WorldWideScience

Sample records for cryogenic turbopump bearing

  1. Mechanical design problems associated with turbopump fluid film bearings

    Science.gov (United States)

    Evces, Charles R.

    1990-01-01

    Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.

  2. Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps

    Science.gov (United States)

    SanAndres, Luis

    1998-01-01

    A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs

  3. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    Science.gov (United States)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  4. Hybrid bearings for LH2 and LO2 turbopumps

    Science.gov (United States)

    Butner, M. F.; Lee, F. C.

    1985-01-01

    Hybrid combinations of hydrostatic and ball bearings can improve bearing performance for liquid hydrogen and liquid oxygen turbopumps. Analytic studies were conducted to optimize hybrid bearing designs for the SSME-type turbopump conditions. A method to empirically determine damping coefficients was devised. Four hybrid bearing configurations were designed, and three were fabricated. Six hybrid and hydrostatic-only bearing configurations will be tested for steady-state and transient performance, and quantification of damping coefficients. The initial tests were conducted with the liquid hydrogen bearing.

  5. Lubrication of Space Shuttle Main Engine Turbopump Bearings

    Science.gov (United States)

    Gibson, Howard; Munafo, Paul (Technical Monitor)

    2001-01-01

    The Space Shuttle has three main engines that are used for propulsion into orbit. These engines are fed propellants by four turbopumps on each engine. A main element in the turbopump is the bearings supporting the rotor that spins the turbine blades and the pump impeller. These bearings are required to spin at very high speeds, support radial and thrust loads, and have high wear resistance without the benefit of lubrication. The liquid hydrogen and oxygen propellants flow through the bearings to cool the surfaces. The volatile nature of the propellants excludes any conventional means of lubrication. Lubrication for these bearings is provided by the ball separator inside the bearing. The separator is a composite material that supplies a transfer film of lubrication to the rings and balls. New separator materials and lubrication schemes have been investigated at Marshall Space Flight Center in a bearing test rig with promising results. Hybrid bearings with silicon nitride balls have also been evaluated. The use of hybrid, silicon nitride ball bearings in conjunction -with better separator materials has shown excellent results. The work that Marshall has done is being utilized in turbopumps flying on the space shuttle fleet and will be utilized in future space travel. This result of this work is valuable for all aerospace and commercial applications where high-speed bearings are used.

  6. Electromagnetic dampers for cryogenic applications

    Science.gov (United States)

    Brown, Gerald V.; Dirusso, Eliseo

    1988-01-01

    Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.

  7. Bearing technology in turbopumps; Lagerungstechnik fuer Turbopumpen. Eine naehere Betrachtung von Kugel- und Magnetlagerungen und ihre Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, Helmut; Ganswindt, Christoph [Pfeiffer Vacuum GmbH, Asslar (Germany)

    2012-06-15

    This contribution provides an overview of the development undergone by bearing technology in turbomolecular pumps or, in short, turbopumps. It not only describes which conventional bearing configurations are encountered today, but also explains the pros and cons of the various configurations. The path to using turbopumps with full magnetic bearings was paved with various difficulties in the early nineties. The concluding description of the current state of the art, with the focus on safety, reliability, user-friendliness, maintenance-free design and energy efficiency, illustrates how the development of turbopumps has undergone fundamental changes. (orig.)

  8. Evaluation of bearing configurations using the single bearing tester in liquid nitrogen

    Science.gov (United States)

    Jett, T.; Hall, P.; Thom, R.

    1991-01-01

    Various bearing configurations were tested using the Marshall Space Flight Center single bearing tester with LN2 as the cryogenic coolant. The baseline was one Rocketdyne phase one high pressure oxidizer turbopump (HPOTP) pump end 45-mm bore bearing. The bearing configurations that were tested included a Salox/M cage configuration, a silicon nitride ball configuration, an elongated cage configuration, and a Bray 601 grease configuration.

  9. Limiting critical speed response on the SSME Alternate High Pressure Fuel Turbopump (ATD HPFTP) with bearing deadband

    Science.gov (United States)

    Goggin, David G.; Darden, J. M.

    1992-01-01

    Yammamoto (1954) described the influence of bearing deadband on the critical speed response of a rotor-bearing system. Practical application of these concepts to limit critical speed response of turbopump rotors is described. Nonlinear rotordynamic analyses are used to define the effect of bearing deadband and rotor unbalance on the Space Shuttle Main Engine Alternate High Pressure Fuel Turbopump. Analysis results are used with hot fire test data to verify the presence of a lightly damped critical speed within the operating speed range. With the proper control of rotor unbalance and bearing deadband, the response of this critical speed is reduced to acceptable levels without major design modifications or additional sources of damping.

  10. Foil bearing performance in liquid nitrogen and liquid oxygen

    Science.gov (United States)

    Genge, Gary G.; Saville, Marshall; Gu, Alston

    1993-01-01

    Space transfer vehicles and other power and propulsion systems require long-life turbopumps. Rolling-element bearings used in current turbopumps do not have sufficient life for these applications. Process fluid foil bearings have established long life, with exceptional reliability, over a wide range of temperatures and fluids in many high-speed turbomachinery applications. However, actual data on bearing performance in cryogenic fluids has been minimal. The National Aeronautics and Space Administration (NASA) and AlliedSignal Aerospace Systems and Equipment (ASE) have attempted to characterize the leaf-type compliant foil bearing in oxygen and nitrogen. The work performed under a joint internal research and development program between Marshall Space Flight Center (MSFC) and ASE demonstrated that the foil bearing has load capacities of at least 266 psi in liquid oxygen and 352 psi in liquid nitrogen. In addition, the bearing demonstrated a direct damping coefficient of 40 to 50 lb-sec/in. with a damping ratio of .7 to 1.4 in. liquid nitrogen using a bearing sized for upper-stage turbopumps. With the results from this testing and the years of successful use in air cycle machines and other applications, leaf-type compliant foil bearings are ready for testing in liquid oxygen turbopumps.

  11. A study of the transient performance of annular hydrostatic journal bearings in liquid oxygen

    Science.gov (United States)

    Scharrer, J. K.; Tellier, J. G.; Hibbs, R. I.

    1992-07-01

    A test apparatus was used to simulate a cryogenic turbopump start transient in order to determine the liftoff and touchdown speed and amount of wear of an annular hydrostatic bearing in liquid oxygen. The bearing was made of sterling silver and the journal made of Inconel 718. The target application of this configuration is the pump end bearing of the Space Shuttle Main Engine High Pressure Liquid Oxygen Turbopump. Sixty-one transient cycles were performed in liquid oxygen with an additional three tests in liquid nitrogen to certify the test facility and configuration. The bearing showed no appreciable wear during the testing, and the results indicate that the performance of the bearing was not significantly degraded during the testing.

  12. Floating Seal For Turbopumps, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic engines for in-space propulsion require innovative technologies to provide long-life, lightweight, and reliable turbopump designs. One area open for...

  13. The simulation of the alternate turbopump development high pressure oxygen and fuel turbopumps for the space shuttle main engine using the Shaberth computer program

    Science.gov (United States)

    Mcdonald, Gary H.

    1988-01-01

    The Space Shuttle Main Engine (SSME) is basically comprised of a combustion chamber and nozzle, high and low pressure oxygen turbopumps and high and low pressure fuel turbopumps. In the current configuration, the high pressure fuel (HPTFP) and high pressure oxygen turbopumps (HPOTP) have experienced a history of ball bearing wear. The wear problem can be attributed to numerous factors including the hydrodynamic axial and radial loads caused by the flow of liquid oxygen and liquid hydrogen through the turbopump impellers and turbine. Also, friction effects between the rolling elements, races, and cage can create thermally induced bearing geometry changes. To alleviate some of the current configuration problems, an alternate turbopump development (ATD) was proposed. However, the ATD HPOTP and HPTFP are constrained to operate interchangeably with the current turbopumps, thus, the operation conditions must be similar. The ATD configuration features a major change in bearings used to support the integrated shaft, impeller, and turbine system. A single ball and single roller will replace the pump-end and turbine and duplex ball bearings. The Shaft-Bearing-Thermal (SHABERTH) computer code was used to model the ATD HPOTP and ATD HPFTP configurations. A two bearing model was used to simulate the HPOTP and HPFTP bearings and shaft geometry. From SHABERTH, a comparison of bearing reaction loads, frictional heat generation rates, and Hertz contact stresses will be attempted with analysis at the 109 percent and 65 percent power levels.

  14. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  15. High speed cryogenic self-acting, shaft seals for liquid rocket turbopumps

    Science.gov (United States)

    Burcham, R. E.

    1983-01-01

    Three self acting lift pad liquid oxygen face seals and two self acting gaseous helium circumferential seals for high speed liquid oxygen turbopump were evaluated. The development of a technology for reliable, 10 hour life, multiple start seals for use in high speed liquid oxygen turbopumps is discussed.

  16. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    Science.gov (United States)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  17. Superconducting Meissner effect bearings for cryogenic turbomachines, phase 2

    Science.gov (United States)

    Valenzuela, Javier A.; Martin, Jerry L.

    1994-02-01

    This is the final report of a Phase 2 SBIR project to develop Meissner effect bearings for miniature cryogenic turbomachines. The bearing system was designed for use in miniature cryogenic turboexpanders in reverse-Brayton-cycle cryocoolers. The cryocoolers are designed to cool sensors on satellites. Existing gas bearings for this application run in a relatively warm state. The heat loss from the bearings into the shaft and into the cold process gas imposes a penalty on the cycle efficiency. By using cold Meissner effect bearings, this heat loss could be minimized, and the input power per unit of cooling for these cryocoolers could be reduced. Two bearing concepts were explored in this project. The first used an all-magnetic passive radial suspension to position the shaft over a range of temperatures from room temperature to 77 K. This bearing concept was proven to be feasible, but impractical for the miniature high-speed turbine application since it lacked the required shaft positioning accuracy. A second bearing concept was then developed. In this concept, the Meissner effect bearings are combined with self-acting gas bearings. The Meissner effect bearing provides the additional stiffness and damping required to stabilize the shaft at low temperature, while the gas bearing provides the necessary accuracy to allow very small turbine tip clearances (5mm) and high speeds (greater than 500,000 rpm).

  18. Dynamics of superconductor bearings in a cryogenic failure

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Amit [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)]. E-mail: Amit.Rastogi@avizatechnology.com; Campbell, A.M. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom); Coombs, T.A. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2006-08-01

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behaviour.

  19. Balancing low cost with reliable operation in the rotordynamic design of the ALS Liquid Hydrogen Fuel Turbopump

    Science.gov (United States)

    Greenhill, L. M.

    1990-01-01

    The Air Force/NASA Advanced Launch System (ALS) Liquid Hydrogen Fuel Turbopump (FTP) has primary design goals of low cost and high reliability, with performance and weight having less importance. This approach is atypical compared with other rocket engine turbopump design efforts, such as on the Space Shuttle Main Engine (SSME), which emphasized high performance and low weight. Similar to the SSME turbopumps, the ALS FTP operates supercritically, which implies that stability and bearing loads strongly influence the design. In addition, the use of low cost/high reliability features in the ALS FTP such as hydrostatic bearings, relaxed seal clearances, and unshrouded turbine blades also have a negative influence on rotordynamics. This paper discusses the analysis conducted to achieve a balance between low cost and acceptable rotordynamic behavior, to ensure that the ALS FTP will operate reliably without subsynchronous instabilities or excessive bearing loads.

  20. Investigation of SSME alternate high pressure fuel turbopump lift-off seal fluid and structural dynamic interaction

    Science.gov (United States)

    Elrod, David A.

    1989-01-01

    The Space Shuttle main engine (SSME) alternate turbopump development program (ATD) high pressure fuel turbopump (HPFTP) design utilizes an innovative lift-off seal (LOS) design that is located in close proximity to the turbine end bearing. Cooling flow exiting the bearing passes through the lift-off seal during steady state operation. The potential for fluid excitation of lift-off seal structural resonances is investigated. No fluid excitation of LOS resonances is predicted. However, if predicted LOS natural frequencies are significantly lowered by the presence of the coolant, pressure oscillations caused by synchronous whirl of the HPFTP rotor may excite a resonance.

  1. Structural stiffness and Coulomb damping in compliant foil journal bearings: Theoretical considerations

    Science.gov (United States)

    Ku, C.-P. Roger; Heshmat, Hooshang

    1994-07-01

    Compliant foil bearings operate on either gas or liquid, which makes them very attractive for use in extreme environments such as in high-temperature aircraft turbine engines and cryogenic turbopumps. However, a lack of analytical models to predict the dynamic characteristics of foil bearings forces the bearing designer to rely on prototype testing, which is time-consuming and expensive. In this paper, the authors present a theoretical model to predict the structural stiffness and damping coefficients of the bump foil strip in a journal bearing or damper. Stiffness is calculated based on the perturbation of the journal center with respect to its static equilibrium position. The equivalent viscous damping coefficients are determined based on the area of a closed hysteresis loop of the journal center motion. The authors found, theoretically, that the energy dissipated from this loop was mostly contributed by the frictional motion between contact surfaces. In addition, the source and mechanism of the nonlinear behavior of the bump foil strips were examined. With the introduction of this enhanced model, the analytical tools are now available for the design of compliant foil bearings.

  2. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander

    International Nuclear Information System (INIS)

    Wang Xuemin; Zhuang Ming; Zhang Qiyong; Li Shanshan; Fu Bao

    2011-01-01

    An experimental method is presented to analyze the dynamic stability of the gas bearing for small cryogenic turbo-expanders. The rotation imbalance response and the shape of the rotor orbit were obtained for different speeds up to 110,000 rpm, and the critical speed of the rotor-bearing system was determined by a Bode diagram. An FFT signal analytical method was applied to identify the resonance frequency, and the waterfall plot was presented. During the whole process of speeding up to the designed speed of 110,000 rpm, the rotor-bearing works stably with no whirl instability, which is validated in a waterfall plot. Also, the tested rotor-bearing model was analyzed theoretically. It was proved that the experimental results were highly consistent with those of theoretical calculations. Thus the experimental method proposed here to analyze the dynamic stability of the gas bearing is feasible. (fusion engineering)

  3. Critical Performance of Turbopump Mechanical Elements for Rocket Engine

    Science.gov (United States)

    Takada, Satoshi; Kikuchi, Masataka; Sudou, Takayuki; Iwasaki, Fumiya; Watanabe, Yoshiaki; Yoshida, Makoto

    It is generally acknowledged that bearings and axial seals have a tendency to go wrong compared with other rocket engine elements. And when those components have malfunction, missions scarcely succeed. However, fundamental performance (maximum rotational speed, minimum flow rate, power loss, durability, etc.) of those components has not been grasped yet. Purpose of this study is to grasp a critical performance of mechanical seal and hybrid ball bearing of turbopump. In this result, it was found that bearing outer race temperature and bearing coolant outlet temperature changed along saturation line of liquid hydrogen when flow rate was decreased under critical pressure. And normal operation of bearing was possible under conditions of more than 70,000 rpm of rotational speed and more than 0.2 liter/s of coolant flow rate. Though friction coefficient of seal surface increased several times of original value after testing, the seal showed a good performance same as before.

  4. Computational fluid dynamics analysis in support of the simplex turbopump design

    Science.gov (United States)

    Garcia, Roberto; Griffin, Lisa W.; Benjamin, Theodore G.; Cornelison, Joni W.; Ruf, Joseph H.; Williams, Robert W.

    1994-01-01

    Simplex is a turbopump that is being developed at NASA/Marshall Space Flight Center (MSFC) by an in-house team. The turbopump consists of a single-stage centrifugal impeller, vaned-diffuser pump powered by a single-stage, axial, supersonic, partial admission turbine. The turbine is driven by warm gaseous oxygen tapped off of the hybrid motor to which it will be coupled. Rolling element bearings are cooled by the pumping fluid. Details of the configuration and operating conditions are given by Marsh. CFD has been used extensively to verify one-dimensional (1D) predictions, assess aerodynamic and hydrodynamic designs, and to provide flow environments. The complete primary flow path of the pump-end and the hot gas path of the turbine, excluding the inlet torus, have been analyzed. All CFD analyses conducted for the Simplex turbopump employed the pressure based Finite Difference Navier-Stokes (FDNS) code using a standard kappa-epsilon turbulence model with wall functions. More detailed results are presented by Garcia et. al. To support the team, loading and temperature results for the turbine rotor were provided as inputs to structural and thermal analyses, and blade loadings from the inducer were provided for structural analyses.

  5. Parametric studies on floating pad journal bearing for high speed cryogenic turboexpanders

    Science.gov (United States)

    Jain, A.; Jadhav, M. M.; Karimulla, S.; Chakravarty, A.

    2017-12-01

    Most modern medium and large capacity helium liquefaction/refrigeration plants employ high speed cryogenic turboexpanders in their refrigeration/liquefaction cycles as active cooling devices. The operating speed of these turboexpanders is in the range of 3000-5000 Hz and hence specialized types of bearings are required. Floating pad journal bearing, which is a special type of tilting pad journal bearing, where mechanical pivots are absent and pads are fully suspended in gas, can be a good solution for stable operation of these high speed compact rotors. The pads are separated from shaft as well as from housing by fluid film between them, and both these sides of pad are interconnected by a network of feed holes. The work presented in this article aims to characterize floating pad journal bearings through parametric studies. The steady state performance characteristics of the bearing are represented by load capacity, stiffness coefficients and heat generation rate of the bearing. The geometrical parameters such as bearing clearances, preload of pads, etc. are varied and performance characteristics of the floating pad journal bearing are studied and presented. The dependence of stiffness coefficients on rotational speed of shaft is also analyzed.

  6. Correction of Dynamic Characteristics of SAR Cryogenic GTE on Consumption of Gasified Fuel

    Science.gov (United States)

    Bukin, V. A.; Gimadiev, A. G.; Gangisetty, G.

    2018-01-01

    When the gas turbine engines (GTE) NK-88 were developed for liquid hydrogen and NK-89 for liquefied natural gas, performance of the systems with a turbo-pump unitary was improved and its proved without direct regulation of the flow of a cryogenic fuel, which was supplied by a centrifugal pump of the turbo-pump unit (TPU) Command from the “kerosene” system. Such type of the automatic control system (SAR) has the property of partial “neutralization” of the delay caused by gasification of the fuel. This does not require any measurements in the cryogenic medium, and the failure of the centrifugal cryogenic pump does not lead to engine failure. On the other hand, the system without direct regulation of the flow of cryogenic fuel has complex internal dynamic connections, their properties are determined by the characteristics of the incoming units and assemblies, and it is difficult to maintain accurate the maximum boundary level and minimum fuel consumption due to the influence of a booster pressure change. Direct regulation of the consumption of cryogenic fuel (prior to its gasification) is the preferred solution, since for using traditional liquid and gaseous fuels this is the main and proven method. The scheme of correction of dynamic characteristics of a single-loop SAR GTE for the consumption of a liquefied cryogenic fuel with a flow rate correction in its gasified state, which ensures the dynamic properties of the system is not worse than for NK-88 and NK-89 engines.

  7. Experimental study on friction and wear behaviour of amorphous carbon coatings for mechanical seals in cryogenic environment

    Science.gov (United States)

    Wang, Jianlei; Jia, Qian; Yuan, Xiaoyang; Wang, Shaopeng

    2012-10-01

    The service life and the reliability of contact mechanical seal are directly affected by the wear of seal pairs (rotor vs. stator), especially under the cryogenic environment in liquid rocket engine turbopumps. Because of the lower friction and wear rate, amorphous carbon (a-C) coatings are the promising protective coatings of the seal pairs for contact mechanical seal. In this paper, a-C coatings were deposited on 9Cr18 by pulsed DC magnetron sputtering. The tribological performances of the specimen were tested under three sealed fluid conditions (air, water and liquid nitrogen). The results show that the coatings could endure the cryogenic temperature while the friction coefficients decrease with the increased contact load. Under the same contact condition, the friction coefficient of the a-C coatings in liquid nitrogen is higher than that in water and that they are in air. The friction coefficients of the a-C coatings in liquid nitrogen range from 0.10 to 0.15. In the cryogenic environment, the coatings remain their low specific wear rates (0.9 × 10-6 to 1.8 × 10-6 mm3 N-1 m-1). The results provide an important reference for designing a water lubricated bearing or a contact mechanical seal under the cryogenic environment that is both reliable and has longevity.

  8. Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    International Nuclear Information System (INIS)

    Chen, Shucheng S.; Veres, Joseph P.; Fittje, James E.

    2006-01-01

    A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed

  9. Transient Lift-Off Test Results for an Experimental Hybrid Bearing in Air

    Science.gov (United States)

    2009-12-01

    bearings. The electric motor designed to drive the rotor is a high speed integral motorized spindle unit manufactured by SKF Precision Technologies and...create pressure that supports the rotor ( shaft ) without rotation. The pressure generated by the flow through an orifice gives the hybrid bearing a...Kettering University; Chair of Advisory Committee: Dr. Dara Childs A hybrid bearing designed for use in a next generation turbo-pump is

  10. Small Scale Turbopump Manufacturing Technology and Material Processes

    Science.gov (United States)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  11. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    Science.gov (United States)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass

  12. Cavitation instabilities and rotordynamic effects in turbopumps and hydroturbines turbopump and inducer cavitation, experiments and design

    CERN Document Server

    Salvetti, Maria

    2017-01-01

    The book provides a detailed approach to the physics, fluid dynamics, modeling, experimentation and numerical simulation of cavitation phenomena, with special emphasis on cavitation-induced instabilities and their implications on the design and operation of high performance turbopumps and hydraulic turbines. The first part covers the fundamentals (nucleation, dynamics, thermodynamic effects, erosion) and forms of cavitation (attached cavitation, cloud cavitation, supercavitation, vortex cavitation) relevant to hydraulic turbomachinery, illustrates modern experimental techniques for the characterization, visualization and analysis of cavitating flows, and introduces the main aspects of the hydrodynamic design and performance of axial inducers, centrifugal turbopumps and hydo-turbines. The second part focuses on the theoretical modeling, experimental analysis, and practical control of cavitation-induced fluid-dynamic and rotordynamic instabilities of hydraulic turbomachinery, with special emphasis on cavitating...

  13. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    1995-01-01

    The CEBAF cryogenic system consists of 3 refrigeration systems: Cryogenic Test Facility (CTF), Central Helium Liquefier (CHL), and End Station Refrigerator (ESR). CHL is the main cryogenic system for CEBAF, consisting of a 4.8 kW, 2.0 K refrigerator and transfer line system to supply 2.0 K and 12 kW of 50 K shield refrigeration for the Linac cavity cryostats and 10 g/s of liquid for the end stations. This paper describes the 9-year effort to commission these systems, concentrating on CHL with the cold compressors. The cold compressors are a cold vacuum pump with an inlet temperature of 3 K which use magnetic bearings, thereby eliminating the possibility of air leaks into the subatmospheric He

  14. Turbopump options for nuclear thermal rockets

    International Nuclear Information System (INIS)

    Bissell, W.R.; Gunn, S.V.

    1992-07-01

    Several turbopump options for delivering liquid nitrogen to nuclear thermal rocket (NTR) engines were evaluated and compared. Axial and centrifugal flow pumps were optimized, with and without boost pumps, utilizing current design criteria within the latest turbopump technology limits. Two possible NTR design points were used, a modest pump pressure rise of 1,743 psia and a relatively higher pump pressure rise of 4,480 psia. Both engines utilized the expander cycle to maximize engine performance for the long duration mission. Pump suction performance was evaluated. Turbopumps with conventional cavitating inducers were compared with zero NPSH (saturated liquid in the tanks) pumps over a range of tank saturation pressures, with and without boost pumps. Results indicate that zero NSPH pumps at high tank vapor pressures, 60 psia, are very similar to those with the finite NPSHs. At low vapor pressures efficiencies fall and turbine pressure ratios increase leading to decreased engine chamber pressures and or increased pump pressure discharges and attendant high-pressure component weights. It may be concluded that zero tank NSPH capabilities can be obtained with little penalty to the engine systems but boost pumps are needed if tank vapor pressure drops below 30 psia. Axial pumps have slight advantages in weight and chamber pressure capability while centrifugal pumps have a greater operating range. 10 refs

  15. SSME Alternate Turbopump Development Program: Design verification specification for high-pressure fuel turbopump

    Science.gov (United States)

    1989-01-01

    The design and verification requirements are defined which are appropriate to hardware at the detail, subassembly, component, and engine levels and to correlate these requirements to the development demonstrations which provides verification that design objectives are achieved. The high pressure fuel turbopump requirements verification matrix provides correlation between design requirements and the tests required to verify that the requirement have been met.

  16. Applying Additive Manufacturing to a New Liquid Oxygen Turbopump Design

    Science.gov (United States)

    O’Neal, T. Derek

    2016-01-01

    A liquid oxygen turbopump has been designed at Marshall Space Flight Center as part of the in-house, Advanced Manufacturing Demonstrator Engine (AMDE) project. Additive manufacturing, specifically direct metal laser sintering (DMLS) of Inconel 718, is used for 77% of the parts by mass. These parts include the impeller, turbine components, and housings. This paper discusses the impacts of the DMLS fabrication technique on the design of the turbopump and lessons learned during DMLS hardware fabrication and material testing.

  17. The design of a kerosene turbopump for a South African commercial launch vehicle

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2012-08-01

    Full Text Available A South African turbopump design capability would be critical to any future indigenous commercial launch capacity. This paper describes the initial work being done at the University of KwaZulu-Natal (UKZN) to design a kerosene turbopump for a...

  18. Novelty detection methods for online health monitoring and post data analysis of turbopumps

    International Nuclear Information System (INIS)

    Lei Hu; Niaoqing, Hu; Xinpeng, Zhang; Fengshou, Gu; Ming, Gao

    2013-01-01

    As novelty detection works when only normal data are available, it is of considerable promise for health monitoring in cases lacking fault samples and prior knowledge. We present two novelty detection methods for health monitoring of turbopumps in large-scale liquid propellant rocket engines. The first method is the adaptive Gaussian threshold model. This method is designed to monitor the vibration of the turbopumps online because it has minimal computational complexity and is easy for implementation in real time. The second method is the one-class support vector machine (OCSVM) which is developed for post analysis of historical vibration signals. Via post analysis the method not only confirms the online monitoring results but also provides diagnostic results so that faults from sensors are separated from those actually from the turbopumps. Both of these two methods are validated to be efficient for health monitoring of the turbopumps.

  19. Probabilistic structural analysis to quantify uncertainties associated with turbopump blades

    Science.gov (United States)

    Nagpal, Vinod K.; Rubinstein, Robert; Chamis, Christos C.

    1987-01-01

    A probabilistic study of turbopump blades has been in progress at NASA Lewis Research Center for over the last two years. The objectives of this study are to evaluate the effects of uncertainties in geometry and material properties on the structural response of the turbopump blades to evaluate the tolerance limits on the design. A methodology based on probabilistic approach has been developed to quantify the effects of the random uncertainties. The results of this study indicate that only the variations in geometry have significant effects.

  20. Fluid dynamics computer programs for NERVA turbopump

    Science.gov (United States)

    Brunner, J. J.

    1972-01-01

    During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.

  1. NERVA turbopump bearing retainer fabrication on nonmetallic retainer

    Science.gov (United States)

    Accinelli, J. B.

    1972-01-01

    The need for a low-wear, lightweight, high strength bearing retainer material with a radiation degradation threshold of 10 to the 9th power rads (C) prompted development of nonmetallic reinforced polymers of the following types: (1) polybenzimidazole, (2) polyimide, and (3) polyquinoxaline. Retainers were machined from tubular laminates (billets), including reinforcement by either glass or graphite fabric or filament. Fabrication of billets involves hot preimpregnation of the reinforcement fabric or filament with polymer followed by wrapping this prepreg over a heated mandrel to form a tube with the required thickness and length.

  2. Numerical investigations on unstable direct contact condensation of cryogenic fluids

    Science.gov (United States)

    Jayachandran, K. N.; Arnab, Roy; Parthasarathi, Ghosh

    2017-02-01

    A typical problem of Direct Contact Condensation (DCC) occurs at the liquid oxygen (LOX) booster turbopump exit of oxidiser rich staged combustion cycle based semi-cryogenic rocket engines, where the hot gas mixture (predominantly oxygen and small amounts of combustion products) that runs the turbine mixes with LOX from the pump exit. This complex multiphase phenomena leads to the formation of solid CO2 & H2O, which is undesirable for the functioning of the main LOX turbopump. As a starting point for solving this complex problem, in this study, the hot gas mixture is taken as pure oxygen and hence, DCC of pure oxygen vapour jets in subcooled liquid oxygen is simulated using the commercial CFD package ANSYS CFX®. A two fluid model along with the thermal phase change model is employed for capturing the heat and mass transfer effects. The study mainly focuses on the subsonic DCC bubbling regime, which is reported as unstable with bubble formation, elongation, necking and collapsing effects. The heat transfer coefficients over a period of time have been computed and the various stages of bubbling have been analysed with the help of vapour volume fraction and pressure profiles. The results obtained for DCC of oxygen vapour-liquid mixtures is in qualitative agreement with the experimental results on DCC of steam-water mixtures.

  3. Terry Turbopump Analytical Modeling Efforts in Fiscal Year 2016 ? Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas; Ross, Kyle; Cardoni, Jeffrey N

    2018-04-01

    This document details the Fiscal Year 2016 modeling efforts to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) experiments. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  4. On the hydrodynamics of rocket propellant engine inducers and turbopumps

    International Nuclear Information System (INIS)

    D'Agostino, L

    2013-01-01

    The lecture presents an overview of some recent results of the work carried out at Alta on the hydrodynamic design and rotordynamic fluid forces of cavitating turbopumps for liquid propellant feed systems of modern rocket engines. The reduced order models recently developed for preliminary geometric definition and noncavitating performance prediction of tapered-hub axial inducers and centrifugal turbopumps are illustrated. The experimental characterization of the rotordynamic forces acting on a whirling four-bladed, tapered-hub, variable-pitch high-head inducer, under different load and cavitation conditions is presented. Future perspectives of the work to be carried out at Alta in this area of research are briefly illustrated

  5. Design and Development of an Advanced Liquid Hydrogen Turbopump

    National Research Council Canada - National Science Library

    Minick, A

    1998-01-01

    .... These benefits will be accomplished and demonstrated through design, development, and test of this high speed, high efficiency, two stage hydrogen turbopump capable of supplying 16 lbm/sec (7.3 kg/sec...

  6. Cryogenic properties of V-bearing austenitic stainless steel

    International Nuclear Information System (INIS)

    Nohara, Kiyohiko

    1985-01-01

    A new type austenitic stainless steel which is expected as the cryogenic structural material for superconducting magnets has been developed. This steel is that vanadium was added to SUS 316 stainless steel of low carbon and high nitrogen, which has the sufficient strength and toughness at 4 K, and maintains the stable nonmagnetic state. This is applicable both to the solution state and the state of carrying out age hardening heat treatment for precipitating Nb 3 Sn subsequent to it. Accordingly, this material can be applied to the sheath material for nuclear fusion and the manufacture of superconducting magnets by Wind and React process besides the candidate material of superconducting magnets for nuclear fusion. This phenomenon is due to the fact that vanadium carbide precipitates in crystal grains before chrome carbide precipitates at grain boundaries, thus the precipitation of chrome carbide is suppressed. In this experiment, the effect of vanadium addition on the cryogenic properties of SUS 316 stainless steel was examined. The experimental method and the results of the effects of vanadium and nitrogen, solution treatment and precipitation aging, and the measurement of magnetism are reported. (Kako, I.)

  7. Study and Development of Face-Contact, Bellows Mechanical Seal for Liquid Hydrogen Turbopump

    OpenAIRE

    NOSAKA, Masataka; SUZUKI, Mineo; MIYAKAWA, Yukio; KAMIJO, Kenjiro; KIKUCHI, Masataka; MORI, Masahiro; 野坂, 正隆; 鈴木, 峰男; 宮川, 行雄; 上絛, 謙二郎; 菊池, 正孝; 森, 雅裕

    1981-01-01

    The development of a 10-ton thrust liquid oxygen and liquid hydrogen (LOX and LH2) rocket engine is under way at the National Space Development Agency. In advance of the development of a liquid hydrogen turbopump, the National Aerospace Laboratory carried out study and development of a face-contact, bellows mechanical seal for a liquid hydrogen turbopump in co-operation with the National Space Development Agency. The present report describes the fundamental experiments of the mechanical seal ...

  8. Pumps for cryogenic liquids with superconducting magnetic bearings. Final report; Pumpen fuer kryogene Fluessigkeiten mit supraleitenden Magnetlagern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, G.; Fuchs, G.; Sorber, J.; Brosche, H.; Richter, M.; Frenzel, C.

    2000-07-01

    A liquid nitrogen pump with contactless superconducting magnetic bearings was to be developed on the basis of an available motor with superconducting bearings. Contactless superconducting magnetic bearings require practically no servicing. A high demand for pumps for cryogenic liquids is expected with the impending use of hydrogen as an energy source. The pumping of liquid nitrogen was demonstrated successfully with the new test aggregate. The maximum pumped volume was 17 l/min at a lift of 0.5 m and 6 l/min at a lift of 1 m. In all, 15 hours of operation were registered in the superconducting state of the bearing, which included 2 hours of uninterrupted pump operation. The higher speed range for which magnetic bearings are optimally suited was not reached. Operation at higher frequencies was impossible either because of stronger resonance amplituees or because the power system was too weak. [German] Ziel des Vorhabens war die Entwicklung einer Pumpe fuer fluessigen Stickstoff mit beruehrungslosen supraleitenden Magnetlagern auf der Basis eines vorhandenen supraleitend gelagerten Motors. Die beruehrungslose supraleitende Magnetlager sind praktisch wartungsfrei. Ein Bedarf an Pumpen fuer kryogene Fluessigkeiten entsteht insbesondere durch den in naher Zukunft zu erwartenden Einsatz von Wasserstoff als Energietraeger. Mit dem entworfenen Aggregat wurde das Pumpen von Fluessigstickstoff erfolgreich demonstriert. Der Foerderstrom betrug bei 0,5m Foerderhoehe maximal 17 l/min; beim 1m Foerderhoehe wurden maximal 6 l/min gemessen. Es wurden insgesamt ca. 15 Betriebsstunden in supraleitenden Zustand des Lagers, darunter 2 Stunden ununterbrochener Pumpbetrieb registriert. Der hoehere Drehzahlbereich, fuer den das Magnetlager eigentlich paedestiniert ist, konnte nicht erreicht werden. Ein Betrieb bei hoeheren (Ist-)Frequenzen war nicht moeglich, entweder durch staerkere Resonanzausschlaege oder durch einen zu schwachen Antrieb. (orig.)

  9. A Cryogenic High-Power-Density Bearingless Motor for Future Electric Propulsion

    Science.gov (United States)

    Choi, Benjamin; Siebert, Mark

    2008-01-01

    The NASA Glenn Research Center (GRC) is developing a high-power-density switched-reluctance cryogenic motor for all-electric and pollution-free flight. However, cryogenic operation at higher rotational speeds markedly shortens the life of mechanical rolling element bearings. Thus, to demonstrate the practical feasibility of using this motor for future flights, a non-contact rotor-bearing system is a crucial technology to circumvent poor bearing life that ordinarily accompanies cryogenic operation. In this paper, a bearingless motor control technology for a 12-8 (12 poles in the stator and 8 poles in the rotor) switched-reluctance motor operating in liquid nitrogen (boiling point, 77 K (-196 C or -321 F)) was presented. We pushed previous disciplinary limits of electromagnetic controller technique by extending the state-of-the-art bearingless motor operating at liquid nitrogen for high-specific-power applications. The motor was levitated even in its nonlinear region of magnetic saturation, which is believed to be a world first for the motor type. Also we used only motoring coils to generate motoring torque and levitation force, which is an important feature for developing a high specific power motor.

  10. Novel Non-Intrusive Vibration Monitoring System for Turbopumps, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — AI Signal Research, Inc. proposes to develop a Non-Intrusive Vibration Measurement System (NI-VMS) for turbopumps which will provide effective on-board/off-board...

  11. Operation of the main feedwater system turbopump following plant trip with total failure of the auxiliary feedwater system

    International Nuclear Information System (INIS)

    Lucas Alvaro, A.M. de; Rosa Martinez, B. de la; Alcaide, F.; Toledano Camara, C.

