70-cm wavelengths and thus a very rugged near-surface structure at the decimeter to meter scale. This deposit does not show radar-brightness variations consistent with levees or channels, and appears to nearly overtop a massif, suggesting very rapid emplacement. Deposits of similar morphology and/or radar brightness are noted for craters such as Pythagoras, Rutherfurd, Theophilus, and Aristillus. Images of the north pole show that, despite recording the deposition of Orientale material, Byrd and Peary craters do

  12. Hadron melting and QCD thermodynamics

    OpenAIRE

    Jakovac, A.

    2013-01-01

    We study in this paper mechanisms of hadron melting based on the spectral representation of hadronic quantum channels, and examine the hadron width dependence of the pressure. The findings are applied to a statistical hadron model of QCD thermodynamics, where hadron masses are distributed by the Hagedorn model and a uniform mechanism for producing hadron widths is assumed. According to this model the hadron - quark gluon plasma transition occurs at $T\\approx 200$-250 MeV, the numerically obse...

  13. Melt containment member

    Science.gov (United States)

    Rieken, Joel R.; Heidloff, Andrew J.

    2014-09-09

    A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

  14. Snow-melt flood frequency analysis by means of copula based 2D probability distributions for the Narew River in Poland

    Directory of Open Access Journals (Sweden)

    Bogdan Ozga-Zielinski

    2016-06-01

    New hydrological insights for the region: The results indicated that the 2D normal probability distribution model gives a better probabilistic description of snowmelt floods characterized by the 2-dimensional random variable (Qmax,f, Vf compared to the elliptical Gaussian copula and Archimedean 1-parameter Gumbel–Hougaard copula models, in particular from the view point of probability of exceedance as well as complexity and time of computation. Nevertheless, the copula approach offers a new perspective in estimating the 2D probability distribution for multidimensional random variables. Results showed that the 2D model for snowmelt floods built using the Gumbel–Hougaard copula is much better than the model built using the Gaussian copula.

  15. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes.

    Science.gov (United States)

    Lu, X; Nakajima, K; Sakanakura, H; Matsubae, K; Bai, H; Nagasaka, T

    2012-06-01

    Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  17. MELTED BUTTER TECHNOLOGY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    L. V. Golubeva

    2014-01-01

    Full Text Available Summary. Melted butter is made from dairy butter by rendering the fat phase. It has specific taste and aroma, high-calorie content and good assimilability. Defects of butter which appeared during the storage causes by the development of microbiological processes or by the chemical oxidation. On the development of these processes influence quality and composition of fresh butter, its physical structure, content of the increased amount of gas phase and content of heavy metals, storage conditions. Microbiological spoilage of butter occurs generally due to damage of plasma which is good environment for the development of microorganisms. Defects of microbiological origin include: unclean, sour, moldy, yeasty, cheesy, bitter taste. Defects of test and smell chemical origin are formed due to hydrolytic digestion of lipids. It's prevailed at long storage of butter in the conditions of freezing temperatures. It's picked out the following main processes of spoiling: souring, acidifying and sallowness. Often these processes take place simultaneously.It has been investigated melted butter with lactated additive. The latter improves the microbiological and toxicological safety, prolongs the storage condition of the products. Technological efficiency of the additives is achieved by a multilayer products formation from the inactive bound water, preventing microorganisms growth and by the barrier layer with lactate inhibiting hydrolytic reactions. Oil samples were obtained with the batch-type butter maker application, then they were melted and after that lactated additive were supplemented. It has been studied organoleptic and physico-chemical indices of the melted butter samples. The fatty-acid composition of melted butter were studied. Comparative analysis of fatty-acid composition of cow's milk fat and produced melted butter has shown their similarity. Also in the last sample there is increased weight fraction of linoleic and linolenic acids. The obtained

  18. Experimental evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite

    Science.gov (United States)

    Miller, Kevin J.; Zhu, Wen-lu; Montési, Laurent G. J.; Gaetani, Glenn A.; Le Roux, Véronique; Xiao, Xianghui

    2016-08-01

    Observations of dunite channels in ophiolites and uranium series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. We present experimental evidence that spatial variations in mineralogy can also focus melt on the grain scale. This lithologic melt partitioning, which results from differences in the interfacial energies associated with olivine-melt and orthopyroxene-melt boundaries, may complement other melt focusing mechanisms in the upper mantle such as mechanical shear and pyroxene dissolution. We document here lithologic melt partitioning in olivine-/orthopyroxene-basaltic melt samples containing nominal olivine to orthopyroxene ratio of 3 to 2 and melt fractions of 0.02 to 0.20. Experimental samples were imaged using synchrotron-based X-ray microcomputed tomography at a resolution of 700 nm per voxel. By analyzing the local melt fraction distributions associated with olivine and orthopyroxene grains in each sample, we found that the melt partitioning coefficient, i.e., the ratio of melt fraction around olivine to that around orthopyroxene grains, varies between 1.1 and 1.6. The permeability and electrical conductivity of our digital samples were estimated using numerical models and compared to those of samples containing only olivine and basaltic melt. Our results suggest that lithologic melt partitioning and preferential localization of melt around olivine grains might play a role in melt focusing, potentially enhancing average melt ascent velocities.

  19. Critical porosity of melt segregation during crustal melting: Constraints from zonation of peritectic garnets in a dacite volcano

    Science.gov (United States)

    Yu, Xun; Lee, Cin-Ty A.

    2016-09-01

    The presence of leucogranitic dikes in orogenic belts suggests that partial melting may be an important process in the lower crust of active orogenies. Low seismic velocity and low electrical resistivity zones have been observed in the lower crust of active mountain belts and have been argued to reflect the presence of partial melt in the deep crust, but volcanoes are rare or absent above many of these inferred melt zones. Understanding whether these low velocity zones are melt-bearing, and if so, why they do not commonly erupt, is essential for understanding the thermal and rheologic structure of the crust and its dynamic evolution. Central to this problem is an understanding of how much melt can be stored before it can escape from the crust via compaction and eventually erupt. Experimental and theoretical studies predict trapped melt fractions anywhere from 30%. Here, we examine Mn growth-zoning in peritectic garnets in a Miocene dacite volcano from the ongoing Betic-Rif orogeny in southern Spain to estimate the melt fraction at the time of large-scale melt extraction that subsequently led to eruption. We show that the melt fraction at segregation, corresponding approximately to the critical melt porosity, was ∼30%, implying significant amounts of melt can be stored in the lower crust without draining or erupting. However, seismic velocities in the lower crust beneath active orogenic belts (southern Spain and Tibet) as well as beneath active magmatic zones (e.g., Yellowstone hotspot) correspond to average melt porosities of <10%, suggesting that melt porosities approaching critical values are short-lived or that high melt porosity regions are localized into heterogeneously distributed sills or dikes, which individually cannot be resolved by seismic studies.

  20. Bubble removal and sand dissolution in an electrically heated glass melting channel with defined melt flow examined by mathematical modelling

    Czech Academy of Sciences Publication Activity Database

    Hrbek, L.; Kocourková, P.; Jebavá, Marcela; Cincibusová, P.; Němec, Lubomír

    2017-01-01

    Roč. 456, JAN 15 (2017), s. 101-113 ISSN 0022-3093 Institutional support: RVO:67985891 Keywords : glass melt flow * mathematical modelling * energy distribution * space utilization * melting performance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.124, year: 2016

  1. Melting Process of Clathrate in a Rectangular Cell

    Science.gov (United States)

    Chiba, Takashi; Okada, Masashi; Matsumoto, Koji

    In order to clarify the mechanism of heat transfer during melting of a clathrate in rectangular cells, two melting processes, namely, two-dimensional melting process with natural convection from a vertical wall and one-dimensional melting process by heat conduction from an upper horizontal wall, are studied experimentally. The R-141b was used for generating clathrate. One experiment was carried out by melting the clathrate filled into a 150mm high and 100mm wide rectangular cell from a vertical wall. And in the other experiment, the clathrate was melted from the upper horizontal wall of a rectangular cell with 88mm height and 180mm width. The temperature distributions in cells were measured. The melting front was measured by pictures taken on fixed times. The concentration of freon in the melt was measured by gas-chromatography. The following results are obtained. (1) In the melting process, the clathrate decomposes into an emulsion region which is a water-freon mixture and a liquid freon region under the emulsion. (2) Concentration gradient of freon in the emulsion plyas an important role in the natural convection in the melt. The Nusselt number on the heated vertical wall is depressed by the concentration gradients.

  2. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...... spectroscopy analysis of gases liberated during heating of the glass reveals that small bubbles contain predominantly CH4, CO and CO2, whereas large bubbles bear N2, SO2 and H2S. The methodology utilised in this work can, besides mapping the bubbles in a glass, be applied to shed light on the sources of bubble...

  3. Nonlinear response of iceberg side melting to ocean currents

    Science.gov (United States)

    FitzMaurice, A.; Cenedese, C.; Straneo, F.

    2017-06-01

    Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg is not fully captured by existing parameterizations. We present a series of novel laboratory experiments to determine the dependence of submarine melting along iceberg sides on a background flow. We show, for the first time, that two distinct regimes of melting exist depending on the flow magnitude and consequent behavior of melt plumes (side-attached or side-detached), with correspondingly different meltwater spreading characteristics. When this velocity dependence is included in melt parameterizations, melt rates estimated for observed icebergs in the attached regime increase, consistent with observed iceberg submarine melt rates. We show that both attached and detached plume regimes are relevant to icebergs observed in a Greenland fjord. Further, depending on the regime, iceberg meltwater may either be confined to a surface layer or distributed over the iceberg draft.

  4. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  5. Viscosity Measurement for Tellurium Melt

    Science.gov (United States)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  6. Melting graft wound syndrome

    Directory of Open Access Journals (Sweden)

    Shiou-Mei Chen

    2017-09-01

    Full Text Available Melting graft wound syndrome is characterized by progressive epidermal loss from a previously well-taken skin graft, healed burn, or donor site. It may result in considerable morbidity and require prolonged treatment. We report a 23-year-old flame-burned patient with second- to third-degree burns involving more than 70% of the total body surface area, whose condition was complicated with septic shock. The patient presented with erosions and ulcers occurring on previously well-taken skin graft recipient sites over both legs and progressive epidermal loss on donor sites over the back. The patient's presentation was compatible with the diagnosis of melting graft wound syndrome, and we successfully treated the patient with debridement and supportive treatment.

  7. Investigating evaporation of melting ice particles within a bin melting layer model

    Science.gov (United States)

    Neumann, Andrea J.

    Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the

  8. The effect of melting temperature and time on the TiC particles

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Kun [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Ji' nan 250061 (China); Liu Xiangfa, E-mail: xfliu@sdu.edu.c [Key Laboratory of Materials Liquid Structure and Heredity, Ministry of Education, Shandong University, Ji' nan 250061 (China)

    2009-09-18

    In the present work, the microstructure formation process and particle size distribution of TiC in Al-Ti-C master alloys are investigated by particle size analysis, which is based on the morphology characterizing from scanning electron microscopy (SEM). The TiC particle size distributions at different melting temperatures and during different melting times are researched. It is demonstrated that the TiC particle sizes increase with melting temperature and melting time elapsed. The micro size particles appear when the melting temperature is high enough.

  9. Melting the Divide

    Science.gov (United States)

    Gibson, S. M.

    2014-12-01

    Presenting Quaternary Environmental Change to students who fall into Widening Participation criteria at the University of Cambridge, gives a unique opportunity to present academic debate in an approachable and entertaining way. Literally by discussing the melting of our ice caps, melts the divide Cambridge has between its reputation and the reality for the brightest, underprivileged, students. There is a balance between presenting cutting edge research with the need to come across as accessible (and importantly valuable to "learning"). Climate change over the Quaternary lends itself well to this aim. By lecturing groups of potential students through the entire Quaternary in an hour, stopping to discuss how our ancestors interacted with past Interglacials and what are the mechanisms driving change (in generalized terms), you are able to introduce cutting edge research (such as the latest NEEM ice core) to the students. This shows the evolution and importance of higher education and academic research. The lecture leads well onto group discussions (termed "supervisions" in Cambridge), to explore their opinions on the concern for present Anthropogenic Climate Change in relation to Past Climate Change after being presented with images that our ancestors "made it". Here discussion thrives off students saying obvious things (or sarcastic comments!) which quickly can lead into a deep technical discussion on their terms. Such discussions give the students a zest for higher education, simply throwing Ruddiman's (2003) "The Anthroprocene Started Several Thousand Years Ago" at them, questions in a second their concept of Anthropogenic Climate Change. Supervisions lend themselves well to bright, articulate, students and by offering these experiences to students of Widening Participation criteria we quickly melt the divide between the reputation of Cambridge ( and higher education as a whole) and the day to day practice. Higher education is not for the privileged, but a free and

  10. A multi-component evaporation model for beam melting processes

    Science.gov (United States)

    Klassen, Alexander; Forster, Vera E.; Körner, Carolin

    2017-02-01

    In additive manufacturing using laser or electron beam melting technologies, evaporation losses and changes in chemical composition are known issues when processing alloys with volatile elements. In this paper, a recently described numerical model based on a two-dimensional free surface lattice Boltzmann method is further developed to incorporate the effects of multi-component evaporation. The model takes into account the local melt pool composition during heating and fusion of metal powder. For validation, the titanium alloy Ti-6Al-4V is melted by selective electron beam melting and analysed using mass loss measurements and high-resolution microprobe imaging. Numerically determined evaporation losses and spatial distributions of aluminium compare well with experimental data. Predictions of the melt pool formation in bulk samples provide insight into the competition between the loss of volatile alloying elements from the irradiated surface and their advective redistribution within the molten region.

  11. Melting Layer Survey.

    Science.gov (United States)

    1983-08-12

    AFGL Melting Layer study was begun in 1979. Original plans called for a flight program and extensive radar studies. Budget problems and a change in the...etrstlr’nrL, ., (ot-i \\v! A ;uo. 1’.. ,ind (;u(,. V. . t1 97:10 1 inal 1, pov1 to NSIl 1-ide: Grint No. (1A-2!525. ( 5 Ne’% )ork, ppu 410-415. (1...1958) The hail problem , Nubila 1:11-96. (3) 98. Ludlam, R. H. (1980) Clouds and Storms, The Pennsylvania State University Press, University Park

  12. Melting temperature of archaeometallurgical slag

    Directory of Open Access Journals (Sweden)

    Jozef Petrík

    2013-12-01

    Full Text Available The aim of submitted work is to search the softening and melting temperature of archeometallurgy bloomery and blast furnace slag using high – temperature microscope. The high values of melting temperature of bloomery slag is a result of secondary oxidation of wüstite in the chamber of a microscope. The melting temperature increases with an increase in SiO2 and decreases with increasing basicity of the slag.

  13. Thermodynamics of freezing and melting

    OpenAIRE

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas; Schrøder, Thomas; Dyre, Jeppe C.

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature?pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variatio...

  14. Channelling of Melt Above Plumes and Beneath MORs

    Science.gov (United States)

    Mueller, K.; Schmeling, H.

    2003-12-01

    We investigate melt transportation in partially molten rocks under different stress fields above the head of a mantle plume or beneath a spreading mid-oceanic ridge under hydrous and anhydrous conditions. We model such aggregates with the 2D-FD code FDCON [1] by means of a porous deformable matrix with melt under the influence of a given stress field to clarify the following key questions: Could channeling occur in a matrix containing a random melt distribution under a given stress field? Which orientation does it take? Is it possible to achieve a focusing of melt towards a MOR (dykes)? Does applying simple or pure shear to the matrix result in a difference in the formation and orientation of channels? How does the channel instability evolve during finite simple shear? In a deforming partially molten aggregate, weakening of the solid matrix due to the presence of melt creates an instability in which melt is localized by the following mechanism: regions of initially high melt fraction are areas of low viscosity and pressure, so that melt is drawn into these regions from higher pressure surroundings. This further enhances the melt weakening, producing a self-excited localization mechanism [2]. The channeling developing in models with a random melt distribution of 3.5 +/- 0.5% shows that melt is accumulated preferably in inclined channels. For both, simple as well as pure shear, the growth rate is highest for an orientation parallel to the direction of the maximum compressive stress and proportional to applied stress and the reverse of the Melt Retention Number. This also confirms the theoretical growth rate found by Stevenson [2]. In our isothermal models we found that the influence of water reduces the growth rate, in contrast to non-isothermal models of Hall [3]. Under simple shear melt channels evolve from an irregular melt distribution at angles of 45 degrees to the direction of shear. Upon further straining they rotate out of the orientation of maximum growth

  15. Investigation of nucleation in undercooled metal melts

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stefan [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), 51170 Koeln (Germany); Institut fuer Festkoerperphysik, Ruhr-Universitaet Bochum, 44780 Bochum (Germany); Herlach, Dieter M. [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), 51170 Koeln (Germany)

    2010-07-01

    Containerless processing is an effective tool for undercooling metallic melts far below their equilibrium melting temperatures. By using such levitation techniques the dominating heterogeneous nucleation on container walls is completely eliminated. Furthermore, if the experiments are performed under clean environmental conditions, heterogeneous nucleation on free surfaces is also greatly reduced. In this work both electromagnetic and electrostatic levitation techniques are used for a comparative investigation of nucleation in undercooled metallic metals. In case of electromagnetic levitation samples in a diameter of 7 mm are processed within high purity inert gas atmosphere while in case of electrostatic levitation samples in a diameter of 2 mm are processed in ultra high vacuum. With a modified model by Skripov a statistical analysis of the distribution function of the undercoolings measured in one experiment run consisting of at least 100 undercooling cycles is conducted which provides information about the physical nature of different nucleation mechanism depending on experiment conditions.

  16. UNCONSTRAINED MELTING AND SOLIDIFICATION INSIDE ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... capsule), cylinder (shell and tube heat exchanger) and rectangular enclosure. Khodadadi and. Zhang [21] studied the effect of buoyancy-driven convection on constrained melting of PCM in a spherical container numerically. They showed the rate of melting at the top region of sphere is faster than at the ...

  17. Computational fluid dynamics simulations of a glass melting furnace

    Energy Technology Data Exchange (ETDEWEB)

    Egelja, A.; Lottes, S. A.

    2000-05-09

    The glass production industry is one of the major users of natural gas in the US, and approximately 75% of the energy produced from natural gas is used in the melting process. Industrial scale glass melting furnaces are large devices, typically 5 or more meters wide, and twice as long. To achieve efficient heat transfer to the glass melt below, the natural gas flame must extend over a large portion of the glass melt. Therefore modern high efficiency burners are not used in these furnaces. The natural gas is injected as a jet, and a jet flame forms in the flow of air entering the furnace. In most current glass furnaces the energy required to melt the batch feed stock is about twice the theoretical requirement. An improved understanding of the heat transfer and two phase flow processes in the glass melt and solid batch mix offers a substantial opportunity for energy savings and consequent emission reductions. The batch coverage form and the heat flux distribution have a strong influence on the glass flow pattern. This flow pattern determines to a significant extent the melting rate and the quality of glass.

  18. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid...... phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  19. Effects of volatiles on melt production and reactive flow in the mantle

    CERN Document Server

    Keller, Tobias

    2015-01-01

    Magmatism in the Earth interior has a significant impact on its dynamic, thermal and compositional evolution. Experimental studies of petrology of mantle melting find that small concentrations of water and carbon dioxide have a significant effect on the solidus temperature and distribution of melting in the upper mantle. However, it has remained unclear what effect small fractions of deep, volatile-rich melts have on melting and melt transport in the shallow asthenosphere. We present a method to simulate the thermochemical evolution of the upper mantle in the presence of volatiles. The method is based on a novel, thermodynamically consistent framework for reactive, disequilibrium, multi-component melting/crystallisation. This is coupled with a system of equations representing conservation of mass, momentum, and energy for a partially molten grain aggregate. Application of this method to upwelling-column models demonstrates that it captures leading-order features of hydrated and carbonated peridotite melting. ...

  20. METAL MELTS – NANOSTRUCTURED SYSTEMS

    Directory of Open Access Journals (Sweden)

    V. Yu. Stetsenko

    2014-01-01

    Full Text Available On the basis of thermodynamic analysis it is shown that metal melts are the nanostructured systems which consist of phases and atoms nanocrystals. Nanocrystalsmake 97% ofthemeltvolume.

  1. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  2. Research of Snow-Melt Process on a Heated Platform

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available The article has shown the results of experimental researches of the snow-melt on a heated platform-near building heat-pump snow-melt platform. The near-building (yard heat pump platforms for snow melt with the area up to 10-15 m2 are a basis of the new ideology of organization of the street cleaning of Moscow from snow in the winter period which supposes the creation in the megalopolis of the «distributed snow-melt system» (DSMS using non-traditional energy sources. The results of natural experimental researches are presented for the estimation of efficiency of application in the climatic conditions of Moscow of heat pumps in the snow-melt systems. The researches were conducted on a model sample of the near-building heat-pump platform which uses the low-potential thermal energy of atmospheric air. The conducted researches have confirmed experimentally in the natural conditions the possibility and efficiency of using of atmospheric air as a source of low-potential thermal energy for evaporation of the snow-melt heat pump systems in the climatic conditions of Moscow. The results of laboratory researches of snow-melt process on a heated horizontal platform are presented. The researches have revealed a considerable dependence of efficiency of the snow-melt process on its piling mode (form-building and the organization of the process of its piling mode (form-building and the organization of the process of its (snow mass heat exchange with the surface of the heated platform. In the process of researches the effect of formation of an «ice dome» under the melting snow mass called by the fact that in case of the thickness of snow loaded on the platform more than 10 cm the water formed from the melting snow while the contact with the heating surface don’t spread on it, but soaks into the snow, wets it due to capillary effect and freezes. The formation of «ice dome» leads to a sharp increase of snow-melt period and decreases the operating

  3. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  4. Stress-Driven Melt Segregation and Organization in Partially Molten Rocks III: Annealing Experiments and Surface Tension-Driven Redistribution of Melt

    Science.gov (United States)

    Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.

    2004-12-01

    As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction

  5. Monitoring Antarctic ice sheet surface melting with TIMESAT algorithm

    Science.gov (United States)

    Ye, Y.; Cheng, X.; Li, X.; Liang, L.

    2011-12-01

    Antarctic ice sheet contributes significantly to the global heat budget by controlling the exchange of heat, moisture, and momentum at the surface-atmosphere interface, which directly influence the global atmospheric circulation and climate change. Ice sheet melting will cause snow humidity increase, which will accelerate the disintegration and movement of ice sheet. As a result, detecting Antarctic ice sheet melting is essential for global climate change research. In the past decades, various methods have been proposed for extracting snowmelt information from multi-channel satellite passive microwave data. Some methods are based on brightness temperature values or a composite index of them, and others are based on edge detection. TIMESAT (Time-series of Satellite sensor data) is an algorithm for extracting seasonality information from time-series of satellite sensor data. With TIMESAT long-time series brightness temperature (SSM/I 19H) is simulated by Double Logistic function. Snow is classified to wet and dry snow with generalized Gaussian model. The results were compared with those from a wavelet algorithm. On this basis, Antarctic automatic weather station data were used for ground verification. It shows that this algorithm is effective in ice sheet melting detection. The spatial distribution of melting areas(Fig.1) shows that, the majority of melting areas are located on the edge of Antarctic ice shelf region. It is affected by land cover type, surface elevation and geographic location (latitude). In addition, the Antarctic ice sheet melting varies with seasons. It is particularly acute in summer, peaking at December and January, staying low in March. In summary, from 1988 to 2008, Ross Ice Shelf and Ronnie Ice Shelf have the greatest interannual variability in amount of melting, which largely determines the overall interannual variability in Antarctica. Other regions, especially Larsen Ice Shelf and Wilkins Ice Shelf, which is in the Antarctic Peninsula

  6. Melting in temperature sensitive suspensions

    Science.gov (United States)

    Alsayed, Ahmed M.

    We describe two experimental studies about melting in colloidal systems. In particular we studied melting of 1-dimensional lamellar phases and 3-dimensional colloidal crystals. In the first set of experiments we prepared suspensions composed of rodlike fd virus and the thermosensitive polymer, poly(N-isopropylacrylamide). The phase diagram of this systems is temperature and concentration dependent. Using video microscopy, we directly observed melting of lamellar phases and single lamellae into nematic phase. We found that lamellar phases swell with increasing temperature before melting into the nematic phase. The highly swollen lamellae can be superheated as a result of topological nucleation barriers that slow the formation of the nematic phase. In another set of experiments we prepared colloidal crystals from thermally responsive microgel spheres. The crystals are equilibrium close-packed three-dimensional structures. Upon increasing the temperature slightly above room temperature, particle volume fraction decreased from 0.74 to less than 0.5. Using video microscopy, we observed premelting at grain boundaries and dislocations within bulk colloidal crystals. Premelting is the localized loss of crystalline order at surfaces and defects at sample volume fractions above the bulk melting transition. Particle tracking revealed increased disorder in crystalline regions bordering defects, the amount of which depends on the type of defect, distance from the defect, and particle volume fraction. In total these observations suggest that interfacial free energy is the crucial parameter for premelting in colloidal and in atomic scale crystals.

  7. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.

    Science.gov (United States)

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G

    2018-03-01

    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lithium diffusion in silicate melts

    Science.gov (United States)

    Cunningham, G. J.; Henderson, P.; Lowry, R. K.; Nolan, J.; Reed, S. J. B.; Long, J. V. P.

    1983-10-01

    The diffusion properties of Li in an andesitic and pitchstone melt have been determined over the temperature range 1300-1400°C. The diffusion data have been fitted to an Arrhenius relationship between log D0 and 1/ T, and give relatively small activation energies of diffusion: 21.4±5.8 kcal mol -1 in the andesite and 20.1±2.8 kcal mol -1 in the pitchstone. Li +, unlike several other cations, shows similar diffusivities in these melt compositions to that in a basaltic melt. Despite the similar ionic radius of Li + to that of Co 2+, the diffusion properties of the two ions are very different from each other.

  9. The infidelity of melt inclusions?

    Science.gov (United States)

    Kent, A. J.

    2008-12-01

    Melt inclusions provide important information about magmatic systems and represent unique records of magma composition and evolution. However, it is also clear that melt inclusions do not necessarily constitute a petrological 'magic bullet', and potential exists for trapped melt compositions to be modified by a range of inclusion-specific processes. These include trapping of diffusional boundary layers, crystallization of the host mineral after trapping and dissolution of co-trapped minerals during homogenization, diffusional exchange between trapped liquid and the host mineral and external melt, and cryptic alteration of trapped material during weathering or hydrothermal alteration. It clearly important to identify when melt inclusions are unmodified, and which compositional indices represent the most robust sources of petrogenetic information. In this presentation I review and discuss various approaches for evaluating compositions and compositional variations in inclusion suites. An overriding principle is that the variations evident in melt inclusions should be able to be understood in terms of petrological processes that are known, or can be reasonably inferred to also effect bulk magma compositions. One common approach is to base petrological conclusions on species that should be more robust, and many workers use variations in incompatible trace elements for this purpose. However important information may also be obtained from a comparison of variations in melt inclusions and the lavas that host them, and in most cases this comparison is the key to identifying inclusions and suites that are potentially suspect. Comparisons can be made between individual inclusions and lavas, although comparison of average inclusion composition and the host lava, after correction for differences in crystal fractionation, may also be valuable. An important extension of this is the comparison of the variability of different species in inclusions and host lavas. This also provides

  10. Distribución del ictioplancton en la Patagonia austral de Chile: potenciales efectos del deshielo de Campos de Hielo Sur Ichthyoplankton distribution in South Patagonia, Chile: potential effects of ice melting from the Southern Ice Field

    Directory of Open Access Journals (Sweden)

    Mauricio F Landaeta

    2011-07-01

    spawning area of S. fuegensis (~8000 eggs 10 m-2 occurred in mixed zones of the adjacent continental shelf, whereas the spawning of M. parvipinnis occurred in intermediate channels associated with medium stability values (N~0.06 cycles s-1. Fish egg and larval abundances were null or scarce near the glacier, and the abundance of M. parvipinnis eggs was positively related to the temperature and salinity of the water column, and negatively related to water column stability. Moreover, a negative relationship was observed between seawater density and the diameter of S. fuegensis eggs. The relation between ice melting and ichthyoplankton may have consequences for advective transport and mass mortality of fish eggs and larvae, as well as pelagic-benthic coupling in the Chilean South Patagonia. Global climate change has increased glacier ice melting at high latitudes, and the increased entry of colder, less saline waters in coastal areas may have consequences for the ichthyoplankton in the Chilean Patagonia.

  11. Gamma irradiation of melt processed biomedical PDLLA/HAP nanocomposites

    Science.gov (United States)

    Dadbin, Susan; Kheirkhah, Yahya

    2014-04-01

    Poly(D-L lactide) PDLLA/hydroxyapatite (HAP) nanocomposites at various compositions were prepared by melt-compounding process and then subjected to gamma irradiation at a dose of 30 kGy. The morphology of the nanocomposites, characterized by transmission electron microscopy (TEM), displayed HAP nanoparticles at various sizes ranging from 10 to 100 nm distributed almost evenly within the polymer matrix. Differential scanning calorimetric (DSC) analysis of the irradiated nanocomposites showed an increase in the degree of crystallinity along with a melting peak split. The double melting peak suggested formation of different crystalline structures in the radiation exposed nanocomposites. Also the cold crystallization peak shifted to lower temperatures and became much sharper upon irradiation, indicating higher crystallization rate. The irradiated nanocomposites showed lower tensile strength and elongation at break, suggesting occurrence of some chain scission reactions in the PLA.

  12. Melt removal mechanism by transverse gas flow during laser irradiation

    Science.gov (United States)

    Wei, Cheng-hua; Zhu, Yong-xiang; Zhou, Meng-lian; Ma, Zhi-liang; Wu, Tao-tao

    2017-05-01

    To determine the mechanism of melt removal by transverse gas flow, a lateral visualization technique of hydrodynamics on melt pool was developed and experimental apparatus were built. The intensity distribution of the focused beam was confirmed to be in top-hat shape with the 15mm×40mm rectangular. The interface of liquid-solid and free surface of molten metal was observed by a high velocity video camera with acquisition rate of 1kHz. Gas flow blew from left to right and the velocity varied from 15m/s to 90m/s to investigate the evolution of hydrodynamics. Experiment results showed that surface wave was generated at the initial stage and molten metal was removed out from the melt pool by shear stress. When some amount molten metal was removed from melt pool, gas flow separated at the leading edge and reattaches downstream of melt pool. Thus a stagnation point was formed at the downstream edge and a recirculation zone was generated on the left side of stagnation. With recirculation gas flow constrain, the molten metal only can be entrained into main stream and then be swept away. The molten material was removed out by shear stress on the right side of stagnation.

  13. Estimating Snow and Glacier Melt in a Himalayan Watershed Using an Energy Balance Snow and Glacier Melt Model

    Science.gov (United States)

    Sen Gupta, A.; Tarboton, D. G.; Racoviteanu, A.; Brown, M. E.; Habib, S.

    2014-12-01

    This study enhances an energy balance snowmelt model (Utah Energy Balance, UEB) to include the capability to quantify glacier melt. To account for clean and debris covered glaciers, substrate albedo and glacier outlines determined from remote sensing, are taken as inputs. The model uses the surface energy balance to compute the melting of seasonal snow and glacier substrate once the seasonal snow has melted. In this application the model was run over a 360 km2 glacierized watershed, Langtang Khola, in the Nepal Himalaya for a 10-year simulation period starting in water year 2003. The model was run on a distributed mesh of grid cells providing the capability to quantify both timing and spatial variability in snow and glacier melt. The distributed UEB melt model has a relatively high data demand, while the Hindu-Kush Himalayan region is a data-scarce region, a limitation that affects most water resources impact studies in this region. In this study, we determined model inputs from the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Southern Asia Daily Rainfall Estimate (RFE2) data products. The model estimates that roughly 57% of total surface water input is generated from glacier melt, while snowmelt and rain contribute 34% and 9%, respectively over the simulation period. The melt model provided input to the USGS Geospatial Stream Flow Model (GeoSFM) for the computation of streamflow and produced reasonable streamflow simulations at daily scale with some discrepancies, while monthly and annual scale comparisons resulted in better agreement. The result suggests that this approach is of interest for water resources applications where monthly or longer scale streamflow estimates are needed. Mean annual streamflow was positively correlated with the total annual surface water input. However, mean annual streamflow was not correlated with total annual precipitation, highlighting the importance of energy balance melt calculation, in comparison

  14. MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution

    Science.gov (United States)

    Gualda, Guilherme A. R.; Ghiorso, Mark S.

    2015-01-01

    thermodynamic modeling software MELTS is a powerful tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS is a recalibration of MELTS that better captures the evolution of silicic magmas in the upper crust. The current interface of rhyolite-MELTS, while flexible, can be somewhat cumbersome for the novice. We present a new interface that uses web services consumed by a VBA backend in Microsoft Excel©. The interface is contained within a macro-enabled workbook, where the user can insert the model input information and initiate computations that are executed on a central server at OFM Research. Results of simple calculations are shown immediately within the interface itself. It is also possible to combine a sequence of calculations into an evolutionary path; the user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions. The program shows partial updates at every step of the computations; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. The interface can be used to apply the rhyolite-MELTS geobarometer. We demonstrate applications of the interface using an example early-erupted Bishop Tuff composition. The interface is simple to use and flexible, but it requires an internet connection. The interface is distributed for free from http://melts.ofm-research.org.

  15. Incorporation of a glacier and snow melting model with CREST to resolve alpine glaciers and snow melting

    Science.gov (United States)

    Chen, X.; Long, D.; Zeng, C.; Hong, Y.

    2016-12-01

    Dynamics of alpine glaciers and snow cover respond to global climate change notably, particularly over the Tibetan Plateau (TP) as the world's third pole where complex topography and lack of ground-based observations result in knowledge gaps in cryospheric processes and large uncertainties in model output. This study develops a snow and glacier melt model and coupled with a distributed hydrological model (Coupled Routing and Excess Storage model, CREST) using the upper Brahmaputra River basin in the TP as a case study. Satellite-based precipitation and land surface temperature are used as primary model forcing and a progressive two-stage calibration strategy is designed to derive model parameters by two steps, i.e., (1) the processes of snow melting and (2) glacier melting and runoff generation using multi-source remote sensing data. Calibration for the snow melting model is performed using snow cover area (SCA) and snow water equivalent (SWE) products combined with some in situ measurements. Calibration for glacier melting and runoff generation is based on remotely sensed total water storage (TWS) and observational streamflow records. Results indicate that sole consideration of the SCA or streamflow performance would result in significant degradation of the performance of SWE simulation and vice versa. The overestimated glacier and snow melting rates and their contribution to streamflow in previous studies were reexamined. This study could be valuable in studying the impacts of climate change on cryospheric regions and providing an improved approach for calibrating and simulating more accurate melting rates over the study basin and potentially similar regions globally.

  16. Effect of the distribution of saturated fatty acids in the melting and crystallization profiles of high-oleic high-stearic oils; Efecto de la distribución de los ácidos grasos saturados en los perfiles de fusión y cristalización de los aceites alto esteárico alto oleico

    Energy Technology Data Exchange (ETDEWEB)

    Bootello, M.A.; Garces, R.; Martinez-Force, E.; Salas, J.J.

    2016-07-01

    The composition and distribution of fatty acids in triacylglycerol (TAG) molecules are commonly considered as factors that determine the physical properties of a given oil or fat. The distribution of any fatty acid in fats and oils can be described through the α coefficient of asymmetry, which can be calculated from the TAG composition and fatty acid composition of the Sn-2 position of the TAGs determined through lipase hydrolysis. High-oleic high-stearic oils and fats are considered stable and healthy, and they are good substitutes for hydrogenated vegetable oils and palm fractions in many food products, such as spreads and confectionery. Here, different high-oleic high-stearic acid oils were formulated which contained different distributions of saturated fatty acids in their TAGs, while maintaining a similar fatty acid composition. The aim of this work was to discuss the possibility of using the α coefficient to predict the physical properties of fats in function of their chemical composition and their melting and crystallization behavior as examined by differential scanning calorimetry.

  17. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  18. Grain boundary melting in ice

    OpenAIRE

    Thomson, E. S.; Hansen-Goos, Hendrik; Wilen, L. A.; Wettlaufer, J. S.

    2012-01-01

    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentr...

  19. String-like cooperative motion in homogeneous melting

    Science.gov (United States)

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F.

    2013-03-01

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static

  20. Centuries of intense surface melt on Larsen C Ice Shelf

    Science.gov (United States)

    Bevan, Suzanne L.; Luckman, Adrian; Hubbard, Bryn; Kulessa, Bernd; Ashmore, David; Kuipers Munneke, Peter; O'Leary, Martin; Booth, Adam; Sevestre, Heidi; McGrath, Daniel

    2017-12-01

    Following a southward progression of ice-shelf disintegration along the Antarctic Peninsula (AP), Larsen C Ice Shelf (LCIS) has become the focus of ongoing investigation regarding its future stability. The ice shelf experiences surface melt and commonly features surface meltwater ponds. Here, we use a flow-line model and a firn density model (FDM) to date and interpret observations of melt-affected ice layers found within five 90 m boreholes distributed across the ice shelf. We find that units of ice within the boreholes, which have densities exceeding those expected under normal dry compaction metamorphism, correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula. The more recent warm period, from the 1960s onwards, has generated distinct sections of dense ice measured in two boreholes in Cabinet Inlet, which is close to the Antarctic Peninsula mountains - a region affected by föhn winds. Previous work has classified these layers as refrozen pond ice, requiring large quantities of mobile liquid water to form. Our flow-line model shows that, whilst preconditioning of the snow began in the late 1960s, it was probably not until the early 1990s that the modern period of ponding began. The earlier warm period occurred during the 18th century and resulted in two additional sections of anomalously dense ice deep within the boreholes. The first, at 61 m in one of our Cabinet Inlet boreholes, consists of ice characteristic of refrozen ponds and must have formed in an area currently featuring ponding. The second, at 69 m in a mid-shelf borehole, formed at the same time on the edge of the pond area. Further south, the boreholes sample ice that is of an equivalent age but which does not exhibit the same degree of melt influence. This west-east and north-south gradient in the past melt distribution resembles current spatial patterns of surface melt intensity.

  1. Simulations with current constraints of ELM-induced tungsten melt motion in ASDEX Upgrade

    Science.gov (United States)

    Thorén, E.; Bazylev, B.; Ratynskaia, S.; Tolias, P.; Krieger, K.; Pitts, R. A.; Pestchanyi, S.; Komm, M.; Sieglin, B.; the EUROfusion MST1 Team; the ASDEX Upgrade Team

    2017-12-01

    Melt motion simulations of recent ASDEX Upgrade experiments on transient-induced melting of a tungsten leading edge during ELMing H-mode are performed with the incompressible fluid dynamics code MEMOS 3D. The total current flowing through the sample was measured in these experiments providing an important constraint for the simulations since thermionic emission is considered to be responsible for the replacement current driving melt motion. To allow for a reliable comparison, the description of the space-charge limited regime of thermionic emission has been updated in the code. The effect of non-periodic aspects of the spatio-temporal heat flux in the temperature distribution and melt characteristics as well as the importance of current limitation are investigated. The results are compared with measurements of the total current and melt profile.

  2. Measuring melting capacity with calorimetry

    OpenAIRE

    Betten, Linda

    2014-01-01

    Road salting is an important aspect of winter maintenance. There has been an increase in the usage of salt in later years to keep the road safe and accessible. It is a desire to reduce the amount of salt due to environmental aspects. To achieve better practices for winter maintenance it is necessary to obtain more knowledge about the different properties of salt. The motivation for this thesis is to develop a better method for determining the melting capacity for salt, which is an important p...

  3. Effect of melting conditions on striae in iron-bearing silicate melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng

    2012-01-01

    Chemical striae are present in a broad range of glass products, but due to their negative impact on e.g., the optical and mechanical properties, elimination of striae from melts is a key issue in glass technology. By varying melting temperatures, retentions times and redox conditions of an iron......-bearing calciumaluminosilicate melt, we quantify the effect of each of the three melting parameters on the stria content in the melt. The quantification of the stria content in the melt is conducted by means of image analysis on casted melt samples. We find that in comparison to an extension of retention time an increase...... of melt temperature and/or a decrease of viscosity play a more important role in decreasing the stria content. We also demonstrate that the extent of striation is influenced by the crucible materials that causes a change of redox state of the melt, and hence its viscosity. We discuss the effect of other...

  4. Photogeologic analysis of impact melt-rich lithologies in Kepler crater that could be sampled by future missions

    Science.gov (United States)

    Öhman, Teemu; Kring, David A.

    2012-02-01

    Kepler is a 31 km diameter Copernican age complex impact crater located on the nearside maria of the Moon. We used Lunar Reconnaissance Orbiter imagery and topographic data in combination with Kaguya terrain camera and other image data sets to construct a new geomorphologic sketch map of the Kepler crater, with a focus on impact melt-rich lithologies. Most of the interior melt rocks are preserved in smooth and hummocky floor materials. Smaller volumes of impact melt were deposited in rim veneer, interior and exterior ponds, and lobe-like overlapping flows on the upper crater wall. Based on shadow lengths, typical flows of melt-rich material on crater walls and the western rim flank are ˜1-5 m thick, and have yield strengths of ˜1-10 kPa. The melt rock distribution is notably asymmetric, with interior and exterior melt-rich deposits concentrated north and west of the crater center. This melt distribution and the similarly asymmetric ray distribution imply a slightly less than 45° impact trajectory from the southeast. The exposed wall of Kepler displays distinct layering, with individual layers having typical thicknesses of ˜3-5 m. These are interpreted as flows of Procellarum mare basalts in the impact target. From the point of view of exploration, numerous fractures and pits in the melt-rich floor materials not only enable detailed studies of melt-related processes of impact crater formation, but also provide potential shelters for longer duration manned lunar missions.

  5. Percolation of enriched melts during incremental open-system melting in the spinel field: A REE approach to abyssal peridotites from the Southwest Indian Ridge

    Science.gov (United States)

    Brunelli, Daniele; Paganelli, Emanuele; Seyler, Monique

    2014-02-01

    The effects of melting in an open-system scenario are here explored looking to the rare earth element (REE) distribution in mantle residues. We consider a peridotite matrix equilibrated in the spinel field accounting for melt inflow during partial melting. The fertility of the source, inflowing melt composition and melt addition rate as well as the effects of varying the critical mass porosity in an incremental scenario are tested. When a relatively enriched melt enters the system, residual clinopyroxene REE normalized patterns apparently rotate around a light to intermediate REE due to concomitant increase of the light REEs and decrease of the heavy REEs. This effect is enhanced when the critical mass porosity is large with respect to the degree of melting. In these cases the system approaches batch more than fractional melting behaviour because the liquid is preferentially retained in the matrix. This geometry is suggestive of melt accumulation at depth. Four sample suites from the Southwest Indian Ridge are considered. Spinel field equilibrated clinopyroxenes in lherzolites and harzburgites show dredge-scale REE compositional trends that crosscut model fractional melting trajectories. Observed local trends correspond to rotations of the REE patterns attesting for near-batch episodes in the subridge melting history and infiltration of enriched liquids whose composition resemble that of garnet field-generated melts. C0: starting source composition. D0: starting bulk partition coefficient. P: bulk partition coefficient weighted for the mineral melting mode (modal melting for P = D). Ca: is the tracer concentration in the inflowing melt. The composition of the liquid produced during non-modal melting is estimated by using equation (30) of Shaw (2000): {C}/{C}={C}/{0lC}-{β}/{(1+β)(1-P)}{C}/{C}1+{β}/{(1+β)(1-P)}{Ca}/{C0} The composition of the solid in equilibrium with the liquid is Cs = DCL, where D is the bulk partition coefficient for a given element

  6. Residence time modeling of hot melt extrusion processes.

    Science.gov (United States)

    Reitz, Elena; Podhaisky, Helmut; Ely, David; Thommes, Markus

    2013-11-01

    The hot melt extrusion process is a widespread technique to mix viscous melts. The residence time of material in the process frequently determines the product properties. An experimental setup and a corresponding mathematical model were developed to evaluate residence time and residence time distribution in twin screw extrusion processes. The extrusion process was modeled as the convolution of a mass transport process described by a Gaussian probability function, and a mixing process represented by an exponential function. The residence time of the extrusion process was determined by introducing a tracer at the extruder inlet and measuring the tracer concentration at the die. These concentrations were fitted to the residence time model, and an adequate correlation was found. Different parameters were derived to characterize the extrusion process including the dead time, the apparent mixing volume, and a transport related axial mixing. A 2(3) design of experiments was performed to evaluate the effect of powder feed rate, screw speed, and melt viscosity of the material on the residence time. All three parameters affect the residence time of material in the extruder. In conclusion, a residence time model was developed to interpret experimental data and to get insights into the hot melt extrusion process. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Multiscale Models of Melting Arctic Sea Ice

    Science.gov (United States)

    2014-09-30

    Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond and ice floe configurations. Ice- albedo ...ice albedo remains a significant challenge to improving climate models. Our research is focused on obtaining extensive imagery of melt pond...of a plane (water level) with a surface generated by a random Fourier series (representing the snow and ice topography) look very similar to melt

  8. Superparamagnetism in melt-spun CuCo granular samples

    Science.gov (United States)

    Hickey, B. J.; Howson, M. A.; Musa, S. O.; Tomka, G. J.; Rainford, B. D.; Wiser, N.

    1995-06-01

    We have studied the magnetic properties of a melt-spun granular sample of Cu 87Co 13. The Cu matrix contains very fine particles of Co, having a bimodal distribution of sizes: 'larger' particles ( ˜ 300 Å) and very much smaller particles ( < 15 Å) with the latter exhibiting superparamagnetism. The magnetisation data indicate a spread of sizes for the smaller superparamagnetic particles, ranging from individual Co atoms up to clusters of more than 100 atoms of Co. Assuming a simple distribution of particle sizes, we calculated the magnetic field dependence of the magnetisation of the superparamagnetic particles and find excellent agreement with experiment.

  9. Heat Melt Compactor Development Progress

    Science.gov (United States)

    Lee, Jeffrey M.; Fisher, John W.; Pace, Gregory

    2017-01-01

    The status of the Heat Melt Compactor (HMC) development project is reported. HMC Generation 2 (Gen 2) has been assembled and initial testing has begun. A baseline mission use case for trash volume reduction, water recovery, trash sterilization, and the venting of effluent gases and water vapor to space has been conceptualized. A test campaign to reduce technical risks is underway. This risk reduction testing examines the many varied operating scenarios and conditions needed for processing trash during a space mission. The test results along with performance characterization of HMC Gen 2 will be used to prescribe requirements and specifications for a future ISS flight Technology Demonstration. We report on the current status, technical risks, and test results in the context of an ISS vent-to-space Technology Demonstration.

  10. Grain boundary melting in ice

    Science.gov (United States)

    Thomson, E. S.; Hansen-Goos, Hendrik; Wettlaufer, J. S.; Wilen, L. A.

    2013-03-01

    We describe an optical scattering study of grain boundary premelting in water ice. Ubiquitous long ranged attractive polarization forces act to suppress grain boundary melting whereas repulsive forces originating in screened Coulomb interactions and classical colligative effects enhance it. The liquid enhancing effects can be manipulated by adding dopant ions to the system. For all measured grain boundaries this leads to increasing premelted film thickness with increasing electrolyte concentration. Although we understand that the interfacial surface charge densities qs and solute concentrations can potentially dominate the film thickness, we cannot directly measure them within a given grain boundary. Therefore, as a framework for interpreting the data we consider two appropriate qs dependent limits; one is dominated by the colligative effect and other is dominated by electrostatic interactions.

  11. Transition metals in superheat melts

    Science.gov (United States)

    Jakes, Petr; Wolfbauer, Michael-Patrick

    1993-01-01

    A series of experiments with silicate melts doped with transition element oxides was carried out at atmospheric pressures of inert gas at temperatures exceeding liquidus. As predicted from the shape of fO2 buffer curves in T-fO2 diagrams the reducing conditions for a particular oxide-metal pair can be achieved through the T increase if the released oxygen is continuously removed. Experimental studies suggest that transition metals such as Cr or V behave as siderophile elements at temperatures exceeding liquidus temperatures if the system is not buffered by the presence of other oxide of more siderophile element. For example the presence of FeO prevents the reduction of Cr2O3. The sequence of decreasing siderophility of transition elements at superheat conditions (Mo, Ni, Fe, Cr) matches the decreasing degree of depletion of siderophile elements in mantle rocks as compared to chondrites.

  12. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction...... of melt in the investigated ashes has been determined as a function of temperature. Ash fusion results have been correlated to the chemical and mineralogical composition of the ashes, to results from a standard ash fusion test and to results from sintering experiments. Furthermore, the ash fusion results...... have been employed in a simple model for prediction of ash deposit formation, the results of which have been compared to ash deposition formation rates measured at the respective boilers.The ash fusion results were found to directly reflect the ash compositional data:a) Fly ashes and deposits from...

  13. Fractional crystallization of olivine melt inclusion in shock-induced chondritic melt vein

    Science.gov (United States)

    Miyahara, M.; El Goresy, A.; Ohtani, E.; Kimura, M.; Ozawa, S.; Nagase, T.; Nishijima, M.

