WorldWideScience

Sample records for cryogenic refrigeration requirements

  1. Vuilleumier Cycle Cryogenic Refrigeration

    Science.gov (United States)

    1976-04-01

    changing pressure to produce a cooling effect is similar to that of the cold section of the Stirling cycle refrigerator , since the method by which the...AFFDL-TR-76-17 VUILLEUMIER CYCLE CRYOGENIC REFRIGERATION ENVIRONMENTAL CONTROL BRANCH 4 VEHICLE EQUIPMENT DIVISION APRIL 1976 TECHNICAL REPORT AFFDL...WORDS (Continue on reverse side if necessary and identify by block number) Cryogenic Refrigerator Vuilleumier Cycle 20. ABSTRACT (Continue on reverse

  2. Improved cryogenic refrigeration system

    Science.gov (United States)

    Higa, W. H.

    1967-01-01

    Two-position shuttle valve simplifies valving arrangement and crank-shaft configuration in gas-balancing and Stirling-cycle refrigeration systems used to produce temperatures below 173 degrees K. It connects the displacer and regenerator alternately to the supply line or the return line of the compressor, and establishes constant pressure on the drive piston.

  3. Cryogenic Optical Refrigeration

    Science.gov (United States)

    2012-03-22

    study by Ball Aerospace Corporation showed that rare-earth-based optical refrigeration can outperform conventional thermoelectric and mechanical coolers...J. Cryst. Growth 30(1), 21–26 (1975). 139. J. S. Abell, I. R. Harris, B. Cockayne, and J. G. Plant , “A DTA study of zone-refined LiRF4 (R = Y,Er

  4. Spacecraft-borne long life cryogenic refrigeration: Status and trends

    Science.gov (United States)

    Johnson, A. L.

    1983-01-01

    The status of cryogenic refrigerator development intended for, or possibly applicable to, long life spacecraft-borne application is reviewed. Based on these efforts, the general development trends are identified. Using currently projected technology needs, the various trends are compared and evaluated. The linear drive, non-contacting bearing Stirling cycle refrigerator concept appears to be the best current approach that will meet the technology projection requirements for spacecraft-borne cryogenic refrigerators. However, a multiply redundant set of lightweight, moderate life, moderate reliability Stirling cycle cryogenic refrigerators using high-speed linear drive and sliding contact bearings may possibly suffice.

  5. Cryogenic refrigeration apparatus

    Science.gov (United States)

    Crunkleton, J.A.

    1992-03-31

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

  6. Conference on Refrigeration for Cryogenic Sensors and Electronic Systems

    CERN Document Server

    Sullivan, D B; McCarthy, S E; Cryogenic Refrigeration Conference; International Cryocooler Conference; Cryocoolers 1

    1981-01-01

    This proceedings documents the output of a meeting of refrigeration specialists held at the National Bureau of Standards, Boulder, CO, on October 6 and 7, 1980. Building on an earlier invitation-only meeting in 1977, the purpose of this first open meeting was to discuss progress in the development of refrigeration systems to cool cryogenic sensors and electronic systems in the temperature range below 20 K and with required cooling capacities below 10 W. The meeting was jointly sponsored by the International Institute of Refrigeration - Commission A1/2, the Office of Naval Research, the Naval Research Laboratory, the Cryogenic Engineering Conference, and the National Bureau of Standards. This first open cryocooler conference consisted of 23 papers presented by representatives of industry, government, and academia. The conference proceedings reproduced here was published by the National Bureau of Standards in Boulder, Colorado as NBS Special Publication #607. Subsequent meetings would become known as the Intern...

  7. Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants

    Science.gov (United States)

    Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-11-01

    Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.

  8. Magnetically suspended Stirling cryogenic space refrigerator Status report

    Science.gov (United States)

    Daniels, A.; Gasser, M.; Sherman, A.

    1982-01-01

    At the 1979 Cryogenic Engineering Conference, attention was given to conceptual designs of spaceborne cryogenic refrigeration systems which can provide long-term, unattended operation. Since that time, efforts have continued to translate one of those concepts into an engineering model. The present investigation is concerned with a refrigerator which was designed to generate 5 W of cooling power at a temperature of 65 K. The compression heat of the refrigerator is dissipated at a temperature of 300 K, and the output of the system is to be maintained reliably for a period of five years or longer. The refrigerator design is based on the Stirling cycle, which has an ideal efficiency equal to that of the Carnot cycle. Attention is given to some background information concerning a cryogenic refrigerator, the design of the refrigerator components, and the development status. The magnetic bearings and the linear motors have been tested at the component level.