    1993-01-01

    The Auxiliary Feedwater System (AF) is a safeguard system which has been designed to supply feedwater to the steam generators, cool the primary system and remove decay heat from the reactor when the main feedwater pumps fail due to loss of power or any other reason. Thus, when plant trip occurs, the AF system pumps start up automatically, allowing removal of decay heat from the reactor. However, even though this system (2 motor-driven pumps and 1 turbopump) is highly reliable, injection of water to the steam generators must be ensured when it fails completely. To do this, if plant trip has not been caused by loss of off site power or failure of the Main Feedwater System (FW) turbopumps, one of these turbopumps can be used to achieve removal of decay heat. Since a large amount of steam is consumed by these turbopumps, an analysis has been performed to determine whether one of these pumps can be used and what actions are necessary to inject water into the steam generators. Results show that, for the case in question, a FW turbopump can be used to remove decay heat from the reactor. (author)

  12. Carbon Fiber Reinforced/Silicon Carbide Turbine Blisk Testing in the SIMPLEX Turbopump

    Science.gov (United States)

    Genge, Gary G.; Marsh, Matthew W.

    1999-01-01

    A program designed to implement a ceramic matrix composite integrally bladed disk (blisk) into rocket engine style turbomachinery has successfully completed testing. The Marshall Space Flight Center (MSFC) program, utilizing the MSFC turbomachinery design, analysis, and testing capabilities along with materials development capabilities from both Glenn Research Center (GRC) and MSFC, has tested two carbon fiber reinforced silicon carbide blisks in the Simplex Turbopump at MSFC's Test Stand 500. One blisk contained a polar woven fiber preform, while the second blisk tested utilized a quasi-isotropic preform. Vhile earlier papers have chronicled the program's design, material testing, and torque testing efforts, this paper focuses on the testing of the blisks in the Simplex turbopump. Emphasis will be placed on the actual condition of the blisks before and after the testing test program design methodology, and conclusions that can be drawn from the test data and blisk final conditions. The program performed three separate test series. The first series was needed to validate that the Simplex turbopump was correctly re-built following a major incident to the turbopump. The turbopump had two major differences from the original design. The most obvious difference was the sleeve required throughout the bore of the main housing. The second major difference was modifications to the pump diffuser to improve performance. Several areas were burnt during the incident and were either repaired by weld repair (pump inlet housing) or simply smoothed out (turbine nozzle discharge). The test series was designed to weed out any turbopump design and manufacturing flaws or fatigue issues prior to putting the C/SiC blisks into it. The second and third series were the C/SiC blisk test series. The primary goal of these series was to expose the blisks to as much fatigue causing dynamic stress as possible to examine the material's capability. Initially, the test plan was to put equal time on

  13. Advanced Chemical Propulsion Study

    Science.gov (United States)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  14. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    Science.gov (United States)

    Overholt, David M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications.

  15. Carbon-carbon turbopump concept for Space Nuclear Thermal Propulsion

    International Nuclear Information System (INIS)

    Overholt, D.M.

    1993-06-01

    The U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program is placing high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio in the development of a practical high-performance nuclear rocket. The turbopump design is driven by these goals. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is from rapid heating of the propellant from 180 R to thousands of degrees in the particle bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. A high-performance approach is to use an uncooled carbon-carbon nozzle and duct turbine inlet. Carbon-carbon components are used throughout the TPA hot section to obtain the high-temperature capability. Several carbon-carbon components are in development including structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines and many other turbomachinery applications. 3 refs

  16. Tribo-characteristics of self-lubricating ball bearings for the LE-7 liquid hydrogen rocket-turbopump

    Science.gov (United States)

    Nosaka, Masataka; Oike, Mamoru; Kikuchi, Masataka; Kamijo, Kenjiro; Tajiri, Masanori

    1993-07-01

    The tribo characteristics of self-lubricating 40-mm-bore ball bearings with a retainer of glass cloth-polytetrafluoroethylene (PTFE) laminate, which has elliptical pockets with a large pocket clearance, were tested under thrust loads at speeds up to 50,000 rpm, 2 million DN, in liquid hydrogen (LH2) and in liquid nitrogen (LN2). During testing, the bearing torque, outer-race temperature, and electric resistance between the inner and outer races were monitored to verify the formation and rupture of a PTFE transfer film. Testing showed that the bearings having the elliptical retainer pockets were superior to the conventional bearings with circular pockets. It was determined that, at the maximum inner race spinning velocity of about 5 m/s, a PTFE transfer film could sustain the maximum Hertz stress, up to about 2000 N/sq mm, in LH2, without severe film rupture resulting in bearing seizure. In LN2, the critical load capacity of PTFE transfer film with bearing seizure was about 2700 N/sq mm.

  17. The J-2X Fuel Turbopump - Design, Development, and Test

    Science.gov (United States)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  18. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan - Final.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  19. Failure analysis of superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Amit; Campbell, A M; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2006-06-01

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behavio0008.

  20. Two-phase flow in the cooling circuit of a cryogenic rocket engine

    Science.gov (United States)

    Preclik, D.

    1992-07-01

    Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.

  1. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan-Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Ross, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.

    2017-08-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  2. Advanced Simulation Capability for Turbopump Cavitation Dynamics Guided by Experimental Validation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerical cavitation modeling capability is critical in the design of liquid rocket engine turbopumps, feed lines, injector manifolds and engine test facilities....

  3. Effects of heat treatment influencing factors on microstructure and mechanical properties of a low-carbon martensitic stainless bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaohong; Yuan, Xiaohong; Jiang, Wen; Sun, Hudai; Li, Jun [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Kunyu, E-mail: zhaokunyu.kmust@gmail.com [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yang, Maosheng [Department of Structural Materials, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2014-05-01

    The effects of different heat treatment parameters and cryogenic treatment (−75 °C) on microstructural changes and mechanical properties of a low-carbon martensitic stainless bearing steel were investigated. These analyses were performed via the optical microscope (OM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The obtained results showed that the execution of cryogenic treatment on quenched and tempered bearing steel increases hardness, tensile strength and decreases toughness with the increment of cryogenic treatment and tempering cycles. This paper also showed that the cryogenic cycle's treatment incorporating tempering can refine the martensite laths resulting in improvement of tensile strength. In addition, cryogenic treatment further reduces the retained austenite content but it cannot make retained austenite transform into martensite completely even tempering at high temperature.

  4. Effects of heat treatment influencing factors on microstructure and mechanical properties of a low-carbon martensitic stainless bearing steel

    International Nuclear Information System (INIS)

    Li, Shaohong; Yuan, Xiaohong; Jiang, Wen; Sun, Hudai; Li, Jun; Zhao, Kunyu; Yang, Maosheng

    2014-01-01

    The effects of different heat treatment parameters and cryogenic treatment (−75 °C) on microstructural changes and mechanical properties of a low-carbon martensitic stainless bearing steel were investigated. These analyses were performed via the optical microscope (OM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The obtained results showed that the execution of cryogenic treatment on quenched and tempered bearing steel increases hardness, tensile strength and decreases toughness with the increment of cryogenic treatment and tempering cycles. This paper also showed that the cryogenic cycle's treatment incorporating tempering can refine the martensite laths resulting in improvement of tensile strength. In addition, cryogenic treatment further reduces the retained austenite content but it cannot make retained austenite transform into martensite completely even tempering at high temperature

  5. MYRRHA cryogenic system study on performances and reliability requirements

    International Nuclear Information System (INIS)

    Junquera, T.; Chevalier, N.R.; Thermeau, J.P.; Medeiros Romao, L.; Vandeplassche, D.

    2015-01-01

    A precise evaluation of the cryogenic requirements for accelerator-driven system such as the MYRRHA project has been performed. In particular, operation temperature, thermal losses, and required cryogenic power have been evaluated. A preliminary architecture of the cryogenic system including all its major components, as well as the principles for the cryogenic fluids distribution has been proposed. A detailed study on the reliability aspects has also been initiated. This study is based on the reliability of large cryogenic systems used for accelerators like HERA, LHC or SNS Linac. The requirements to guarantee good cryogenic system availability can be summarised as follows: 1) Mean Time Between Maintenance (MTBM) should be > 8 000 hours; 2) Valves, heat exchangers and turbines are particularly sensitive elements to impurities (dust, oil, gases), improvements are necessary to keep a minimal level in these components; 3) Redundancy studies for all elements containing moving/vibrating parts (turbines, compressors, including their respective bearings and seal shafts) are necessary; 4) Periodic maintenance is mandatory: oil checks, control of screw compressors every 10.000-15.000 hours, vibration surveillance programme, etc; 5) Special control and maintenance of utilities equipment (supply of cooling water, compressed air and electrical supply) is necessary; 6) Periodic vacuum checks to identify leakage appearance such as insulation vacuum of transfer lines and distribution boxes are necessary; 7) Easily exchangeable cold compressors are required

  6. Cold flow testing of the Space Shuttle Main Engine alternate turbopump development high pressure fuel turbine model

    Science.gov (United States)

    Gaddis, Stephen W.; Hudson, Susan T.; Johnson, P. D.

    1992-01-01

    NASA's Marshall Space Flight Center has established a cold airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the SSME alternate turbopump development (ATD) fuel turbine was conducted for back-to-back comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.

  7. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings, phase 2

    Science.gov (United States)

    Sanandres, Luis

    1994-01-01

    The Phase 2 (1994) Annual Progress Report presents two major report sections describing the thermal analysis of tilting- and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings. A literature review on the subject of two-phase flow in fluid film bearings and part of the proposed work for 1995 are also included. The programs delivered at the end of 1994 are named hydroflext and hydrotran. Both codes are fully compatible with the hydrosealt (1993) program. The new programs retain the same calculating options of hydrosealt plus the added bearing geometries, and unsteady flow and transient forced response. Refer to the hydroflext & hydrotran User's Manual and Tutorial for basic information on the analysis and instructions to run the programs. The Examples Handbook contains the test bearing cases along with comparisons with experimental data or published analytical values. The following major tasks were completed in 1994 (Phase 2): (1) extension of the thermohydrodynamic analysis and development of computer program hydroflext to model various bearing geometries, namely, tilting-pad hydrodynamic journal bearings, flexure-pad cylindrical bearings (hydrostatic and hydrodynamic), and cylindrical pad bearings with a simple elastic matrix (ideal foil bearings); (2) improved thermal model including radial heat transfer through the bearing stator; (3) calculation of the unsteady bulk-flow field in fluid film bearings and the transient response of a point mass rotor supported on bearings; and (4) a literature review on the subject of two-phase flows and homogeneous-mixture flows in thin-film geometries.

  8. Theoretical Analysis of Thermodynamic Effect of Cavitation in Cryogenic Inducer Using Singularity Method

    Directory of Open Access Journals (Sweden)

    S. Watanabe

    2008-01-01

    Full Text Available Vapor production in cavitation extracts the latent heat of evaporation from the surrounding liquid, which decreases the local temperature, and hence the local vapor pressure in the vicinity of cavity. This is called thermodynamic/thermal effect of cavitation and leads to the good suction performance of cryogenic turbopumps. We have already established the simple analysis of partially cavitating flow with the thermodynamic effect, where the latent heat extraction and the heat transfer between the cavity and the ambient fluid are taken into account. In the present study, we carry out the analysis for cavitating inducer and compare it with the experimental data available from literatures using Freon R-114 and liquid nitrogen. It is found that the present analysis can simulate fairly well the thermodynamic effect of cavitation and some modification of the analysis considering the real fluid properties, that is, saturation characteristic, is favorable for more qualitative agreement.

  9. Cryocooler applications for high-temperature superconductor magnetic bearings

    International Nuclear Information System (INIS)

    Niemann, R. C.

    1998-01-01

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping

  10. Centrifuge advances using HTS magnetic bearings

    Science.gov (United States)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  11. Operational Experience with a Cryogenic Axial-Centrifugal Compressor

    CERN Document Server

    Decker, L; Löhlein, K; Purtschert, W; Ziegler, B L; Lebrun, P; Tavian, L; Brunovsky, I; Tucek, L

    1998-01-01

    The Large Hadron Collider (LHC), presently under construction at CERN, requires large refrigeration capacity at 1.8 K. Compression of gaseous helium at cryogenic temperatures is therefore inevitable. Together with subcontractors, Linde Kryotechnik has developed a prototype machine. This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating at ambient temperature. Integrated in a test facility for superconducting magnets the machine has been commissioned without major problems and successfully gone through the acceptance test in autumn 1995. Subsequent steps were initiated to improve efficiency of this prototype. This paper describes operating experience gained so far and reports on measured performance prior to and after constructional modifications.

  12. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  13. Numerical Fracture Analysis of Cryogenically Treated Alloy Steel Weldments

    International Nuclear Information System (INIS)

    Rasool Mohideen, S; Thamizhmanii, S; Muhammed Abdul Fatah, M.M; Saidin, W. Najmuddin W.

    2016-01-01

    Cryogenic treatment is being used commercially in the industries in the last two decades for improving the life of many engineering component such as bearings and cutting tools. Though their influence in improving the wear resistance of tool materials is well established, the effect of treatment on weldments is not much investigated. In the present work, a two dimensional finite element analysis was carried out on the compact tension specimen model for simulating the treatment process and to study the fracture behaviour. The weldments were modelled by thermo- mechanical coupled field analysis for simulating he temperature distribution in the model during weld pool cooling and introducing thermal stresses due to uneven contraction and cooling. The model was subjected to cryogenic treatment by adopting radiation effect. The fracture analysis was carried out using Rice's J- Integral approach. The analysis produced a similar outcome of experimental results i.e. Increase in the fracture toughness of the specimen after cryogenic treatment in the heat affected zone of weldment. (paper)

  14. A cryogenic axial-centrifugal compressor for superfluid helium refrigeration

    CERN Document Server

    Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L

    1997-01-01

    CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.

  15. Performances of Magnetic Fluid Seal and Application to Turbopumps

    OpenAIRE

    北洞, 貴也; 黒川, 淳一; 宮副, 雄貴; 林, 正悦

    1994-01-01

    A magnetic fluid shaft seal can achieve zero-leakage and operate stably against shaft vibration, but the sealing pressure is very low. In order to improve the pressure performance of a magnetic fluid seal and apply it to a turbopump, the seal pressure characteristics are studied theoretically and experimentally. The Poisson equation for magnetic vector potential is solved by FEM, and the seal performances are determined by use of the Bernoulli equation. The validity of the theory is confirmed...

  16. Advantage of superconducting bearing in a commercial flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Viznichenko, R; Velichko, A V; Hong, Z; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)], E-mail: tac1000@cam.ac.uk

    2008-02-01

    The use of a superconducting magnetic bearing in an Urenco Power Technologies (UPT) 100kW flywheel is being studied. The dynamics of a conventional flywheel energy storage system have been studied at low frequencies. We show that the main design consideration is overcoming drag friction losses and parasitic resonances. We propose an original superconducting magnetic bearing design and improved cryogenic motor cooling to increase stability and decrease energy losses in the system.

  17. Design Study for A Low-Cost LH2 Turbopump

    Science.gov (United States)

    Japikse, David; Baines, Nicholas; Platt, Michael J.

    2000-01-01

    A preliminary design study, focusing on potential component selections and design for manufacturing and assembly (DFMAR1) analysis, is presented in this study. The investigation focused on a nominal cost liquid hydrogen turbopump suitable for a private launch class vehicle. Utilizing a "turbocharger-like" design philosophy, preliminary feasibility studies of the basic pump design class, the rotordynamic design class, and the turbine design class were conducted with associated DFMA evaluations. Reasonable cost levels and sensible levels of product assurance have been established.

  18. Development of Cryogenic Engine for GSLV MkIII: Technological Challenges

    Science.gov (United States)

    Praveen, RS; Jayan, N.; Bijukumar, KS; Jayaprakash, J.; Narayanan, V.; Ayyappan, G.

    2017-02-01

    Cryogenic engine capable of delivering 200 kN thrust is being developed for the first time in the country by ISRO for powering the upper stage of GSLV Mk-III, the next generation launch vehicle of ISRO capable of launching four tonne class satellites to Geo-synchronous Transfer Orbit(GTO). Development of this engine started a decade ago when various sub-systems development and testing were taken up. Starting with injector element development, the design, realization and testing of the major sub-systems viz the gas generator, turbopumps, start-up system and thrust chamber have been successfully done in a phased manner before conducting a series of developmental tests in the integrated engine mode. Apart from the major sub-systems, many critical components like the igniter, control components etc were independently developed and qualified. During the development program many challenges were faced in almost all areas of propulsion engineering. Systems engineering of the engine was another key challenge in the realization. This paper gives an outlook on various technological challenges faced in the key areas related to the engine development, insight to the solutions and measures taken to overcome the challenges.

  19. Cryogenic aspects of the mirror fusion test facility

    International Nuclear Information System (INIS)

    Sterbentz, W.H.; Nelson, R.L.

    1979-01-01

    This paper covers the design and construction of the MFTF cryogenic system and a description of the operating procedures throughout the many functional modes. The coils and the cryopanels for maintaining the high vacuum environment weigh 417,000 kg (920,000 lb) and must be cooled from room temperature to 4.5 k. The cryogenic system for MFTF consists of a closed-loop helium system with a 3000-W helium refrigerator that uses gas-bearing expansion turbines and oil-flooded screw compressors. In addition, liquid helium storage facilities have adequate capacity for standby operation, and a complete helium-purification plant is capable of processing 17 m 3 /min (600 scfm). An open-loop liquid nitrogen system (with provision for later addition of a nitrogen recondenser) provides the required refrigeration for the radiation shields that must be maintained at 85 K

  20. Cryogenics

    International Nuclear Information System (INIS)

    Fradkov, A.B.

    1991-01-01

    The application of cryogenics in various areas of science and technology is related in a popular way. Utilization of cryogenics in the following production processes is described: separation of air, gas mixtures; production of helium; separation of hydrogen isotopes; production of deuterium. Applications of cryogenics in refrigerating engineering, superconductivity and high-energy physics, controlled thermonuclear fusion, superconducting electric motors and electric energy storages are considered

  1. Cellular concrete: a potential load-bearing insulation for cryogenic applications

    International Nuclear Information System (INIS)

    Richard, T.G.; Dobogai, J.A.; Gerhardt, T.D.; Young, W.C.

    1975-01-01

    The need for low cost, low thermal conductivity, high strength insulation suitable for cryogenic applications is becoming more evident. An investigation of the potential of cellular concretes to fulfill this function was initiated. A review of the thermal and mechanical characteristics of foamed plastics and cellular concrete is presented along with relative cost comparisons. Test data from preliminary investigations is presented to define the influence of material constituents, density, and temperature on the mechanical and thermal response of cellular concrete. Specimen densities range from 0.64 to 1.44 gr/cc. The influence of temperature variations from 22 0 C to -196 0 C is reported for selected densities

  2. A generic pump/compressor design for circulation of cryogenic fluids

    International Nuclear Information System (INIS)

    Jasinski, T.; Honkonen, S.C.; Sixsmith, H.; Stacy, W.D.

    1986-01-01

    This paper describes the development of a second-generation centrifugal circulator for cryogenic fluids. The circulator is designed to operate over a wide range of flow rate and pressure rise and can be used for the pumping of liquid and compression of vapor at temperatures down to liquid helium (4 K). The machine incorporates self-acting gas journal bearings, a permanent magnet axial thrust bearing, and a variable speed induction motor drive to provide for reliable, maintenance-free operation. The paper provides design details of the pump. Calculated performance characteristics are also presented along with a general discussion regarding limitations of the present system

  3. Operational present status and reliability analysis of the upgraded EAST cryogenic system

    Science.gov (United States)

    Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.

    2017-12-01

    Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.

  4. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  5. Cryogenics safety

    International Nuclear Information System (INIS)

    Reider, R.

    1977-01-01

    The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described

  6. Development of turbopump cavitation performance test facility and the test of inducer performance

    International Nuclear Information System (INIS)

    Sohn, Dong Kee; Kim, Chun Tak; Yoon, Min Soo; Cha, Bong Jun; Kim, Jin Han; Yang, Soo Seok

    2001-01-01

    A performance test facility for turbopump inducer cavitation was developed and the inducer cavitation performance tests were performed. Major components of the performance test facility are driving unit, test section, piping, water tank, and data acquisition and control system. The maximum of testing capability of this facility are as follows: flow rate - 30kg/s; pressure - 13 bar, rotational speed - 10,000rpm. This cavitation test facility is characterized by the booster pump installed at the outlet of the pump that extends the flow rate range, and by the pressure control system that makes the line pressure down to vapor pressure. The vacuum pump is used for removing the dissolved air in the water as well as the line pressure. Performance tests were carried out and preliminary data of test model inducer were obtained. The cavitation performance test and cavitation bubble flow visualization were also made. This facility is originally designed for turbopump inducer performance test and cavitation test. However it can be applied to the pump impeller performance test in the future with little modification

  7. Thermal-hydraulics for space power, propulsion, and thermal management system design

    International Nuclear Information System (INIS)

    Krotiuk, W.J.

    1990-01-01

    The present volume discusses thermal-hydraulic aspects of current space projects, Space Station thermal management systems, the thermal design of the Space Station Free-Flying Platforms, the SP-100 Space Reactor Power System, advanced multi-MW space nuclear power concepts, chemical and electric propulsion systems, and such aspects of the Space Station two-phase thermal management system as its mechanical pumped loop and its capillary pumped loop's supporting technology. Also discussed are the startup thaw concept for the SP-100 Space Reactor Power System, calculational methods and experimental data for microgravity conditions, an isothermal gas-liquid flow at reduced gravity, low-gravity flow boiling, computations of Space Shuttle high pressure cryogenic turbopump ball bearing two-phase coolant flow, and reduced-gravity condensation

  8. Cryogenics

    International Nuclear Information System (INIS)

    Shukla, R.K.

    1990-01-01

    Cryogenics refers to the coldest area known in nature. This temperature range has an upper limit arbitrarily defined as -100 degrees C (-250 degrees C by some) and a lower limit of absolute zero. These limits separate it from the temperature range generally used in refrigerating engineering. One important application of cryogenics is the separation ad purification of air into its various components (oxygen, nitrogen, argon, and the rare gases). Other important developments have been the large-scale production of liquid hydrogen; helium extraction from natural gas; storage and transport of liquefied gases such as oxygen, argon, nitrogen, helium, neon, xenon, and hydrogen; liquefaction of natural gas for ocean transport and peak shaving; and many new types of cryogenic refrigeration devices. This paper introduces the topic of cryogenic engineering. Cryogenic processes generally range from ambient conditions to the boiling point of the cryogenic fluid. Cryogenic cycles also incorporate two or more pressure levels. These properties must also cover the vapor, vapor-liquid, and sometimes the solid regions. Therefore, the physical properties of fluids over a great range of temperatures and pressures must be known. Solubility of contaminants must be known in order to design for their removal. The main physical properties for design purposes are those usually used in unit operations, such as fluid flow, heat transfer, and the like, in addition to those directly related to the Joule-Thomson effect and expansion work. Properties such as density, viscosity, thermal conductivity, heat capacity, enthalpy, entropy, vapor pressure, and vapor-liquid equilibriums are generally obtained in graphical, tabular, or equation form, as a function of temperature and pressure

  9. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  10. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Science.gov (United States)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  11. Modelling and construction of a compact 500 kg HTS magnetic bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Goebel, B; Wippich, D; Riedel, T

    2005-01-01

    The progress of heavy-load HTS bearings depends on improvements in design, material quality and reliable cooling. We have constructed, manufactured and tested a 200 mm HTS journal bearing with a thermally encapsulated YBCO ring. For maximum force the larger gap due to the bearing cryostat (>4 mm) requires adjustment of the magnetic excitation pole distance and the Fe collector shim thickness. HTS material progress is obtained by top-seeded single- or multiple-grain growth which increases the averaged trapped magnetic flux density. Successful YBCO ring growth with radial c axis distribution by seeding the inner ring surface has been performed. The encapsulation ensures a substantially reduced cryogenic effort and stabilizes bearing operation at 78-79 K

  12. Operation and design selection of high temperature superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2004-01-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN 2 for cooling down, and about 0.2 l LN 2 h -1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings

  13. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  14. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  15. Progress in development of high capacity magnetic HTS bearings

    International Nuclear Information System (INIS)

    Kummeth, P.; Nick, W.; Neumueller, H.-W.

    2005-01-01

    HTS magnetic bearings are inherently stable without an active feedback system. They provide low frictional losses, no wear and allow operation at high rotational speed without lubrication. So they are very promising for use in motors, generators and turbines. We designed and constructed an HTS radial bearing for use with a 400 kW HTS motor. It consists of alternating axially magnetized permanent magnet rings on the rotor and a segmented YBCO stator. Stator cooling is performed by liquid nitrogen, the temperature of the stator can be adjusted by varying the pressure in the cryogenic vessel. At 68 K maximum radial forces of more than 3.7 kN were found. These results range within the highest radial bearing capacities reported worldwide. The encouraging results lead us to develop a large heavy load HTS radial bearing. Currently a high magnetic gradient HTS bearing for a 4 MVA synchronous HTS generator is under construction

  16. Reusable Rocket Engine Turbopump Health Management System

    Science.gov (United States)

    Surko, Pamela

    1994-01-01

    A health monitoring expert system software architecture has been developed to support condition-based health monitoring of rocket engines. Its first application is in the diagnosis decisions relating to the health of the high pressure oxidizer turbopump (HPOTP) of Space Shuttle Main Engine (SSME). The post test diagnostic system runs off-line, using as input the data recorded from hundreds of sensors, each running typically at rates of 25, 50, or .1 Hz. The system is invoked after a test has been completed, and produces an analysis and an organized graphical presentation of the data with important effects highlighted. The overall expert system architecture has been developed and documented so that expert modules analyzing other line replaceable units may easily be added. The architecture emphasizes modularity, reusability, and open system interfaces so that it may be used to analyze other engines as well.

  17. Observations on Rotating Cavitation and Cavitation Surge From The Development of the Fastrac Engine Turbopump

    Science.gov (United States)

    Zoladz, Thomas F.; Turner, James E. (Technical Monitor)

    2000-01-01

    The effects of rotating cavitation and cavitation surges on the Fastrac Engine Turbopump are described in a viewgraph presentation format. The bent inducer blade dilemma and observations of unsteady data and oscillation components are discussed. The pump-feed system stability modeling assessment is outlined. Recommendations are made urging further investigation.

  18. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  19. Improvement of the cooldown time of LSF 9599 flexure bearing SADA cooler

    NARCIS (Netherlands)

    Mullié, J.; Groep, van der W.; Bruins, P.; Benschop, T.; Koning, de A.; Dam, J.A.M.; Andresen, B.F.; Fulop, G.F.; Norton, P.R.

    2006-01-01

    Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing

  20. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  1. Fracture-tough, corrosion-resistant bearing steels

    Science.gov (United States)

    Olson, Gregory B.

    1990-01-01

    The fundamental principles allowing design of stainless bearing steels with enhanced toughness and stress corrosion resistance has involved both investigation of basic phenomena in model alloys and evaluation of a prototype bearing steel based on a conceptual design exercise. Progress in model studies has included a scanning Auger microprobe (SAM) study of the kinetics of interfacial segregation of embrittling impurities which compete with the kinetics of alloy carbide precipitation in secondary hardening steels. These results can define minimum allowable carbide precipitation rates and/or maximum allowable free impurity contents in these ultrahigh strength steels. Characterization of the prototype bearing steel designed to combine precipitated austenite transformation toughening with secondary hardening shows good agreement between predicted and observed solution treatment response including the nature of the high temperature carbides. An approximate equilibrium constraint applied in the preliminary design calculations to maintain a high martensitic temperature proved inadequate, and the solution treated alloy remained fully austenitic down to liquid nitrogen temperature rather than transforming above 200 C. The alloy can be martensitically transformed by cryogenic deformation, and material so processed will be studied further to test predicted carbide and austenite precipitation behavior. A mechanistically-based martensitic kinetic model was developed and parameters are being evaluated from available kinetic data to allow precise control of martensitic temperatures of high alloy steels in future designs. Preliminary calculations incorporating the prototype stability results suggest that the transformation-toughened secondary-hardening martensitic-stainless design concept is still viable, but may require lowering Cr content to 9 wt. pct. and adding 0.5 to 1.0 wt. pct. Al. An alternative design approach based on strain-induced martensitic transformation during

  2. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  3. Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility

    Science.gov (United States)

    Xavier, M.; Raj, R. Edwin; Narayanan, V.

    2017-02-01

    Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.

  4. Assessment of RELAP5/MOD2 against a main feedwater turbopump trip transient in the Vandellos II Nuclear Power Plant

    International Nuclear Information System (INIS)

    Llopis, C.; Casals, A.; Perez, J.; Mendizabal, R.

    1993-12-01

    The Consejo de Seguridad Nuclear (CSN) and the Asociacion Nuclear Vandellos (ANV) have developed a model of Vandellos II Nuclear Power Plant. The ANV collaboration consisted in the supply of design and actual data, the cooperation in the simulation of the control systems and other model components, as well as in the results analysis. The obtained model has been assessed against the following transients occurred in plant: A trip from the 100% power level (CSN); a load rejection from 100% to 50% (CSN); a load rejection from 75% to 65% (ANV); and, a feedwater turbopump trip (ANV). This copy is a report of the feedwater turbopump trip transient simulation. This transient actually occurred in the plant on June 19, 1989

  5. A High Reliability Gas-driven Helium Cryogenic Centrifugal Compressor

    CERN Document Server

    Bonneton, M; Gistau-Baguer, Guy M; Turcat, F; Viennot, P

    1998-01-01

    A helium cryogenic compressor was developed and tested in real conditions in 1996. The achieved objective was to compress 0.018 kg/s Helium at 4 K @ 1000 Pa (10 mbar) up to 3000 Pa (30 mbar). This project was an opportunity to develop and test an interesting new concept in view of future needs. The main features of this new specific technology are described. Particular attention is paid to the gas bearing supported rotor and to the pneumatic driver. Trade off between existing technologies and the present work are presented with special stress on the bearing system and the driver. The advantages are discussed, essentially focused on life time and high reliability without maintenance as well as non pollution characteristic. Practical operational modes are also described together with the experimental performances of the compressor. The article concludes with a brief outlook of future work.

  6. Measurement and control system for cryogenic helium gas bearing turbo-expander experimental platform based on Siemens PLC S7-300

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Liu, L. Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China); Wang, P. [Beijing Sciample Technology Co., Ltd., Beijing, 100190 (China)

    2014-01-29

    An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.

  7. Measurement and control system for cryogenic helium gas bearing turbo-expander experimental platform based on Siemens PLC S7-300

    Science.gov (United States)

    Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Wang, P.; Liu, L. Q.

    2014-01-01

    An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.

  8. [Application of in situ cryogenic Raman spectroscopy to analysis of fluid inclusions in reservoirs].

    Science.gov (United States)

    Chen, Yong; Lin, Cheng-yan; Yu, Wen-quan; Zheng, Jie; Wang, Ai-guo

    2010-01-01

    Identification of salts is a principal problem for analysis of fluid inclusions in reservoirs. The fluid inclusions from deep natural gas reservoirs in Minfeng sub-sag were analyzed by in situ cryogenic Raman spectroscopy. The type of fluid inclusions was identified by Raman spectroscopy at room temperature. The Raman spectra show that the inclusions contain methane-bearing brine aqueous liquids. The fluid inclusions were analyzed at -180 degrees C by in situ cryogenic Raman spectroscopy. The spectra show that inclusions contain three salts, namely NaCl2, CaCl2 and MgCl2. Sodium chloride is most salt component, coexisting with small calcium chloride and little magnesium chloride. The origin of fluids in inclusions was explained by analysis of the process of sedimentation and diagenesis. The mechanism of diagenesis in reservoirs was also given in this paper. The results of this study indicate that in situ cryogenic Raman spectroscopy is an available method to get the composition of fluid inclusions in reservoirs. Based on the analysis of fluid inclusions in reservoirs by in situ cryogenic Raman spectroscopy with combination of the history of sedimentation and diagenesis, the authors can give important evidence for the type and mechanism of diagenesis in reservoirs.

  9. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    Science.gov (United States)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  10. Cryogenics theory, processes and applications

    CERN Document Server

    Hayes, Allyson E

    2011-01-01

    Cryogenics is the study of the production of very low temperature (below -150 -C, -238 -F or 123 K) and the behaviour of materials at those temperatures. This book presents current research from across the globe in the study of cryogenics, including the effect of cryogenic treatment on microstructure and mechanical properties of light weight alloys; the application of Fiber Bragg grating sensors at cryogenic temperatures; cryogenic grinding; liquid oxygen magnetohydrodynamics; and, genetic engineering techniques used to improve tolerance to cryopreservation.

  11. An overview of the turbopump development programme in the University of KwaZulu-Natal’s aerospace systems research group

    CSIR Research Space (South Africa)

    Smyth, J

    2012-10-01

    Full Text Available stream_source_info Smyth_2012.pdf.txt stream_content_type text/plain stream_size 2974 Content-Encoding ISO-8859-1 stream_name Smyth_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 An Overview of the Turbopump...

  12. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  13. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry.

    Science.gov (United States)

    Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  14. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry

    Science.gov (United States)

    Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  15. Introduction to cryogenic engineering

    CERN Multimedia

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  16. Noncontacting device to indicate deflection of turbopump internal rotating parts

    Science.gov (United States)

    Hamilton, D. B.; Grieser, D. R.; Plummer, A. M.; Ensminger, D.; Saccacio, E. J.

    1972-01-01

    Phase 2 (development) which was concluded for the ultrasonic Doppler device and the light-pipe-reflectance device is reported. An ultrasonic Doppler breadboard system was assembled which accurately measured runout in the J-2 LOX pump impeller during operation. The transducer was mounted on the outside of the pump volute using a C-clamp. Vibration was measured by conducting the ultrasonic wave through the volute housing and through the fluid in the volute to the impeller surface. The impeller vibration was also measured accurately using the light-pipe probe mounted in an elastomeric-gland fitting in the pump case. A special epoxy resin developed for cryogenic applications was forced into the end of the fiber-optic probe to retain the fibers. Subsequently, the probe suffered no damage after simultaneous exposure to 2150 psi and 77 F. Preliminary flash X-radiographs were taken of the turbine wheel and the shaft-bearing-seal assembly, using a 2-megavolt X-ray unit. Reasonable resolution and contrast was obtained. A fast-neutron detector was fabricated and sensitivity was measured. The results demonstrated that the technique is feasible for integrated-time measurements requiring, perhaps, 240 revolutions to obtain sufficient exposure at 35,000 rpm. The experimental verification plans are included.

  17. Overview of Rotating Cavitation and Cavitation Surge in the Fastrac Engine LOX Turbopump

    Science.gov (United States)

    Zoladz, Thomas; Turner, Jim (Technical Monitor)

    2001-01-01

    Observations regarding rotating cavitation and cavitation surge experienced during the development of the Fastrac 60 Klbf engine turbopump are discussed. Detailed observations from the analysis of both water flow and liquid oxygen test data are offered. Scaling and general comparison of rotating cavitation between water flow and liquid oxygen testing are discussed. Complex data features linking the localized rotating cavitation mechanism of the inducer to system surge components are described in detail. Finally a description of a simple lumped-parameter hydraulic system model developed to better understand observed data is given.

  18. MFTF magnet cryogenics

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1981-07-01

    The prime requirement of the cryogenics of the magnets is to assure a superconducting state for the magnet coils, a large task considering their enormous size. The following presentation addresses the principal topics that have been considered in this cryogenic design

  19. The cryogenic control system of EAST

    International Nuclear Information System (INIS)

    Zhuang, M.; Hu, L.B.; Zhow, Z.W.; Xia, G.H.

    2012-01-01

    Highlights: ► A reliable and flexible duplex control system is required for cryogenic system. ► The cryogenic control system is based on Delta-V DCS. ► It has been proved to be an effective way to control cryogenic process. ► It will provide useful experience and inspiration for the development in the cryogenic control engineering. - Abstract: A large scale helium cryogenic system is one of the key components for the EAST tokamak device for the cooling of PF and TF coils, structures, thermal shields, buslines, current leads and cryopumps. Since the cooling scheme of the EAST cryogenic system is fairly complicated, a reliable and flexible control system is required for cryogenic system. The cryogenic control system is based on DeltaV DCS which is the process control software developed by Emerson Company. The EAST cryogenic system has been in operation for four years and has been proved to be safe, stable and energy saving by the past 7 experiments. This paper describes the redundant control network, hardware configuration, software structure, auxiliary system and the new development in the future.