    2009-12-01

    The formation of ringwoodite, wadsleyite and majorite from their parental low-pressure polymorphs in melt veins in chondritic meteorites is usually interpreted to be the result of shock-induced solid-state phase transformation. Formation and survival of individual mineral melt enclaves in the chondritic high-pressure melt was not considered a viable possibility. We report evidence for melting of individual large olivine fragments entrained in melt veins, their survival as melt enclaves in the chondritic melts and their subsequent fractional crystallization at high-pressures and temperatures. The fractionally crystallized olivine melt enclaves appear to be ubiquitous in chondrites. In contrast, Ca-poor pyroxene fragments in the same veins and Ca-poor pyroxene in chondrules entrained do not show any sign of melting. Texture and compositions of olivine fragments are indicative of fractional crystallization from individual olivine melts alone. Fragments of original unzoned olivine (Fa 24-26) melted, and melts subsequently fractionally crystallized to Mg-rich wadsleyite (Fa 6-10) and Mg-poor ringwoodite (Fa 28-33) with a compositional gap of ≤26 mol% fayalite. In contrast, compositions of ringwoodite and wadsleyite that emerged from solid-sate phase transformations are identical to that of parental olivine thus erasing any source of enigma. The olivine monomineralic melts barely show any signs of mixing with the chondritic liquid prior to or during their individual fractional crystallization. Our findings demonstrate that the formation of high-pressure minerals during shock events in asteroids also results from melting and fractional crystallization from some individual mineral melts that barely mixed with the chondritic melt host, a mechanism previously not recognized or accepted.

  14. UHMW Ziegler–Natta polyethylene: Synthesis, crystallization, and melt behavior

    KAUST Repository

    Atiqullah, Muhammad

    2017-04-26

    The fabrication of normal and UHMW PE end-products involves melting and crystallization of the polymer. Therefore, the melt behavior and crystallization of as-synthesized UHMW PE, and NMW PE and E-1-hexene copolymer have been studied using a new nonisothermal crystallization model, Flory\\'s equilibrium theory and ethylene sequence length distribution concept (SLD), Gibbs–Thompson equation, and DSC experiments. By using this approach, the effects of MW, 1-hexene incorporation, ethylene SLD, the level of undercooling θ, and crystal surface free energy D on crystallite stability, relative crystallinity α, instantaneous crystallinity χ, the crystallization kinetic triplet, crystallization entropy, and lamellar thickness distribution (LTD) have been evaluated. Consequently, this study reports insightful new results, interpretations, and explanations regarding the melting and crystallization of the aforementioned polymers. The UHMW PE results significantly differ from the NMW PE and E-1-hexene copolymer ones. Ethylene sequences shorter than the so called minimum crystallizable ethylene sequence length, irrespective of E-1-hexene copolymer MW, can also crystallize. Additionally, the polymer preparation shows that the catalyst coordination environment and symmetry, as well as achiral ethylene versus prochiral α-olefin steric encumbrance and competitive diffusion affect the synthesis of UHMW PE, particularly the corresponding UHMW copolymers.

  15. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  16. Phenomenological studies on melt-structure-water interactions (MSWI) during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Yang, Z.L.; Haraldsson, H.O.; Nourgaliev, R.R.; Konovalikhin, M.; Paladino, D.; Gubaidullin, A.A.; Kolb, G.; Theerthan, A. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    2000-05-01

    This is the annual report for the work performed in 1999 in the research project Melt-Structure-Water Interactions During Severe Accidents in LWRs, under the auspices of the APRI Project, jointly funded by SKI, HSK, USNRC and the Swedish and Finnish power companies. The emphasis of the work is placed on phenomena and properties which govern the fragmentation and breakup of melt jets and droplets, melt spreading and coolability, and thermal and mechanical loadings of a pressure vessel during melt-vessel interaction. We believe that significant technical advances have been achieved during the course of these studies. It was found that: The coolant temperature has significant influence on the characteristics of debris fragments produced from the breakup of an oxidic melt jet. At low subcooling the fragments are relatively large and irregular compared to the smaller particles produced at high subcooling. The melt jet density has considerable effect on the fragment size produced. As the melt density increases the fragment size becomes smaller. The mass mean size of the debris changes proportionally to the square root of the coolant to melt density ratio. The melt superheat has little effect on the debris particle size distribution produced during the melt jet fragmentation. The impingement velocity of the jet has significant impact on the fragmentation process. At lower jet velocity the melt fragments agglomerate and form a cake of large size debris. When the jet velocity is increased more complete fragmentation is obtained. The scaling methodology for melt spreading, developed during 1998, has been further validated against almost all of the spreading experimental data available so far. Experimental results for the dryout heat flux of homogeneous particulate debris beds with top flooding compare well with the Lipinski correlation. For the stratified particle beds, the fine particle layer resting on the top of another particle layer dominates the dryout processes

  17. Extreme incompatibility of helium during mantle melting: Evidence from undegassed mid-ocean ridge basalts

    Science.gov (United States)

    Graham, David W.; Michael, Peter J.; Shea, Thomas

    2016-11-01

    We report total helium concentrations (vesicles + glass) for a suite of thirteen ultradepleted mid-ocean ridge basalts (UD-MORBs) that were previously studied for volatile contents (CO2, H2O) plus major and trace elements. The selected basalts are undersaturated in CO2 + H2O at their depths of eruption and represent rare cases of undegassed MORBs. Sample localities from the Atlantic (2), Indian (1) and Pacific (7) Oceans collectively show excellent linear correlations (r2 = 0.75- 0.92) between the concentrations of helium and the highly incompatible elements C, K, Rb, Ba, Nb, Th and U. Three basalts from Gakkel Ridge in the Arctic were also studied but show anomalous behavior marked by excess lithophile trace element abundances. In the Atlantic-Pacific-Indian suite, incompatible element concentrations vary by factors of 3-4.3, while helium concentration varies by a factor of 13. The strong correlations between the concentrations of helium and incompatible elements are explained by helium behavior as the most incompatible element during mantle melting. Partial melting of an ultradepleted mantle source, formed as a residue of earlier melt extraction, accounts for the observed concentrations. The earlier melting event involved removal of a small degree melt (∼1%) at low but non-zero porosity (0.01-0.5%), leading to a small amount of melt retention that strongly leveraged the incompatible element budget of the ultradepleted mantle source. Equilibrium melting models that produce the range of trace element and helium concentrations from this source require a bulk solid/melt distribution coefficient for helium that is lower than that for other incompatible elements by about a factor of ten. Alternatively, the bulk solid/melt distribution coefficient for helium could be similar to or even larger than that for other incompatible elements, but the much larger diffusivity of helium in peridotite leads to its more effective incompatibility and efficient extraction from a

  18. A benchmark initiative on mantle convection with melting and melt segregation

    Science.gov (United States)

    Schmeling, Harro; Dannberg, Juliane; Dohmen, Janik; Kalousova, Klara; Maurice, Maxim; Noack, Lena; Plesa, Ana; Soucek, Ondrej; Spiegelman, Marc; Thieulot, Cedric; Tosi, Nicola; Wallner, Herbert

    2016-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we carry out a benchmark comparison. The reference model is taken from the mantle convection benchmark, cases 1a to 1c (Blankenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and Rayleigh numbers of 104 to 10^6. Melting is modelled using a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) five cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 is identical to case 1 except that latent heat is switched on. Case 3 includes batch melting, melt buoyancy (melt Rayleigh number Rm) and depletion buoyancy, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms), the maximum and the total melt volume and qm approaching a statistical steady state. Case 4 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases are carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. For cases 1 - 3 very good agreement

  19. Computer study the oxygen release from Al melts

    Science.gov (United States)

    Y Galashev, Alexander; Rakhmanova, Oksana R.

    2018-02-01

    The behavior of oxygen ions in the Al melts under action of a constant electric field was studied by molecular dynamics. The rate of O2‑ ions moving up from the cathode to the melt surface increases. The time of the first ion reaching the surface decreases with increase in O2‑ concentration. The Al and O2‑ self-diffusion coefficients increase with increasing concentration of ions in the system. The structure of the neighborhood of oxygen ions was studied in detail by statistical geometry. The distributions of truncated Voronoi polyhedra according to the number of faces and of faces according to the number of sides were determined. Simplified polyhedra were obtained after elimination of small-scale thermal fluctuations from the model. The picture of the oxygen ions final location can vary greatly depending on the boundary conditions and their application sequence.

  20. Investigation of nucleation in undercooled melts of pure metals

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Stefan [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany); Institut fuer Festkoerperphysik, Ruhr-Universitaet Bochum (Germany); Herlach, Dieter M. [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, Koeln (Germany)

    2009-07-01

    Containerless processing is an effective tool for undercooling metallic melts far below their equilibrium melting temperatures. By using such levitation techniques the dominating heterogeneous nucleation on container walls is completely eliminated. Furthermore, if the experiments are performed under clean environmental conditions, heterogeneous nucleation on free surfaces is also greatly reduced. In this work both electromagnetic and electrostatic levitation techniques are used for a comparative investigation of nucleation in undercooled metallic metals. In case of electromagnetic levitation samples in a diameter of 7 mm are processed within high purity inert gas atmosphere while in case of electrostatic levitation samples in a diameter of 2 mm are processed in ultra high vacuum. With a modified model by Skripov a statistical analysis of the distribution function of the undercoolings measured in one experiment run consisting of at least 100 undercooling cycles is conducted which provides information about the physical nature of different nucleation mechanism depending on experiment conditions.

  1. Purification of tantalum by plasma arc melting

    Science.gov (United States)

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  2. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  3. Natural melting within a spherical shell

    Science.gov (United States)

    Bahrami, Parviz A.

    1990-01-01

    Fundamental heat transfer experiments were performed on the melting of a phase change medium in a spherical shell. Free expansion of the medium into a void space within the sphere was permitted. A step function temperature jump on the outer shell wall was imposed and the timewise evolution of the melting process and the position of the solid-liquid interface was photographically recorded. Numerical integration of the interface position data yielded information about the melted mass and the energy of melting. It was found that the rate of melting and the heat transfer were significantly affected by the movement of the solid medium to the base of the sphere due to gravity. The energy transfer associated with melting was substantially higher than that predicted by the conduction model. Furthermore, the radio of the measured values of sensible energy in the liquid melt to the energy of melting were nearly proportional to the Stefan number. The experimental results are in agreement with a theory set forth in an earlier paper.

  4. Estimation of melting points of organics.

    Science.gov (United States)

    Yalkowsky, Samuel H; Alantary, Doaa

    2017-12-21

    UPPER (Unified Physical Property Estimation Relationships) is a system of empirical and theoretical relationships that relate twenty physicochemical properties of organic molecules to each other and to chemical structure. Melting point is a key parameter in the UPPER Scheme because it is a determinant of several other properties including vapor pressure, and Solubility. This review describes the first principals calculation of the melting points of organic compounds from structure. The calculation is based on the fact that the melting point, Tm, is equal to the ratio of the heat of melting, ΔHm, to the entropy of melting, ΔSm. The heat of melting is shown to be an additive-constitutive property. However, the entropy of melting is not entirely group additive. It is primarily dependent on molecular geometry, including parameters which reflect the degree of restriction of molecular motion in the crystal to that of the liquid. Symmetry, eccentricity, chirality, flexibility, and hydrogen bonding, each decrease molecular freedom in different ways and thus make different contributions to the total entropy of fusion. The relationships of these entropy determining parameters to chemical structure are used to develop a reasonably accurate means of predicting the melting points over 2000 compounds. Copyright © 2017. Published by Elsevier Inc.

  5. Fundamentals of twin-screw extrusion polymer melting: Common pitfalls and how to avoid them

    Science.gov (United States)

    Andersen, Paul

    2015-05-01

    The process for compounding engineered polymer formulations is comprised of several unit operations. These typically include, but are not limited to: feedstock introduction, polymer melt-mixing, distributive/dispersive mixing of minerals/fibers, removal of volatiles, and pressurization for discharge. While each unit operation has an impact on process productivity and the quality of the finished product, polymer melt-mixing has a significantly greater impact than the others. First, it consumes 50, 60 or higher percent of the total system energy. Second, it generates the highest radial as well as particle-particle interactive pressure of any unit operation. Third, the negative impact on the process of any design flaws in the melt-mixing configuration is transmitted downstream to all subsequent unit operations. For example, a melt-mixing design that is too intense may degrade the polymer while one that is too weak may result in excessive breakage of glass fiber being fed downstream due to the polymer solidifying on the glass fiber and subsequently being re-melted. Another example of the impact of an incorrect melt-mixing configuration would be excessive abrasive wear. Adhesive wear is also possible as well as deformation on both barrel wall and screw elements due to high radial forces. Additionally, non-melting material present during the melt-mixing process could be compacted into "briquettes" by the high radial pressure and would have to be dispersed by subsequent downstream unit operations. Other potential issues associated with a non-optimal melting section are pre-mature and incomplete melting. The former is more of a concern with melting of powder feed stock while the latter is more probable with feed stock comprised of a broad range of particle sizes. However, the consequence of both is to convey unmolten polymer beyond the melting section. While this may not be perceived as a significant issue for most processes, it is an issue if the sole purpose of the

  6. Metallic Recovery and Ferrous Melting Processes

    Energy Technology Data Exchange (ETDEWEB)

    Luis Trueba

    2004-05-30

    The effects of melting atmosphere and charge material type on the metallic and alloy recovery of ferrous charge materials were investigated in two sets of experiments (Tasks 1 and 2). In addition, thermodynamic studies were performed (Task 3) to determine the suitability of ladle treatment for the production of ductile iron using scrap charge materials high in manganese and sulfur. Task 1--In the first set of experiments, the charge materials investigated were thin steel scrap, thick steel scrap, cast iron scrap, and pig iron in the rusty and clean states. Melting atmospheres in this set of experiments were varied by melting with and without a furnace cover. In this study, it was found that neither covered melting nor melting clean (non-rusty) ferrous charge materials improved the metallic recovery over the recovery experienced with uncovered melting or rusty charge materials. However, the silicon and manganese recoveries were greater with covered melting and clean materials. Silicon and manganese in the molten iron react with oxygen dissolved in the iron from uncovered melting and oxidized iron (surface rust). Silica and manganese silicates are formed which float to the slag decreasing recoveries of silicon and manganese. Cast iron and pig iron had higher metallic recoveries than steel scrap. Carbon recovery was affected by the carbon content of the charge materials, and not by the melting conditions. Irons with higher silicon contents had higher silicon recovery than irons with lower silicon contents. Task 2--In the second set of experiments, briquetted turnings and borings were used to evaluate the effects of briquette cleanliness, carbon additions, and melting atmosphere on metallic and alloy recovery. The melting atmosphere in this set of experiments was varied by melting in air and with an argon atmosphere using the SPAL process. In this set of experiments, carbon additions to the briquettes were found to have the greatest effect on metallic and alloy

  7. The contribution of glacier melt to streamflow

    Energy Technology Data Exchange (ETDEWEB)

    Schaner, Neil; Voisin, Nathalie; Nijssen, Bart; Lettenmaier, D. P.

    2012-09-13

    Ongoing and projected future changes in glacier extent and water storage globally have lead to concerns about the implications for water supplies. However, the current magnitude of glacier contributions to river runoff is not well known, nor is the population at risk to future glacier changes. We estimate an upper bound on glacier melt contribution to seasonal streamflow by computing the energy balance of glaciers globally. Melt water quantities are computed as a fraction of total streamflow simulated using a hydrology model and the melt fraction is tracked down the stream network. In general, our estimates of the glacier melt contribution to streamflow are lower than previously published values. Nonetheless, we find that globally an estimated 225 (36) million people live in river basins where maximum seasonal glacier melt contributes at least 10% (25%) of streamflow, mostly in the High Asia region.

  8. Nanotexturing of surfaces to reduce melting point.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  9. Are Entangled Polymer Melts Different From Solutions?

    DEFF Research Database (Denmark)

    Huang, Qian; Mednova, Olga; Rasmussen, Henrik K.

    The possible existence of a qualitative difference on extensional steady state viscosity between polymer melts and polymer solutions is still an open question. Recent experiments [1-4] showed the extensional viscosity of both polymer melts and solutions decayed as a function of strain rate...... with an exponent of -0.5. When the strain rate became higher than the order of inverse Rouse time, the polymer solutions showed an upturn [1, 4]. However, in the same regime for polymer melts, the experiments were contrary: some of the experiments showed an upturn [4, 5], while others did not [2, 3]. In order...... to further investigate the extensional steady state viscosity of polymer melts, we carefully synthesized two monodisperse polystyrenes with molar masses of 248 and 484 kg/mole. The start-up and steady uniaxial elongational viscosity have been measured for the two melts using a filament stretching rheometer...

  10. Shape evolution of a melting nonspherical particle.

    Science.gov (United States)

    Kintea, Daniel M; Hauk, Tobias; Roisman, Ilia V; Tropea, Cameron

    2015-09-01

    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  11. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  12. Melting of MORB up to 130 GPa

    Science.gov (United States)

    Pradhan, G. K.; Fiquet, G.; Siebert, J.; Auzende, A.; Antonangeli, D.

    2013-12-01

    Though today Earth's mantle material is predominantly solid, presence of regions of anomalously low seismic wave velocity deep within the mantle, known as ultralow velocity zones (ULVZs), may be indicative of a remnant magma ocean[Labrosse et al., Nature 450, 866, 2007] or an accumulation of subducted oceanic crust. A recent study on peridotite melting [Fiquet et al., Science 329, 1516, 2010] showed that it is possible to melt peridotites at the base of the mantle, thus making the hypothesis of a remnant magma ocean thermodynamically feasible. It is thus important to know about the possible melting of the oceanic lithosphere at the base of the mantle and whether the partial melting products can significantly contribute to ULVZs. Data on the melting curve (solidus) of mid-ocean ridge basalt (MORB), here taken as a proxy of the oceanic crust, exist up to 64 GPa [Hirose et al.,Nature 397, 53, 1999]. Melting temperature at the core mantle boundary, however, is only estimated from extrapolations of low pressure data and composition of the liquids obtained from partial melting have been reported in multi-anvil experiments at pressures up to 27.5 GPa only [Hirose et al.,GCA 66, 2099, 2002]. We have therefore conducted a series of experiments using diamond-anvil cells and laser-heating and determined the melting curve for the MORB between 44 and 130 GPa. Thin (electron transparent) sections of recovered samples (quenched melt) were prepared by Focused Ion Beam (FIB) and further investigated by analytical transmission electron microscopy to check melting/crystallization sequences as well as variations of phase composition as a function of temperature and pressure. Our results also yield strong constraints on the solidus curve of the lower mantle.

  13. Numerical study of the influence of forced melt convection on the impurities transport in a silicon directional solidification process

    Science.gov (United States)

    Popescu, Alexandra; Vizman, Daniel

    2017-09-01

    Time dependent three-dimensional numerical simulations were carried out in order to understand the effects of forced convection induced by electromagnetic stirring of the melt, on the crucible dissolution rate and on the impurity distribution in multicrystalline silicon (mc-Si) melt for different values of the diffusion coefficient and electric and magnetic field parameters. Once the electromagnetic stirring is switched on, in a relative short period of time approx. 400 s the impurities are almost homogenized in the whole melt. The dissolution rate was estimated from the total mass of impurities that was found in the silicon melt after a certain period of time. The obtained results show that enhanced convection produced by the electromagnetic stirring leads to a moderate increase of the dissolution rate and also to a uniform distribution of impurities in the melt.

  14. Rheology of Melt-bearing Crustal Rocks

    Science.gov (United States)

    Rosenberg, C. L.; Medvedev, S.; Handy, M. R.

    2006-12-01

    A review and reinterpretation of previous experimental data on the deformation of melt-bearing crustal rocks (Rosenberg and Handy, 2005) revealed that the relationship of aggregate strength to melt fraction is non-linear, even if plotted on a linear ordinate and abscissa. At melt fractions, Φ 0.07, the dependence of aggregate strength on Φ is significantly greater than at Φ > 0.07. This melt fraction (Φ= 0.07) marks the transition from a significant increase in the proportion of melt-bearing grain boundaries up to this point to a minor increase thereafter. Therefore, we suggest that the increase of melt-interconnectivity causes the dramatic strength drop between the solidus and a melt fraction of 0.07. A second strength drop occurs at higher melt fractions and corresponds to the breakdown of the solid (crystal) framework, corresponding to the well-known "rheologically critical melt percentage" (RCMP; Arzi, 1978). Although the strength drop at the RCMP is about 4 orders of magnitude, the absolute value of this drop is small compared to the absolute strength of the unmelted aggregate, rendering the RCMP invisible in a linear aggregate strength vs. melt fraction diagram. Predicting the rheological properties and thresholds of melt-bearing crust on the basis of the results and interpretations above is very difficult, because the rheological data base was obtained from experiments performed at undrained conditions in the brittle field. These conditions are unlikely to represent the flow of partially melted crust. The measured strength of most of the experimentally deformed, partially-melted samples corresponds to their maximum differential stress, before the onset of brittle failure, not to their viscous strength during "ductile" (viscous) flow. To overcome these problems, we extrapolated a theoretically-derived flow law for partially melted granite deforming by diffusion-accommodated grain-boundary sliding (Paterson, 2001) and an experimentally-derived flow law for

  15. Melt Patterns and Dynamics in Alaska and Patagonia Derived from Passive Microwave Brightness Temperatures

    Directory of Open Access Journals (Sweden)

    Kathryn Semmens

    2014-01-01

    Full Text Available Glaciers and icefields are critical components of Earth’s cryosphere to study and monitor for understanding the effects of a changing climate. To provide a regional perspective of glacier melt dynamics for the past several decades, brightness temperatures (Tb from the passive microwave sensor Special Sensor Microwave Imager (SSM/I were used to characterize melt regime patterns over large glacierized areas in Alaska and Patagonia. The distinctness of the melt signal at 37V-GHz and the ability to acquire daily data regardless of clouds or darkness make the dataset ideal for studying melt dynamics in both hemispheres. A 24-year (1988–2011 time series of annual Tb histograms was constructed to (1 characterize and assess temporal and spatial trends in melt patterns, (2 determine years of anomalous Tb distribution, and (3 investigate potential contributing factors. Distance from coast and temperature were key factors influencing melt. Years of high percentage of positive Tb anomalies were associated with relatively higher stream discharge (e.g., Copper and Mendenhall Rivers, Alaska, USA and Rio Baker, Chile. The characterization of melt over broad spatial domains and a multi-decadal time period offers a more comprehensive picture of the changing cryosphere and provides a baseline from which to assess future change.

  16. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  17. Freezing and melting line invariants of the Lennard-Jones system

    DEFF Research Database (Denmark)

    Costigliola, Lorenzo; Schrøder, Thomas; Dyre, Jeppe C.

    2016-01-01

    The invariance of several structural and dynamical properties of the Lennard-Jones (LJ) system along the freezing and melting lines is interpreted in terms of isomorph theory. First the freezing/melting lines of the LJ system are shown to be approximated by isomorphs. Then we show...... that the invariants observed along the freezing and melting isomorphs are also observed on other isomorphs in the liquid and crystalline phases. The structure is probed by the radial distribution function and the structure factor and dynamics are probed by the mean-square displacement, the intermediate scattering...... function, and the shear viscosity. Studying these properties with reference to isomorph theory explains why the known single-phase melting criteria hold, e.g., the Hansen–Verlet and the Lindemann criteria, and why the Andrade equation for the viscosity at freezing applies, e.g., for most liquid metals. Our...

  18. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  19. Diffusive loss of argon in response to melt vein formation in polygenetic impact melt breccias

    Science.gov (United States)

    Mercer, Cameron M.; Hodges, Kip V.

    2017-08-01

    Many planetary surfaces in the solar system have experienced prolonged bombardment. With each impact, new rocks can be assembled that incorporate freshly generated impact melts with fragments of older rocks. Some breccias can become polygenetic, containing multiple generations of impact melt products, and can potentially provide important insights into the extensive bombardment history of a region. However, the amount of chronological information that can be extracted from such samples depends on how well the mineral isotopic systems of geochronometers can preserve the ages of individual melt generations without being disturbed by younger events. We model the thermal evolution of impact melt veins and the resulting loss of Ar from K-bearing phases common in impact melt breccias to assess the potential for preserving the 40Ar/39Ar ages of individual melt generations. Our model results demonstrate that millimeter-scale, clast-free melt veins cause significant heating of adjacent host rock minerals and can cause detectable Ar loss in contact zones that are generally thinner than, and at most about the same thickness as, the vein width. The incorporation of cold clasts in melt veins reduces the magnitudes of heating and Ar loss in the host rocks, and Ar loss can be virtually undetectable for sufficiently clast-rich veins. Quantitative evidence of the timing of impacts, as measured with the 40Ar/39Ar method, can be preserved in polygenetic impact melt breccias, particularly for those containing millimeter-scale bodies of clast-bearing melt products.

  20. Fundamental Aspects of Selective Melting Additive Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.

  1. Glass Furnace Combustion and Melting Research Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Connors, John J. (PPG Industries, Inc., Pittsburgh, PA); McConnell, John F. (JFM Consulting, Inc., Pittsburgh, PA); Henry, Vincent I. (Henry Technology Solutions, LLC, Ann Arbor, MI); MacDonald, Blake A.; Gallagher, Robert J.; Field, William B. (Lilja Corp., Livermore, CA); Walsh, Peter M.; Simmons, Michael C. (Lilja Corp., Livermore, CA); Adams, Michael E. (Lilja Corp., Rochester, NY); Leadbetter, James M. (A.C. Leadbetter and Son, Inc., Toledo, OH); Tomasewski, Jack W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Operacz, Walter J. (A.C. Leadbetter and Son, Inc., Toledo, OH); Houf, William G.; Davis, James W. (A.C. Leadbetter and Son, Inc., Toledo, OH); Marvin, Bart G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Gunner, Bruce E. (A.C. Leadbetter and Son, Inc., Toledo, OH); Farrell, Rick G. (A.C. Leadbetter and Son, Inc., Toledo, OH); Bivins, David P. (PPG Industries, Inc., Pittsburgh, PA); Curtis, Warren (PPG Industries, Inc., Pittsburgh, PA); Harris, James E. (PPG Industries, Inc., Pittsburgh, PA)

    2004-08-01

    The need for a Combustion and Melting Research Facility focused on the solution of glass manufacturing problems common to all segments of the glass industry was given high priority in the earliest version of the Glass Industry Technology Roadmap (Eisenhauer et al., 1997). Visteon Glass Systems and, later, PPG Industries proposed to meet this requirement, in partnership with the DOE/OIT Glass Program and Sandia National Laboratories, by designing and building a research furnace equipped with state-of-the-art diagnostics in the DOE Combustion Research Facility located at the Sandia site in Livermore, CA. Input on the configuration and objectives of the facility was sought from the entire industry by a variety of routes: (1) through a survey distributed to industry leaders by GMIC, (2) by conducting an open workshop following the OIT Glass Industry Project Review in September 1999, (3) from discussions with numerous glass engineers, scientists, and executives, and (4) during visits to glass manufacturing plants and research centers. The recommendations from industry were that the melting tank be made large enough to reproduce the essential processes and features of industrial furnaces yet flexible enough to be operated in as many as possible of the configurations found in industry as well as in ways never before attempted in practice. Realization of these objectives, while still providing access to the glass bath and combustion space for optical diagnostics and measurements using conventional probes, was the principal challenge in the development of the tank furnace design. The present report describes a facility having the requirements identified as important by members of the glass industry and equipped to do the work that the industry recommended should be the focus of research. The intent is that the laboratory would be available to U.S. glass manufacturers for collaboration with Sandia scientists and engineers on both precompetitive basic research and the

  2. Effect of water on mantle melting and magma differentiation, as modeled using Adiabat_1ph 3.0

    Science.gov (United States)

    Antoshechkina, P. M.; Asimow, P. D.; Hauri, E. H.; Luffi, P. I.

    2010-12-01

    MELTS [1] and pMELTS [2] are widely used for modeling hydrous magma differentiation and water-saturated mantle melting, respectively. In pHMELTS [3] the water species can partition into melt, pure vapor, and hydrous or nominally anhydrous minerals so that phase relations for water-undersaturated systems may also be constructed. Adiabat_1ph is a text-based front end to the (pH)MELTS algorithms; in version 3.0 (Antoshechkina and Asimow, this meeting) we have added tools to further explore the effect of water on melting and fractional crystallization. Asimow and coworkers developed two schemes for fractionation-correction of major and trace elements: a forward model that considers the effects of water, pressure, and fO2 on the liquid line of descent (LLD) [3] and a hybrid back- and forward-fractionation model that may be used for individual samples when trends are poorly defined [4]. An extensive melt inclusion dataset for the Mariana Trough [5] shows evidence for simultaneous fractionation and degassing, so we have adapted routines from [4] to cope with hydrous conditions. For H2O Siqueiros Fracture Zone. Adiabat_1ph 3.0 is capable of handling melt/fluid-fluxed melting where the liquid encounters a variety of solids along its pathway. Channelized flow is simulated as batch addition of large amounts of fluxing agent, while distributed porous percolation of melt is approached as incremental feed of the same agent into a solid whose composition progressively modifies as it reacts with melt. The observation that incremental flux melting of peridotites leads to a broader diversity and steeper gradients in residue compositions than batch fluxing [6] also holds for water-fluxed melting of peridotites. Liquids resulting from the two mechanisms differ most at the point of highest melt/rock ratio. Melts generated by incremental fluxing are poorer in Si and richer in Al and Fe than those resulting from batch water addition, implying that hydrous melts traversing the lithosphere

  3. Crustal thickness variations at oceanic ridge segment and transform faults: implications for three-dimensional melt extraction pathways

    Science.gov (United States)

    Hebert, L. B.; Montesi, L. G.

    2010-12-01

    Transform faults constitute a ubiquitous component of the global mid-ocean ridge system. Enhanced cooling is usually thought to produce a relatively thick lithosphere underneath the transform domain, which would act as a keel to segregate magma between adjacent mid-ocean ridges. However, modeling of gravity anomalies at fast spreading ridges implies thickened crust in the transform domain. These anomalies may correspond to additional melt produced by intra-transform spreading, melt that is easily extracted in the transform domain due to faulting, or melt redistributed from the adjacent spreading centers by dike intrusion in the crust. We test the first two ideas using a three-dimensional numerical model of melt migration and extraction along a transform zone and adjacent ridge segments. First, mantle flow and the thermal structure of a segmented spreading center are determined. Melt is assumed to travel vertically before being collected and migrating beneath a low-permeability boundary inclined towards the ridge segment axis. A melt extraction zone is defined around any plate boundary to represent a domain where faults and/or dikes lead to rapid lateral and vertical melt migration toward the surface. The effect of the size of the melt extraction zone on melt distribution and crustal thickness is examined first for a simplified ridge-transform-ridge geometry and then for a model of the Siqueiros transform on the East Pacific Rise. Intra-transform spreading centers (ITSCs) are included to test the possibility of ITSC-related melting. On the basis of crustal thickness variations along the fast-slipping Siqueiros fault, we constrain the melt extraction zone to be on the order of 20 km thick within 10 km of the transform axis, indicating that melt extraction likely occurs through a dike complex extending to great depth into the mantle.

  4. Centuries of intense surface melt on Larsen C Ice Shelf

    Directory of Open Access Journals (Sweden)

    S. L. Bevan

    2017-12-01

    Full Text Available Following a southward progression of ice-shelf disintegration along the Antarctic Peninsula (AP, Larsen C Ice Shelf (LCIS has become the focus of ongoing investigation regarding its future stability. The ice shelf experiences surface melt and commonly features surface meltwater ponds. Here, we use a flow-line model and a firn density model (FDM to date and interpret observations of melt-affected ice layers found within five 90 m boreholes distributed across the ice shelf. We find that units of ice within the boreholes, which have densities exceeding those expected under normal dry compaction metamorphism, correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula. The more recent warm period, from the 1960s onwards, has generated distinct sections of dense ice measured in two boreholes in Cabinet Inlet, which is close to the Antarctic Peninsula mountains – a region affected by föhn winds. Previous work has classified these layers as refrozen pond ice, requiring large quantities of mobile liquid water to form. Our flow-line model shows that, whilst preconditioning of the snow began in the late 1960s, it was probably not until the early 1990s that the modern period of ponding began. The earlier warm period occurred during the 18th century and resulted in two additional sections of anomalously dense ice deep within the boreholes. The first, at 61 m in one of our Cabinet Inlet boreholes, consists of ice characteristic of refrozen ponds and must have formed in an area currently featuring ponding. The second, at 69 m in a mid-shelf borehole, formed at the same time on the edge of the pond area. Further south, the boreholes sample ice that is of an equivalent age but which does not exhibit the same degree of melt influence. This west–east and north–south gradient in the past melt distribution resembles current spatial patterns of surface melt intensity.

  5. Ice-shelf melting around Antarctica

    National Research Council Canada - National Science Library

    Rignot, E; Jacobs, S; Mouginot, J; Scheuchl, B

    2013-01-01

    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance...

  6. Investigation of Melting Dynamics of Hafnium Clusters.

    Science.gov (United States)

    Ng, Wei Chun; Lim, Thong Leng; Yoon, Tiem Leong

    2017-03-27

    Melting dynamics of hafnium clusters are investigated using a novel approach based on the idea of the chemical similarity index. Ground state configurations of small hafnium clusters are first derived using Basin-Hopping and Genetic Algorithm in the parallel tempering mode, employing the COMB potential in the energy calculator. These assumed ground state structures are verified by using the Low Lying Structures (LLS) method. The melting process is carried out either by using the direct heating method or prolonged simulated annealing. The melting point is identified by a caloric curve. However, it is found that the global similarity index is much more superior in locating premelting and total melting points of hafnium clusters.

  7. Production of Synthetic Nuclear Melt Glass.

    Science.gov (United States)

    Molgaard, Joshua J; Auxier, John D; Giminaro, Andrew V; Oldham, Colton J; Gill, Jonathan; Hall, Howard L

    2016-01-04

    Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition.

  8. Melting point of polymers under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Andreas [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany)], E-mail: seeger@chemie.tu-darmstadt.de; Freitag, Detlef [Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany); Freidel, Frank [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany); Luft, Gerhard [Technische Universitaet Darmstadt, Ernst Berl-Institut fuer Technische und Makromolekulare Chemie, Petersenstr. 20, D-64287 Darmstadt (Germany)], E-mail: luft@bodo.ct.chemie.tu-darmstadt.de

    2009-03-20

    The influence of highly compressed gases on the melting of polyethylene was investigated for nitrogen, helium and ethylene. The impact of the particle size of the polymer and the heating rate on the melting point were also analysed. The melting points were determined with a high pressure differential thermal analysis (HPDTA) apparatus. These measurements were compared with independent measurements, done by high pressure differential scanning calorimetry (HPDSC), without gas. From this experimental data it was possible to calculate the concentration of the gas in the molten polymer phase based on equilibrium thermodynamics. For high density polyethylene (HDPE), a concentration of nitrogen at the polymer melting point of 10.4-35.7 mL(SATP) g(polymer){sup -1}, in the pressure interval of 65-315 MPa, was calculated.

  9. Melting and Freezing of Metal Clusters

    Science.gov (United States)

    Aguado, Andrés; Jarrold, Martin F.

    2011-05-01

    Recent developments allow heat capacities to be measured for size-selected clusters isolated in the gas phase. For clusters with tens to hundreds of atoms, the heat capacities determined as a function of temperature usually have a single peak attributed to a melting transition. The melting temperatures and latent heats show large size-dependent fluctuations. In some cases, the melting temperatures change by hundreds of degrees with the addition of a single atom. Theory has played a critical role in understanding the origin of the size-dependent fluctuations, and in understanding the properties of the liquid-like and solid-like states. In some cases, the heat capacities have extra features (an additional peak or a dip) that reveal a more complex behavior than simple melting. In this article we provide a description of the methods used to measure the heat capacities and provide an overview of the experimental and theoretical results obtained for sodium and aluminum clusters.

  10. ESR melting under constant voltage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schlienger, M.E.

    1997-02-01

    Typical industrial ESR melting practice includes operation at a constant current. This constant current operation is achieved through the use of a power supply whose output provides this constant current characteristic. Analysis of this melting mode indicates that the ESR process under conditions of constant current is inherently unstable. Analysis also indicates that ESR melting under the condition of a constant applied voltage yields a process which is inherently stable. This paper reviews the process stability arguments for both constant current and constant voltage operation. Explanations are given as to why there is a difference between the two modes of operation. Finally, constant voltage process considerations such as melt rate control, response to electrode anomalies and impact on solidification will be discussed.

  11. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator Kent Peaslee; Co-PI’s: Von Richards, Jeffrey Smith

    2012-07-31

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  12. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....

  13. Terrestrial analogues for lunar impact melt flows

    Science.gov (United States)

    Neish, C. D.; Hamilton, C. W.; Hughes, S. S.; Nawotniak, S. Kobs; Garry, W. B.; Skok, J. R.; Elphic, R. C.; Schaefer, E.; Carter, L. M.; Bandfield, J. L.; Osinski, G. R.; Lim, D.; Heldmann, J. L.

    2017-01-01

    Lunar impact melt deposits have unique physical properties. They have among the highest observed radar returns at S-Band (12.6 cm wavelength), implying that they are rough at the decimeter scale. However, they are also observed in high-resolution optical imagery to be quite smooth at the meter scale. These characteristics distinguish them from well-studied terrestrial analogues, such as Hawaiian pāhoehoe and ´a´ā lava flows. The morphology of impact melt deposits can be related to their emplacement conditions, so understanding the origin of these unique surface properties will help to inform us as to the circumstances under which they were formed. In this work, we seek to find a terrestrial analogue for well-preserved lunar impact melt flows by examining fresh lava flows on Earth. We compare the radar return and high-resolution topographic variations of impact melt flows to terrestrial lava flows with a range of surface textures. The lava flows examined in this work range from smooth Hawaiian pāhoehoe to transitional basaltic flows at Craters of the Moon (COTM) National Monument and Preserve in Idaho to rubbly and spiny pāhoehoe-like flows at the recent eruption at Holuhraun in Iceland. The physical properties of lunar impact melt flows appear to differ from those of all the terrestrial lava flows studied in this work. This may be due to (a) differences in post-emplacement modification processes or (b) fundamental differences in the surface texture of the melt flows due to the melts' unique emplacement and/or cooling environment. Information about the surface properties of lunar impact melt deposits will be critical for future landed missions that wish to sample these materials.

  14. Constraints on melt content of off-axis magma lenses at the East Pacific Rise from analysis of 3-D seismic amplitude variation with angle of incidence

    Science.gov (United States)

    Aghaei, Omid; Nedimović, Mladen R.; Marjanović, Milena; Carbotte, Suzanne M.; Pablo Canales, J.; Carton, Hélène; Nikić, Nikola

    2017-06-01

    We use 3-D multichannel seismic data to form partial angle P wave stacks and apply amplitude variation with angle (AVA) crossplotting to assess melt content and melt distribution within two large midcrustal off-axis magma lenses (OAMLs) found along the East Pacific Rise from 9°37.5'N to 9°57'N. The signal envelope of the partial angle stacks suggests that both OAMLs are partially molten with higher average melt content and more uniform melt distribution in the southern OAML than in the northern OAML. For AVA crossplotting, the OAMLs are subdivided into seven 1 km2 analysis windows. The AVA crossplotting results indicate that the OAMLs contain a smaller amount of melt than the axial magma lens (AML). For both OAMLs, a higher melt fraction is detected within analysis windows located close to the ridge axis than within the most distant windows. The highest average melt concentration is interpreted for the central sections of the OAMLs. The overall low OAML melt content could be indicative of melt lost due to recent off-axis eruptions, drainage to the AML, or limited mantle melt supply. Based on the results of this and earlier bathymetric, morphological, geochemical, and geophysical investigations, we propose that the melt-poor OAML state is largely the result of limited melt supply from the underlying mantle source reservoir with smaller contribution attributed to melt leakage to the AML. We hypothesize that the investigated OAMLs have a longer period of melt replenishment, lower eruption recurrence rates, and lower eruption volumes than the AML, though some could be single intrusion events.

  15. Manufacturing laser glass by continuous melting

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  16. Ash melting behaviour - status of the standardisation

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, H. [Vienna University of Technology, Vienna (Austria). Institute of Chemical Engineering

    2004-07-01

    The ash melting behaviour is an important property for the thermal utilization of biomass. Experience shows that there exists a extremely wide range of ash melting temperatures for different biofuels which makes it necessary to determine this property very carefully. Low melting ashes can lead to slagging and deposits in different parts of the plant. In consequence a technical specification for the determination of the ash melting behaviour of solid biofuels is necessary to compare the data from different sources. The information of the European Project ''BioNorm'' referring to the ash melting behaviour was used as starting point. Two different methods are identified for this purpose. One method is based on the existing standards used for coal ashes and a novel method based on ''Melt Area Fraction'' has been developed by dk-Teknik. As the latter one is not commonly used by several testing laboratories it was decided to adapt the existing method also for biofuels. (orig.)

  17. Internal Melting and the Shape of Enceladus

    Science.gov (United States)

    Collins, Geoffrey; Goodman, J. C.

    2006-09-01

    If the thermal energy radiating from the south polar area of Enceladus is supplied over a limited area at the base of the ice shell, melting of a localized pool of water is favored over convection if the ice begins in conductive equilibrium. We show through numerical modeling that a melt pool produced by the observed excess heat flux from the south polar region is stable for long periods of time without turning into a global ocean. As the model approaches equilibrium, inflow of ice from the sides of the melt pool and subsequent melting above the center of the thermal source is balanced by freezing around the outside base of the pool. The observed shape of Enceladus can be fit by a differentiated body (core density pit centered on the south pole. Reported deviations from the best fit ellipsoid (high at 50°S, low at the south pole) can also be fit by this model, and are sensitive to the shape of the heating profile applied to the base of the ice shell. The large surface pit at the south pole produced in our model represents contraction of mass toward the center of Enceladus, producing a significant negative gravity anomaly (calculated by integrating gravity over our melting model), which may serve to reorient Enceladus and place the active region at the south pole. The surface subsidence over the localized melt pool may also explain the sudden change in surface geology around the pole, and will produce compression radial to the pole.

  18. Primary crustal melt compositions: Insights into the controls, mechanisms and timing of generation from kinetics experiments and melt inclusions

    Science.gov (United States)

    Acosta-Vigil, Antonio; London, David; Morgan, George B.; Cesare, Bernardo; Buick, Ian; Hermann, Jörg; Bartoli, Omar

    2017-08-01

    We explore the controls, mechanisms and timing of generation of primary melts and their compositions, and show that the novel studies of melt inclusions in migmatites can provide important insights into the processes of crustal anatexis of a particular rock. Partial melting in the source region of granites is dependent on five main processes: (i) supply of heat; (ii) mineral-melt interface reactions associated with the detachment and supply of mineral components to the melt, (iii) diffusion in the melt, (iv) diffusion in minerals, and (v) recrystallization of minerals. As the kinetics of these several processes vary over several orders of magnitude, it is essential to evaluate in Nature which of these processes control the rate of melting, the composition of melts, and the extent to which residue-melt chemical equilibrium is attained under different circumstances. To shed light on these issues, we combine data from experimental and melt inclusion studies. First, data from an extensive experimental program on the kinetics of melting of crustal protoliths and diffusion in granite melt are used to set up the necessary framework that describes how primary melt compositions are established during crustal anatexis. Then, we use this reference frame and compare compositional trends from experiments with the composition of melt inclusions analyzed in particular migmatites. We show that, for the case of El Hoyazo anatectic enclaves in lavas, the composition of glassy melt inclusions provides important information on the nature and mechanisms of anatexis during the prograde suprasolidus history of these rocks, including melting temperatures and reactions, and extent of melt interconnection, melt homogenization and melt-residue equilibrium. Compositional trends in several of the rehomogenized melt inclusions in garnet from migmatites/granulites in anatectic terranes are consistent with diffusion in melt-controlled melting, though trace element compositions of melt inclusions

  19. Wet melting along the Tonga Volcanic Arc

    Science.gov (United States)

    Cooper, L. B.; Plank, T.; Arculus, R. J.; Hauri, E. H.; Hall, P.

    2010-12-01

    Melting in the mantle at convergent margins is driven by water from the subducting slab. Previous work has found a strong role for water-fluxed melting from correlations between the concentration of water in the mantle source, (H2O)o, and the extent of melting beneath backarcs, Fba. Here we explore how wet melting beneath the Lau Backarc Basin relates to that beneath the Tonga Arc, Farc, by providing the first systematic study of water contents in Tonga arc magmas. We have measured volatiles and major and trace elements in melt inclusions, glasses, and whole rocks obtained from recently sampled submarine and subaerial Tonga arc volcanoes. The compositions are varied and range mostly between andesite and basalt/boninite, and least-degassed water contents range from 2 to 5 wt%. We estimate (H2O)o and Farc independently by combining pressure (P) and temperature (T) estimates from an olivine-orthopyroxene-melt thermobarometer with a wet melting productivity model. When P, T, and (H2O)o are known, Farc is uniquely constrained. Results for the volcanoes in the Tonga Arc are bimodal with respect to T: volcanoes located near active backarc spreading centers reflect cooler melting (~1275°C) than those located far from active spreading centers (~1365°C). The cooler primary T’s may result from removal of the heat of fusion during prior melting beneath the Lau backarc, Fba. In the northern portion of the arc, the warmest primary T’s may be due to proximity to the Samoan mantle plume. Farc varies non-systematically along-strike, indicating that Fba is the primary driver of along-arc variability in primary melt compositions. Farc can also be used to calculate the TiO2 concentration of the arc mantle source, (TiO2)o (a proxy for source depletion), which varies monotonically along the Tonga Arc. Arc volcanoes adjacent to the Southern Lau Rifts and Valu Fa Ridge melt mantle with a fertile N-MORB TiO2, while those adjacent to the northern extent of the Eastern Lau Spreading

  20. Melting in the Fe-Ni system

    Science.gov (United States)

    Lord, O. T.; Walter, M. J.; Vocadlo, L.; Wood, I. G.; Dobson, D. P.

    2012-12-01

    The melting temperature of the Fe-rich core alloy at the inner core boundary (ICB) condition of 330 GPa is a key geophysical parameter because it represents an anchor point on the geotherm. An accurate knowledge of the melting curves of candidate alloys is therefore highly desirable. In spite of this, there is still considerable uncertainty in the melting point even of pure Fe at these conditions; estimates range from as low as 4850K based on one laser heated diamond anvil cell (LHDAC) study [1] to as high as 6900K based on recent quantum Monte Carlo calculations [2]. In reality we expect that the bulk core alloy may contain 5-10 wt% Ni (based on cosmochemical and meteoritic arguments) and up to 10 wt% of an as yet undetermined mix of light elements (with Si, S, C and O being the most likely candidates). While some recent studies have looked at the effects of light elements on the melting curve of Fe [e.g.: 3,4] with some of these studies including a small amount of Ni in their starting material, to date there has been no systematic study of melting temperatures in the Fe-Ni system. To address this issue, we have embarked upon just such a study. Using the LHDAC we have determined the melting curve of the pure Ni end-member to 180 GPa, and that of pure Fe to 50 GPa, using perturbations in the power vs. temperature function as the melting criterion [5]. Ar or NaCl were employed as pressure media while temperature was measured using standard spectroradiometric techniques [6]. In the case of Ni, perturbations were observed for both the sample and the Ar medium, allowing us to determine the melting curve of Ar and Ni simultaneously. Our results thus far for Ni and Ar agree closely with all of the available data, while extending the melting curves by a factor of two in pressure. In the case of Fe, our current dataset is also in good agreement with previous studies [2,7]. The agreement of all three melting curves with the literature data as well as other materials

  1. Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field

    Directory of Open Access Journals (Sweden)

    Zhang Yong

    2010-08-01

    Full Text Available This article aims at building an electromagnetic and fluid model, based on the Maxwell equations and Navier-Stokes equations, in TiAl melt under two electric fields. FEM (Finite Element Method and APDL (ANSYS Parametric Design Language were employed to perform the simulation, model setup, loading and problem solving. The melt in molds of same cross section area with different flakiness ratio (i.e. width/depth under the load of sinusoidal current or pulse current was analyzed to obtain the distribution of electromagnetic field and flow field. The results show that the induced magnetic field occupies sufficiently the domain of the melt in the mold with a flakiness ratio of 5:1. The melt is driven bipolarly from the center in each electric field. It is also found that the pulse electric field actuates the TiAl melt to flow stronger than what the sinusoidal electric field does.

  2. Termination of light-water reactor core-melt accidents with a chemical core catcher: the core-melt source reduction system (COMSORS)

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Parker, G.W.; Rudolph, J.C.; Osborne-Lee, I.W. [Oak Ridge National Lab., TN (United States); Kenton, M.A. [Dames and Moore, Westmont, IL (United States)

    1996-09-01

    The Core-Melt Source Reduction System (COMSORS) is a new approach to terminate light-water reactor core melt accidents and ensure containment integrity. A special dissolution glass is placed under the reactor vessel. If core debris is released onto the glass, the glass melts and the debris dissolves into the molten glass, thus creating a homogeneous molten glass. The molten glass, with dissolved core debris, spreads into a wide pool, distributing the heat for removal by radiation to the reactor cavity above or by transfer to water on top of the molten glass. Expected equilibrium glass temperatures are approximately 600 degrees C. The creation of a low-temperature, homogeneous molten glass with known geometry permits cooling of the glass without threatening containment integrity. This report describes the technology, initial experiments to measure key glass properties, and modeling of COMSORS operations.

  3. Gravitation- And Conduction-Driven Melting In A Sphere

    Science.gov (United States)

    Bahrami, Parviz A.; Wang, Taylor G.

    1989-01-01

    Simplifying assumptions lead to approximate closed-form solution. Theoretical paper discusses melting of solid sphere in spherical container. Develops mathematical model of melting process, based in part on simplifying assumptions like those used in theories of lubrication and film condensation. Resulting equation for melting speed as function of melting distance solved approximately in closed form.

  4. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology

    Directory of Open Access Journals (Sweden)

    Fengchen Chen

    2018-01-01

    Full Text Available A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting.