  20. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...

  1. Integrated cryogenic sensors

    International Nuclear Information System (INIS)

    Juanarena, D.B.; Rao, M.G.

    1991-01-01

    Integrated cryogenic pressure-temperature, level-temperature, and flow-temperature sensors have several advantages over the conventional single parameter sensors. Such integrated sensors were not available until recently. Pressure Systems, Inc. (PSI) of Hampton, Virginia, has introduced precalibrated precision cryogenic pressure sensors at the Los Angeles Cryogenic Engineering Conference in 1989. Recently, PSI has successfully completed the development of integrated pressure-temperature and level-temperature sensors for use in the temperature range 1.5-375K. In this paper, performance characteristics of these integrated sensors are presented. Further, the effects of irradiation and magnetic fields on these integrated sensors are also reviewed

  2. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  3. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  4. Cryogenics in CEBAF HMS dipole

    International Nuclear Information System (INIS)

    Bogensberger, P.; Ramsauer, F.; Brindza, P.; Wines, R.; Koefler, H.

    1994-01-01

    The paper will report upon the final design, manufacturing and tests of CEBAF's HMS Dipole cryogenic equipment. The liquid nitrogen circuits, the helium circuits and thermal insulation of the magnet will be addressed. The cryogenic reservoir and control module as an integral part of the HMS Dipole magnet will be presented. The construction, manufacturing, tests and final performance of the HMS Dipole cryogenic system will be reported. The LN 2 circuit and the He circuit are tied together by the control system for cool down, normal operation and standby. This system monitors proper temperature differences between both circuits and controls the cryogenic supply to meet the constraints. Implementation of the control features for the cryogenic system into the control system will be reported

  5. Surface tension confined liquid cryogen cooler

    International Nuclear Information System (INIS)

    Castles, S.H.; Schein, M.E.

    1989-01-01

    A cryogenic cooler is described for use in craft such as launch, orbital and space vehicles subject to changes in orientation and conditions of vibration and weightlessness comprising: an insulated tank; a porous open celled sponge-like material disposed substantially throughout the contained volume of the insulated tank; a cryogenic fluid disposed within the sponge-like material; a cooling finger immersed in the cryogenic fluid, the finger extending from inside the insulated tank externally to an outside source such as an instrument detector for the purpose of transmitting heat from the outside source into the cryogenic fluid; means for filling the insulated tank with cryogenic fluid; and means for venting vaporized cryogenic fluid from the insulated tank

  6. Device for delivering cryogen to rotary super-conducting winding of cryogen-cooled electrical machine

    International Nuclear Information System (INIS)

    Filippov, I.F.; Gorbunov, G.S.; Khutoretsky, G.M.; Popov, J.S.; Skachkov, J.V.; Vinokurov, A.A.

    1980-01-01

    A device is disclosed for delivering cryogen to a superconducting winding of a cryogen-cooled electrical machine comprising a pipe articulated along the axis of the electrical machine and intended to deliver cryogen. One end of said pipe is located in a rotary chamber which communicates through channels with the space of the electrical machine, and said space accommodating its superconducting winding. The said chamber accommodates a needle installed along the chamber axis, and the length of said needle is of sufficient length such that in the advanced position of said cryogen delivering pipe said needle reaches the end of the pipe. The layout of the electrical machine increases the reliability and effectiveness of the device for delivering cryogen to the superconducting winding, simplifies the design of the device and raises the efficiency of the electrical machine

  7. Heat transfer and pressure measurements for the SSME fuel-side turbopump

    Science.gov (United States)

    Dunn, Michael G.

    1990-01-01

    A measurement program is currently underway at the Calspan-UB Research Center (CUBRC) which utilizes the Rocketdyne two-state fuel-side turbine with the engine geometric configuration reproduced. This is a full two-state turbine for which the vane rows and the blades are the engine hardware currently used on the Space Shuttle turbopump. A status report is provided for the experimental program and a description of the instrumentation and the measurements to be performed. The specific items that will be illustrated and described are as follows: (1) the gas flow path, (2) the heat-flux instrumentation, (3) the surface-pressure instrumentation, (4) the experimental conditions for which data will be obtained, and (5) the specific measurements that will be performed.

  8. Cryogenic process simulation

    International Nuclear Information System (INIS)

    Panek, J.; Johnson, S.

    1994-01-01

    Combining accurate fluid property databases with a commercial equation-solving software package running on a desktop computer allows simulation of cryogenic processes without extensive computer programming. Computer simulation can be a powerful tool for process development or optimization. Most engineering simulations to date have required extensive programming skills in languages such as Fortran, Pascal, etc. Authors of simulation code have also usually been responsible for choosing and writing the particular solution algorithm. This paper describes a method of simulating cryogenic processes with a commercial software package on a desktop personal computer that does not require these traditional programming tasks. Applications include modeling of cryogenic refrigerators, heat exchangers, vapor-cooled power leads, vapor pressure thermometers, and various other engineering problems

  9. High-temperature turbopump assembly for space nuclear thermal propulsion

    Science.gov (United States)

    Overholt, David M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications.

  10. High-temperature turbopump assembly for space nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Overholt, D.M.

    1993-01-01

    The development of a practical, high-performance nuclear rocket by the U.S. Air Force Space Nuclear Thermal Propulsion (SNTP) program places high priority on maximizing specific impulse (ISP) and thrust-to-weight ratio. The operating parameters arising from these goals drive the propellant-pump design. The liquid hydrogen propellant is pressurized and pumped to the reactor inlet by the turbopump assembly (TPA). Rocket propulsion is effected by rapid heating of the propellant from 100 K to thousands of degrees in the particle-bed reactor (PBR). The exhausted propellant is then expanded through a high-temperature nozzle. One approach to achieve high performance is to use an uncooled carbon-carbon nozzle and duct turbine inlet. The high-temperature capability is obtained by using carbon-carbon throughout the TPA hot section. Carbon-carbon components in development include structural parts, turbine nozzles/stators, and turbine rotors. The technology spinoff is applicable to conventional liquid propulsion engines plus a wide variety of other turbomachinery applications

  11. Fundamentals of cryogenic engineering

    CERN Document Server

    Mukhopadhyay, Mamata

    2014-01-01

    The author, with her vast and varied experience in teaching and allied fields, clearly enunciates the behaviour and various properties of common cryogenic fluids, methods of liquefaction, and separation and applications of cryogens with thermodynamic analysis for process selection. This profusely illustrated study with clear-cut diagrams and process charts, should serve not only as a textbook for students but also as an excellent reference for researchers and practising engineers on design of cryogenic refrigeration, and liquefaction and separation process plants for various applications.

  12. Cryogenics will cool LHC

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Results of the investigation into the cryogenic regulating line (QRL) performed by the LHC laboratory are presented. It is projected that eight cryogenic units located in five places around the LHC ring will provide superconducting magnets by liquid helium through eight cryogenic regulating lines of 3.2 km each. All QRL zones remain to be independent. CERN uses three test units with the aim of the certification of chosen constructions and verification of their thermal and mechanical efficiency before starting full-scale production [ru

  13. Cryogenics

    International Nuclear Information System (INIS)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V.

    1997-01-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  14. TPC magnet cryogenic system

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system

  15. MOSFET's for Cryogenic Amplifiers

    Science.gov (United States)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  16. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  17. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  18. Cryogenic systems for detectors and particle accelerators

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1988-01-01

    It's been one hundred years since the first successful experiments were carried out leading to the liquefaction of oxygen which birthed the field of cryogenics and about sixty years since cryogenics went commercial. Originally, cryogenics referred to the technology and art of producing low temperatures but today the definition adopted by the XII Congress of the International Institute of Refrigeration describes cryogenics as the study of phenomena, techniques, and concepts occurring at our pertaining to temperatures below 120 K. Modern acceptance of the importance and use of cryogenic fluids continues to grow. By far, the bulk of cryogenic products are utilized by industry for metal making, agriculture, medicine, food processing and as efficient storage of fuels. Cryogenics has found many uses in the scientific community as well, enabling the development of ultra low noise amplifiers, fast cold electronics, cryopumped ultra high vacuums, the production of intense magnetic fields and low loss power transmission through the sue of cryogenically cooled superconductors. High energy physic research has been and continues to use cryogenic hardware to produce liquids used as detector targets and to produce refrigeration necessary to cool superconducting magnets to design temperature for particle accelerator applications. In fact, today's super accelerators achieve energies that would be impossible to reach with conventional copper magnets, demonstrating that cryogenics has become an indispensable ingredient in today's scientific endeavors

  19. Cryogenics in nuclear reactor technology

    International Nuclear Information System (INIS)

    Dharmadurai, G.

    1982-01-01

    The cryogenic technology has significantly contributed to the development of several proven techniques for use in the nuclear power industry. A noteworthy feature is the unique role of cryogenics in minimising the release of radioactive and some chemical pollutants to the environment during the operation of various plants associated with this industry. The salient technological features of several cryogenic processes relevant to the nuclear reactor technology are discussed. (author)

  20. Surface Tension Confines Cryogenic Liquid

    Science.gov (United States)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  1. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  2. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  3. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, huge detectors and accelerators. With the termination of the LHC, CERN will in fact become the world’s largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. Monday 5.12.2005 Introduction: From History to Modern Refrigeration Cycles (Goran Perinic) Tuesday 6.12.2005 Refrigerants, Standard Cryostats, Cryogenic Des...

  4. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. From history to modern refrigeration cycles (1/5) Refrigerants, standard cryostats, cryogenic design (2/5) Heat transfer and insulation (3/5) Safety in cryoge...

  5. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  6. Cryogenic storage tank with built-in pump

    International Nuclear Information System (INIS)

    Zwick, E.B.

    1984-01-01

    A cryogenic storage tank with a built-in pump for pumping cryogen directly from the primary storage container consistent with low boil-off losses of cryogen has an outer vessel, an inner vessel and an evacuated insulation space therebetween. A pump mounting tube assembly extends into the interior of the inner vessel and includes an inner pump mounting tube and an outer pump mounting tube joined at their lower rims to define an insulating jacket between the two tubes. The inner pump mounting tube is affixed at its upper end to the outer vessel while the outer pump mounting tube is affixed at its upper end to the inner vessel. The inner pump mounting tube defines a relatively long heat path into the cryogenic container and is itself insulated from the liquid cryogen by a pocket of trapped gas formed within the inner pump mounting tube by heated cryogen. A pump may be introduced through the inner pump mounting tube and is also insulated against contact with liquid cryogen by the trapped gas such that only the lowermost end of the pump is immersed in cryogen thereby minimizing heat leakage into the tank

  7. Cryogen therapy of skin cancer

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors studied the cure of skin cancer in particular cryogen therapy of skin cancer. They noted that cryogen therapy of skin cancer carried new possibilities and improved results of neoplasms treatment

  8. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-09-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  9. Probabilistic Structural Analysis of SSME Turbopump Blades: Probabilistic Geometry Effects

    Science.gov (United States)

    Nagpal, V. K.

    1985-01-01

    A probabilistic study was initiated to evaluate the precisions of the geometric and material properties tolerances on the structural response of turbopump blades. To complete this study, a number of important probabilistic variables were identified which are conceived to affect the structural response of the blade. In addition, a methodology was developed to statistically quantify the influence of these probabilistic variables in an optimized way. The identified variables include random geometric and material properties perturbations, different loadings and a probabilistic combination of these loadings. Influences of these probabilistic variables are planned to be quantified by evaluating the blade structural response. Studies of the geometric perturbations were conducted for a flat plate geometry as well as for a space shuttle main engine blade geometry using a special purpose code which uses the finite element approach. Analyses indicate that the variances of the perturbations about given mean values have significant influence on the response.

  10. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  11. Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander

    International Nuclear Information System (INIS)

    Joshi, D.M.; Patel, H.K.; Shah, D.K.

    2015-01-01

    Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the

  12. Performance of Magnetic-Superconductor Non-Contact Harmonic Drive for Cryogenic Space Applications: Speed, Torque and Efficiency Measurements

    Science.gov (United States)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Valiente-Blanco, Ignacio; Cristache, Cristian; Alvarez-Valenzuela, Marco-Antonio; Sanchez-Garcia-Casarrubios, Juan

    2015-09-01

    Harmonic Drives are widely used in space mainly because of their compactness, large reduction ratio ad zero backlash. However, their use in extreme environments like in cryogenic temperatures is still a challenge. Lubrication, lifetime and fatigue are still issues under these conditions.The MAGDRIVE project, funded by the EU Space FP7 was devoted to test a new concept of harmonic drive reducer. By using the magnetic distance force interactions of magnets and ferromagnetic materials, all the conventional mechanical elements of a Harmonic Drives (teeth, flexspline and ball bearings) are substituted by contactless mechanical components (magnetic gear and superconducting magnetic bearings). The absence of contact between any moving parts prevents wear, lubricants are no longer required and the operational life time is greatly increased. As the magnetic transmission is continuous there is no backlash in the reduction. MAG SOAR Company is already providing contactless mechanical components for space applications able to operate in a wide range of temperatures.In this paper the tests results of a -1:20 ratio MAGDRIVE prototype are reported. In these tests successful operation at 40 K and 10-3 Pa was demonstrated for more than 1.5 million input cycles. A maximum torque of 3 Nm and efficiency higher than 75% at 3000 rpm were demonstrated. The maximum tested input speed was 3000 rpm -six times the previous existing record for harmonic drives at cryogenic temperature.

  13. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  14. Cryogenic systems for inertial fusion energy

    International Nuclear Information System (INIS)

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  15. Developmental problems and their solution for the Space Shuttle main engine alternate liquid oxygen high-pressure turbopump: Anomaly or failure investigation the key

    Science.gov (United States)

    Ryan, R.; Gross, L. A.

    1995-05-01

    The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.

  16. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C; Jimenez D, J; Cejudo A, J; Hernandez M, V [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  17. Proceedings of the 26th International Cryogenic Engineering Conference - International Cryogenic Material Conference 2016

    Science.gov (United States)

    Datta, T. S.; Sharma, R. G.; Kar, S.

    2017-02-01

    International Conference ICEC 26 - ICMC 2016 was organized at New Delhi, India during March 7-11, 2016. Previous conference ICEC25-ICMC 2014 was held at the University of Twente, The Netherlands in July 2014. Next Conference ICEC 27- ICMC 2018 will be held at Oxford, UK during September 3-7, 2018 1. Introduction This is a biennial international conference on cryogenic engineering and cryogenics materials organized by the International Cryogenic Engineering Committee and the International Cryogenic Material Committee. For some years, the host country has been alternating between Europe and Asia. The present conference was held at the Manekshaw Convention Centre, New Delhi, India during March 7-11, 2016 and hosted jointly by the Indian Cryogenics Council (ICC) and the Inter-University Accelerator Centre (IUAC), New Delhi. Put all together as many as 547 persons participated in the conference. Out of these 218 were foreign delegates coming from 25 countries and the rest from India. 2. Inaugural Session & Course Lectures The pre conference short course lectures on “Cryocoolers” and “Superconducting Materials for Power Applications” were organized on 7th March. Cryocooler course was given jointly by Dr. Chao Wang from M/s. Cryomech, USA and Prof. Milind Atrey from IIT Bombay, India. The Course on Superconducting Materials was given by Prof. Venkat Selvamanickam from the University of Houston, USA. The conference was inaugurated in the morning of March 8th in a typical Indian tradition and in the presence of the Chief Guest, Dr. R Chidambaram (Principle Scientific Adviser to Govt. of India), Guest of Honour, Prof. H Devaraj (Vice Chairman University Grant Commission), Prof Marcel ter Brake ( Chair, ICEC Board), Prof. Wilfried Goldacker (Chair, ICMC board), Dr. D Kanjilal (Director IUAC), Dr R K Bhandari, (President, Indian Cryogenic Council ). Dr. T S Datta, Chair Local Organizing Committee coordinated the proceedings of the inaugural function. 3. Technical

  18. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Anindya [Fermilab; Rane, Tejas [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  19. Cryogenics bringing the temperature down, underground

    CERN Multimedia

    2005-01-01

    The first 600m of the LHC cryogenic distribution line (QRL), which will feed the accelerator's superconducting magnets, has passed initial validating tests of its mechanical design at room and cryogenic temperatures.

  20. Improvement of cooldown time of LSF9599 flexure-bearing SADA cooler

    Science.gov (United States)

    Mullié, Jeroen; vd Groep, Willem; Bruins, Peter; Benschop, Tonny; de Koning, Arjan; Dam, Jacques

    2006-05-01

    Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing supported cooler that fits within the SADA II envelope, Thales Cryogenics has been selected in several new (military) programs with their LSF coolers. For many of these new programs, the cooldown time requirements are more stringent than in the past, whereas at the same time size, complexity and thus thermal mass of the infrared sensor tends to increase. In order to respond to the need created by the combination of these trends, Thales Cryogenics started a development program to optimize cryogenic performance of the LSF 9599 cooler. The main goal for the development program is to reduce the cooldown time, while maintaining the SADA II compatible interface, and maintaining the robustness and proven reliability of the cooler. Within these constraints, the regenerator was further optimized using among others the experience with mixed-gauze regenerators obtained from our pulse tube research. Using the mixed gauze approach, the heat storage capacity of the regenerator is adapted as a function of the temperature profile over the regenerator, thus giving the optimum balance between heat storage capacity and pressure drop. A novel way of constructing the regenerator further decreases shuttle heat losses and other thermal losses in the regenerator. This paper describes the first results of the trade-offs and gives an overview of impact on cooldown times and efficiency figures achieved after the regenerator and displacer optimization.

  1. Kodak AMSD Cryogenic Test Plans

    Science.gov (United States)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  2. Application of the probabilistic approximate analysis method to a turbopump blade analysis. [for Space Shuttle Main Engine

    Science.gov (United States)

    Thacker, B. H.; Mcclung, R. C.; Millwater, H. R.

    1990-01-01

    An eigenvalue analysis of a typical space propulsion system turbopump blade is presented using an approximate probabilistic analysis methodology. The methodology was developed originally to investigate the feasibility of computing probabilistic structural response using closed-form approximate models. This paper extends the methodology to structures for which simple closed-form solutions do not exist. The finite element method will be used for this demonstration, but the concepts apply to any numerical method. The results agree with detailed analysis results and indicate the usefulness of using a probabilistic approximate analysis in determining efficient solution strategies.

  3. Automatic regulation of the feedwater turbo-pump capacity for the single-turbine 1000 MW NPP unit

    International Nuclear Information System (INIS)

    Pavlysh, O.N.; Garbuzov, I.P.; Reukov, Yu.N.

    1985-01-01

    A schematic of the flow regulators (FR) of feedwater turbo-pumps (FTP) for the single-turbine 1000 MW NPP unit is presented. The FR operate in response to feedwoter signals from FTP or in response to FTP rotor rotational speed and control automatic speed governars. The FR automatic regulation ensures limitation of FTP rotor maximum rotational speed at a feedwater flow rate excess equal to 3600 T/h. The transients in the automatic regulation system are considered. Production tests of FTP FR confirmed the FR operation reliability and the right choice of the regulator concept and structure

  4. Commissioning the cryogenic system of the first LHC sector

    International Nuclear Information System (INIS)

    Millet, F.; Claudet, S.; Ferlin, G.; Perin, A.; Riddone, G.; Serio, L.; Soubiran, M.; Tavian, L.; CERN; Ronayette, L.; GHMFL, Grenoble; Rabehl, R.; Fermilab

    2007-01-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioning is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test

  5. The cryogenic control system of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    LI Gang; WANG Ke-Xiang; ZHAO Ji-Jiu; YUE Ke-Juan; DAI Ming-Sui; HUANG Yi-Ling; JIANG Bo

    2008-01-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron-Positron Collider Upgrade Project(BEPCⅡ).The system consists of a Siemens PLC(ST-PLC,Programmable Logic Controller)for the compressor control,an Allen Bradley(AB)PLC for the cryogenic equipments,and the Experimental Physics and Industrial Control System(EPICS)that integrates the PLCs.The system fully automates the superconducting cryogenic control with process control,PID(Proportional-Integral-Differential)control loops,real-time data access and data storage,alarm handler and human machine interface.It is capable of automatic recovery as well.This paper describes the BEPCⅡ cryogenic control system,data communication between ST-PLC and EPICS Input/Output Controllers(IOCs),and the integration of the flow control,the low level interlock,the AB-PLC,and EPICS.

  6. A breath of fresh air for cryogenics training

    CERN Multimedia

    HSE Unit

    2014-01-01

    Whether you work full-time in a cryogenic installation or are required to handle cryogenic substances temporarily, you need to have followed the appropriate safety training.   Photo: Christoph Balle. Two new training courses are now available in English and French at CERN: “Cryogenic Safety – Fundamentals” (at the Prévessin Training Centre) and “Cryogenic Safety – Helium Transfer” (at the Cryolab). The first covers the content of levels 1 and 2 of the old “Cryogenic Safety” course. The second is a completely new course for CERN: it covers specific aspects of the transfer of liquid helium, such as the evaporation process of helium and the associated risks to human health (asphyxia due to displacement of oxygen), the colour code for gas bottles, etc. These training modules have been rewritten in response to the increase in the number of projects involving cryogenics and following various related incident...

  7. Infrared detectors and test technology of cryogenic camera

    Science.gov (United States)

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  8. A Reference Guide for Cryogenic Properties of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weisend, John G

    2003-09-16

    A thorough knowledge of the behavior of materials at cryogenic temperatures is critical for the design of successful cryogenic systems. Over the past 50 years, a tremendous amount of material properties at cryogenic temperatures have been measured and published. This guide lists resources for finding these properties. It covers online databases, computer codes, conference proceedings, journals, handbooks, overviews and monographs. It includes references for finding reports issued by government laboratories and agencies. Most common solids and fluids used in cryogenics are covered.

  9. Coupled Cryogenic Thermal and Electrical Models for Transient Analysis of Superconducting Power Devices with Integrated Cryogenic Systems

    Science.gov (United States)

    Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.

    2017-12-01

    Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.

  10. Large Cryogenic Infrastructure for LHC Superconducting Magnet and Cryogenic Component Tests: Layout, Commissioning and Operational Experience

    International Nuclear Information System (INIS)

    Calzas, C.; Chanat, D.; Knoops, S.; Sanmarti, M.; Serio, L.

    2004-01-01

    The largest cryogenic test facility at CERN, located at Zone 18, is used to validate and to test all main components working at cryogenic temperature in the LHC (Large Hadron Collider) before final installation in the machine tunnel. In total about 1300 main dipoles, 400 main quadrupoles, 5 RF-modules, eight 1.8 K refrigeration units will be tested in the coming years.The test facility has been improved and upgraded over the last few years and the first 18 kW refrigerator for the LHC machine has been added to boost the cryogenic capacity for the area via a 25,000 liter liquid helium dewar. The existing 6 kW refrigerator, used for the LHC Test String experiments, will also be employed to commission LHC cryogenic components.We report on the design and layout of the test facility as well as the commissioning and the first 10,000 hours operational experience of the test facility and the 18 kW LHC refrigerator

  11. Cryogenic support member

    International Nuclear Information System (INIS)

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1987-01-01

    A cryogenic support member is described for restraining a cryogenic system comprising; a rod having a depression at a first end. The rod is made of non-metallic material. The non-metallic material has an effectively low thermal conductivity; a metallic plug; and a metallic sleeve. The plug and the sleeve are shrink-fitted to the depression in the rod and assembled thereto such that the plug is disposed inside the depression of the rod. The sleeve is disposed over the depression in the rod and the rod is clamped therebetween. The shrink-fit clamping the rod is generated between the metallic plug and the metallic sleeve

  12. Status of the LBNF Cryogenic System

    CERN Document Server

    Montanari, D; Bremer, J; Delany, M; Diaz, A; Doubnik, R; Haaf, K; Henstchel, S; Norris, B; Voirin, E

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  13. Status of the LBNF Cryogenic System

    Science.gov (United States)

    Montanari, D.; Adamowski, M.; Bremer, J.; Delaney, M.; Diaz, A.; Doubnik, R.; Haaf, K.; Hentschel, S.; Norris, B.; Voirin, E.

    2017-12-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  14. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Science.gov (United States)

    2010-10-01

    ... filling density for hydrogen, cryogenic liquid is defined as the percent ratio of the weight of lading in... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...

  15. Characterization of a cryogenic ion guide at IGISOL

    NARCIS (Netherlands)

    Saastamoinen, A.; Moore, I. D.; Ranjan, M.; Dendooven, P.; Penttila, H.; Perajarvi, K.; Popov, A.; Aysto, J.

    2012-01-01

    A small volume cryogenic ion guide has been characterized at the IGISOL facility, Jyvaskyla, as a prototype to verify whether there are any major obstacles to the use of high-density cryogenic helium gas for the stopping and extraction of high-energy ions from a large volume cryogenic ion catcher.

  16. Advances in cryogenic engineering. Volume 27 - Proceedings of the Cryogenic Engineering Conference, San Diego, CA, August 11-14, 1981

    Science.gov (United States)

    Fast, R. W.

    Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250

  17. The Future with Cryogenic Fluid Dynamics

    Science.gov (United States)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  18. Evacuation apparatus with cryogenic pump and trap assembly

    International Nuclear Information System (INIS)

    Mahl, G.

    1980-01-01

    An evacuation apparatus comprising a vessel defining a vacuum chamber therein, vacuumizing means communicating with an opening to said vacuum chamber for selectively drawing a vacuum therein comprising cryogenic pump means disposed closely adjacent to said opening and defined by substantial cryogenically cooled trap surfaces for freezing-out water vapor from air evacuated from said vacuum chamber, said opening being common to said vacuum chamber and to said cryogenic pump means, valve means for selectively opening or closing the opening to said vacuum chamber and movable from a first position within said cryogenic pump means closing said opening to a second position within said cryogenic pump means directly exposing said vacuum chamber to said cryogenic pump means, through said opening, baffle means disposed closely adjacent to the opening to said vacuum chamber for providing substantial open communication to said vacuum chamber and for substantially preventing ingress of contaminants into said vacuum chamber, said baffle means being positioned to provide an optically dense view of said opening when viewed from a downstream side of said baffle means, and a plurality of longitudinally spaced and cryogenically cooled fins mounted in nested relationship within said baffle means and disposed in out-of-contact relationship therewith, said fins being positioned to provide an optically dense view of the downstream side of said baffle means when viewed from said openings. The cryogenic pump is adapted for use in an evacuation apparatus comprising a housing defining an opening to a vacuum chamber, a plurality of metallic plates defining a first chamber therein communicating with said vacuum chamber through said opening and further defining a second chamber at least partially surrounding said first chamber and adapted to be at least partially filled with a cryogenic liqui.d

  19. Cryogen free low temperature sample environment for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kirichek, O; Evans, B E; Down, R B E; Bowden, Z A

    2009-01-01

    Recent increase in liquid helium cost caused by global helium supply problems rose significant concern about affordability of conventional cryogenic equipment. Luckily the progress in cryo-cooler technology offers a new generation of cryogenic systems with significantly reduced consumption and in some cases nearly complete elimination of cryogens. These cryogen-free systems also offer the advantage of operational simplicity and require less space than conventional cryogen-cooled systems. The ISIS facility carries on an internal development program intended to substitute gradually all conventional cryogenic systems with cryogen free systems preferably based on pulse tube refrigerators. A unique feature of this cryo-cooler is the absence of cold moving parts. This considerably reduces vibrations and increases the reliability of the cold head. The program includes few development projects which are aiming to deliver range of cryogen free equipment including top-loading cryostat, superconducting magnets and dilution refrigerators. Here we are going to describe the design of these systems and discuss the results of prototypes testing.

  20. Cryogenics for LDR

    Science.gov (United States)

    Kittel, Peter

    1988-01-01

    Three cryogenic questions of importance to Large Deployable Reflector (LDR) are discussed: the primary cooling requirement, the secondary cooling requirement, and the instrument changeout requirement.

  1. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  2. Cryogenics Testbed Laboratory Flange Baseline Configuration

    Science.gov (United States)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  3. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  4. Status of the Cryogenic Storage Ring (CSR)

    Energy Technology Data Exchange (ETDEWEB)

    Menk, Sebastian; Becker, Arno; Berg, Felix; Blaum, Klaus; Fellenberger, Florian; Froese, Michael; Goullon, Johannes; Grieser, Manfred; Krantz, Claude; Lange, Michael; Laux, Felix; Repnow, Roland; Schornikov, Andrey; Hahn, Robert von; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik (MPIK), 69117 Heidelberg (Germany); Spruck, Kaija [Institut fuer Atom- und Molekuelphysik Justus-Liebig-Universitaet, 35392 Giessen (Germany)

    2012-07-01

    A novel cryogenic storage ring is currently under construction at the MPIK. By electrostatic ion optical elements, the 35 m circumference Cryogenic Storage Ring will be able to store ions at energies of up to 300 keV per charge unit without any mass limitations. The CSR consists of a cryogenic ({proportional_to}5 K) beam pipe surrounded by two radiation shields (40 and 80 K) in a large outer, thermal insulation vacuum. Extreme vacuum (density {proportional_to}10{sup 3} cm{sup -3}) will be achieved by 2 K cryopumping as demonstrated in a prototype ion beam trap. The ion optics was completely assembled within the precision cryogenic mounting and shielding structure of the first corner. There, cooldown tests to {proportional_to}40 K were performed which confirmed the required sub-millimeter accuracy of the specially designed electrode positioning under large temperature changes. The high-voltage connections to the cryogenic electrodes were installed and breakdown tests will be reported. Based on the test results the beam pipe, electrode mounting and shielding structures are under final construction for mounting during 2012.

  5. Process simulations for the LCLS-II cryogenic systems

    Science.gov (United States)

    Ravindranath, V.; Bai, H.; Heloin, V.; Fauve, E.; Pflueckhahn, D.; Peterson, T.; Arenius, D.; Bevins, M.; Scanlon, C.; Than, R.; Hays, G.; Ross, M.

    2017-12-01

    Linac Coherent Light Source II (LCLS-II), a 4 GeV continuous-wave (CW) superconducting electron linear accelerator, is to be constructed in the existing two mile Linac facility at the SLAC National Accelerator Laboratory. The first light from the new facility is scheduled to be in 2020. The LCLS-II Linac consists of thirty-five 1.3 GHz and two 3.9 GHz superconducting cryomodules. The Linac cryomodules require cryogenic cooling for the super-conducting niobium cavities at 2.0 K, low temperature thermal intercept at 5.5-7.5 K, and a thermal shield at 35-55 K. The equivalent 4.5 K refrigeration capacity needed for the Linac operations range from a minimum of 11 kW to a maximum of 24 kW. Two cryogenic plants with 18 kW of equivalent 4.5 K refrigeration capacity will be used for supporting the Linac cryogenic cooling requirements. The cryogenic plants are based on the Jefferson Lab’s CHL-II cryogenic plant design which uses the “Floating Pressure” design to support a wide variation in the cooling load. In this paper, the cryogenic process for the integrated LCLS-II cryogenic system and the process simulation for a 4.5 K cryoplant in combination with a 2 K cold compressor box, and the Linac cryomodules are described.

  6. The evolution of cryogenic safety at Fermilab

    International Nuclear Information System (INIS)

    Stanek, R.; Kilmer, J.

    1992-12-01

    Over the past twenty-five years, Fermilab has been involved in cryogenic technology as it relates to pursuing experimentation in high energy physics. The Laboratory has instituted a strong cryogenic safety program and has maintained a very positive safety record. The solid commitment of management and the cryogenic community to incorporating safety into the system life cycle has led to policies that set requirements and help establish consistency for the purchase and installation of equipment and the safety analysis and documentation

  7. Cryogenic Safety Rules and Guidelines at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    CERN defines and implements a Safety Policy that sets out the general principles governing safety at CERN. As an intergovernmental organisation, CERN further establishes its own Safety Rules as necessary for its proper functioning. In this process, it takes into account the laws and regulation of the Host States (France and Switzerland), EU regulations and directives, as well as international regulations, standards and directives. For the safety of cryogenic equipment, this is primarily covered by the Safety Regulation for Mechanical Equipment and the General Safety Instruction for Cryogenic Equipment. In addition, CERN has also developed Safety Guidelines to support the implementation of these safety rules, covering cryogenic equipment and oxygen deficiency hazard assessment and mitigation. An overview of the cryogenic safety rules and these safety guidelines will be presented.

  8. Structure design and simulation research of active magnetic bearing for helium centrifugal cold compressor

    Science.gov (United States)

    Y Zhang, S.; Pan, W.; Wei, C. B.; Wu, J. H.

    2017-12-01

    Helium centrifugal cold compressors are utilized to pump gaseous helium from saturated liquid helium tank to obtain super-fluid helium in cryogenic refrigeration system, which is now being developed at TIPC, CAS. Active magnetic bearing (AMB) is replacing traditional oil-fed bearing as the optimal supporting assembly for cold compressor because of its many advantages: free of contact, high rotation speed, no lubrication and so on. In this paper, five degrees of freedom for AMB are developed for the helium centrifugal cold compressor application. The structure parameters of the axial and radial magnetic bearings as well as hardware and software of the electronic control system is discussed in detail. Based on modal analysis and critical speeds calculation, a control strategy combining PID arithmetic with other phase compensators is proposed. Simulation results demonstrate that the control method not only stables AMB system but also guarantees good performance of closed-loop behaviour. The prior research work offers important base and experience for test and application of AMB experimental platform for system centrifugal cold compressor.

  9. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  10. Thermal Stabilization of Cryogenic System in Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun

    2011-01-01

    Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program

  11. Cryogenic Safety HSE Seminar | 21 - 23 September 2016

    CERN Multimedia

    2016-01-01

    With the LHC being the world’s largest superconducting installation, it’s not surprising that CERN is a world leader in cryogenic safety. On 21 and 22 September, over 100 experts in cryogenic safety will be coming to CERN to take part in CERN’s first Cryogenic Safety Seminar, which aims to stimulate collaboration and further the state of the art in this increasingly important field.  

  12. Cryogenic refrigeration. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning cryogenic refrigeration or cryocooling. Design, development, testing, and evaluation of cryogenic cooling systems are discussed. Design applications in spacecraft, magnet cooling, superconductors, liquid fuel storage, radioastronomy, and medicine are presented. Material properties at cryogenic temperatures and cryogenic rocket propellants are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  13. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  14. A Scalable Superconductor Bearing System For Lunar Telescopes And Instruments

    Science.gov (United States)

    Chen, Peter C.; Rabin, D.; Van Steenberg, M. E.

    2010-01-01

    We report on a new concept for a telescope mount on the Moon based on high temperature superconductors (HTS). Lunar nights are long (15 days), and temperatures range from 100 K to 30 K inside shadowed craters. Telescopes on the Moon therefore require bearing systems that can position and track precisely under cryogenic conditions, over long time periods, preferably with no maintenance, and preferably do not fail with loss of power. HTS bearings, consisting of permanent magnets levitated over bulk superconductors, are well suited to the task. The components do not make physical contact, hence there is no wear. The levitation is passive and stable; no power is required to maintain position. We report on the design and laboratory demonstration of a prototype two-axis pointing system. Unlike previous designs, this new configuration is simple and easy to implement. Most importantly, it can be scaled to accommodate instruments ranging in size from decimeters (laser communication systems) to meters (solar panels, communication dishes, optical telescopes, optical interferometers) to decameters and beyond (VLA-type radio interferometer elements).

  15. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  16. Comparison of cryogenic low-pass filters.

    Science.gov (United States)

    Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  17. Cryogenic target formation using cold gas jets

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1980-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets, are described. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member

  18. Cryogenics system: strategy to achieve nominal performance and reliable operation

    CERN Document Server

    Bremer, J; Casas, J; Claudet, S; Delikaris, D; Delruelle, N; Ferlin, G; Fluder, C; Perin, A; Perinic, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the overcapacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the "cannibalization" of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of ...

  19. Feasibility Study of Cryogenic Cutting Technology by Using a Computer Simulation and Manufacture of Main Components for Cryogenic Cutting System

    International Nuclear Information System (INIS)

    Kim, Sung Kyun; Lee, Dong Gyu; Lee, Kune Woo; Song, Oh Seop

    2009-01-01

    Cryogenic cutting technology is one of the most suitable technologies for dismantling nuclear facilities due to the fact that a secondary waste is not generated during the cutting process. In this paper, the feasibility of cryogenic cutting technology was investigated by using a computer simulation. In the computer simulation, a hybrid method combined with the SPH (smoothed particle hydrodynamics) method and the FE (finite element) method was used. And also, a penetration depth equation, for the design of the cryogenic cutting system, was used and the design variables and operation conditions to cut a 10 mm thickness for steel were determined. Finally, the main components of the cryogenic cutting system were manufactures on the basis of the obtained design variables and operation conditions.

  20. Sub-scale Waterflow Cavitation and Dynamic Transfer Function Testing of an Oxidizer Turbo-Pump Combined Inducer and Impeller

    Science.gov (United States)

    Karon, D. M.; Patel, S. K.; Zoladz, T. F.

    2016-01-01

    In 2009 and 2010, Concepts NREC prepared for and performed a series of tests on a 52% scale of a version of the Pratt & Whitney Rocketdyne J-2X Oxidizer Turbopump under a Phase III SBIR with NASA MSFC. The test article was a combined inducer and impeller, tested as a unit. This paper presents an overview of the test rig and facility, instrumentation, signal conditioning, data acquisition systems, testing approach, measurement developments, and lessons learned. Results from these tests were presented in the form of two papers at the previous JANNAF joint propulsion conference, in December of 2011.

  1. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    Brindza, P.; Rode, C.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. These accelerating cavities are arranged in pairs in a cryounit. The ensemble of four cryounits (8 cavities) together with their end caps makes up a complete cryostat called a cryogenic module. The four cryounit helium vessels are cross connected to each other and share a common cryogen supply, radiation shield and insulating vacuum. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2 K and the 4.5 K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0 K at .031 ATM and 4.4 K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  2. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  3. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  4. Designs of pulsed power cryogenic transformers

    International Nuclear Information System (INIS)

    Singh, S.K.; Heyne, C.J.; Hackowrth, D.T.; Shestak, E.J.; Eckels, P.W.; Rogers, J.D.

    1988-01-01

    The Westinghouse Electric Corporation has completed designs of three pulsed power cryogenic transformers of three pulsed power cryogenic transformers for the Los Alamos National Laboratory. These transformers will be configured to transfer their stored energy sequentially to an electro-magnetic launcher and form a three-stage power supply. The pulse transformers will act as two winding energy storage solenoids which provide a high current and energy pulse compression by transforming a 50 kA power supply into a megamp level power supply more appropriate for the electromagnetic launcher duty. This system differs from more traditional transformer applications in that significant current levels do not exists simultaneously in the two windings of the pulse transformer. This paper describes the designs of the pulsed power cryogenic transformers

  5. Cryogenics for SMES

    International Nuclear Information System (INIS)

    McIntosh, G.E.

    1981-01-01

    A wide-ranging study of superconducting magnetic energy storage (SMES) structural and cryogenic requirements was made. Concepts and computational methods have been developed for all of the major problems in these areas. Design analyses have been made to provide more detailed information on some items and experimental work has been performed to create data bases in the areas of superfluid heat transfer, superfluid dielectric properties, heat transfer from conductors, and in the thermal and mechanical properties of materials at low temperatures. In most cases optimum solutions have not been made because of the developing nature of the overall study but methodology for optimization has been worked out for essentially all SMES cryogenic and structural elements. The selection of 1.8 K cooling and all aluminum systems in bedrock continues to be the best choice

  6. Cryogenic system for TRISTAN superconducting RF cavity

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Yuuji; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Ishimaru, Y.

    1990-01-01

    A cryogenic system consisting of a helium refrigerator (4 kW at 4.4 K) and a liquid helium distribution transfer system for TRISTAN 508 MHz 32 x 5-cell superconducting RF cavities was designed and constructed. After the performance test of the cryogenic system, 16 x 5-cell superconducting RF cavities in 8 cryostats were installed in underground TRISTAN electron-positron collider and connected to the helium refrigerator on the ground level through the transfer line (total length about 330 m) and cooled by liquid helium pool boiling in parallel. The cryogenic system and its operation experience are described. (author)

  7. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  8. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  9. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  10. Use of PROFIBUS for cryogenic instrumentation at XFEL

    Science.gov (United States)

    Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.

    2017-12-01

    The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.

  11. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  12. In-Space Cryogenic VOST Connect/Disconnect, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel cryogenic couplings will be designed, fabricated and tested. Intended for in-space use at cryogenic propellant depots, the couplings are based on patented...

  13. Cryogenic safety organisation at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  14. Cryogenic Fuel Tank Draining Analysis Model

    Science.gov (United States)

    Greer, Donald

    1999-01-01

    One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

  15. A word from the DG: A cryogenic success

    CERN Multimedia

    2007-01-01

    The beginning of this month saw the start of a new phase in the LHC project, with its first inauguration, for the LHC cryogenics. This was marked with a symposium in the Globe attended by 178 representatives of the industrial partners and research institutes involved. It also coincided with stable low-temperature operation of the cryogenic plant for sector 7-8, the first sector of the LHC to be cooled down. A look at the LHC web site (http://lhc.web.cern.ch/lhc/) shows this steady operation. The cryogenic system for the LHC is the largest and most complex ever built, involving many large devices on an industrial scale, where reliability is of paramount importance. The LHC’s energy of 7 TeV required a high magnetic field provided by niobium-titanium coils operating at 1.9 K. This is a new temperature regime for large-scale cryogenics, chosen to make use of the excellent heat-transfer properties of helium in its superfluid state. The final design for the LHC cryogenics had to incorporate both newly ordered ...

  16. Cooling pipeline disposing structure for large-scaled cryogenic structure

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki.

    1996-01-01

    The present invention concerns an electromagnetic force supporting structure for superconductive coils. As the size of a cryogenic structure is increased, since it takes much cooling time, temperature difference between cooling pipelines and the cryogenic structure is increased over a wide range, and difference of heat shrinkage is increased to increase thermal stresses. Then, in the cooling pipelines for a large scaled cryogenic structure, the cooling pipelines and the structure are connected by way of a thin metal plate made of a material having a heat conductivity higher than that of the material of the structure by one digit or more, and the thin metal plate is bent. The displacement between the cryogenic structure and the cooling pipelines caused by heat shrinkage is absorbed by the elongation/shrinkage of the bent structure of the thin metal plate, and the thermal stresses due to the displacement is reduced. In addition, the heat of the cryogenic structures is transferred by way of the thin metal plate. Then, the cooling pipelines can be secured to the cryogenic structure such that cooling by heat transfer is enabled by absorbing a great deviation or three dimensional displacement due to the difference of the temperature distribution between the cryogenic structure enlarged in the scale and put into the three dimensional shape, and the cooling pipelines. (N.H.)

  17. Neutron detection with cryogenics and semiconductors

    International Nuclear Information System (INIS)

    Bell, Zane W.; Carpenter, D.A.; Cristy, S.S.; Lamberti, V.E.; Burger, Arnold; Woodfield, Brian F.; Niedermayr, Thomas; Dragos Hau, I.; Labov, Simon E.; Friedrich, Stephan; Geoffrey West, W.; Pohl, Kenneth R.; Berg, Lodewijk van den

    2005-01-01

    The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI 2 for direct detection of neutrons. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Cryogenic fluid management program flight concept definition

    Science.gov (United States)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  19. Cryogenics system: strategy to achieve nominal performance and reliable operation

    International Nuclear Information System (INIS)

    Bremer, J.; Brodzinski, K.; Casas, J.; Claudet, S.; Delikaris, D.; Delruelle, N.; Ferlin, G.; Fluder, C.; Perin, A.; Perinic, G.; Pezzetti, M.; Pirotte, O.; Tavian, L.; Wagner, U.

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the over-capacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the 'cannibalization' of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of interventions (e.g. cryo-magnet removal) which can be done without affecting the operating conditions of the adjacent sector. This creates additional constrains and possible extra down-time in the schedule of the shutdowns including the hardware commissioning. This presentation focuses on the consolidation plan foreseen during the LS1 to improve the performance of the LHC cryogenic system in terms of availability and sectorization. (authors)

  20. High-frequency data observations from space shuttle main engine low pressure fuel turbopump discharge duct flex joint tripod failure investigation

    Science.gov (United States)

    Zoladz, T. F.; Farr, R. A.

    1991-01-01

    Observations made by Marshall Space Flight Center (MSFC) engineers during their participation in the Space Shuttle Main Engine (SSME) low pressure fuel turbopump discharge duct flex joint tripod failure investigation are summarized. New signal processing techniques used by the Component Assessment Branch and the Induced Environments Branch during the failure investigation are described in detail. Moreover, nonlinear correlations between frequently encountered anomalous frequencies found in SSME dynamic data are discussed. A recommendation is made to continue low pressure fuel (LPF) duct testing through laboratory flow simulations and MSFC-managed technology test bed SSME testing.

  1. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  2. Cryogenic systems for large superconducting accelerators/storage rings

    International Nuclear Information System (INIS)

    Brown, D.P.

    1981-01-01

    Particle accelerators and storage rings which utilize superconducting magnets have presented cryogenic system designers, as well as magnet designers, with many new challenges. When such accelerators were first proposed, little operational experience existed to guide the design. Two superconducting accelerators, complete with cryogenic systems, have been designed and are now under construction. These are the Fermilab Doubler Project and the Brookhaven National Laboratory ISABELLE Project. The cryogenic systems which developed at these two laboratories share many common characteristics, especially as compared to earlier cryogenic systems. Because of this commonality, these characteristics can be reasonably taken as also being representative of future systems. There are other areas in which the two systems are dissimilar. In those areas, it is not possible to state which, if either, will be chosen by future designers. Some of the design parameters for the two systems are given

  3. Research of the cold shield in cryogenic liquid storage

    Science.gov (United States)

    Chen, L. B.; Zheng, J. P.; Wu, X. L.; Cui, C.; Zhou, Y.; Wang, J. J.

    2017-12-01

    To realize zero boil-off storage of cryogenic liquids, a cryocooler that can achieve a temperature below the boiling point temperature of the cryogenic liquid is generally needed. Taking into account that the efficiency of the cryocooler will be higher at a higher operating temperature, a novel thermal insulation system using a sandwich container filled with cryogenic liquid with a higher boiling point as a cold radiation shield between the cryogenic tank and the vacuum shield in room temperature is proposed to reduce the electricity power consumption. A two-stage cryocooler or two separate cryocoolers are adopted to condense the evaporated gas from the cold shield and the cryogenic tank. The calculation result of a 55 liter liquid hydrogen tank with a liquid nitrogen shield shows that only 14.4 W of electrical power is needed to make all the evaporated gas condensation while 121.7 W will be needed without the liquid nitrogen shield.

  4. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  5. Some General Principles in Cryogenic Design, Implementation, and Testing

    Science.gov (United States)

    Dipirro, Michael James

    2015-01-01

    Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.

  6. The DFBX cryogenic distribution boxes for the LHC straight sections

    International Nuclear Information System (INIS)

    Zbasnik, Jon P.; Corradi, Carol A.; Green, Michael A.; Kajiyama, Y.; Knolls, Michael J.; LaMantia, Roberto F.; Rasson, Joseph E.; Reavill, Dulie; Turner, William C.

    2002-01-01

    The DFBX distribution boxes are designed to connect the LHC cryogenic distribution system to the interaction region quadrupoles [1] and dipoles for the Large Hadron Collider (LHC). The DFBX distribution boxes also have the current leads for the superconducting interaction region magnets and the LHC interaction region correction coils. The DFBX boxes also connect the magnet and cryogenic instrumentation to the CERN data collection system. The DFBX boxes serve as the cryogenic circulation center and the nerve center for four of the LHC straight sections. This report describes primarily the cryogenic function of the DFBXs

  7. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    Science.gov (United States)

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  8. Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures. [transonic flow in cryogenic wind tunnels

    Science.gov (United States)

    Hall, R. M.; Adcock, J. B.

    1981-01-01

    The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.

  9. Cryogenic Liquid Sample Acquisition System for Remote Space Applications

    Science.gov (United States)

    Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John

    2013-01-01

    There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.

  10. A model for the Space Shuttle Main Engine High Pressure Oxidizer Turbopump shaft seal system

    Science.gov (United States)

    Paxson, Daniel E.

    1990-01-01

    A model of the High Pressure Oxidizer Turbopump (HPOTP) shaft seal system on the Space Shuttle Main Engine (SSME) is described. The model predicts the fluid properties and flow rates throughout this system for a number of conditions simulating failed seals. The results agree well with qualitative expectations and redline values but cannot be verified with actual data due to the lack thereof. The results indicate that each failure mode results in a unique distribution of properties throughout the seal system and can therefore be individually identified given the proper instrumentation. Furthermore, the detection process can be built on the principle of qualitative reasoning without the use of exact fluid property values. A simplified implementation of the model which does not include the slinger/labyrinth seal combination has been developed and will be useful for inclusion in a real-time diagnostic system.

  11. Cryogenic systems for the HEB accelerator of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Abramovich, S.; Yuecel, A.

    1994-07-01

    This report discusses the following topics related to the Superconducting Super Collider: Cryogenic system -- general requirements; cryogenic system components; heat load budgets and refrigeration plant capacities; flow and thermal characteristics; process descriptions; cryogenic control instrumentation and value engineering trade-offs

  12. Below-Ambient and Cryogenic Thermal Testing

    Science.gov (United States)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  13. Surface tension confined liquid cryogen cooler

    Science.gov (United States)

    Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)

    1989-01-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  14. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    Tarata, Daniela Florentina

    1999-01-01

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  15. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  16. Cryogenic system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design

  17. Production and Innovative Applications of Cryogenic Solid Pellets

    International Nuclear Information System (INIS)

    Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Milora, S.L.

    1999-01-01

    For over two decades Oak Ridge National Laboratory has been developing cryogenic pellet injectors for fueling hot, magnetic fusion plasmas. Cryogenic solid pellets of all three hydrogen isotopes have been produced in a size range of 1- to 10-mm diameter and accelerated to speeds from <100 to ∼3000 m/s. The pellets have been formed discretely by cryocondensation in gun barrels and also by extrusion of cryogenic solids at mass flow rates up to ∼0.26 g/s and production rates up to ten pellets per second. The pellets traverse the hot plasma in a fraction of a millisecond and continuously ablate, providing fresh hydrogenic fuel to the interior of the plasma. From this initial application, uses of this technology have expanded to include (1) cryogenic xenon drops or solids for use as a debris-less target in a laser plasma source of X-rays for advanced lithography systems, (2) solid argon and carbon dioxide pellets for surface cleaning or decontamination, and (3) methane pellets in a liquid hydrogen bath for use as an innovative moderator of cold neutrons. Methods of production and acceleration/transport of these cryogenic solids will be described, and examples will be given of their use in prototype systems

  18. Recent Advances and Applications in Cryogenic Propellant Densification Technology

    Science.gov (United States)

    Tomsik, Thomas M.

    2000-01-01

    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  19. Sequential cryogen spraying for heat flux control at the skin surface

    Science.gov (United States)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  20. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  1. Grain refinement and hardness distribution in cryogenically cooled ferritic stainless steel welds

    International Nuclear Information System (INIS)

    Amuda, M.O.H.; Mridha, S.

    2013-01-01

    Highlights: ► Grain refinement was undertaken in AISI 430 FSS welds using cryogenic cooling. ► Flow rates of the cryogenic liquid influenced weld grain structure. ► Cryogenic cooling of welds generates about 45% grain refinement in welds. ► Phase structure of welds is not affected by flow rates of cryogenic liquid. ► Hardness profile in cryogenically cooled and conventional welds is similar. - Abstract: The energy input and heat dissipation dynamics during fusion welding generates coarse grain in the welds resulting in poor mechanical properties. While grain refinement in welds via the control of the energy input is quite common, the influence of heat dissipation on grain morphology and properties is not fully established. This paper characterized cryogenically cooled ferritic stainless steel (FSS) welds in terms of grain structure and hardness distribution along transverse and thickness directions. Cryogenic cooling reduces the weld dimension by more than 30% and provides grain refinement of almost 45% compared to conventional weld. The hardness distribution in the thickness direction gives slightly higher profile because of decreased grain growth caused by faster cooling effects of cryogenic liquid

  2. The Management of Cryogens at CERN

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Serio, L; Tavian, L

    2005-01-01

    CERN is a large user of industrially procured cryogens essentially liquid helium and nitrogen. Recent contracts have been placed by the Organization for the delivery of quantities up to 280 tons of liquid helium over four years and up to 50000 tons of liquid nitrogen over three years. Main users are the very large cryogenic system of the LHC accelerator complex, the physics experiments using superconducting magnets and liquefied gases and all the related test facilities whether industrial or laboratory scale. With the commissioning of LHC, the need of cryogens at CERN will considerably increase and the procurement policy must be adapted accordingly. In this paper, we discuss procurement strategy for liquid helium and nitrogen, including delivery rates, distribution methods and adopted safety standards. Global turnover, on site re-liquefaction capacity, operational consumption, accidental losses, purification means and storage capacity will be described. Finally, the short to medium term evolution of the Orga...

  3. Cryogenic Thermometer Calibration Facility at CERN

    CERN Document Server

    Balle, C; Thermeau, J P

    1998-01-01

    A cryogenic thermometer calibration facility has been designed and is being commissioned in preparation for the very stringent requirements on the temperature control of the LHC superconducting magnets. The temperature is traceable in the 1.5 to 30 K range to standards maintained in a national metrological laboratory by using a set of Rhodium-Iron temperature sensors of metrological quality. The calibration facility is designed for calibrating simultaneously 60 industrial cryogenic thermometers in the 1.5 K to 300 K temperature range, a thermometer being a device that includes both a temperature sensor and the wires heat-intercept. The thermometers can be calibrated in good and degraded vacuum or immersed in the surrounding fluid and at different Joule self-heating conditions that match those imposed by signal conditioners used in large cryogenic machinery. The calibration facility can be operated in an automatic mode and all the control and safety routines are handled by a Programmable Logic Controller (PLC)...

  4. Technical presentation: BGM Cryogenic Engineering Limited

    CERN Multimedia

    Caroline Laignel - FI Department

    2006-01-01

    13 - 14 June 2006 TECHNICAL PRESENTATION BGM Cryogenic Engineering Limited 09:00 - 18:00, 60-2-016, Main Building. Presentation on BGM: 11:00 - 12:00, 60-2-016, Main Building. BGM Cryogenic Engineering Limited manufactures assemblies, sub-assemblies and machined components for the cryogenic technology sector. The primary markets served include superconducting magnets used in the healthcare sector (eg MRI body scanners), spectroscopy and NMR equipment for numerous R & D and technology applications, high vacuum applications and particle physics research. BGM has specialist assembly capability including stainless steel and aluminium welding, vacuum testing, electromechanical assembly and metal finishing. BGM offers a ‘one stop shop'facility to satisfy any customer requirement. Through our design partner we can offer a full design and modelling service, including 3D modelling and production of 2D drawings on your own borders. We can conduct heat load and force calculations and advise on the best...

  5. Chemiluminescence in cryogenic matrices

    Science.gov (United States)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  6. Status of the Cryogenic System Commissioning at SNS

    CERN Document Server

    Casagrande, Fabio; Campisi, Isidoro E; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Gurd, Pamela; Hatfield, Daniel; Howell, Matthew; Knudsen, Peter; Stout, Daniel; Strong, William

    2005-01-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

  7. The LHC cryogenic system and operational experience from the first three years run

    International Nuclear Information System (INIS)

    Delikaris, Dimitri; Tavian, Laurent

    2014-01-01

    The LHC (Large Hadron Collider) accelerator helium cryogenic system consists of eight cryogenically independent sectors, each 3.3 km long, all cooled and operated at 1.9 K. The overall, entropy equivalent, installed cryogenic capacity totalizes 144 kW (a) 4.5 K including 19.2 kW (a) 1.8 K with an associated helium inventory of 130 ton. The LHC cryogenic system is considered among the most complex and powerful in the world allowing the cooling down to superfluid helium temperature of 1.9 K. of the accelerators' high field superconducting magnets distributed over the 26.7 km underground ring. The present article describes the LHC cryogenic system and its associated cryogen infrastructure. Operational experience, including cryogen management, acquired from the first three years of LHC operation is finally presented. (author)

  8. Physics of cryogenics an ultralow temperature phenomenon

    CERN Document Server

    Zohuri, Bahman

    2018-01-01

    Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics.

  9. Cryogenic Insulation Standard Data and Methodologies Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  10. Super-light-weighted HB-Cesic® mirror cryogenic test

    Science.gov (United States)

    Devilliers, Christophe; Krödel, Matthias R.; Sodnik, Zoran; Robert, Patrick

    2017-11-01

    Future scientific space missions require ever more demanding large optics that work at cryogenic temperatures. In the frame of a Darwin assessment study conducted under ESA contract by TAS, the need of future very lightweight cryogenic mirrors with superior optical quality has been identified. Such mirrors need to be of size up to 3.5 m in diameter, with a mass of less than 250 kg (i.e. 25 kg/m2) and possess excellent optical quality at cryogenic temperature down to 40 K.

  11. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  12. Radiation Requirements and Testing of Cryogenic Thermometers for the Ilc

    Science.gov (United States)

    Barnett, T.; Filippov, Yu. P.; Filippova, E. Yu.; Mokhov, N. V.; Nakao, N.; Klebaner, A. L.; Korenev, S. A.; Theilacker, J. C.; Trenikhina, J.; Vaziri, K.

    2008-03-01

    Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox® and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results.

  13. Radiation requirements and testing of cryogenic thermometers for the ILC

    International Nuclear Information System (INIS)

    Barnett, T.; Filippov, Yu.P.; Mokhov, N.V.; Nakao, N.; Klebaner, A.L.; Korenev, S.A.; Theilacker, J.C.; Trenikhina, J.; Vaziri, K.

    2007-01-01

    Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox(reg s ign) and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results

  14. Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables

    Science.gov (United States)

    Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.

    2015-12-01

    This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.

  15. Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings

    International Nuclear Information System (INIS)

    Energetics, Inc.

    2000-01-01

    The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions raised during

  16. Synthesis of pure ozone by nanosecond discharge at cryogenic temperatures

    International Nuclear Information System (INIS)

    Amirov, R.H.; Asinovsky, E.I.; Samoilov, I.S.

    1996-01-01

    Synthesis of pure ozone by nanosecond discharge at cryogenic temperatures was experimentally examined. The average ozone concentration in the volume of the discharge tube was less at cryogenic temperatures than at room temperatures. The production of condensed ozone have been determined by measuring the ozone concentration when the walls was heated and ozone evaporated. The energy yield of ozone generation at cryogenic temperatures has been calculated. The maximum value was 200 g/kWh

  17. Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems

    Science.gov (United States)

    Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana

    2017-12-01

    At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.

  18. Cryogenic treatment of gas

    Science.gov (United States)

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  19. Fundamental of cryogenics (for superconducting RF technology)

    CERN Document Server

    Pierini, Paolo

    2013-01-01

    This review briefly illustrates a few fundamental concepts of cryogenic engineering, the technological practice that allows reaching and maintaining the low-temperature operating conditions of the superconducting devices needed in particle accelerators. To limit the scope of the task, and not to duplicate coverage of cryogenic engineering concepts particularly relevant to superconducting magnets that can be found in previous CAS editions, the overview presented in this course focuses on superconducting radio-frequency cavities.

  20. Overview of the Long-Baseline Neutrino Facility cryogenic system

    CERN Document Server

    Montanari, David; Bremer, Johan; Delaney, Michael; Aurelien, Diaz; Doubnik, Roza; Haaf, Kevin; Hentschel, Steve; Norris, Barry; Voirin, Erik

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. It also details the status of the design, ...

  1. Nanotribological behavior of deep cryogenically treated martensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Germán Prieto

    2017-08-01

    Full Text Available Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.

  2. Nanotribological behavior of deep cryogenically treated martensitic stainless steel.

    Science.gov (United States)

    Prieto, Germán; Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban

    2017-01-01

    Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic-plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.

  3. Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel

    International Nuclear Information System (INIS)

    Bensely, A.; Venkatesh, S.; Mohan Lal, D.; Nagarajan, G.; Rajadurai, A.; Junik, Krzysztof

    2008-01-01

    The effect of cryogenic treatment on the distribution of residual stress in the case carburized steel (En 353) was studied using X-ray diffraction technique. Two types of cryogenic treatment: shallow cryogenic treatment (193 K) and deep cryogenic treatment (77 K) were adopted, as a supplement to conventional heat treatment. The amount of retained austenite in conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples was found to be 28%, 22% and 14%, respectively. The conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples in untempered condition had a surface residual stress of -125 MPa, -115 MPa and -235 MPa, respectively. After tempering the conventionally heat-treated, shallow cryogenically treated and deep cryogenically treated samples had a surface residual stress of -150 MPa, -80 MPa and -80 MPa, respectively. A comparative study of the three treatments revealed that there was an increase in the compressive residual stress in steel that was subjected to cryogenic treatment prior to tempering. The experimental investigation revealed that deep cryogenically treated steel when subjected to tempering has undergone a reduction in compressive residual stress. Such stress relieving behaviour was mainly due to the increased precipitation of fine carbides in specimens subjected to DCT with tempering

  4. Cryogenic mechanical properties of Al-Cu-Li-Zr alloy 2090

    International Nuclear Information System (INIS)

    Glazer, J.; Dalder, E.N.C.; Emigh, R.A.; Verzasconi, S.L.; Yu, W.

    1986-01-01

    The mechanical properties of aluminum-lithium alloy 2090-T8E41 were evaluated at 298 K, 77 K, and 4 K. Previously reported tensile and fracture toughness properties at room temperature were confirmed. This alloy exhibits substantially improved properties at cryogenic temperatures; the strength, elongation, fracture toughness and fatigue crack growth resistance all improve simultaneously as the testing temperature decreases. This alloy has cryogenic properties superior to those of aluminum alloys currently used for cryogenic applications

  5. Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    Science.gov (United States)

    Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.

    2008-01-01

    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.

  6. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  7. Selected physico-mechanical characteristics of cryogenic and ambient ground turmeric

    Science.gov (United States)

    Barnwal, Pradyuman; Mohite, Ashish M.; Singh, Krishna K.; Kumar, Pankaj

    2014-03-01

    In this communication, selected physicomechanical characteristics of ground turmeric (cv. Prabha) were investigated for cryogenic and ambient grinding conditions of turmeric at different moisture contents (4, 6, 8 and 10% w.b.). A cryogenic grinder (Model: 100 UPZ, Hosokawa Alpine, Germany) and a micro pulverizer (hammer mill) were used for cryogenic and ambient grinding, respectively. The ground turmeric was graded in three grades viz. Gr-I, Gr-II and Gr-III with a sieve shaker using BSS Nos. 40, 85 and pan, respectively. Tap densities for cryogenic and ambient ground turmeric decreased from 678.7 (Gr-I) to 546.7 kgm-3 (Gr-III) and from 642.3 (Gr-I) to 468.6 kgm-3 (Gr-III), respectively, with the moisture increase. The angle of repose for cryogenic and ambient ground turmeric increased linearly from 26.85 (Gr-I) to 34.0° (Gr-III) and from 23.10 (Gr-I) to 28.06° (Gr-III), respectively with the increase in moisture content. The static coefficient of friction was the highest on plywood surface followed by mild steel sheet and galvanized iron sheet. The cryoground samples were found better in colour. Thermal conductivity of cryo-ground samples was higher than that of ambient ground samples. These physico-mechanical characteristics of cryogenic and ambient ground turmeric will be helpful for packaging, handling, and storage.

  8. A hall for assembly and cryogenic tests

    International Nuclear Information System (INIS)

    Beaunier, J.; Buhler, S.; Caruette, A.; Chevrollier, R.; Junquera, T.; Le Scornet, J.C.

    1999-01-01

    Cryodrome, an assembly hall and the testing ground for cryogenic equipment and R and D experiments for the superconducting cavities is going to be transformed for its future missions. The cryogenic utilities, especially the He low pressure pumping capacity, was rearranged and extended to a new area. Space was provided to install CRYHOLAB, a new horizontal cryostat for cavity testing. Automatic control and supervision of the utilities and the experimental area are rebuilt and updated. (authors)

  9. Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage

    Science.gov (United States)

    Espinosa-Loza, Francisco Javier

    Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also

  10. Bearing system

    Science.gov (United States)

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  11. Cryogenic system for the HERA magnet measurement facility

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Clausen, M.; Kebler, G.

    1986-01-01

    This paper describes the design for a helium, cryogenic distribution system that allows independent operation and testing of superconducting magnets of the HERA project before they are installed in the 6-km ring tunnel. The 820-GeV proton storage ring of HERA will contain approximately 650 magnets having superconducting coils which are clamped by aluminum/stainless-steel collars and surrounded by a yoke of magnetic iron at liquid helium temperature. When the magnets arive at DESY from the manufacture, each magnet will be individually tested at helium operating conditions in the magnet measurement facility to insure the quality of the magnetic characteristics and the cryogenic performance. The capabilities of the cryogenic system and the schedule for magnet testing are discussed

  12. Validation and Performance of the LHC Cryogenic System through Commissioning of the First Sector

    CERN Document Server

    Serio, L; Casas-Cubillos, J; Chakravarty, A; Claudet, S; Gicquel, F; Gomes, P; Kumar, M; Kush, PK; Millet, F; Perin, A; Rabehl, R; Singh, MR; Soubiran, M; Tavian, L

    2008-01-01

    The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was established and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.

  13. A highly reliable cryogenic mixing pump with no mechanical moving parts

    Science.gov (United States)

    Chen, W.; Niblick, A. L.

    2017-12-01

    This paper presents the design and preliminary test results of a novel cryogenic mixing pump based on magnetocaloric effect. The mixing pump is developed to enable long-term cryogenic propellant storage in space by preventing thermal stratification of cryogens in storage tanks. The mixing pump uses an innovative thermodynamic process to generate fluid jets to promote fluid mixing, eliminating the need for mechanical pumps. Its innovative mechanism uses a solid magnetocaloric material to alternately vaporize and condense the cryogen in the pumping chamber, and thus control the volume of the fluid inside the pumping chamber to produce pumping action. The pump is capable of self-priming and can generate a high-pressure rise. This paper discusses operating mechanism and design consideration of the pump, introduces the configuration of a brassboard cryogenic pump, and presents the preliminary test results of the pump with liquid nitrogen.

  14. The European Graduate Course in Cryogenics hosted at CERN.

    CERN Multimedia

    Laurent Tavian

    2010-01-01

    The “liquid helium” week of the European Graduate Course in Cryogenics was held at CERN from 30 August to 3 September 2010. This course scheduled annually since 2008 is a common teaching project of the Universities of Technology of Dresden, Wroclaw and Trondheim. It is focused on liquid natural gas, hydrogen and helium cryogenics. Attending students were carefully selected, and will take an examination giving ECTS credits for their academic curriculum.   This year, as Wroclaw University of Technology was already heavily involved in organising the International Cryogenic Engineering Conference (ICEC), it requested that the “liquid helium” week to be exceptionally held at CERN. While this is certainly a good choice from the point of view of large cryogenic helium systems, with the large cryoplants cooling the Large Hadron Collider (LHC) and its experiments, CERN has only acted as host laboratory organizing the course classes and visits, and the teaching and i...

  15. Cryogenic regenerators

    International Nuclear Information System (INIS)

    Kush, P.; Joshi, S.C.; Thirumaleshwar, M.

    1986-01-01

    Importance of regenerators in cryogenic refrigerators is highlighted. Design aspects of regenerator are reviewed and the factors involved in the selection of regenerator material are enumerated. Various methods used to calculate the heat transfer coefficient and regenerator effectiveness are mentioned. Variation of effectiveness with various parameters is calculated by a computer programme using the ideal, Ackermann and Tipler formulae. Results are presented in graphical form. Listing of the computer programme is given in the Appendix. (author)

  16. Implementation of time synchronized cryogenics control system network architecture for SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rakesh J., E-mail: rpatel@ipr.res.in; Mahesuria, Gaurang; Panchal, Pradip; Panchal, Rohit; Sonara, Dasarath; Tanna, Vipul; Pradhan, Subrata

    2016-11-15

    Highlights: • SST-1 cryogenics sub-systems are 1.3 kW HRL, LN2 distribution system, current feeders system and 80 K booster system. • GUI developed in SCADA and control program developed in PLC for automation of the above sub-systems. • Implemented the cryogenics control system network to communicate all systems to InSQL server. • InSQL server configured for real time centralized process data acquisition from all connected sub-systems control nodes. • Acquired the process parameters coming from different systems at same time stamp. - Abstract: Under the SST-1 mission mandate, the several cryogenic sub-systems have been developed, upgraded and procured in prior to the SST-1 operation. New developments include 80 K Bubble type thermal shields, LN2 distribution system, LN2 booster system and current feeders system (CFS).Graphical User Interface (GUI) program developed in Wonderware SCADA and control logic program developed in Schneider make PLC for the above sub-systems. Industrial SQL server (InSQL) configured for centralized storage of real time process data coming from various control nodes of cryogenics sub-systems. The cryogenics control system network for communicating all cryogenics sub-system control nodes to InSQL server for centralized data storage and time synchronization among cryogenic sub-systems with centralized InSQL server is successfully implemented. Due to implemented time synchronization among sub-systems control nodes, it is possible to analyze the process parameters coming from different sub-systems at same time stamp. This paper describes the overview of implemented cryogenics control system network architecture for real time cryogenic process data monitor, storage and retrieval.

  17. Implementation of time synchronized cryogenics control system network architecture for SST-1

    International Nuclear Information System (INIS)

    Patel, Rakesh J.; Mahesuria, Gaurang; Panchal, Pradip; Panchal, Rohit; Sonara, Dasarath; Tanna, Vipul; Pradhan, Subrata

    2016-01-01

    Highlights: • SST-1 cryogenics sub-systems are 1.3 kW HRL, LN2 distribution system, current feeders system and 80 K booster system. • GUI developed in SCADA and control program developed in PLC for automation of the above sub-systems. • Implemented the cryogenics control system network to communicate all systems to InSQL server. • InSQL server configured for real time centralized process data acquisition from all connected sub-systems control nodes. • Acquired the process parameters coming from different systems at same time stamp. - Abstract: Under the SST-1 mission mandate, the several cryogenic sub-systems have been developed, upgraded and procured in prior to the SST-1 operation. New developments include 80 K Bubble type thermal shields, LN2 distribution system, LN2 booster system and current feeders system (CFS).Graphical User Interface (GUI) program developed in Wonderware SCADA and control logic program developed in Schneider make PLC for the above sub-systems. Industrial SQL server (InSQL) configured for centralized storage of real time process data coming from various control nodes of cryogenics sub-systems. The cryogenics control system network for communicating all cryogenics sub-system control nodes to InSQL server for centralized data storage and time synchronization among cryogenic sub-systems with centralized InSQL server is successfully implemented. Due to implemented time synchronization among sub-systems control nodes, it is possible to analyze the process parameters coming from different sub-systems at same time stamp. This paper describes the overview of implemented cryogenics control system network architecture for real time cryogenic process data monitor, storage and retrieval.

  18. Cryogenic Propellant Storage and Transfer

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Flight Demonstration development has been canceled in favor of a ground test bed development for of passive/active cryogenic propellant storage, transfer, and...

  19. Cryogenic Liquid Fluctuations in a Motionless Tank

    Directory of Open Access Journals (Sweden)

    Min Vin Ai

    2014-01-01

    Full Text Available The article considers approximate numerical methods to determine own frequencies of cryogenic liquid fluctuations stratification of which changes under any law. The increasing use of cryogenic liquids, liquefied gas, superfluid solutions, and slush liquids in modern mechanical engineering define relevance of a perspective. Interest in the considered problem is also caused by the fact that in cryogenic liquid along with superficial waves there can be internal wave movements penetrating all thickness of liquid in a tank and therefore playing important role in many hydro-dynamic processes.This article considers problems of determining the own frequencies of cryogenic liquid fluctuations, partially filling cylindrical tank of any cross section. It is supposed that the change of the liquid particles density due to thermal stratification of entire liquid mass can proceed continuously under any law. To solve numerically a similar problem, a method of trigonometric series (MTS and a method of final elements (MFE were used. When using the MTS method the unknown solution and variable coefficients of the equation were presented in the form of trigonometric series. Further, after multiplication of series and the subsequent mathematical operations the frequency equation was obtained. Bubnov-Galyorkin's approach was used to obtain solutions by the MFE method. Reliability of received numerical results is confirmed by coincidence with frequency results calculated by analytical formulas of solutions of differential equations with constant frequency of buoyancy.