  5. Study of formation mechanism of incipient melting in thixo-cast Al–Si–Cu–Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Du, Kang, E-mail: du126kang@126.com; Zhu, Qiang, E-mail: zhu.qiang@grinm.com; Li, Daquan, E-mail: lidaquan@grinm.com; Zhang, Fan, E-mail: sk_zf@163.com

    2015-08-15

    Mechanical properties of thixo-cast Al–Si–Cu–Mg alloys can be enhanced by T61 heat treatment. Copper and magnesium atoms in aluminum matrix can form homogeneously distributed precipitations after solution and aging treatment which harden the alloys. However, microsegregation of these alloying elements could form numerous tiny multi-compound phases during solidification. These phases could cause incipient melting defects in subsequent heat treatment process and degrade the macro-mechanical properties of productions. This study is to present heterogeneous distribution of Cu, Si, and Mg elements and formation of incipient melting defects (pores). In this study, incipient melting pores that occurred during solution treatment at various temperatures, even lower than common melting points of various intermetallic phases, were identified, in terms of a method of investigating the same surface area in the samples before and after solution treatment in a vacuum environment. The results also show that the incipient melting mostly originates at the clusters with fine intermetallic particles while also some at the edge of block-like Al{sub 2}Cu. The fine particles were determined being Al{sub 2}Cu, Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 8}Mg{sub 3}FeSi{sub 2}. Tendency of the incipient melting decreases with decreases of the width of the clusters. The formation mechanism of incipient melting pores in solution treatment process was discussed using both the Fick law and the LSW theory. Finally, a criterion of solution treatment to avoid incipient melting pores for the thixo-cast alloys is proposed. - Highlights: • In-situ comparison technique was used to analysis the change of eutectic phases. • The ralationship between eutectic phase size and incipient melting was studied. • Teat treatment criterion for higher incipient melting resistance was proposed.

  6. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study

    Science.gov (United States)

    Liang, Tianshou; Zhou, Dejian; Wu, Zhaohua; Shi, Pengpeng

    2017-12-01

    The size-dependent melting behaviors and mechanisms of Ag nanoparticles (NPs) with diameters of 3.5–16 nm were investigated by molecular dynamics (MD). Two distinct melting modes, non-premelting and premelting with transition ranges of about 7–8 nm, for Ag NPs were demonstrated via the evolution of distribution and transition of atomic physical states during annealing. The small Ag NPs (3.5–7 nm) melt abruptly without a stable liquid shell before the melting point, which is characterized as non-premelting. A solid-solid crystal transformation is conducted through the migration of adatoms on the surface of Ag NPs with diameters of 3.5–6 nm before the initial melting, which is mainly responsible for slightly increasing the melting point of Ag NPs. On the other hand, surface premelting of Ag NPs with diameters of 8–16 nm propagates from the outer shell to the inner core with initial anisotropy and late isotropy as the temperature increases, and the close-packed facets {111} melt by a side-consumed way which is responsible for facets {111} melting in advance relative to the crystallographic plane {111}. Once a stable liquid shell is formed, its size-independent minimum thickness is obtained, and a three-layer structure of atomic physical states is set up. Lastly, the theory of point defect-pair (vacancy-interstitial) severing as the mechanism of formation and movement of the solid-liquid interface was also confirmed. Our study provides a basic understanding and theoretical guidance for the research, production and application of Ag NPs.

  7. Finding the Missing Physics: Simulating Polydisperse Polymer Melts

    Science.gov (United States)

    Rorrer, Nichoals; Dorgan, John

    2014-03-01

    A Monte Carlo algorithm has been developed to model polydisperse polymer melts. For the first time, this enables the specification of a predetermined molecular weight distribution for lattice based simulations. It is demonstrated how to map an arbitrary probability distributions onto a discrete number of chains residing on an fcc lattice. The resulting algorithm is able to simulate a wide variety of behaviors for polydisperse systems including confinement effects, shear flow, and parabolic flow. The dynamic version of the algorithm accurately captures Rouse dynamics for short polymer chains, and reptation-like dynamics for longer chain lengths.1 When polydispersity is introduced, smaller Rouse times and broadened the transition between different scaling regimes are observed. Rouse times also decrease under confinement for both polydisperse and monodisperse systems and chain length dependent migration effects are observed. The steady-state version of the algorithm enables the simulation of flow and when polydisperse systems are subject to parabolic (Poiseulle) flow, a migration phenomenon based on chain length is again present. These and other phenomena highlight the importance of including polydispersity in obtaining physically realistic simulations of polymeric melts. 1. Dorgan, J.R.; Rorrer, N.A.; Maupin, C.M., Macromolecules 2012, 45(21), 8833-8840. Work funded by the Fluid Dynamics program of the National Science Foundation under grant CBET-1067707.

  8. Pre-melting Behaviour in fcc Metals

    Science.gov (United States)

    Pamato, M. G.; Wood, I. G.; Dobson, D. P.; Hunt, S.; Vocadlo, L.

    2016-12-01

    Although the Earth's core is accepted to be made of an iron-nickel alloy with a few percent of light elements, its exact structure and composition are still unknown. Seismological and mineralogical models in the Earth's inner core do not agree, with mineralogical models derived from ab initiocalculations predicting shear-wave velocities up to 30% greater than seismically observed values. Recent computer simulations revealed that such difference may be explained by a dramatic, non-linear, softening of the elastic constants of Fe prior to melting. Up to date, computer calculations are the only result on pre-melting of direct applicability to the Earth's core and it is essential to systematically investigate such phenomena at inner core pressures and temperatures. Measuring the pressure dependence of pre-melting effects at such conditions and to the required precision is however extremely challenging. Also, pre-melting effects have been observed or suggested to occur in other materials, particularly noble metals, which exhibit large departures from linearity (modulus defects) at elevated temperatures. The aim of this study is to investigate to what extent pre-melting behaviour occurs in the physical properties of other metals at more experimentally tractable conditions. In particular, we report measurements of density and thermal expansion coefficients of both pure and alloyed gold (Au) up to their melting points. Au is an ideal test material since it crystallises in a simple monatomic face-centred structure and has a relatively low melting temperature. Precise measurements of unit cell lattice parameters were performed using a PANalytical X'Pert Pro powder diffractometer, equipped with an incident beam monochromator (giving very high resolution diffraction patterns) and with environmental stages covering the range from 40 K to 1373 K, with a readily achievable temperature resolution of 1K. We will discuss the circumstances under which pre-melting occurs, its

  9. Internal stress-induced melting below melting temperature at high-rate laser heating

    Science.gov (United States)

    Hwang, Yong Seok; Levitas, Valery I.

    2014-06-01

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.

  10. Internal stress-induced melting below melting temperature at high-rate laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Seok, E-mail: yshwang@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, Iowa 50011 (United States); Levitas, Valery I., E-mail: vlevitas@iastate.edu [Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2014-06-30

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.

  11. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    Energy Technology Data Exchange (ETDEWEB)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  12. Melt electrospinning of biodegradable polyurethane scaffolds

    Science.gov (United States)

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  13. ESR Process Instabilities while Melting Pipe Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, D.K.; Shelmidine, G.J.

    1999-01-06

    With the demonstration of the viability of using the electroslag remelting process for the decontamination of radionuclides, interest has increased in examining the unique aspects associated with melting steel pipe electrodes. These electrodes consist of several nested pipes, welded concentrically to atop plate. Since these electrodes can be half as dense as a solid electrode, they present unique challenges to the standard algorithms used in controlling the melting process. Naturally the electrode must be driven down at a dramatically increased speed. However, since the heat transfer is greatly influenced and enhanced with the increased area to volume ratio, considerable variation in the melting rate of the pipes has been found. Standard control methods can become unstable as a result of the variation at increased speeds, particularly at shallow immersion depths. The key to good control lies in the understanding of the melting process. Several experiments were conducted to observe the characteristics of the melting using two different control modes. By using a pressure transducer to monitor the pressure inside the pipes, the venting of the air trapped inside the electrode was observed. The measurements reveal that for a considerable amount of time. the pipes are not completely immersed in the slag, allowing the gas inside to escape without the formation of bubbles. This result has implications for the voltage swing as well as for the decontamination reactions.

  14. Preparation of the melting tank for melting magnesite in an electric-arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Skorodumov, V.V.; Mechev, V.V.; Storozhev, Y.I.; Vlasov, N.M.; Zhilin, G.P.

    1986-05-01

    An average quantitative evaluation of the effect of the fill of crystalline MgO on the main melting characteristics of magnesite in an OKB-955 electric-arc furnace is shown. The diameter of the electrode discharge was 1050 mm and the melting regime was maintained automatically at a voltage of 95-97 V and a current of 6.8 kA. Melting of various grades of magnesite was carried out. The authors found that when a heat-conducting lining is used in the hearth, the yield of first and second grade periclase from the solid melting products is increased 5%. The fairly significant effectiveness of the use of a heat-conducting layer in the hearth lining of a melting tank is demonstrated. This layer makes it possible to improve the technieconomic characteristics of the process and to upgrade the quality of the periclase.

  15. Fabrication of WCp/NiBSi metal matrix composite by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui, E-mail: penghui@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Liu, Chang [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Guo, Hongbo, E-mail: guo.hongbo@buaa.edu.cn [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Yuan, Yuan [Zhuzhou Seed Cemented Carbide Technology Co. Ltd, No. 1099 Xiangda Road, Zhuzhou, Hunan 412000 (China); Gong, Shengkai; Xu, Huibin [School of Materials Science and Engineering, Beihang University (BUAA), No. 37 Xueyuan Road, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Material and Thin Film Technology, Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China); Key Laboratory of Aerospace Materials & Performance (Ministry of Education), Beihang University, No. 37 Xueyuan Road, Beijing 100191 (China)

    2016-06-01

    A blend of NiBSi and WC powders was used as raw material for fabricating a metal matrix composite (MMC) by electron beam melting (EBM). Dense and crack-free microstructure was produced with evenly distributed WC reinforcements. Mechanical properties, including macro- and micro-hardness, flexural strength, impact toughness and compressive strength, were investigated.

  16. Signature of Arctic first-year ice melt pond fraction in X-band SAR imagery

    Science.gov (United States)

    Fors, Ane S.; Divine, Dmitry V.; Doulgeris, Anthony P.; Renner, Angelika H. H.; Gerland, Sebastian

    2017-03-01

    In this paper we investigate the potential of melt pond fraction retrieval from X-band polarimetric synthetic aperture radar (SAR) on drifting first-year sea ice. Melt pond fractions retrieved from a helicopter-borne camera system were compared to polarimetric features extracted from four dual-polarimetric X-band SAR scenes, revealing significant relationships. The correlations were strongly dependent on wind speed and SAR incidence angle. Co-polarisation ratio was found to be the most promising SAR feature for melt pond fraction estimation at intermediate wind speeds (6. 2 m s-1), with a Spearman's correlation coefficient of 0. 46. At low wind speeds (0. 6 m s-1), this relation disappeared due to low backscatter from the melt ponds, and backscatter VV-polarisation intensity had the strongest relationship to melt pond fraction with a correlation coefficient of -0. 53. To further investigate these relations, regression fits were made both for the intermediate (R2fit = 0. 21) and low (R2fit = 0. 26) wind case, and the fits were tested on the satellite scenes in the study. The regression fits gave good estimates of mean melt pond fraction for the full satellite scenes, with less than 4 % from a similar statistics derived from analysis of low-altitude imagery captured during helicopter ice-survey flights in the study area. A smoothing window of 51 × 51 pixels gave the best reproduction of the width of the melt pond fraction distribution. A considerable part of the backscatter signal was below the noise floor at SAR incidence angles above ˜ 40°, restricting the information gain from polarimetric features above this threshold. Compared to previous studies in C-band, limitations concerning wind speed and noise floor set stricter constraints on melt pond fraction retrieval in X-band. Despite this, our findings suggest new possibilities in melt pond fraction estimation from X-band SAR, opening for expanded monitoring of melt ponds during melt season in the future.

  17. FARO tests corium-melt cooling in water pool: Roles of melt superheat and sintering in sediment

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gisuk [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States); Kaviany, Massoud [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Moriyama, Kiyofumi [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Hwang, Byoungcheol; Lee, Mooneon; Kim, Eunho; Park, Jin Ho [Division of Advance Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Nasersharifi, Yahya [Department of Mechanical Engineering, Wichita State University, Wichita, KS 67260 (United States)

    2016-08-15

    Highlights: • The numerical approach for FARO experimental data is suggested. • The cooling mechanism of ex-vessel corium is suggested. • The predicted minimum pool depth for no cake formation is suggested. - Abstract: The FARO tests have aimed at understanding an important severe accident mitigation action in a light water reactor when the accident progresses from the reactor pressure vessel boundary. These tests have aimed to measure the coolability of a molten core material (corium) gravity dispersed as jet into a water pool, quantifying the loose particle diameter distribution and fraction converted to cake under range of initial melt superheat and pool temperature and depth. Under complete hydrodynamic breakup of corium and consequent sedimentation in the pool, the initially superheated corium can result in debris bed consisting of discrete solid particles (loose debris) and/or a solid cake at the bottom of the pool. The success of the debris bed coolability requires cooling of the cake, and this is controlled by the large internal resistance. We postulate that the corium cake forms when there is a remelting part in the sediment. We show that even though a solid shell forms around the melt particles transiting in the water pool due to film-boiling heat transfer, the superheated melt allows remelting of the large particles in the sediment (depending on the water temperature and the transit time) using the COOLAP (Coolability Analysis with Parametric fuel-cooant interaction models) code. With this remelting and its liquid-phase sintering of the non-remelted particles, we predict the fraction of the melt particles converting to a cake through liquid sintering. Our predictions are in good agreement with the existing results of the FARO experiments. We address only those experiments with pool depths sufficient/exceeding the length required for complete breakup of the molten jet. Our analysis of the fate of molten corium aimed at devising the effective

  18. Scleral melt following Retisert intravitreal fluocinolone implant

    Directory of Open Access Journals (Sweden)

    Georgalas I

    2014-11-01

    Full Text Available Ilias Georgalas,1 Chrysanthi Koutsandrea,1 Dimitrios Papaconstantinou,1 Dimitrios Mpouritis,1 Petros Petrou1,2 1Ophthalmology Department, University of Athens, Athens, Greece; 2Moorfields Eye Hospital, London, UKAbstract: Intravitreal fluocinolone acetonide implant (Retisert has a high potency, a low solubility, and a very short duration of action in the systemic circulation, enabling the steroid pellet to be small and reducing the risk of systemic side effects. Scleral melt has not been reported as a possible complication of Retisert implant. The authors describe the occurrence of scleral melt 18 months after the implantation of fluocinolone acetonide implant in a 42-year-old Caucasian woman. To the authors’ knowledge, this is the first report of this possible complication.Keywords: Retisert, scleral melt, complication, surgical management

  19. Electrodepositions on Tantalum in Alkali Halide Melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2013-01-01

    Surface layers of tantalum metal were electrodeposited on steel from K2TaF7-LiF-NaF-KF melts. With careful control of the oxide contents dense and adherent deposits could be obtained by pulse plating. In NaCl-KCl-NaF-Na2CO3 and NaCl-KCl-Na2CO3 melts carbonate ions seems to be reduced to carbon in...... in a single 4 electron step. By electrolyses at a constant potential of – 1.4 V vs. Pt in a NaCl-KCl-NaF-Na2CO3 melt at 800 oC coherent carbon containing surface layers could be obtained on tantalum substrates, when a CO2 atmosphere was applied...

  20. Partitioning Behavior of Mn, Fe, Co, Ni and Zn between an Octahedral Site in Olivine and Silicate Melt

    OpenAIRE

    Hashizume, Hideo; Hariya, Yu

    1992-01-01

    Partition coefficients of Mn2+, Fe2+, Co2+, Ni2+ and Zn2+ between olivine and silicate melt have been determined in the system Mg2SiO4-SiO2-H2O at high pressure and temperature. A partition coefficient is defined by the ratio of the concentration of an element in olivine to that of the element in silicate melt. Olivine has two octahedral sites (M1 and M2 sites). Elements are partitioned among an M1, an M2 sites and silicate melt. We distributed the bulk concentration of the element in olivine...

  1. Multiscale approach to equilibrating model polymer melts

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Ali Karimi-Varzaneh, Hossein; Hojdis, Nils

    2016-01-01

    to be computationally effective at each scale. Density fluctuations in the melt structure above the tube scale are minimized through a Monte Carlo simulated annealing of a lattice polymer model. Subsequently the melt structure below the tube scale is equilibrated via the Rouse dynamics of a force-capped Kremer...... of 15.000 monomers. To validate the equilibration process we study the time evolution of bulk, collective, and single-chain observables at the monomeric, mesoscopic, and macroscopic length scales. Extension of the present method to longer, branched, or polydisperse chains, and/or larger system sizes...

  2. Coordination of Actinides in Silicate Melts

    OpenAIRE

    F. Farges; Brown, G; Wu, Z.

    1997-01-01

    The structural environments around Th(IV) and U(VI) at concentrations ranging from 90 ppm to 7 wt.% were investigated in glasses and melts of Na di- and trisilicate compositions between 293 and 1550 K using x-ray absorption fine structure (XAFS) spectroscopy. Data for model compounds were collected at temperatures up to 2000 K in order to quantify the magnitude of anharmonic effects. Data for glasses and melts were collected and analyzed considering anharmonic (cumulant-expansion), curved-wav...

  3. Chemical reactions in solvents and melts

    CERN Document Server

    Charlot, G

    1969-01-01

    Chemical Reactions in Solvents and Melts discusses the use of organic and inorganic compounds as well as of melts as solvents. This book examines the applications in organic and inorganic chemistry as well as in electrochemistry. Organized into two parts encompassing 15 chapters, this book begins with an overview of the general properties and the different types of reactions, including acid-base reactions, complex formation reactions, and oxidation-reduction reactions. This text then describes the properties of inert and active solvents. Other chapters consider the proton transfer reactions in

  4. Melting Efficiency During Plasma Arc Welding

    Science.gov (United States)

    McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.

  5. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    , a significant amount of glassy material interspersed among the gas bubbles will be excluded, thus underestimating the melt rate. Likewise, if they are drawn too high, many large voids will be counted as glass, thus overestimating the melt rate. As will be shown later in this report, there is also no guarantee that a given distribution of glass and gas bubbles along a particular sectioned plane will always be representative of the entire sample volume. Poor reproducibility seen in some LMR data may be related to these difficulties of the visual method. In addition, further improvement of the existing melt rate model requires that the overall impact of feed chemistry on melt rate be reflected on measured data at a greater quantitative resolution on a more consistent basis than the visual method can provide. An alternate method being pursued is X-ray computed tomography (CT). It involves X-ray scanning of glass samples, performing CT on the 2-D X-ray images to build 3-D volumetric data, and adaptive segmentation analysis of CT results to not only identify but quantify the distinct regions within each sample based on material density and morphologies. The main advantage of this new method is that it can determine the relative local density of the material remaining in the beaker after the heat treatment regardless of its morphological conditions by selectively excluding all the voids greater than a given volumetric pixel (voxel) size, thus eliminating much of the subjectivity involved in the visual method. As a result, the melt rate data obtained from CT scan will give quantitative descriptions not only on the fully-melted glass, but partially-melted and unmelted feed materials. Therefore, the CT data are presumed to be more reflective of the actual melt rate trends in continuously-fed melters than the visual data. In order to test the applicability of X-ray CT scan to the HLW glass melt rate study, several new series of HLW simulant/frit mixtures were melted in the

  6. An Experimental Study on the Solidification and Melting of Water around a Vertical Heat Transfer Plate with Pin Fins

    OpenAIRE

    平澤, 良男; 陳, 東; 渡邉, 弘毅; 竹越, 栄俊

    1997-01-01

    In the present study, the solidification and melting of water were investigated experimentally for the case of a vertical heat transfer plate with pin fins. In the experiment, temperature distributions, ice and water volume fractions, and heat flux changes were measured and the flow patterns in the water were observed for examination of the phase change process. In the solidification, the phase change rate increased monotonously with increasing number of fins. In the melting, the temperature ...

  7. Determination of melting temperature and temperature melting range for DNA with multi-peak differential melting curves.

    Science.gov (United States)

    Lando, Dmitri Y; Fridman, Alexander S; Chang, Chun-Ling; Grigoryan, Inessa E; Galyuk, Elena N; Murashko, Oleg N; Chen, Chun-Chung; Hu, Chin-Kun

    2015-06-15

    Many factors that change the temperature position and interval of the DNA helix-coil transition often also alter the shape of multi-peak differential melting curves (DMCs). For DNAs with a multi-peak DMC, there is no agreement on the most useful definition for the melting temperature, Tm, and temperature melting width, ΔT, of the entire DNA transition. Changes in Tm and ΔT can reflect unstable variation of the shape of the DMC as well as alterations in DNA thermal stability and heterogeneity. Here, experiments and computer modeling for DNA multi-peak DMCs varying under different factors allowed testing of several methods of defining Tm and ΔT. Indeed, some of the methods give unreasonable "jagged" Tm and ΔT dependences on varying relative concentration of DNA chemical modifications (rb), [Na(+)], and GC content. At the same time, Tm determined as the helix-coil transition average temperature, and ΔT, which is proportional to the average absolute temperature deviation from this temperature, are suitable to characterize multi-peak DMCs. They give smoothly varying theoretical and experimental dependences of Tm and ΔT on rb, [Na(+)], and GC content. For multi-peak DMCs, Tm value determined in this way is the closest to the thermodynamic melting temperature (the helix-coil transition enthalpy/entropy ratio). Copyright © 2015. Published by Elsevier Inc.

  8. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    Science.gov (United States)

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  9. Melting of cross-linked DNA. III. Calculation of differential melting curves.

    Science.gov (United States)

    Lando, D Y; Fridman, A S; Krot, V I; Akhrem, A A

    1998-08-01

    In our previous papers I and II (D. Y. Lando et al, J. Biomol. Struct. Dynam. (1997) v. 15, N1, p. 129-140, p. 141-150), two methods were developed for calculation of melting curves of cross-linked DNA. One of them is based on Poland's and another on the Fixman-Freire approach. In the present communication, III, a new theoretical method is developed for computation of differential melting curves of DNAs cross-linked by anticancer drugs and their inactive analogs. As Poland's approach, the method allows study of the influence of the loop entropy factor, delta(n), on melting behavior (n is the length of a loop in base pairs). However the method is much faster and requires computer time that inherent for the most rapid Fixman-Freire calculation approach. In contrast to the computation procedures described before in communications I and II, the method is suitable for computation of differential melting curves in the case of long DNA chains, arbitrary loop entropy factors of melted regions and arbitrary degree of cross-linking including very low values that occur in vivo after administration of antitumor drugs. The method is also appropriate for DNAs without cross-links. The results of calculation demonstrate that even very low degree of cross-linking alters the DNA differential melting curve. Cross-linking also markedly strengthens the influence of particular function delta(n) upon melting behavior.

  10. Quasi-equilibrium melting of quartzite upon extreme friction

    Science.gov (United States)

    Lee, Sung Keun; Han, Raehee; Kim, Eun Jeong; Jeong, Gi Young; Khim, Hoon; Hirose, Takehiro

    2017-06-01

    The friction on fault planes that controls how rocks slide during earthquakes decreases significantly as a result of complex fault-lubrication processes involving frictional melting. Fault friction has been characterized in terms of the preferential melting of minerals with low melting points--so-called disequilibrium melting. Quartz, which has a high melting temperature of about 1,726 °C and is a major component of crustal rocks, is not expected to melt often during seismic slip. Here we use high-velocity friction experiments on quartzite to show that quartz can melt at temperatures of 1,350 to 1,500 °C. This implies that quartz within a fault plane undergoing rapid friction sliding could melt at substantially lower temperatures than expected. We suggest that depression of the melting temperature is caused by the preferential melting of ultra-fine particles and metastable melting of β-quartz at about 1,400 °C during extreme frictional slip. The results for quartzite are applicable to complex rocks because of the observed prevalence of dynamic grain fragmentation, the preferential melting of smaller grains and the kinetic preference of β-quartz formation during frictional sliding. We postulate that frictional melting of quartz on a fault plane at temperatures substantially below the melting temperature could facilitate slip-weakening and lead to large earthquakes.

  11. INFLUENCE OF TEMPERATURE REGIME OF MELTING ON CHARACTERISTICS OF CAST ALIMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    I. V. Rafalski

    2005-01-01

    Full Text Available Temperature dependence of the melts properties of the system Al-Si with content of silicon up to 16% (masses and influence of the temperature regime of the alloys melting in liquid phase on the structure and properties of cast metal is studied. The temperature regimes of preparation of cast aluminium alloys in liquid phase providing dispersible phases at crystallizing and increase of mechanical properties of cast metal are established. Modification of form, sizes and character of distribution of primary and eutectic phases is the result of the regime of the temperature processing of alloy in liquid state. The formalized model of evolutions of the metal system condition is offered.

  12. Melting history of Antarctica during the past 60,000 years

    Energy Technology Data Exchange (ETDEWEB)

    Labeyrie, L.D.; Pichon, J.J.; Labracherie, M.; Ippolito, P.; Duprat, J.; Duplessy, J.C.

    1986-08-21

    Marked changes in the surface-water hydrology of the Southern Indian Ocean during the past 60 kyr are revealed by a detailed comparison of the oxygen isotopic composition of planktonic and benthic foraminifera from sediment cores and the surface-water temperature estimated by a transfer function derived from the distribution of diatoms in the same sediments. From 35 to 17 kyr BP, the Southern Ocean polar front was covered by a melt-water lid containing a significant contribution from melting icebergs, calved from Antarctic ice shelves. These icebergs may have originated from a succession of surges of the ice shelves.

  13. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length

    Science.gov (United States)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey

    2010-01-01

    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  14. Melting, solidification, remelting, and separation of glass and metal

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.; Xin, R.C.; Liu, Y.Z.

    1998-01-01

    Several high-temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to support these processes. This research project involves an experimental investigation of the melting, solidification, remelting, and separation of glass and metal and the development of an efficient separation technology. The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. This two-year project commenced in October 1995 (FY96). In the first fiscal year, the following tasks were accomplished: (1) A literature review and an assessment of the baseline glass and metal separation technologies were performed. The results indicated that the baseline technology yields a high percentage of glass in the metal phase, requiring further separation. (2) The main melting and solidification system setup was established. A number of melting and solidification tests were conducted. (3) Temperature distribution, solidification patterns, and flow field in the molten metal pool were simulated numerically for the solidification processes of molten aluminum and iron steel. (4) Initial designs of the laboratory-scale DCS and CS technologies were also completed. The principal demonstration separation units were constructed. (5) An application for a patent for an innovative liquid-liquid separation technology was submitted and is pending.

  15. A characterization of Greenland Ice Sheet surface melt and runoff in contemporary reanalyses and a regional climate model

    Science.gov (United States)

    Cullather, Richard; Nowicki, Sophie; Zhao, Bin; Koenig, Lora

    2016-02-01

    For the Greenland Ice Sheet (GrIS), large-scale melt area has increased in recent years and is detectable via remote sensing, but its relation to runoff is not known. Historical, modeled melt area and runoff from Modern-Era Retrospective Analysis for Research and Applications (MERRA-Replay), the Interim Re-Analysis of the European Centre for Medium Range Weather Forecasts (ERA-I), the Climate Forecast System Reanalysis (CFSR), the Modèle Atmosphérique Régional (MAR), and the Arctic System Reanalysis (ASR) are examined. These sources compare favorably with satellite-derived estimates of surface melt area for the period 2000-2012. Spatially, the models markedly disagree on the number of melt days in the interior of the southern part of the ice sheet, and on the extent of persistent melt areas in the northeastern GrIS. Temporally, the models agree on the mean seasonality of daily surface melt and on the timing of large-scale melt events in 2012. In contrast, the models disagree on the amount, seasonality, spatial distribution, and temporal variability of runoff. As compared to global reanalyses, time series from MAR indicate a lower correlation between runoff and melt area (r2 = 0.805). Runoff in MAR is much larger in the second half of the melt season for all drainage basins, while the ASR indicates larger runoff in the first half of the year. This difference in seasonality for the MAR and to an extent for the ASR provide a hysteresis in the relation between runoff and melt area, which is not found in the other models. The comparison points to a need for reliable observations of surface runoff.

  16. Pressure-Induced Melting of Confined Ice

    NARCIS (Netherlands)

    Sotthewes, Kai; Bampoulis, Pantelis; Zandvliet, Henricus J.W.; Lohse, Detlef; Poelsema, B.

    2017-01-01

    The classic regelation experiment of Thomson in the 1850s deals with cutting an ice cube, followed by refreezing. The cutting was attributed to pressure-induced melting but has been challenged continuously, and only lately consensus emerged by understanding that compression shortens the O:H nonbond

  17. Pressure Melting and Ice Skating / Bunsen Burner

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Pressure Melting and Ice Skating / Bunsen Burner - Revisited. Classroom Volume 1 Issue 5 May 1996 pp 71-78. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/05/0071-0078. Resonance ...

  18. Melt spinnable elastane fibres from segmented copolyetheresteramids

    NARCIS (Netherlands)

    Niesten, M.C.E.J.; Krijgsman, J.; Gaymans, R.J.

    2001-01-01

    Spandex fibers were obtained by melt spinning segmented copolyetheresteramides with crystallizable aromatic diamide units of uniform length and poly(tetramethyleneoxide) segments. The aramid content was varied from 3 to 22 wt %, and the molecular weight of the polyether segment ranged from 1000 to

  19. Catastrophic failure of polymer melts during extension

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.

    2013-01-01

    Numerical flow modeling has been applied to study the break of monodisperse polymer melts during extension. These continuum mechanical based computations are within the ideas of the microstructural ’interchain pressure’ theory. Calculated breaks, a result of small initial sample imperfections, ag...

  20. Electrodepositions on Tantalum in alkali halide melts

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Jensen, Annemette Hindhede; Christensen, Erik

    2012-01-01

    in a single 4 electron step. By electrolyses at a constant potential of - 1.4 V vs. Pt in a NaCl-KCl-NaF-Na2CO3 melt at 800 °C coherent carbon containing surface layers could be obtained on tantalum substrates, when a CO2 atmosphere was applied. Copyright © 2012 by The Electrochemical Society....

  1. Record Summer Melt in Greenland in 2010

    NARCIS (Netherlands)

    Tedesco, M.; Fettweis, X.; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; Smeets, C.J.P.P.|info:eu-repo/dai/nl/191522236; van de Berg, W.J.|info:eu-repo/dai/nl/304831611; Serreze, M.C.; Box, J.E.

    2011-01-01

    As Arctic temperatures increase, there is growing concern about the melting of the Greenland ice sheet, which reached a new record during the summer of 2010. Understanding the changing surface mass balance of the Greenland ice sheet requires appreciation of the close links among changes in surface

  2. Arctic Ice Melting: National Security Implications

    Science.gov (United States)

    2011-02-01

    be a curse rather than a good, and under no conditions can it either lead into freedom or constitute a proof for its existence. - Hannah ... Arendt 39 How will the domestic or foreign economic policies of the United States be affected by Arctic ice melting? Increased access to the

  3. Models and observations of Arctic melt ponds

    Science.gov (United States)

    Golden, K. M.

    2016-12-01

    During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.

  4. Pb isotopes during mingling and melting

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Lesher, Charles E.

    2010-01-01

    Pb isotopic data are presented for hybrid rocks formed by mingling between mantle-derived tholeiitic magma of the Eocene Miki Fjord macrodike (East Greenland) and melt derived from the adjacent Precambrian basement. Bulk mixing and AFC processes between end-members readily identified in the field...

  5. Simulation of the Particle Melting Degree in Air Plasma Spraying

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Alkhasli, I.; Reisgen, U.; Mokrov, O.; Lisnyi, O.

    2017-04-01

    Plasma spraying is a coating process which is widely used for the application of thermal barrier coatings. High plasma jet temperatures allow the processing of ceramic material particles which characteristically exhibit low thermal conductivities. This, in turn, produces high temperature gradients inside the particles and vaporization on the particles’ surface during their dwell time in the plasma jet. Thus, a single particle in the plasma-jet can exhibit 3 states of matter simultaneously: solid in the core, molten exterior and gaseous on the surface. The temperature distribution inside the particles is the foremost factor which influences the particles’ behavior during their impact on the substrate surface. Experimental investigations can provide only the surface temperature of the particles, which is not a good indicator of the melting degree for ceramic particles due to the high temperature gradients. This study focuses on the determination of the temperature distributions inside the particles, during their flight in the plasma and the free jet, with the help of numerical simulations. For this purpose, a numerical model of the plasma spraying process that describes the plasma and the free jet loaded with sprayed particles is presented. The model includes three sub-models; a plasma torch sub-model, a particle-laden free jet sub-model and a powder particles sub-model. The first sub-model calculates the temperature and velocity fields of the plasma inside the plasma torch, the second sub-model the kinetics of temperature and velocity fields of the turbulent free jet generated by the plasma torch. This information is used in the third sub-model to calculate the kinetics of temperature distribution within the particles, their melting degree and mass losses due to evaporation. The third sub-model also calculates heat and mechanical impulse loses due to the particle-plasma interaction, which in turn is coupled with the free jet sub-model.

  6. Multi-platform observations on melt pond in Arctic summer 2010

    Science.gov (United States)

    Wang, Y.; Huang, W.; Lu, P.; Li, Z.

    2011-12-01

    platforms were collected during the cruise, and the survey area covered the regions 140°W-180°W, 70°N-88°N. An image processing technique based on difference in colors of the surface features was used to divide each image into three components: snow-covered ice floes, melt ponds and leads. And then geometric features of melt ponds, such as area, perimeter, and roundness, could be extracted from the aerial images. These data can enrich our knowledge on the distribution of melt pond on different spatial scale, especially those in the high latitude regions where summer melting was never so serious in previous years.

  7. The melting of pulmonary surfactant monolayers.

    Science.gov (United States)

    Yan, Wenfei; Biswas, Samares C; Laderas, Ted G; Hall, Stephen B

    2007-05-01

    Monomolecular films of phospholipids in the liquid-expanded (LE) phase after supercompression to high surface pressures (pi), well above the equilibrium surface pressure (pi(e)) at which fluid films collapse from the interface to form a three-dimensional bulk phase, and in the tilted-condensed (TC) phase both replicate the resistance to collapse that is characteristic of alveolar films in the lungs. To provide the basis for determining which film is present in the alveolus, we measured the melting characteristics of monolayers containing TC dipalmitoyl phosphatidylcholine (DPPC), as well as supercompressed 1-palmitoyl-2-oleoyl phosphatidylcholine and calf lung surfactant extract (CLSE). Films generated by appropriate manipulations on a captive bubble were heated from or =60 degrees C at different constant pi above pi(e). DPPC showed the abrupt expansion expected for the TC-LE phase transition, followed by the contraction produced by collapse. Supercompressed CLSE showed no evidence of the TC-LE expansion, arguing that supercompression did not simply convert the mixed lipid film to TC DPPC. For both DPPC and CLSE, the melting point, taken as the temperature at which collapse began, increased at higher pi, in contrast to 1-palmitoyl-2-oleoyl phosphatidylcholine, for which higher pi produced collapse at lower temperatures. For pi between 50 and 65 mN/m, DPPC melted at 48-55 degrees C, well above the main transition for bilayers at 41 degrees C. At each pi, CLSE melted at temperatures >10 degrees C lower. The distinct melting points for TC DPPC and supercompressed CLSE provide the basis by which the nature of the alveolar film might be determined from the temperature-dependence of pulmonary mechanics.

  8. The melting of subducted banded iron formations

    Science.gov (United States)

    Kang, Nathan; Schmidt, Max W.

    2017-10-01

    Banded iron formations (BIF) were common shelf and ocean basin sediments 3.5-1.8 Ga ago. To understand the fate of these dense rocks upon subduction, the melting relations of carbonated BIF were determined in Fe-Ca-(Mg)-Si-C-O2 at 950-1400 °C, 6 and 10 GPa, oxidizing (fO2 = hematite-magnetite, HM) and moderately reducing (fO2 ∼CO2-graphite/diamond, CCO) conditions. Solidus temperatures under oxidizing conditions are 950-1025 °C with H2O, and 1050-1150 °C anhydrous, but 250-175 °C higher at graphite saturation (values at 6-10 GPa). The combination of Fe3+ and carbonate leads to a strong melting depression. Solidus curves are steep with 17-20 °C/GPa. Near-solidus melts are ferro-carbonatites with ∼22 wt.% FeOtot, ∼48 wt% CO2 and 1-5 wt.% SiO2 at fO2 ∼ HM and ∼49 wt.% FeOtot, ∼20 wt% CO2 and 19-25 wt.% SiO2 at fO2 ∼ CCO . At elevated subduction geotherms, as likely for the Archean, C-bearing BIF could melt out all carbonate around 6 GPa. Fe-rich carbonatites would rise but stagnate gravitationally near the slab/mantle interface until they react with the mantle through Fe-Mg exchange and partial reduction. The latter would precipitate diamond and yield Fe- and C-rich mantle domains, yet, Fe-Mg is expected to diffusively re-equilibrate over Ga time scales. We propose that the oldest subduction derived diamonds stem from BIF derived melts.

  9. Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics

    DEFF Research Database (Denmark)

    Andersen, M. L.; Larsen, T. B.; Nettles, M.

    2010-01-01

    Understanding the behavior of large outlet glaciers draining the Greenland Ice Sheet is critical for assessing the impact of climate change on sea level rise. The flow of marine-terminating outlet glaciers is partly governed by calving-related processes taking place at the terminus but is also...... influenced by the drainage of surface runoff to the bed through moulins, cracks, and other pathways. To investigate the extent of the latter effect, we develop a distributed surface-energy-balance model for Helheim Glacier, East Greenland, to calculate surface melt and thereby estimate runoff. The model...... is driven by data from an automatic weather station operated on the glacier during the summers of 2007 and 2008, and calibrated with independent measurements of ablation. Modeled melt varies over the deployment period by as much as 68% relative to the mean, with melt rates approximately 77% higher...

  10. Approximate Method to Calculate Melting Time of Sludge-Like Cryogenic Product in Cylindrical Horizontal Tank

    Directory of Open Access Journals (Sweden)

    G. N. Tovarnykh

    2015-01-01

    Full Text Available The paper proposes an approximate method to calculate the melting time of the sludge-like cryogenic product in horizontal cylindrical tank with spherical bottoms during drainage storage. The problem to find where there is the liquid - clean slush interface taking into account the heat flows from the walls and the area of clean liquid. It is assumed that the area of sludge is isothermal and has a melting point of solids, sludge - clean liquid interface is flat, free surface of the liquid is stationary and has a saturation temperature at a given pressure. The temperature in the clean liquid is distributed linearly. These approximate relationships allow us to estimate the melting time of the sludge-like cryogenic product in tank without detailed calculation of temperature fields in clean liquid.

  11. Arctic sea ice melt leads to atmospheric new particle formation.

    Science.gov (United States)

    Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M

    2017-06-12

    Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.

  12. Structure, Dynamics, and Electronic Properties of Lithium Disilicate Melt and Glass

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jincheng; Corrales, Louis R.

    2006-09-18

    Ab initio molecular dynamics simulations within the framework of density functional theory (DFT) have been performed to study the structural, dynamic and electronic properties of lithium disilicate melt and the glass derived from quenching the melt. It is found that lithium ions have a much higher diffusion coefficient and show different diffusion mechanism than the network forming silicon and oxygen ions in the melt. The simulated lithium disilicate glass structure has 100% four coordinated silicon, close to theoretical non-bridging oxygen (NBO) to bridging oxygen (BO) ratio (2:3), and a Qn distribution of 20.8%, 58.4% and 20.8% for n=2,3,4 respectively. In the melt there are considerable amount (10-15%) of silicon coordination defects; however, the average silicon coordination number remains about 4, similar to that in the glass. The lithium ion coordination number increases from 3.7 in the glass to 4.4 in the melt mainly due to the increase of bridging oxygen in the first coordination shell. The bond length and bond angle distributions, vibrational density of states, and static structure factors of the simulated glass were determined where the latter was found to be in good agreement with experiment. Atomic charges were obtained based on Bader and Hirshfeld population analyses. The average Bader charges found in lithium disilicate glass were –1.729, 3.419, and 0.915 for oxygen, silicon and lithium, respectively. The corresponding Hirshfeld charges were –0.307, 0.550, and 0.229. The electronic density of states of the melt and glass were calculated and compared with those of crystalline lithium disilicate. Battelle operates PNNL for the USDOE

  13. Effects of nanoparticles on melting process with phase-change using the lattice Boltzmann method

    Directory of Open Access Journals (Sweden)

    Ahmed M. Ibrahem

    Full Text Available In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM enthalpy-based is employed. The collision model of lattice Bhatnagar-Gross-Krook (LBGK is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0–2% added to water-base fluid and Rayleigh numbers of 103–105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied. Keywords: Lattice Boltzmann method, Nanofluids, Conduction melting, Convection melting, BGK collision model

  14. Multidimensional thermodynamic potential for descriptions of ultrathin lubricant film melting between two atomically smooth surfaces

    Directory of Open Access Journals (Sweden)

    I.A. Lyashenko

    2011-03-01

    Full Text Available The thermodynamic model of ultrathin lubricant film melting, confined between two atomically-flat solid surfaces, is built using the Landau phase transition approach. Non-equilibrium entropy is introduced describing the part of thermal motion conditioned by non-equilibrium and non-homogeneous character of the thermal distribution. The equilibrium entropy changes during the time of transition of non-equilibrium entropy to the equilibrium subsystem. To describe the condition of melting, the variable of the excess volume (disorder parameter is introduced which arises due to chaotization of a solid structure in the course of melting. The thermodynamic and shear melting is described consistently. The stick-slip mode of melting, which is observed in experiments, are described. It is shown that with growth of shear velocity, the frequency of stiction spikes in the irregular mode increases at first, then it decreases, and the sliding mode comes further characterized by the constant value of friction force. Comparison of the obtained results with experimental data is carried out.

  15. [Influence factors of deposition induced by melt water erosion in Naqu region, China].

    Science.gov (United States)

    Feng, Jun-yuan; Cai, Qiang-guo; Li, Zhao-xia; Sun, Li-ying

    2015-02-01

    Melt water erosion is one of the important soil erosion forms caused by the melt water from glacier and snow in high altitude cold areas of China. This paper investigated the influencing factors of deposition caused by melt water erosion in Naqu region. Alluvial fan ratio was presented as an index to characterize the degree of the deposition induced by melt water erosion. Minimum polygon was determined based on spatial overlay technology of Geographic Information System (GIS). The regression equation between the deposition index and the influencing factors was established through the stepwise regression analysis based on minimum polygon. Key influencing factors were identified according to the stepwise regression equation. The results showed that large amounts of alluvial fan were observed in Naqu region; extensive alluvial fans were centered at gentle slope areas in the central part of Naqu region with great spatial differences; alluvial fans were mainly distributed at valley exits, most of which were at large scale with vast differences in area and thickness. Wind speed, normalized difference vegetation index (NDVI), K value of soil erodibility, annual temperature range and the steep slope area ratio were identified as the key influencing factors on the deposition induced by melt water erosion in the studied area. Index of deposition was positively correlated with the wind speed and NDVI, and showed negative relationships with the K value of soil erodibility, the annual temperature range and steep slope area ratio.

  16. Disequilibrium partial melting experiments on the Leedey L6 chondrite: textural controls on melting processes

    Science.gov (United States)

    Feldstein, S. N.; Jones, R. H.; Papike, J. J.

    2001-11-01

    A series of experiments was designed to investigate the textural and compositional changes that take place during disequilibrium partial melting of chondritic material. Chips of the L6 chondrite, Leedey, were heated at 1200 ºC and logfO2 = IW-1 for durations of 1 hour to 21 days. We observed a progression of kinetically-controlled textural changes in melt and restite minerals and changes in the liquidus mineralogy in response to factors such as volatile loss. During the course of the experiments, both olivine and orthopyroxene recrystallized at different times. Rare relict chondrules could still be identified after 21 days. The silicate melts that form are very heterogeneous, in terms of both major and trace element chemistry, reflecting heterogeneity of the localized mineral assemblage, particularly with respect to phosphates and clinopyroxene. Metal-sulfide melts formed in short-duration runs are also heterogeneous. The experimental data are relevant to aspects of the genesis of primitive achondrites such as the acapulcoites. The observed textures are consistent with a model for acapulcoite petrogenesis in which silicate melting was limited to only a few volume % of the chondritic source rock. The experiments are also relevant to the behavior of chondritic material that has been partially melted in an impact environment.

  17. Modeling the summertime evolution of sea-ice melt ponds

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Feltham, D.L.; Taylor, P.D.

    2006-01-01

    We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds......, vertical seepage, and horizontal permeability. The model is initialized with surface topographies derived from laser altimetry corresponding to first-year sea ice and multiyear sea ice. We predict that there are large differences in the depth of melt ponds and the area of coverage between the two types...... of ice. We also find that the vertical seepage rate and the melt rate of unponded ice are important in determining the total surface ablation and area covered by melt ponds....

  18. Sea Ice Melt Pond Data from the Canadian Arctic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains observations of albedo, depth, and physical characteristics of melt ponds on sea ice, taken during the summer of 1994. The melt ponds studied...

  19. Depth and Differentiation of the Orientale Melt Lake

    Science.gov (United States)

    Vaughan, W. M.; Head, J. W.; Hess, P. C.; Wilson, L.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-03-01

    We suggest that the central depression of the Orientale basin is an impact melt lake ~15 km deep and model the igneous differentiation of the melt lake. Impact melt differentiates may be represented in remotely-sensed data and the lunar sample suite.

  20. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  1. Properties of graphite at melting from multilayer thermodynamic integration

    NARCIS (Netherlands)

    Colonna, F.; Los, J.H.; Fasolino, A.; Meijer, E.J.

    2009-01-01

    Although the melting of graphite has been experimentally investigated for a long time, there is still much debate on the graphite melting properties, as studies show significant discrepancies. We calculate the melting line by means of LCBOPII, a state-of-the-art interaction potential for carbon. To

  2. Dynamics in Polymer Melts and Nanocomposites

    Science.gov (United States)

    Schneider, Gerald

    Intense research has led to substantial progress in the field of polymer melts and nanocomposites, both regarding the fundamental understanding and the relationship to applications. From a fundamental point of view, knowing the microscopic single chain dynamics is important. It may even lead to optimized materials ranging from the classical car tire to battery or fuel cell applications. In polymer melts, different processes, such as diffusion, reptation, contour length fluctuations, etc. occur and determine the macroscopic results, e.g. obtained by rheology. In nanocomposites confinement effects and interactions of chains with surfaces play an important role. High resolution techniques, such as small-angle neutron scattering or neutron spin echo spectroscopy are suited to explore the structure and dynamics of chains. The presentation illuminates the fundamental relationship between the microscopic dynamics and the mesoscopic properties, exploiting different experimental techniques, such as dielectric spectroscopy, rheology, neutron scattering and neutron spin echo spectroscopy.

  3. Detection of structural heterogeneity of glass melts

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    2004-01-01

    The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One is the hyp......The structural heterogeneity of both supercooled liquid and molten states of silicate has been studied using calorimetric method. The objects of this study are basaltic glasses and liquids. Two experimental approaches are taken to detect the structural heterogeneity of the liquids. One...... is discussed. The ordered structure of glass melts above the liquidus temperature is indirectly characterized by use of X-ray diffraction method. The new approaches are of importance for monitoring the glass melting and forming process and for improving the physical properties of glasses and glass fibers....

  4. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf

    2010-01-01

    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the t......We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements...... excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain....

  5. 3He melting pressure temperature scale

    DEFF Research Database (Denmark)

    Halperin, W.P.; Archie, C.N.; Richardson, R.C.

    1976-01-01

    The latent heat for solidification of **3He has been measured along the **3He melting curve between 23 and 1 mK. A temperature scale is established which depends only on measurements of heat, pressure and volume, and on the condition that the entropy of solid **3He approaches R ln 2 at high...... temperatures. The A feature of the melting curve which suggests itself as a thermometric fixed point is found to be T//A equals 2. 75 plus or minus 0. 11 mK. The agreement between this value and independent measurements of T//A, based on nuclear or electronic paramagnetism, Johnson noise thermometry...... or on properties of liquid **3He, is briefly discussed...

  6. Melting of metallic intermediate level waste

    Energy Technology Data Exchange (ETDEWEB)

    Huutoniemi, Tommi; Larsson, Arne; Blank, Eva [Studsvik Nuclear AB, Nykoeping (Sweden)

    2013-08-15

    This report presents a feasibility study of a melting facility for core components and reactor internals. An overview is given of how such a facility for treatment of intermediate level waste might be designed, constructed and operated and highlights both the possibilities and challenges. A cost estimate and a risk analysis are presented in order to make a conclusion of the technical feasibility of such a facility. Based on the authors' experience in operating a low level waste melting facility, their conclusion is that without technical improvements such a facility is not feasible today. This is based on the cost of constructing and operating such a facility, in conjunction with the radiological risks associated with operation and the uncertain benefits to disposal and long term safety.

  7. CNTs in polymer melt: The influence on dispersion by sonication

    Science.gov (United States)

    Bischoff, M.; Köhler, T.; Bandelin, J.; Möhricke, J.; Jung, R.; Gries, T.

    2017-10-01

    Nanocomposites have become more important as the implementation of nanoparticles in polymer allows additional functions in common industrial parts. Especially in the fabrication of filaments or fibres nanomodification is crucial, as only very small fillers can be added to the very fine fibres (common fibre diameter is 20 μm, fine filaments are 1 μm). [1,2] Discharging fibres, conductive fibres and many other functional fibres raise in their importance nowadays, as the need for highly functional but flexible surfaces, such as textiles rises. Especially the dispersion quality is essential for the final enhancement of the filament properties. Homogeneously distributed particles serve function throughout the full fibre giving equal mechanical and functional properties over the length of the fibre and of the manufactured textile [3,4]. Counteracting this requirement nanoparticles tend to form agglomerates due to their high specific surface area during the manufacturing of those nanocomposites [5]. In this paper the distribution and dispersion methods are introduced. The homogenization of carbon nanoparticles in polymer melt is enhanced by a novel sonication unit of ITA and BANDELIN electronic GmbH & Co. KG. The first development steps of the semi-industrial unit fabrication as well as the first experimental results in the lab scale of the modification of the dispersion will be shown. Special focus will be laid on the sealing of the new sonication unit as well as the positioning and equipment size when being implemented in an existing melt spinning unit. The paper will show the status of the project as well as the next steps, to show other participants the potential of the newly developed unit.