  20. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Nanesa, Hadi; Jahazi, Mohammad, E-mail: mohammad.jahazi@etsmtl.ca

    2014-03-01

    In this research, the effect of cryogenic treatment on microstructural evolution and mechanical properties enhancement of AISI D2 tool steel was investigated. Cryogenic treatment down to liquid nitrogen temperature (77 K) was added to the conventional heat treatment between hardening and tempering steps. Electron microscopy investigation showed higher volume fraction of fine carbides with average diameter below 1 μm indicating effective retardation in carbide coarsening process as a results of cryogenic treatment. A modification in types of carbides was also observed after cryogenic treatment. X-ray diffraction diagrams revealed transformation of retained austenite to martensite at cryogenic temperature. Weakening or removal of carbides peak in the X-ray diagram was considered as evidence of carbides different behavior at cryogenic temperature. Mechanical testing results indicated higher ultimate tensile strength, better ductility, and higher elastic modulus after cryogenic treatment. Analysis of stress–strain diagrams revealed different strain hardening behavior for cryogenically treated alloy when compared to the conventionally heat treated one. Fractography results confirmed strain hardening behavior and showed cleavage fracture for conventionally treated alloy but mixed cleavage–ductile fracture mode for cryogenically treated alloy. The improved mechanical properties after cryogenic treatment are interpreted in terms of the influence of higher volume fraction and uniform distribution of fine carbides in reducing the average active dislocations length and enhancement of the flow stress at any given plastic strain.

  1. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel

    International Nuclear Information System (INIS)

    Ghasemi-Nanesa, Hadi; Jahazi, Mohammad

    2014-01-01

    In this research, the effect of cryogenic treatment on microstructural evolution and mechanical properties enhancement of AISI D2 tool steel was investigated. Cryogenic treatment down to liquid nitrogen temperature (77 K) was added to the conventional heat treatment between hardening and tempering steps. Electron microscopy investigation showed higher volume fraction of fine carbides with average diameter below 1 μm indicating effective retardation in carbide coarsening process as a results of cryogenic treatment. A modification in types of carbides was also observed after cryogenic treatment. X-ray diffraction diagrams revealed transformation of retained austenite to martensite at cryogenic temperature. Weakening or removal of carbides peak in the X-ray diagram was considered as evidence of carbides different behavior at cryogenic temperature. Mechanical testing results indicated higher ultimate tensile strength, better ductility, and higher elastic modulus after cryogenic treatment. Analysis of stress–strain diagrams revealed different strain hardening behavior for cryogenically treated alloy when compared to the conventionally heat treated one. Fractography results confirmed strain hardening behavior and showed cleavage fracture for conventionally treated alloy but mixed cleavage–ductile fracture mode for cryogenically treated alloy. The improved mechanical properties after cryogenic treatment are interpreted in terms of the influence of higher volume fraction and uniform distribution of fine carbides in reducing the average active dislocations length and enhancement of the flow stress at any given plastic strain

  2. Cryogenics for the MuCool Test Area (MTA)

    International Nuclear Information System (INIS)

    Darve, Christine; Norris, Barry; Pei, Liujin

    2006-01-01

    MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner

  3. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    Science.gov (United States)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Utsunomiya, Shin; Yamamoto, Ryo

    2017-07-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions.

  4. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    International Nuclear Information System (INIS)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Utsunomiya, Shin; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions. (paper)

  5. Influence of Thermal Cycling on Cryogenic Thermometers

    CERN Document Server

    Balle, C; Rieubland, Jean Michel; Suraci, A; Togny, F; Vauthier, N

    1999-01-01

    The stringent requirements on temperature control of the superconducting magnets for the Large Hadron Collider (LHC), impose that the cryogenic temperature sensors meet compelling demands such as long-term stability, radiation hardness, readout accuracy better than 5 mK at 1.8 K and compatibility with industrial control equipment. This paper presents the results concerning long-term stability of resistance temperature sensors submitted to cryogenic thermal cycles. For this task a simple test facility has been designed, constructed and put into operation for cycling simultaneously 115 cryogenic thermometers between 300 K and 4.2 K. A thermal cycle is set to last 71/4 hours: 3 hours for either cooling down or warming up the sensors and 1 respectively 1/4 hour at steady temperature conditions at each end of the temperature cycle. A Programmable Logic Controller (PLC) drives automatically this operation by reading 2 thermometers and actuating on 3 valves and 1 heater. The first thermal cycle was accomplished in a...

  6. Insulation design of cryogenic bushing for superconducting electric power applications

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J.Y., E-mail: koojy@hanyang.ac.kr [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, Y.J.; Shin, W.J.; Kim, Y.H. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Kim, J.T. [Department of Electrical Engineering, Daejin University, Pocheon 487-711 (Korea, Republic of); Lee, B.W. [Department of Electronics, Electrical, Control and Instrumentation Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Lee, S.H., E-mail: k720lsh@kins.re.kr [Expert Group Electric and Control Department, Korea Institute of Nuclear Safety, Daejeon 305-600 (Korea, Republic of)

    2013-01-15

    Highlights: ► In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. ► We focused on the comparative study of breakdown characteristics of different electrode materials. ► Puncture and creepage breakdown characteristics were analyzed based on the withstand voltage. ► We obtained the basic design factors of extra high voltage condenser bushing. ► We obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic environment. -- Abstract: Recently, the superconductivity projects to develop commercial superconducting devices for extra high voltage transmission lines have been undergoing in many countries. One of the critical components to be developed for high voltage superconducting devices, including superconducting transformers, cables, and fault current limiters, is a high voltage bushing, to supply high current to devices without insulating difficulties, that is designed for cryogenic environments. Unfortunately, suitable bushings for HTS equipment were not fully developed for some cryogenic insulation issues. Such high voltage bushings would need to provide electrical insulation capabilities from room temperature to cryogenic temperatures. In this paper, design factors of cryogenic bushings were discussed and test results of specimen were introduced in detail. First, the dielectric strength of three kinds of metals has been measured with uniform and non-uniform electrodes by withstand voltage of impulse and AC breakdown test in LN{sub 2}. Second, puncture breakdown voltage of glass fiber reinforced plastics (GFRPs) plates has been analyzed with non-uniform electrodes. Finally, creepage discharge voltages were measured according to the configuration of non-uniform and uniform electrode on the FRP plate. From the test results, we obtained the basic design factors of extra high voltage condenser bushing, which could be used in cryogenic

  7. A VME based cryogenic data acquisition and control system (CRYO-DACS)

    International Nuclear Information System (INIS)

    Antony, Joby; Rajkumar; Datta, T.S.

    2005-01-01

    This report describes a newly developed VME based data acquisition and control system named CRYO-DACS for acquiring and controlling various analog and digital cryogenic parameters from equipment's like beam-line cryostats, Helium compressors, liquefier, cryogenic distribution line etc. A new central control room has been set-up for the remote controls and monitoring. The system monitors various analog parameters like temperature, pressure, vacuum and cryogenic fluid levels inside the cryostats and performs closed loop controls of cryogen valves. The hardware architecture of CRYO-DACS is multi-crate distributed VME, all linked by workstation clients in 100 Mb/s LAN for distributed logging, historical trending, analysis, alarm management and control GUIs. (author)

  8. A Perspective on the Numerical and Experimental Characteristics of Multi-Mode Dry-Friction Whip and Whirl

    Science.gov (United States)

    2008-06-01

    rocket engine turbopump, the shaft was machined from a solid piece of AISI 4140 steel and has an average diameter of 1.5 in (3.81 cm) and a length of...Hardness Ratio Friction Coefficient [36,37] Rotor 1.4997 (3.809) - AISI 4140 197 - - Bearing S1,S2 1.5026 (3.817) 517.14 660 Bearing Bronze 65 3.03...Bearing T1 1.5040 (3.820) 348.77 AISI 4140 197 1 0.25-0.7 20 From the data presented in Table 1, inserts S1 and S2 should have the least severe

  9. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    Science.gov (United States)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  10. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  11. Compact insert design for cryogenic pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco; Petitpas, Guillaume; Switzer, Vernon A.

    2017-06-14

    A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.

  12. Cryogenic test facility at VECC, Kolkata

    International Nuclear Information System (INIS)

    Sarkar, Amit; Bhunia, Uttam; Pradhan, J.; Sur, A.; Bhandari, R.K.; Ranganathan, R.

    2003-01-01

    In view of proposed K-500 superconducting cyclotron project, cryogenic test facility has been set up at the centre. The facility can broadly be categorized into two- a small scale test facility and a large scale test facility. This facility has been utilized for the calibration of liquid helium level probe, cryogenic temperature probe, and I-B plot for a 7 T superconducting magnet. Spiral-shaped superconducting short sample with specific dimension and specially designed stainless steel sample holder has already been developed for the electrical characterisation. The 1/5 th model superconducting coil along with its quench detection circuit and dump resistor has also been developed

  13. Cryogenic and radiation hard ASIC design for large format NIR/SWIR detector

    Science.gov (United States)

    Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses

    2014-10-01

    An ASIC is developed to control and data quantization for large format NIR/SWIR detector arrays. Both cryogenic and space radiation environment issue are considered during the design. Therefore it can be integrated in the cryogenic chamber, which reduces significantly the vast amount of long wires going in and out the cryogenic chamber, i.e. benefits EMI and noise concerns, as well as the power consumption of cooling system and interfacing circuits. In this paper, we will describe the development of this prototype ASIC for image sensor driving and signal processing as well as the testing in both room and cryogenic temperature.

  14. Cryogenic Hydrogen Fuel for Controlled Inertial Confinement Fusion (Cryogenic Target Factory Concept Based on FST-Layering Method)

    Science.gov (United States)

    Aleksandrova, I. V.; Koresheva, E. R.; Koshelev, I. E.; Krokhin, O. N.; Nikitenko, A. I.; Osipov, I. E.

    2017-12-01

    A central element of a power plant based on inertial confinement fusion (ICF) is a target with cryogenic hydrogen fuel that should be delivered to the center of a reactor chamber with a high accuracy and repetition rate. Therefore, a cryogenic target factory (CTF) is an integral part of any ICF reactor. A promising way to solve this problem consists in the FST layering method developed at the Lebedev Physical Institute (LPI). This method (rapid fuel layering inside moving free-standing targets) is unique, having no analogs in the world. The further development of FST-layering technologies is implemented in the scope of the LPI program for the creation of a modular CTF and commercialization of the obtained results. In this report, we discuss our concept of CTF (CTF-LPI) that exhibits the following distinctive features: using a FST-layering technology for the elaboration of an in-line production of cryogenic targets, using an effect of quantum levitation of high-temperature superconductors (HTSCs) in magnetic field for noncontacting manipulation, transport, and positioning of the free-standing cryogenic targets, as well as in using a Fourier holography technique for an on-line characterization and tracking of the targets flying into the reactor chamber. The results of original experimental and theoretical investigations performed at LPI indicate that the existing and developing target fabrication capabilities and technologies can be applied to ICF target production. The unique scientific, engineering, and technological base developed in Russia at LPI allows one to make a CTFLPI prototype for mass production of targets and delivery thereof at the required velocity into the ICF reactor chamber.

  15. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    Science.gov (United States)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  16. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    International Nuclear Information System (INIS)

    Krishnan, V.B.; Singh, J.D.; Woodruff, T.R.; Vaidyanathan, R.; Notardonato, W.U.

    2004-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed

  17. Journal bearing

    Science.gov (United States)

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  18. Mechanical Properties of Low Density Alloys at Cryogenic Temperatures

    International Nuclear Information System (INIS)

    Jiao, X. D.; Liu, H. J.; Li, L. F.; Yang, K.

    2006-01-01

    Low-density alloys include aluminum alloys, titanium alloys and magnesium alloys. Aluminum alloys and titanium alloys have been widely investigated and used as structural materials for cryogenic applications because of their light weight and good low-temperature mechanical properties.For aerospace applications, persistent efforts are being devoted to reducing weight and improving performance. Magnesium alloys are the lightest structural alloys among those mentioned above. Therefore, it is necessary to pay attention to magnesium alloys and to investigate their behaviors at cryogenic temperatures. In this paper, we have investigated the mechanical properties and microstructures of some magnesium alloys at cryogenic temperatures. Experimental results on both titanium and magnesium alloys are taken into account in considering these materials for space application

  19. Commissioning of the Cryogenic Plant for the Cryogenic Storage Ring (CSR) at Heidelberg

    CERN Document Server

    von Hahn, R; Grieser, M; Haberstroh, C; Kaiser, D; Lange, M; Laux, F; Menk, S; Orlov, D A; Repnow, R; Sieber, T; Quack, H; Varju, J; Wolf A

    2009-01-01

    At the Max-Planck-Institute for Nuclear Physics in Heidelberg a next generation electrostatic storage ring for low velocity atomic and molecular ion beams is under construction. In contrast to existing electrostatic storage rings, the Cryogenic Storage Ring CSR will be cooled down to temperatures below 2 K. Thus acting as a large cryopump it will provide long storage times and, in addition, open a new field of quantum state controlled molecular physics due to a low heat radiation background from space-like environment. A concept for cooling the storage ring has been developed and is presently tested by means of a linear trap as a prototype with a length of 1/10 of the planned ring. A commercial refrigerator with 21 W at 2 K has been successfully commissioned and was connected to the prototype. This paper presents the status of the cryogenic plant after the commissioning and one year of operation.

  20. Camshaft bearing arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Aoi, K.; Ozawa, T.

    1986-06-10

    A bearing arrangement is described for the camshaft of an internal combustion engine or the like which camshaft is formed along its length in axial order with a first bearing surface, a first cam lobe, a second bearing surface, a second cam lobe, a third bearing surface, a third cam lobe and a fourth bearing surface, the improvement comprising first bearing means extending around substantially the full circumference of the first bearing surface and journaling the first bearing surface, second bearing means extending around substantially less than the circumference of the second bearing surface and journaling the second bearing surface, third bearing means extending around substantially less than the circumference of the third bearing surface and journaling the third bearing surface, and fourth bearing means extending around substantially the full circumference of the fourth bearing surface and journaling the first bearing surface.

  1. Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Barry [Fermilab; Bremer, Johan [CERN; Chalifour, Michel [Fermilab; Delaney, Mike [Fermilab; Dinnon, Mike [Fermilab; Doubnik, Roza [Fermilab; Geynisman, Michael [Fermilab; Hentschel, Steve [Fermilab; Kim, Min Jeong [Fermilab; Stefanik, Andy [Fermilab; Tillman, Justin [Fermilab; Zuckerbrot, Mike [Fermilab

    2017-01-01

    The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260 ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned, and

  2. Testing of Prototype Magnetic Suspension Cryogenic Transfer Line

    Science.gov (United States)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.

    2006-04-01

    A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.

  3. Cryogenic Minerals in Caves of the Vizhay River (Northern Urals

    Directory of Open Access Journals (Sweden)

    E. P. Bazarova

    2018-03-01

    Full Text Available New information on the cryogenic mineral formations at the two Vizhay River caves (Northern Urals is given.   Calcite with the insignificant gypsum admixture predominates in the cryogenic material composition from both caves. In addition, the metastable phases of calcite, such as monohydrocalcite and ikaite were found. In the Saksofon Cave, calcite forms both spherulites and complanate grains. In Lednikovaya Cave, the major part of cryomaterial is presented by spherulites, which may suggests the significant supersaturation of solution. In Lednikovaya Сave, the distinct concentric structure with the growth zones denotes the cryogenic material formation in a thin water film under the partial thawing of upper part of long-term ice mound in summer. In Saksofon Cave the growth zones in crystals are poorly developed that probably caused by the seasonal glaciation in the cave and cryogenic minerals are younger than those in the Lednikovaya Cave.

  4. Cryogenic Q-factor measurement of optical substrate materials

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, S; Nawrodt, R; Zimmer, A; Thuerk, M; Vodel, W; Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany)

    2006-03-02

    Upcoming generations of interferometric gravitational wave detectors are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of optical components (e.g. end mirrors, cavity couplers, beam splitters). The main contributions to this noise are due to the substrate, the optical coating, and the suspension. The thermal noise can be reduced by cooling to cryogenic temperatures. In addition the overall mechanical quality factor should preferable increase at low temperatures. The experimental details of a new cryogenic apparatus for investigations of the temperature dependency of the Q-factor of several substrate materials in the range of 5 to 300 K are presented. To perform a ring down recording an electrostatic mode excitation of the samples and an interferometric read-out of the amplitude of the vibrations was used.

  5. Applied superconductivity and cryogenic research activities in NIFS

    International Nuclear Information System (INIS)

    Mito, T.; Sagara, A.; Imagawa, S.; Yamada, S.; Takahata, K.; Yanagi, N.; Chikaraishi, H.; Maekawa, R.; Iwamoto, A.; Hamaguchi, S.; Sato, M.; Noda, N.; Yamauchi, K.; Komori, A.; Motojima, O.

    2006-01-01

    Since the foundation of National Institute for Fusion Science (NIFS) in 1989, the primary mission of the applied superconductivity and cryogenic researches has been focused on the development of the large helical device (LHD): the largest fusion experimental apparatus exclusively utilizing superconducting technologies. The applied superconductivity and cryogenics group in NIFS was organized to be responsible for this activity. As a result of extensive research activities, the construction of LHD was completed in 1997. Since then, the LHD superconducting system has been demonstrating high availability of more than 97% during eight years operation and it keeps proving high reliability of large-scale superconducting systems. This paper describes the extensive activities of the applied superconductivity and cryogenic researches in NIFS during and after the development of LHD and the fundamental researches that aim at realizing a helical-type fusion reactor

  6. A cryogenic optical feedthrough using polarization maintaining fibers.

    Science.gov (United States)

    Nelson, M J; Collins, C J; Speake, C C

    2016-03-01

    Polarization maintaining optical fibers can be used to transmit linearly polarized light over long distances but their use in cryogenic environments has been limited by their sensitivity to temperature changes and associated mechanical stress. We investigate experimentally how thermal stresses affect the polarization maintaining fibers and model the observations with Jones matrices. We describe the design, construction, and testing of a feedthrough and fiber termination assembly that uses polarization maintaining fiber to transmit light from a 633 nm HeNe laser at room temperature to a homodyne polarization-based interferometer in a cryogenic vacuum. We report on the efficiency of the polarization maintaining properties of the feedthrough assembly. We also report that, at cryogenic temperatures, the interferometer can achieve a sensitivity of 8 × 10(-10) rad/√Hz at 0.05 Hz using this feedthrough.

  7. Cryogenic propulsion for lunar and Mars missions

    Science.gov (United States)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  8. Cryogenic trapping of keV ion beams at the CSR prototype

    Energy Technology Data Exchange (ETDEWEB)

    Menk, Sebastian; Blaum, Klaus; Froese, Michael; Grieser, Manfred; Lange, Michael; Orlov, Dimitry; Sieber, Thomas; Hahn, Robert von; Varju, Jozef; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Heber, Oded; Rappaport, Michael; Zajfman, Daniel [Weizmann Institut of Science, Rehovot (Israel)

    2009-07-01

    A Cryogenic Trap for Fast ion beams (CTF) was built to explore cooling techniques and test thermal decoupling of ion optics for the development of the electrostatic Cryogenic Storage Ring (CSR). These challenging projects will lead to a new experimental field of atomic and molecular physics with keV ion beams. The cold conditions of 2-10 K minimize the blackbody radiation field and are expected to lead to extremely low restgas densities (equivalent pressure at room temperature {approx}10{sup -13} mbar) which result in long storage lifetimes and for molecular ions to radiative cooling to their ro-vibrational ground states. The CTF consists of two stacks of electrostatic mirror electrodes allowing the storage of up to 20 keV ion beams. Cryogenic ion beam storage has been realized with this device using a liquid helium refrigeration system to cool down the experimental trapping area to few-Kelvin cryogenic temperatures and experiments with cryogenically trapped molecular nitrogen ions have been performed to verify the low vacuum conditions by measuring their storage lifetimes.

  9. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    International Nuclear Information System (INIS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-01

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN 2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014

  10. The scope of additive manufacturing in cryogenics, component design, and applications

    Science.gov (United States)

    Stautner, W.; Vanapalli, S.; Weiss, K.-P.; Chen, R.; Amm, K.; Budesheim, E.; Ricci, J.

    2017-12-01

    Additive manufacturing techniques using composites or metals are rapidly gaining momentum in cryogenic applications. Small or large, complex structural components are now no longer limited to mere design studies but can now move into the production stream thanks to new machines on the market that allow for light-weight, cost optimized designs with short turnaround times. The potential for cost reductions from bulk materials machined to tight tolerances has become obvious. Furthermore, additive manufacturing opens doors and design space for cryogenic components that to date did not exist or were not possible in the past, using bulk materials along with elaborate and expensive machining processes, e.g. micromachining. The cryogenic engineer now faces the challenge to design toward those new additive manufacturing capabilities. Additionally, re-thinking designs toward cost optimization and fast implementation also requires detailed knowledge of mechanical and thermal properties at cryogenic temperatures. In the following we compile the information available to date and show a possible roadmap for additive manufacturing applications of parts and components typically used in cryogenic engineering designs.

  11. Simulation and experimental research of heat leakage of cryogenic transfer lines

    Science.gov (United States)

    Deng, B. C.; Xie, X. J.; Pan, W.; Jiang, R. X.; Li, J.; Yang, S. Q.; Li, Q.

    2017-12-01

    The heat leakage of cryogenic transfer lines directly influences the performance of large-scale helium refrigerator. In this paper, a thermal model of cryogenic transfer line considering numerical simulation of support coupled with MLI was established. To validate the model, test platform of cryogenic transfer lines with the merits of disassembly outer pipe and changeable easily multi-layer insulation has been built. The experimental results of heat leakage through overall length of cryogenic transfer lines, support and multi-layer insulation were obtained. The heat leakages of multi-layer insulation, a support and the overall leakage are 1.02 W/m, 0.44 W and 1.46 W/m from experimental data, respectively. The difference of heat leakage of MLI between experiment and simulation were less than 5%. The temperature distribution of support and MLI obtained in presented model in good agreement with experimental data. It is expected to reduce the overall heat leakage of cryogenic transfer lines further by optimizing structure of support based on the above thermal model and test platform in this paper.

  12. LV-IMLI: Integrated MLI/Aeroshell for Cryogenic Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants have the highest energy density of any rocket fuel, and are used in most NASA and commercial launch vehicles to power their ascent. Cryogenic...

  13. Ricor's anniversary of 50 innovative years in cryogenic technology

    Science.gov (United States)

    Filis, Avishai; Segal, Victor; Pundak, Nachman; Bar Haim, Zvi; Danziger, Menachem

    2017-05-01

    Ricor cryogenics was founded in 1967 and since then it has focused on innovative technologies in the cryogenic field. The paper reviews the initial research and development efforts invested in various technologies that have yielded products such as Cryostats for Mossbauer Effect measurement, Liquid gas Dewar containers, Liquid helium vacuum transfer tubes, Cryosurgery and other innovative products. The major registered patents that matured to products such as a magnetic vacuum valve operator, pumped out safety valve and other innovations are reviewed here. As a result of continuous R and D investment, over the years a new generation of innovative Stirling cryogenic products has developed. This development began with massive split slip-on coolers and has progressed as far as miniature IDDCA coolers mainly for IR applications. The accumulated experience in Stirling technology is used also as a platform for developing self-contained water vapor pumps known as MicroStar and NanoStar. These products are also used in collaboration with a research institute in the field of High Temperature Superconductors. The continuous growth in the cryogenic products range and the need to meet market demands have motivated the expansion, of Ricor's manufacturing facility enabling it to become a world leader in the cryocooler field. To date Ricor has manufactured more than 120,000 cryocoolers. The actual cryogenic development efforts and challenges are also reviewed, mainly in the field of long life cryocoolers, ruggedized products, miniaturization and products for space applications.

  14. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; Fermilab

    2006-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  15. CRYOGENIC INFRASTRUCTURE FOR FERMILAB'S ILC VERTICAL CAVITY TEST FACILITY

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  16. Cryogenic vacuum pump design

    International Nuclear Information System (INIS)

    Bartlett, A.J.; Lessard, P.A.

    1984-01-01

    This paper is a review of the problems and tradeoffs involved in cryogenic vacuum pump analysis, design and manufacture. Particular attention is paid to the several issues unique to cryopumps, e.g., radiation loading, adsorption of noncondensible gases, and regeneration. A general algorithm for cryopump design is also proposed. 12 references

  17. POLOCAM: a millimeter wavelength cryogenic polarimeter prototype for MUSIC-POL

    Science.gov (United States)

    Laurent, Glenn T.; Vaillancourt, John E.; Savini, Giorgio; Ade, Peter A. R.; Beland, Stephane; Glenn, Jason; Hollister, Matthew I.; Maloney, Philip R.; Sayers, Jack

    2012-09-01

    As a proof-of-concept, we have constructed and tested a cryogenic polarimeter in the laboratory as a prototype for the MUSIC instrument (Multiwavelength Sub/millimeter Kinetic Inductance Camera). The POLOCAM instrument consists of a rotating cryogenic polarization modulator (sapphire half-waveplate) and polarization analyzer (lithographed copper polarizers deposited on a thin film) placed into the optical path at the Lyot stop (4K cold pupil stop) in a cryogenic dewar. We present an overview of the project, design and performance results of the POLOCAM instrument (including polarization efficiencies and instrumental polarization), as well as future application to the MUSIC-POL instrument.

  18. StructUre and test results of the Tokamak-7 device cryogenic system

    International Nuclear Information System (INIS)

    Babaev, I.V.; VolobUev, A.N.; Zhul'kin, V.F.

    1982-01-01

    A cryogenic system (CS) of the Tokamak-7 (T-7) installation with the longitudinal field superconducting magnetic system (SMS) is described. The CS is designed for cool-down, cryostatic cooling and heating of the T-7 cryogenic objects and consists of a helium system (HS) and a nitrogen cryogenic system (NCS). The HS consists of:a a heliUm delivery system intended for distributing and controlling the helium flows in the SMS; cryogenic helium units; a 1.25 m 3 volume for storing liquid helium; a compressor compartment using piston compressors at the 3 MPa operating pressure and 140 g/s total capacity; gaseous helium storages (3600 m 3 under normal conditions); helium cleaning and drying systems; a gas holder of 20 m 3 operating volume; cryogenic pipelines and pipe fittings. The NCS operates on delivered nitrogen and includes a 120 m 3 liquid nitrogen storage, evaporators and electric heaters producing up to 230 g/s of gaseous nitrogen at 300 K, a separator, cryogenic pipelines and fittings. It is found that the CS has the necessary cold production reserve, ensures reliable operation of the Tokamak-7 device and permits to carry out practically continuous plasma experiments

  19. The pros and cons of cryogenic accelerators: An engineering point of view

    International Nuclear Information System (INIS)

    Fox, W.

    1991-01-01

    The design of cryogenic linacs is a challenging engineering task; however, significant improvements in accelerator performance are possible. Resistive power losses may be reduced by a factor of four or greater. Greater flexibility is possible in thermal management as a result of substantial increases in thermal conductivity for certain materials. Radio frequency structures may by an order of magnitude more stable in terms of frequency shifts due to thermal transients resulting form very small coefficients of thermal expansion at cryogenic temperatures. Significant engineering problems must be addressed, such as the design of effective rf contacts that will not be affected by thermal cycling and the design of cryogenic mechanisms and dynamic components, such as frequency tuners, that operate reliably at cryogenic operating temperatures. The areas of high-power sparking and multipactoring have not yet been experimentally addressed. Both Los Alamos, Grumman Aerospace Corporation, and Boeing Corporation have built or are building and testing cryogenic accelerator structures. This paper reviews the advances made in cryogenic technology applied to radio frequency quadrupole (RFQ) and drift tube linac (DTL) structures and will discuss the advantages and engineering challenges that these linacs present

  20. ESR study on hydrogen-atom abstraction in cryogenic organic solids

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    1995-01-01

    The present paper summarizes our recent results on the hydrogen-atom abstraction from protiated alkane molecule by deuterium atoms in cryogenic deuterated organic solids, obtained by the X-band ESR and electron spin-echo measurements of the product alkyl radicals at cryogenic temperatures. (J.P.N.)

  1. Room temperature cryogenic test interface

    International Nuclear Information System (INIS)

    Faris, S. M.; Davidson, A.; Moskowitz, P. A.; Sai-Halasz, G. A.

    1985-01-01

    This interface permits the testing of high speed semiconductor devices (room-temperature chips) by a Josephson junction sampling device (cryogenic chip) without intolerable loss of resolution. The interface comprises a quartz pass-through plug which includes a planar transmission line interconnecting a first chip station, where the cryogenic chip is mounted, and a second chip station, where the semiconductor chip to be tested is temporarily mounted. The pass-through plug has a cemented long half-cylindrical portion and short half-cylindrical portion. The long portion carries the planar transmission line, the ends of which form the first and second chip mounting stations. The short portion completes the cylinder with the long portion for part of its length, where a seal can be achieved, but does not extend over the chip mounting stations. Sealing is by epoxy cement. The pass-through plug is sealed in place in a flange mounted to the chamber wall. The first chip station, with the cryogenic chip attached, extends into the liquid helium reservoir. The second chip station is in the room temperature environment required for semiconductor operation. Proper semiconductor operating temperature is achieved by a heater wire and control thermocouple in the vicinity of each other and the second chip mounting station. Thermal isolation is maintained by vacuum and seals. Connections for power and control, for test result signals, for temperature control and heating, and for vacuum complete the test apparatus

  2. Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA

    International Nuclear Information System (INIS)

    Goncharov, V N; Regan, S P; Sangster, T C; Betti, R; Boehly, T R; Campbell, E M; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Froula, D H; Glebov, V Yu; Harding, D R; Hu, S X; Igumenshchev, I V; Marshall, F J; McCrory, R L; Michel, D T; Myatt, J F; Radha, P B

    2016-01-01

    Achieving ignition in a direct-drive cryogenic implosion at the National Ignition Facility (NIF) requires reaching central stagnation pressures in excess of 100 Gbar, which is a factor of 3 to 4 less than what is required for indirect-drive designs. The OMEGA Laser System is used to study the physics of cryogenic implosions that are hydrodynamically equivalent to the spherical ignition designs of the NIF. Current cryogenic implosions on OMEGA have reached 56 Gbar, and implosions with shell convergence CR< 17 and fuel adiabat α > 3.5 proceed close to 1-D predictions. Demonstrating hydrodynamic equivalence on OMEGA will require reducing coupling losses caused by cross-beam energy transfer (CBET), minimizing long- wavelength nonuniformity seeded by power imbalance and target offset, and removing target debris occumulated during cryogenic target production. (paper)

  3. Cryogenic system for TRISTAN superconducting RF cavities

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Y.; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Matsumoto, K.

    1993-01-01

    A large cryogenic system has been designed, constructed and operated in the TRISTAN electron-positron collider at KEK for 508 MHz, 32x5-cell superconducting RF cavities. A 6.5 kW, 4.4 K helium refrigerator with 5 turbo-expanders on the ground level supplies liquid helium in parallel to the 16 cryostats in the TRISTAN tunnel through about 250 m long multichannel transfer line. Two 5-cell cavities are coupled together, enclosed in a cryostat and cooled by about 830 L pool boiling liquid helium. A liquid nitrogen circulation system with a turbo-expander has been adopted for 80 K radiation shields in the multichannel transfer line and the cryostats to reduce liquid nitrogen consumption and to increase the operation stability of the system. The cryogenic system has a total of about 18 000 hours of operating time from the first cool down test in August 1988 to November 1991. The design principle and outline of the cryogenic system and the operational experience are presented. (orig.)

  4. Temperature Stratification in a Cryogenic Fuel Tank

    Science.gov (United States)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  5. Specification of the 2nd cryogenic plant for RAON

    Science.gov (United States)

    Yoon, S.; Ki, T.; Lee, K. W.; Kim, Y.; Jo, H. C.; Kim, D. G.

    2017-12-01

    RAON is a rare isotope beam facility being built at Daejeon, South Korea. The RAON consists of three linear accelerators, SCL1 (1st SuperConducting LINAC), SCL2, and SCL3. Each LINAC has its own cryogenic plant. The cryogenic plant for SCL2 will provide the cooling for cryomodules, low temperature SC magnets, high temperature SC magnets, and a cryogenic distribution system. This paper describes the specification of the plant including cooling capacity, steady state and transient operation modes, and cooling strategies. In order to reduce CAPEX with the specification, two suppliers will consider no liquid nitrogen pre-cooling, one integrated cold box, and one back-up HP compressor. The detail design of the plant will be started at the end of this year.

  6. Laboratory facility for production of cryogenic targets for hot plasma experiments

    International Nuclear Information System (INIS)

    Sadowski, M.; Szydlowski, A.; Jakubowski, L.; Cwiek, E.

    1990-10-01

    Results of preliminary operational tests of the cryogenic stand designed for the production of small droplets of liquid hydrogen or deuterium are presented. Such cryogenic micro-targets are needed for nuclear and thermonuclear experiments. (author)

  7. Performance evaluation of various cryogenic energy storage systems

    International Nuclear Information System (INIS)

    Abdo, Rodrigo F.; Pedro, Hugo T.C.; Koury, Ricardo N.N.; Machado, Luiz; Coimbra, Carlos F.M.; Porto, Matheus P.

    2015-01-01

    This work compares various CES (cryogenic energy storage) systems as possible candidates to store energy from renewable sources. Mitigating solar and wind power variability and its direct effect on local grid stability are already a substantial technological bottleneck for increasing market penetration of these technologies. In this context, CES systems represent low-cost solutions for variability that can be used to set critical power ramp rates. We investigate the different thermodynamic and engineering constraints that affect the design of CES systems, presenting theoretical simulations, indicating that optimization is also needed to improve the cryogenic plant performance. - Highlights: • We assessed the performance of cryogenic energy storage systems. • We re-evaluated the Linde–Hampson cycle proposed by Chen. • We proposed the Claude and Collins cycles as alternatives for the Linde–Hampson cycle. • We concluded that Claude cycle is the best alternative for the simulated conditions.

  8. Cryogenic Insulation Standard Data and Methodologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of...

  9. High-Pressure Hot-Gas Self-Acting Floating Ring Shaft Seal for Liquid Rocket Turbopumps. [tapered bore seals

    Science.gov (United States)

    Burcham, R. E.; Diamond, W. A.

    1980-01-01

    Design analysis, detail design, fabrication, and experimental evaluation was performed on two self acting floating ring shaft seals for a rocket engine turbopump high pressure 24132500 n/sq m (3500 psig) hot gas 533 K 9500 F) high speed 3142 rad/sec (30000 rmp) turbine. The initial design used Rayleigh step hydrodynamic lift pads to assist in centering the seal ring with minimum rubbing contact. The final design used a convergent tapered bore to provide hydrostatic centering force. The Rayleigh step design was tested for 107 starts and 4.52 hours total. The leakage was satisfactory; however, the design was not acceptable due to excessive wear caused by inadequate centering force and failure of the sealing dam caused by erosion damage. The tapered bore design was tested for 370 starts and 15.93 hours total. Satisfactory performance for the required life of 7.5 hours per seal was successfully demonstrated.

  10. Champagne for the cryogenics teams

    CERN Multimedia

    2005-01-01

    Christmas has come early for the LHC as a complete sector of the cryogenic distribution line has been operating at 10 degrees Kelvin (-263°C) for the past two weeks, just a few degrees above the machine's nominal operating temperature.

  11. Rocket Fuel R and D at AFRL: Recent Activities and Future Direction

    Science.gov (United States)

    2017-04-12

    ethanol RP-1 Polars Analysis JFTOT (5 hr., 355°C) Fuel Phenolsmg/L (ppm) Aliphatic ketones mg/L (ppm) Max ΔTDR (Spun) Max ΔP (mmHg) 12366 160 (200) 19...Lubricity & Wear Turbopump and Bearing 3D white light depth of HFRR ball end Ref A RP-1 23DISTRIBUTION A: Approved for Public Release; Distribution

  12. Cryogenics for HL-LHC

    Science.gov (United States)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  13. Conceptual design report for the University of Rochester cryogenic target delivery system

    International Nuclear Information System (INIS)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D 2 or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility

  14. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. (General Atomics, San Diego, CA (United States)); Bittner, D.N.; Hendricks, C.D. (W.J. Schafer Associates, Livermore, CA (United States))

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  15. Conceptual design report for the University of Rochester cryogenic target delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. [General Atomics, San Diego, CA (United States); Bittner, D.N.; Hendricks, C.D. [W.J. Schafer Associates, Livermore, CA (US)

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  16. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D. [TRIUMF, Vancouver, BC, V6T 2A3 (Canada)

    2014-01-29

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN{sub 2} storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  17. Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    Science.gov (United States)

    Morse, S. F.; Roper, A. T.