  8. Processing metallic glasses by selective laser melting

    OpenAIRE

    Pauly, Simon; Löber, Lukas; Petters, Romy; Stoica, Mihai; Scudino, Sergio; Kühn, Uta; Eckert, Jürgen

    2013-01-01

    Metallic glasses and their descendants, the so-called bulk metallic glasses (BMGs), can be regarded as frozen liquids with a high resistance to crystallization. The lack of a conventional structure turns them into a material exhibiting near-theoretical strength, low Young's modulus and large elasticity. These unique mechanical properties can be only obtained when the metallic melts are rapidly cooled to bypass the nucleation and growth of crystals. Most of the commonly known and used processi...

  9. Bursting the bubble of melt inclusions

    Science.gov (United States)

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  10. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  11. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  12. Holographic picture of heavy vector meson melting

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F.; Diles, Saulo [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil); Martin Contreras, Miguel Angel [Universidad de los Andes, High Energy Group, Department of Physics, Bogota (Colombia)

    2016-11-15

    The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1S, 2S and 3S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ(1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium. (orig.)

  13. Entangled Polymer Melts in Extensional Flow

    DEFF Research Database (Denmark)

    Hengeller, Ludovica

    monitor macromolecular chain orientation associated with induced flow fields. This work concerns linear and non-linear rheology of polystyrene melts and solutions coupled with neutron scattering experiments. The aim of this thesis is to investigate theextensional properties of well characterized polymer......, and the particular design of the oven meets the requirement of fast cooling of the sample, so that it can freeze the particularmolecular orientation of the chains at different stages of the stretching or relaxing ofthe sample....

  14. Mixed Finite Element Methods for Melt Migration

    Science.gov (United States)

    Taicher, A. L.

    2013-12-01

    Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium so must carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. We present a mixed formulation for the Darcy-Stokes system. Next, we present novel elements of lowest order and compatible with both Darcy and Stokes flow Finally, we present our 2D mixed FEM code result for solving Stokes and Darcy flow as well as the coupled Darcy-Stokes system the mid-ocean ridge or corner flow problem.

  15. Rock melting technology and geothermal drilling

    Science.gov (United States)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  16. Glass forming ability of calcium aluminosilicate melts

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Yue, Yuanzheng

    2011-01-01

    The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite-wollastonite-tridymite and that of......The glass forming ability (GFA) of two series of calcium aluminosilicate melts is studied by measuring their viscous behavior and crystallization tendency. The first series consists of five compositions on the joining line between the eutectic point of anorthite......-wollastonite-tridymite and that of anorthite-wollastonite-gehlenite. The series includes the eutectic compositions as end members. The second series consists of five compositions on a line parallel to the joining line on the alumina rich side. In the present work, GFA is described in terms of glass stability, i.e., the ability of a glass...... to resist crystallization during reheating. In addition, the fragility index (m) is derived by fitting the viscosity data with the Avramov-Milchev equation. The results show that m is inversely proportional to the glass stability for the two series of melts, implying that m is an indirect measure of GFA...

  17. Melting of orientational degrees of freedom

    Science.gov (United States)

    Aznar, A.; Lloveras, P.; Barrio, M.; Tamarit, J.-Ll.

    2017-04-01

    We use calorimetry and dilatometry under hydrostatic pressure, X-ray powder diffraction and available literature data in a series of composition-related orientationally disordered (plastic) crystals to characterize both the plastic and melting transitions and investigate relationships between associated thermodynamic properties. First, general common trends are identified: (i) The temperature range of stability of the plastic phase T m - T t (where T t and T m are the plastic and melting transition temperatures, respectively) increases with increasing pressure and (ii) both the rate of this increase, d( T m - T t )/ dp, and the entropy change across the plastic transition analyzed as function of the ratio T t / T m are quite independent of the particular compound. However, the dependence of the entropy change at the melting transition on T t / T m at high pressures deviates from the behavior observed at normal pressure for these and other plastic crystals. Second, we find that the usual errors associated with the estimations of second-order contributions in the Clausius-Clapeyron equation are high and thus these terms can be disregarded in practice. Instead, we successfully test the validity of the Clausius-Clapeyron equation at high pressure from direct measurements.

  18. Numerical investigation of melting and solidification processes in modified surface layers of metal at induction heating

    Science.gov (United States)

    Shchukin, V. G.; Popov, V. N.

    2017-10-01

    One of the perspective ways to improve the operational properties of parts of machines during induction treatment of their surfaces is the modification of the melt by specially prepared nanoscale particles of refractory compounds (carbides, nitrides, carbonitrides, etc.). This approach allows us to increase the number of crystallization centers and to refine the structural components of the solidified metal. The resulting high dispersity and homogeneity of crystalline grains favorably affect the quality of the treated surfaces. 3D numerical simulation of thermophysical processes in the modification of the surface layer of metal in a moving substrate was carried out. It is assumed that the surface of the substrate is covered with a layer of specially prepared nanoscale particles of a refractory compound, which, upon penetration into the melt, are uniformly distributed in it. The possibility of applying a high-frequency electromagnetic field of high power for heating and melting of a metal (iron) for the purpose of its subsequent modification is investigated. The distribution of electromagnetic energy in the metal is described by empirical formulas. Melting of the metal is considered in the Stefan approximation, and upon solidification it is assumed that all nanoparticles serve as centers for volume-sequential crystallization. Calculations were carried out with the following parameters: specific power p0 = 35 and 40 kW/cm2 at frequency f = 440 and 1200 kHz, the substrate velocity V = 0.5-2.5 cm/s, the nanoparticles' size is 50 nm and concentration Np = 2.0 . 109 cm-3. Based on the results obtained in a quasi-stationary formulation, the distribution of the temperature field, the dimensions of the melting and crystallization zones, the change in the solid fraction in the two-phase zone, the area of the treated substrate surface, depending on the speed of its movement and induction heating characteristics were estimated.

  19. Mixed Finite Element Method for Melt Migration

    Science.gov (United States)

    Taicher, A. L.; Hesse, M. A.; Arbogast, T.

    2012-12-01

    Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium. Therefore, a numerical method must also carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. The finite element framework provides support for additional analysis of error and convergence. Moreover, both mesh refinement and anisotropy are naturally incorporated into finite elements. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. Mixed methods also produce discretely conservative fluxes that are required for the transport problem to remains stable without violating conservation of mass. Based preliminary investigations in 1D and derived energy estimates, we present a mixed formulation for the Darcy-Stokes system. Next, using novel elements of lowest order and

  20. Contrasting melt equilibration conditions across Anatolia

    Science.gov (United States)

    Reid, Mary; Delph, Jonathan; Schleiffarth, W. Kirk; Cosca, Michael

    2017-04-01

    The widespread mafic volcanism, elevated crustal temperatures, and plateau-type topography in Central Anatolia, Turkey, could collectively be the result of lithospheric delamination, mantle upwelling, and tectonic escape in response to Arabian-Anatolian plate collision. We used the results from basalt geochemistry and a passive-source broadband seismic experiment obtained as part of an international collaborative effort (Continental Dynamics - Central Anatolia Tectonics) to investigate the crust-mantle structure and melting conditions associated with the Quaternary Hasandag Monogenic Cluster (HMC) south and west of Hasandag volcano. The HMC is unusually mafic, not only for Central Anatolia but globally, enabling meaningful comparisons between geochemical and seismic interpretations of mantle conditions. HMC basalts are characterized by orogenic signatures that could have originated (1) in mantle wedge that, after stagnating because of collision, was remobilized south and upward as a result of rollback of the African slab or, alternatively (2) by piecemeal foundering of residual mantle lithosphere into convecting upper mantle, producing small-scale convection and associated decompression melting. Melt equilibration conditions for the HMC are hot (TP ˜1335-1250˚ C, assuming 1-4 wt.% H2O) and shallow (P = 1.1 to 1.6 GPa), approaching those for MORB. Shear wave velocities are relatively constant at ˜4.1 km/s between the Moho and a depth of ˜45-50 km (˜1.4 GPa; Fig. 6), below which Vs increases with increasing depth. We infer that a melt-perfused mantle lid could be locally present between 40 and 55 km. In contrast to Central Anatolia, estimated equilibration conditions for Western Anatolia and Eastern Anatolia (east of the Inner Tauride Suture) mantle melts are hotter (by ≥60˚ C) and deeper (mostly by 0.6-1.0 GPa). They also have chemical signatures that, unlike Central Anatolia, are similar to those of intraplate basalts. These differences are likely related

  1. Identification of squid species by melting temperature shifts on fluorescence melting curve analysis (FMCA) using single dual-labeled probe

    Science.gov (United States)

    Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong

    2017-06-01

    Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).

  2. Complexation of Sr in aqueous fluids equilibrated with silicate melts: effect of melt and fluid composition

    Science.gov (United States)

    Borchert, Manuela; Wilke, Max; Schmidt, Christian; Kvashnina, Kristina

    2010-05-01

    At crustal conditions, the fluid-melt partitioning of Sr is mainly controlled by the salinity of the fluid and the composition of the melt (Borchert et al., 2010). The data show a sharp increase in the Sr partition coefficient with the alumina saturation index (ASI) to a maximum of 0.3 at an ASI of 1.05. Because fluid-melt partitioning of a given element depends on its complexation in the fluid and its incorporation in the melt, these data imply a change in the Sr speciation at least one of the two phases. For silicate melts, Kohn et al. (1990) found only small changes in the first coordination shell of Sr in a suite of melts with various degrees of polymerization, and argued that incorporation of Sr in the melt should not play a major role in controlling Sr partitioning. For the aqueous fluid, Bai and Koster van Groos (1999) and Webster et al. (1989) suggested a control of the Sr partition coefficient by SrCl2 complexes based on the correlation between partition coefficient and Cl concentration in the fluid after quenching. Both hypotheses cannot explain our partitioning data. Thus, new information on Sr complexation is required. Here, we studied the complexation of Sr in peraluminous or peralkaline melt dissolved in aqueous fluids in-situ at elevated PT conditions using hydrothermal diamond-anvil cells (HDAC) and X-ray absorption near edge structure (XANES) spectroscopy. The starting materials were peraluminous or peralkaline glass and H2O or a chloridic solution. The glass was doped with high concentrations of 5000 or 10000 ppm Sr. We used bulk compositions with 10 to 15 wt.% glass to ensure that the melt was completely dissolved in the fluid at high PT conditions. For qualitative evaluation, we analyzed the starting glasses and various crystalline compounds and standard solutions. The experiments were performed at beamline ID26 at ESRF (Grenoble, France) using a high resolution emission spectrometer and Si(311) monochromator crystals for high resolution and Si

  3. Mantle melting and melt refertilization beneath the Southwest Indian Ridge: Mineral composition of abyssal peridotites

    Science.gov (United States)

    Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei

    2017-04-01

    As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness flat or U-type REE patterns, thus cannot be the pure residue of mantle melting. Mineral compositions of the Group 2 peridotites are more depleted than that of peridotites sampled near the Bouvet hot spot (Johnson et al., 1990), implying that the depleted mantle beneath the 53°E segment may be the residue of ancient melting event. This hypothesis is supported by the the low Ol/Opx ratios, coarse grain sizes (>1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of Oceanography, State Oceanic Administration (JG1603, SZ1507). References: Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites[J]. Journal of Geophysical Research, 1990, 95(B3):2661-2678. Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction[J]. Earth & Planetary Science Letters, 1998, 164(1-2):387-406. Zhou H, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise.[J]. Nature, 2013, 494(7436):195-200.

  4. Lessons learnt from FARO/TERMOS corium melt quenching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    The influence of melt quantity, melt composition, water depth and initial pressure on quenching is assessed on the basis of seven tests performed in various conditions in the TERMOS vessel of the FARO facility at JRC-Ispra. Tests involved UO{sub 2}-based melt quantities in the range 18-176 kg at a temperature of approximately 3000 K poured into saturated water. The results suggest that erosion of the melt jet column is an efficient contributor to the amount of break-up, and thus quenching, for large pours of corium melt. The presence of Zr metal in the melt induced a much more efficient quenching than in a similar test with no Zr metal, attributed to the oxidation of the Zr. Significant amounts of H{sub 2} were produced also in tests with pure oxidic melts (e.g. about 300 g for 157 kg melt). In the tests at 5.0 and 2.0 MPa good mixing with significant melt break-up and quenching was obtained during the penetration in the water. At 0.5 MPa, good penetration of the melt into the water could still be achieved, but a jump in the vessel pressurisation occurred when the melt contacted the bottom and part (5 kg) of the debris was re-ejected from the water. (author)

  5. Rheological Consequences of Incipient Melting in Crustal Rocks

    Science.gov (United States)

    Rosenberg, C. L.

    2004-12-01

    A review and reinterpretation of older experimental data on the deformation of partially-melted granite reveals a non-linear strength decrease with increasing melt fractions. This decrease is characterised by two sharp discontinuities, each reflecting a dramatic change of strength within a limited range of melt fractions. A first discontinuity is shown by all experiments at melt fractions of approximately 0.07. The strength drop at melt fractions smaller than this discontinuity is the largest over the entire melting range. Hence the greatest weakening occurs well below the well known rheologically critical melt percentage (RCMP). In contrast to previous interpretations, the RCMP is inferred to occur, at melt fractions of 0.4 to 0.6, for crystallising as well as for melting rocks. However, the magnitude of the stress drop at the RCMP is negligible compared to the stress drop at melt fractions RCMP. Hence, very small amounts of melt, eventually too small to be imaged by geophysical methods, may exert a drastic control on large-scale localization of deformation.

  6. A hydrodynamic mechanism of meteor ablation. The melt-spraying model

    Science.gov (United States)

    Girin, Oleksandr G.

    2017-10-01

    Context. Hydrodynamic conditions are similar in a molten meteoroid and a liquid drop in a high-speed airflow. Despite the fact that the latter is well-studied, both experimentally and theoretically, hydrodynamic instability theory has not been applied to study the fragmentation of molten meteoroids. Aims: We aim to treat quasi-continuous spraying of meteoroid melt due to hydrodynamic instability as a possible mechanism of ablation. Our objectives are to calculate the time development of particle release, the released particle sizes and their distribution by sizes, as well as the meteoroid mass loss law. Methods: We have applied gradient instability theory to model the behaviour of the meteoroid melt layer and its interaction with the atmosphere. We have assumed a spherical meteoroid and that the meteoroid has a shallow entry angle, such that the density of the air stream interacting with the meteoroid is nearly constant. Results: High-frequency spraying of the molten meteoroid is numerically simulated. The intermediate and final size distributions of released particles are calculated, as well as the meteoroid mass loss law. Fast and slow meteoroids of iron and stone compositions are modelled, resulting in significant differences in the size distribution of melt particles sprayed from each meteoroid. Less viscous iron melt produces finer particles and a denser aerosol wake than a stony one does. Conclusions: Analysis of the critical conditions for the gradient instability mechanism shows that the dynamic pressure of the air-stream at heights up to 100 km is sufficient to overcome surface tension forces and pull out liquid particles from the meteoroid melt by means of unstable disturbances. Hence, the proposed melt-spraying model is able to explain quasi-continuous mode of meteoroid fragmentation at large heights and low dynamic pressures. A closed-form solution of the meteoroid ablation problem is obtained due to the melt-spraying model usage, at the meteoroid

  7. Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile

    Science.gov (United States)

    Bravo, Claudio; Loriaux, Thomas; Rivera, Andrés; Brock, Ben W.

    2017-07-01

    Glacier melt is an important source of water for high Andean rivers in central Chile, especially in dry years, when it can be an important contributor to flows during late summer and autumn. However, few studies have quantified glacier melt contribution to streamflow in this region. To address this shortcoming, we present an analysis of meteorological conditions and ablation for Universidad Glacier, one of the largest valley glaciers in the central Andes of Chile at the head of the Tinguiririca River, for the 2009-2010 ablation season. We used meteorological measurements from two automatic weather stations installed on the glacier to drive a distributed temperature-index and runoff routing model. The temperature-index model was calibrated at the lower weather station site and showed good agreement with melt estimates from an ablation stake and sonic ranger, and with a physically based energy balance model. Total modelled glacier melt is compared with river flow measurements at three sites located between 0.5 and 50 km downstream. Universidad Glacier shows extremely high melt rates over the ablation season which may exceed 10 m water equivalent in the lower ablation area, representing between 10 and 13 % of the mean monthly streamflow at the outlet of the Tinguiririca River Basin between December 2009 and March 2010. This contribution rises to a monthly maximum of almost 20 % in March 2010, demonstrating the importance of glacier runoff to streamflow, particularly in dry years such as 2009-2010. The temperature-index approach benefits from the availability of on-glacier meteorological data, enabling the calculation of the local hourly variable lapse rate, and is suited to high melt regimes, but would not be easily applicable to glaciers further north in Chile where sublimation is more significant.

  8. Assessing glacier melt contribution to streamflow at Universidad Glacier, central Andes of Chile

    Directory of Open Access Journals (Sweden)

    C. Bravo

    2017-07-01

    Full Text Available Glacier melt is an important source of water for high Andean rivers in central Chile, especially in dry years, when it can be an important contributor to flows during late summer and autumn. However, few studies have quantified glacier melt contribution to streamflow in this region. To address this shortcoming, we present an analysis of meteorological conditions and ablation for Universidad Glacier, one of the largest valley glaciers in the central Andes of Chile at the head of the Tinguiririca River, for the 2009–2010 ablation season. We used meteorological measurements from two automatic weather stations installed on the glacier to drive a distributed temperature-index and runoff routing model. The temperature-index model was calibrated at the lower weather station site and showed good agreement with melt estimates from an ablation stake and sonic ranger, and with a physically based energy balance model. Total modelled glacier melt is compared with river flow measurements at three sites located between 0.5 and 50 km downstream. Universidad Glacier shows extremely high melt rates over the ablation season which may exceed 10 m water equivalent in the lower ablation area, representing between 10 and 13 % of the mean monthly streamflow at the outlet of the Tinguiririca River Basin between December 2009 and March 2010. This contribution rises to a monthly maximum of almost 20 % in March 2010, demonstrating the importance of glacier runoff to streamflow, particularly in dry years such as 2009–2010. The temperature-index approach benefits from the availability of on-glacier meteorological data, enabling the calculation of the local hourly variable lapse rate, and is suited to high melt regimes, but would not be easily applicable to glaciers further north in Chile where sublimation is more significant.

  9. The Hemlo Gold Deposit as a Type Example of Generation and Mobilization of Gold-Rich Sulfosalt Melt

    Science.gov (United States)

    Tomkins, A. G.; Pattison, D. R.; Zaleski, E.

    2004-05-01

    The consensus amongst recent studies of the Hemlo gold deposit is that mineralization was introduced prior to or during peak metamorphism, but a number of key observations that have been used to support a post-metamorphic model have until now remained unexplained. We show how the present ore mineral assemblages, some of which are unstable even at greenschist facies conditions, came to be hosted in mid-amphibolite facies rocks and related structures, and how the heterogeneous distribution of ore minerals evolved. Phase relations indicate that some ore mineral associations at Hemlo would have been molten at peak metamorphic conditions (600-650° C, 6-7 kbar). For example, coexisting realgar and stibnite start to melt at structures that developed approximately concurrently with peak metamorphism. Although there are signs of low temperature silicate alteration at some of these sites, many display no such alteration indicating that hydrothermal mobilization was not responsible for much of the observed distribution. The preservation of widespread pyrite at Hemlo indicates that a high sulfur fugacity environment prevailed during peak metamorphism. Under these conditions, we suggest that the ore mineral assemblage underwent partial melting, primarily through breakdown of stibnite and arsenopyrite. Interaction between this early-formed Sb- and As-rich melt and a range of unmelted sulfides was facilitated by concurrent deformation-driven melt segregation, which led to further melting and incorporation of other elements into the melt. This gold-bearing melt was mobilized from compressional high strain regions into dilational domains such as boudin necks and extensional fractures developed in competent lithologies. Ore minerals that did not participate significantly in melting (pyrite, molybdenite, pyrrhotite and sphalerite) were not extensively mobilized. Fractional crystallization of the sulfosalt melt, made possible by ongoing deformation during cooling, led to a diverse

  10. On the rheology of crustal rocks containing low melt fractions

    Science.gov (United States)

    Rosenberg, C. L.; Handy, M. R.

    2003-04-01

    A review and reinterpretation of older experimental data on the deformation of partially-melted granite reveals a non-linear strength decrease with increasing melt fractions. This decrease is characterised by two sharp discontinuities, each reflecting a dramatic change of strength within a limited range of melt fractions. A first discontinuity is shown by all experiments at melt fractions between 0.0 and 0.1. The change of strength within this range of melt fractions is the largest over the entire melting range. The second discontinuity occurs at higher melt fractions (0.4 to 0.6) and corresponds to the well known rheologically critical melt percentage (RCMP). In contrast to recent interpretations, we infer that the experimental data do indicate the occurrence of the RCMP, for crystallising as well as for melting rocks. However, the magnitude of the stress drop at the RCMP is negligible compared to the stress drop at melt fractions RCMP, at melt fractions >= 0.4, as proposed by several experimentalists. We suggest that the attainment of a melt fraction of 0.03 to 0.08 will control the large-scale localisation of deformation into partially-melted crustal layers, irrespective of the attainment of the RCMP. If the RCMP is achieved, however, the large-scale deformational response of the crust may not be different than that of a crust containing a melt fraction of 0.1. Instead, the RCMP controls localisation of flow within magmatic bodies, where it effects the internal dynamics of magma chambers.

  11. Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts

    Science.gov (United States)

    Gervasoni, Fernanda; Klemme, Stephan; Rocha-Júnior, Eduardo R. V.; Berndt, Jasper

    2016-03-01

    The importance of zircon in geochemical and geochronological studies, and its presence not only in aluminous but also in alkaline rocks, prompted us to think about a new zircon saturation model that can be applied in a wide range of compositions. Therefore, we performed zircon crystallization experiments in a range of compositions and at high temperatures, extending the original zircon saturation model proposed by Watson and Harrison (Earth Planet Sci Lett 64:295-304, 1983) and Boehnke et al. (Chem Geol 351:324-334, 2013). We used our new data and the data from previous studies in peraluminous melts, to describe the solubility of zircon in alkaline and aluminous melts. To this effect, we devised a new compositional parameter called G [ {( {3 \\cdot {{Al}}2 {{O}}3 + {{SiO}}2 )/({{Na}}2 {{O}} + {{K}}2 {{O}} + {{CaO}} + {{MgO}} + {{FeO}}} )} ] (molar proportions), which enables to describe the zircon saturation behaviour in a wide range of rock compositions. Furthermore, we propose a new zircon saturation model, which depends basically on temperature and melt composition, given by (with 1σ errors): ln [ {{Zr}} ] = ( {4.29 ± 0.34} ) - ( {1.35 ± 0.10} ) \\cdot ln G + ( {0.0056 ± 0.0002} ) \\cdot T( °C ) where [Zr] is the Zr concentration of the melt in µg/g, G is the new parameter representing melt composition and T is the temperature in degrees Celsius. The advantages of the new model are its straightforward use, with the G parameter being calculated directly from the molar proportions converted from electron microprobe measurements, the temperature calculated given in degrees Celsius and its applicability in a wider range of rocks compositions. Our results confirm the high zircon solubility in peralkaline rocks and its dependence on composition and temperature. Our new model may be applied in all intermediate to felsic melts from peraluminous to peralkaline compositions.

  12. Modelling komatiitic melt accumulation and segregation in the transition zone

    Science.gov (United States)

    Schmeling, H.; Arndt, N.

    2017-08-01

    Komatiites are probably produced in very hot mantle upwellings or plumes. Under such conditions, melting will take place deep within the upper mantle or even within the mantle transition zone. Due to its compressibility at such pressures, melt might be denser than olivine, but would remain buoyant with respect to a peridotitic mantle both above and below the olivine-wadsleyite phase boundary because of the presence of its higher temperature and denser garnet. We studied the physics of melting and melt segregation within hot upwelling mantle passing through the transition zone, with particular emphasis on the effect of depth-dependent density contrasts between melt and ambient mantle. Assuming a 1D plume, we solved the two-phase flow equations of the melt-matrix system accounting for matrix compaction and porosity-dependent shear and bulk viscosity. We assumed a constant ascent velocity and melt generation rate. In a first model series, the level of neutral buoyancy zneutr is assumed to lie above the depth of onset of melting, i.e. there exists a region where dense melt may lag behind the solid phases within the rising plume. Depending on two non-dimensional numbers (accumulation number Ac, compaction resistance number Cr) we find four regimes: 1) time-dependent melt accumulation in standing porosity waves that scale with the compaction length. The lowermost of these waves broadens with time until a high melt accumulation zone is formed in steady state. During this transient solitary porosity waves may cross the depth of neutral density and escape. 2) steady-state weak melt accumulation near zneutr, 3) no melt accumulation due to small density contrast or, 4) high matrix viscosity. In regime 4 the high mantle viscosity prevents the opening of pore space necessary to accumulate melt. In a second series, the rising mantle crosses the olivine-wadsleyite phase boundary, which imposes a jump in density contrast between melt and ambient mantle. A sharp melt porosity

  13. Genome wide application of DNA melting analysis.

    Science.gov (United States)

    Jost, Daniel; Everaers, Ralf

    2009-01-21

    Correspondences between functional and thermodynamic melting properties in a genome are being increasingly employed for ab initio gene finding and for the interpretation of the evolution of genomes. Here we present the first systematic genome wide comparison between biologically coding domains and thermodynamically stable regions. In particular, we develop statistical methods to estimate the reliability of the resulting predictions. Not surprisingly, we find that the success of the approach depends on the difference in GC content between the coding and the non-coding parts of the genome and on the percentage of coding base-pairs in the sequence. These prerequisites vary strongly between species, where we observe no systematic differences between eukaryotes and prokaryotes. We find a number of organisms in which the strong correlation of coding domains and thermodynamically stable regions allows us to identify putative exons or genes to complement existing approaches. In contrast to previous investigations along these lines we have not employed the Poland-Scheraga (PS) model of DNA melting but use the earlier Zimm-Bragg (ZB) model. The Ising-like form of the ZB model can be viewed as an approximation to the PS model, with averaged loop entropies included into the cooperative factor [Formula: see text]. This results in a speed-up by a factor of 20-100 compared to the Fixman-Freire algorithm for the solution of the PS model. We show that for genomic sequences the resulting systematic errors are negligible compared to the parameterization uncertainty of the models. We argue that for limited computing resources, available CPU power is better invested in broadening the statistical base for genomic investigations than in marginal improvements of the description of the physical melting behavior.

  14. Bubble formation and decrepitation control the CO2 content of olivine-hosted melt inclusions

    Science.gov (United States)

    Maclennan, J.

    2017-02-01

    The CO2 contents of olivine-hosted melt inclusions have previously been used to constrain the depth of magma chambers in basaltic systems. However, the vast majority of inclusions have CO2 contents which imply entrapment pressures that are significantly lower than those obtained from independent petrological barometers. Furthermore, a global database of melt inclusion compositions from low H2O settings, indicates that the distribution of saturation pressures varies surprisingly little between mid-ocean ridges, ocean islands, and continental rift zones. 95% of the inclusions in the database have saturation pressures of 200 MPa or less, indicating that melt inclusion CO2 does not generally provide an accurate estimate of magma chamber depths. A model of the P-V-T-X evolution of olivine-hosted melt inclusions was developed so that the properties of the inclusion system could be tracked as the hosts follow a model P-T path. The models indicate that the principal control on the saturation of CO2 in the inclusion and the formation of vapor bubbles is the effect of postentrapment crystallization on the major element composition of the inclusions and how this translates into variation in CO2 solubility. The pressure difference between external melt and the inclusion is likely to be sufficiently high to cause decrepitation of inclusions in most settings. Decrepitation can account for the apparent mismatch between CO2-based barometry and other petrological barometers, and can also account for the observed global distribution of saturation pressures. Only when substantial postentrapment crystallization occurs can reconstructed inclusion compositions provide an accurate estimate of magma chamber depth.

  15. Modeling the sensitivity of coastal ocean Primary Production to Extreme Melting of the Greenland Ice Sheet

    Science.gov (United States)

    Oliver, H.; Luo, H.; Mattingly, K. S.; Rosen, J. J.; Yager, P. L.

    2016-02-01

    Responding to the July 2012 extreme melting of the Greenland Ice Sheet, this study investigates how marine primary productivity of the region may be affected by changes resulting from increasing meltwater discharge. The freshwater melt from the ice sheet flows primarily to the sea, where wind and ocean currents then distribute and mix it with ocean water. Depending on its delivery, meltwater may increase stratification in the coastal ocean, which is often beneficial to the light-limited phytoplankton typically found in polar regions. While plumes of buoyant meltwater can reduce light limitation by creating a shallower mixed layer, they may also increase nutrient limitation by isolating the phytoplankton from deep nitrogen supplies. Turbidity in the plume would also dampen any meltwater-driven relief from light limitation. To characterize and quantify these responses to melt in the coastal ocean west of Greenland, we created a bottom-up (nutrient-and-light-influenced) marine ecosystem model using model output generated as a part of a larger interdisciplinary Ice Sheet Impact Study. The collaborative project includes an examination of the changes of Greenland's surface mass balance, a hydrological runoff model of glacial meltwater, and a Regional Ocean Modeling System (ROMS). Meltwater distributions and mixed layer depths from the ROMS model were used to analyze the potential effects on marine phytoplankton. The ROMS produced ocean output for two cases over a ten-year period: with and without meltwater runoff. Using these two cases, we determined the perturbation in mixed layer depth, light availability, and the expected phytoplankton biomass, due to meltwater over different regions and melting conditions. Results are compared to remote sensing data analyzed by other members of the Ice Sheet Impact Study. The sensitivity results indicate an increase in variability of mixed layer depths with increasing meltwater input, and that the increased light availability caused

  16. Measurement and Analysis of Porosity in Al-10Si-1Mg Components Additively Manufactured by Selective Laser Melting

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Suraj [Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213-3815 US (Corresponding author), e-mail: rksuraj92@gmail.com; Cunningham, Ross [Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213-3815 US; Ozturk, Tugce [Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213-3815 US; Rollett, Anthony D. [Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213-3815 US

    2016-10-18

    Aluminum alloys are candidate materials for weight critical applications because of their excellent strength and stiffness to weight ratio. However, defects such as voids decrease the strength and fatigue life of these alloys, which can limit the application of Selective Laser Melting. In this study, the average volume fraction, average size, and size distribution of pores in Al10-Si-1Mg samples built using Selective Laser Melting have been characterized. Synchrotron high energy X-rays were used to perform computed tomography on volumes of order one cubic millimeter with a resolution of approximately 1.5 μm. Substantial variations in the pore size distributions were found as a function of process conditions. Even under conditions that ensured that all locations were melted at least once, a significant number density was found of pores above 5 μm in diameter.

  17. Processing of a metastable titanium alloy (Ti-5553 by selective laser melting

    Directory of Open Access Journals (Sweden)

    C. Zopp

    2017-09-01

    Material densities above 99.93% were achieved by optimisation of energy input during selective laser melting process. However, the use of reference fraction (10–63 μm allowed the highest material density. Regarding to surface quality, an impact of coarse grain (53–63 μm was identified and an optimised grain size distribution derived. An optimum averaged surface roughness could be calculated, using a grain size between 25–32 μm.

  18. Stress Relaxation in Entangled Polymer Melts

    DEFF Research Database (Denmark)

    Hou, Ji-Xuan; Svaneborg, Carsten; Everaers, Ralf

    2010-01-01

    We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, G(t), into the plateau regime for chains with Z=40 entanglements and into the t...... excellent agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint release, if we remove the contribution of high-frequency modes to contour length fluctuations of the primitive chain....

  19. Pressure-induced melting of micellar crystal

    DEFF Research Database (Denmark)

    Mortensen, K.; Schwahn, D.; Janssen, S.

    1993-01-01

    Aqueous solutions of triblock copolymers of poly(ethylene oxide) and poly(propylene oxide) aggregate at elevated temperatures into micelles which for polymer concentrations greater-than-or-equal-to 20% make a hard sphere crystallization to a cubic micellar crystal. Structural studies show...... that pressure improves the solvent quality of water, thus resulting in decomposition of the micelles and consequent melting of the micellar crystal. The combined pressure and temperature dependence reveals that in spite of the apparent increase of order on the 100 angstrom length scale upon increasing...

  20. Monitoring the melting of the Arctic

    Science.gov (United States)

    Kalaugher, Liz

    2008-09-01

    Standing on the deck of the icebreaker Amundsen in the Arctic Ocean, I am bathed in blazing June sunshine. The weather has been like this all week since I joined the ship - a research vessel that set sail from Quebec in Canada last summer - as a visiting science journalist. It would be tempting to think that such conditions are typical, but most areas of the Arctic are in fact cloudy for 80% of the time in the spring and summer due to moisture in the air from melting ice and from exposed areas of the ocean.

  1. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia

    Science.gov (United States)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.

    2009-04-01

    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes

  2. Process Analytical Quality Control of Tailored Drug Release Formulation Prepared via Hot-Melt Extrusion Technology.

    Science.gov (United States)

    Park, Jun-Bom; Lee, Beom-Jin; Kang, Chin-Yang; Repka, Michael A

    2017-04-01

    The objective of the present study was to compare the influence of Eudragit® RS PO and RL PO blends on the release of water-soluble and insoluble drugs from hot-melt extruded formulations. In addition, we aimed to evaluate drug content uniformity and distribution by Fourier transform-infrared (FT-IR) chemical imaging. Theophylline (TP) and carbamazepine (CBZ) were selected as the water-soluble and insoluble model drugs, respectively. Eudragit® RS PO and RL PO were selected as the polymeric matrices. FT-IR chemical imaging clearly demonstrated the content uniformity and distribution for both drugs in the extrudates, which was confirmed by HPLC. Increasing the ratio of Eudragit® RL PO led to an increase in the in vitro drug release, whereas an increase in the ratio of Eudragit® RS PO sustained the drug release for up to 12 h. The hot-melt extrusion of TP and CBZ with varying ratios of Eudragit® RS PO and RL PO can be employed to tailor the drug release profiles. In this study, we demonstrated, for the first time, the use of FT-IR chemical imaging as a process analytical technique to determine the drug content uniformity and distribution. Our data correlated well with the results of HPLC analysis in the study of tailored drug release from the prepared hot-melt extruded formulation.

  3. An analogue model of melt segregation and accumulation processes in the Earth’s crust

    Directory of Open Access Journals (Sweden)

    Soesoo, Alvar

    2007-03-01

    Full Text Available An analogue experiment was carried out to model melt segregation from the solid rock matrix and its subsequent transport. Carbon dioxide gas and sand were used as analogue materials of crustal partial melt and host rock, respectively. The analogue model displays the diffusional transport mode at low flux rates and the transition to the ballistical mode as the response of the system to a higher gas flux. The ballistical mode is characterized by discontinuous transport and extraction of the gas phase in separate batches, which leads to the development of power law batch size distribution in the system. The gas is extracted preferentially in large batches and does not influence the state of the system and size distribution of remaining batches. The implications of the analogue model to real magmatic processes are supported by power law leucosome width distributions measured in several migmatite localities. The emergence of fractality and 1/f power spectrum of system fluctuations provide evidence of possible self-organized critical nature of melt segregation processes.

  4. An introduction of Markov chain Monte Carlo method to geochemical inverse problems: Reading melting parameters from REE abundances in abyssal peridotites

    Science.gov (United States)

    Liu, Boda; Liang, Yan

    2017-04-01

    Markov chain Monte Carlo (MCMC) simulation is a powerful statistical method in solving inverse problems that arise from a wide range of applications. In Earth sciences applications of MCMC simulations are primarily in the field of geophysics. The purpose of this study is to introduce MCMC methods to geochemical inverse problems related to trace element fractionation during mantle melting. MCMC methods have several advantages over least squares methods in deciphering melting processes from trace element abundances in basalts and mantle rocks. Here we use an MCMC method to invert for extent of melting, fraction of melt present during melting, and extent of chemical disequilibrium between the melt and residual solid from REE abundances in clinopyroxene in abyssal peridotites from Mid-Atlantic Ridge, Central Indian Ridge, Southwest Indian Ridge, Lena Trough, and American-Antarctic Ridge. We consider two melting models: one with exact analytical solution and the other without. We solve the latter numerically in a chain of melting models according to the Metropolis-Hastings algorithm. The probability distribution of inverted melting parameters depends on assumptions of the physical model, knowledge of mantle source composition, and constraints from the REE data. Results from MCMC inversion are consistent with and provide more reliable uncertainty estimates than results based on nonlinear least squares inversion. We show that chemical disequilibrium is likely to play an important role in fractionating LREE in residual peridotites during partial melting beneath mid-ocean ridge spreading centers. MCMC simulation is well suited for more complicated but physically more realistic melting problems that do not have analytical solutions.

  5. Empirical Retrieval of Surface Melt Magnitude from Coupled MODIS Optical and Thermal Measurements over the Greenland Ice Sheet during the 2001 Ablation Season

    Directory of Open Access Journals (Sweden)

    Rui Peng

    2008-08-01

    Full Text Available Accelerated ice flow near the equilibrium line of west-central Greenland Ice Sheet (GIS has been attributed to an increase in infiltrated surface melt water as a response to climate warming. The assessment of surface melting events must be more than the detection of melt onset or extent. Retrieval of surface melt magnitude is necessary to improve understanding of ice sheet flow and surface melt coupling. In this paper, we report on a new technique to quantify the magnitude of surface melt. Cloud-free dates of June 10, July 5, 7, 9, and 11, 2001 Moderate Resolution Imaging Spectroradiometer (MODIS daily reflectance Band 5 (1.230-1.250μm and surface temperature images rescaled to 1km over western Greenland were used in the retrieval algorithm. An optical-thermal feature space partitioned as a function of melt magnitude was derived using a one-dimensional thermal snowmelt model (SNTHERM89. SNTHERM89 was forced by hourly meteorological data from the Greenland Climate Network (GC-Net at reference sites spanning dry snow, percolation, and wet snow zones in the Jakobshavn drainage basin in western GIS. Melt magnitude or effective melt (E-melt was derived for satellite composite periods covering May, June, and July displaying low fractions (0-1% at elevations greater than 2500m and fractions at or greater than 15% at elevations lower than 1000m assessed for only the upper 5 cm of the snow surface. Validation of E-melt involved comparison of intensity to dry and wet zones determined from QSCAT backscatter. Higher intensities (> 8% were distributed in wet snow zones, while lower intensities were grouped in dry zones at a first order accuracy of ~ ±2%.

  6. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines

    Science.gov (United States)

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen

    2017-01-01

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  7. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    Science.gov (United States)

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  8. Greater-than-bulk melting temperatures explained: Gallium melts Gangnam style

    Science.gov (United States)

    Gaston, Nicola; Steenbergen, Krista

    2014-03-01

    The experimental discovery of superheating in gallium clusters contradicted the clear and well-demonstrated paradigm that the melting temperature of a particle should decrease with its size. However the extremely sensitive dependence of melting temperature on size also goes to the heart of cluster science, and the interplay between the effects of electronic and geometric structure. We have performed extensive first-principles molecular dynamics calculations, incorporating parallel tempering for an efficient exploration of configurational phase space. This is necessary, due to the complicated energy landscape of gallium. In the nanoparticles, melting is preceded by a transitions between phases. A structural feature, referred to here as the Gangnam motif, is found to increase with the latent heat and appears throughout the observed phase changes of this curious metal. We will present our detailed analysis of the solid-state isomers, performed using extensive statistical sampling of the trajectory data for the assignment of cluster structures to known phases of gallium. Finally, we explain the greater-than-bulk melting through analysis of the factors that stabilise the liquid structures.

  9. Satellite-derived submarine melt rates and mass balance (2011–2015 for Greenland's largest remaining ice tongues

    Directory of Open Access Journals (Sweden)

    N. Wilson

    2017-12-01

    Full Text Available Ice-shelf-like floating extensions at the termini of Greenland glaciers are undergoing rapid changes with potential implications for the stability of upstream glaciers and the ice sheet as a whole. While submarine melting is recognized as a major contributor to mass loss, the spatial distribution of submarine melting and its contribution to the total mass balance of these floating extensions is incompletely known and understood. Here, we use high-resolution WorldView satellite imagery collected between 2011 and 2015 to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues – Nioghalvfjerdsbræ (79 North Glacier, 79N, Ryder Glacier (RG, and Petermann Glacier (PG. Submarine melt rates under the ice tongues vary considerably, exceeding 50 m a−1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. We compare the total melt rates to the influx of ice to the ice tongue to assess their contribution to the current mass balance. At Petermann Glacier and Ryder Glacier, we find that the combined submarine and aerial melt approximately balances the ice flux from the grounded ice sheet. At Nioghalvfjerdsbræ the total melt flux (14.2 ± 0.96 km3 a−1 w.e., water equivalent exceeds the inflow of ice (10.2 ± 0.59 km3 a−1 w.e., indicating present thinning of the ice tongue.

  10. Synthesis of ammonia using sodium melt.

    Science.gov (United States)

    Kawamura, Fumio; Taniguchi, Takashi

    2017-09-14

    Research into inexpensive ammonia synthesis has increased recently because ammonia can be used as a hydrogen carrier or as a next generation fuel which does not emit CO2. Furthermore, improving the efficiency of ammonia synthesis is necessary, because current synthesis methods emit significant amounts of CO2. To achieve these goals, catalysts that can effectively reduce the synthesis temperature and pressure, relative to those required in the Haber-Bosch process, are required. Although several catalysts and novel ammonia synthesis methods have been developed previously, expensive materials or low conversion efficiency have prevented the displacement of the Haber-Bosch process. Herein, we present novel ammonia synthesis route using a Na-melt as a catalyst. Using this route, ammonia can be synthesized using a simple process in which H2-N2 mixed gas passes through the Na-melt at 500-590 °C under atmospheric pressure. Nitrogen molecules dissociated by reaction with sodium then react with hydrogen, resulting in the formation of ammonia. Because of the high catalytic efficiency and low-cost of this molten-Na catalyst, it provides new opportunities for the inexpensive synthesis of ammonia and the utilization of ammonia as an energy carrier and next generation fuel.

  11. Influence of snowpack internal structure on snow metamorphism and melting intensity on Hansbreen, Svalbard

    Directory of Open Access Journals (Sweden)

    Laska Michał

    2016-06-01

    Full Text Available This paper presents a detailed study of melting processes conducted on Hansbreen – a tidewater glacier terminating in the Hornsund fjord, Spitsbergen. The fieldwork was carried out from April to July 2010. The study included observations of meltwater distribution within snow profiles in different locations and determination of its penetration time to the glacier ice surface. In addition, the variability of the snow temperature and heat transfer within the snow cover were measured. The main objective concerns the impact of meltwater on the diversity of physical characteristics of the snow cover and its melting dynamics. The obtained results indicate a time delay between the beginning of the melting processes and meltwater reaching the ice surface. The time necessary for meltwater to percolate through the entire snowpack in both, the ablation zone and the equilibrium line zone amounted to c. 12 days, despite a much greater snow depth at the upper site. An elongated retention of meltwater in the lower part of the glacier was caused by a higher amount of icy layers (ice formations and melt-freeze crusts, resulting from winter thaws, which delayed water penetration. For this reason, a reconstruction of rain-on-snow events was carried out. Such results give new insight into the processes of the reactivation of the glacier drainage system and the release of freshwater into the sea after the winter period.

  12. Seismic reflection images of the Moho underlying melt sills at the East Pacific Rise.

    Science.gov (United States)

    Singh, S C; Harding, A J; Kent, G M; Sinha, M C; Combier, V; Bazin, S; Tong, C H; Pye, J W; Barton, P J; Hobbs, R W; White, R S; Orcutt, J A

    2006-07-20

    The determination of melt distribution in the crust and the nature of the crust-mantle boundary (the 'Moho') is fundamental to the understanding of crustal accretion processes at oceanic spreading centres. Upper-crustal magma chambers have been imaged beneath fast- and intermediate-spreading centres but it has been difficult to image structures beneath these magma sills. Using three-dimensional seismic reflection images, here we report the presence of Moho reflections beneath a crustal magma chamber at the 9 degrees 03' N overlapping spreading centre, East Pacific Rise. Our observations highlight the formation of the Moho at zero-aged crust. Over a distance of less than 7 km along the ridge crest, a rapid increase in two-way travel time of seismic waves between the magma chamber and Moho reflections is observed, which we suggest is due to a melt anomaly in the lower crust. The amplitude versus offset variation of reflections from the magma chamber shows a coincident region of higher melt fraction overlying this anomalous region, supporting the conclusion of additional melt at depth.

  13. Structural Stability and Mobility of Carbonate Minerals and Melts in the Earth's Mantle

    Science.gov (United States)

    Liu, J.; Caracas, R.; Fan, D.; Zhang, D.; Mao, W. L.

    2015-12-01

    Knowledge of potential carbon carriers such as the mantle carbonate minerals and melts is critical for our understanding of the deep-carbon cycle and related geological processes within the planet. Although rhombohedral carbonates (e.g., calcite, magnesite, and siderite) have been proposed as a major carbon carrier in the Earth's crust and upper mantle, several distinct scenarios have been proposed for these carbonates at deep-mantle conditions including chemical dissociation and various structural transitions. Recently, carbonate melts have been reported to be highly mobile at high pressure and temperature (P-T) conditions, which may have significant impact on magmatic processes in Earth's upper mantle. However, the high P-T behaviors of carbonate minerals and melts are still not well understood, in terms of their structural stability and mobility in the Earth's lower mantle. Combining in-situ synchrotron X-ray diffraction (XRD), transmission X-ray microscopy (TXM), and Raman spectroscopy experiments in a laser-heated diamond anvil cell with complementary theoretical calculations, we investigate the phase stability of carbonates, the equation of state (EoS) of carbonatic glasses, as well as the distribution of carbonate melts in a silicate matrix up to lower-mantle conditions.

  14. Secular evolution of partial melting and melt stagnation during the formation of Godzilla Mullion, Philippine Sea

    Science.gov (United States)

    Snow, J. E.; Ohara, Y.; Harigane, Y.; Michibayashi, K.; Hellebrand, E.; von der Handt, A.; Loocke, M.; Ishii, T.

    2009-12-01

    Godzilla Mullion is a large-scale low angle detachment fault (or OCC, Oceanic Core Complex) formed during backarc spreading in the Parece Vela Rift behind the Mariana arc system. Detachment spreading occurred during the time interval 15-12 Ma, before the Parece Vela Rift became extinct and the locus of back arc spreading in the system shifted to the East, to the Mariana Trough. During this time, the spreading rate varied from ~70-88 mm/year to zero (at extinction). The decline in the spreading rate, should have had profound effects on the thermal structure of the lithosphere in the rift, including include progressive thickening, decreasing degree of partial melting, and increasing melt stagnation. We have combined our preliminary data on mantle peridotite mineral chemistry to form a preliminary test of this hypothesis based on mantle peridotites from (currently) 10 sampling stations along the mullion from the cruises CSS33, KR03-01, KH07-02 and YK09-05. This test is for now based primarily on abyssal peridotite spinel chemistry (Dick and Bullen, 1982; Dick 1989). We can distinguish three distinct regions within the mullion based on spinel chemistry: (1) The Distal GM region, including sites KR03-01-D6, KH07-02-D17 and KH07-02-D7. These have a moderately depleted character, with minimum Cr-numbers between 30 and 40, and few samples with high TiO2 (an indicator of melt impregnation). (2) The Medial GM region, including stations KH07-02-D6, KR03-01-D7, KH07-02-D21 and YK09-05-6K#1142. These have a more fertile character, with minimum Cr-numbers between 14 and 22, and with the exception of KH07-02-21 (which may belong to the next group) little evidence of melt stagnation. (3) The Proximal GM region, including sites KR0301-D9 and D10 and CSS33-D1. These spinels show abundant evidence for melt reaction, including plagioclase pseudomorphs (See abstract by Loocke et al., this session) and pervasively elevated TiO2 contents and Cr-numbers in the spinels. We can interpret

  15. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.

    Science.gov (United States)

    Okada, Takashi; Suzuki, Masaru

    2013-11-30

    In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Premixing and steam explosion phenomena in the tests with stratified melt-coolant configuration and binary oxidic melt simulant materials

    Energy Technology Data Exchange (ETDEWEB)

    Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se; Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Konovalenko, Alexander, E-mail: kono@kth.se; Karbojian, Aram, E-mail: karbojan@kth.se

    2017-04-01

    Highlights: • Steam explosion in stratified melt-coolant configuration is studied experimentally. • Different binary oxidic melt simulant materials were used. • Five spontaneous steam explosions were observed. • Instability of melt-coolant interface and formation of premixing layer was observed. • Explosion strength is influenced by melt superheat and water subcooling. - Abstract: Steam explosion phenomena in stratified melt-coolant configuration are considered in this paper. Liquid corium layer covered by water on top can be formed in severe accident scenarios with (i) vessel failure and release of corium melt into a relatively shallow water pool; (ii) with top flooding of corium melt layer. In previous assessments of potential energetics in stratified melt-coolant configuration, it was assumed that melt and coolant are separated by a stable vapor film and there is no premixing prior to the shock wave propagation. This assumption was instrumental for concluding that the amount of energy that can be released in such configuration is not of safety importance. However, several recent experiments carried out in Pouring and Under-water Liquid Melt Spreading (PULiMS) facility with up to 78 kg of binary oxidic corium simulants mixtures have resulted in spontaneous explosions with relatively high conversion ratios (order of one percent). The instability of the melt-coolant interface, melt splashes and formation of premixing layer were observed in the tests. In this work, we present results of experiments carried out more recently in steam explosion in stratified melt-coolant configuration (SES) facility in order to shed some light on the premixing phenomena and assess the influence of the test conditions on the steam explosion energetics.

  17. Applications of nonequilibrium melting concept to damage-accumulation processes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Okamoto, P.R.

    1998-01-01

    The authors recent study of crystalline-to-amorphous transformation led to the successful development of a unified thermodynamic description of disorder-induced amorphization and heat-induced melting, based on a generalized version of the Lindemann melting criterion. The generalized criterion requires that the melting temperature of a defective crystal decreases with increasing static atomic disorder. Hence, any crystal can melt at temperatures below the melting point of its perfect crystalline state when driven far from equilibrium by introducing critical amounts of misfitting solute atoms and lattice imperfections, radiation damage, and/or tensile stresses. This conceptual approach to nonequilibrium melting provides new insight into long-standing materials problems such as brittle fracture, embrittlement, and environmentally-induced cracking, for example irradiation-assisted stress corrosion cracking.

  18. A model for tidewater glacier undercutting by submarine melting

    Science.gov (United States)

    Slater, D. A.; Nienow, P. W.; Goldberg, D. N.; Cowton, T. R.; Sole, A. J.

    2017-03-01

    Dynamic change at the marine-terminating margins of the Greenland Ice Sheet may be initiated by the ocean, particularly where subglacial runoff drives vigorous ice-marginal plumes and rapid submarine melting. Here we model submarine melt-driven undercutting of tidewater glacier termini, simulating a process which is key to understanding ice-ocean coupling. Where runoff emerges from broad subglacial channels we find that undercutting has only a weak impact on local submarine melt rate but increases total ablation by submarine melting due to the larger submerged ice surface area. Thus, the impact of melting is determined not only by the melt rate magnitude but also by the slope of the ice-ocean interface. We suggest that the most severe undercutting occurs at the maximum height in the fjord reached by the plume, likely promoting calving of ice above. It remains unclear, however, whether undercutting proceeds sufficiently rapidly to influence calving at Greenland's fastest-flowing glaciers.

  19. A Model for Scrap Melting in Steel Converter

    Science.gov (United States)

    Kruskopf, Ari

    2015-03-01

    A process model for basic oxygen furnace is in development. The full model will include a 2-D axisymmetric turbulent flow model for iron melt, a steel scrap melting model, and a chemical reaction model. A theoretical basis for scrap melting model is introduced in this paper and an in-house implementation of the model is tested in this article independently from the other parts of the full process model. The model calculates a melting curve for the scrap piece and the heat and carbon mass exchange between the melt and the scrap. A temperature and carbon concentration-dependent material data are used for heat capacity, thermal conductivity, and diffusion coefficient. The equations are discretized into a moving grid, which is uncommon in literature in the context of scrap melting. A good agreement is found between the modeling results and experiments from literature. Also a heat transfer correlation for dimensionless Nusselt number is determined using the numerical results.

  20. Validating predictions made by a thermo-mechanical model of melt segregation in sub-volcanic systems

    Science.gov (United States)

    Roele, Katarina; Jackson, Matthew; Morgan, Joanna

    2014-05-01

    A quantitative understanding of the spatial and temporal evolution of melt distribution in the crust is crucial in providing insights into the development of sub-volcanic crustal stratigraphy and composition. This work aims to relate numerical models that describe the base of volcanic systems with geophysical observations. Recent modelling has shown that the repetitive emplacement of mantle-derived basaltic sills, at the base of the lower crust, acts as a heat source for anatectic melt generation, buoyancy-driven melt segregation and mobilisation. These processes form the lowermost architecture of complex sub-volcanic networks as upward migrating melt produces high melt fraction layers. These 'porosity waves' are separated by zones with high compaction rates and have distinctive polybaric chemical signatures that suggest mixed crust and mantle origins. A thermo-mechanical model produced by Solano et al in 2012 has been used to predict the temperatures and melt fractions of successive high porosity layers within the crust. This model was used as it accounts for the dynamic evolution of melt during segregation and migration through the crust; a significant process that has been neglected in previous models. The results were used to input starting compositions for each of the layers into the rhyolite-MELTS thermodynamic simulation. MELTS then determined the approximate bulk composition of the layers once they had cooled and solidified. The mean seismic wave velocities of the polymineralic layers were then calculated using the relevant Voight-Reuss-Hill mixture rules, whilst accounting for the pressure and temperature dependence of seismic wave velocity. The predicted results were then compared with real examples of reflectivity for areas including the UK, where lower crustal layering is observed. A comparison between the impedance contrasts at compositional boundaries is presented as it confirms the extent to which modelling is able to make predictions that are

  1. Retrograde Melting and Internal Liquid Gettering in Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  2. Melt generation, crystallization, and extraction beneath segmented oceanic transform faults

    Science.gov (United States)

    Gregg, P. M.; Behn, M. D.; Lin, J.; Grove, T. L.

    2009-11-01

    We examine mantle melting, fractional crystallization, and melt extraction beneath fast slipping, segmented oceanic transform fault systems. Three-dimensional mantle flow and thermal structures are calculated using a temperature-dependent rheology that incorporates a viscoplastic approximation for brittle deformation in the lithosphere. Thermal solutions are combined with the near-fractional, polybaric melting model of Kinzler and Grove (1992a, 1992b, 1993) to determine extents of melting, the shape of the melting regime, and major element melt composition. We investigate the mantle source region of intratransform spreading centers (ITSCs) using the melt migration approach of Sparks and Parmentier (1991) for two end-member pooling models: (1) a wide pooling region that incorporates all of the melt focused to the ITSC and (2) a narrow pooling region that assumes melt will not migrate across a transform fault or fracture zone. Assuming wide melt pooling, our model predictions can explain both the systematic crustal thickness excesses observed at intermediate and fast slipping transform faults as well as the deeper and lower extents of melting observed in the vicinity of several transform systems. Applying these techniques to the Siqueiros transform on the East Pacific Rise we find that both the viscoplastic rheology and wide melt pooling are required to explain the observed variations in gravity inferred crustal thickness. Finally, we show that mantle potential temperature Tp = 1350°C and fractional crystallization at depths of 9-15.5 km fit the majority of the major element geochemical data from the Siqueiros transform fault system.

  3. Are Melt Migration Rates Through the Mantle Universally Rapid?

    Science.gov (United States)

    Reagan, M. K.; Sims, K. W.

    2001-12-01

    Significant enrichments in 226Ra over 230Th have been observed in basalts erupted in nearly all tectonic settings. These enrichments generally are greatest in lavas with low concentrations of U, Th and other incompatible elements, including those from mid-ocean ridges and "depleted" volcanic arcs. Excesses of 226Ra over 230Th in mid-ocean ridge settings are commonly attributed to smaller bulk partition coefficients for Ra with respect to Th during mantle melting, and extraction of ingrown Ra into melts slowly migrating through interconnected pore space. In contrast, 226Ra excesses in basalts from volcanic arcs have been attributed to fluid additions from subducting slabs to the sources of the basalt and rapid (102 - 103y) melt migration to the surface (e.g. Turner et al., 2001). Such rapid melt velocities imply channeled flow rather than diffuse porous flow, and suggest that basalts from other tectonic settings migrate similarly rapidly. Here, we show that the compositions of basalts from both arc and mid-ocean ridge settings indeed can be explained by melting models involving rapid transit times to the surface. Simple fluxed melting models and rapid transfer of melt to the surface explain the U-Th-Ra systematics and incompatible trace element compositions of arc basalts. The U-Th-Ra and trace element data for young MORB from the East Pacific Rise (Sims et al. 2001) and the Siqueiros transform (Lundstrom et al. 1999) are modeled using simple 2-d polybaric melting based on Braun et al. (2000) and rapid melt migration rates. Successful models mix small-degree fractional melts derived from a broad cross-sectional area of mantle at depth with high-degree melts derived from a small cross-sectional area of shallow mantle that is the aged residue of the small degree melt.

  4. Melt flow characteristics in gas-assisted laser cutting

    Indian Academy of Sciences (India)

    We present a study on laser cutting of mild steel with oxygen as an assist gas. We correlate the cut surface quality with the melt film thickness. We estimate the optimum pressure required for melt ejection under laminar flow regime. The thickness of melt film inside the kerf is estimated using mass balance and the shear force ...

  5. Experimental Modeling of Peridotite Melting with Alkali-Carbonate Fluid at P = 3.9 GPa, T=1250°C

    Science.gov (United States)

    Kostyuk, Anastasia; Gorbachev, Nikolay; Nekrasov, Alexey

    2014-05-01

    The close association of alkaline and ultramafic rocks with carbonatites, apatite and sulfide mineralization, as well as features of the melt compositions, tell us about the mantle source and the importance of alkaline-carbonate fluids in the genesis of these rocks. Experimental modeling of formation of alkali silicate, carbonate and sulfide melts was carried out in the system peridotite-alkaline-carbonate fluid (K, Na)2CO3 with additives of apatite, nickel-containing pyrrhotite, ilmenite and zircon as accessory minerals at P= 3.9 GPa and T=1250°C. Composition of coexisting melts, phase relationships, behavior of titanium, phosphorus, sulfur and zircon have been studied in this system. Liquidus association of phlogopite-clinopyroxene-zircon-X-phase (not diagnosed titanium and phosphorus-containing aluminosilicate phase) cemented by intergranular silicate glass with inclusions of carbonate and sulphide phases at partial (10%) melting of peridotite. Morphology, composition and relations of silicate glass, carbonate and sulfide globules indicate the existence of immiscible silicate, carbonate and sulfide melts at the experimental conditions. The composition of the silicate melt is phonolite, carbonate melt - significantly calcium composition with an admixture of alkali metal and silicate components. Solubility of zircon in silicate melt reached up to 0.8 wt.% of ZrO2, in coexisting carbonate melt - up to 1.5 wt.%. Absence of ilmenite and apatite in the experimental samples due to their high solubility in the coexisting phases. Concentration of TiO2 and P2O5 in silicate melt reached 2 wt. %. The concentration of TiO2 in the carbonate melt up to 1.7 wt.% and P2O5 up to 14 wt.%. The sulfur concentration in these melts does not exceed 0.2 wt.%. Concentrators of titanium and phosphorus among liquidus minerals were X-phase and phlogopite - 8 wt.% TiO2 and up to 3 wt.% P2O5 in the X-phase; up to 6 wt.% TiO2 and up to 2.5 wt.% of P2O5 in the phlogopite. The distribution

  6. The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure

    Science.gov (United States)

    Barnes, S. J.

    1986-01-01

    The Cr distributions for a synthetic silicate melt equilibrated with bronzitic orthopyroxene and chromite spinel between 1334 and 1151 C over a range of oxygen fugacities between the nickel-nickel oxide and iron-wuestite buffers are studied. The occurrence, chemical composition, and structure of the orthopyroxene-silicate melt and the spinel-silicate melt are described. It is observed that the Cr content between bronzite and the melt increases with falling temperature along a given oxygen buffer and decreases with falling oxygen fugacity at a given temperature; however, the Cr content of the melt in equilibrium with spinel decreases with falling temperature and increases with lower oxygen fugacity.

  7. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.

    Science.gov (United States)

    Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Chunyu; Zhang, Gong; Xu, Zhewu

    2014-11-01

    Recently a new therapeutic concept of patient-specific implant dentistry has been advanced based on computer-aided design/computer-aided manufacturing technology. However, a comprehensive study of the design and 3-dimensional (3D) printing of the customized implants, their mechanical properties, and their biomechanical behavior is lacking. The purpose of this study was to evaluate the mechanical and biomechanical performance of a novel custom-made dental implant fabricated by the selective laser melting technique with simulation and in vitro experimental studies. Two types of customized implants were designed by using reverse engineering: a root-analog implant and a root-analog threaded implant. The titanium implants were printed layer by layer with the selective laser melting technique. The relative density, surface roughness, tensile properties, bend strength, and dimensional accuracy of the specimens were evaluated. Nonlinear and linear finite element analysis and experimental studies were used to investigate the stress distribution, micromotion, and primary stability of the implants. Selective laser melting 3D printing technology was able to reproduce the customized implant designs and produce high density and strength and adequate dimensional accuracy. Better stress distribution and lower maximum micromotions were observed for the root-analog threaded implant model than for the root-analog implant model. In the experimental tests, the implant stability quotient and pull-out strength of the 2 types of implants indicated that better primary stability can be obtained with a root-analog threaded implant design. Selective laser melting proved to be an efficient means of printing fully dense customized implants with high strength and sufficient dimensional accuracy. Adding the threaded characteristic to the customized root-analog threaded implant design maintained the approximate geometry of the natural root and exhibited better stress distribution and

  8. Gravity and conduction driven melting in a sphere

    Science.gov (United States)

    Bahrami, P. A.; Wang, T. G.

    1987-01-01

    In the Stefan and Neumann problems fundamentally characterizing melting, unmolten portions of a solid undergoing phase changes within spherical containers are assumed to remain stationary. An approach to these issues that is related to the theories of lubrication and film condensation is presently employed in conjunction with an approximate, closed-form solution of melting within spheres. It is shown that a group of dimensionless parameters containing Prandtl, Archimides and Stefan numbers can describe the melting process. Also given are the results of fundamental heat transfer experiments performed on the melting of a phase-change medium in a spherical shell.

  9. High pressure melting curves of silver, gold and copper

    Directory of Open Access Journals (Sweden)

    Ho Khac Hieu

    2013-11-01

    Full Text Available In this work, based on the Lindemann's formula of melting and the pressure-dependent Grüneisen parameter, we have investigated the pressure effect on melting temperature of silver, gold and copper metals. The analytical expression of melting temperature as a function of volume compression has been derived. Our results are compared with available experimental data as well as with previous theoretical studies and the good and reasonable agreements are found. We also proposed the potential of this approach on predicting melting of copper at very high pressure.

  10. High pressure melting curves of silver, gold and copper

    Energy Technology Data Exchange (ETDEWEB)

    Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Research and Development Center for Science and Technology, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Ha, Nguyen Ngoc [VNU-Hanoi University of Science, 334 Nguyen Trai, Hanoi (Viet Nam)

    2013-11-15

    In this work, based on the Lindemann's formula of melting and the pressure-dependent Grüneisen parameter, we have investigated the pressure effect on melting temperature of silver, gold and copper metals. The analytical expression of melting temperature as a function of volume compression has been derived. Our results are compared with available experimental data as well as with previous theoretical studies and the good and reasonable agreements are found. We also proposed the potential of this approach on predicting melting of copper at very high pressure.

  11. Melt-quenched glasses of metal-organic frameworks

    DEFF Research Database (Denmark)

    Bennett, T.D.; Yue, Yuanzheng; Li, P.

    2016-01-01

    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...

  12. Some comments on the rheologically critical melt percentage

    Science.gov (United States)

    Takeda, Yoshi-Taka; Obata, Masaaki

    2003-05-01

    The concept of rheologically critical melt percentage (RCMP) originally proposed by Arzi [Tectonophysics 44 (1978) 173-184] for partially molten granitic rocks is re-examined. It is shown that there is no experimental support to show the presence of RCMP. The published experimental data suggest that the effective viscosity of partially molten granitic rocks is reduced rapidly and continuously with increasing melt fraction. It is also shown that the experimental data may be modeled by means of the upper bound behavior (the Voigt bound) of two-phase material by assuming a melt localization, which implies that there is no partitioning of strain between the solid and the melt.

  13. Slip-rate-dependent melt extraction at oceanic transform faults

    Science.gov (United States)

    Bai, Hailong; Montési, Laurent G. J.

    2015-02-01

    Crustal thickness differences between oceanic transform faults and associated mid-ocean ridges may be explained by melt migration and extraction processes. Slow-slipping transform faults exhibit more positive gravity anomalies than the adjacent spreading centers, indicating relative thin crust in the transform domain, whereas at intermediate-spreading and fast-spreading ridges transform faults are characterized by more negative gravity anomalies than the adjacent spreading centers, indicating thick crust in the transform domain. We present numerical models reproducing these observations and infer that melt can be extracted at fast-slipping transforms, but not at slow-slipping ones. Melt extraction is modeled as a three-step process. (1) Melt moves vertically through buoyancy-driven porous flow enhanced by subvertical dissolution channels. (2) Melt accumulates in and travels along a decompaction channel lining a low-permeability barrier at the base of the thermal boundary layer. (3) Melt is extracted to the surface when it enters a melt extraction zone. A melt extraction width of 2-4 km and a melt extraction depth of 15-20 km are needed to fit the tectonic damages associated with oceanic plate boundaries that reach into the upper mantle. Our conclusions are supported by the different degrees of magmatic activities exhibited at fast-slipping and slow-slipping transforms as reflected in geological features, geochemical signals, and seismic behaviors. We also constrain that the maximum lateral distance of crust-level dike propagation is about 50-70 km.

  14. Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts

    Science.gov (United States)

    Aubaud, Cyril; Hauri, Erik H.; Hirschmann, Marc M.

    2004-10-01

    We have measured hydrogen partition coefficients between nominally anhydrous minerals (olivine, pyroxenes) and basaltic melts in 13 hydrous melting experiments performed at upper mantle P-T conditions (1-2 GPa and 1230-1380°C). Resulting liquids have 3.1-6.4 wt.% H2O and average mineral/melt partition coefficients as follows: DHol/melt = 0.0017 +/- 0.0005 (n = 9), DHopx/melt = 0.019 +/- 0.004 (n = 8), and DHcpx/melt = 0.023 +/- 0.005 (n = 2). Mineral/mineral partition coefficients are DHol/opx = 0.11 +/- 0.01 (n = 4), DHol/cpx = 0.08 +/- 0.01 (n = 2) and DHcpx/opx = 1.4 +/- 0.3 (n = 1). These measurements confirm that water behaves similarly to Ce during mantle melting (DHperidotite/melt is ~0.009). For mantle water concentrations of 50-200 ppm, the onset of melting is 5-20 km deeper than the dry solidus, less than previous estimates.

  15. Lunar Orientale Basin Melt Lake: Depth and Differentiation

    Science.gov (United States)

    Vaughan, W. M.; Head, J. W.; Hess, P. C.; Wilson, L.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-04-01

    Impact melt emplacement and evolution in lunar multi-ring basins is poorly understood since impact melt deposits in basins are generally buried by mare basalt fill and obscured by subsequent impact cratering. The relatively young Orientale basin, which is only partially flooded with mare basalt, opens a rare window into basin-scale impact melts. Depth of the Orientale melt lake. The smooth inner plains facies that fills the ~350 km diameter central depression of the Orientale basin has been interpreted as a pure impact melt sheet. Recent Lunar Orbiter Laser Altimeter (LOLA) altimetry reveals that the ~1.75 km average vertical subsidence of the central depression concentrates almost entirely along ~25 km of marginal normal faults. This abrupt subsidence is not predicted by models that relate subsidence to thermal stresses resulting from impact-generated heat and uplift of crustal isotherms. However, since the fractured surface of the smooth facies suggests that it has undergone lateral shrinkage upon solidification and cooling, the vertical subsidence of the central depression could similarly result from solidification and cooling of the impact melt sheet. This end-member assumption constrains the depth of the Orientale melt sheet: a body of hot magma emplaced on the lunar surface should undergo ~11-14% vertical subsidence upon solidification and cooling; ~1.75 km average vertical subsidence is observed, implying the melt sheet may be up to ~12.5-16 km deep. Differentiation of the Orientale melt lake. The Orientale melt sheet (which, volumetrically, may be better described as a lake) is ~350 km in diameter and may be up to ~12.5-16 km deep, implying a volume of ~106 km3, far greater than the largest differentiated igneous intrusions known on Earth. Could the Orientale melt sheet have differentiated? Previous work has argued that impact melt sheets do not differentiate since 1) few or no differentiated impact melt sheets are known on Earth; 2) impact "melt" sheets

  16. Analysis of Water Recovery Rate from the Heat Melt Compactor

    Science.gov (United States)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    any remaining free water in the trash by evaporation. The temperature settings of the heated surfaces are usually kept above the saturation temperature of water but below the melting temperature of the plastic in the waste during this step to avoid any encapsulation of wet trash which would reduce the amount of recovered water by blocking the vapor escape. In this paper, we analyze the water recovery rate during Phase B where the trash is heated and water leaves the waste chamber as vapor, for operation of the HMC in reduced gravity. We pursue a quasi-one-dimensional model with and without sidewall heating to determine the water recovery rate and the trash drying time. The influences of the trash thermal properties, the amount of water loading, and the distribution of the water in the trash on the water recovery rates are determined.

  17. Optimization of an aluminium melting furnace using numerical simulations; Optimierung eines Aluminiumschmelzofens mittels numerischer Simulationen

    Energy Technology Data Exchange (ETDEWEB)

    Wittenschlaeger, Thomas; Degen, Dominik; Uhlig, Volker; Trimis, Dimosthenis [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Waermetechnik und Thermodynamik; Reimann, Tim; Eigenfeld, Klaus [Technische Univ. Bergakademie Freiberg (Germany). Giesserei-Inst.; Mohammadifard, Zahra; Vieregge, Tobias; Behrens, Bernd-Arno [Leibniz Univ. Hannover, Garbsen (Germany). Inst. fuer Umformtechnik und Umformmaschinen

    2013-09-15

    The effort to develop a new type of industrial furnace can be reduced by the use of numerical simulation tools. This article describes numerical studies of the flow and temperature distributions in an aluminium melding furnace. The aim of the studies is the increase of efficiency of furnace operation by shortening the time span for melding the inserted material. After validating the numerical model, the influence of the level of liquid aluminium on the temperature of the flue gas was studied. Further simulations were carried out to check the influence of a rotation of the burner on the temperature distribution on the melting bridge. (orig.)

  18. Microstructure and magnetization of Y-Ba-Cu-O prepared by melt quenching, partial melting and doping

    Science.gov (United States)

    Hojaji, Hamid; Hu, Shouxiang; Michael, Karen A.; Barkatt, Aaron; Thorpe, Arthur N.; Alterescu, Sidney

    1991-01-01

    Y-Ba-Cu-O samples prepared by means of a variety of melt-based techniques exhibit high values for their magnetic properties compared with those of samples prepared by solid state sintering. These techniques include single-stage partial melting as well as melt quenching followed by a second heat treatment stage, and they have been applied to the stoichiometric 123 composition as well as to formulations containing excess yttrium or other dopants. The structure of these melt-based samples is highly aligned, and the magnetization readings exhibit large anisotropy. At 77 K and magnetic field intensities of about 2 kOe, diamagnetic susceptibilities as high as -14 x 10(exp -3) emu/g were obtained in the cases of melt-quenched samples and remanent magnetization values as high as 10 emu/g for samples prepared by partial melting.

  19. A comparative study between melt granulation/compression and hot melt extrusion/injection molding for the manufacturing of oral sustained release thermoplastic polyurethane matrices.

    Science.gov (United States)

    Verstraete, G; Mertens, P; Grymonpré, W; Van Bockstal, P J; De Beer, T; Boone, M N; Van Hoorebeke, L; Remon, J P; Vervaet, C

    2016-11-20

    During this project 3 techniques (twin screw melt granulation/compression (TSMG), hot melt extrusion (HME) and injection molding (IM)) were evaluated for the manufacturing of thermoplastic polyurethane (TPU)-based oral sustained release matrices, containing a high dose of the highly soluble metformin hydrochloride. Whereas formulations with a drug load between 0 and 70% (w/w) could be processed via HME/(IM), the drug content of granules prepared via melt granulation could only be varied between 85 and 90% (w/w) as these formulations contained the proper concentration of binder (i.e. TPU) to obtain a good size distribution of the granules. While release from HME matrices and IM tablets could be sustained over 24h, release from the TPU-based TSMG tablets was too fast (complete release within about 6h) linked to their higher drug load and porosity. By mixing hydrophilic and hydrophobic TPUs the in vitro release kinetics of both formulations could be adjusted: a higher content of hydrophobic TPU was correlated with a slower release rate. Although mini-matrices showed faster release kinetics than IM tablets, this observation was successfully countered by changing the hydrophobic/hydrophilic TPU ratio. In vivo experiments via oral administration to dogs confirmed the versatile potential of the TPU platform as intermediate-strong and low-intermediate sustained characteristics were obtained for the IM tablets and HME mini-matrices, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Distinguishing snow and glacier ice melt in High Asia using MODIS

    Science.gov (United States)

    Rittger, Karl; Brodzik, Mary J.; Bair, Edward; Racoviteanu, Adina; Barrett, Andrew; Jodha Khalsa, Siri; Armstrong, Richard; Dozier, Jeff

    2016-04-01

    rainfall for a subset of years. Our uncalibrated spatially-distributed energy-balance model requires solar and longwave radiation, temperature, and wind data, that we downscale to 500 m from GLDAS NOAH surface simulations. In the Hunza sub-basin, the TI model produces more EGI melt than the EB model at all elevations, resulting in an annual EGI melt contributions of 19-34% and 9-20% respectively. Melt from SOI is similar from both models below 4500 m; however, above 4500 m (perhaps near the 0-degree-Celsius) the physically based EB model produces more melt. Annually, SOI contributes 8-14% and 20-25% when estimated by the EB and TI models. Melt from SOL is similar from both models in dry to average years but in wet years the EB model produces more melt at higher elevations. Annually, SOL contributes 36-44% and 34-44% of annual streamflow from the EB and TI models respectively. We compare melt volume results from both models to streamflow where available.

  1. The melt-bearing impactites of the Ritland structure, Norway-Implications for melt formation in small impact craters

    Science.gov (United States)

    Kalleson, Elin; Dypvik, Henning; Riis, Fridtjof; Nilsen, Odd

    2013-09-01

    A melt-bearing impactite unit is preserved in the 2.7 km diameter shallow marine Ritland impact structure. The main exposure of the melt-bearing unit is in an approximately 100 m long cliff about 700 m southwest of the center of the structure. The melt and clast content vary through this maximum 2 m thick unit, so that lithology ranges from impact melt rock to suevite. Stratigraphic variations with respect to the melt content, texture, mineralogy, and geochemistry have been studied in the field, and by laboratory analysis, including thin section microscopy. The base of the melt-bearing unit marks the transition from the underlying lithic basement breccia, and the unit may have been emplaced by an outward flow during the excavation stage. There is an upward development from a melt matrix-dominated lower part, that commonly shows flow structures, to an upper part characterized by more particulate matrix with patchy melt matrix domains, commonly as deformed melt slivers intermingled with small lithic clasts. Melt and lithic fragments in the upper part display a variety of shapes and compositions, some of which possibly represent fallback material from the ejecta cloud. The upper boundary of the melt-bearing impactite unit has been placed where the deposits are mainly clastic, probably representing slump and avalanche deposits from the modification stage. These deposits are therefore considered sedimentary and not impactites, despite the component of small melt fragments and shocked minerals within the lowermost part, which was probably incorporated as the debris moved down the steep crater walls.

  2. Two-Dimensional Melting under Quenched Disorder

    Science.gov (United States)

    Deutschländer, Sven; Horn, Tobias; Löwen, Hartmut; Maret, Georg; Keim, Peter

    2013-08-01

    We study the influence of quenched disorder on the two-dimensional melting behavior of superparamagnetic colloidal particles, using both video microscopy and computer simulations of repulsive parallel dipoles. Quenched disorder is introduced by pinning a fraction of the particles to an underlying substrate. We confirm the occurrence of the Kosterlitz-Thouless-Halperin-Nelson-Young scenario and observe an intermediate hexatic phase. While the fluid-hexatic transition remains largely unaffected by disorder, the hexatic-solid transition shifts to lower temperatures with increasing disorder. This results in a significantly broadened stability range of the hexatic phase. In addition, we observe spatiotemporal critical(like) fluctuations, which are consistent with the continuous character of the phase transitions. Characteristics of first-order transitions are not observed.

  3. Primordial metallic melt in the deep mantle

    Science.gov (United States)

    Zhang, Zhou; Dorfman, Susannah M.; Labidi, Jabrane; Zhang, Shuai; Li, Mingming; Manga, Michael; Stixrude, Lars; McDonough, William F.; Williams, Quentin

    2016-04-01

    Seismic tomography models reveal two large low shear velocity provinces (LLSVPs) that identify large-scale variations in temperature and composition in the deep mantle. Other characteristics include elevated density, elevated bulk sound speed, and sharp boundaries. We show that properties of LLSVPs can be explained by the presence of small quantities (0.3-3%) of suspended, dense Fe-Ni-S liquid. Trapping of metallic liquid is demonstrated to be likely during the crystallization of a dense basal magma ocean, and retention of such melts is consistent with currently available experimental constraints. Calculated seismic velocities and densities of lower mantle material containing low-abundance metallic liquids match the observed LLSVP properties. Small quantities of metallic liquids trapped at depth provide a natural explanation for primitive noble gas signatures in plume-related magmas. Our model hence provides a mechanism for generating large-scale chemical heterogeneities in Earth's early history and makes clear predictions for future tests of our hypothesis.

  4. Reduced energy consumption for melting in foundries

    Energy Technology Data Exchange (ETDEWEB)

    Skov-Hansen, S.

    2007-09-15

    By improving the gating technology in traditional gating systems it is possible to reduce the amount of metal to be re-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known for a straight tapered down runner a well base and 90 deg. bends in the runner system. In the streamlined gating systems there are no sharp changes in direction and a large effort is done to confine and control the flow of the molten metal during mould filling. Experiments in real production lines have proven that using streamlined gating systems improves yield by decreasing the poured weight compared to traditional layouts. In a layout for casting of valve housings in a vertically parted mould the weight of the gating system was reduced by 1,1kg which is a 20% weight reduction for the gating system. In a layout for horizontally parted moulds the weight of the gating system has been reduced by 3,7kg which is a weight reduction of 60% for the gating system. The experiments casting valve housings in ductile iron also proved that it is possible to lower the pouring temperature from 1400 deg. C to 1300 deg. C without the risk of cold runs. Glass plate fronted moulds have been used to study the flow of melt during mould filling. These experiments have also been used for studying the flow pattern when ceramic filters are used. The thorough study of the use of filters revealed that the metal passing through the filter is divided into a number of small jets. This proves that filters do not have the claimed positive effect on the flow of metal. The volumes necessary on either side of the filter is not filled till a backpressure is build up and results in formation of pressure shocks when backfilled. These pressure shocks result in more turbulence inside the casting than the same gating system with no filter. Not using filters can mean a reduction in poured weight of 0,6kg. To examine if the experiments using glass plate fronted moulds give

  5. Kinetics of iron oxidation in silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V.; Neuville, D.R.; Cormier, L.; Mysen, B.O.; Pinet, O.; Richet, P

    2004-07-01

    High-temperature XANES experiments at the Fe K-edge have been used to study the kinetics of iron oxidation in a supercooled melt of Fe-bearing pyroxene composition. These experiments, made just above the glass transition between 600 and 700 deg C, show that variations in relative abundances of ferric and ferrous iron can be determined in situ at such temperatures. The kinetics of iron oxidation do not vary much with temperature down to the glass transition. This suggests that rate-limiting factor in this process is not oxygen diffusion, which is coupled to relaxation of the silicate network, but diffusion of network modifying cations along with a counter flux of electrons. To give a firmer basis to redox determinations made from XANES spectroscopy, the redox state of a series of a samples was first determined from wet chemical, Moessbauer spectroscopy and electron microprobe analyses. (authors)

  6. Antibacterial Titanium Produced Using Selective Laser Melting

    Science.gov (United States)

    Macpherson, Andrew; Li, Xiaopeng; McCormick, Paul; Ren, Ling; Yang, Ke; Sercombe, Timothy B.

    2017-12-01

    Titanium and titanium alloys used in current medical and dental applications do not possess antibacterial properties, and therefore, postoperative infection remains a significant risk. Recently, the addition of silver and copper to conventional biomaterials has been shown to produce a material with good antibacterial properties. In this article, we investigate selective laser melting as a method of producing antibacterial Ti-6Al-4V containing elemental additions of Cu or Ag. The addition of Ag had no effect on the microstructure or strength, but it did result in a 300% increase in the ductility of the alloy. In contrast, the addition of Cu resulted in an increase in strength but in a decrease in ductility, along with a change in the structure of the material. The Cu-containing alloy also showed moderate antibacterial properties and was superior to the Ag-containing alloy.

  7. Low Coherence Interferometry in Selective Laser Melting

    Science.gov (United States)

    Neef, A.; Seyda, V.; Herzog, D.; Emmelmann, C.; Schönleber, M.; Kogel-Hollacher, M.

    Selective Laser Melting (SLM) is an additive layer manufacturing technology that offers several advantages compared to conven- tional methods of production such as an increased freedom of design and a toolless production suited for variable lot sizes. Despite these attractive aspects today's state of the art SLM machines lack a holistic process monitoring system that detects and records typical defects during production. A novel sensor concept based on the low coherence interferometry (LCI) was integrated into an SLM production setup. The sensor is mounted coaxially to the processing laser beam and is capable of sampling distances along the optical axis. Measurements during and between the processing of powder layers can reveal crucial topology information which is closely related to the final part quality. The overall potential of the sensor in terms of quality assurance and process control is being discussed. Furthermore fundamental experiments were performed to derive the performance of the system.

  8. Antibacterial Titanium Produced Using Selective Laser Melting

    Science.gov (United States)

    Macpherson, Andrew; Li, Xiaopeng; McCormick, Paul; Ren, Ling; Yang, Ke; Sercombe, Timothy B.

    2017-09-01

    Titanium and titanium alloys used in current medical and dental applications do not possess antibacterial properties, and therefore, postoperative infection remains a significant risk. Recently, the addition of silver and copper to conventional biomaterials has been shown to produce a material with good antibacterial properties. In this article, we investigate selective laser melting as a method of producing antibacterial Ti-6Al-4V containing elemental additions of Cu or Ag. The addition of Ag had no effect on the microstructure or strength, but it did result in a 300% increase in the ductility of the alloy. In contrast, the addition of Cu resulted in an increase in strength but in a decrease in ductility, along with a change in the structure of the material. The Cu-containing alloy also showed moderate antibacterial properties and was superior to the Ag-containing alloy.

  9. Proton NMR relaxation in hydrous melts

    Energy Technology Data Exchange (ETDEWEB)

    Braunstein, J.; Bacarella, A.L.; Benjamin, B.M.; Brown, L.L.; Girard, C.

    1976-01-01

    Pulse and continuous wave NMR measurements are reported for protons in hydrous melts of calcium nitrate at temperatures between -4 and 120/sup 0/C. Although measured in different temperature ranges, spin-lattice (T/sub 1/) and spin-spin (T/sub 2/) relaxation times appear to be nearly equal to each other and proportional to the self-diffusion coefficients of solute metal cations such as Cd/sup 2 +/. At temperatures near 50/sup 0/C, mean Arrhenius coefficients ..delta.. H/sub T/sub 1// (kcal/mol) are 7.9, 7.3, and 4.8, respectively, for melts containing 2.8, 4.0, and 8.0 moles of water per mole of calcium nitrate, compared to 4.6 kcal/mol for pure water. Temperature dependence of T/sub 1/ and T/sub 2/ in Ca(NO/sub 3/)/sub 2/-2.8 H/sub 2/O between -4 and 120/sup 0/C are non-Arrhenius and can be represented by a Fulcher-type equation with a ''zero mobility temperature'' (T/sub 0/) of 225/sup 0/K, close to the value of T/sub 0/ for solute diffusion, electrical conductance and viscosity. Resolution of the relaxation rates into correlation times for intramolecular (rotational) and intermolecular (translational) diffusional motion is discussed in terms of the Bloembergen-Purcell-Pound and more recent models for dipolar relaxation. (auth)

  10. Visualization of Atomization Gas Flow and Melt Break-up Effects in Response to Nozzle Design

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver; Rieken, Joel; Meyer, John; Byrd, David; Heidloff, Andy

    2011-04-01

    Both powder particle size control and efficient use of gas flow energy are highly prized goals for gas atomization of metal and alloy powder to minimize off-size powder inventory (or 'reverb') and excessive gas consumption. Recent progress in the design of close-coupled gas atomization nozzles and the water model simulation of melt feed tubes were coupled with previous results from several types of gas flow characterization methods, e.g., aspiration measurements and gas flow visualization, to make progress toward these goals. Size distribution analysis and high speed video recordings of gas atomization reaction synthesis (GARS) experiments on special ferritic stainless steel alloy powders with an Ar+O{sub 2} gas mixture were performed to investigate the operating mechanisms and possible advantages of several melt flow tube modifications with one specific gas atomization nozzle. In this study, close-coupled gas atomization under closed wake gas flow conditions was demonstrated to produce large yields of ultrafine (dia.<20 {mu}m) powders (up to 32%) with moderate standard deviations (1.62 to 1.99). The increased yield of fine powders is consistent with the dual atomization mechanisms of closed wake gas flow patterns in the near-field of the melt orifice. Enhanced size control by stabilized pre-filming of the melt with a slotted trumpet bell pour tube was not clearly demonstrated in the current experiments, perhaps confounded by the influence of the melt oxidation reaction that occurred simultaneously with the atomization process. For this GARS variation of close-coupled gas atomization, it may be best to utilize the straight cylindrical pour tube and closed wake operation of an atomization nozzle with higher gas mass flow to promote the maximum yields of ultrafine powders that are preferred for the oxide dispersion strengthened alloys made from these powders.

  11. Single-molecule study on polymer diffusion in a melt state: Effect of chain topology

    KAUST Repository

    Habuchi, Satoshi

    2013-08-06

    We report a new methodology for studying diffusion of individual polymer chains in a melt state, with special emphasis on the effect of chain topology. A perylene diimide fluorophore was incorporated into the linear and cyclic poly(THF)s, and real-time diffusion behavior of individual chains in a melt of linear poly(THF) was measured by means of a single-molecule fluorescence imaging technique. The combination of mean squared displacement (MSD) and cumulative distribution function (CDF) analysis demonstrated the broad distribution of diffusion coefficient of both the linear and cyclic polymer chains in the melt state. This indicates the presence of spatiotemporal heterogeneity of the polymer diffusion which occurs at much larger time and length scales than those expected from the current polymer physics theory. We further demonstrated that the cyclic chains showed marginally slower diffusion in comparison with the linear counterparts, to suggest the effective suppression of the translocation through the threading-entanglement with the linear matrix chains. This coincides with the higher activation energy for the diffusion of the cyclic chains than of the linear chains. These results suggest that the single-molecule imaging technique provides a powerful tool to analyze complicated polymer dynamics and contributes to the molecular level understanding of the chain interaction. © 2013 American Chemical Society.

  12. Polymer melt rheology and flow simulations applied to cast film extrusion die design: An industrial perspective

    Science.gov (United States)

    Catherine, Olivier

    2017-05-01

    This article is an overview of the techniques used today in the area of rheology and flow simulation, on the industrial level, for cast film extrusion die design. This industry has made significant progress over the past three decades and die and feedblock design and optimization certainly have been instrumental in the overall improvement. Dies and coextrusion feedblocks are a critical aspect of the process due to the layering and forming function, which drive the final product economics and properties. Polymer melt rheology is a key aspect to consider when optimizing the flow patterns in the extrusion equipment. Not only is rheology critical for the flow channel design when aiming at obtaining a uniform flow distribution at the die exit, but also it is playing a major role in the thermal aspect of the flow due to the strong mechanical and thermal coupling. This coupling comes, on one hand, from the occurrence of viscous dissipation in the flow and on the other hand from the significant temperature dependency of melt viscosity. Viscous dissipation is due to relatively high melt viscosities and strain rates, especially with today's processes which involve formidable extrusion speeds. The third aspect discussed in this paper is the complexity of residence time distribution in modern flow channels, which is evaluated with advanced three-dimensional flow simulation and particle tracking.

  13. Nanogranitoids in garnet clinopyroxenites of the Granulitgebirge (Bohemian Massif): evidence for metasomatism and partial melting?

    Science.gov (United States)

    Borghini, Alessia; Ferrero, Silvio; Wunder, Bernd; O'Brien, Patrick J.; Ziemann, Martin A.

    2017-04-01

    Primary nanogranitoids occur in garnet from the garnet clinopyroxenites of the Granulitgebirge, Bohemian Massif. They form clusters in the inner part of the garnet, and may occur both as polycrystalline and glassy inclusions with size from 5 to 20 µm. Because of their random distribution in garnet these inclusions are interpreted as primary inclusions, thus formed during the growth of the garnet. Garnet does not show any major element zoning. Nanogranitoids were identified in garnet clinopyroxenites from two different locations and show slightly different mineral assemblages. Kumdykolite or albite, phlogopite, osumilite, kokchetavite and a variable amount of quartz occur in both locations. However, osumilite is more abundant in one locality and kokchetavite in the other. All these phases are identified using Raman Spectroscopy. Both assemblages are consistent with the origin of these inclusions as former droplets of melt. Nanogranitoids from one locality have been re-homogenized at 1000°C and 22 kbar to a hydrous glass of granodioritic/quartz-monzonitic composition in a piston cylinder apparatus. The chosen experimental conditions correspond to the formation of the host garnet (O'Brien & Rötzler, 2003) and thus of melt entrapment. Nanogranitoid-bearing garnet clinopyroxenites occur in bodies of serpentinized peridotites, hosted in turn in felsic granulites. The garnet clinopyroxenites show granoblastic texture dominated by garnet and clinopyroxene porphyroblasts with a variable amount of interstitial plagioclase, biotite, two generations of amphiboles (brown and green) and rutile and opaque minerals as accessories. The bulk rock composition is basic to intermediate, and the garnet chemistry varies from 24% Alm, 65% Prp and 11% Grs to 38% Alm, 36% Prp and 26 % Grs between one outcrop and the other. The origin of the investigated inclusions could be due to different processes: localized melting of metasomatized mafic rocks with simultaneous production of garnet or

  14. Al20(+) does melt, albeit above the bulk melting temperature of aluminium.

    Science.gov (United States)

    Ojha, Udbhav; Steenbergen, Krista G; Gaston, Nicola

    2015-02-07

    Employing first principles parallel tempering molecular dynamics in the microcanonical ensemble, we report the presence of a clear solid-liquid-like melting transition in Al20(+) clusters, not found in experiments. The phase transition temperature obtained from the multiple histogram method is 993 K, 60 K above the melting point of aluminium. Root mean squared bond length fluctuation, the velocity auto-correlation function and the corresponding power spectrum further confirm the phase transition from a solid-like to liquid-like phase. Atoms-In-Molecules analysis shows a strong charge segregation between the internal and surface atoms, with negatively charged internal atoms and positive charge at the surface. Analysis of the calculated diffusion coefficients indicates different mobilities of the internal and surface atoms in the solid-like phase, and the differences between the environment of the internal atoms in these clusters with that of the bulk atoms suggest a physical picture for the origin of greater-than-bulk melting temperatures.

  15. Observation of melting conditions in selective laser melting of metals (SLM)

    Science.gov (United States)

    Thombansen, U.; Abels, Peter

    2016-03-01

    Process observation in 3D printing of metals currently is one of the central challenges. Many companies strive to employ this additive manufacturing process in their production chains in order to gain competitive advantages through added flexibility in product design and embedded features. The new degrees of freedom are accompanied with the challenge to manufacture every detail of the product to the predefined specifications. Products with filigree internal structures for example require a perfect build to deliver the performance that was designed into these structures. Melting conditions determine properties such as grain structure and density of the finished part before it is sent to post processing steps. Monitoring of such melting conditions is still a challenge where the use of photodiodes, pyrometry and camera systems contribute to an overall picture that might identify errors or deviations during the build process. Additional considerations must be made to decide if these sensors are applied coaxially or from a lateral perspective. Furthermore, setting parameters of focal plane array (FPA) sensors are discussed and events that are seen in the machine vision image are compared against the pyrometry data. The resume of the experiments suggests the application of multiple sensors to the selective laser melting process (SLM) as they jointly contribute to an identification of events. These events need to be understood in order to establish cause effect relationships in the future.

  16. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, Arya; Hendrix, Justin [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Dong, Zhizhong [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Taghon, Meredith [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Tse, Stephen [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Lynch, Jennifer, E-mail: jklynch@rci.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States)

    2017-02-15

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  17. Short-Time Elasticity of Polymer Melts: Tobolsky Conjecture and Heterogeneous Local Stiffness

    CERN Document Server

    Bernini, S

    2016-01-01

    An extended Molecular-Dynamics study of the short-time "glassy" elasticity exhibited by a polymer melt of linear fully-flexible chains above the glass transition is presented. The focus is on the infinite-frequency shear modulus $G_\\infty$ manifested in the picosecond time scale and the relaxed plateau $G_p$ reached at later times and terminated by the structural relaxation. The local stiffness of the interactions with the first neighbours of each monomer exhibits marked distribution with average value given by $G_\\infty$. In particular, the neighbourhood of the end monomers of each chain are softer than the inner monomers, so that $G_\\infty$ increases with the chain length. $G_p$ is not affected by the chain length and is largely set by the non-bonding interactions, thus confirming for polymer melts the conjecture formulated by Tobolsky for glassy polymers.

  18. Investigation on Porosity and Microhardness of 316L Stainless Steel Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Shahir Mohd Yusuf

    2017-02-01

    Full Text Available This study investigates the porosity and microhardness of 316L stainless steel samples fabricated by selective laser melting (SLM. The porosity content was measured using the Archimedes method and the advanced X-ray computed tomography (XCT scan. High densification level (≥99% with a low average porosity content (~0.82% were obtained from the Archimedes method. The highest porosity content in the XCT-scanned sample was ~0.61. However, the pores in the SLM samples for both cases (optical microscopy and XCT were not uniformly distributed. The higher average microhardness values in the SLM samples compared to the wrought manufactured counterpart are attributed to the fine microstructures from the localised melting and rapid solidification rate of the SLM process.

  19. Dufour and Soret Effects on Melting from a Vertical Plate Embedded in Saturated Porous Media

    Directory of Open Access Journals (Sweden)

    Basant K. Jha

    2013-01-01

    Full Text Available Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer in mixed convection boundary layer flow with aiding and opposing external flows from a vertical plate embedded in a liquid saturated porous medium with melting are investigated. The resulting system of nonlinear ordinary differential equations is solved numerically using Runge Kutta-Fehlberg with shooting techniques. Numerical results are obtained for the velocity, temperature, and concentration distributions, as well as the Nusselt number and Sherwood number for several values of the parameters, namely, the buoyancy parameter, melting parameter, Dufour effect, Soret effect, and Lewis number. The obtained results are presented graphically and in tabular form and the physical aspects of the problem are discussed.

  20. A Novel Algorithm to Scheduling Optimization of Melting-Casting Process in Copper Alloy Strip Production

    Directory of Open Access Journals (Sweden)

    Xiaohui Yan

    2015-01-01

    Full Text Available Melting-casting is the first process in copper alloy strip production. The schedule scheme on this process affects the subsequent processes greatly. In this paper, we build the multiobjective model of melting-casting scheduling problem, which considers minimizing the makespan and total weighted earliness and tardiness penalties comprehensively. A novel algorithm, which we called Multiobjective Artificial Bee Colony/Decomposition (MOABC/D algorithm, is proposed to solve this model. The algorithm combines the framework of Multiobjective Evolutionary Algorithm/Decomposition (MOEA/D and the neighborhood search strategy of Artificial Bee Colony algorithm. The results on instances show that the proposed MOABC/D algorithm outperforms the other two comparison algorithms both on the distributions of the Pareto front and the priority in the optimal selection results.

  1. Preparation in high-shear mixer of sustained-release pellets by melt pelletisation.

    Science.gov (United States)

    Voinovich, D; Moneghini, M; Perissutti, B; Filipovic-Grcic, J; Grabnar, I

    2000-08-10

    The preparation of sustained-release pellets by melt pelletisation was investigated in a 10-l high shear mixer and ternary mixtures containing stearic acid as a melting binder, anhydrous lactose as a filler and theophylline as a model drug. A translated Doehlert matrix was applied for the optimisation of process variables and quality control of pellets characteristics. After determination of size distribution, the pellets were characterised with scanning electron microscopy, X-ray photoelectron spectroscopy and porosimetric analysis. Finally, the in vitro release from every single size fraction was evaluated and the release mechanism was analysed. Since the drug release rate decreased when enhancing the pellet size fraction, the 2000-microm fraction, exhibiting a substantially zero-order release, was selected for further in vivo biovailability studies. These data demonstrated that pellets based on the combination of stearic acid and lactose can be used to formulate sustained release pellets for theophylline.

  2. Joint electroreduction of lanthanum, gadolinium and boron in halide melts

    Directory of Open Access Journals (Sweden)

    Khushkhov KH.B.

    2003-01-01

    Full Text Available The joint electroreduction of La, Gd and B from chloride-fluoride melts has been studied by cyclic voltametry. Based on the analysis of voltamograms the possibility of electrosynthesis of lanthanum-gadolinium borides from chloride-fluoride melts has been shown.

  3. Deciphering the flow structure of Czochralski melt using Partially ...

    Indian Academy of Sciences (India)

    Sudeep Verma

    2018-02-05

    Feb 5, 2018 ... Abstract. Czochralski melt flow is an outcome of complex interactions of centrifugal, buoyancy, coriolis and surface tension forces, which act at different length and time scales. As a consequence, the characteristic flow structures that develop in the melt are delineated in terms of recirculating flow cells typical ...

  4. Partial melting of metavolcanics in amphibolite facies regional ...

    Indian Academy of Sciences (India)

    Metavolcanic rocks containing low-Ca amphiboles (gedrite, cummingtonite) and biotite can undergo substantial dehydration-melting. This is likely to be most prominent in Barrovian Facies Series (kyanite-sillimanite) and occurs at the same time as widespread metapelite dehydration- melting. In lower pressure facies series, ...

  5. Levitation-melting technique for metals and alloys

    Science.gov (United States)

    Downey, J. W.

    1969-01-01

    Experimentation resulted in an improved levitation-melting technique for metals and alloys which quickly produces a completly homogeneous melt. Also developed were two levitation coils that permit a wide variety of metals to be levitated in the molten state and a helium quenching method which minimizes contamination and segregation.