    1975-01-01

    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

  18. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    Science.gov (United States)

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  19. SPICA sub-Kelvin cryogenic chains

    Science.gov (United States)

    Duband, L.; Duval, J. M.; Luchier, N.; Prouve, T.

    2012-04-01

    SPICA, a Japanese led mission, is part of the JAXA future science program and is planned for launch in 2018. SPICA will perform imaging and spectroscopic observations in the mid- and far-IR waveband, and is developing instrumentation spanning the 5-400 μm range. The SPICA payload features several candidate instruments, some of them requiring temperature down to 50 mK. This is currently the case for SAFARI, a core instrument developed by a European-based consortium, and BLISS proposed by CALTECH/JPL in the US. SPICA's distinctive feature is to actively cool its telescope to below 6 K. In addition, SPICA is a liquid cryogen free satellite and all the cooling will be provided by radiative cooling (L2 orbit) down to 30 K and by mechanical coolers for lower temperatures. The satellite will launch warm and slowly equilibrate to its operating temperatures once in orbit. This warm launch approach makes it possible to eliminate a large liquid cryogen tank and to use the mass saved to launch a large diameter telescope (3.2 m). This 4 K cooled telescope significantly reduces its own thermal radiation, offering superior sensitivity in the infrared region. The cryogenic system that enables this warm launch/cooled telescope concept is a key issue of the mission. This cryogenic chain features a number of cooling stages comprising passive radiators, Stirling coolers and several Joule Thomson loops, offering cooling powers at typically 20, 4.5, 2.5 and 1.7 K. The SAFARI and BLISS detectors require cooling to temperatures as low as 50 mK. The instrument coolers will be operated from these heat sinks. They are composed of a small demagnetization refrigerator (ADR) pre cooled by either a single or a double sorption cooler, respectively for SAFARI and BLISS. The BLISS cooler maintains continuous cooling at 300 mK and thus suppresses the thermal equilibrium time constant of the large focal plane. These hybrid architectures allow designing low weight coolers able to reach 50 mK. Because

  20. ngVLA Cryogenic Subsystem Concept

    Science.gov (United States)

    Wootten, Al; Urbain, Denis; Grammer, Wes; Durand, S.

    2018-01-01

    The VLA’s success over 35 years of operations stems in part from dramatically upgraded components over the years. The time has come to build a new array to lead the radio astronomical science into its next 40 years. To accomplish that, a next generation VLA (ngVLA) is envisioned to have 214 antennas with diameters of 18m. The core of the array will be centered at the current VLA location, but the arms will extend out to 1000km.The VLA cryogenic subsystem equipment and technology have remained virtually unchanged since the early 1980s. While adequate for a 27-antenna array, scaling the current system for an array of 214 antennas would be prohibitively expensive in terms of operating cost and maintenance. The overall goal is to limit operating cost to within three times the current level, despite having 8 times the number of antennas. To help realize this goal, broadband receivers and compact feeds will be utilized to reduce both the size and number of cryostats required. The current baseline front end concept calls for just two moderately-sized cryostats for the entire 1.2-116 GHz frequency range, as opposed to 8 in the VLA.For the ngVLA cryogenics, our objective is a well-optimized and efficient system that uses state-of-the-art technology to minimize per-antenna power consumption and maximize reliability. Application of modern technologies, such as variable-speed operation for the scroll compressors and cryocooler motor drives, allow the cooling capacity of the system to be dynamically matched to thermal loading in each cryostat. Significantly, power savings may be realized while the maintenance interval of the cryocoolers is also extended.Finally, a receiver designed to minimize thermal loading can produce savings directly translating to lower operating cost when variable-speed drives are used. Multi-layer insulation (MLI) on radiation shields and improved IR filters on feed windows can significantly reduce heat loading.Measurements done on existing cryogenic

  1. Cryogenic treatment of steel: from concept to metallurgical understanding

    DEFF Research Database (Denmark)

    Villa, Matteo; Somers, Marcel A. J.

    2017-01-01

    , the metallurgical understanding of the microstructural changes involved in cryogenic treatment of steel has remained poor. It is believed that the improvement in wear resistance is promoted by an enhanced precipitation of carbides during tempering, but no explanation has been given as to how this enhanced......Subjecting steel to cryogenic treatment to improve its properties was conceived in the 30ies of the previous century. The proof of concept that properties, in particular wear resistance, can indeed be improved importantly, was reported in the next decades. Despite many investigations...... precipitation can be obtained. In the last six years, the authors have applied in situ magnetometry, synchrotron X-Ray Diffraction and dilatometry to enlighten the phase transitions occurring in steels at cryogenic temperatures and to point out the connection between different treatment parameters...

  2. Superconducting magnets and cryogenics: proceedings

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1986-01-01

    Separate abstracts were prepared for 70 papers in these workshop proceeedings. Topics covered include: superconducting accelerator magnet research and development; superconductor development; electrical measurements; magnet design and construction methods; field correction methods; power schemes and quench protection; cryogenic systems; and magnet measurements

  3. New Process Controls for the Hera Cryogenic Plant

    Science.gov (United States)

    Böckmann, T.; Clausen, M.; Gerke, Chr.; Prüß, K.; Schoeneburg, B.; Urbschat, P.

    2010-04-01

    The cryogenic plant built for the HERA accelerator at DESY in Hamburg (Germany) is now in operation for more than two decades. The commercial process control system for the cryogenic plant is in operation for the same time period. Ever since the operator stations, the control network and the CPU boards in the process controllers went through several upgrade stages. Only the centralized Input/Output system was kept unchanged. Many components have been running beyond the expected lifetime. The control system for one at the three parts of the cryogenic plant has been replaced recently by a distributed I/O system. The I/O nodes are connected to several Profibus-DP field busses. Profibus provides the infrastructure to attach intelligent sensors and actuators directly to the process controllers which run the open source process control software EPICS. This paper describes the modification process on all levels from cabling through I/O configuration, the process control software up to the operator displays.

  4. Cryogenics for CERN experiments past, present and future

    CERN Document Server

    Bremer, J; Delikaris, D; Delruelle, N; Kesseler, G; Passardi, Giorgio; Rieubland, Jean Michel; Tischhauser, Johann; Haug, F

    1997-01-01

    Use of cryogenics at CERN was originated (in the 1960s) by bubble chambers and the associated s.c. solenoids. Complex cryoplants were installed to provide cooling at LH2 and LHe temperatures. Continuity (in the 1970s) in He cryogenics for experiments was provided by spectrometer magnets for fixed target physics of the SPS accelerator. More recently (in the 1980s), large "particle-transparent" s.c. solenoids for collider experiments (LEP) have been built demanding new cryoplants. The LHC experiments (in the 2000s) will continue the tradition with s.c. dipoles (ALICE and LHCb), solenoids (CMS, ATLAS) and toroids (ATLAS) of unusual size. Cryogenics for experiments using noble liquids follows the same trend since the development (in the 1970s) of the first shower LAr detectors. A LKr calorimeter (about 10 m3) will be operated in 1996 and the ATLAS experiment foresees a set of three huge LAr calorimeters (almost 90 m3 total volume of liquid) to be installed underground.

  5. Strategy for conformity of non-standard cryogenic equipment

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    CERN as an intergovernmental organization establishes its own Safety Rules as necessary for its proper functioning. In particular, the CERN General Safety Instruction for cryogenic equipment requires that cryogenic pressure equipment at CERN shall comply with the European Pressure Equipment Directive (PED). However, due to the particular features of some of the cryogenic equipment required for the accelerators, as well as the existence of international collaborations with in-kind contributions from non-EU countries, full compliance with the PED may not always be achieved. This situation is foreseen in the Safety Rules, where CERN HSE will define the Safety requirements applicable to such equipment as well as any eventual additional compensatory measure as to ensure a commensurate level of Safety for our pressure equipment. Where compliance with PED may not be achieved, CERN HSE will become the de facto Notified Body and therefore be in charge of the assessment of the conformity of the equipment to the applica...

  6. Development of cryogenic permanent magnet undulator

    International Nuclear Information System (INIS)

    Hara, Toru; Tanaka, Takashi; Shirasawa, Katsutoshi; Kitamura, Hideo; Bizen, Teruhiko; Seike, Takamitsu; Marechal, Xavier; Tsuru, Rieko; Iwaki, Daisuke

    2005-01-01

    A short period undulator increases not only the photon energy of undulator radiation, but also the brilliance due to its increased number of undulator periods. As a result, brilliant undulator radiation becomes available in the photon energy range, which is currently covered by wigglers. In order to develop a short period undulator, high performance magnets are indispensable and superconductive undulators have been actively investigated in recent years. In this paper, however, we propose a new approach, so called a cryogenic permanent magnet undulator using NdFeB magnets at the temperatures around 150 K. The current status of this cryogenic permanent magnet undulator development at SPring-8 is presented including the results of the magnetic field measurements on a prototype undulator. (author)

  7. Test of a cryogenic helium pump

    International Nuclear Information System (INIS)

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  8. Innovative Ultra-High Efficiency Cryogenic Actuators for Rocket Test Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The SBIR Phase I project will develop advanced ultra-high efficiency cryogenic actuators for NASA cryogenic fluid transfer application. The actuator will have low...

  9. The Effects of Shallow Cryogenic Process On The Mechanical Properties of AISI 4140 Steel

    Directory of Open Access Journals (Sweden)

    Eşref KIZILKAYA

    2018-03-01

    Full Text Available In this study, shallow cryogenic treatments were carried out for various holding time to AISI 4140 steel and the effects of heat treatment parameters on wear behavior, impact strength and tensile strength were investigated. Three different holding times were used for cryogenic heat treatments. After the cryogenic process, single tempering was applied. In addition, the abrasion tests were carried out at three different forces (5N, 10N and 15N at a constant slip speed (3.16 m / s and at three different slip distances (95 m, 190 m, 285 m. It has been determined that the shallow cryogenic process parameters significantly influence the mechanical properties of the AISI 4140 steel as a result of experimental studies., Low heat treatment times in cryogenic heat treatment have been found to have a positive effect on many mechanical properties, especially wear. The mechanical properties of the AISI 4140 steel can be optimized by controlling the shallow cryogenic heat treatment parameters.

  10. Cryogenic MEMS Pressure Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A directly immersible cryogenic MEMS pressure sensor will be developed. Each silicon die will contain a vacuum-reference and a tent-like membrane. Offsetting thermal...

  11. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, A. N. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); INMETRO, Av. Nossa Senhora das Graças, 50 25250-020 Duque de Caxias, RJ (Brazil); Li, M. S. [Instituto de Física de São Carlos, Universidade de São Paulo, Ave. Trabalhador São Carlense, 400, 13565-590 São Carlos, SP (Brazil)

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  12. Grizzly bear

    Science.gov (United States)

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  13. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  14. Germanium cryogenic detectors: Alpha surface events rejection capabilities

    International Nuclear Information System (INIS)

    Fiorucci, S.; Broniatowski, A.; Chardin, G.; Censier, B.; Lesquen, A. de; Deschamps, H.; Fesquet, M.; Jin, Y.

    2006-01-01

    Alpha surface events and multiple compton gamma interactions are the two major background components in Ge detectors for double-beta decay investigations. Two different methods have been studied to identify such type of events, using cryogenic Ge detectors developed primarily for dark matter search: (i) combined heat and ionization measurements, and (ii) pulse-shape analysis of the charge collection signals. Both methods show strong separation between electron recoil events and surface alphas. Cryogenic heat-ionization detectors therefore appear able to reject virtually all surface alpha interactions

  15. Cryogenic photodetectors

    Science.gov (United States)

    Chardin, G.

    2000-03-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  16. Cryogenic photodetectors

    CERN Document Server

    Chardin, G

    2000-01-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  17. Cryogenic Ice Cream Days at CERN | 21-22 September 2016

    CERN Document Server

    2016-01-01

    With the LHC being the world’s largest superconducting installation, it’s not surprising that CERN is a world leader in cryogenic safety. On 21 and 22 September, over 100 experts in cryogenic safety will be coming to CERN to take part in CERN’s first Cryogenic Safety Seminar, which aims to stimulate collaboration and further the state of the art in this increasingly important field.   Come and learn more about the vital role played by CERN, and as the summer days start to fade, enjoy a taste of the deliciously light ice cream that results from rapid freezing with liquid nitrogen. *Building 500 lobby, 12:00-14:00 21 and 22 September*

  18. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment

    Science.gov (United States)

    Majaron, Boris; Svaasand, Lars O.; Aguilar, Guillermo; Nelson, J. Stuart

    2002-09-01

    Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.

  19. Main improvements of LHC Cryogenics Operation during Run 2 (2015-2018)

    Science.gov (United States)

    Delprat, L.; Bradu, B.; Brodzinski, K.; Ferlin, G.; Hafi, K.; Herblin, L.; Rogez, E.; Suraci, A.

    2017-12-01

    After the successful Run 1 (2010-2012), the LHC entered its first Long Shutdown period (LS1, 2013-2014). During LS1 the LHC cryogenic system went under a complete maintenance and consolidation program. The LHC resumed operation in 2015 with an increased beam energy from 4 TeV to 6.5 TeV. Prior to the new physics Run 2 (2015-2018), the LHC was progressively cooled down from ambient to the 1.9 K operation temperature. The LHC has resumed operation with beams in April 2015. Operational margins on the cryogenic capacity were reduced compared to Run 1, mainly due to the observed higher than expected electron-cloud heat load coming from increased beam energy and intensity. Maintaining and improving the cryogenic availability level required the implementation of a series of actions in order to deal with the observed heat loads. This paper describes the results from the process optimization and update of the control system, thus allowing the adjustment of the non-isothermal heat load at 4.5 - 20 K and the optimized dynamic behaviour of the cryogenic system versus the electron-cloud thermal load. Effects from the new regulation settings applied for operation on the electrical distribution feed-boxes and inner triplets will be discussed. The efficiency of the preventive and corrective maintenance, as well as the benefits and issues of the present cryogenic system configuration for Run 2 operational scenario will be described. Finally, the overall availability results and helium management of the LHC cryogenic system during the 2015-2016 operational period will be presented.

  20. Precision mechanisms for optics in a vacuum cryogenic environment

    Science.gov (United States)

    Navarro, R.; Elswijk, E.; Tromp, N.; Kragt, J.; Kroes, G.; Hanenburg, H.; de Haan, M.; Schuil, M.; Teuwen, M.; Janssen, H.; Venema, L.

    2017-11-01

    To achieve superb stability in cryogenic optical systems, NOVA-ASTRON generally designs optical instruments on the basis of a 'no adjustments' philosophy. This means that in principle no corrections are possible after assembly. The alignment precision and consequently the performance of the instrument is guaranteed from the design, the tolerance analysis and the detailed knowledge of the material behavior and manufacturing process. This resulted in a higher degree of integrated optomechanical-cryogenic design with fewer parts, but with a higher part complexity. The 'no adjustments' strategy is successful because in the end the risk on instrument performance and project delays is much reduced. Astronomical instrument specifications have become more challenging over the years. Recent designs of the European Southern Observatory Very Large Telescope Interferometer (ESO VLTI) 4 Telescope combiner MATISSE include hundreds of optical components in a cryogenic environment. Despite the large number of optical components the alignment accuracy and stability requirements are in the order of nanometers. The 'no adjustments' philosophy would be too costly in this case, because all components would need to meet extremely tight manufacturing specifications. These specifications can be relaxed dramatically if cryogenic mechanisms are used for alignment. Several mechanisms have been developed: a tip-tilt mirror mechanism, an optical path distance mechanism, a slider mechanism, a bistable cryogenic shutter and a mirror mounting clip. Key aspects of these mechanisms are that the optical element and mechanism are combined in a compact single component, driven by e.g. self braking piezo actuators in order to hold position without power. The design, realization and test results of several mechanisms are presented in this paper.

  1. Computer automation of a dilution cryogenic system

    International Nuclear Information System (INIS)

    Nogues, C.

    1992-09-01

    This study has been realized in the framework of studies on developing new technic for low temperature detectors for neutrinos and dark matter. The principles of low temperature physics and helium 4 and dilution cryostats, are first reviewed. The cryogenic system used and the technic for low temperature thermometry and regulation systems are then described. The computer automation of the dilution cryogenic system involves: numerical measurement of the parameter set (pressure, temperature, flow rate); computer assisted operating of the cryostat and the pump bench; numerical regulation of pressure and temperature; operation sequence full automation allowing the system to evolve from a state to another (temperature descent for example)

  2. A sub-Kelvin cryogen-free EPR system.

    Science.gov (United States)

    Melhuish, Simon J; Stott, Chloe; Ariciu, Ana-Maria; Martinis, Lorenzo; McCulloch, Mark; Piccirillo, Lucio; Collison, David; Tuna, Floriana; Winpenny, Richard

    2017-09-01

    We present an EPR instrument built for operation at Q band below 1K. Our cryogen-free Dewar integrates with a commercial electro-magnet and bridge. A description of the cryogenic and RF systems is given, along with the adaptations to the standard EPR experiment for operation at sub-Kelvin temperatures. As a first experiment, the EPR spectra of powdered Cr 12 O 9 (OH) 3 [Formula: see text] were measured. The sub-Kelvin EPR spectra agree well with predictions, and the performance of the sub-Kelvin system at 5K is compared to that of a commercial spectrometer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Thermal analysis of a prototype cryogenic polarization modulator for use in a space-borne CMB polarization experiment

    Science.gov (United States)

    Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.

    2017-12-01

    We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.

  4. The cryogenic cooling program at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Rogers, C.S.; Mills, D.M.; Assoufid, L.

    1994-06-01

    This paper describes the experimental and analytical program in cryogenic cooling of high-heat-load optics at the Advanced-Photon Source. A prototype liquid nitrogen pumping system has been procured. This pump provides a variable flow rate of 1 to 10 gpm of pressurized liquid nitrogen and is sized to handle up to 5 kW of optic heat load. Also, a high-vacuum, double-crystal monochromator testing tank has been fabricated. This system will be used to test cryogenic crystals at existing synchrotron sources. A finite element analysis has been performed for a cryogenically cooled Si crystal in the inclined geometry for Undulator A at 100 mA. The inclination angle was 80 degrees. It was set to diffract from the (111) planes at the first harmonic energy of 4.2 keV. The maximum slope error in the diffraction plane was calculated to be about 1 μrad with a peak temperature of 94 K. An analysis has also been performed for a cryogenically-cooled ''thin'' crystal oriented in the Bragg geometry which accepts 87% of the lst harmonic photons at 3.866 keV. The total absorbed power was 131 W at 100 mA current and the peak temperature was 124 K

  5. An FPGA-based instrumentation platform for use at deep cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Conway Lamb, I. D.; Colless, J. I.; Hornibrook, J. M.; Pauka, S. J.; Waddy, S. J.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney NSW 2006 (Australia); Microsoft Station Q Sydney, The University of Sydney, Sydney NSW 2006 (Australia); Frechtling, M. K. [Microsoft Station Q Sydney, The University of Sydney, Sydney NSW 2006 (Australia); School of Electrical Engineering, The University of Sydney, Sydney NSW 2006 (Australia)

    2016-01-15

    We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.

  6. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. (China)

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  7. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    Science.gov (United States)

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  8. Electric breakdown of high polymer insulating materials at cryogenic temperature

    International Nuclear Information System (INIS)

    Kim, Sanhyon; Yoshino, Katsumi

    1985-01-01

    Cryogenic properties : temperature dependence of E sub(b) and effects of media upon E sub(b) were investigated on several high polymers. Temperature conditions were provided by liquid He (4.2 K), liquid N 2 (77 K) and cryogen (dry ice-methyl alcohol, 194 K). Silicone oil was used also at ambient temperature and elevated temperature. Polymer film coated with gold by vacuum evaporation was placed in cryostat, and high tension from pulse generator was applied to the film. Dielectric breakdowns were detected by oscilloscope and observed visually. The results of experiment are summerized as follow. (1) E sub(b) of film in He is affected by medium remarkably, and covering with 3-methyl pentane is effective for increasing E sub(b). (2) Temperature dependence of E sub(b) was not recognized in cryogenic temperature below liquid N 2 . (3) Temperature characteristic of E sub(b) changes considerably at the critical temperature T sub(c), and T sub(c) is dependent on material. (4) Strength against dielectric breakdown under cryogenic temperature is not affected by bridging caused by irradiation of electron beam. (5) Dielectric breakdown is thought to be caused by electronic process such as electron avalanche. Consequently, for designing insulation for the temperature below liquid He, insulation design for liquid N 2 is thought to be sufficient. However, the degradation and breakdown by mechanical stress under cryogenic temperature must be taken into consideration. (Ishimitsu, A.)

  9. Design and development of LH2 cooled rolling element radial bearings for the NERVA engine turbopump. Volume 3: Phase 2: Tests on build-ups 16, 17, and 18 at NRDS, Jackass Flats, Nevada, December 1971 - March 1972

    Science.gov (United States)

    Accinelli, J. B.; Koch, D. A.; Reuter, F.

    1972-01-01

    The use of liquid hydrogen to cool the rolling element radial bearings in the nuclear engine for rocket vehicles is discussed. The fifteen hour service life goal was obtained during the tests. The increase in bearing life was also considered to be produced by: (1) improvements in bearing material, (2) bearing retainer configuration and manufacturing changes, and (3) better control of operating parameters.

  10. Hybrid Cryogenic Tank Construction and Method of Manufacture Therefor

    Science.gov (United States)

    DeLay, Thomas K. (Inventor)

    2011-01-01

    A lightweight, high-pressure cryogenic tank construction includes an inner layer comprising a matrix of fiber and resin suitable for cryogenic use. An outer layer in intimate contact with the inner layer provides support of the inner layer, and is made of resin composite. The tank is made by placing a fiber preform on a mandrel and infusing the preform with the resin. The infused preform is then encapsulated within the outer layer.

  11. Development of bonding techniques for cryogenic components (2). HIP bonding between Cu Alloys and Ti, cryogenic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Ouchi, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukaya, Kiyoshi [Nihon Advanced Technology Ltd., Tokai, Ibaraki (Japan); Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchiya, Yoshinori; Nakajima, Hideo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2003-03-01

    Several joints between dissimilar materials are required in the superconducting (SC) magnet system of SC linear accelerator or fusion reactor, Pure titanium (Ti) is one of candidate materials for a jacket of SC coil of fusion reactor because Ti is non-magnetic material and has a feature that its thermal expansion is similar to SC material in addition to good corrosion resistance and workability. Also, Ti does not require strict control of environment during reaction heat treatment of SC material. Copper (Cu) or Cu-alloy is used in electrical joints and cryogenic stainless steel (SS) is used in cryogenic pipes. Therefore, it is necessary to develop new bonding techniques for joints between Ti, Cu, and SS because jacket, electrical joint and cryogenic pipe have to be bonded each other to cool SC coils. Japan Atomic Energy Research Institute (JAERI) has started to develop dissimilar material joints bonded by hot isostatic pressing (HIP), which can bring a high strength joint with good tolerance and can applied to a large or complex geometry device. HIP conditions for Cu-Ti, Cu alloy-Ti, Cu alloy-SS were investigated in this study and most stable HIP condition were evaluated by microscopic observation, tensile and bending tests at room temperature. (author)

  12. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    Science.gov (United States)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  13. The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haizhi [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Tong, Weiping, E-mail: wptong@mail.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Cui, Junjun [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhang, Hui [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Chen, Liqing [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zuo, Liang [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2016-04-26

    Deep cryogenic treatment can improve the mechanical properties of many metallic materials, but there are few reports of the effect of deep cryogenic treatment on high-vanadium alloy steel. The main objective of this work is to investigate the effect of deep cryogenic treatment on the microstructure, hardness, impact toughness and abrasive wear resistance of high-vanadium alloy steel. The results show that large amounts of small secondary carbide precipitation after deep cryogenic treatment and microcracks were detected and occurred preferentially at carbide/matrix interfaces; except for the hardness, the mechanical properties increased compared to those of the conventional treatment sample. By increasing the deep cryogenic processing time and cycle number, impact toughness and abrasive wear resistance can be further improved, the carbide contents continuously increase, and the hardness decreases.

  14. 77 FR 70423 - Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC...

    Science.gov (United States)

    2012-11-26

    ... Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of..., 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor) and Black Bear Development Holdings, LLC and Black Bear SO, LLC (transferees) filed an application for the partial the transfer of licenses...

  15. Cryogenic Hazard at ESS – strategy, safety studies and lessons learned

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The European Spallation Source (ESS) is building a linear accelerator (linac) aiming at delivering a 2 GeV proton beam on a tungsten target wheel at 5 MW nominal power. The entire accelerator will be housed in an underground tunnel and will be fully operational by 2023. The superconducting section of the linac is composed of 21 High Beta cryomodules, 9 Medium Beta cryomodules and 13 Spoke cryomodules, as well as a Cryogenic Distribution System (CDS) that will be provided with liquid helium. A total of 146 superconducting radio frequency (SRF) cavities operating at 2 K will be housed in those cryomodules. Additionally, cryogenic fluids will also be used for the cold hydrogen moderator surrounding the target as well as for several neutron instruments. In order to achieve a proper cooling, different facilities are being built to house the future cryogenic installation and therefore will be subject to Oxygen Deficiency Hazard (ODH). In order to address cryogenic safety issues ESS wide, a long-term strategy has ...

  16. JACoW Online analysis for anticipated failure diagnostics of the CERN cryogenic systems

    CERN Document Server

    Gayet, Philippe; Bradu, Benjamin; Cirillo, Roberta

    2018-01-01

    The cryogenic system is one of the most critical component of the CERN Large Hadron Collider (LHC) and its associated experiments ATLAS and CMS. In the past years, the cryogenic team has improved the maintenance plan and the operation procedures and achieved a very high reliability. However, as the recovery time after failure remains the major issue for the cryogenic availability new developments must take place. A new online diagnostic tool is developed to identify and anticipate failures of cryogenics field equipment, based on the acquired knowledge on dynamic simulation for the cryogenic equipment and on previous data analytic studies. After having identified the most critical components, we will develop their associated models together with the signature of their failure modes. The proposed tools will detect deviation between the actual systems and their model or identify preliminary failure signatures. This information will allow the operation team to take early mitigating actions before the failure occu...

  17. Phylogeography of mitochondrial DNA variation in brown bears and polar bears.

    Science.gov (United States)

    Shields, G F; Adams, D; Garner, G; Labelle, M; Pietsch, J; Ramsay, M; Schwartz, C; Titus, K; Williamson, S

    2000-05-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples. Copyright 2000 Academic Press.

  18. Phylogeography of mitochondrial DNA variation in brown bears and polar bears

    Science.gov (United States)

    Shields, Gerald F.; Adams, Deborah; Garner, Gerald W.; Labelle, Martine; Pietsch, Jacy; Ramsay, Malcolm; Schwartz, Charles; Titus, Kimberly; Williamson, Scott

    2000-01-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples.

  19. Numerical study of emergency cryogenics gas relief into confined spaces

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The presented work focuses on the risk analysis and the consequences of the unexpected leak to the tunnel of cryogenics gases. Formation of the gas mixture and its propagation along tunnels is an important issue for the safe operation of cryogenic machines, including superconducting accelerators or free electron lasers. As the cryogenics gas the helium and argon will be considered. A minimal numerical model will be presented and discussed. Series of numerical results related to emergency helium relief to the CERN tunnel and related to unexpected leak of the argon to an underground tunnel, will be shown. The numerical results will show temperature distribution, oxygen deficiency and gas cloud propagation in function of intensity of the leak and intensity of the ventilation.

  20. Cryogen-free dilution refrigerators

    International Nuclear Information System (INIS)

    Uhlig, K

    2012-01-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4 He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4 He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  1. Cryogen-free dilution refrigerators

    Science.gov (United States)

    Uhlig, K.

    2012-12-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  2. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  3. High field conditioning of cryogenic RF cavities

    International Nuclear Information System (INIS)

    Cole, M.; Debiak, T.; Lom, C.; Shephard, W.; Sredniawski, J.

    1993-01-01

    Space-based and other related accelerators have conditioning and operation requirements that are not found in most machines. The use of cryogenic copper, relatively poor vacuum, and limited power storage and operating time put unusual demands on the high-field conditioning process and present some concerns. Two CW cryogenic engineering model open-quotes sparkerclose quotes cavities have been fabricated and tested to fairly high field levels. Tests included initial and repeated conditioning as well as sustained RF operations. The two cavities were an engineering model TDL and an engineering model RFQ. Both cavities operated at 425 MHz. The DTL was conditioned to 46 MV/m at 100% duty factor (CW) at cryogenic temperature. This corresponds to a gap voltage of 433 kV and a real estate accelerating gradient (energy gain/total cavity length) of 6.97 MV/m. The authors believe this to be record performance for cryo CW operation. During cryo pulsed operation, the same cavity reached 48 MV/m with 200 μsec pulses at 0.5% DF. The RFQ was conditioned to 30 MV/m CW at cryo, 85 kV gap voltage. During a brief period of cryo pulsed operation, the RFQ operated at 46 MV/m, or 125 kV gap voltage. Reconditioning experiments were performed on both cavities and no problems were encountered. It should be noted that the vacuum levels were not very stringent during these tests and no special cleanliness or handling procedures were followed. The results of these tests indicate that cavities can run CW without difficulty at cryogenic temperatures at normal conservative field levels. Higher field operation may well be possible, and if better vacuums are used and more attention is paid to cleanliness, much higher fields may be attainable

  4. Online helium inventory monitoring of JLab cryogenic systems

    Science.gov (United States)

    Hasan, N.; Knudsen, P.; Wright, M.

    2017-12-01

    There are five cryogenic plants at Jefferson Lab which support the LINAC, experiment hall end-stations and test facility. The majority of JLab’s helium inventory, which is around 15 tons, is allocated in the LINAC cryo-modules, with the majority of the balance of helium distributed at the cryogenic-plant level mainly as stored gas and liquid for stable operation. Due to the organic evolution of the five plants and independent actions within the experiment halls, the traditional inventory management strategy suffers from rapid identification of potential leaks. This can easily result in losses many times higher than the normally accepted (average) loss rate. A real-time program to quickly identify potential excessive leakage was developed and tested. This program was written in MATLAB© for portability, easy diagnostics and modification. It interfaces directly with EPICS to access the cryogenic system state, and with and NIST REFPROP© for real fluid properties. This program was validated against the actual helium offloaded into the system. The present paper outlines the details of the inventory monitoring program, its validation and a sample of the achieved results.

  5. Proposal for a cryogenic magnetic field measurement system for SSC dipole magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Hansen, L.

    1991-03-01

    This proposal describes the research and development required, and the subsequent fabrication of, a system capable of making integrated magnetic multipole measurements of cryogenic 40-mm-bore SSC dipole magnets utilizing a cryogenic probe. Our experience and some preliminary studies indicate that it is highly unlikely that a 16-meter-long probe can be fabricated that will have a twist below several milliradians at cryogenic temperatures. We would anticipate a twist of several milliradians just as a result of cooldown stresses. Consequently, this proposal describes a segmented 16-meter-long probe, for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system will be described. The duration of an integral measurement at one current is expected to be under 10 seconds. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1-meter models of SSC magnets with a cryogenic probe. It should be noted that the expansion of the dipole bore from 40 to 50 mm may make a warm-finger device practical at a cost of approximately one quarter of the cryogenic probe. A warm quadrupole measurement system can be based upon the same principles. 5 refs., 9 figs., 1 tab

  6. Cryogenic system options for a superconducting aircraft propulsion system

    International Nuclear Information System (INIS)

    Berg, F; Dodds, Graham; Palmer, J; Bertola, L; Miller, Paul

    2015-01-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution. (paper)

  7. Advanced monitoring, fault diagnostics, and maintenance of cryogenic systems

    CERN Document Server

    Girone, Mario; Pezzetti, Marco

    In this Thesis, advanced methods and techniques of monitoring, fault diagnostics, and predictive maintenance for cryogenic processes and systems are described. In particular, in Chapter 1, mainstreams in research on measurement systems for cryogenic processes are reviewed with the aim of dening key current trends and possible future evolutions. Then, in Chapter 2, several innovative methods are proposed. A transducer based on a virtual ow meter is presented for monitoring helium distribution and consumption in cryogenic systems for particle accelerators [1]. Furthermore, a comprehensive metrological analysis of the proposed transducer for verifying the metrological performance and pointing out most critical uncertainty sources is described [2]. A model-based method for fault detection and early-stage isolation, able to work with few records of Frequency Response Function (FRF) on an unfaulty compressor, is then proposed [3]. To enrich the proposal, a distributed diagnostic procedure, based on a micro-genetic...

  8. CRYOGENIC AND STRESS RELIEF THERMAL TREATMENTS IN AN AISI D2 STEEL

    Directory of Open Access Journals (Sweden)

    Paula Fernanda da Silva Farina

    2012-06-01

    Full Text Available The effects of cryogenic treatments on an AISI D2 cold work tool steel using X-ray diffraction from syncronton radiation are studied. The aim of this work is to verify the effects of: i time at cryogenic temperatures (3, 10 and 30 hours; ii cryogenic temperatures (–80°C and –196°C; iii stress relief heat treatment (130°C before cryogenic treatments; iv effect of double tempering at 520°C for 2 hours each time, after cryogenic treatment at –196°C for 30 hours, with and without previous stress relief. X-ray diffraction experiments were conducted at the line D10B-XPD of the Laboratório Nacional de Luz Síncrotron and the experimental results were treated using Rietveld refining, with TOPAS Academic in conjunction with cards from the ICCD-PDF 2006 database for austenite, martensite and carbides M7C3and M2C. Tempered samples were characterized using SEM and SEM-FEG. Volume fraction of retained austenite and carbides, as well as changes in the crystal lattices of martensite and austenite are obtained from the X-ray experiments.

  9. The effect of prior tempering on cryogenic treatment to reduce retained austenite

    International Nuclear Information System (INIS)

    Stratton, Paul

    2010-01-01

    The consensus view is that a high carbon case gives gears the best overall properties provided that there is no carbide network and that the retained austenite has been reduced below 20% by cryogenic treatment. This view is effectively enshrined in the SAE AMS 2759/7 standard. The cryogenic treatment usually takes place immediately after the quench to avoid austenite stabilisation. However, for some parts with complex geometries that might crack during the treatment, a short low temperature temper is carried out first. Little is known on how this temper affects the subsequent cryogenic treatment. Three carburizing steels used extensively in the aerospace industry were carburized to produce high retained austenite levels in the case using two different, but typical carburizing cycles. The retained austenite was determined by XRD before and after cryogenic treatment carried out in accordance with the standard and compared with that obtained when an intermediate temper was used. This study shows that for three typical carburizing steels, carburized using typical cycles, the efficacy of the cryogenic treatment is reduced only slightly after the temper, and not enough to be industrially significant. (author)

  10. Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures

    Science.gov (United States)

    Perrella, M. D.; Ghiaasiaan, S. M.

    2017-12-01

    The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.

  11. 900-L liquid xenon cryogenic system operation for the MEG experiment

    CERN Document Server

    Haruyama, T; Mihara, S; Hisamatsu, Y; Iawamoto, W; Mori, T; Nishiguchi, H; Otani, W; Sawada, R; Uchiyama, Y; Nishitani, T

    2009-01-01

    A cryogenic system for the MEG (muon rare decay) experiment has started operation at the Paul Sherrer Institute in Zurich. The main part of the MEG detector is the 900-L liquid xenon calorimeter for gamma ray detection, equipped with 850 photo multipliers directly immersed in liquid xenon. A 200 W pulse tube cryocooler enabled LN2-free operation of this calorimeter. A liquid purification system; using a liquid pump and a zero boil-off 1000-L cryogenic buffer dewar is also included in the system. The first entire engineering run was carried out in November-December 2007 and satisfactory cryogenic performances were confirmed.

  12. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    Science.gov (United States)

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. © 2015 John Wiley & Sons Ltd.

  13. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    Science.gov (United States)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  14. Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures

    Science.gov (United States)

    Tsaplin, A. I.; Bochkarev, S. V.

    2016-01-01

    Results of an experimental investigation into the deformation and destruction of a metal composite vessel with a cryogenic gas are presented. Its structure is based on basalt, carbon, and organic fibers. The vessel proved to be serviceable at cryogenic temperatures up to a burst pressure of 45 MPa, and its destruction was without fragmentation. A mathematical model adequately describing the rise of pressure in the cryogenic vessel due to the formation of a gaseous phase upon boiling of the liquefied natural gas during its storage without drainage at the initial stage is proposed.

  15. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    Science.gov (United States)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  16. A water blown urethane insulation for use in cryogenic environments

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  17. ODH, oxygen deficiency hazard cryogenic analysis

    International Nuclear Information System (INIS)

    Augustynowicz, S.D.

    1994-01-01

    An oxygen deficiency exists when the concentration of oxygen, by volume, drops to a level at which atmosphere supplying respiratory protection must be provided. Since liquid cryogens can expand by factors of 700 (LN 2 ) to 850 (LH e ), the uncontrolled release into an enclosed space can easily cause an oxygen-deficient condition. An oxygen deficiency hazard (ODH) fatality rate per hour (OE) is defined as: OE = Σ N i P i F i , where N i = number of components, P i = probability of failure or operator error, and F i = fatality factor. ODHs range from open-quotes unclassifiedclose quotes (OE -9 1/h) to class 4, which is the most hazardous (OE>10 -1 1/h). For Superconducting Super Collider Laboratory (SSCL) buildings where cryogenic systems exist, failure rate, fatality factor, reduced oxygen ratio, and fresh air circulation are examined

  18. The Development of the Control System for the Cryogenics in the LHC Tunnel

    CERN Document Server

    Fluder, C; Casas-Cubillos, J; Dubert, P; Gomes, P; Pezzetti, M; Tovar-Gonzalez, A; Zwalinski, L

    2011-01-01

    The Large Hadron Collider (LHC) was commissioned at CERN and started operation with beams in 2008. The LHC makes extensive use of superconductors, in magnets, electrical feed boxes and accelerating cavities, which are operated at cryogenic temperatures. The process automation for the cryogenic distribution around the 27 km accelerator circumference is based on 18 Programmable Logic Controllers (PLCs); overall, they handle 4 000 control loops and 8 000 alarms and interlocks; 16 000 cryogenic sensors and actuators are accessed through industrial field networks. This paper reviews the control system architecture and the main hardware and software components; presents the hardware commissioning and software production methodologies; and illustrates some of the problems faced during development, commissioning and nominal cryogenics operation, together with the solutions applied.

  19. Irradiation effect of the insulating materials for fusion superconducting magnets at cryogenic temperature

    Science.gov (United States)

    Kobayashi, Koji; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    In ITER, superconducting magnets should be used in such severe environment as high fluence of fast neutron, cryogenic temperature and large electromagnetic forces. Insulating material is one of the most sensitive component to radiation. So radiation resistance on mechanical properties at cryogenic temperature are required for insulating material. The purpose of this study is to evaluate irradiation effect of insulating material at cryogenic temperature by gamma-ray irradiation. Firstly, glass fiber reinforced plastic (GFRP) and hybrid composite were prepared. After irradiation at room temperature (RT) or liquid nitrogen temperature (LNT, 77 K), interlaminar shear strength (ILSS) and glass-transition temperature (Tg) measurement were conducted. It was shown that insulating materials irradiated at room temperature were much degraded than those at cryogenic temperature.

  20. Safety experiences in using cryogenic liquid in IGCAR

    International Nuclear Information System (INIS)

    Senthilkumar, B.; Singh, Dharmendra S.; Kandasamy, S.

    2009-01-01

    Indira Gandhi Centre for Atomic Research is engaged in large-scale development work in the field of Fast Reactor Technology associated fuel cycle facilities metallurgy and material science. To meet the growing demands of these activities, the cryogenic are manufactured, stored, and handled in the Centre. Lot of precautionary measures are taken during the plant operations. However, the safety of the men and machine can be ensured only by systematic safety studies. So this study was taken up to identify the hazards of cryogenic, unsafe acts/unsafe conditions and to improve the safety standards in the Centre

  1. 136 Xe enrichment through cryogenic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Back, Henning O.; Bottenus, Daniel R.; Clayton, Christopher K.; Stephenson, David E.; TeGrotenhuis, Ward E.

    2017-09-01

    The next generation of 136Xe neutrinoless double beta decay experiments will require on the order of 5 tons of enriched 136Xe. By estimating the relative volatilities of the xenon isotopes and using standard chemical engineering techniques we explore the feasibility of using cryogenic distillation to produce 5 tons of 80% enriched 136Xe in 5-6 years. With current state-of-the-art distillation column packing materials we can estimate the total height of a traditional cryogenic distillation column. We also, report on how Micro Channel Distillation may reduce the overall size of a distillation system for 136Xe production.

  2. Effect of cryogenic treatment on the plastic property of Ti-6Al-4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gu, K. X. [Key Laboratory of Cryogenics, TIPC, Chinese Academy of Sciences, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, J. J.; Yuan, Z.; Zhang, H. [Key Laboratory of Cryogenics, TIPC, Chinese Academy of Sciences, Beijing 100190 (China); Li, Z. Q.; Zhao, B. [AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China)

    2014-01-27

    The effect of cryogenic treatment on the plastic property of Ti-6Al-4V plate was studied in the present work. After cryogenic treatment, the low temperature temper at 180 ▭ was conducted in one of the groups and the results were compared with that of the untreated and cryotreated ones. The SLX series program controlled cryogenic equipment was used for the cryogenic treatment. The tensile tests were conducted by universal tensile testing machine and parameters of elongation and area reduction were used to evaluate plastic property. The scanning electron microscope was used to study the morphology of microstructure and fracture surface. The results show that after cryogenic treatment alone the elongation increased 10.6% and the area reduction increased 13.5% while the strength reduced to a small extent. Cryogenic treatment followed with low temperature temper increased the elongation and area reduction just by the extent of 4.7% and 9.5%. It means that the additional low temperature temper after cryogenic is not beneficial to the tensile properties of Ti-6Al-4V alloy. The examination of microstructure by scanning electron microscopy revealed that cryogenic treatment reduced the content of β phase particles which is the main reason for the improvement in plasticity.

  3. Materials for cold neutron sources: Cryogenic and irradiation effects

    International Nuclear Information System (INIS)

    Alexander, D.J.

    1990-01-01

    Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation on the mechanical properties of these alloys are briefly reviewed, and the very limited information on the effects of cryogenic irradiation are outlined. Generating mechanical property data under cold source operating conditions is a daunting prospect. It is clear that the cold source material will be degraded by neutron irradiation, and so the cold source must be designed as a brittle vessel. The continued effective operation of many different cold sources at a number of reactors makes it clear that this can be accomplished. 46 refs., 8 figs., 2 tab

  4. Cryogenic Pressure Calibration Facility Using a Cold Force Reference

    CERN Document Server

    Bager, T; Métral, L

    1999-01-01

    Presently various commercial cryogenic pressure sensors are being investigated for installation in the LHC collider, they will eventually be used to assess that the magnets are fully immersed in liquid and to monitor fast pressure transients. In the framework of this selection procedure a cryogenic pressue calibration facility has been designed and built; it is based on a cryogenic primary pressure reference made of a bellows that converts the pressure into a force measurement. For that a shaft transfers this force to a precision force transducer at room temperature. Knowing the liquid bath pessure and the surface area of the bellows the pressure applied to the transducers under calibration is calculated; corrections due to thermal contraction are introduced. To avoid loss of force in the bellows wall its length is maintained constant; a cold capacitive displacement sensor measures this. The calibration temperature covers 1.5 K to 4.2 K and the pressure 0 to 20 bar. In contrast with more classical techniques ...

  5. Temperature Stratification in a Cryogenic Fuel Tank

    Data.gov (United States)

    National Aeronautics and Space Administration — A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It...

  6. Experimental research and numerical simulation on cryogenic line chill-down process

    Science.gov (United States)

    Jin, Lingxue; Cho, Hyokjin; Lee, Cheonkyu; Jeong, Sangkwon

    2018-01-01

    The empirical heat transfer correlations are suggested for the fast cool down process of the cryogenic transfer line from room temperature to cryogenic temperature. The correlations include the heat transfer coefficient (HTC) correlations for single-phase gas convection and film boiling regimes, minimum heat flux (MHF) temperature, critical heat flux (CHF) temperature and CHF. The correlations are obtained from the experimental measurements. The experiments are conducted on a 12.7 mm outer diameter (OD), 1.25 mm wall thickness and 7 m long stainless steel horizontal pipe with liquid nitrogen (LN2). The effect of the lengthwise position is verified by measuring the temperature profiles in near the inlet and the outlet of the transfer line. The newly suggested heat transfer correlations are applied to the one-dimensional homogeneous transient model to simulate the cryogenic line chill-down process, and the chill-down time and the cryogen consumption are well predicted in the mass flux range from 26.0 kg/m2 s to 73.6 kg/m2 s through the correlations.

  7. SURFACE ROUGHNESS AND CUTTING FORCES IN CRYOGENIC TURNING OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    T. C. YAP

    2015-07-01

    Full Text Available The effect of cryogenic liquid nitrogen on surface roughness, cutting forces, and friction coefficient of the machined surface when machining of carbon steel S45C in wet, dry and cryogenic condition was studied through experiments. The experimental results show that machining with liquid nitrogen increases the cutting forces, reduces the friction coefficient, and improves the chips produced. Beside this, conventional machining with cutting fluid is still the most suitable method to produce good surface in high speed machining of carbon steel S45C whereas dry machining produced best surface roughness in low speed machining. Cryogenic machining is not able to replace conventional cutting fluid in turning carbon steel.

  8. Matrix Isolation Spectroscopy Applied to Positron Moderatioin in Cryogenic Solids

    Science.gov (United States)

    2011-07-01

    Current Positron Applications • 2-γ decay exploited in Positron Emission Tomography (PET) scanners. • Positrons localize & annihilate preferentially at...Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2011-024 Matrix Isolation Spectroscopy Applied to Positron Moderation in Cryogenic Solids Distribution... Spectroscopy Applied to Positron Moderation in Cryogenic Solids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 62602F 5c. PROGRAM ELEMENT NUMBER 6

  9. Analysis for liquid cryogen spillage in the superconducting cyclotron building at VECC

    CERN Document Server

    Roy S ,; Pal, G; Bhandari, R K

    2009-01-01

    The cryogenic system uses liquid helium and liquid nitrogen to cool the superconducting cyclotron magnet and its cryopanels. In order to assess safety scenarios subsequent to an unusual leakage of cryogens from the system, a deterministic analysis has been carried out to estimate the variation of oxygen concentration with time at several locations of superconducting cyclotron building. The entire process is simulated assuming evaporated cryogens mixes instantaneously with air in the confined space, the ventilation system of the cyclotron building is operational, fresh air continuously enters the confined volume and mixes instantaneously with air in the confined space.

  10. Baseline Configuration of the Cryogenic System for the International Linear Collider

    CERN Document Server

    Casas-Cubillos, J; Claudet, S; Ganni, R; Klebaner, A; Parma, V; Peterson, T; Riddone, G; Rode, C; Rousset, B; Serio, L; Tavian, L; Theilacker, J; Vullierme, B; Van Weelderen, R; Weisend, J

    2007-01-01

    The paper discusses the main constraints and boundary conditions and describes the baseline configuration of the International Linear Collider (ILC) cryogenic system. The cryogenic layout, architecture and the cooling principle are presented. The paper addresses a plan for study and development required to demonstrate and improve the performance, to reduce cost and to attain the desired reliability.

  11. Cryogenic, superconducting and rf results of the SRFQ2 of PIAVE

    Indian Academy of Sciences (India)

    mance, i.e., 280 kV inter-electrode voltage (equivalent to 25 MV/m peak surface electrical field) at 7 ... At present the installation of PIAVE cryogenic plants and relative distribution lines are ..... straight up to 250 kV, but with a puzzling positive drop, as can be seen in figure 6. ... The cryogenic system feeding the RFQ cryostat.

  12. Operating Instructions for the Cryogenics in the Liquid Argon Detector at CIEMAT

    International Nuclear Information System (INIS)

    Romero, L.; Leal, M. D.; Prado, M. del; Ramirez, J. L.

    2009-01-01

    Ciemat has wide experience in designing and developing gaseous particle detectors. It has taken part in the building of experiments for CERN accelerators, constructing shares of the muon chambers for L3 experiment in LEP and CMS experiment in LHC. Recently, new concepts for particle detectors have been developed, as a natural evolution from the ones built at Ciemat. These new radiation detectors use liquefied noble gases as active media. A testing system for these kind of liquefied argon detectors has been built at Ciemat, and includes a supporting cryogenic system for the liquefaction and maintenance of the liquid argon needed for operating the detector. This document describes the technical features of this cryogenic system. Besides the documentation of the cryogenic system, this technical report can be of help for the management and upgrading of the detector. As well as an introduction, the report includes the following chapters: The second one is a description of the cryogenics and gas systems. The third chapter shows the controlling electronics. The fourth chapter deals with the important topic that is security, its systems and protocols. The fifth describes the cryogenic operations possible in this equipment. The report is completed with diagrams, schemes, pictures and tables for the easier management of the setup. (Author)

  13. Design and development of a device management platform for EAST cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei, E-mail: zzw@ipp.ac.cn; Lu, Xiaofei, E-mail: xiaofeilu@ipp.ac.cn; Zhuang, Ming, E-mail: zhm@ipp.ac.cn; Hu, Liangbing, E-mail: huliangbing@ipp.ac.cn; Xia, Genhai, E-mail: xgh@ipp.ac.cn

    2014-05-15

    Highlights: • A device management platform for EAST cryogenic system based on DCS is designed. • This platform enhances the integrity and continuity of system device information. • It can help predictive maintenance and device management decision. - Abstract: EAST cryogenic system is one of the critical sub-systems of the EAST tokamak device. It is a large scale helium cryoplant, which adopts distributed control system to realize monitoring and control of the cryogenic process and devices. However, the maintenance and management of most field devices are still in the corrective maintenance or traditional preventive maintenance stage. Under maintained or over maintained problems widely exist, which could cause devices fault and increase operation costs. Therefore, a device management platform is proposed for a safe and steady operation as well as fault diagnosis and predictive maintenance of EAST cryogenic system. This paper presents the function design and architecture design of the cryogenic device management platform. This platform is developed based on DeltaV DCS and acquires monitoring data through OPC protocol. It consists of three pillars, namely device information management, device condition management, and device performance monitoring. The development and implementation of every pillar are illustrated in detail in this paper. Test results and discussions are presented in the end.

  14. Hydrogen isotope separation by cryogenic distillation method

    International Nuclear Information System (INIS)

    Hayakawa, Nobuo; Mitsui, Jin

    1987-01-01

    Hydrogen isotope separation in fusion fuel cycle and tritium recovery from heavy water reactor are very important, and therefore the early establishment of these separation techniques are desired. The cryogenic distillation method in particular is promising for the separation of hydrogen isotope and the recovery of high concentrated tritium. The studies of hydrogen isotope separation by cryogenic distillation method have been carried out by using the experimental apparatus made for the first time in Japan. The separation of three components (H 2 -HD-D 2 ) under total reflux conditions was got by using the packing tower of 500 mm height. It was confirmed that the Height Equivalent Theoretical Plate (HETP) was 20 - 30 mm for the vapor's line velocity of 20 - 80 mm/s. (author)

  15. Cryogenic in situ microcompression testing of Sn

    International Nuclear Information System (INIS)

    Lupinacci, A.; Kacher, J.; Eilenberg, A.; Shapiro, A.A.; Hosemann, P.; Minor, A.M.

    2014-01-01

    Characterizing plasticity mechanisms below the ductile-to-brittle transition temperature is traditionally difficult to accomplish in a systematic fashion. Here, we use a new experimental setup to perform in situ cryogenic mechanical testing of pure Sn micropillars at room temperature and at −142 °C. Subsequent electron microscopy characterization of the micropillars shows a clear difference in the deformation mechanisms at room temperature and at cryogenic temperatures. At room temperature, the Sn micropillars deformed through dislocation plasticity, while at −142 °C they exhibited both higher strength and deformation twinning. Two different orientations were tested, a symmetric (1 0 0) orientation and a non-symmetric (4 5 ¯ 1) orientation. The deformation mechanisms were found to be the same for both orientations

  16. Cryogenic instrumentation with cold electronics-A review

    International Nuclear Information System (INIS)

    Rao, M.G.; Scurlock, R.G.

    1986-01-01

    The low level signals from cryogenic sensors and transducers are usually carried to the electronic signal conditioning and data handling systems at ambient temperatures by long electrical leads running from the cyrogenic environment to ambient. There are many applications, outside those using superconducting devices, in which there are advantages to be gained by placing part or all of the electronic system in the cryogenic environment adjacent to the measuring point. This paper discusses the requirements for an ideal cold electronic instrumentation system and then reviews the present state of the art in relation to off-the-shelf electronic components, devices and integrated circuits, and the published literature. The integration of sensors/transducers with cold electronics is discussed and areas for development are outlined

  17. Laser ``M'egajoule'' cryogenic target program: from target fabrication to conformation of the deuterium-tritium ice layer

    Science.gov (United States)

    Collier, Rémy; Durut, Frédéric; Reneaume, Benoît; Chicane, Cédric; Théobald, Marc; Breton, Olivier; Martin, Michel; Fleury, Emmanuel; Vincent-Viry, Olivier; Bachelet, Franck; Jeannot, Laurent; Geoffray, Isabelle; Botrel, Ronan; Dauteuil, Christophe; Hermerel, Cyril; Choux, Alexandre; Bednarczyk, Sophie; Legaie, Olivier

    2008-11-01

    For the French inertial confinement fusion (ICF) experiments, cryogenic target assemblies (CTAs) for the LMJ program are manufactured and filled at CEA Valduc (Dijon) in the cryogenic targets filling station (IRCC). They will be moved at about 20 K into a transport cryostat for cryogenic targets and will be driven from CEA/Valduc to CEA/CESTA (Bordeaux). Cryogenic targets will then be transferred by several cryogenic grippers on the cryogenic target positioner before shots. The CTA has to meet severe specifications and involves a lot of challenging tasks for its manufacture. To fill CTAs by permeation with deuterium-tritium (DT), the IRCC need to meet strict thermal, mechanical and dimensional specifications. To obtain a good combustion yield, a very homogenous DT ice layer and very smooth roughness at 1.5 K below the DT triple point are also required. This paper deals with the up to date main issues in the different fields of the LMJ cryogenic target program.

  18. Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum

    Science.gov (United States)

    Wang, Qihua; Zheng, Fei; Wang, Tingmei

    2016-04-01

    The effects of temperature, sliding speed and load on the tribological properties of polyimide (PI), polytetrafluoroethylene (PTFE) and polyetheretherketone (PEEK) at cryogenic temperature in vacuum were investigated using a ball-on-disk tribometer. At cryogenic temperature, polymers show higher hardness which results in decreasing contact area between the friction pairs. Moreover, the real surface area in contact between steel ball and polymer disk determines the friction coefficient instead of the formation and adhesion of the transfer film. Thus, the friction coefficients at cryogenic temperatures are lower than at room temperature. On the other hand, wear rates of the three polymers decrease as temperature decreases since molecular mobility and migration are limited at cryogenic temperatures. For the visco-elasticity of PI, PTFE and PEEK, the friction coefficients fall as the load increases.

  19. The DAΦNE cryogenic system

    International Nuclear Information System (INIS)

    Modena, M.

    1997-12-01

    The DAΦNE Project utilises superconductivity technology for a total of six superconducting magnets: the two Experiment magnets (KLOE and FINUDA) and the four Compensator Solenoid magnets needed to compensate the magnetic effect of the Experiment magnets on the electron and positron beams. This effect, on beams of 510 MeV (nominal DAΦNE Energy), is expected to be relevant, especially with the aim of achieving a very high luminosity, which is the main target of the Project. The KLOE superconducting magnet has two possible working positions: the first in the DAΦNE Hall, when the Experiment will be in operation, and the second one in the KLOE Assembly Hall. This second position is the first to be utilised for the KLOE magnet Acceptance Test and magnetic field mapping, prior to the mounting of all the experimental apparatus inside the magnet. This note intends to present the DAΦNE Cryogenic System and how the authors have converged to the definition of a common Cryogenic System compatible with all the six superconducting magnets

  20. Cryogenic Concept for the Low-energy Electrostatic Cryogenic Storage Ring (CSR) at MPI-K in Heidelberg

    International Nuclear Information System (INIS)

    Hahn, R. von; Andrianarijaona, V.; Crespo Lopez-Urrutia, J. R.; Fadil, H.; Grieser, M.; Mallinger, V.; Orlov, D. A.; Schroeter, C. D.; Schwalm, D.; Ullrich, J.; Weber, T.; Wolf, A.; Haberstroh, Ch.; Quack, H.; Rappaport, M.; Zajfman, D.

    2006-01-01

    At the Max-Planck-Institut fuer Kernphysik in Heidelberg a next generation electrostatic storage ring for cryogenic temperatures is under development. The main focus of this unique machine is the research on ions, molecules and clusters up to bio molecules in the energy range of 20-300 keV at low temperatures down to 2 Kelvin. The achievement of this low temperature for all material walls seen by the ions in the storage ring will allow novel experiments to be performed, such as rotational and vibrational state control of molecular ions and their interaction with ultra-low energy electrons and laser radiation. The low temperature of the storage ring not only causes a strong reduction of black body radiation incident onto the stored particles, but also acts as a large cryopump, expected to lead to a vacuum in the 10-15 mbar range. In this paper the cryogenic concept of the storage ring and the related vacuum design will be presented

  1. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  2. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  3. Cryogenic technology review of cold neutron source facility for localization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hun Cheol; Park, D. S.; Moon, H. M.; Soon, Y. P. [Daesung Cryogenic Research Institute, Ansan (Korea); Kim, J. H. [United Pacific Technology, Inc., Ansan (Korea)

    1998-02-01

    This Research is performed to localize the cold neutron source(CNS) facility in HANARO and the report consists of two parts. In PART I, the local and foreign technology for CNS facility is investigated and examined. In PART II, safety and licensing are investigated. CNS facility consists of cryogenic and warm part. Cryogenic part includes a helium refrigerator, vacuum insulated pipes, condenser, cryogenic fluid tube and moderator cell. Warm part includes moderator gas control, vacuum equipment, process monitoring system. Warm part is at high level as a result of the development of semiconductor industries and can be localized. However, even though cryogenic technology is expected to play a important role in developing the 21st century's cutting technology, it lacks of specialists and the research facility since the domestic market is small and the research institutes and government do not recognize the importance. Therefore, it takes a long research time in order to localize the facility. The safety standard of reactor for hydrogen gas in domestic nuclear power regulations is compared with that of the foreign countries, and the licensing method for installation of CNS facility is examined. The system failure and its influence are also analyzed. 23 refs., 59 figs., 26 tabs. (Author)

  4. EcoBears

    DEFF Research Database (Denmark)

    Nielsen, Nick; Pedersen, Sandra Bleuenn; Sørensen, Jens Ager

    2015-01-01

    In this paper, we introduce the EcoBears concept that aims to augment household appliances with functional and aesthetic features to promote their "use'' and "longevity of use'' to prevent their disposal. The EcoBears also aim to support the communication of environmental issues in the home setting....... We present our initial design and implementation of the EcoBears that consist of two bear modules (a mother and her cub). We also present our preliminary concept validations and lessons learned to be considered for future directions....

  5. Influence of cryogenic treatment on microstructure and mechanical properties of high strength AISI D2 tool steel =

    Science.gov (United States)

    Ghasemi Nanesa, Hadi

    Cryogenic treatment, known as treating materials at sub-zero temperatures, has been added to conventional heat treatment cycle of high alloyed steels where martensitic transformation is incomplete after quenching to room temperature. Incomplete martensitic transformation occurs due to the effect of high content of alloying elements on pushing down martensite start and finish temperatures to very low values, specifically, on tool steels. In spite of obtaining significant improvements in mechanical and wear properties after cryogenic treatment, there is no cohesive picture about what exactly modifies the microstructure of tool steels during cryogenic treatment and therefore divergent opinions on the influence of process parameters are still reported. For example, the suggested time length for cryogenic treatment starts from few seconds to several days indicating the lack of understanding about micromechanisms responsible for microstructural evolution while holding at cryogenic temperatures. In this regard, the main objective of this project is to develop a better understanding on the fundamental micromechanisms operating during cryogenic treatment. To attain this objective, the following milestones are pursued. - To study the conventional cryogenic treatment and finding challenges. - To identify and characterize the optimum starting microstructure before cryogenic treatment. - To determine the important processing parameters those control the evolution of microstructure and hardness. - To investigate the interaction between carbide precipitation and martensitic transformation in the AISI D2 steel. - To propose an optimal cryogenic treatment for AISI D2 steel.

  6. The Cryogenic Supervision System in NSRRC

    CERN Document Server

    Li, Hsing-Chieh; Chiou, Wen-Song; Hsiao, Feng-Zone; Tsai, Zong-Da

    2005-01-01

    The helium cryogenic system in NSRRC is a fully automatic PLC system using the Siemens SIMATIC 300 controller. Modularization in both hardware and software makes it easy in the program reading, the system modification and the problem debug. Based on the Laview program we had developed a supervision system taking advantage of the Internet technology to get system's real-time information in any place. The functions of this supervision system include the real-time data accessing with more than 300 digital/analog signals, the data restore, the history trend display, and the human machine interface. The data is accessed via a Profibus line connecting the PLC system and the supervision system with a maximum baud rate 1.5 Mbit/s. Due to this supervision system, it is easy to master the status of the cryogenic system within a short time and diagnose the problem.

  7. First Operational Experience and Performance Optimization of the ATLAS Magnet Cryogenic System

    CERN Document Server

    Delruelle, N; Dudarev, A; Passardi, G; Ten Kate, H H J

    2012-01-01

    The ATLAS magnet system, comprising a superconducting central solenoid and three superconducting toroids, has been successfully ramped up for the first time to the nominal operational current of 20.4 kA on 4th August 2008. Since then, new cryogenic operational challenges have been raised, like the smoothing of steady-state parameters, the enhancing of transient procedures to minimize thermal shocks on the magnet cold masses, the optimization of the complex cryogenic system in order to reduce the compressors electric consumption and finally how to avoid regular clogging of the shield refrigerator by water contamination. This paper presents the heat load identification of the various cryogenic sub-systems done at 4.5 K and how one of these loads was reduced, what was gained - in term of electrical consumption - by tuning the turbines settings of the main refrigerator and finally the first consolidation of the cryogenic system implemented in order to minimize the detector downtime during LHC beam runs.

  8. Installation and commissioning of a cryogen distribution system for the TPS project

    Science.gov (United States)

    Tsai, H. H.; Hsiao, F. Z.; Li, H. C.; Lin, M. C.; Wang, C.; Liao, W. R.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Chuang, P. S. D.

    2016-07-01

    A cryogen distribution system was installed and commissioned to transfer liquid nitrogen (LN2) and liquid helium (LHe) from storage dewars to superconducting radio-frequency (SRF) cavities for the 3-GeV Taiwan Photon Source (TPS) project. The cryogen distribution system comprises one distribution valve box (DVB), four control valve boxes (CVB) and seven sections of multichannel transfer line (MCL). The DVB distributes the LHe and LN2 to the CVB, and then to the SRF cavities through independent vacuum-jacketed transfer lines. The vaporized GHe and GN2 from the cryomodules are collected via the MCL. The cryogen distribution system was installed and commissioned from October 2014 to the end of March 2015. This paper presents the installation, pre-commissioning and commissioning of the cryogen distribution system, and describes the heat load test. Thermal acoustic oscillation (TAO) was found in the GHe process line; this phenomenon and its solution are also presented and discussed.

  9. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  10. Publications and services of the Cryogenics Division, National Bureau of Standards, 1953--1977. Technical note

    International Nuclear Information System (INIS)

    Frizen, D.J.; Mendenhall, J.R.

    1978-04-01

    This NBS Technical Note catalogs the publications of the Cryogenics Division, along with author and subject indexes, for the period 1953 through 1977. It also contains a listing of available thermodynamic properties charts, bibliographies, and miscellaneous reports of cryogenic interest. A resume of the activities of and services provided by the Cryogenics Division is also included

  11. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management

    Science.gov (United States)

    Hopkins, John B.; Koch, Paul L.; Schwartz, Charles C.; Ferguson, Jake M.; Greenleaf, Schuyler S.; Kalinowski, Steven T.

    2012-01-01

    We used genetic and stable isotope analysis of hair from free-ranging black bears (Ursus americanus) in Yosemite National Park, California, USA to: 1) identify bears that consume human food, 2) estimate the diets of these bears, and 3) evaluate the Yosemite human–bear management program. Specifically, we analyzed the isotopic composition of hair from bears known a priori to be food-conditioned or non-food-conditioned and used these data to predict whether bears with an unknown management status were food-conditioned (FC) or non-food-conditioned (NFC). We used a stable isotope mixing model to estimate the proportional contribution of natural foods (plants and animals) versus human food in the diets of FC bears. We then used results from both analyses to evaluate proactive (population-level) and reactive (individual-level) human–bear management, and discussed new metrics to evaluate the overall human–bear management program in Yosemite. Our results indicated that 19 out of 145 (13%) unknown bears sampled from 2005 to 2007 were food-conditioned. The proportion of human food in the diets of known FC bears likely declined from 2001–2003 to 2005–2007, suggesting proactive management was successful in reducing the amount of human food available to bears. In contrast, reactive management was not successful in changing the management status of known FC bears to NFC bears, or in reducing the contribution of human food to the diets of FC bears. Nine known FC bears were recaptured on 14 occasions from 2001 to 2007; all bears were classified as FC during subsequent recaptures, and human–bear management did not reduce the amount of human food in the diets of FC bears. Based on our results, we suggest Yosemite continue implementing proactive human–bear management, reevaluate reactive management, and consider removing problem bears (those involved in repeated bear incidents) from the population.

  12. Radiation hard cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Casagrande, L.; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D'Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M.

    2002-01-01

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors

  13. An EBSD Investigation of Cryogenically-Rolled Cu-30%Zn Brass

    Science.gov (United States)

    2015-02-07

    a severely deformed dilute aluminium alloy , Acta Mater. 56 (2008) 1619–1632. http://dx.doi.org/10.1016/j.actamat.2007.12.017. [2] T. Konkova, S... alloys has given rise to considerable commercial interest in techniques for grain refinement. Of particular importance are cost effective methods that can...cryogenic working has focused on aluminum alloys and pure copper [e.g., 1 7]. In both materials, cryogenic rolling has been found to provide no

  14. The LHC cryogenic operation for first collisions and physics run

    CERN Document Server

    Brodzinski, K; Benda, V; Bremer, J; Casas-Cubillos, J; Claudet, S; Delikaris, D; Ferlin, G; Fernandez Penacoba, G; Perin, A; Pirotte, O; Soubiran, M; Tavian, L; van Weelderen, R; Wagner, U

    2011-01-01

    The Large Hadron Collider (LHC) cryogenic system was progressively and successfully run for the LHC accelerator operation period starting from autumn 2009. The paper recalls the cryogenic system architecture and main operation principles. The system stability during magnets powering and availability periods for high energy beams with first collisions at 3.5 TeV are presented. Treatment of typical problems, weak points of the system and foreseen future consolidations will be discussed.

  15. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics.

    Science.gov (United States)

    Tse, Peter W; Wang, Dong

    2017-02-14

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  16. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    Directory of Open Access Journals (Sweden)

    Peter W. Tse

    2017-02-01

    Full Text Available Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL. Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  17. Cryogenic expansion joint for large superconducting magnet structures

    Science.gov (United States)

    Brown, Robert L.

    1978-01-01

    An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.

  18. Experimental Waterflow Determination of the Dynamic Hydraulic Transfer Function for the J-2X Oxidizer Turbopump. Part Two; Results and Interpretation

    Science.gov (United States)

    Zoladz, Tom; Patel, Sandeep; Lee, Erik; Karon, Dave

    2011-01-01

    Experimental results describing the hydraulic dynamic pump transfer matrix (Yp) for a cavitating J-2X oxidizer turbopump inducer+impeller tested in subscale waterflow are presented. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Dynamic transfer functions across widely varying pump hydrodynamic inlet conditions are extracted from measured data in conjunction with 1D-model based corrections. Derived Dynamic transfer functions are initially interpreted relative to traditional Pogo pump equations. Water-to-liquid oxygen scaling of measured cavitation characteristics are discussed. Comparison of key dynamic transfer matrix terms derived from waterflow testing are made with those implemented in preliminary Ares Upper Stage Pogo stability modeling. Alternate cavitating pump hydraulic dynamic equations are suggested which better reflect frequency dependencies of measured transfer matrices.

  19. On-board cryogenic system for magnetic levitation of trains

    Energy Technology Data Exchange (ETDEWEB)

    Baldus, S A.W.; Kneuer, R; Stephan, A

    1975-02-01

    An experimental car based on electrodynamic levitation with superconducting magnets was developed and manufactured with an on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. Processes and components are discussed, and a brief description of the first results for the whole system under simulation conditions is given.

  20. Properties of strain gages at cryogenic temperature

    International Nuclear Information System (INIS)

    Shibata, Nobuo; Fujiyoshi, Toshimitsu.

    1978-01-01

    At the time of developing superconduction generators, the stress measurement for rotor parts is required to grasp the safety and performance of the rotor at cryogenic temperature, which is cooled with liquid helium. In case of carrying out the stress measurement with strain gages, the problems are as follows. The strain gages and lead wires are exposed to cryogenic temperature from 4 to 10 K and strong magnetic field of about 3T, and subjected to high centrifugal acceleration of about 500G. In order to establish the techniques of the stress measurement under such conditions, the adhesives and damp-proof coatings for strain gages and strain gages themselves in Japan and foreign countries were examined on the properties at cryogenic temperature. As for the properties of strain gages, mainly the apparent strain owing to temperature change was investigated, and the change of the gage factors was studies only at liquid nitrogen temperature. The stress measurement with strain gages at low temperature had been studied in detail down to liquid nitrogen temperature concerning LNG tanks. The experimental apparatus, the samples, the testing methods and the test results of cooling tests on adhesives and damp-proof coatings, and the temperature characteristics of strain gages are reported. The usable adhesives and coatings were found, and correction by accurate temperature measurement is required for apparent strain. (Kako, I.)

  1. PHYSICAL PARAMETERS OF ASTEROIDS ESTIMATED FROM THE WISE 3-BAND DATA AND NEOWISE POST-CRYOGENIC SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Mainzer, A.; Masiero, J.; Bauer, J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Grav, T. [Planetary Science Institute, Tucson, AZ 85719 (United States); Cutri, R. M. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); McMillan, R. S. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Nugent, C. R. [Department of Earth and Space Sciences, UCLA, 595 Charles Young Drive East, Box 951567, Los Angeles, CA 90095-1567 (United States); Tholen, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Walker, R. [Monterey Institute for Research in Astronomy, Monterey, CA 93933 (United States); Wright, E. L., E-mail: amainzer@jpl.nasa.gov [Department of Physics and Astronomy, UCLA, P.O. Box 91547, Los Angeles, CA 90095-1547 (United States)

    2012-11-20

    Enhancements to the science data processing pipeline of NASA's Wide-field Infrared Survey Explorer (WISE) mission, collectively known as NEOWISE, resulted in the detection of >158,000 minor planets in four infrared wavelengths during the fully cryogenic portion of the mission. Following the depletion of its cryogen, NASA's Planetary Science Directorate funded a four-month extension to complete the survey of the inner edge of the Main Asteroid Belt and to detect and discover near-Earth objects (NEOs). This extended survey phase, known as the NEOWISE Post-Cryogenic Survey, resulted in the detection of {approx}6500 large Main Belt asteroids and 86 NEOs in its 3.4 and 4.6 {mu}m channels. During the Post-Cryogenic Survey, NEOWISE discovered and detected a number of asteroids co-orbital with the Earth and Mars, including the first known Earth Trojan. We present preliminary thermal fits for these and other NEOs detected during the 3-Band Cryogenic and Post-Cryogenic Surveys.

  2. Process for prevention of water build-up in cryogenic distillation column

    International Nuclear Information System (INIS)

    Hopewell, R.B.