  6. Realization of Copper Melting Point for Thermocouple Calibrations

    Directory of Open Access Journals (Sweden)

    Y. A. ABDELAZIZ

    2011-08-01

    Full Text Available Although the temperature stability and uncertainty of the freezing plateau is better than that of the melting plateau in most of the thermometry fixed points, but realization of melting plateaus are easier than that of freezing plateaus for metal fixed points. It will be convenient if the melting points can be used instead of the freezing points in calibration of standard noble metal thermocouples because of easier realization and longer plateau duration of melting plateaus. In this work a comparison between the melting and freezing points of copper (Cu was carried out using standard noble metal thermocouples. Platinum - platinum 10 % rhodium (type S, platinum – 30 % rhodium / platinum 6 % rhodium (type B and platinum - palladium (Pt/Pd thermocouples are used in this study. Uncertainty budget analysis of the melting points and freezing points is presented. The experimental results show that it is possible to replace the freezing point with the melting point of copper cell in the calibration of standard noble metal thermocouples in secondary-level laboratories if the optimal methods of realization of melting points are used.

  7. Use of polydispersity index as control parameter to study melting ...

    Indian Academy of Sciences (India)

    melting/freezing of Lennard-Jones system: Comparison among predictions of bifurcation theory with Lindemann .... a better understanding of the effects of polydispersity on the freezing-melting transition. In essence, we .... We calculate density from the corresponding volume fraction using the relation ρ = 6 /π to plot density ...

  8. Incorporation of Certain Hydrophobic Excipients in the Core of Melt ...

    African Journals Online (AJOL)

    Purpose: A process of melt granulation whereby the drug powder is mixed with a melted wax has been used to modify the dissolution rates of drug particles. The present study investigated how the incorporation of hydrophobic materials (talc or magnesium stearate) in the core of such granules may further retard drug ...

  9. Development of synthetic nuclear melt glass for forensic analysis.

    Science.gov (United States)

    Molgaard, Joshua J; Auxier, John D; Giminaro, Andrew V; Oldham, C J; Cook, Matthew T; Young, Stephen A; Hall, Howard L

    A method for producing synthetic debris similar to the melt glass produced by nuclear surface testing is demonstrated. Melt glass from the first nuclear weapon test (commonly referred to as trinitite) is used as the benchmark for this study. These surrogates can be used to simulate a variety of scenarios and will serve as a tool for developing and validating forensic analysis methods.

  10. Effect of stirring on striae in glass melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng

    2012-01-01

    Chemical striae have often negative effect on the glass properties, and hence, elimination of striae has been a key issue in glass science and technology. To produce highly homogeneous glasses, it is necessary to stir melts during the melting process. To explore the physical origin of the stria e...

  11. Modified enthalpy method for the simulation of melting and ...

    Indian Academy of Sciences (India)

    face obtained is compared satisfactorily with the experimental results available in literature. Keywords. Melting; enthalpy method; wavy interface; mushy zone constant. 1. Introduction. The study of melting and solidification offers insights in the design of casting, welding, latent thermal energy storage systems, etc., and in the ...

  12. Carbon-Carbon High Melt Coating for Nozzle Extensions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Melt Coating system is applied to a carbon-carbon structure and embeds HfC, ZrB2 in the outer layers. ACC High Melt builds on the time tested base material...

  13. The Melting Pot: America Is Lost Without It

    Science.gov (United States)

    2012-03-23

    achieved the very opposite effect in that they have kept Latino immigrants ’ children in Spanish-language instruction and denied them the knowledge of...SUBJECT TERMS Melting Pot, Assimilation, Immigration , Multiculturism 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...Assimilation, Immigration , Multiculturism CLASSIFICATION: Unclassified America has long been known as a great melting pot in which people of

  14. Size-dependent melting of nanoparticles: Hundred years of ...

    Indian Academy of Sciences (India)

    Thermodynamic model first published in 1909, is being used extensively to understand the size-dependent melting of nanoparticles. Pawlow deduced an expression for the size-dependent melting temperature of small particles based on the thermodynamic model which was then modified and applied to different ...

  15. Vocational Education: Effective a Bridge to Economic Melt Down ...

    African Journals Online (AJOL)

    Economic melt down is not that monies of every country is melting away, but that fewer monies are available for spending and this is due to high rate of depth incurred through lending caused by the federal reserve whose loyalty is believed to firstly lies with bankers, most especially, Wall Street and now is reflected in every ...

  16. Coatings with laser melt injection of ceramic particles

    NARCIS (Netherlands)

    de Hosson, J.T.M.; Ocelik, V.; de Oliveira, U.; Seal, S; Dahotre, NB; Moore, JJ; Suryanarayana, C; Agarwal, A

    2003-01-01

    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6Al4V alloys were studied experimentally and theoretically by FEM calculations. The laser employed is a high power Nd:YAG The formation of a relatively thick aluminium oxide layer on

  17. Melting behaviour of lead and bismuth nano-particles in ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Nanomaterials are playing an increasingly important role in mod- ern technologies. Interfaces are crucial in nanotechnology. In this study, we have examined the stability of nanoparticles. Major emphasis is on understanding the effect of interfaces on melting. Melting behaviour of nanocrystalline interfaces,.

  18. Size-dependent melting of nanoparticles: Hundred years of ...

    Indian Academy of Sciences (India)

    Nanoparticles; melting; thermodynamic model. PACS Nos 61.46.-w; 36.40.Ei; 82.60.Qr. 1. Introduction. It has been well established both experimentally and theoretically that the melting temperature (Tcm) of nanoparticles depends on the particle size [1–85]. However,. Pawlow in 1909 developed a thermodynamic model [1], ...

  19. Single scan vector prediction in selective laser melting

    NARCIS (Netherlands)

    Wits, Wessel Willems; Bruins, R.; Terpstra, L.; Huls, R.A.; Geijselaers, Hubertus J.M.

    2015-01-01

    In selective laser melting (SLM) products are built by melting layers of metal powder successively. Optimal process parameters are usually obtained by scanning single vectors and subsequently determining which settings lead to a good compromise between product density and build speed. This paper

  20. Deciphering the flow structure of Czochralski melt using Partially ...

    Indian Academy of Sciences (India)

    Czochralski melt flow is an outcome of complex interactions of centrifugal, buoyancy, coriolis and surface tension forces, which act at different length and time scales. As a consequence, the characteristic flow structures that develop in the melt are delineated in terms of recirculating flow cells typical of rotating ...

  1. Experimental determination of CO2 content at graphite saturation along a natural basalt-peridotite melt join: Implications for the fate of carbon in terrestrial magma oceans

    Science.gov (United States)

    Duncan, Megan S.; Dasgupta, Rajdeep; Tsuno, Kyusei

    2017-05-01

    Knowledge of the carbon carrying capacity of peridotite melt at reducing conditions is critical to constrain the mantle budget and planet-scale distribution of carbon set at early stage of differentiation. Yet, neither measurements of CO2 content in reduced peridotite melt nor a reliable model to extrapolate the known solubility of CO2 in basaltic (mafic) melt to solubility in peridotitic (ultramafic) melt exist. There are several reasons for this gap; one reason is due to the unknown relative contributions of individual network modifying cations, such as Ca2+ versus Mg2+, on carbonate dissolution particularly at reducing conditions. Here we conducted high pressure, temperature experiments to estimate the CO2 contents in silicate melts at graphite saturation over a compositional range from natural basalts toward peridotite at a fixed pressure (P) of 1.0 GPa, temperature (T) of 1600 °C, and oxygen fugacity (log ⁡ fO2 ∼ IW + 1.6). We also conducted experiments to determine the relative effects of variable Ca and Mg contents in mafic compositions on the dissolution of carbonate. Carbon in quenched glasses was measured and characterized using Fourier transform infrared spectroscopy (FTIR) and Raman Spectroscopy and was found to be dissolved as carbonate (CO32-). The FTIR spectra showed CO32- doublets that shifted systematically with the MgO and CaO content of silicate melts. Using our data and previous work we constructed a new composition-based model to determine the CO2 content of ultramafic (peridotitic) melt representative of an early Earth, magma ocean composition at graphite saturation. Our data and model suggest that the dissolved CO2 content of reduced, peridotite melt is significantly higher than that of basaltic melt at shallow magma ocean conditions; however, the difference in C content between the basaltic and peridotitic melts may diminish with depth as the more depolymerized peridotite melt is more compressible. Using our model of CO2 content at

  2. Structural controls and mechanisms of diffusion in natural silicate melts

    Science.gov (United States)

    Henderson, P.; Nolan, J.; Cunningham, G. C.; Lowry, R. K.

    1985-04-01

    The diffusion properties of Na, Cs, Ba, Fe and Eu ions have been determined experimentally for a pantellerite melt and of these ions plus Li, Mn and Co in pitchstone melt, using the radiotracer residual-activity method, and narrow platinum capillaries, over the temperature range 1,200 1,400° C. In addition, Eu diffusion in a basaltic and an andesitic melt was determined. Diffusion of all cations follows an Arrhenius relationship, activation energy values being high for diffusion in the pantellerite melt (e.g. Eu: 100 kcal mol-1) except in the case of Na (24.3 kcal mol-1). Activation energies of diffusion in the pitchstone melt are similar to values recorded earlier for andesitic and basaltic melts. The new data are used, along with previously published data for diffusion in other composition melts, to examine the compositional and structural controls on diffusion. The range of diffusivities shows a marked change with melt composition; over two orders of magnitude for a basaltic melt, and nearly four orders for a pantellerite melt (both at 1,300° C). Diffusivity of all cations (except Li and Na) correlates positively with the proportion of network modifying cations. In the case of Li and Na the correlation is negative but the diffusivity of these ions correlates positively with the proportion of Na or of Na + K ions in the bulk melt. Diffusion behaviour in the pantellerite melt departs from the relationships shown by the data for other melt compositions, which could be partly explained by trivalent ions (such as Fe) occupying network forming positions. The diffusivity of alkali metal ions is strongly dependent on ionic radius, but this is not the case with the divalent and trivalent ions; diffusivity of these ions remains relatively constant with change in radius but decreases with increase in ionic charge. A compensation diagram shows four distinct but parallel trends for the majority of the cations in four melt types but the data for Li and Na plot on a separate

  3. Cupolas minimize the energy required to melt ferrous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Draper, A B

    1979-05-01

    Historically the cupola has been the most effective furnace for melting cast irons. Although its supremacy was challenged by electric melting furnaces in the 1960's, persisting energy scarcity and high cost have encouraged a resurgence of interest in cupola technology. Using the optimum design features of modern cupolas and the best melting practices, they can achieve melting efficiencies of 45% or more based on the energy value of the original coal. In contrast, electric melting only uses 21% of the energy in coal. Despite these facts, many foundrymen fear that there will be problems because of poor metallurgical control if they use cupolas. Yet experience has proven otherwise. In terms of energy conservation and economy it is better to use large cupolas as scrap melters in the steel industry. Yet there is still a deep rooted prejudice against the cupola plus basic oxygen furnace route to steel making.

  4. Investigation of melt process for preparation of alumina nanocomposites

    Science.gov (United States)

    Kim, Dongsik

    Polymer nanocomposites offer potential for a wide variety of applications due to the large improvements in properties at low filler loadings. These new materials can potentially be used for unlimited commercial applications and have received considerable attention in recent years. Developments in this field have been primarily carried out with nanoclays. Although structure-property relationships have been investigated thoroughly, commercialization is inhibited by difficulties related to obtaining homogeneous materials via standard mixing processes. Consequently, understanding of the proper mixing process for these particles, as well as the development of characterization methods to assure the quality of mixing is critical. Due to the small size of the particles, it is difficult to measure the degree of mixing in terms of both dispersion and distribution. The high magnifications required to observe dispersion of small particles limits the viewing window, such that observation of distribution is challenging. Quantification approaches for the degree of mixing are required for properly assessing the relationship between the degree of mixing and properties. The objectives of this research are to select the proper direct method to measure the degree of mixing quantitatively for nanocomposites, to evaluate the effects of melt processing parameters on the mixing and properties, and to explain and predict theoretically the characteristics of melt compounding process for polymer nanocomposites. In this work, part I is a general introduction on nanocomposites. This part summarizes the prior art for preparation and properties of nanocomposites, primarily for clays. In addition recent work on melt processing is included. Part II of this dissertation describes a characterization method for the degree of mixing in nanocomposites and demonstrates the validity of the method. In order to avoid complexities from orientation effects of the filler, spherical nanoalumina was used in

  5. Composite material based on fluoroplast and low melting oxyfluoride glass

    Science.gov (United States)

    Ignatieva, L. N.; Savchenko, N. N.; Lalayan, V. M.; Zverev, G. A.; Goncharuk, V. K.; Ustinov, A. Yu.; Shaulov, A. Yu.; Berlin, A. A.; Bouznik, V. M.

    2016-05-01

    The present work summarizes the results of studies of the samples fabricated through extrusion blending of mixtures composed of the perfluorocarbon polymer (polyvinylidene fluoride, PVDF), which presently undergoes intensive studies, and the inorganic glass (BF-glass) of the composition 3B2O3-97(40SnF2-30SnO-30P2O5). It is revealed as a result of application of the suggested technique the composite material whose structure depends on the component ratio in the mixture (from individual areas formed by each component to homogeneously distributed composite particles) has been fabricated. The peculiarities of formation of composites were studied on the basis of the results of studying their morphology, molecular structure and phase composition. It was revealed the preservation of the polymer molecular structure and the absence of interaction with the glass in the fabricated samples. We found that in the process of sample fabrication there occur melting of the mixture, mixing of particles and changing of the phase compositions. The polymer partially and the glass almost completely crystallize in the process of composite fabrication. Glass crystals fill polymer cavities forming agglomerates. Along with the increase of the amount of inorganic component crystals, the polymer monolithic nature is disrupted and an inversion occurs at a certain component ratio: polymer particles are located between crystals of the inorganic component, mixing with them and covering them. The glass crystallization is facilitated through pre-crushing in extruder mill.

  6. submitter Comparison of microstructure, second phases and texture formation during melt processing of Bi-2212 mono- and multifilament wires

    CERN Document Server

    Kadar, J; Rikel, MO; Di Michiel, M; Huang, Y

    2016-01-01

    Based on simultaneous in situ high energy synchrotron micro-tomography and x-ray diffraction (XRD) measurements we compare the microstructural changes and the formation of second phases and texture during the processing of Bi-2212 round wires with 15 μm filament diameter (multifilament) and 650 μm filament diameter (monofilament) fabricated using identical Bi-2212 precursor. The monofilament tomograms show in unprecedented detail how the distributed porosity agglomerates well before Bi-2212 melting decomposition to form lenticular voids that completely interrupt the filament connectivity along the wire axis. When the Bi-2212 phase completely melts connectivity in the axial wire direction is established via the changes in the void morphology from the lenticular voids to bubbles that remain when Bi-2212 crystallises out of the melt. By measuring the attenuation of the monochromatic x-ray beam, the associated Bi-2212 mass density changes have been monitored during the entire heat cycle. The XRD results reveal ...

  7. Improving accuracy of overhanging structures for selective laser melting through reliability characterization of single track formation on thick powder beds

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2016-01-01

    establishing reliability of overhanging structure production by selective laser melting has been adopted. A calibrated, fast, multiscale thermal model is used to simulate the single track formation on a thick powder bed. Single tracks are manufactured on a thick powder bed using same processing parameters......, and subjected to uncertainty and reliability analysis. Cumulative probability distribution functions obtained for melt track widths and depths are found to be coherent with observed experimental values. The technique is subsequently extended for reliability characterization of single layers produced on a thick...... modelling has been adopted towards improving the predictability of the outputs from the selective laser melting process. Establishing the reliability of the process, however, is still a challenge, especially in components having overhanging structures.In this paper, a systematic approach towards...

  8. Melting beneath Greenland outlet glaciers and ice streams

    Science.gov (United States)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna

    2015-04-01

    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  9. Mechanical and microstructural effect of partial melting of continental crust

    Science.gov (United States)

    Fauconnier, Julien; Rosenberg, Claudio; Labrousse, Loïc; Stünitz, Holger; Jolivet, Laurent

    2017-04-01

    We present a set of experiments done in order to investigate the effect of melt on the strength and the microstructures of crustal rocks. Experiments were conducted in a Griggs-type apparatus with a mixture of 90 vol. % quartz and 10 vol. % biotite at 1 GPa confining pressure and a temperature between 700 and 900 °C. In some experiments, 5 vol. % or 10 vol. % of haplogranitic glass (HPG) powder was added to generate melt in the sample. Above the glass temperature transition (GTT), which occurs at 780 °C, HPG viscosity is 4 orders of magnitude lower than that of quartz and thus the sample strength and microstructures should be similar to those of partially molten sample. We performed a comparative study, in which samples were deformed without melt and without HPG, with HPG, but below the GTT, with HPG above the GTT, and finally with melt generated from biotite breakdown reactions. Samples with HPG above GTT and melt from biotite breakdown have the same microstructures and strength. Our data show that melt has two major consequences on the deformation of quartz-biotite aggregates : (1) while deformation is localized through a network of shear bands in experiments without melt and quartz is deformed by dislocation creep, there is no localization of the deformation with HPG or melt and the sample deformed by melt enhanced grain boundary sliding (2) melt reduces the strength of the sample but this weakening is lower than previously suggested if the long term resistance of the samples ( γ > 2.5 ) instead of peak resistance is taken into account.

  10. Polymer-organoclay nanocomposites by melt processing

    Science.gov (United States)

    Cui, Lili

    2009-12-01

    Polymer-layered silicate nanocomposites based on a variety of polymer matrices and several organoclays were prepared by melt processing. A detailed characterization of the thermal degradation of several commercial and experimental organoclays often used to form polymer nanocomposites was reported. The surfactant type, loading, and purification level of organoclay significantly affect their thermal stability; however, broadly speaking, the results suggest that these differences in thermal stability do not appear to have much effect on the morphology and properties of the nanocomposites formed from them. It seems that the thermal stability of organoclays is not the key factor in organoclay exfoliation in melt processed polymer nanocomposites, since the exfoliation/dispersion process may have been completed on a time scale before the degradation of surfactant progresses to a detrimental level. Polymer nanocomposites have been made from a variety of polymers; however, few matrices have demonstrated the ability to readily exfoliate the organoclay as well as nylon 6, especially for highly hydrophobic materials like polyolefins. Hence, a significant part of this research work was devoted to explore various routes to improve polyolefin-organoclay interactions, and thus, organoclay exfoliation in these systems. Amine grafted polypropylenes and a conventionally used maleic anhydride grafted polypropylene were used as compatibilizers for polypropylene based nanocomposites to improve the organoclay exfoliation. A series of ethylene vinyl acetate copolymers, the polarity of which can be adjusted by varying their vinyl acetate contents, based nanocomposites were prepared as the model system to address the relationship between the polarity of the polymers and their preferences over various organoclay structures. Attempts were made to explore the effect of degree of neutralization of acid groups in ionomers on the morphology and properties of nanocomposites, and it seems that the

  11. Melt volume flow rate and melt flow rate of kenaf fibre reinforced Floreon/magnesium hydroxide biocomposites.

    Science.gov (United States)

    Lee, C H; Sapuan, S M; Lee, J H; Hassan, M R

    2016-01-01

    A study of the melt volume flow rate (MVR) and the melt flow rate (MFR) of kenaf fibre (KF) reinforced Floreon (FLO) and magnesium hydroxide (MH) biocomposites under different temperatures (160-180 °C) and weight loadings (2.16, 5, 10 kg) is presented in this paper. FLO has the lowest values of MFR and MVR. The increment of the melt flow properties (MVR and MFR) has been found for KF or MH insertion due to the hydrolytic degradation of the polylactic acid in FLO. Deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the possible causes for the higher melt flow properties. Increasing the KF loadings caused the higher melt flow properties while the higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence lower melt flow properties were recorded. However, the complicated melt flow behaviour of the KF reinforced FLO/MH biocomposites was found in this study. The high probability of KF-KF and KF-MH collisions was expected and there were more collisions for higher fibre and filler loading causing lower melt flow properties.

  12. Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

    Directory of Open Access Journals (Sweden)

    O. Passalacqua

    2017-09-01

    Full Text Available Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF, which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice–bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km  ×  130 km area, with a N–S gradient and with values ranging from 48 to 60 mW m−2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.

  13. Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

    Science.gov (United States)

    Passalacqua, Olivier; Ritz, Catherine; Parrenin, Frédéric; Urbini, Stefano; Frezzotti, Massimo

    2017-09-01

    Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF), which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice-bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km × 130 km area, with a N-S gradient and with values ranging from 48 to 60 mW m-2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF.

  14. Chemical zonation in olivine-hosted melt inclusions

    Science.gov (United States)

    Newcombe, M. E.; Fabbrizio, A.; Zhang, Youxue; Ma, C.; Le Voyer, M.; Guan, Y.; Eiler, J. M.; Saal, A. E.; Stolper, E. M.

    2014-07-01

    Significant zonation in major, minor, trace, and volatile elements has been documented in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (e.g., MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (e.g., Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions, concurrent with diffusive propagation of the boundary layer toward the inclusion center. Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease toward the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects. A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150-13,000 °C h-1 from the liquidus down to ~1,000 °C, consistent with previously determined cooling rates for

  15. Why Permafrost Is Thawing, Not Melting

    Science.gov (United States)

    Grosse, Guido; Romanovsky, Vladimir; Nelson, Frederick E.; Brown, Jerry; Lewkowicz, Antoni G.

    2010-03-01

    As global climate change is becoming an increasingly important political and social issue, it is essential for the cryospheric and global change research communities to speak with a single voice when using basic terminology to communicate research results and describe underlying physical processes. Experienced science communicators have highlighted the importance of using the correct terms to communicate research results to the media and general public [e.g., Akasofu, 2008; Hassol, 2008]. The consequences of scientists using improper terminology are at best oversimplification, but they more likely involve misunderstandings of the facts by the public. A glaring example of scientifically incorrect terminology appearing frequently in scientific and public communication relates to reports on the degradation of permafrost. Numerous research papers have appeared in recent years, broadly echoed in the news media, describing the “melting of permafrost,” its effects in the Arctic, and its feedbacks on climate through the carbon cycle. Although permafrost researchers have attempted to distinguish between the appropriate term “permafrost thawing” and the erroneous “permafrost melting” [e.g., van Everdingen, 2005; French, 2002], the latter is still used widely. A Web-based search using the phrase “permafrost melting” reveals hundreds of occurrences, many from highly regarded news and scientific organizations, including Reuters, New Scientist, ABC, The Guardian, Discovery News, Smithsonian magazine, the National Science Foundation, and others.

  16. Featured Image: Experimental Simulation of Melting Meteoroids

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    Ever wonder what experimental astronomy looks like? Some days, it looks like this piece of rock in a wind tunnel (click for a betterlook!). In this photo, a piece of agrillite (a terrestrial rock) is exposed to conditions in a plasma wind tunnel as a team of scientists led by Stefan Loehle (Stuttgart University) simulate what happens to a meteoroid as it hurtles through Earths atmosphere. With these experiments, the scientists hope to better understand meteoroid ablation the process by which meteoroids are heated, melt, and evaporateas they pass through our atmosphere so that we can learn more from the meteorite fragments that make it to the ground. In the scientists experiment, the rock samples were exposed to plasma flow until they disintegrated, and this process was simultaneously studied via photography, video, high-speed imaging, thermography, and Echelle emission spectroscopy. To find out what the team learned from these experiments, you can check out the original article below.CitationStefan Loehle et al 2017 ApJ 837 112. doi:10.3847/1538-4357/aa5cb5

  17. Melt extrusion with poorly soluble drugs.

    Science.gov (United States)

    Shah, Sejal; Maddineni, Sindhuri; Lu, Jiannan; Repka, Michael A

    2013-08-30

    Melt extrusion (ME) over recent years has found widespread application as a viable drug delivery option in the drug development process. ME applications include taste masking, solid-state stability enhancement, sustained drug release and solubility enhancement. While ME can result in amorphous or crystalline solid dispersions depending upon several factors, solubility enhancement applications are centered around generating amorphous dispersions, primarily because of the free energy benefits they offer. In line with the purview of the current issue, this review assesses the utility of ME as a means of enhancing solubility of poorly soluble drugs/chemicals. The review describes major processing aspects of ME technology, definition and understanding of the amorphous state, manufacturability, analytical characterization and biopharmaceutical performance testing to better understand the strength and weakness of this formulation strategy for poorly soluble drugs. In addition, this paper highlights the potential advantages of employing a fusion of techniques, including pharmaceutical co-crystals and spray drying/solvent evaporation, facilitating the design of formulations of API exhibiting specific physico-chemical characteristics. Finally, the review presents some successful case studies of commercialized ME based products. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Transition in the fractal geometry of Arctic melt ponds

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2012-10-01

    Full Text Available During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice–albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate projections. By analyzing area–perimeter data from hundreds of thousands of melt ponds, we find here an unexpected separation of scales, where pond fractal dimension D transitions from 1 to 2 around a critical length scale of 100 m2 in area. Pond complexity increases rapidly through the transition as smaller ponds coalesce to form large connected regions, and reaches a maximum for ponds larger than 1000 m2, whose boundaries resemble space-filling curves, with D ≈ 2. These universal features of Arctic melt pond evolution are similar to phase transitions in statistical physics. The results impact sea ice albedo, the transmitted radiation fields under melting sea ice, the heat balance of sea ice and the upper ocean, and biological productivity such as under ice phytoplankton blooms.

  19. Seismic Evidence for Possible Slab Melting from Strong Scattering Waves

    Directory of Open Access Journals (Sweden)

    Cheng-Horng Lin

    2011-01-01

    Full Text Available Slab melting in young and hot subduction zones has been studied using geochemical observations and thermal modelling, but there are few data from seismic studies to confirm slab melting. Also the detailed geometry in the deep part of the melting slab is often ambiguous in that the intraslab earthquakes within the Wadati-Benioff zone are only limited to shallower depths. To improve our understanding of both the seismic features and geometry found in a young and hot subducted slab, I analyzed anomalous moonquake-like seismograms that were generated by an intermediate-depth earthquake recorded in central Japan. For this study, possible reflected (or scattered sources were examined using detailed analyses of particle motions and a grid search for travel-time differences between the direct and later P-waves. The results show that using strong seismic scattering, slab melting is likely occurring in the deeper, flexing part of the subducted Philippine Sea plate. Because the subducted Philippine Sea plate in central Japan is young and therefore hot, partial melting might have taken place to produce abundant melting spots in the subducted slab. Melting spots, identified as ¡§bright spots,¡¨ could efficiently reflect or scatter seismic energy and generate many later phases with large amplitudes.

  20. Primary carbonatite melt from deeply subducted oceanic crust

    Energy Technology Data Exchange (ETDEWEB)

    Walter, M.J.; Bulanova, G.P.; Armstrong, L.S.; Keshav, S.; Blundy, J.D.; Gudfinnesson, G.; Lord, O.T.; Lennie, A.R.; Clark, S.M.; Smith, C.B.; Gobbo, L.

    2008-07-01

    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here they provide exper8imental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.

  1. Melting temperature of uranium - plutonium mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Tetsuya; Hirosawa, Takashi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-08-01

    Fuel melting temperature is one of the major thermodynamical properties that is used for determining the design criteria on fuel temperature during irradiation in FBR. In general, it is necessary to evaluate the correlation of fuel melting temperature to confirm that the fuel temperature must be kept below the fuel melting temperature during irradiation at any conditions. The correlations of the melting temperature of uranium-plutonium mixed oxide (MOX) fuel, typical FBR fuel, used to be estimated and formulized based on the measured values reported in 1960`s and has been applied to the design. At present, some experiments have been accumulated with improved experimental techniques. And it reveals that the recent measured melting temperatures does not agree well to the data reported in 1960`s and that some of the 1960`s data should be modified by taking into account of the recent measurements. In this study, the experience of melting temperature up to now are summarized and evaluated in order to make the fuel pin design more reliable. The effect of plutonium content, oxygen to metal ratio and burnup on MOX fuel melting was examined based on the recent data under the UO{sub 2} - PuO{sub 2} - PuO{sub 1.61} ideal solution model, and then formulized. (J.P.N.)

  2. Experiments on melt droplets falling into a water pool

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1998-01-01

    This paper presents experimental data and analysis related to melt droplets falling into a water pool. A binary CaO-B{sub 2}O{sub 3} melt mixture is used to study the influence of melt superheat and water subcooling on droplet deformation and fragmentation. For the conditions studied (We {<=} 1000), the surface tension of the melt droplet and the film boiling stability greatly affect the fragmentation behaviour. If the melt temperature is between the liquidus and solidus point (mushy zone) or if the film boiling is stable due to a relatively low subcooling, the droplet deformation and fragmentation are mitigated. This behaviour can be related to the effective Weber number (We) of the melt droplet upon entry into the water pool. Similar phenomena can be expected also for interactions of corium (UO{sub 2}-ZrO{sub 2}) and water, which are characterized by a potentially fast transformation of melt into the mushy zone and by particularly stable film boiling. (author)

  3. Calving on tidewater glaciers amplified by submarine frontal melting

    CERN Document Server

    O'Leary, Martin

    2012-01-01

    While it has been shown repeatedly that ocean conditions exhibit an important control on the behaviour of grounded tidewater glaciers, modelling studies have focused largely on the effects of basal and surface melting. Here, a finite-element model of stresses near the front of a tidewater glacier is used to investigate the effects of frontal melting on calving, independently of the calving criterion used. Applications of the stress model to idealized scenarios reveal that undercutting of the ice front due to frontal melting can drive calving at up to ten times the mean melt rate. Factors which cause increased frontal melt-driven calving include a strong thermal gradient in the ice, and a concentration of frontal melt at the base of the glacier. These properties are typical of both Arctic and Antarctic tidewater glaciers. The finding that frontal melt near the base is a strong driver of calving leads to the conclusion that water temperatures near the bed of the glacier are critically important to the glacier f...

  4. Energy Efficient Glass Melting - The Next Generation Melter

    Energy Technology Data Exchange (ETDEWEB)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  5. Tailoring hierarchical structures in selective laser melted materials

    Science.gov (United States)

    Olsen, Jon; Zhou, Xin; Zhong, Yuan; Liu, Leifeng; Wang, Dianzheng; Yu, Chenfan; Wang, Yafei; Li, Kailun; Xing, Leilei; Ma, Jing; Cui, Daqing; Liu, Wei; Shen, Zhijian

    2017-07-01

    With selective laser melting the potential to manufacture a wide variety of geometries from different materials has presented itself. Interest in this technology keeps growing every year, and with that growth a deeper understanding of the process and resulting materials is urgently needed. In this paper we present a short overview of the structural elements that appear during selective laser melting, and explain how to tailor them to achieve specific structures and material properties. Melt-pools, texture and grains, subgrain cells, and inclusions are the elements discussed herein, and tailoring of these elements can have effects on density, and corrosion resistance, as well as mechanical properties in general.

  6. 3D Compressible Melt Transport with Adaptive Mesh Refinement

    Science.gov (United States)

    Dannberg, Juliane; Heister, Timo

    2015-04-01

    Melt generation and migration have been the subject of numerous investigations, but their typical time and length-scales are vastly different from mantle convection, which makes it difficult to study these processes in a unified framework. The equations that describe coupled Stokes-Darcy flow have been derived a long time ago and they have been successfully implemented and applied in numerical models (Keller et al., 2013). However, modelling magma dynamics poses the challenge of highly non-linear and spatially variable material properties, in particular the viscosity. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. In addition, previous models neglect the compressibility of both the solid and the fluid phase. However, experiments have shown that the melt density change from the depth of melt generation to the surface leads to a volume increase of up to 20%. Considering these volume changes in both phases also ensures self-consistency of models that strive to link melt generation to processes in the deeper mantle, where the compressibility of the solid phase becomes more important. We describe our extension of the finite-element mantle convection code ASPECT (Kronbichler et al., 2012) that allows for solving additional equations describing the behaviour of silicate melt percolating through and interacting with a viscously deforming host rock. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects. We evaluate the functionality and potential of this method using a series of simple model setups and benchmarks, comparing results of the compressible and incompressible formulation and

  7. Impact melts of the Orientale and Imbrium basins

    Science.gov (United States)

    Spudis, P.

    2014-12-01

    The largest impacts on the Moon - those that form the multi-ring basins - can produce thousands of cubic kilometers of melt. This melt is largely concentrated inside the basin, although some is ejected along with the clastic materials that make up the continuous ejecta blanket that surrounds basins. Impact melt is important because it contains information on the crustal target for basins as well as being the most suitable material to date basin-forming events. New geological mapping of the lunar Orientale and Imbrium impact basins has identified likely deposits of both types of impact melt. The Orientale basin (930 km diameter) is well preserved and only partly flooded by later mare basalts. The basin interior melt sheet is represented by the Maunder Formation, a smooth-to-cracked surface unit that covers the innermost basin ring. Study of the composition of the Maunder Fm. as determined by remote sensing shows that it is remarkably uniform both laterally and vertically, with no evidence of differentiation. Surrounding the basin are vast ejecta deposits, most of which are probably made up of clastic material. However, a few isolated deposits contained within basin secondary craters appear melt-like, with low albedo and a cracked surface texture (e.g., Struve L, 20.7° N, 76° W). The larger (1160 km diameter) and slightly older Imbrium basin is mostly filled with mare basalt lava, concealing most of the basin floor. The Imbrium basin exterior shows isolated deposits of melt-like material in several locales, including on the floors of the craters Parrot C (18.5° S, 1.2° E) and Murchison (5.1° N, 0.1° W). These deposits have low albedo and show cracked surfaces, with evidence of ground flow after deposition. Their composition is remarkably similar to highland basaltic impact melts found in the Apollo collections, such as the Apollo 17 impact melts. These features offer the possibility of examining basin impact melt at distances far removed from basin interiors or

  8. Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model

    Science.gov (United States)

    Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing

    2017-12-01

    The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.

  9. Slab melting and magma formation beneath the southern Cascade arc

    Science.gov (United States)

    Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.

    2016-01-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  10. Rapid solidification via melt spinning - Equipment and techniques

    Science.gov (United States)

    Jech, R. W.; Moore, T. J.; Glasgow, T. K.; Orth, N. W.

    1984-01-01

    One of the simpler methods available to accomplish rapid solidification processing is free jet melt spinning. With only a modest expenditure of time, effort, and capital, an apparatus suitable for preliminary experimentation can be assembled. Wheel and crucible materials, process atmospheres, crucible design, heating methods, and process parameters and their relationship to melt composition are described. Practical solutions to processing problems, based on 'hands-on' experience, are offered. Alloys with melting points up to 3000 F have been rapidly solidified using the techniques described.

  11. A scaling law for impact-induced melt volume

    Science.gov (United States)

    Nakajima, M.; Rubie, D. C.; Melosh, H. J.; Jacobson, S. A.; Golabek, G. J.; Nimmo, F.; Morbidelli, A.

    2017-09-01

    During the late stages of planetary accretion, protoplanets experience a number of giant impacts and extensive mantle melting. Understanding the melt volume is important because it determines elemental abundances in the planetary core and mantle. Here, we develop a scaling law for melt volume based on giant impact simulations using smoothed particle hydrodynamics (SPH) as a function of the total mass, impact angle, impact velocity, and impactor-to-total mass ratio. We find that the law is most sensitive to the impact velocity and angle.

  12. Gas atomization of cobalt ferrite-phosphate melts

    Science.gov (United States)

    De Guire, Mark R.; O'Handley, R. C.; Kalonji, G.

    1989-01-01

    XRD, Moessbauer spectroscopy, and EDXS have been used to characterize a rapidly-solidified (Co,Fe)3O4 spinel generated in a cobalt-iron-phosphate glass matrix by gas atomization of melts. Of the two compositions tested, that containing 20 mol pct P2O5 exhibited randomly-oriented ferrite crystallization whose growth appears to have been diffusion-controlled. Unlike the ferrite, in which the iron has both tetrahedral and octahedral coordination, the iron in the glassy matrix was primarily of distorted-octahedral coordination. Calculations indicate that the cooling rates obtained with oxide melts vary strongly with droplet size, but less strongly with melt temperature.

  13. Arctic melt ponds and energy balance in the climate system

    Science.gov (United States)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  14. Volatile loss during homogenization of lunar melt inclusions

    Science.gov (United States)

    Ni, Peng; Zhang, Youxue; Guan, Yunbin

    2017-11-01

    Volatile abundances in lunar mantle are critical factors to consider for constraining the model of Moon formation. Recently, the earlier understanding of a ;dry; Moon has shifted to a fairly ;wet; Moon due to the detection of measurable amount of H2O in lunar volcanic glass beads, mineral grains, and olivine-hosted melt inclusions. The ongoing debate on a ;dry; or ;wet; Moon requires further studies on lunar melt inclusions to obtain a broader understanding of volatile abundances in the lunar mantle. One important uncertainty for lunar melt inclusion studies, however, is whether the homogenization of melt inclusions would cause volatile loss. In this study, a series of homogenization experiments were conducted on olivine-hosted melt inclusions from the sample 74220 to evaluate the possible loss of volatiles during homogenization of lunar melt inclusions. Our results suggest that significant loss of H2O could occur even during minutes of homogenization, while F, Cl and S in the inclusions remain unaffected. We model the trend of H2O loss in homogenized melt inclusions by a diffusive hydrogen loss model. The model can reconcile the observed experimental data well, with a best-fit H diffusivity in accordance with diffusion data explained by the ;slow; mechanism for hydrogen diffusion in olivine. Surprisingly, no significant effect for the low oxygen fugacity on the Moon is observed on the diffusive loss of hydrogen during homogenization of lunar melt inclusions under reducing conditions. Our experimental and modeling results show that diffusive H loss is negligible for melt inclusions of >25 μm radius. As our results mitigate the concern of H2O loss during homogenization for crystalline lunar melt inclusions, we found that H2O/Ce ratios in melt inclusions from different lunar samples vary with degree of crystallization. Such a variation is more likely due to H2O loss on the lunar surface, while heterogeneity in their lunar mantle source is also a possibility. A

  15. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau.

    Science.gov (United States)

    Li, Xiaofei; Kang, Shichang; He, Xiaobo; Qu, Bin; Tripathee, Lekhendra; Jing, Zhefan; Paudyal, Rukumesh; Li, Yang; Zhang, Yulan; Yan, Fangping; Li, Gang; Li, Chaoliu

    2017-06-01

    Light-absorbing impurities (LAIs), such as organic carbon (OC), black carbon (BC), and mineral dust (MD) deposited on the glacier surface can reduce albedo, thus accelerating the glacier melt. Surface fresh snow, aged snow, granular ice, and snowpits samples were collected between August 2014 and October 2015 on the Xiao Dongkemadi (XDKMD) glacier (33°04'N, 92°04'E) in the central Tibetan Plateau (TP). The spatiotemporal variations of LAIs concentrations in the surface snow/ice were observed to be consistent, differing mainly in magnitudes. LAIs concentrations were found to be in the order: granular ice>snowpit>aged snow>fresh snow, which must be because of post-depositional effects and enrichment. In addition, more intense melting led to higher LAIs concentrations exposed to the surface at a lower elevation, suggesting a strong negative relationship between LAIs concentrations and elevation. The scavenging efficiencies of OC and BC were same (0.07±0.02 for OC, 0.07±0.01 for BC), and the highest enrichments was observed in late September and August for surface snow and granular ice, respectively. Meanwhile, as revealed by the changes in the OC/BC ratios, intense glacier melt mainly occurred between August and October. Based on the SNow ICe Aerosol Radiative (SNICAR) model simulations, BC and MD in the surface snow/ice were responsible for about 52%±19% and 25%±14% of the albedo reduction, while the radiative forcing (RF) were estimated to be 42.74±40.96Wm -2 and 21.23±22.08Wm -2 , respectively. Meanwhile, the highest RF was observed in the granular ice, suggesting that the exposed glaciers melt and retreat more easily than the snow distributed glaciers. Furthermore, our results suggest that BC was the main forcing factor compared with MD in accelerating glacier melt during the melt season in the Central TP. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Additive Manufacturing of Patient-Customizable Scaffolds for Tubular Tissues Using the Melt-Drawing Method

    Directory of Open Access Journals (Sweden)

    Yu Jun Tan

    2016-11-01

    Full Text Available Polymeric fibrous scaffolds for guiding cell growth are designed to be potentially used for the tissue engineering (TE of tubular organs including esophagi, blood vessels, tracheas, etc. Tubular scaffolds were fabricated via melt-drawing of highly elastic poly(l-lactide-co-ε-caprolactone (PLC fibers layer-by-layer on a cylindrical mandrel. The diameter and length of the scaffolds are customizable via 3D printing of the mandrel. Thickness of the scaffolds was varied by changing the number of layers of the melt-drawing process. The morphology and tensile properties of the PLC fibers were investigated. The fibers were highly aligned with a uniform diameter. Their diameters and tensile properties were tunable by varying the melt-drawing speeds. These tailorable topographies and tensile properties show that the additive-based scaffold fabrication technique is customizable at the micro- and macro-scale for different tubular tissues. The merits of these scaffolds in TE were further shown by the finding that myoblast and fibroblast cells seeded onto the scaffolds in vitro showed appropriate cell proliferation and distribution. Human mesenchymal stem cells (hMSCs differentiated to smooth muscle lineage on the microfibrous scaffolds in the absence of soluble induction factors, showing cellular shape modulation and scaffold elasticity may encourage the myogenic differentiation of stem cells.

  17. Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2016-09-01

    Full Text Available An 18-Ni 300 grade maraging steel was processed by selective laser melting and an investigation was carried out on microstructural and mechanical behaviour as a function of aging condition. Owing to the rapid cooling rate, the as-built alloy featured a full potential for precipitate strengthening, without the need of a solution treatment prior to aging. The amount of reversed austenite found in the microstructure increased after aging and revealed to depend on aging temperature and time. Similarly to the corresponding wrought counterpart, also in the selective laser-melted 18-Ni 300 alloy, aging promoted a dramatic increase in strength with respect to the as-built condition and a drop in tensile ductility. No systematic changes were found in tensile properties as a function of measured amount of austenite. It is proposed that the submicrometric structure and the phase distribution inherited by the rapid solidification condition brought by selective laser melting are such that changes in tensile strength and ductility are mainly governed by the effects brought by the strengthening precipitates, whereas the concurrent reversion of the γ-Fe phase in different amounts seems to play a minor role.

  18. Dynamics of partially faceted melt/crystal interfaces II: multiple step source calculations

    Science.gov (United States)

    Weinstein, Oleg; Brandon, Simon

    2004-09-01

    Facets appearing on the liquid/solid interface, during directional crystal growth from the melt, advance via a combination of step-flow (i.e. linear) and step-source (i.e. non-linear) kinetics. In this manuscript we rigorously calculate a number of examples in which the macroscopic shape of the interface is dramatically affected by the type, distribution and dynamics of step sources along these facets. The new numerical algorithm employed, based on decoupling interface motion from thermal field calculations, is briefly described (further details are given elsewhere), after which several sets of results are presented. Specifically, an experimental observation of facet evolution dynamics during the melt growth of silicon, qualitatively explained in Voronkov and Pankov [Sov. Phys. Crystallogr. 20(6) (1975) 697] , is quantitatively analyzed and explained here. Additional calculations include analyses of dynamics associated with the hypothetical sudden appearance of a dislocation step-source on a previously dislocation-free advancing facet. Large rates of latent heat release associated with such abrupt changes between growth mechanisms are shown, in some cases, to promote melt-back of rough portions of the interface. Finally, select semi-analytical solutions to the interface motion equation, in non-trivial situations involving transitions between growth mechanisms, are shown to verify numerical calculations of the advancing interface.

  19. Effects of Nanoparticles on Melting Process with Phase-Change Using the Lattice Boltzmann Method

    KAUST Repository

    Ibrahem, Ahmed M.

    2017-05-04

    In this work, the problem of nanoparticles dispersion effects on coupled heat transfer and solid-liquid phase change has been studied. The lattice Boltzmann method (LBM) enthalpy-based is employed. The collision model of lattice Bhatangar-Gross-Krook (LBGK) is used to solve the problem of 1D melting by conduction. On the other hand, we use the model of multi-distribution functions (MDF) to calculate the density, the velocity and the temperature for the problem of 2D melting by free convection, associated with different boundary conditions. In these simulations, the volume fractions of copper nanoparticles (0-2%) added to water-base fluid and Rayleigh numbers of 103to105. We use the Chapman-Enskog expansion to derive the governing macroscopic quantities from the mesoscopic lattice Boltzmann equation. The results obtained by these models have been compared to an analytical solution or other numerical methods. The effects of nanoparticles on conduction and natural convection during the melting process have been investigated. Moreover, the influences of nanoparticles on moving of the phase change front, the thermal conductivity and the latent heat of fusion are also studied.

  20. Process observation in selective laser melting (SLM)

    Science.gov (United States)

    Thombansen, U.; Abels, P.

    2015-03-01

    In additive manufacturing, the quality of products can be traced by observation of process variables track by track and layer by layer. The stacking of layer wise information can be used to consolidate the entire build up history of a product thus leading to a truly three dimensional quality histogram. The first step that is necessary to achieve such a quality histogram is the acquisition of process measurands that are related to product quality. Successful acquisition of measurements for thermal radiation has been reported in several publications. The authors of such papers report the detection of changes in boundary conditions of the process by observing the thermal radiation of the process. It has been reported that for example a change in laser power has an influence on the thermal emission and that different readings are received for processing a thin powder layer on a solid work piece compared to scanning pure powder in the situation of an overhang structure. A correlation to the underlying reason for the increase in thermal radiation however is mostly related to the experimental setup rather than to in process measurements. This report demonstrates an approach of acquiring and combining synchronous measurements of different physical properties of the process. The coaxial observation system used in the experiments enables the synchronous acquisition of measurements of the thermal emission and the acquisition of images that visualize the surface of the powder bed in the vicinity of the interaction zone. The images are used to monitor the motion of powder particles as they are influenced by the melting process. This amount of particle motion is then correlated to areas of different powder thicknesses. The combination of this information with excessive readings in thermal emission classifies the event to be a situation of noncritical deviation of thermal emission. In fact, this combination of extracted features establishes a first key criterion for an

  1. Melt Fragmentation Characteristics of Metal Fuel with Melt Injection Mass during Initiating Phase of SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Lee, Min Ho; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)

    2016-05-15

    The PGSFR has adopted the metal fuel for its inherent safety under severe accident conditions. However, this fuel type is not demonstrated clearly yet under the such severe accident conditions. Additional experiments for examining these issues should be performed to support its licensing activities. Under initiating phase of hypothetic core disruptive accident (HCDA) conditions, the molten metal could be better dispersed and fragmented into the coolant channel than in the case of using oxide fuel. This safety strategy provides negative reactivity driven by a good dispersion of melt. If the coolant channel does not sufficient coolability, the severe recriticality would occur within the core region. Thus, it is important to examine the extent of melt fragmentation. The fragmentation behaviors of melt are closely related to a formation of debris shape. Once the debris shape is formed through the fragmentation process, its coolability is determined by the porosity or thermal conductivity of the melt. There were very limited studies for transient irradiation experiments of the metal fuel. These studies were performed by Transient Reactor Test Facility (TREAT) M series tests in U.S. The TREAT M series tests provided basic information of metal fuel performance under transient conditions. The effect of melt injection mass was evaluated in terms of the fragmentation behaviors of melt. These behaviors seemed to be similar between single-pin and multi-pins failure condition. However, the more melt was agglomerated in case of multi-pins failure.

  2. Experimental determination of electrical conductivity during deformation of melt-bearing olivine aggregates: Implications for electrical anisotropy in the oceanic low velocity zone

    Science.gov (United States)

    Caricchi, Luca; Gaillard, Fabrice; Mecklenburgh, Julian; Le Trong, Emmanuel

    2011-02-01

    A novel experimental setup was used to measure in-situ variations of electrical conductivity (EC) during deformation in torsion (simple shear) at 300 MPa confining pressure and temperatures between 873 and 1473 K. This setup is designed to test if deformation of partially molten systems can produce electrical anisotropy. The motivation for this study comes from the observation that the Lithosphere-Asthenosphere Boundary (LAB) at mid-ocean ridges and in particular at the East Pacific Rise is strongly electrically anisotropic. In an initial set of calibration experiments, the variation of EC with temperature (873-1473 K) was determined for Carrara marble, Åheim dunite and basalt-bearing olivine aggregates. EC was then monitored during deformation experiments at 1473 K and measured in the frequency range between 6 MHz and 1 Hz. The electrical response of the different materials tested as a function of frequency, changes significantly depending on the presence, absence, proportion and distribution of melt contained in the specimen. Melt-free samples show a single conduction mechanism whereas melt-bearing samples display two conduction mechanisms linked in series, reflecting the contribution of isolated and connected melt. Impedance was measured along the sample radius, in a direction parallel to the shear gradient inherent in torsion experiments. During the tests, increasing values of the impedance measured suggest that the long range melt connectivity decreases radially, and melt drains from low to high shear stress regions. The conductivity, calculated from impedance measurements, is low and comparable to values measured along mid-ocean ridges. We suggest that electrical anisotropy of the LAB reflects an alternation of melt-enriched and melt-depleted channels elongated in the spreading direction possibly induced by spreading velocity gradients along the ridge. This implies that the observed electrical anisotropy reveals larger scale processes than strain

  3. Preservation of Seed Crystals in Feedstock Melting for Cast Quasi-Single Crystalline Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Zaoyang Li

    2013-01-01

    Full Text Available The preservation of seed crystals is important for the casting of quasi-single crystalline (QSC silicon ingots. We carried out transient global simulations of the feedstock melting process in an industrial-sized directional solidification (DS furnace to investigate key factors influencing seed preservation. The power distribution between the top and side heaters is adjusted in the conventional furnace for multicrystalline silicon ingots and in the evolved furnace with a partition block for QSC silicon ingots. The evolution of the solid-liquid interface for melting and the temperature distribution in the furnace core area are analyzed. The power distribution can influence the temperature gradient in the silicon domain significantly. However, its effect on seed preservation is limited in both furnaces. Seed crystals can be preserved in the evolved furnace, as the partition block reduces the radiant heat flux from the insulation walls to the heat exchange block and prevents the heat flowing upwards under the crucible. Therefore, the key to seed preservation is to control radiant heat transfer in the DS furnace and guarantee downward heat flux under the crucible.

  4. Advanced Modeling of Cold Crucible Induction Melting for Process Control and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Roach; D. B. Lopukh; A. P. Martynov; B. S. Polevodov; S. I. Chepluk

    2008-02-01

    The Idaho National Laboratory (INL) and the St. Petersburg Electrotechnical University “LETI” (ETU) have collaborated on development and validation of an advanced numerical model of the cold crucible induction melting (CCIM) process. This work was conducted in support of the Department of Energy (DOE) Office of Environmental Management Technology and Engineering (EM-20) International Program. The model predicts quasi-steady state temperature distributions, convection cell configurations, and flow field velocities for a fully established melt of low conductivity non-magnetic materials at high frequency operations. The INL/ETU ANSYS© finite element model is unique in that it has been developed specifically for processing borosilicate glass (BSG) and other glass melts. Specifically, it accounts for the temperature dependency of key material properties, some of which change by orders of magnitude within the temperature ranges experienced (temperature differences of 500oC are common) in CCIM processing of glass, including density, viscosity, thermal conductivity, specific heat, and electrical resistivity. These values, and their responses to temperature changes, are keys to understanding the melt characteristics. Because the model has been validated, it provides the capability to conduct parametric studies to understand operational sensitivities and geometry effects. Additionally, the model can be used to indirectly determine difficult to measure material properties at higher temperatures such as resistivity, thermal conductivity and emissivity. The model can also be used to optimize system design and to predict operational behavior for specific materials and system configurations, allowing automated feedback control. This becomes particularly important when designing melter systems for full-scale industrial applications.

  5. Geochemistry of Peralkaline Melts at Kone Volcanic Complex, Main Ethiopian Rift

    Science.gov (United States)

    Iddon, F. E.; Edmonds, M.; Jackson, C.; Hutchison, W.; Mather, T. A.; Fontijn, K.; Pyle, D. M.

    2016-12-01

    The East Africa rift system (EARS) is the archetypal example of continental rifting, with the Main Ethiopian rift (MER) segment offering a unique opportunity to examine the dynamics of peralkaline magmas; the development of central volcanoes; melt distribution and transport in the crust; the volatile budgets of rift magmas and their implications for the formation of ore deposits. The alkali- and halogen-rich magmas of the MER differ from their calc-alkaline counterparts in other settings due to their lower viscosities and higher volatile contents, which have important implications for magma transport, reservoir dynamics and eruptive hazards. The high halogen contents of the magmas give rise to halogen-rich vapor which has the capacity to transport and concentrate metals and REE. The Kone Volcanic complex is one of the lesser studied Quaternary peralkaline centres, located on the axial portion of the MER. It comprises two superimposed calderas, surrounded by ignimbrite deposits and unwelded felsic pyroclastic material, small basaltic vents and rhyolitic domes. Unusually for the central volcanoes of the MER, the caldera has refilled with basaltic lava, not pyroclastic material. We use whole rock and micro-analysis to characterize a range of Kone tephras, glasses, crystal phases and melt inclusions in terms of major, trace and volatile element abundances, alongside detailed textural analysis using QEMSCAN and SEM. The whole rock geochemistry reflects the clear peralkaline nature of the suite, with a distinct compositional gap between 50 wt% and 65 wt% SiO2, controlled largely by fractional crystallization. Trace element systematics illustrate that trachytes entrain alkali feldspars, with the crystal cargo of the entire suite reflecting the structure of the magma reservoir at depth, with liquid-rich lenses and regions of syenitic mush. Melt inclusion geochemistry allows reconstruction of complex, multiphase differentiation processes and the exsolution of both a vapor

  6. Assessment for Melting Temperature Measurement of Nucleic Acid by HRM

    National Research Council Canada - National Science Library

    Jing Wang; Xiaoming Pan; Xingguo Liang

    2016-01-01

    High resolution melting (HRM), with a high sensitivity to distinguish the nucleic acid species with small variations, has been widely applied in the mutation scanning, methylation analysis, and genotyping...

  7. Modeling the viscosity of silicate melts containing manganese oxide

    Directory of Open Access Journals (Sweden)

    Kim Wan-Yi

    2013-01-01

    Full Text Available Our recently developed model for the viscosity of silicate melts is applied to describe and predict the viscosities of oxide melts containing manganese oxide. The model requires three pairs of adjustable parameters that describe the viscosities in three systems: pure MnO, MnO-SiO2 and MnO-Al2O3-SiO2. The viscosity of other ternary and multicomponent silicate melts containing MnO is then predicted by the model without any additional adjustable model parameters. Experimental viscosity data are reviewed for melts formed by MnO with SiO2, Al2O3, CaO, MgO, PbO, Na2O and K2O. The deviation of the available experimental data from the viscosities predicted by the model is shown to be within experimental error limits.

  8. Preparation Of Melt Spun Electroconductive Fine Fibres Containing Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mirjalili Mohammad

    2015-06-01

    Full Text Available Preparation of electroconductive fine fibres containing carbon nanotubes (CNTs by melt spinning was the main goal of the present study. In this regard, the influence of the main operating parameters such as type of polymer used (polyester, polypropylene and polyamide, type and concentration of the CNTs on conductivity, and mechanical and thermal properties of the melt spun fibres was studied. The conductivity of melt spun fibres was measured based on the method developed by Morton and Hearl. The morphologies of the CNTs–polymer composite fibres were studied by scanning electron microscopy. Thermal behaviours and mechanical properties of the CNTs–polymer composite fibres were investigated using differential scanning calorimetry and tearing tester, respectively. The results reveal that using CNTs had tangible effect on electrical, thermal and mechanical properties of the melt spun fibres. Also, polyamide had a better dispersion of CNTs and correspondingly lower surface resistivity.

  9. Spontaneous corneal melting during pregnancy: a case report.

    Science.gov (United States)

    Oh, Joo Youn; Kim, Mee Kum; Park, Joong Shin; Wee, Won Ryang

    2009-05-26

    Biomechanical changes in the cornea during pregnancy might lead to pathological conditions such as corneal perforation or melting. A 33-year-old Asian female who underwent penetrating keratoplasty in both eyes developed corneal melting in the right eye and marginal keratitis in the left eye in her fifth month of pregnancy. Marginal keratitis in the left eye immediately subsided with topical steroid therapy. However, spontaneous corneal melting progressed in the right eye, despite oral steroid therapy and amniotic membrane transplantation. We performed tectonic penetrating keratoplasty and corneoscleral grafting in the right eye. We advise caution in the ophthalmologic care of pregnant patients who have preexisting corneal thinning disorders or who have undergone multiple corneal surgeries, because physiologic changes during pregnancy might contribute to corneal changes leading to spontaneous melting especially in patients with compromised cornea.

  10. Temperature dependence effect of viscosity on ultrathin lubricant film melting

    Directory of Open Access Journals (Sweden)

    A.V.Khomenko

    2006-01-01

    Full Text Available We study the melting of an ultrathin lubricant film under friction between atomically flat surfaces at temperature dependencies of viscosity described by Vogel-Fulcher relationship and by power expression, which are observed experimentally. It is shown that the critical temperature exists in both cases the exceeding of which leads to the melting of lubricant and, as a result, the sliding mode of friction sets in. The values of characteristic parameters of lubricant are defined, which are needed for friction reduction. In the systems, where the Vogel-Fulcher dependence is fulfilled, it is possible to choose the parameters at which the melting of lubricant takes place even at zero temperature of friction surfaces. The deformational defect of the shear modulus is taken into account in describing the lubricant melting according to the mechanism of the first-order transition.

  11. In situ viscosity measurements of albite melt under high pressure

    CERN Document Server

    Funakoshi, K I; Terasaki, H

    2002-01-01

    The viscosities of albite (NaAlSi sub 3 O sub 8) melt under high pressures have been measured using an x-ray radiography falling sphere method with synchrotron radiation. This method has enabled us to determine the precise sinking velocity directly. Recent experiments of albite melt showed the presence of a viscosity minimum around 5 GPa (Poe et al 1997 Science 276 1245, Mori et al 2000 Earth Planet. Sci. Lett. 175 87). We present the results for albite melt up to 5.2 GPa at 1600 and 1700 deg. C. The viscosity minimum is clearly observed to be around 4.5 GPa, and it might be explained not by the change of the compression mechanism in albite melt but by change of the phase itself.

  12. Rapid ice melting drives Earth's pole to the east

    National Research Council Canada - National Science Library

    Chen, J. L; Wilson, C. R; Ries, J. C; Tapley, B. D

    2013-01-01

    .... Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) show that about 90% of this change is due to accelerated melting of polar ice sheets and mountain glaciers and related sea level rise...

  13. Electrochemistry of the Oxofluoro Complexes of Boron in Fluoride Melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakov, E.G.

    1997-01-01

    Electrochemical behavior of oxofluoro complexes of boron, synthesized both in situ in FLINAK melt and added into the melt as Na3B3O3F6 compound, was by linear voltammetry within the range of 570-750 oC. It was shown that in lower part of this range the electrochemical reduction of BOF2- complexes...... follows to ECE mechanism. Growth of temperature makes the electrode proecesses more simple. At 700 oC boron reduces to the elemental state in one irreversible step. Values of diffusion coefficient changes in this interval of temperatures according to the equation: lg D= -1,66 - 3219/T with the activation...... energy of 61.6 kJ/mol. Study of the thermal stability of boron containing oxofluoro melts showed that O/B ratio changes in time due to evaporation of BF3. As a result borate complexes emerge in the melt alongside with oxofluoro ones....

  14. Greenland Ice Sheet Melt Characteristics Derived from Passive Microwave Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Greenland ice sheet melt extent data, acquired as part of the NASA Program for Arctic Regional Climate Assessment (PARCA), is a daily (or every other day, prior...

  15. Plastic Melt Waste Compactor Flight Demonstrator Payload (PFDP) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The PMWC Flight Demonstrator Payload is a trash dewatering and volume reduction system that uses heat melt compaction to remove nearly 100% of water from trash while...

  16. Development of a Novel Melt Spinning-Based Processing Route for Oxide Dispersion-Strengthened Steels

    Science.gov (United States)

    Hong, Zuliang; Morrison, Alasdair P. C.; Zhang, Hongtao; Roberts, Steve G.; Grant, Patrick S.

    2018-02-01

    Melt spinning of an Fe-5Y and Fe-1Y-1Ti (wt pct) alloy produced a relatively uniform spatial distribution of Y and Ti in solid solution and ribbons with consistent yield (> 60 pct by weight), fast processing time ( 100 g feedstock material), and repeatability. Heat treatment in the presence of Fe2O3 as an oxygen source (Rhines pack method) at 973 K validated the potential of forming mechanically weak prior ribbon boundaries that were decorated with Ti-rich oxides.

  17. Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Jourabian, Mahmoud [University of Trieste, Piazzale (Italy); Farhadi, Mousa [Babol Noshirvani University of Technology, Shariati Avenue (Iran, Islamic Republic of)

    2015-09-15

    Convection melting of ice as a Phase change material (PCM) dispersed with Cu nanoparticles, which is encapsulated in a semicircle enclosure is studied numerically. The enthalpy-based Lattice Boltzmann method (LBM) combined with a Double distribution function (DDF) model is used to solve the convection-diffusion equation. The increase in solid concentration of nanoparticles results in the enhancement of thermal conductivity of PCM and the decrease in the latent heat of fusion. By enhancing solid concentration of nanoparticles, the viscosity of nanofluid increases and convective heat transfer dwindles. For all Rayleigh numbers investigated in this study, the insertion of nanoparticles in PCM has no effect on the average Nusselt number.

  18. The missing link between the extensional dynamics of polymer melts and solutions

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Huang, Qian

    2014-01-01

    Based on extensional viscosities measured on narrow molecular weight distributed (NMMD) polystyrenes and polystyrene oligomer dilutions thereof, we discuss the relation between the flow physics of polymer solutions and melts. A polymer solution is here characterized as a dilution where the diluent...... contains less than two Kuhn steps. At the same entanglement number (e.g. concentrations) its extensional viscosities are up to about 300% higher than the corresponding viscosities for polymer blends. A blend is understood as a polymer system diluted with polymer/oligomer containing active chain in term...

  19. Giant magnetoresistance for superparamagnetic particles: Melt-spun granular CuCo

    Science.gov (United States)

    Hickey, B. J.; Howson, M. A.; Musa, S. O.; Wiser, N.

    1995-01-01

    We have measured the giant magnetoresistance (GMR) and the magnetization of a melt-spun granular sample of Cu87Co13. The Cu matrix contains very small particles of Co that exhibit superparamagnetism. Although the GMR is due to these small superparamagnetic particles, we find that the GMR does not vary quadratically with the magnetization. This unexpected result is attributed to the presence of a range of sizes for the superparamagnetic particles. Assuming a simple distribution of particle sizes, we calculated the magnetic-field dependence of the GMR and find excellent agreement with experiment.

  20. NMR system for imaging [sup 3]He-[sup 4]He mixtures on the melting curve

    Energy Technology Data Exchange (ETDEWEB)

    Swirski, Y. (Dept. of Physis, Technion-Israel Inst. of Tech., Haifa (Israel)); Shuster, I. (Dept. of Physis, Technion-Israel Inst. of Tech., Haifa (Israel)); Schmidt, E.J. (Dept. of Physis, Technion-Israel Inst. of Tech., Haifa (Israel)); Polturak, E. (Dept. of Physis, Technion-Israel Inst. of Tech., Haifa (Israel)); Lipson, S.G. (Dept. of Physis, Technion-Israel Inst. of Tech., Haifa (Israel))

    1994-02-01

    A pulsed 10 MHz NMR system for imaging [sup 3]He-[sup 4]He mixtures on the melting curve between 0.4K to 1.5K is described. The spatial distribution of [sup 3]He, T[sub 1] and T[sub 2] relaxation times were mapped along the vertical direction, perpendicular to the liquid-solid interface. Multi-exponential fits for the relaxation times were made. These are useful to follow the relaxation of structural inhomogeneities in the crystal. (orig.)

  1. Melt Focusing Along Permeability Barriers in Various Tectonic Settings

    Science.gov (United States)

    Montesi, L. G.; Hebert, L. B.

    2012-12-01

    The lithosphere, cold and rigid, acts as a barrier to the migration of melt from sources in the convecting mantle to the surface. In mid-ocean ridge settings in particular, the contrast between the width of the melt production zone at depths, reaching tens to hundreds of kilometer from the ridge axis, and the zone of crustal accretion, only one or two kilometers wide, points to the presence of an efficient focusing mechanism. The development of a zone impermeable to melt, or permeability barrier, at the base of the thermal boundary layer, and transport of melt in a high porosity channel at the base of this barrier provides a reasonable explanation for this focusing. Applied to various segmented and non-segmented mid-ocean ridges like the ultraslow Southwest Indian Ridge and the ultrafast East Pacific Rise at the Siqueiros transform, this process predicts along-strike variations in crustal thickness that compare favorably with observations. Although the concept of permeability barriers has been discussed mainly in the context of mid-ocean ridges, it may apply to other locations where melting in the upper mantle occurs. Permeability barriers form when ascending melt cools and crystallizes as it enters the thermal boundary layer at the base of the lithosphere. Such a setup is present at subduction zones as melts ascending from the mantle wedge interact with the overriding plate. Convection in the wedge introduces thermal gradients that may focus melt roughly to a point above the transition from a coupled to decoupled slab interface. This location is close to where volcanic arcs are observed. Above mantle plumes, a permeability barrier may develop coincident with the lithosphere-asthenosphere boundary, allowing low-degree melts to stall and form a low-velocity layer that has been observed seismically. To date, the hypothesis of a permeability barrier has been thoroughly tested only in the context of mid-ocean ridges. Whether crystallization would be rapid enough in

  2. Spectral albedo of arctic snow during intensive melt period

    OpenAIRE

    O. Meinander; Kazadzis, S.; A. Arola; R. Kivi; Kontu, A.; H. Suokanerva; Aaltonen, V.; T. Manninen; J.-L. Roujean; O. Hautecoeur

    2010-01-01

    Spectral albedo and water liquid content of intensively melting Arctic snow were measured during the Snow Reflectance Transition Experiment (SNORTEX), in Sodankylä, Finland, in April 2009. The upwelling and downwelling spectral irradiance, measured at 290–550 nm with a double monochromator spectroradiometer, revealed the snow albedo to increase as a function wavelength. At the same time, we found the albedo of melting snow to decrease by ~10%, as a function of time within one day. During four...

  3. Crystallization behavior during melt-processing of ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Tumurugoti, Priyatham; Sundaram, S.K.; Misture, Scott T. [Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY, 14802 (United States); Marra, James C. [Savannah River National Laboratory, Aiken, SC, 29808 (United States); Amoroso, Jake, E-mail: jake.amoroso@srs.gov [Savannah River National Laboratory, Aiken, SC, 29808 (United States)

    2016-05-15

    Multiphase ceramic waste forms based on natural mineral analogs are of great interest for their high chemical durability, radiation resistance, and thermodynamic stability. Melt-processed ceramic waste forms that leverage existing melter technologies will broaden the available disposal options for high-level nuclear waste. This work reports on the crystallization behavior in selected melt-processed ceramics for waste immobilization. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, x-ray diffraction, and electron microscopy. Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500 °C and heat-treated at crystallization temperatures of 1285 °C and 1325 °C corresponding to exothermic events identified from differential scanning calorimetry measurements. Results indicate that the selected multiphase composition partially melts at 1500 °C with hollandite coexisting as crystalline phase. Perovskite and zirconolite phases crystallized from the residual melt at temperatures below 1350 °C. Depending on their respective thermal histories, different quenched samples were found to have different phase assemblages including phases such as perovskite, zirconolite and TiO{sub 2.} - Highlights: • Crystallization behavior during melt processing multiphase ceramics was studied. • Phase evolution order upon cooling was hollandite → perovskite → zirconolite → TiO{sub 2}. • Hollandite phases co-exists with a liquid phase at temperatures >1500 °C. • Zirconolite crystallization is complex and involves intermediate phases.

  4. Under-ice melt ponds in the Arctic

    Science.gov (United States)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  5. Nucleation, Melting Behaviour and Mechanical Properties of Poly(L ...

    African Journals Online (AJOL)

    Compared to the neat PLLA, with the addition of 0.8 % NA, the crystallization temperature (To) increase from 105.88 °C to 125.57 °C and the crystallization enthalpy(ΔHc) increase from 1.379 J g–1 to 31.63 J g–1 at a cooling rate of 1 °C min–1 from melt. In the presence of NA, the melting behaviour of PLLA was affected ...

  6. Constraints from olivine-hosted melt inclusions in primitive magmas

    OpenAIRE

    Jennings, Eleanor S.; Gibson, Sally A.; Maclennan, John; Heinonen, Jussi S.

    2017-01-01

    We present major and trace element compositions of 154 re-homogenised olivine-hosted melt inclusions found in primitive rocks (picrites and ferropicrites) from the Mesozoic Paraná–Etendeka and Karoo Continental Flood Basalt (CFB) provinces. The major element compositions of the melt inclusions, especially their Fe/Mg ratios, are variable and erratic, and attributed to the re-homogenisation process during sample preparation. In contrast, the trace element compositions of both the picrite and f...

  7. Effect of Melting Techniques on Ductile Iron castings Properties

    OpenAIRE

    Bockus, S.; Dobrovolskis, A.

    2005-01-01

    The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-...

  8. Melting Pot Influences on Secondary English Curriculum Policy

    Directory of Open Access Journals (Sweden)

    Allison Skerrett

    2009-01-01

    Full Text Available This article explores how racial, cultural, and linguistic diversity are addressed in secondary English curriculum policy in Massachusetts, U.S.A. Data are analyzed through theories of the sociology of knowledge and the myth of the United States melting pot. Analysis revealed that curriculum policy privileged Eurocentric literature and the English language and adhered to a melting pot ideology. The article considers how the international educational policy movement toward post-standardization may afford greater responsiveness to diversity.

  9. Active Gripper for Hot Melt Joining of Micro Components

    OpenAIRE

    Rathmann, Sven; Raatz, Annika; Hesselbach, Jürgen

    2010-01-01

    International audience; Precision assembly of hybrid micro systems requires not only a high precision handling and adjusting of the parts but also a highly accurate and fast bonding technique. In this field adhesive technology is one of the major joining techniques. At the Collaboration Research Center 516, a batch process based on a joining technique using hot melt adhesives was developed. This technique allows the coating of micro components with hot melt in a batch. The coating process is ...

  10. Determination of Reactive Surface Area of Melt Glass

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier,W.L.; Roberts, S.; Smith, D.K.; Hulsey, S.; Newton,L.; Sawvel, A.; Bruton, C.; Papelis, C.; Um, W.; Russell, C. E.; Chapman,J.

    2000-10-01

    A comprehensive investigation of natural and manmade silicate glasses, and nuclear melt glass was undertaken in order to derive an estimate of glass reactive surface area. Reactive surface area is needed to model release rates of radionuclides from nuclear melt glass in the subsurface. Because of the limited availability of nuclear melt glasses, natural volcanic glass samples were collected which had similar textures and compositions as those of melt glass. A flow-through reactor was used to measure the reactive surface area of the analog glasses in the presence of simplified NTS site ground waters. A measure of the physical surface area of these glasses was obtained using the BET gas-adsorption method. The studies on analog glasses were supplemented by measurement of the surface areas of pieces of actual melt glass using the BET method. The variability of the results reflect the sample preparation and measurement techniques used, as well as textural heterogeneity inherent to these samples. Based on measurements of analog and actual samples, it is recommended that the hydraulic source term calculations employ a range of 0.001 to 0.01 m{sup 2}/g for the reactive surface area of nuclear melt glass.

  11. Solidification microstructures in single-crystal stainless steel melt pools

    Energy Technology Data Exchange (ETDEWEB)

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  12. Melting and casting of FeAl-based cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K. [Oak Ridge National Lab., TN (United States); Wilkening, D. [Columbia Falls Aluminum Co., Columbia Falls, MT (United States); Liebetrau, J.; Mackey, B. [AFFCO, L.L.C., Anaconda, MT (United States)

    1998-11-01

    The FeAl-based intermetallic alloys are of great interest because of their low density, low raw material cost, and excellent resistance to high-temperature oxidation, sulfidation, carburization, and molten salts. The applications based on these unique properties of FeAl require methods to melt and cast these alloys into complex-shaped castings and centrifugal cast tubes. This paper addresses the melting-related issues and the effect of chemistry on the microstructure and hardness of castings. It is concluded that the use of the Exo-Melt{trademark} process for melting and the proper selection of the aluminum melt stock can result in porosity-free castings. The FeAl alloys can be melted and cast from the virgin and revert stock. A large variation in carbon content of the alloys is possible before the precipitation of graphite flakes occurs. Titanium is a very potent addition to refine the grain size of castings. A range of complex sand castings and two different sizes of centrifugal cast tubes of the alloy have already been cast.

  13. Manipulation of double-stranded DNA melting by force

    Science.gov (United States)

    Singh, Amit Raj; Granek, Rony

    2017-09-01

    By integrating elasticity—as described by the Gaussian network model—with bond binding energies that distinguish between different base-pair identities and stacking configurations, we study the force induced melting of a double-stranded DNA (dsDNA). Our approach is a generalization of our previous study of thermal dsDNA denaturation [J. Chem. Phys. 145, 144101 (2016), 10.1063/1.4964285] to that induced by force at finite temperatures. It allows us to obtain semimicroscopic information about the opening of the chain, such as whether the dsDNA opens from one of the ends or from the interior, forming an internal bubble. We study different types of force manipulation: (i) "end unzipping," with force acting at a single end base pair perpendicular to the helix, (ii) "midunzipping," with force acting at a middle base pair perpendicular to the helix, and (iii) "end shearing," where the force acts at opposite ends along the helix. By monitoring the free-energy landscape and probability distribution of intermediate denaturation states, we show that different dominant intermediate states are stabilized depending on the type of force manipulation used. In particular, the bubble state of the sequence L60B36, which we have previously found to be a stable state during thermal denaturation, is absent for end unzipping and end shearing, whereas very similar bubbles are stabilized by midunzipping, or when the force location is near the middle of the chain. Ours results offer a simple tool for stabilizing bubbles and loops using force manipulations at different temperatures, and may implicate on the mechanism in which DNA enzymes or motors open regions of the chain.

  14. Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning

    Science.gov (United States)

    Ryerson, F. J.; Hess, P. C.

    1978-01-01

    In order to evaluate the influence of a silicate liquid structure on mineral-liquid partitioning, element partitioning data is obtained for coexisting anhydrous immiscible granitic and ferrobasaltic magmas. It is found that: (1) mineral-liquid distribution coefficients indicate the competition of crystal and liquid for cation incorporation, (2) increased polymerization of the residual liquid during crystal-liquid fractionation increases the mineral-liquid distribution coefficients for high-charge-density cations, (3) incompatible element ratios of low- and high-charge-density cations may vary during crystal-liquid fractionation because of changes in the melt composition and structure, (4) relative solubilities of REE's in melts do not vary with melt polymerization, (5) the changes of Sm/Eu ratios during crystal-liquid fractionation depend on the melt composition, and (6) minor components and volatiles can significantly influence the silicate melt structure and the mineral-liquid distribution coefficients.

  15. Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas

    Science.gov (United States)

    Jennings, Eleanor S.; Gibson, Sally A.; Maclennan, John; Heinonen, Jussi S.

    2017-01-01

    We present major and trace element compositions of 154 re-homogenised olivine-hosted melt inclusions found in primitive rocks (picrites and ferropicrites) from the Mesozoic Paraná-Etendeka and Karoo Continental Flood Basalt (CFB) provinces. The major element compositions of the melt inclusions, especially their Fe/Mg ratios, are variable and erratic, and attributed to the re-homogenisation process during sample preparation. In contrast, the trace element compositions of both the picrite and ferropicrite olivine-hosted melt inclusions are remarkably uniform and closely reflect those of the host whole-rocks, except in a small subset affected by hydrothermal alteration. The Paraná-Etendeka picrites and ferropicrites are petrogenetically related to the more evolved and voluminous flood basalts, and so we propose that compositional homogeneity at the melt inclusion scale implies that the CFB parental mantle melts were well mixed prior to extensive crystallisation. The incompatible trace element homogeneity of olivine-hosted melt inclusions in Paraná-Etendeka and Karoo primitive magmatic rocks has also been identified in other CFB provinces and contrasts with findings from studies of basalts from mid-ocean ridges (e.g. Iceland and FAMOUS on the Mid Atlantic Ridge), where heterogeneity of incompatible trace elements in olivine-hosted melt inclusions is more pronounced. We suggest that the low variability in incompatible trace element contents of olivine-hosted melt inclusions in near-primitive CFB rocks, and also ocean island basalts associated with moderately thick lithosphere (e.g. Hawaii, Galápagos, Samoa), may reflect mixing along their longer transport pathways during ascent and/or a temperature contrast between the liquidus and the liquid when it arrives in the crust. These thermal paths promote mixing of mantle melts prior to their entrapment by growing olivine crystals in crustal magma chambers. Olivine-hosted melt inclusions of ferropicrites from the Paran

  16. Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas

    OpenAIRE

    Jennings, ES; Gibson, Sally Anne; Maclennan, John Campbell; Heinonen, JS

    2016-01-01

    We present major and trace element compositions of 154 re-homogenised olivine-hosted melt inclusions found in primitive rocks (picrites and ferropicrites) from the Mesozoic Paraná–Etendeka and Karoo Continental Flood Basalt (CFB) provinces. The major element compositions of the melt inclusions, especially their Fe/Mg ratios, are variable and erratic, and attributed to the re-homogenisation process during sample preparation. In contrast, the trace element compositions of both the picrite and f...

  17. Distinguishing snow and ice melt contributions using daily MODIS and a temperature index melt model in the Hunza River basin

    Science.gov (United States)

    Rittger, Karl; Brodzik, Mary J.; Racoviteanu, Adina; Barrett, Andrew; Jodha Kalsa, Siri; Armstrong, Richard

    2015-04-01

    In mountainous regions of High Asia, snow and ice both contribute to streamflow, but few in-situ observations exist that can help distinguish between the two components of melt. Our goal is to develop a melt model that can distinguish between seasonal snow and glacier ice melt at a continental scale. We use a combination of MODIS-derived data sets to distinguish three surface types at daily resolution: 1) exposed glacier ice, 2) snow over ice and 3) snow over land. We use MODICE to map glacier area and then distinguish areas of exposed ice from snow over ice using thresholds on MODIS-derived albedo or grain size products. We map snow over land using the daily MODSCAG fractional snow cover product, and use the time series of three surface types as input to a temperature index melt model. The model outputs melt volumes from exposed glacier ice, snow over ice and snow over land, respectively. To partition the glacier surface into exposed glacier ice versus snow over ice, we threshold MODIS albedo or grain size based on higher-resolution Landsat 8 imagery. During the ablation period, the high elevation mid-latitude snowpack receives intense incoming solar radiation resulting in surface albedo decreases and snow grain growth. We compare differences in modeled melt using two albedo products (Terra Daily Snow Cover algorithm (MOD10A1) and Surface Reflectance BRDF/Albedo (MCD43)) and two grain size products (MODIS Snow Covered Area and Grain Size Model (MODSCAG) and MODIS Dust Radiative Forcing in Snow (MODDRFS)). For the Hunza basin, a sub-basin of the Upper Indus basin, for the years 2001-2004, the modeled melt from exposed glacier ice accounts for: 26-44% (MOD10A1 albedo), 24-32% (MCD43 albedo), 17-28% (MODSCAG grain size) or 23-26% (MODDRFS grain size) of the combined melt from all three surface areas.

  18. Surface melt dominates Alaska glacier mass balance

    Science.gov (United States)

    Larsen Chris F,; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  19. Transient induced tungsten melting at the Joint European Torus (JET)

    Science.gov (United States)

    Coenen, J. W.; Matthews, G. F.; Krieger, K.; Iglesias, D.; Bunting, P.; Corre, Y.; Silburn, S.; Balboa, I.; Bazylev, B.; Conway, N.; Coffey, I.; Dejarnac, R.; Gauthier, E.; Gaspar, J.; Jachmich, S.; Jepu, I.; Makepeace, C.; Scannell, R.; Stamp, M.; Petersson, P.; Pitts, R. A.; Wiesen, S.; Widdowson, A.; Heinola, K.; Baron-Wiechec, A.; Contributors, JET

    2017-12-01

    Melting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes—power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15{}\\circ slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that

  20. Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st Century

    OpenAIRE

    Jing Ming; Yaqiang Wang; Zhencai Du; Tong Zhang; Wanqin Guo; Cunde Xiao; Xiaobin Xu; Minghu Ding; Dongqi Zhang; Wen Yang

    2015-01-01

    Background The widely distributed glaciers in the greater Himalayan region have generally experienced rapid shrinkage since the 1850s. As invaluable sources of water and because of their scarcity, these glaciers are extremely important. Beginning in the twenty-first century, new methods have been applied to measure the mass budget of these glaciers. Investigations have shown that the albedo is an important parameter that affects the melting of Himalayan glaciers. Methodology/Principal Finding...

  1. Comparative analysis of the structure of palladium-based bulk metallic glasses prepared by treatment of melts with flux

    Science.gov (United States)

    Louzguine-Luzgin, D. V.; Bazlov, A. I.; Churyumov, A. Yu.; Georgarakis, K.; Yavari, A. R.

    2013-10-01

    A comparative analysis has been presented of structural features of palladium-based bulk metallic glasses prepared by argon gas casting into a copper mold after treatment of melts with a flux and studied using X-ray synchrotron radiation. The radial distribution functions have been calculated. The short-range order (in the first and second coordination shells) and the medium-range order (from the third to several subsequent coordination shells) in atomic arrangement have been analyzed.

  2. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    Science.gov (United States)

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  3. Dehydration melting of nominally anhydrous mantle: The primacy of partitioning

    Science.gov (United States)

    Hirschmann, Marc M.; Tenner, Travis; Aubaud, Cyril; Withers, A. C.

    2009-09-01

    The onset of dehydration melting of nominally anhydrous peridotite can be calculated by combination of appropriate mineral/melt partition coefficients for H 2O, DHmin/liq, and a parameterization of the influence of the H 2O content of melt on the solidus of peridotite. Thermodynamic models predict that olivine/melt partitioning, DHol/liq, should increase with pressure, and though direct experimental determinations of DHol/liq from 0.5 to 3 GPa do not show the predicted pressure dependence, storage capacity experiments suggest increases in DHol/liq at pressures above 8 GPa and particularly at 12-14 GPa, near the base of the upper mantle. Calculations using experimental values of DHmin/liq and ignoring the likely effect of pressure on DHol/liq indicate that DHperid/liq increases from 0.006 at 1 GPa up to 0.009 at the onset of garnet stability at 2.8 GPa and then diminishes with further increases in pressure owing to decreasing pyroxene mode and decreasing Al in pyroxene. Because these calculations ignore the likely pressure effect on DHol/liq, they represent minima. Incipient partial melts of mantle with 100 ppm H 2O have 1-2 wt.% H 2O from 1 to 5 GPa, and this modest H 2O concentration limits the stability of hydrous partial melts to temperatures approaching the dry solidus. The influence of H 2O on the melting behavior of peridotite can be quantified using a simple cryoscopic approach benchmarked against experiments on hydrous peridotite. Along a mantle adiabat with a potential temperature of 1323 °C, calculations indicate that dehydration partial melting of peridotite with 100 ppm H 2O begins at 80 km, or about 15 km deeper than would be the case for truly dry peridotite. However, decreases in DHperid/liq related to the onset of the stability of garnet mean that mantle modestly enriched in H 2O will begin melting significantly deeper, i.e., at 104 km for 200 ppm H 2O. In the low velocity zone (LVZ) beneath mature (50 Ma) oceanic lithosphere, incipient partial

  4. Antarctic sub-shelf melt rates via SIMPEL

    Science.gov (United States)

    Reese, Ronja; Albrecht, Torsten; Winkelmann, Ricarda

    2017-04-01

    Ocean-induced melting below ice-shelves is currently suspected to be the dominant cause of mass loss from the Antarctic Ice Sheet (e.g. Depoorter et al. 2013). Although thinning of ice shelves does not directly contribute to sea-level rise, it may have a significant indirect impact through the potential of ice shelves to buttress their adjacent ice sheet. Hence, an appropriate representation of sub-shelf melt rates is essential for modelling the evolution of ice sheets with marine terminating outlet glaciers. Due to computational limits of fully-coupled ice and ocean models, sub-shelf melt rates are often parametrized in large-scale or long-term simulations (e.g. Matin et al. 2011, Pollard & DeConto 2012). These parametrizations usually depend on the depth of the ice shelf base or its local slope but do not include the physical processes in ice shelf cavities. Here, we present the Sub Ice shelf Melt Potsdam modEL (SIMPEL) which mimics the first-order large-scale circulation in ice shelf cavities based on an ocean box model (Olbers & Hellmer, 2010), implemented in the Parallel Ice Sheet Model (Bueler & Brown 2009, Winkelmann et al. 2011, www.pism-docs.org). In SIMPEL, ocean water is transported at depth towards the grounding line where sub-shelf melt rates are highest, and then rises along the shelf base towards the calving front where refreezing can occur. Melt rates are computed by a description of ice-ocean interaction commonly used in high-resolution models (McPhee 1992, Holland & Jenkins 1999). This enables the model to capture a wide-range of melt rates, comparable to the observed range for Antarctic ice shelves (Rignot et al. 2013).

  5. 7 CFR 58.318 - Butter, frozen or plastic cream melting machines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Butter, frozen or plastic cream melting machines. 58... Service 1 Equipment and Utensils § 58.318 Butter, frozen or plastic cream melting machines. Shavers, shredders or melting machines used for rapid melting of butter, frozen or plastic cream shall be of...

  6. Partial melting and refertilization of mantle peridotites in the Xigaze ophiolite: constraints from whole-rock and mineral geochemistry

    Science.gov (United States)

    Zhang, Chang; Liu, Chuan-Zhou; Wu, Fu-Yuan

    2016-04-01

    Ophiolites along the E-W trending Yarlung-Tsangpo Suture (YTS), which separates the Indian plate from the Eurasian plate, have been regarded as relics of the Neo-Tethyan Ocean. The Xigaze ophiolite in the central YTS has been extensively studied. One of the most intact crust-mantle sequences is preserved in the Luqu (or Beimarang) ophiolite. Mantle peridotites of the Luqu ophiolite are dominated by harzburgites, with 55-65% olivine, 30-40% orthopyroxene, 1-5% clinopyroxene and 1-3% spinel. Minor lherzolites and dunites are also outcropped, and the mode contents of clinopyroxene in lherzolite can be locally up to 10%. This contribution presented whole-rock major element and mineral chemistry including EMPA (Electronic MicroProbe Analysis) and clinopyroxene in situ trace elements. Whole rock Al2O3 (0.23-2.05%) and CaO (0.41-1.7%) contents are very low but show obviously inverse correlation with MgO (39.7-47.0%), indicating that the Luqu peridotites are residues of variable degrees of partial melting. This is supported by the Cr# (=molar Cr/(Cr+Al)) values of spinels which vary from 0.36 to 0.69. Meanwhile, the high Cr# values of spinels and homogenously high Mg# (= molar Mg/(Mg+Fe2+)) values of olivines, clustering at 0.91, indicate high degrees of partial melting. The low REE (rare earth elements) concentrations and chondrite-normalized distribution partterns of clinopyroxenes reflect ultra-depleted natures, with most showing LREE (light REEs) and MREE (medium REEs) depleted patterns and strong fractionations between MREEs and HREE (heavy REEs) ((Sm/Yb)N: 0.021-0.184). Based on the observations and analyses, a model of two-stage melting process was proposed that the primitive mantle underwent 2-8% melting in garnet stability field which was followed by 10-15% melting in spinel stability field. The clinopyroxenes in some peridotites exhibit obvious enrichment of somestrongly incompatible elements (such as sodium and LREE) that reveal later refertilization process for

  7. Activity composition relationships in silicate melts

    Energy Technology Data Exchange (ETDEWEB)

    Glazner, A.F.

    1990-01-01

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  8. Oxygen exchange and ice melt measured at the ice-water interface by eddy correlation

    Directory of Open Access Journals (Sweden)

    M. H. Long

    2012-06-01

    correlation technique produced high temporal resolution O2 fluxes and ice melt rates that were measured without disturbing the in situ environmental conditions while integrating over an area of approximately 50 m2 which incorporated the highly variable activity and spatial distributions of sea-ice communities.

  9. Nonequilibrium molecular dynamics study of ring polymer melts under shear and elongation flows: A comparison with their linear analogs

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeongha; Kim, Jinseong; Baig, Chunggi, E-mail: cbaig@unist.ac.kr [Department of Chemical Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2016-07-15

    We present detailed results for the structural and rheological properties of unknotted and unconcatenated ring polyethylene (PE) melts under shear and elongation flows via direct atomistic nonequilibrium molecular dynamics simulations. Short (C{sub 78}H{sub 156}) and long (C{sub 400}H{sub 800}) ring PE melts were subjected to planar Couette flow (PCF) and planar elongational flow (PEF) across a wide range of strain rates from linear to highly nonlinear flow regimes. The results are analyzed in detail through a direct comparison with those of the corresponding linear polymers. We found that, in comparison to their linear analogs, ring melts possess rather compact chain structures at or near the equilibrium state and exhibit a considerably lesser degree of structural deformation with respect to the applied flow strength under both PCF and PEF. The large structural resistance of ring polymers against an external flow field is attributed to the intrinsic closed-loop configuration of the ring and the topological constraint of nonconcatenation between ring chains in the melt. As a result, there appears to be a substantial discrepancy between ring and linear systems in terms of their structural and rheological properties such as chain orientation, the distribution of chain dimensions, viscosity, flow birefringence, hydrostatic pressure, the pair correlation function, and potential interaction energies. The findings and conclusions drawn in this work would be a useful guide in future exploration of the characteristic dynamical and relaxation mechanisms of ring polymers in bulk or confined systems under flowing conditions.

  10. The role of coal pollution in intensification of the fast ice melting in the Sveabukta bay (Van Mijenfjorden, Spitsbergen

    Directory of Open Access Journals (Sweden)

    P. V. Bogorodsky

    2014-01-01

    Full Text Available The processes of heat- and mass transfer in Sveabukta Bay sea ice cover during Spring 2010 the particularity of which is conditioned by pollution from open coal storages situated on shore have been studied. Typical features of land fast ice radiation and thermodynamic properties were described and estimates for vertical distribution of coal particles concentration within ice body were obtained. The coal particles were shown to serve as tracers of transfer processes in the sea ice thickness. It was revealed that the integral value of the absorbed solar radiation (shortwave radiation balance is virtually independent of the features of the incoming solar radiation spectrum and the spectral dependence of the reflectivity of the ice cover of various contaminations. For computation of fast ice evolution characteristics the conceptual thermodynamic model which describes melting processes in the obvious form was used. According to calculations the melt pond forming on dirty ice under typical meteorological conditions begins one – three weeks earlier than that of clear ice depending on degree of contamination characterized by reflective ability of underlying surface. With decreasing of albedo the temperature of melt rises despite the fact that due to time difference the melting of clear ice occurs at higher temperatures.

  11. Relationship of Powder Feedstock Variability to Microstructure and Defects in Selective Laser Melted Alloy 718

    Science.gov (United States)

    Smith, T. M.; Kloesel, M. F.; Sudbrack, C. K.

    2017-01-01

    Powder-bed additive manufacturing processes use fine powders to build parts layer by layer. For selective laser melted (SLM) Alloy 718, the powders that are available off-the-shelf are in the 10-45 or 15-45 micron size range. A comprehensive investigation of sixteen powders from these typical ranges and two off-nominal-sized powders is underway to gain insight into the impact of feedstock on processing, durability and performance of 718 SLM space-flight hardware. This talk emphasizes an aspect of this work: the impact of powder variability on the microstructure and defects observed in the as-fabricated and full heated material, where lab-scale components were built using vendor recommended parameters. These typical powders exhibit variation in composition, percentage of fines, roughness, morphology and particle size distribution. How these differences relate to the melt-pool size, porosity, grain structure, precipitate distributions, and inclusion content will be presented and discussed in context of build quality and powder acceptance.

  12. Berezinskii–Kosterlitz–Thouless transition and two-dimensional melting

    Science.gov (United States)

    Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu D.; Tsiok, E. N.

    2017-12-01

    The main aspects of the theory of phase transitions in two-dimensional degenerate systems (Berezinskii–Kosterlitz–Thouless, or BKT, transitions) are reviewed in detail, including the transition mechanism, the renormalization group as a tool for describing the transition, and how the transition scenario can possibly depend on the core energy of topological defects (in particular, in thin superconducting films). Various melting scenarios in two-dimensional systems are analyzed, and the current status of actual experiments and computer simulations in the field is examined. Whereas in three dimensions melting always occurs as a single first-order transition, in two dimensions, as shown by Halperin, Nelson, and Young, melting via two continuous BKT transitions with an intermediate hexatic phase characterized by quasi-long-range orientational order is possible. But there is also a possibility for a first-order phase transition to occur. Recently, one further melting scenario, different from that occurring in the Berezinskii–Kosterlitz–Thouless–Halperin–Nelson–Young theory, has been proposed, according to which a solid can melt in two stages: a continuous BKT-type solid–hexatic transition and then a first-order hexatic-phase–isotropic-liquid phase transition. Particular attention is given to the melting scenario as a function of the potential shape and to the random pinning effect on two-dimensional melting. In particular, it is shown that random pinning can alter the melting scenario fundamentally in the case of a first-order transition. Also considered is the melting of systems with potentials having a negative curvature in the repulsion region–potentials that are successfully used in describing the anomalous properties of water in two dimensions. This review is an extended version of the report “Old and new in the physics of phase transitions” presented at the scientific session of the Physical Sciences Division of the Russian Academy of

  13. Melt-quenched glasses of metal-organic frameworks

    DEFF Research Database (Denmark)

    Bennett, T.D.; Yue, Yuanzheng; Li, P.

    2016-01-01

    Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand the phen......Crystalline solids dominate the field of metal−organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand...... the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting...... of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal−ligand connectivity of crystalline MOFs, which connects their mechanical...

  14. State of the art melting at VW Kassel

    Energy Technology Data Exchange (ETDEWEB)

    Knoedler, G.

    1989-01-27

    Describes the aluminium melting plant of Volkswagen Works, which supplies the pressure diecasting and gravity diecasting foundry with molten aluminium. The demand for 180 tonnes of molten aluminium per day is met using a centrally controlled fully automatic melting and holding system which has reduced costs while improving the working environment. The plant has 2 coreless 10 tonne Junker mains frequency induction melting furnaces which can melt approximately 4,500 kg/hr. The use of industrial-scale computers in conjunction with programmable logic control (PLC) systems enable continual check up and monitoring of material flow. Each of the independent production units of the chain is equipped with a PLC which is interfaced with the master computer in the central control room, and also permits independent operation of the given operating unit. The operation of the melting and holding facility is optimised by measuring and storing operational data in the PLC. The following operational practices are possible: hand operation, independent automatic operation of each furnace without master computer, and automatic operation with master computer.

  15. Pure, transparent-melting starch esters: synthesis and characterization.

    Science.gov (United States)

    Liebert, Tim; Nagel, Matilde C V; Jordan, Torsten; Heft, Andreas; Grünler, Bernd; Heinze, Thomas

    2011-09-01

    Long chain starch esters were prepared by a new method using molten imidazole as solvent for the biopolymer. The advantage is the simplicity of the reaction mixture. Imidazole is acting not only as solvent, but also as reagent and base. The reaction succeeds via the imidazolide, which is formed in situ with an acid chloride. It yields highly pure derivatives, as could be shown by NMR spectroscopy and elemental analysis. No hints for desoxychloro substituents or other impurities could be found. The high quality of the products prepared is responsible for the occurrence of colorless melts. Although DSC measurements show a variety of thermal transitions, the formation of melts in the range of 40 to 255 °C could be observed with a hot stage microscope. The melting behavior can be adjusted by the type of ester moiety and the amount of ester functions introduced. In case of starch palmitates completely transparent melts are obtained within two distinct DS regions namely around 1.5 and 2.2 to 3.0. Upon cooling the melts form homogeneous films on different supports including glass. They show good adhesion and should therefore be a suitable basic material for the preparation of composites like laminated glass. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rheological Characterization of Ethylcellulose-Based Melts for Pharmaceutical Applications.

    Science.gov (United States)

    Baldi, Francesco; Ragnoli, Juri; Zinesi, Davide; Bignotti, Fabio; Briatico-Vangosa, Francesco; Casati, Federica; Loreti, Giulia; Melocchi, Alice; Zema, Lucia

    2017-04-01

    Rheological characterization of ethylcellulose (EC)-based melts intended for the production, via micro-injection moulding (μIM), of oral capsular devices for prolonged release was carried out. Neat EC, plasticized EC and plasticized EC containing solid particles of a release modifier (filler volume content in the melt around 30%) were examined by capillary and rotational rheometry tests. Two release modifiers, differing in both chemical nature and particle geometry, were investigated. When studied by capillary rheometry, neat EC appeared at process temperatures as a highly viscous melt with a shear-thinning characteristic that progressively diminished as the apparent shear rate increased. Thus, EC as such could not successfully be processed via μIM. Plasticization, which induces changes in the material microstructure, enhanced the shear-thinning characteristic of the melt and reduced considerably its elastic properties. Marked wall slip effects were noticed in the capillary flow of the plasticized EC-based melts, with or without release modifier particles. The presence of these particles brought about an increase in viscosity, clearly highlighted by the dynamic experiments at the rotational rheometer. However, it did not impair the material processability. The thermal and rheological study undertaken would turn out a valid guideline for the development of polymeric materials based on pharma-grade polymers with potential for new pharmaceutical applications of μIM.

  17. Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

    OpenAIRE

    Minglu Liu; Wang, Robert Y.

    2015-01-01

    Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of col...

  18. The Transverse Rupture Strength in Ti-6Al-4V Alloy Manufactured by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Lai Pang-Hsin

    2015-01-01

    Full Text Available The objective of this study was to investigate the transverse rupture strength and apparent hardness of selective laser melted Ti-6Al-4V alloys manufactured in the vertical (V and horizontal (H directions. The microstructure and the distribution of alloy elements were examined by optical microscope and electron probe microanalysis, respectively. The results show that the columnar α′ grains are formed along the building direction, and the elemental distributions of Ti, Al, and V are homogeneous in the alloy. The building direction does not sufficiently affect the density and apparent hardness. However, the transverse rupture strengths (TRS are obviously dominated by the building directions investigated in this study. The TRS of an H specimen is significantly superior to that of a V specimen by 48%. This phenomenon can be mainly attributed to the presence of disc-shaped pores.

  19. The Gutenberg Discontinuity: Melt at the Lithosphere-Asthenosphere Boundary

    Science.gov (United States)

    Schmerr, Nicholas

    2012-03-01

    The lithosphere-asthenosphere boundary (LAB) beneath ocean basins separates the upper thermal boundary layer of rigid, conductively cooling plates from the underlying ductile, convecting mantle. The origin of a seismic discontinuity associated with this interface, known as the Gutenberg discontinuity (G), remains enigmatic. High-frequency SS precursors sampling below the Pacific plate intermittently detect the G as a sharp, negative velocity contrast at 40- to 75-kilometer depth. These observations lie near the depth of the LAB in regions associated with recent surface volcanism and mantle melt production and are consistent with an intermittent layer of asthenospheric partial melt residing at the lithospheric base. I propose that the G reflectivity is regionally enhanced by dynamical processes that produce melt, including hot mantle upwellings, small-scale convection, and fluid release during subduction.