    1988-01-01

    In a process for the separation of a hydrocarbon and acid gas containing feed stream in a cryogenic distillation column, a zone of the column which is operated at a temperature of 60 0 F or less, wherein free water accumulates or forms hydrates in the column from water vapor in the feed stream during the cryogenic process, and which process comprises separating the feed stream in the column into an overhead stream and a bottom stream, this patent describes the improvement which comprises: withdrawing a hydrocarbon and acid gas vapor stream which stream is enriched in water vapor with respect to the feed stream, thereby preventing the excess accumulation of free water or the formation of hydrates in the cryogenic column

  3. Design and construction of the SSCL magnet test laboratory cryogenic systems

    International Nuclear Information System (INIS)

    Freeman, M.A.; Kobel, T.A.

    1992-01-01

    The intent of this document is to provide a brief summary of the execution, by Process Systems International, Inc. (PSI), of the Design and Construction of the SSCL Magnet Test Laboratory Cryogenic Systems. This $30 million project requires the expenditure of over 200,000 manhours and the procurement of $17 million in materials within a two year period. SSC magnets will be performance tested at the Magnet Test Laboratory (MTL) and the Accelerator System String Test (ASST) facility under conditions simulating the environment of the SSC main ring. The cryogenic system consists of test stands (five for MTL, one for ASST) and the associated equipment including cryogenic storage, purification, thermal conditioning, and helium refrigeration necessary to support the test program

  4. Thermal stress state of cryogenic HP vessels under freezing and pressurization

    International Nuclear Information System (INIS)

    Tsybenko, A.S.; Kuranov, B.A.; Chepurnoj, A.D.; Shaposhnikov, V.A.; Krishchuk, N.G.

    1986-01-01

    A mathematical model is developed for thermomechanical processes in cryogenic HP vessels under freezing either by liquid and (or) gaseous cryogen and under pressurization. Equations of nonlinear nonstationary thermal conductivity and nonisothermal thermoelastoplasticity are used for the case of the theory off low with isotropic hardening. Semiempiricaldependences of nonstationary heat exchange for gaseous medium, experimental curves of cryogenic liquid boiling, mass exchange relationships are allowed for when formulating boundary conditions. The mathematical modelis realized on the basi of the finite element method in the form of highly automated program complex TERSOD (heat resistanceof vessels), oriented for computer of the Unified System. Heat and stress-strained states for three constructions of vessels are thoroughly studied under different conditions of gaseous, liquid and combined freezing with subsequent pressurization

  5. A cryogenic system design for the international thermonuclear experimental reactor (ITER)

    International Nuclear Information System (INIS)

    Slack, D.S.

    1991-01-01

    A conceptual design for ITER was completed last year. The author developed a suitable cryogenic system for ITER as part of this conceptual design effort. An overview of the design is reported. Emphasis is on the fact that cryogenics is a mature science, and a system supporting ITER needs can be made from time-proven components without loss of efficiency or reliability. Because of the large size of the ITER cryogenic system, large numbers of compressors and expanders must be used. Very high reliability is assured by arranging these components in parallel banks where servicing of individual components can be done without interruption of operations. This and other ideas based on the author's experience with Mirror Fusion Test Facility (MFTF) operations are described. 5 refs., 3 figs

  6. Cryogenic refrigeration for cold neutron sources

    International Nuclear Information System (INIS)

    Gistau-Baguer, Guy

    1998-01-01

    Neutron moderation by means of a fluid at cryogenic temperature is a very interesting way to obtain cold neutrons. Today, a number of nuclear research reactors are using this technology. This paper deals with thermodynamics and technology which are used for cooling Cold Neutron Sources

  7. Comparison of Alignment Correction Angles Between Fixed-Bearing and Mobile-Bearing UKA.

    Science.gov (United States)

    Inoue, Atsuo; Arai, Yuji; Nakagawa, Shuji; Inoue, Hiroaki; Yamazoe, Shoichi; Kubo, Toshikazu

    2016-01-01

    Good outcomes have been reported with both fixed-bearing and mobile-bearing unicompartmental knee arthroplasty (UKA). However, overcorrected alignment could induce the progression of arthritis on the non-arthroplasty side. Changes of limb alignment after UKA with both types of bearings (fixed bearing: 24 knees, mobile bearing: 28 knees) were investigated. The mean difference between the preoperative standing femoral-tibial angle (FTA) and postoperative standing FTA was significantly larger in mobile bearing UKA group. In fixed-bearing UKA, there must be some laxity in MCL tension so that a 2-mm tension gauge can be inserted. In mobile-bearing UKA, appropriate MCL tension is needed to prevent bearing dislocation. This difference in MCL tension may have caused the difference in the correction angle between the groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Instrumentation, Field Network And Process Automation for the LHC Cryogenic Line Tests

    CERN Document Server

    Bager, T; Bertrand, G; Casas-Cubillos, J; Gomes, P; Parente, C; Riddone, G; Suraci, A

    2000-01-01

    This paper describes the cryogenic control system and associated instrumentation of the test facility for 3 pre-series units of the LHC Cryogenic Distribution Line. For each unit, the process automation is based on a Programmable Logic Con-troller implementing more than 30 closed control loops and handling alarms, in-terlocks and overall process management. More than 160 sensors and actuators are distributed over 150 m on a Profibus DP/PA network. Parameterization, cali-bration and diagnosis are remotely available through the bus. Considering the diversity, amount and geographical distribution of the instru-mentation involved, this is a representative approach to the cryogenic control system for CERN's next accelerator.

  9. Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced Gravity

    Science.gov (United States)

    Marchetta, J. G.; Hochstein, J. I.

    2002-01-01

    Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced strong evidence that a magnetic positioning system may be a feasible alternative technology for use in the management of cryogenic propellants onboard spacecraft. The results of these preliminary studies have indicated that further investigation of the physical processes and potential reliability of such a system is required. The utility of magnetic fields as an alternative method in cryogenic propellant management is dependent on its reliability and flexibility. Simulations and experiments have previously yielded evidence in support of the magnetic positive positioning (MPP) process to predictably reorient LOX for a variety of initial conditions. Presently, though, insufficient evidence has been established to support the use of magnetic fields with respect to the long-term storage of cryogenic propellants. Current modes of propellant storage have met with a moderate level of success and are well suited for short duration missions using monopropellants. However, the storage of cryogenic propellants warrants additional consideration for long-term missions. For example, propellant loss during storage is due to vaporization by incident solar radiation and the vaporized ullage must be vented to prevent excessive pressurization of the tank. Ideally, positioning the fluid in the center of the tank away from the tank wall will reduce vaporization by minimizing heat transfer through the tank wall to the liquid. A second issue involves the capability of sustaining a stable fluid configuration at tank center under varying g-levels or perturbations propellant storage. Results presented herein include comparisons illustrating the influence of gravity, fluid volume, and the magnetic field on a paramagnetic fluid, LOX. The magnetic Bond number is utilized as predictive correlating parameter for investigating these processes. A dimensionless relationship between the Bom and Bo was sought with the goal of

  10. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  11. Interferometric study on the mass transfer in cryogenic distillation under magnetic field

    Science.gov (United States)

    Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.

    2017-12-01

    Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.

  12. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    Science.gov (United States)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  13. Modified-Collins cryocooler for zero-boiloff storage of cryogenic fuels in space

    Science.gov (United States)

    Hannon, Charles L.; Krass, Brady; Hogan, Jake; Brisson, John

    2012-06-01

    Future lunar and planetary explorations will require the storage of cryogenic propellants, particularly liquid oxygen (LOX) and liquid hydrogen (LH2), in low earth orbit (LEO) for periods of time ranging from days to months, and possibly longer. Without careful thermal management, significant quantities of stored liquid cryogens can be lost due to boil-off. Boil-off can be minimized by a variety of passive means including insulation, sun shades and passive radiational cooling. However, it has been shown that active cooling using space cryocoolers has the potential to result in Zero Boil-Off (ZBO) and the launch-mass savings using active cooling exceeds that of passive cooling of LOX for mission durations in LEO of less than 1 week, and for LH2 after about 2 months in LEO. Large-scale DC-flow cryogenic refrigeration systems operate at a fraction of the specific power levels required by small-scale AC-flow cryocoolers. The efficiency advantage of DC-flow cryogenic cycles motivates the current development of a cryocooler based on a modification of the Collins Cycle. The modified Collins cycle design employs piston type expanders that support high operating pressure ratios, electromagnetic valves that enable "floating pistons", and recuperative heat transfer. This paper will describe the design of a prototype Modified-Collins cryocooler for ZBO storage of cryogenic fuels in space.

  14. A compact 3 T all HTS cryogen-free MRI system

    Science.gov (United States)

    Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.

    2017-12-01

    We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.

  15. Beam screen cryogenic control improvements for the LHC run 2

    CERN Document Server

    AUTHOR|(CDS)2068353; Rogez, Edouard; Blanco Vinuela, Enrique; Ferlin, Gerard; Tovar-Gonzalez, Antonio

    2017-01-01

    This paper presents the improvements made on the cryogenic control system for the LHC beam screens. The regulation objective is to maintain an acceptable temperature range around 20 K which simultaneously ensures a good LHC beam vacuum and limits cryogenic heat loads. In total, through the 27 km of the LHC machine, there are 485 regulation loops affected by beam disturbances. Due to the increase of the LHC performance during Run 2, standard PID controllers cannot keeps the temperature transients of the beam screens within desired limits. Several alternative control techniques have been studied and validated using dynamic simulation and then deployed on the LHC cryogenic control system in 2015. The main contribution is the addition of a feed-forward control in order to compensate the beam effects on the beam screen temperature based on the main beam parameters of the machine in real time.

  16. Cryogenic aluminum-wound generator rotor concept for nuclear power conversion

    International Nuclear Information System (INIS)

    Schlicher, R.L.; Oberly, C.E.

    1987-01-01

    This paper presents a design outline for a liquid hydrogen cooled generator rotor that could be used to fabricate a 20-megawatt cryogenic generator. The armature of an existing 20-megawatt superconducting generator could be utilized in this new cryogenic generator concept without electrical modification and with minimum modification to its housing. The acquisition and operating expense of liquid helium liquefiers, refrigeration requirements and the expense of fabricating a superconductor wound generator rotor make an aluminum-wound rotor a viable alternative. Ideally, the aluminum rotor could use the higher cryogenic temperatures of liquid hydrogen at 21 K as conductor coolant and not require the more difficult fabrication techniques of a superconducting generator rotor. A most likely conductor candidate is high purity aluminum which has 0.2% its room temperature resistance at liquid hydrogen temperatures. Recent research has indicated the feasibility of fabricating high-purity aluminum conductors in a composite conductor form

  17. Impact resistance cryogenic bunker fuel tanks

    NARCIS (Netherlands)

    Voormeeren, L.O.; Atli-Veltin, B.; Vredeveldt, A.W.

    2014-01-01

    The increasing use of liquefied natural gas (LNG) as bunker fuel in ships, calls for an elaborate study regarding the risks involved. One particular issue is the vulnerability of cryogenic LNG storage tanks with respect to impact loadings, such as ship collisions and dropped objects. This requires

  18. Design of spiral fin type condenser for hydrogen cryogenic distillation column

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Nishi, Masataka; Yamanishi, Toshihiko

    2005-08-01

    The purpose of this paper is the proposal of new concept condenser for hydrogen cryogenic distillation column of Hydrogen Isotope Separation System (ISS) in a fusion reactor, and the establishment of numerical evaluation method of the hydrogen isotope inventory in the condenser. A large amount of hydrogen isotopes including high concentration of tritium, radioactive hydrogen isotope, has been handled in the cryogenic distillation column. Therefore, from the safety point of view, cryogenic coolant tube was commonly arranged to surround the condensed area to prevent the mixing of tritium into the coolant. This inevitable arrangement leads the difficulty in the minimization of the condenser. The scale of condenser has influence on the scale of the ISS and its earthquake-resistance. The spiral fin type condenser, which introduces fins inside it and in coolant tube to enhance heat exchange, is proposed as a new concept condenser for hydrogen cryogenic distillation column to miniaturize the condenser. The volume of spiral fin type condenser is estimated to become less than half of that of coil tube type condenser currently in use. Accordingly, it is found that the adoption of spiral fin type condenser realizes the significant miniaturization of the ISS. Moreover, the numerical evaluation method of the hydrogen isotope inventory in the condenser is proposed. The validity of this method was confirmed by the experimental data. The synthetic design of the condenser for the hydrogen cryogenic distillation column is achieved by the combination of the proposed new concept condenser with the numerical evaluation method of the hydrogen isotope inventory. (author)

  19. Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    Science.gov (United States)

    Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

    2012-01-01

    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

  20. Conceptual design of a cryogen-free μMRI device

    Science.gov (United States)

    Authelet, G.; Poirier-Quinot, M.; Ginefri, J.-C.; Bonelli, A.; Baudouy, B.

    2017-12-01

    To perform Micro Magnetic Resonance Imaging (mMRI) analysis on small regions such as skins, articulations or small animals, the required spatial resolution implies to dramatically improve the sensitivity of the detection. One way to go is to use small radio-frequency superconducting coil that allow, among others, increasing significantly the signal-to-noise ratio. The RF probe, constituted of an optimized YBaCuO film coil cooled below nitrogen temperature, must be located no further than few millimeters from the biological region to be imaged in a clinical MRI magnet. To fulfill the medical environment and constraints, a cryogen-free cooling scheme has been developed to maintain the superconducting coil at the working temperature. The cryogenic design is based on a pulse tube cryocooler and solid thermal links inserted in a non-magnetic cryostat to avoid creating any electromagnetic perturbations to the MRI magnet and the measurements. We report here the conceptual design of the cryogenic system with the required thermal performances, the corresponding layout and architecture of the system as well as the main technical challenges met for the construction.

  1. SiPM properties at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Biroth, Maik; Achenbach, Patrick; Thomas, Andreas [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Mainz (Germany); Downie, Evangeline [George Washington University, DC (United States); Collaboration: A2-Collaboration

    2015-07-01

    At the electron accelerator Mainzer Mikrotron (MAMI) an active target build of polarizable scintillators will be operated at approximately 25 mK. To read out the scintillation light, the photodetectors have to withstand cryogenic temperatures of 4 K and high count rates. Therefore the properties of different types of silicon photomultipliers (SiPMs) were studied at cryogenic temperatures. In liquid nitrogen at 77 K, problems with quenching in Hamamatsu SiPMs and with the protective epoxy layer covering Zecotek SiPMs were observed. Tests with one Zecotek SiPM were successful after removal of the epoxy layer in liquid helium at 4 K and no after-pulses could be observed. Fundamental parameters like break-down voltage, single-pixel gain, crosstalk probability and the dark-count rate were measured and compared to room temperature. The photon detection efficiency was estimated by SiPMs response to short LED pulses. All these parameters were extracted by curve-fitting of SiPM charge spectra with a new analytical function.

  2. National Ignition Facility Cryogenic Target Systems Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety and Health (ES and H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for

  3. Operation of large cryogenic systems

    International Nuclear Information System (INIS)

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab

  4. LHC Cryogenics on the mend

    CERN Multimedia

    2004-01-01

    On 29 September, repairs began on the LHC cryogenic distribution line, or QRL, to replace a faulty part that occurs in the hundreds of elements of the line that are already on-site. The Accelerator Technology Department is designing a work programme to finish the repairs as soon as possible and minimize delays to the rest of the LHC project.

  5. Cryogenic detectors for particle physics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1988-11-01

    A comprehensive introduction to cryogenic detector developments for particle physics is presented, covering conventional detectors cooled to low temperature (scintillators and semiconductors), superconductive and thermal sensitive devices, as well as the basics of cold electronics. After giving a critical overview of current work, we elaborate on possible new ways for further improvements and briefly evaluate the feasibility of the main proposed applications

  6. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    Science.gov (United States)

    Joshi, D. M.; Patel, H. K.

    2015-10-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant.

  7. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.; Patel, H.K.

    2015-01-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant

  8. Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Moffatt, Robert [Stanford Univ., CA (United States)

    2016-03-01

    In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Our measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.

  9. Proposed cryogenic Q-factor measurement of mirror substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, Sandor; Zimmer, Anja; Vodel, Wolfgang; Thuerk, Matthias; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany)

    2004-03-07

    The thermal noise of optical components (e.g., end mirrors, beam splitters) is one of the limiting factors of the sensitivity of most of the present interferometric gravitational wave detectors, and it will be limiting in the advanced detectors now being designed. This thermal noise occurs mainly in the optical substrates and their mirror coatings. One possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical Q and maximizing the eigenfrequencies of the substrate. A new cryogenic apparatus for investigations of the temperature dependency of the Q-factor of several substrate materials down to 4.2 K is proposed. Possible methods of mode excitation and ring down measurement are discussed.

  10. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  11. (abstract) Simple Spreadsheet Thermal Models for Cryogenic Applications

    Science.gov (United States)

    Nash, A. E.

    1994-01-01

    Self consistent circuit analog thermal models, that can be run in commercial spreadsheet programs on personal computers, have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. These models have been used to analyze the Cryogenic Telescope Test Facility (CTTF). The facility will be on line in early 1995 for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison of the model predictions and actual performance of this facility will be presented.

  12. LDR cryogenics

    Science.gov (United States)

    Nast, T.

    1988-01-01

    A brief summary from the 1985 Large Deployable Reflector (LDR) Asilomar 2 workshop of the requirements for LDR cryogenic cooling is presented. The heat rates are simply the sum of the individual heat rates from the instruments. Consideration of duty cycle will have a dramatic effect on cooling requirements. There are many possible combinations of cooling techniques for each of the three temperatures zones. It is clear that much further system study is needed to determine what type of cooling system is required (He-2, hybrid or mechanical) and what size and power is required. As the instruments, along with their duty cycles and heat rates, become better defined it will be possible to better determine the optimum cooling systems.

  13. A review of bear farming and bear trade in Lao People's Democratic Republic

    Directory of Open Access Journals (Sweden)

    E. Livingstone

    2018-01-01

    Full Text Available This study reviews the bear farming industry in Lao PDR with the objective of documenting the current number of commercial bear facilities (i.e. captive bear facilities judged to be trading in bear bile and/or bears and bear parts and the number of bears contained within these facilities, noting changes since it was last examined between 2000 and 2012 by Livingstone and Shepherd (2014. We surveyed all known commercial bear facilities and searched for previously unrecorded facilities. We compared our records with Livingstone and Shepherd (2014 and corrected some duplicate records from their study. In 2017, we recorded seven commercial facilities; four dedicated bear farms, and three tiger farms that were reportedly also keeping bears. We found that between 2012 and 2017 the recorded number of dedicated bear farms reduced by two, and the recorded number of tiger farms also keeping bears increased by one. Within the same period, the total number of captive bears among all facilities in Lao PDR hardly changed (+one, but the number of bears within each facility did. The northern facilities, owned by ethnic Chinese, have expanded since 2012, and central and southern facilities have downsized or closed. While bear farming appears to be downsizing in Lao PDR overall, efforts to phase it out are undermined by the expansion of foreign owned facilities in the north, within Special and Specific Economic Zones that largely cater to a Chinese market, and where the Lao government's efforts to enforce laws and protect wildlife appear to be lacking. Closing the facilities in the north will require political will and decisive law enforcement. Keywords: Bear farms, Bear bile, Gall bladder, Urso-deoxycholic acid, Bear bile extraction facilities, Lao PDR, Ursus thibetanus

  14. The integration of cryogenic cooling systems with superconducting electronic systems

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  15. Cryogenic Propellant Storage and Transfer Engineering Development Unit Hydrogen Tank

    Science.gov (United States)

    Werkheiser, Arthur

    2015-01-01

    The Cryogenic Propellant Storage and Transfer (CPST) project has been a long-running program in the Space Technology Mission Directorate to enhance the knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. This particular effort, the CPST engineering development unit (EDU), was a proof of manufacturability effort in support of a flight article. The EDU was built to find and overcome issues related to manufacturability and collect data to anchor the thermal models for use on the flight design.

  16. Explosive Evaporating Phenomena of Cryogenic Fluids by Direct Contacting Normal Temperature Fluids

    Directory of Open Access Journals (Sweden)

    T Watanabe

    2016-09-01

    Full Text Available Cryogenic fluids have characteristics such as thermal stratification and flashing by pressure release in storage vessel. The mixture of the extreme low temperature fluid and the normal temperature fluid becomes the cause which causes pressure vessel and piping system crush due to explosive boiling and rapid freezing. In recent years in Japan, the demand of cryogenic fluids like a LH2, LNG is increasing because of the advance of fuel cell device technology, hydrogen of engine, and stream of consciousness for environmental agreement. These fuel liquids are cryogenic fluids. On the other hand, as for fisheries as well, the use of a source of energy that environment load is small has been being a pressing need. And, the need of the ice is high, as before, for keeping freshness of marine products in fisheries. Therefore, we carried out the experiments related to promotion of evaporating cryogenic fluids and generation of ice, in the contact directly of the water and liquid nitrogen. From the results of visualization, phenomena of explosive evaporating and ice forming were observed by using video camera.

  17. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    Science.gov (United States)

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  18. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.

    Science.gov (United States)

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-11-30

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  19. Cryogenic motion performances of a piezoelectric single crystal micromotor

    Science.gov (United States)

    Li, Xiaotian; Wu, Yuting; Chen, Zhijiang; Wei, Xiaoyong; Luo, Haosu; Dong, Shuxiang

    2014-04-01

    This study investigates the cryogenic performances of a millimeter-size piezoelectric ultrasonic linear micromotor. The piezoelectric vibrator of the micromotor is made of Pb(In1/2Nb1/2)O3 -Pb(Mg1/3Nb2/3)-PbTiO3 single crystal and operated in first-bending wobbling mode. Experiments show that the piezoelectric single crystal micromotor works effectively even at extremely low temperature of -175 °C, although its resonance peaks vary with temperature significantly. This work confirms the feasibility of cryogenic operation of the piezo-micromotor, which is meaningful for aerospace or superconducting microwave application.

  20. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Veronica De Miguel-Soto

    2017-11-01

    Full Text Available In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG, and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  1. Design, Construction, Installation and First Commissioning Results of the LHC Cryogenic System

    CERN Document Server

    Claudet, S

    2006-01-01

    The cryogenic system of the Large Hadron Collider (LHC) will be, upon its completion in 2006, the largest in the world in terms of refrigeration capacity with an equivalent to 144 kW at 4.5 K, about 400'000 litres of superfluid helium with 25 km of superconducting magnets below 2 K leading to a cryogen inventory of 100 tons of helium. The challenges involved in the design, construction and installation, as well as the first commissioning results will be addressed in this talk. Particular mention will be made of the problems encountered and how they were or are being solved. Perspectives for LHC will be presented. General considerations for future large cryogenic systems will be briefly proposed.

  2. Use of thermal sieve to allow optical testing of cryogenic optical systems.

    Science.gov (United States)

    Kim, Dae Wook; Cai, Wenrui; Burge, James H

    2012-05-21

    Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.

  3. On electrical resistivity of AISI D2 steel during various stages of cryogenic treatment

    Science.gov (United States)

    Lomte, Sachin Vijay; Gogte, Chandrashekhar Laxman; Peshwe, Dilip

    2012-06-01

    The effect of dislocation densities and residual stresses is well known in tool steels. Measurement of electrical resistivity in order to monitor dislocation densities or residual stresses has seldom been used in investigating the effect of cryogenic treatment on tool steels. Monitoring residual stresses during cryogenic treatment becomes important as it is directly related to changes due to cryogenic treatment of tool steels. For high carbon high chromium (HCHC- AISI D2) steels, not only wear resistance but dimensional stability is an important issue as the steels are extensively used in dies, precision measuring instruments. This work comprises of study of measurement of electrical resistivity of AISI D2 steel at various stages of cryogenic treatment. Use of these measurements in order to assess the dimensional stability of these steels is discussed in this paper.

  4. Cryogenic system of steady state superconducting Tokamak SST-1: Operational experience and controls

    International Nuclear Information System (INIS)

    Sarkar, B.; Tank, Jignesh; Panchal, Pradip; Sahu, A.K.; Bhattacharya, Ritendra; Phadke, Gaurang; Gupta, N.C.; Gupta, Girish; Shah, Nitin; Shukla, Pawan; Singh, Manoj; Sonara, Dasarath; Sharma, Rajiv; Saradha, S.; Patel, J.C.; Saxena, Y.C.

    2006-01-01

    The cryogenic system of SST-1 consists of the helium cryogenic system and the nitrogen cryogenic system. The main components of the helium cryogenic system are (a) 1.3 kW helium refrigerator/liquefier (HRL) and (b) warm gas management system (WGM), where as, the nitrogen cryogenic system called as liquid nitrogen (LN 2 ) management system consists of storage tanks and a distribution system. The helium flow distribution and control to different sub-systems is achieved by the integrated flow distribution and control (IFDC) system. The HRL has been commissioned and operated for performing a single toroidal field coil test as well as for the first commissioning of SST-1 superconducting-magnets up to 68 K. Analysis of the results shows that the compressor and turbine parameters of the HRL, namely, the speed and pressure are very stable during operation of the HRL, confirming to the reliability in control of thermo-dynamic parameters of the system. The thermal shield of the SST-1 cryostat consists of ten different types of panels, which have been cooled down to the minimum temperature of 80 K and maintained during the first commissioning of SST-1. The operation and controls of the LN2 management system have been found to be as per the design consideration

  5. The Heidelberg CSR: Stored Ion Beams in a Cryogenic Environment

    International Nuclear Information System (INIS)

    Wolf, A.; Hahn, R. von; Grieser, M.; Orlov, D. A.; Fadil, H.; Welsch, C. P.; Andrianarijaona, V.; Diehl, A.; Schroeter, C. D.; Crespo Lopez-Urrutia, J. R.; Weber, T.; Mallinger, V.; Schwalm, D.; Ullrich, J.; Rappaport, M.; Urbain, X.; Haberstroh, Ch.; Quack, H.; Zajfman, D.

    2006-01-01

    A cryogenic electrostatic ion storage ring CSR is under development at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany. Cooling of the ultrahigh vacuum chamber is envisaged to lead to extremely low pressures as demonstrated by cryogenic ion traps. The ring will apply electron cooling with electron beams of a few eV up to 200 eV. Through long storage times of 1000 s as well as through the low wall temperature, internal cooling of infrared-active molecular ions to their rotational ground state will be possible and their collisions with merged collinear beams of electrons and neutral atoms can be detected with high energy resolution. In addition storage of slow highly charged ions is foreseen. Using a fixed in-ring gas target and a reaction microscope, collisions of the stored ions at a speed of the order of the atomic unit can be kinematically reconstructed. The layout and the cryogenic concept are introduced

  6. Development of cryogenic installations for large liquid argon neutrino detectors

    CERN Document Server

    Adamowski, M; Geynisman, M; Hentschel, S; Montanari, D; Nessi, M; Norris, B

    2015-01-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these...

  7. Cryogenic test of the equivalence principle

    International Nuclear Information System (INIS)

    Worden, P.W. Jr.

    1976-01-01

    The weak equivalence principle is the hypothesis that the ratio of internal and passive gravitational mass is the same for all bodies. A greatly improved test of this principle is possible in an orbiting satellite. The most promising experiments for an orbital test are adaptations of the Galilean free-fall experiment and the Eotvos balance. Sensitivity to gravity gradient noise, both from the earth and from the spacecraft, defines a limit to the sensitivity in each case. This limit is generally much worse for an Eotvos balance than for a properly designed free-fall experiment. The difference is related to the difficulty of making a balance sufficiently isoinertial. Cryogenic technology is desirable to take full advantage of the potential sensitivity, but tides in the liquid helium refrigerant may produce a gravity gradient that seriously degrades the ultimate sensitivity. The Eotvos balance appears to have a limiting sensitivity to relative difference of rate of fall of about 2 x 10 -14 in orbit. The free-fall experiment is limited by helium tide to about 10 -15 ; if the tide can be controlled or eliminated the limit may approach 10 -18 . Other limitations to equivalence principle experiments are discussed. An experimental test of some of the concepts involved in the orbital free-fall experiment is continuing. The experiment consists in comparing the motions of test masses levitated in a superconducting magnetic bearing, and is itself a sensitive test of the equivalence principle. At present the levitation magnets, position monitors and control coils have been tested and major noise sources identified. A measurement of the equivalence principle is postponed pending development of a system for digitizing data. The experiment and preliminary results are described

  8. Polymer-Reinforced, Non-Brittle, Lightweight Cryogenic Insulation

    Science.gov (United States)

    Hess, David M.

    2013-01-01

    The primary application for cryogenic insulating foams will be fuel tank applications for fueling systems. It is crucial for this insulation to be incorporated into systems that survive vacuum and terrestrial environments. It is hypothesized that by forming an open-cell silica-reinforced polymer structure, the foam structures will exhibit the necessary strength to maintain shape. This will, in turn, maintain the insulating capabilities of the foam insulation. Besides mechanical stability in the form of crush resistance, it is important for these insulating materials to exhibit water penetration resistance. Hydrocarbon-terminated foam surfaces were implemented to impart hydrophobic functionality that apparently limits moisture penetration through the foam. During the freezing process, water accumulates on the surfaces of the foams. However, when hydrocarbon-terminated surfaces are present, water apparently beads and forms crystals, leading to less apparent accumulation. The object of this work is to develop inexpensive structural cryogenic insulation foam that has increased impact resistance for launch and ground-based cryogenic systems. Two parallel approaches will be pursued: a silica-polymer co-foaming technique and a post foam coating technique. Insulation characteristics, flexibility, and water uptake can be fine-tuned through the manipulation of the polyurethane foam scaffold. Silicate coatings for polyurethane foams and aerogel-impregnated polyurethane foams have been developed and tested. A highly porous aerogel-like material may be fabricated using a co-foam and coated foam techniques, and can insulate at liquid temperatures using the composite foam

  9. High Reliability Cryogenic Piezoelectric Valve Actuator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  10. Teddy Bear Stories

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Caldas-Coulthardt, Carmen

    2014-01-01

    This paper presents a semiotic analysis of a key cultural artefact, the teddy bear. After introducing the iconography of the teddy bear, it analyses different kinds of stories to show how teddy bears are endowed with meaning in everyday life: stories from children's books, reminiscenses by adults...... bears have traditionally centred on interpersonal relations within the nuclear family, but have recently been institutionalized and commercialized....

  11. Characterization of titanium alloys for cryogenic applications

    International Nuclear Information System (INIS)

    Reytier, M.; Kircher, F.; Levesy, B.

    2002-01-01

    Titanium alloys are employed in the design of superconducting magnet support systems for their high mechanical strength associated with their low thermal conductivity. But their use requires a careful attention to their crack tolerance at cryogenic temperature. Measurements have been performed on two extra low interstitial materials (Ti-5Al-2.5Sn ELI and Ti-6Al-4V ELI) with different thickness and manufacturing process. The investigation includes the tensile properties at room and liquid helium temperatures using smooth and notched samples. Moreover, the fracture toughness has been determined at 4.2 K using Compact Tension specimens. The microstructure of the different alloys and the various fracture surfaces have also been studied. After a detailed description of the experimental procedures, practical engineering characteristics are given and a comparison of the different titanium alloys is proposed for cryogenic applications

  12. Technological aspects of cryogenic laser-fusion targets

    International Nuclear Information System (INIS)

    Musinski, D.L.; Henderson, T.M.; Simms, R.J.; Pattinson, T.R.; Jacobs, R.B.

    1980-01-01

    Most current laser-fusion targets consist of hollow spherical glass shells which have been filled with a mixture of gaseous deuterium-tritium fuel. Theoretical considerations suggest that optimum yields can be obtained from these targets if the fuel is condensed as a uniform liquid or solid layer on the inner surface of the glass shell at the time it is irradiated. In principle, this can be accomplished in a straightforward way by cooling the target below the condensation or freezing point of the fuel. In practice, cryogenic targets can appear in routine laser experiments only when the necessary cryogenic technology is reliably integrated into experimental target chambers. Significant progress has been made recently in this field. The authors will discuss the scientific basis and the various technological features of a system which has allowed the successful irradiation of uniform solid-fuel-layer targets

  13. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  14. Cryogenic cooler thermal coupler

    International Nuclear Information System (INIS)

    Green, K.E.; Talbourdet, J.A.

    1984-01-01

    A thermal coupler assembly mounted to the coldfinger of a cryogenic cooler which provides improved thermal transfer between the coldfinger and the detector assembly mounted on the dewar endwell. The thermal coupler design comprises a stud and spring-loaded cap mounted on the coldfinger assembly. Thermal transfer is made primarily through the air space between the cap and coldwell walls along the radial surfaces. The cap is spring loaded to provide thermal contact between the cap and endwell end surfaces

  15. A Novel Methods for Fracture Toughness Evaluation of Tool Steels with Post-Tempering Cryogenic Treatment

    Directory of Open Access Journals (Sweden)

    Ramona Sola

    2017-02-01

    Full Text Available Cryogenic treatments are usually carried out immediately after quenching, but their use can be extended to post tempering in order to improve their fracture toughness. This research paper focuses on the influence of post-tempering cryogenic treatment on the microstructure and mechanical properties of tempered AISI M2, AISI D2, and X105CrCoMo18 steels. The aforementioned steels have been analysed after tempering and tempering + cryogenic treatment with scanning electron microscopy, X-ray diffraction for residual stress measurements, and micro- and nano-indentation to determine Young’s modulus and plasticity factor measurement. Besides the improvement of toughness, a further aim of the present work is the investigation of the pertinence of a novel technique for characterizing the fracture toughness via scratch experiments on cryogenically-treated steels. Results show that the application of post-tempering cryogenic treatment on AISI M2, AISI D2, and X105CrCoMo18 steels induce precipitation of fine and homogeneously dispersed sub-micrometric carbides which do not alter hardness and Young’s modulus values, but reduce residual stresses and increase fracture toughness. Finally, scratch test proved to be an alternative simple technique to determine the fracture toughness of cryogenically treated steels.

  16. Cryogenic moderator simulations: confronting reality

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities

  17. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  18. Cryogenic structural material and design of support structures for the Large Helical Device

    International Nuclear Information System (INIS)

    Nishimura, Arata; Imagawa, Shinsaku; Tamura, Hitoshi

    1997-01-01

    This paper describes a short history of material selection for the cryogenic support structures for the Large Helical Device (LHD) which has superconducting coils. Since the support structures are cooled down to 4.4 K together with the coils, SUS 316 was chosen because of its stable austenitic phase, sufficient mechanical properties at cryogenic temperature and good weldability. Also, outlines of the design and fabrication processes of the support structures are summarized. On the design of the support structures, a deformation analysis was carried out to maintain the proper magnetic field during operation. Afterwards, a stress analysis was performed. During machining and assembling, tolerance was noticed to keep coil positions accurate. Special welding grooves and fabrication processes were considered and achieved successfully. Finally, a cryogenic supporting post which sustains the cryogenic structures and superconducting coils is presented. CFRP was used in this specially developed supporting post to reduce the heat conduction from ambient 300 K structures. (author)

  19. Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures

    International Nuclear Information System (INIS)

    Jia Wangcun; Aguilar, Guillermo; Wang Guoxiang; Nelson, J Stuart

    2004-01-01

    Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser dermatologic therapy. However, the dominant mechanisms of heat transfer during the transient cooling process are incompletely understood. The objective of this study is to elucidate the physics of CSC by measuring the effect of initial substrate temperature (T 0 ) on cooling dynamics. Cryogen was delivered by a straight-tube nozzle onto a skin phantom. A fast-response thermocouple was used to record the phantom temperature changes before, during and after the cryogen spray. Surface heat fluxes (q'') and heat-transfer coefficients (h) were computed using an inverse heat conduction algorithm. The maximum surface heat flux (q'' max ) was observed to increase with T 0 . The surface temperature corresponding to q'' max also increased with T 0 but the latter has no significant effect on h. It is concluded that heat transfer between the cryogen spray and skin phantom remains in the nucleate boiling region even if T 0 is 80 0 C

  20. Commissioning of the Cryogenics of the LHC Long Straight Sections

    CERN Document Server

    Perin, A; Claudet, S; Darve, C; Ferlin, G; Millet, F; Parente, C; Rabehl, R; Soubiran, M; van Weelderen, R; Wagner, U

    2010-01-01

    The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. This paper presents the cryogenic commissioning and the main results obtained during the first operation of the LHC Long Straight Sections.