  20. Properties of sugar-based low-melting mixtures

    Science.gov (United States)

    Fischer, Veronika; Kunz, Werner

    2014-05-01

    Physico-chemical properties of ternary sugar-based low-melting mixtures were determined. Choline chloride, urea and glucose or sorbitol, serving as sugars, were blended in various compositions. The refractive index, density, viscosity, decomposition temperatures and glass transition temperatures were measured. Further, the influence of temperature and water content was investigated. The results show that the mixtures are liquid below room temperature and the viscosity and density are dependent on the temperature and composition. Moreover, the viscosity decreases with increasing water content. These mixtures are biodegradable, low toxic, non-volatile, non-reactive with water and can be accomplished with low-cost materials. In consideration of these advantages and a melting point below room temperature, these low-melting mixtures can be a good alternative to ionic liquids as well as environmentally unfriendly and toxic solvents.

  1. Lattice Boltzmann model for melting with natural convection

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Christian [Department of Earth and Planetary Science, University of California - Berkeley, 307 McCone Hall 4767, Berkeley, CA 94720-4767 (United States)], E-mail: chuber@seismo.berkeley.edu; Parmigiani, Andrea [Computer Science Department, University of Geneva, 24, Rue du General Dufour, 1211 Geneva 4 (Switzerland)], E-mail: andrea.parmigiani@terre.unige.ch; Chopard, Bastien [Computer Science Department, University of Geneva, 24, Rue du General Dufour, 1211 Geneva 4 (Switzerland)], E-mail: Bastien.Chopard@cui.unige.ch; Manga, Michael [Department of Earth and Planetary Science, University of California - Berkeley, 177 McCone Hall 4767, Berkeley, CA 94720-4767 (United States)], E-mail: manga@seismo.berkeley.edu; Bachmann, Olivier [Department of Earth and Space Science, University of Washington, Johnson Hall 070, Seattle WA 98195-1310 (United States)], E-mail: bachmano@u.washington.edu

    2008-10-15

    We develop a lattice Boltzmann method to couple thermal convection and pure-substance melting. The transition from conduction-dominated heat transfer to fully-developed convection is analyzed and scaling laws and previous numerical results are reproduced by our numerical method. We also investigate the limit in which thermal inertia (high Stefan number) cannot be neglected. We use our results to extend the scaling relations obtained at low Stefan number and establish the correlation between the melting front propagation and the Stefan number for fully-developed convection. We conclude by showing that the model presented here is particularly well-suited to study convection melting in geometrically complex media with many applications in geosciences.

  2. Organochlorine compounds in ice melt water from Italian Alpine rivers.

    Science.gov (United States)

    Villa, Sara; Negrelli, Christian; Finizio, Antonio; Flora, Onelio; Vighi, Marco

    2006-01-01

    Organochlorine chemicals (OCs) (dichlorodiphenyltrichloroethanes, hexachlorocyclohexanes, and hexachlorobenzene) were measured in ice melt water from five glaciers in the Italian Alps. Even though the data collected may not be sufficient for a precise description of persistent organic pollutant release patterns from glacier melting, they have, however, highlighted the potential for surface water contamination. Concentrations were of the same order of magnitude in all glacial streams, indicating comparable contamination levels in different glaciers of the alpine region. OC levels in nonglacial springs sampled in the same areas are usually lower. Even if differences during the melting season (from spring to autumn) have been identified, a regular seasonal pattern in OC concentrations was not observed. Risk for the aquatic environment is excluded through direct water exposure, but it is likely to occur through biomagnification and secondary poisoning exposure.

  3. THE PHYSICS OF MELTING IN EARLY MODERN LOVE POETRY

    Directory of Open Access Journals (Sweden)

    Andrea Brady

    2014-12-01

    Full Text Available Melting is a familiar trope in early modern erotic poetry, where it can signify the desire to transform the beloved from icy chastity through the warmth of the lover’s passion. However, this Petrarchan convention can be defamiliarised by thinking about the experiences of freezing and melting in this period. Examining melting in the discourses of early modern meteorology, medicine, proverb, scientific experiments, and preservative technologies, as well as weather of the Little Ice Age and the exploration of frozen hinterlands, this essay shows that our understanding of seeming constants – whether they be the physical properties of water or the passions of love – can be modulated through attention to the specific histories of cognition and of embodiment.

  4. Dezincing induction melting system; Datsuaen yudo yokai system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-10

    It was made possible to dezinc scraps of galvanized sheet iron without pretreatment in the process of melting/heat-insulating inside the induction furnace. The Company delivered a dezincing induction melting system to a company. The system is composed of high frequency induction furnace (5t, 3,500kW, 500Hz), pressure reduced dust collector, power source, and controller. The characteristics are as follows. 1) The dezincing effect was improved by fastening flow velocity on the surface of molten iron. Further, by reducing static pressure of molten iron, the penetration of zinc into the furnace refractory is suppressed. 2) By shutting the furnace tight and decompressing/melting, the dezincing effect is markedly increased. 3) By operating the pressure reduced dust collector, high-purity zinc oxide is caught, and the recovered dust can be reduced in volume down to about 50%. (NEDO)

  5. Heat and mass transfer in the melting of frost

    CERN Document Server

    Mohs, William F

    2015-01-01

    This Brief is aimed at engineers and researchers involved in the refrigeration industry: specifically, those interested in energy utilization and system efficiency. The book presents what the authors believe is the first comprehensive frost melting study involving all aspects of heat and mass transfer. The volume’s description of in-plane and normal digital images of frost growth and melting is also unique in the field, and the digital analysis technique offers an advantage over invasive measurement methods. The scope of book’s coverage includes modeling and experimentation for the frost formation and melting processes. The key sub-specialties to which the book are aimed include refrigeration system analysis and design, coupled heat and mass transfer, and phase-change processes.

  6. Process to manufacture effervescent tablets: air forced oven melt granulation.

    Science.gov (United States)

    Yanze, F M; Duru, C; Jacob, M

    2000-12-01

    In the present study we apply melt granulation in an air forced oven, called "are forced oven melt granulation" to the single-stage manufacture of effervescent granules consisting of anhydrous citric acid (43.2%) and sodium bicarbonate (56.8%) in order to make tablets. This study established that process parameters such as concentration of PEG 6000, residence time in the air forced oven, fineness of PEG 6000, fineness of the initial effervescent mix and efficiency of two lubricants markedly influenced several granule and tablet characteristics. The granules ready to be compressed into tablets were stable for 7 days at 60% RH/18 degrees C. It is a dry, simple, rapid, effective, economical, reproducible process particularly well suited to the manufacture of effervescent granules which are easily compressed into effervescent tablets. Of all the formulations tested, only formulations B2 and E2 melt granulated for 30 minutes gave tablets which had optimum compression characteristics without processing problems during compression.

  7. Melting Phase Transitions and Catalytic Activity of Bilayer Gold Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Yanting Wang; Sergey N. Rashkeev

    2009-06-01

    Recent experiments in oxidation catalysis indicate that bilayer gold nanostructures exhibit exceptional catalytic activity at ambient temperatures. Here we use molecular dynamics simulations to show that an unsupported bilayer gold nanocluster has a broad and mild second-order melting phase transition. The transition is characterized by an interplay between the intralayer and interlayer diffusion processes, and the transition temperature region ranges from about 300 K to 1200 K. We suggest that surface thermal instabilities of partially melted bilayer gold nanoclusters result in their exceptional catalytic activity at ambient temperatures. For gold nanoclusters with more than two layers, the melting transition temperature range narrows, and the activity of the cluster decreases due to the suppression of surface fluctuations. These results systematically explain experimental observations showing that catalytic ability of gold nanoclusters decreases with size.

  8. Estimating the melting point, entropy of fusion, and enthalpy of ...

    Science.gov (United States)

    The entropies of fusion, enthalies of fusion, and melting points of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modeled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modeled as a function of the entropy of fusion, boiling point, and fexibility of the molecule. The melting point model is the enthlapy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapor pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol-1K-1. The enthalpy model has a RMS of 4.87 kJ mol-1. The melting point model has a RMS of 54.4°C. Published in the journal, SAR and QSAR in Environmental Research

  9. Oxidation effects during corium melt in-vessel retention

    Energy Technology Data Exchange (ETDEWEB)

    Almyashev, V.I.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Sulatsky, A.A.; Vitol, S.A. [Alexandrov Scientific-Research Institute of Technology (NITI), Sosnovy Bor (Russian Federation); Gusarov, V.V. [Ioffe Institute, St. Petersburg (Russian Federation); Bechta, S. [Royal Institute of Technology (KHT), Stockholm (Sweden); Barrachin, M.; Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), St Paul lez Durance (France); Bottomley, P.D., E-mail: paul.bottomley@ec.europa.eu [Joint Research Centre, Institut für Transurane (ITU), Karlsruhe (Germany); Fischer, M. [AREVA GmbH, Erlangen (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI (France)

    2016-08-15

    Highlights: • Corium–steel interaction tests were re-examined particularly for transient processes. • Oxidation of corium melt was sensitive to oxidant supply and surface characteristics. • Consequences for vessel steel corrosion rates in severe accidents were discussed. - Abstract: In the in-vessel corium retention studies conducted on the Rasplav-3 test facility within the ISTC METCOR-P project and OECD MASCA program, experiments were made to investigate transient processes taking place during the oxidation of prototypic molten corium. Qualitative and quantitative data have been produced on the sensitivity of melt oxidation rate to the type of oxidant, melt composition, molten pool surface characteristics. The oxidation rate is a governing factor for additional heat generation and hydrogen release; also for the time of secondary inversion of oxidic and metallic layers of corium molten pool.

  10. Thermodynamic analysis of the elements interaction in liquid copper melts

    Energy Technology Data Exchange (ETDEWEB)

    Samoylova, O V; Mikhaylov, G G [South Urals State University, 76 Lenin avenue, Chelyabinsk, 454080 (Russian Federation); Trofimov, E A [Zlatoust Branch, South Urals State University, 16 Turgenev street, Zlatoust, 456209 (Russian Federation)], E-mail: tea7510@rambler.ru

    2008-02-15

    Interaction between impurity elements (in particular, Si, Ni and O) dissolved in copper melt has been investigated experimentally and theoretically. The X-rays microanalysis has been used to investigate reactions products in the melt. Experimental results have allowed to determine conditions of various complex compounds formation. In particular, interaction between Si and Ni in copper melt leading to formation of double compounds (silicides) has been discovered. Phase diagram of Cu{sub 2}O-NiO system has been calculated. Calculation results are in good agreement with literary data. Activities a{sub Cu2O} and a{sub NiO} have been calculated. The deviation of activity from Raoult law is negative for Cu{sub 2}O and positive for NiO.

  11. Operating and environmental performances of commercial-scale waste gasification and melting technology.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Fujinaga, Yasuka; Kajiyama, Hirohisa; Ishida, Yoshihiro

    2013-11-01

    Gasification technologies for waste processing are receiving increased interest. A lot of gasification technologies, including gasification and melting, have been developed in Japan and Europe. However, the flue gas and heavy metal behaviors have not been widely reported, even though those of grate furnaces have been reported. This article reports flue gas components of gasification and melting technology in different flue gas treatment systems. Hydrogen chloride concentrations at the inlet of the bag filter ranged between 171 and 180 mg Nm(-3) owing to de-acidification by limestone injection to the gasifier. More than 97.8% of hydrogen chlorides were removed by a bag filter in both of the flue gas treatment systems investigated. Sulfur dioxide concentrations at the inlet of the baghouse were 4.8 mg Nm(-3) and 12.7 mg Nm(-3), respectively. Nitrogen oxides are highly decomposed by a selective catalytic reduction system. Owing to the low regenerations of polychlorinated dibenzo-p-dioxins and furans, and the selective catalytic reduction system, the concentrations of polychlorinated dibenzo-p-dioxins and furans at the stacks were significantly lower without activated carbon injection. More than 99% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 97.6% and 96.5%, respectively. Most high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that the slag is stable and contains few harmful heavy metals, such as lead. The heavy metal distribution behaviors are almost the same regardless of the compositions of the processed waste. These results indicate that the gasification of municipal solid waste constitutes an ideal approach to environmental conservation and resource recycling.

  12. Hard magnetic properties and coercivity mechanism of melt-spun Misch Metal-Fe-B alloy

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Ningtao; Luo, Yang, E-mail: eluoyang@foxmail.com; Yan, Wenlong; Yuan, Chao; Yu, Dunbo; Sun, Liang; Lu, Shuo; Li, Hongwei; Zhang, Hongbin

    2017-09-01

    Highlights: • Melt-spun MM{sub 13}Fe{sub 81}B{sub 6} alloy shows that the distributions of the La, Ce, Pr, Nd, Fe and B elements is uniformly distributed, and the grain size is in the range of 30–40 nm, it can be seen that Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content, and the grain size is around 40–50 nm in MM{sub 16}Fe{sub 78}B{sub 6}. • There is a significant formation of MMFe{sub 2} with abundant Pr and La, and a small amount of Ce and Nd enriched at the interfacial region in MM{sub 16}Fe{sub 78}B{sub 6}, thus an inhomogeneous region was formed. It is considered that the inhomogeneous region is effective in increasing the coercivity. • The optimum-quenched MM{sub 13}Fe{sub 81}B{sub 6} alloy have been shown to exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which is superior to anisotropic ferrite magnets of 4.5 MGOe. - Abstract: Magnetic and structural properties of Misch Metal (MM)-Fe-B alloys, were examined in the melt-spun ribbons. Melt-spun MM-Fe-B samples were prepared at the surface velocities of 18–30 m/s. Crystalline structure and their room-temperature magnetization characteristics were analyzed, and the optimum surface velocity of 20 m/s and nominal composition of MM{sub 13}Fe{sub 81}B{sub 6} were obtained. Microstructural analyses indicate that the grain size is approximately 30–50 nm in the alloys with the optimum characteristics. In the MM{sub 16}Fe{sub 78}B{sub 6} alloys, Pr-rich and La-rich phases concentrated on grain boundaries, which resulted in the coercivity augment with the increase of MMFe{sub 2} content. Dependence of coercivity on applied magnetic field suggested that the mechanism of coercivity in moderate MM-content samples was inhomogeneous domain wall pinning type. The melt-spun ribbons in the optimum condition exhibit a coercive force of 6.9 kOe and an energy product of 8.5 MGOe, which can be used as

  13. Present features and future prospects in titanium melting and casting; Titan no yokai/chuzo no genjo to shorai tenbo

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, A. [Sumitomo Sitix of Amagasaki Inc., Osaka (Japan)

    1998-01-20

    Present state of titanium melting and future prospect are described. The sponge titanium, scrap and mother alloy are mentioned as the raw material. The vacuum arc remelting (VAR) method, nonconsumable electrode melting and hearth melting are outlined as the titanium melting method. The process outline, electrode manufacturing, operation and control, coaxial electricity supply system, melting rate control by weighing of electrode, and magnetic stirring of molten metal are explained on VAR, the major melting method. Features of the hearth melting are explained. On casting, applications, melting methods for titanium casting, and mold materials are explained. On the developmental titanium melting methods, electroslag remelting (ESR), continuous cold crucible melting (CCCM) and overflow method are shown. On the future prospects of titanium melting and casting, requirement for the next generation melting method replacing VAR is cost reduction; potential technology is mentioned. As high quality melting and casting, potentiality of hearth melting and ESR is described. 9 refs., 7 figs.

  14. PRODUCTION OF MELTED BUTTER WITH INCREASED STORAGE STABILITY

    Directory of Open Access Journals (Sweden)

    L. V. Golubeva

    2014-01-01

    Full Text Available The paper presents data on melted butter preservation research. It has been conducted analysis of the components applied and their positive impact on the butter storage. To last belong sodium chloride staying the formation of free fatty acids and also additionally contributable lactatecontaining additive. Laboratory studies were carried out in a certain way. A half of each batch of butter were remelted in two versions with the addition of sodium chloride up to 4 % by weight of the butter to precipitate proteins and without the addition of the salt. Food additive with the properties of animal origin products shelf life increase were supplemented into the melted butter. The rest manufacturing operations were performed by the traditional method of melted butter production. It was evaluated the organoleptic characteristics and investigated fat phase acidity and fat peroxide number in the samples of melted butter with a month interval. Also were determinated the transparency of test samples. All test samples in molten state were transparent, they didn't contain suspended particles. Results of the score were summarized and on the base of the total assessment were determinated quality of the product. The carried out researches of samples of melted butter have shown the full conformance with requirements of GOST R 52971 on physicochemical parameters: the weight fraction of fat – 99 %, the weight fraction of moisture – 1 %. It was established that in the samples without food additive maximum values of acid number were received in a month of storage; and in the samples with additive - in 3 months of storage. It was determinated that in samples of butter rented without salting peroxide number increases more intensively than in other test samples. It has been determined increased storage stability of melted butter with salt and food additive.

  15. Dendrite Growth Kinetics in Undercooled Melts of Intermetallic Compounds

    Directory of Open Access Journals (Sweden)

    Dieter M. Herlach

    2015-09-01

    Full Text Available Solidification needs an undercooling to drive the solidification front. If large undercoolings are achieved, metastable solid materials are solidified from the undercooled melt. Containerless processing provides the conditions to achieve large undercoolings since heterogeneous nucleation on container walls is completely avoided. In the present contribution both electromagnetic and electrostatic levitation are applied. The velocity of rapidly advancing dendrites is measured as a function of undercooling by a High-Speed-Camera. The dendrite growth dynamics is investigated in undercooled melts of intermetallic compounds. The Al50Ni50 alloy is studied with respect to disorder trapping that leads to a disordered superlattice structure if the melt is undercooled beyond a critical undercooling. Disorder trapping is evidenced by in situ energy dispersive diffraction using synchrotron radiation of high intensity to record full diffraction pattern on levitated samples within a short time interval. Experiments on Ni2B using different processing techniques of varying the level of convection reveal convection-induced faceting of rapidly growing dendrites. Eventually, the growth velocity is measured in an undercooled melt of glass forming Cu50Zr50 alloy. A maximum in the growth velocity–undercooling relation is proved. This is understood by the fact that the temperature dependent diffusion coefficient counteracts the thermodynamic driving force for rapid growth if the temperature of the undercooled melt is approaching the temperature regime above the glass transition temperature. The analysis of this result allows for determining the activation energy of atomic attachment kinetics at the solid–liquid interface that is comparable to the activation energy of atomic diffusion as determined by independent measurements of the atomic diffusion in undercooled Cu50Zr50 alloy melt.

  16. Pressure-Temperature History of Shock-Induced Melt Veins

    Science.gov (United States)

    Decarli, P. S.; Sharp, T. G.; Xie, Z.; Aramovich, C.

    2002-12-01

    Shock-induced melt veins that occur in chondrites commonly contain metastable high-pressure phases such as (Mg,Fe)SiO3-perovskite, akimotoite, ringwoodite, and majorite, that crystallized from the melt at high pressure. The metastable high-pressure minerals invert rapidly to stable low-pressure phases if they remain at high temperatures after the pressure is released. Although shock compression mechanisms permit rapid heating of the vein volume, adiabatic cooling on decompression is negligible because of the relative incompressibility of the material in the vein. The presence of metastable mantle minerals in a vein thus implies that the vein was quenched via thermal conduction to adjacent cooler material at high pressure. The quenching time of the vein can be determined from ordinary heat flow calculations (Langenhorst and Poirier, 2000), given knowledge of the vein dimensions and the temperatures at the time of vein formation in both the vein and the surrounding material. We have calculated a synthetic Hugoniot for the Tenham L6 chondrite to estimate bulk post-shock and shock temperatures as a function of shock pressure. Assuming a superliquidus temperature of 2500°C for the melt vein, we use a simple thermal model to investigate then thermal histories of melt veins during shock. The variation in crystallization assemblages within melt veins can be explained in terms of variable cooling rates. Survival of (Mg,Fe)SiO3-perovskite in Tenham (Tomioka and Fugino, 1997) requires that melt veins cooled to below 565°C before pressure release, which further constrains shock pressure, duration of the pressure pulse and cooling histories.

  17. Partial structure factors reveal atomic dynamics in metallic alloy melts

    Science.gov (United States)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Voigtmann, Th.; Kordel, T.; Hansen, T. C.; Meyer, A.

    2017-07-01

    We investigate the dynamical decoupling of the diffusion coefficients of the different components in a metallic alloy melt, using a combination of neutron diffraction, isotopic substitution, and electrostatic levitation in Zr-Ni melts. We show that excess Ni atoms can diffuse more freely in a background of saturated chemical interaction, causing their dynamics to become much faster and thus decoupled than anticipated from the interparticle interactions. Based on the mode-coupling theory of the glass transition, the averaged structure as given by the partial static structure factors is able to explain the observed dynamical behavior.

  18. The Properties of Ammonium Dinitramine (ADN): Part 2: Melt Casting

    Science.gov (United States)

    Hahma, A.; Edvinsson, H.; Östmark, H.

    2010-04-01

    A melt casting technique for ammonium dinitramine (ADN) and ADN/aluminum was developed. ADN proved relatively easy to cast, when 1% of magnesium oxide was used as a stabilizer and crystallization kernels. Densities of ADN/MgO 99/1 were 92 to 97% of theoretical mean density (TMD) and those of ADN/Al/MgO 64/35/1 were between 95 and 99% of TMD. Sedimentation of Al in the melt was prevented and the particle wetting was ensured by selecting a suitable particle size for Al. No gelling agents or other additives were used. The casting process and factors influencing it are discussed.

  19. A lower-melting-point solder alloy for surface mounts

    Science.gov (United States)

    McCormack, M. T.; Degani, Y.; Chen, H. S.; Gesick, W. R.

    1996-05-01

    Significant manufacturing cost reductions can be realized with lower-temperature surface mount processing by increasing yields and using less expensive components and boards. A lower-melting-point solder alloy (nominal composition Sn-41.75Pb-8Bi0.5Ag) has been developed that enables significant reductions in peak reflow temperatures during surface-mount assembly. The solder alloy is compatible with standard Pb-Sn surface finishes, melts within the temperature range of ≈166-172°C,andhas promising mechanical properties.

  20. On barium oxide solubility in barium-containing chloride melts

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V. [Ural Federal Univ., Yekaterinburg (Russian Federation). Inst. of High Temperature Electrochemistry

    2016-11-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl{sub 2}-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl{sub 2}-MCl systems.

  1. Dense Pure Tungsten Fabricated by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Dianzheng Wang

    2017-04-01

    Full Text Available Additive manufacturing using tungsten, a brittle material, is difficult because of its high melting point, thermal conductivity, and oxidation tendency. In this study, pure tungsten parts with densities of up to 18.53 g/cm3 (i.e., 96.0% of the theoretical density were fabricated by selective laser melting. In order to minimize balling effects, the raw polyhedral tungsten powders underwent a spheroidization process before laser consolidation. Compared with polyhedral powders, the spherical powders showed increased laser absorptivity and packing density, which helped in the formation of a continuous molten track and promoted densification.

  2. Physical mechanism of grain refinement in solidification of undercooled melts

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, M.; Karma, A.; Eckler, K.; Herlach, D.M. (Institut fuer Raumsimulation, Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, D-51140 Koeln (Germany) Physics Department, Northeastern University, Boston, Massachusetts 02115 (United States))

    1994-09-05

    It is proposed that the widely observed transitions in solidification of undercooled melts from a coarse grained dendritic to a grain refined equiaxed microstructure result from the fragmentation of dendrites by remelting during the period following recalescence where the inter-dendritic melt solidifies. This mechanism is supported by the experimental demonstration in Cu-Ni alloys that the transition undercoolings vary with cooling rate in a way which is relatively well described quantitatively by a simple fragmentation model. The latter also predicts the occurrence of two transitions, both of which are observed.

  3. Dislocations and melting in two and three dimensions

    DEFF Research Database (Denmark)

    Tallon, Jeffery L.

    1980-01-01

    Comments are presented on the recent theories of two-dimensional melting which envisage melting as proceeding via two second-order transitions comprising dislocation dipole dissociation followed by disclination dipole dissociation. It is suggested that if the configurational entropy is properly...... included, the model system may jump discontinuously from a volume below the dislocation transition to a volume above the disclination transition so that both transitions are virtual and are hidden in the first-order discontinuity. A reinterpretation of the recent molecular-dynamics simulation of two...

  4. Effect of Melting Techniques on Ductile Iron castings Properties

    Directory of Open Access Journals (Sweden)

    Bockus, S.

    2006-01-01

    Full Text Available The study was designed to investigate the effects of the charge, melting conditions, nodularizing and inoculation on the ductile iron castings properties. Results showed that the temperature and holding time of the melt in an induction furnace and the intensity of spheroidizing effect on the carbon and residual magnesium contents in the ductile iron castings. The same grade of ductile iron may be obtained using different chemical compositions. The castings of ductile iron will be ferritic as-cast only when large amount of pig iron in the charge and in addition some-steps inoculating treatment are used.

  5. Cloud-Induced Stabilization of Greenland Surface Melt

    Science.gov (United States)

    Wang, W.; Zender, C. S.; van As, D.; Smeets, P.; van den Broeke, M. R.

    2016-12-01

    Surface melt and mass loss of the Greenland ice sheet (GrIS) may play crucial roles in global climate change due to its large fresh water storage and positive feedbacks. Complemented by clear-sky simulations from a radiative transfer model, we use measurements from 30+ automatic weather stations (AWSs) to estimate the strong and most variable contribution to Greenland's surface energy budget: the cloud radiative effects (CREs). AWSs are the only in-situ data source for long term surface energy budget studies across the GrIS. The primary bias in its radiation measurements stem from station tilt caused by spatially heterogeneous snow melt, snow compaction, and glacier dynamics. Over all AWSs on GrIS, hourly absolute biases in insolation can reach up to 200 W/m2, and insolation on fewer than 40% of clear days peaks within ±0.5 hr of the true solar noon time. We developed and used the Retrospective, Iterative, Geometry-Based (RIGB) tilt-correction method to identify and remove per-station mean-absolute biases that average 18 W/m2 over GrIS during melt seasons. We demonstrate using the tilt-adjusted radiation that surface albedo, among other environmental factors and cloud properties, determines the net CRE, a competition between shortwave shading and longwave heating. At stations where surface albedo is high and close to cloud albedo, shortwave shading is suppressed and longwave heating dominates. At stations where albedo is low (e.g., due to temperature-induced snow metamorphism and/or melt), shading effect increases faster than greenhouse effect, driving net CRE toward cooling. We found that a 0.57 albedo threshold distinguishes areas of positive from negative CREs with 99% accuracy. The cooling effect intensifies at lower albedo. During the extensive surface melt across GrIS in 2012, clouds exerted anomalously strong cooling in the southern ablation zone, and only climatological-mean warming in the accumulation zone. Clouds reduced more than promoted surface melt

  6. Melting line of Krypton in extreme thermodynamic regimes

    Directory of Open Access Journals (Sweden)

    Giuffre', E

    2007-01-01

    Full Text Available We have performed extensive computer simulations of the thermodynamic and structural properties of the krypton rare gas modeled by the modified Buckingham exponential-6 interatomic potential. Using a new set of potential parameters, we have found a good agreement with the room temperature equation of state at very high pressure obtained by diamond anvil cell experiments. Moreover, the melting line of the model has been estimated through the Lindemann criterion; the agreement with the low-pressure experiments is excellent, whereas at higher pressure, the model poorly reproduces the typical softening of the experimental melting curve.

  7. Evolution of Shock Melt Compositions in Lunar Agglutinates

    Science.gov (United States)

    Vance, A. M.; Christoffersen, R.; Keller, L. P.

    2015-01-01

    Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during smaller-scale (mostly micrometeorite) impacts. Agglutinate formation is a key space weathering process under which the optically-active component of nanophase metallic Fe (npFe(sup 0)) is added to the lunar regolith. Here we have used energy-dispersive X-ray (EDX) compositional spectrum imaging in the SEM to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principle chemical components contributing to the shock melt compositional variations.

  8. West Greenland ice sheet melt lake observations and modeling

    Science.gov (United States)

    Bryzgis, G.; Box, J. E.

    2005-12-01

    This study examines the spatial and temporal variability of supraglacial melt lakes over the western ablation zone of the Greenland ice sheet. Based on mid-lake automatic weather station surface energy budget measurements, automatic camera imagery, and inflatable boat measurements, we derive lake volume estimates from daily 250 m MODIS imagery for this region. We investigate the correlation of the timing and location of lake water volume and correlation with local-scale climate anomalies from Polar MM5 regional climate model output. Implications for water supply to melt-induced ice sheet acceleration are discussed.

  9. Studies on melt-water-structure interaction during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Dinh, T.N.; Okkonen, T.J.; Bui, V.A.; Nourgaliev, R.R.; Andersson, J. [Royal Inst. of Technology, Div. of Nucl. Power Safety, Stockholm (Sweden)

    1996-10-01

    Results of a series of studies, on melt-water-structure interactions which occur during the progression of a core melt-down accident, are described. The emphasis is on the in-vessel interactions and the studies are both experimental and analytical. Since, the studies performed resulted in papers published in proceedings of the technical meetings, and in journals, copies of a set of selected papers are attached to provide details. A summary of the results obtained is provided for the reader who does not, or cannot, venture into the perusal of the attached papers. (au).

  10. Isothermal Gas assisted displacement of a polystyrene melt

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Rasmussen, Henrik K.

    2007-01-01

    Isothermal gas displacements of a polystyrene melt (shaped as circular cylinder with a radius of 2.5mm) placed inside a circular steel annulus were performed. A flow valve ensures a constant flow rate and rotational symmetric flow during the displacement. The experiments show an increase in the s......Isothermal gas displacements of a polystyrene melt (shaped as circular cylinder with a radius of 2.5mm) placed inside a circular steel annulus were performed. A flow valve ensures a constant flow rate and rotational symmetric flow during the displacement. The experiments show an increase...

  11. Expanding the Materials Palette for Selective Laser Melting of Metals

    OpenAIRE

    Kempen, Karolien

    2015-01-01

    Selective Laser Melting (SLM) is an Additive Ma nufacturing technique in which a product is built up in a layer-by-layer fashion, by melting me tal powder particles using a high power laser. It enables the production of complex threedimens ional parts with high density. As SLM is a re latively new manufacturing process, many obstacles have to be overcome and the goal of this wor k is to address some of the process ’ limitations and mainly to broaden the mate rials palette. Four different ...

  12. One atmosphere melting experiments on ilmenite basalt 12008

    Science.gov (United States)

    Rhodes, J. M.; Lofgren, G. E.; Smith, D. P.

    1979-01-01

    An evaluation of a crystal-fractionation model for Apollo 12 ilmenite basalts with melting experiments under controlled oxygen fugacities is reported. The crystallization sequence including olivine, chromium spinel, and pigeonite phases was determined, showing that the changes in melt composition are dominated by olivine crystallization and the decrease in MgO with a corresponding increase in CaO, Al2O3, and TiO2. It is concluded that the bulk composition of the ilmenite basalts was established by crystallization of olivine and minor spinel prior to the onset of pyroxene and plagioclase.

  13. Petrology and Wavespeeds in Central Tibet Indicate a Partially Melted Mica-Bearing Crust

    Science.gov (United States)

    Hacker, B. R.; Ritzwoller, M. H.; Xie, J.

    2013-12-01

    S-wave speeds and Vp/Vs ratios in the middle to deep crust of Tibet are best explained by a partially melted, mica-bearing middle to lower crust with a subhorizontal to gently dipping foliation. Surface-wave tomography [e.g., Yang et al., 2012; Xie et al., 2013] shows that the central Tibetan Plateau (the Qiangtang block) is characterized by i) slow S-wave speeds of 3.3-3.5 km/s at depths from 20-25 km to 45-50 km, ii) S-wave radial anisotropy of at least 4% (Vsh > Vsv) with stronger anisotropy in the west than the east [Duret et al., 2010], and iii) whole-crust Vp/Vs ratios in the range of 1.73-1.78 [Xu et al., 2013]. The depth of the Curie temperature for magnetite inferred from satellite magnetic measurements [Alsdorf and Nelson, 1999], the depth of the α-β quartz transition inferred from Vp/Vs ratios [Mechie et al., 2004], and the equilibration pressures and temperatures of xenoliths erupted from the mid-deep crust [Hacker et al., 2000] indicate that the thermal gradient in Qiangtang is steep, reaching 1000°C at 30-40 km depth. This thermal gradient crosses the dehydration-melting solidi for crustal rocks at 20-30 km depth, implying the presence or former presence of melt in the mid-deep crust. These temperatures do not require the wholesale breakdown of mica at these depths, because F and Ti can stabilize mica to at least 1300°C [Dooley and Patino Douce, 1996]. Petrology suggests, then, that the Qiangtang middle to deep crust consists of a mica-bearing residue from which melt has been extracted or is being extracted. Wavespeeds calculated for mica-bearing rocks with a subhorizontal to gently dipping foliation and minor silicate melt are the best match to the wavespeeds and anisotropy observed by seismology. Alsdorf, D., and D. Nelson, The Tibetan satellite magnetic low: Evidence for widespread melt in the Tibetan crust?, Geology, 27, 943-946, 1999. Dooley, D.F., and A.F. Patino Douce, Fluid-absent melting of F-rich phlogopite + rutile +quartz, American

  14. Peculiarities of single track formation from TI6AL4V alloy at different laser power densities by selective laser melting

    Directory of Open Access Journals (Sweden)

    Yadroitsava, I.

    2015-11-01

    Full Text Available This paper describes the geometrical characteristics of single tracks manufactured by selective laser melting (SLM at different laser powers (20-170 W and scanning speeds (0.1-2.0 m/s. Simulation of temperature distribution during processing is carried out. A conclusion about the optimal process parameters and peculiarities of selective laser melting of Ti6Al4V alloy at low and high laser powers and scanning speeds is reached. The analysis of temperature fields creates opportunities to build parts with the desired properties by using SLM.

  15. Size effect in the melting and freezing behaviors of Al/Ti core-shell nanoparticles using molecular dynamics simulations

    Science.gov (United States)

    Jin-Ping, Zhang; Yang-Yang, Zhang; Er-Ping, Wang; Cui-Ming, Tang; Xin-Lu, Cheng; Qiu-Hui, Zhang

    2016-03-01

    The thermal stability of Ti@Al core/shell nanoparticles with different sizes and components during continuous heating and cooling processes is examined by a molecular dynamics simulation with embedded atom method. The thermodynamic properties and structure evolution during continuous heating and cooling processes are investigated through the characterization of the potential energy, specific heat distribution, and radial distribution function (RDF). Our study shows that, for fixed Ti core size, the melting temperature decreases with Al shell thickness, while the crystallizing temperature and glass formation temperature increase with Al shell thickness. Diverse melting mechanisms have been discovered for different Ti core sized with fixed Al shell thickness nanoparticles. The melting temperature increases with the Ti core radius. The trend agrees well with the theoretical phase diagram of bimetallic nanoparticles. In addition, the glass phase formation of Al-Ti nanoparticles for the fast cooling rate of 12 K/ps, and the crystal phase formation for the low cooling rate of 0.15 K/ps. The icosahedron structure is formed in the frozen 4366 Al-Ti atoms for the low cooling rate. Project supported by the National Natural Science Foundation of China (Grant No. 21401064), the Science & Technology Development Program of Henan Province, China (Grant No. 142300410282), and the Program of Henan Educational Committee, China (Grant No. 13B140986).

  16. distribution network

    African Journals Online (AJOL)

    user

    This paper examined the acidic properties of distribution transformer oil insulation in service at Jericho distribution network Ibadan, Nigeria. Five oil samples each from six distribution transformers (DT1, DT2, DT3, DT4 and DT5) making a total of thirty samples were taken from different installed distribution transformers all ...

  17. Experiments on melt-rock reaction in the shallow mantle wedge

    Science.gov (United States)

    Mitchell, Alexandra L.; Grove, Timothy L.

    2016-12-01

    This experimental study simulates the interaction of hotter, deeper hydrous mantle melts with shallower, cooler depleted mantle, a process that is expected to occur in the upper part of the mantle wedge. Hydrous reaction experiments ( 6 wt% H2O in the melt) were conducted on three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. Reaction coefficients were calculated for each experiment to determine the effect of temperature and starting bulk composition on final melt compositions and crystallizing assemblages. The experiments used to construct the melt-wall rock model closely approached equilibrium and experienced crystallizing assemblages are dunites, harzburgites, and lherzolites (as a function of temperature). When the ratio of deeper melt to overlying mantle is 70:30, the crystallizing assemblage is a wehrlite. This shows that wehrlites, which are observed in ophiolites and mantle xenoliths, can be formed by large amounts of deeper melt fluxing though the mantle wedge during ascent. In all cases, orthopyroxene dissolves in the melt, and olivine crystallizes along with pyroxenes and spinel. The amount of reaction between deeper melts and overlying mantle, simulated here by the three starting compositions, imposes a strong influence on final melt compositions, particularly in terms of depletion. At the lowest melt/mantle ratios, the resulting melt is an extremely depleted Al-poor, high-Si andesite. As the fraction of melt to mantle increases, final melts resemble primitive basaltic andesites found in arcs globally. An important element ratio in mantle lherzolite composition, the Ca/Al ratio, can be significantly elevated through shallow mantle melt-wall rock reaction. Wall rock temperature is a key variable; over a span of lherzolite. Together, the experimental phase equilibria, melt compositions, and reaction coefficients provide a framework for understanding how melt-wall rock reaction occurs in the natural

  18. Three-dimensional solidification and melting using magnetic field control

    Science.gov (United States)

    Dulikravich, George S.; Ahuja, Vineet

    1993-01-01

    A new two-fluid mathematical model for fully three dimensional steady solidification under the influence of an arbitrary acceleration vector and with or without an arbitrary externally applied steady magnetic field have been formulated and integrated numerically. The model includes Joule heating and allows for separate temperature dependent physical properties within the melt and the solid. Latent heat of phase change during melting/solidification was incorporated using an enthalpy method. Mushy region was automatically captured by varying viscosity orders of magnitude between liquidus and solidus temperature. Computational results were obtained for silicon melt solidification in a parallelepiped container cooled from above and from a side. The results confirm that the magnetic field has a profound influence on the solidifying melt flow field thus changing convective heat transfer through the boundaries and the amount and shape of the solid accrued. This suggests that development of a quick-response algorithm for active control of three dimensional solidification is feasible since it would require low strength magnetic fields.

  19. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    In the present study, the vorticity of melt motion in the keyhole and weld pool has been evaluated in case of high power CO2 laser beam welding. The circulation of vorticity is obtained as a function of Reynolds number for a given keyhole volume which is linked to Mach number variation. The shear stress and thermal fluxes ...

  20. Melt pool vorticity in deep penetration laser material welding

    Indian Academy of Sciences (India)

    Abstract. In the present study, the vorticity of melt motion in the keyhole and weld pool has been evaluated in case of high power CO2 laser beam welding. The circulation of vorticity is obtained as a function of Reynolds number for a given keyhole volume which is linked to Mach number variation. The shear stress and ther-.

  1. A review of corneal melting following kerato-refractive surgery.

    Science.gov (United States)

    Hodge, Christopher; Chan, Colin; Bali, Shveta Jindal; Sutton, Gerard

    2013-01-01

    Corneal melting is a rare complication that may occur following a number of different types of surgery. Keratolysis may lead to scarring, irregular astigmatism, photophobia and decreased vision. This article reviews the incidence, pathophysiology and treatment of this condition in kerato-refractive surgery. © 2012 The Authors; Clinical and Experimental Optometry © 2012 Optometrists Association Australia.

  2. Effect of cooling rate on crystallization in an aluminophosphosilicate melt

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; Yue, Yuanzheng

    2011-01-01

    The effect of cooling rate on spontaneous crystallization behavior of an alumino-phospho-silicate melt is studied by means of differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and viscometry. The cooling rates of 160, 2100 and 12000 K/s are attained by subjecting...

  3. Melting of sodium clusters in electron irradiated NaCl

    NARCIS (Netherlands)

    Sugonyako, AV; Vainshtein, DI; Turkin, AA; den Hartog, HW; Bukharaev, AA

    2004-01-01

    In this paper we present the results of the first systematic investigation of the geometrical properties of sodium nanoclusters in NaCl using the combined results of differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The melting behaviour of the sodium nanoclusters which had

  4. Utilization of steel melting electric arc furnace slag for development ...

    Indian Academy of Sciences (India)

    Administrator

    Steel melting through electric arc furnace route is gaining popularity due to its many advantages, but generates a new waste, electric arc furnace slag, which is getting accumulated and land/mine filling and road construction are the only ... is a key factor, in such constructions as breakwater blocks, foundations, shoring walls, ...

  5. Melting of heterogeneous vortex matter: The vortex 'nanoliquid'

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 66; Issue 1. Melting of heterogeneous vortex matter: The vortex ... By sweeping the applied magnetic field, the number of vortices in the nanodroplets is varied continuously from a few to several hundred. Upon cooling, the caged nanodroplets freeze into ordered ...

  6. Free energy changes on freezing and melting ductile metals

    NARCIS (Netherlands)

    Lynden-Bell, R.M.; Duijneveldt, J.S. van; Frenkel, D.

    1993-01-01

    The variation in Landau free energy while melting platinum was investigated at a number of temperatures using computer simulation with a model potential. The technique used was to apply a biasing potential in a Monte Carlo simulation with umbrella sampling. From the Landau free energy curves one can

  7. Melting mechanism in monolayers of flexible rod-shaped molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1992-01-01

    The melting of butane and hexane monolayers adsorbed on a graphite basal-plane surface has been studied by molecular-dynamics simulations and experimentally by neutron diffraction. The simulation results are qualitatively consistent with the observed diffraction patterns and suggest a general...

  8. Hardfacing of duplex stainless steel using melting and diffusion processes

    Science.gov (United States)

    Lailatul, H.; Maleque, M. A.

    2017-03-01

    Duplex stainless steel (DSS) is a material with high potential successes in many new applications such as rail car manufacturing, automotive and chemical industries. Although DSS is widely used in various industries, this material has faced wear and hardness problems which obstruct a wider capability of this material and causes problems in current application. Therefore, development of surface modification has been introduced to produce hard protective layer or coating on DSS. The main aim of this work is to brief review on hard surface layer formation on DSS using melting and diffusion processes. Melting technique using tungsten inert gas (TIG) torch and diffusion technique using gas nitriding are the effective process to meet this requirement. The processing route plays a significant role in developing the hard surface layer for any application with effective cost and environmental factors. The good understanding and careful selection of processing route to form products are very important factors to decide the suitable techniques for surface engineering treatment. In this paper, an attempt is also made to consolidate the important research works done on melting and diffusion techniques of DSS in the past. The advantages and disadvantages between melting and diffusion technique are presented for better understanding on the feasibility of hard surface formation on DSS. Finally, it can be concluded that this work will open an avenue for further research on the application of suitable process for hard surface formation on DSS.

  9. Pervasive upper mantle melting beneath the western US

    Science.gov (United States)

    Hier-Majumder, Saswata; Tauzin, Benoit

    2017-04-01

    We report from converted seismic waves, a pervasive seismically anomalous layer above the transition zone beneath the western US. The layer, characterized by an average shear wave speed reduction of 1.6%, spans over an area of ∼ 1.8 ×106 km2 with thicknesses varying between 25 and 70 km. The location of the layer correlates with the present location of a segment of the Farallon plate. This spatial correlation and the sharp seismic signal atop of the layer indicate that the layer is caused by compositional heterogeneity. Analysis of the seismic signature reveals that the compositional heterogeneity can be ascribed to a small volume of partial melt (0.5 ± 0.2 vol% on average). This article presents the first high resolution map of the melt present within the layer. Despite spatial variations in temperature, the calculated melt volume fraction correlates strongly with the amplitude of P-S conversion throughout the region. Comparing the values of temperature calculated from the seismic signal with available petrological constraints, we infer that melting in the layer is caused by release of volatiles from the subducted Farallon slab. This partially molten zone beneath the western US can sequester at least 1.2 ×1017 kg of volatiles, and can act as a large regional reservoir of volatile species such as H or C.

  10. Making Sense of Boiling Points and Melting Points

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 6. Making Sense of Boiling Points and Melting Points. S Prahlada Rao Shravan Sunkada. General Article Volume 12 Issue 6 June 2007 pp 43-57. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. On the burst of branched polymer melts during inflation

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Yu, Kaijia

    2008-01-01

    Two molten low-density polyethylene melts, shaped as plates, have been inflated into a circular cylinder during isothermal conditions. Lowering the inflation rates allow the plates to be inflated into a larger volume of the cylinder before bursting. Numerical simulations of the inflations have been...

  12. Inflation of polymer melts into elliptic and circular cylinders

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Christensen, Jens Horslund; Gøttsche, Søren

    2000-01-01

    of the inflating membrane is detected by fibreoptic sensors positioned in the cylinder. The pressure difference across the inflating membrane is measured as well. Measurements were performed on a polyisobutylene melt. As the deformation in this device is highly non-uniform, the response of the material is modelled...... simulations and experimental measurements of the membrane inflation....

  13. Maleic anhydride grafting on EPDM rubber in the melt

    NARCIS (Netherlands)

    Oostenbrink, A.J.; Oostenbrink, A.J.; Gaymans, R.J.

    1992-01-01

    The grafting of maleic anhydride on a EPDM rubber was studied with a twin screw extruder. The effect of barrel temperatures, throughput, maleic anhydride concentration and peroxide concentration [bis(t-butyl peroxy isopropyl)benzene] on the degree of grafting and melt viscosity was studied. The

  14. Viscosity and volume properties of the Al-Cu melts

    Directory of Open Access Journals (Sweden)

    Kurochkin A.

    2011-05-01

    Full Text Available Temperature dependences of the kinematic viscosity v and the density ρ of Al-Cu melts were investigated in the same regime taking into account that viscometric experiments with the melts enriched with cupper have not been repeated since 1960th and densimetric measurements did not perform before at all. The first measurements were fulfilled using the method of dumping oscillation of a crucible filled in by a melt investigated. Its precision was as high as 1.5%. Density was measured using the gamma-absorption method with the accuracy of 0.2 to 0.3%. Crucibles of BeO were used in both the cases. In the course of the measurements a distinct branching of the heating and cooling curves were fixed below some temperature characteristic of each composition for most of the investigated samples. The branching temperature systematically changes with growth of cupper content. The authors believe that the effect is caused by the irreversible transition of the melts from microheterogeneous state inherited from the initial rough materials into a true solution state.

  15. Electrical conductivity and viscosity of borosilicate glasses and melts

    DEFF Research Database (Denmark)

    Ehrt, Doris; Keding, Ralf

    2009-01-01

    by impedance measurements in a wide temperature range (250 to 1450°C). The activation energies were calculated by Arrhenius plots in various temperature regions: below the glass transition temperature, Tg, above the melting point, Tl, and between Tg and Tl. Viscosity measurements were carried out...

  16. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    The startup and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 kg/mole (PS52K) and 103 kg/mole (PS103K), and for three bidisperse polystyrene melts. The bidisperse melts consist of PS103K or PS52K and a monodisperse...... (closed loop proportional regulator) using the laser in such a way that the stretch rate at the neck is kept constant. The rheometer has been described in more detail in (A. Bach, H.K. Rasmussen and O. Hassager, Journal of Rheology, 47 (2003) 429). PS390K show a decrease in the steady viscosity as a power......-law function of the elongational rate (A. Bach, K. Almdal, H.K. Rasmussen and O. Hassager, Macromolecules 36 (2003) 5174). PS52K and PS103K show that the steady viscosity has a maximum that is respectively 100% and 50% above 3 times the zero-shear-rate viscosity. The bidisperse melts show a significant...

  17. Making Sense of Boiling Points and Melting Points

    Indian Academy of Sciences (India)

    tion and dispersion forces, collectively called non-covalent inter- actions. They are attractive at distances of ~1 nm. These interac- tions have energy comparable to thermal energy, k n. T and hence are disrupted easily. They affect the bulk properties like melting point, boiling point, viscosity, surface tension, chromatographic.

  18. Resistance heated melting and holding furnaces for aluminium casting

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, R.

    1989-02-01

    Resistance heated furnaces are ideal for holding and melter/holding applications in aluminium foundries. Electric resistance bale out furnaces can be fed with liquid metal and used as holding furnaces. They are also capable of melting at rates of 150/160 kg per hour at 720C. Improvements in element material have resulted in designs capable of maximum melt rates approaching that of fuel fired furnaces. A well proven design is available utilising semi-embedded elements in 2 versions to provide minimum energy consumption at lowest capital cost. A recent development is element panels produced by a new technique and using different materials which means the elements can be fully enclosed without any loss of performance. For larger aluminium pressure diecasting with substantial bulk melting facilities, insulated box furnaces have proved to be very attractive for holding metal at the diecasting machine. Electric immersion furnaces are also beginning to be used. These have the advantage of high efficiency and improved temperature control. The article concludes by discussing the implementation of energy management systems in conjunction with electric melting, and the introduction of electric ladles for keeping aluminium hot when transferring it from bulk furnaces.

  19. Subsurface melting of nylon by friction-induced vibrations

    NARCIS (Netherlands)

    Vroegop, P.H.; Bosma, R.

    1985-01-01

    Dry sliding of nylon on steel may lead to subsurface recrystallization of the polymer. This phenomenon is described and explained by subsurface melting due to internal heating as a result of the dissipation of frictioninduced vibrations at frequencies above 10 kHz. A vibration model relating the

  20. Melt Flow and Heat Transfer in Laser Drilling

    CERN Document Server

    Yang, Youqing; Zhang, Yuwen

    2016-01-01

    During the laser drilling process the recoil pressure drives melt flow and affects the heat transfer and material removal rate. To get a more realistic picture of the melt flow, a series of differential equations are formulated here that govern the process from pre-heating to melting and evaporation. In particular, the Navier-Stokes equation governing the melt flow is solved with the use of the boundary layer theory and integral methods. Heat conduction in solid is investigated by using the classical method with the corrections that reflect the change in boundary condition from the constant heat flux to Stefan condition. The dependence of saturation temperature on the vapor pressure is taken into account by using the Clausius-Clapeyron equation. Both constantly rising radial velocity profiles and rising-fall velocity profiles are considered. The proposed approach is compared with existing ones. In spite of the assumed varying velocity profiles, the proposed model predicts that the drilling hole profiles are v...