  9. Magnetic refrigeration with paramagnetic semiconductors at cryogenic temperatures

    Science.gov (United States)

    Vlasov, Alexander; Guillemette, Jonathan; Gervais, Guillaume; Szkopek, Thomas

    2017-10-01

    We propose paramagnetic semiconductors as active media for refrigeration at cryogenic temperatures by adiabatic demagnetization. The paramagnetism of impurity dopants or structural defects can provide the entropy necessary for refrigeration at cryogenic temperatures. We present a simple model for the theoretical limitations to specific entropy and cooling power achievable by demagnetization of various semiconductor systems. Performance comparable to that of the commonly used paramagnetic salt cerous magnesium nitrate hydrate is predicted.

  10. A cryogenic axial-centrifugal compressor for superfluid helium refrigeration

    CERN Document Server

    Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L

    1997-01-01

    CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.

  11. Refrigeration and Cryogenics Specialist. J3ABR54530

    Science.gov (United States)

    Air Force Training Command, Sheppard AFB, TX.

    This document package contains an Air Force course used to train refrigeration and cryogenics specialists. The course is organized in six blocks designed for group instruction. The blocks cover the following topics: electrical principles; fundamentals of tubing and piping; metering devices, motor controls, domestic and commercial refrigeration;…

  12. Page 1 Cryogenic refrigeration methods 221 two stages of cooling ...

    Indian Academy of Sciences (India)

    It may be noted that the pulse tube is a very simple device; however, it appears that no commercial models of this type of refrigerator have entered the market so far. All the methods considered above (except the first one i.e. the use of liquid. Cryogen) have one thing in common, viz, all of them use gas as the working.

  13. Dilution Refrigerator for Nuclear Refrigeration and Cryogenic Thermometry Studies

    Science.gov (United States)

    Nakagawa, Hisashi; Hata, Tohru

    2014-07-01

    This study explores the design and construction of an ultra-low temperature facility in order to realize the Provisional low-temperature scale from 0.9 mK to 1 K (PLTS-2000) in Japan, to disseminate its use through calibration services, and to study thermometry at low temperatures below 1 K. To this end, a dilution refrigerator was constructed in-house that has four sintered silver discrete heat exchangers for use as a precooling stage of a copper nuclear demagnetization stage. A melting curve thermometer attached to the mixing chamber flange could be cooled continuously to 4.0 mK using the refrigerator. The dependence of minimum temperatures on circulation rates can be explained by the calculation of Frossati's formula based on a perfect continuous counterflow heat exchanger model, assuming that the Kapitza resistance has a temperature dependence. Residual heat leakage to the mixing chamber was estimated to be around 86 nW. A nuclear demagnetization cryostat with a nuclear stage containing an effective amount of copper (51 mol in a 9 T magnetic field) is under construction, and we will presently start to work toward the realization of the PLTS-2000. In this article, the design and performance of the dilution refrigerator are reported.

  14. Regenerative sorption compressors for cryogenic refrigeration

    Science.gov (United States)

    Bard, Steven; Jones, Jack A.

    Dramatic efficiency improvements for sorption coolers appear possible with use of compressor heat regeneration techniques. The general theory of sorption compressor heat regeneration is discussed in this paper, and several design concepts are presented. These designs result in long-life, low-vibration cryocoolers that potentially have efficiencies comparable to Stirling refrigerators for 65 to 90 K spacecraft instrument cooling applications.

  15. Development of an adsorption compressor for use in cryogenic refrigeration

    Science.gov (United States)

    Schember, Helen R.

    1989-01-01

    A new compressor with no moving parts has been developed which is able to supply a source of high-pressure gas to a Joule-Thompson based cryogenic refrigerator. The compressor relies on a newly implemented combination of high-surface-area Saran carbon (sorbent) and krypton gas (working fluid). In addition, an integral gas-gap heat switch is used to provide improved overall efficiency. A prototype compressor has been designed, built, and tested as a part of the Jet Propulsion Laboratory effort in sorption refrigeration. Performance data from the prototype unit described here demonstrate successful compressor performance and good agreement with theoretical predictions.

  16. Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold

    Energy Technology Data Exchange (ETDEWEB)

    Venkatarao Ganni, James Fesmire

    2012-06-01

    Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.

  17. Compact CdSe laser with microminiature cryogenic refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Valk, B.; Olson, D.J.; Salour, M.M.

    1986-12-01

    A microminiature refrigeration system allowing precise temperature control above 77 K has been tested successfully as a compact Dewar to achieve the necessary cryogenic temperatures to operate optically pumped semiconductor lasers in an external cavity. Using this system in a mode-locked CdSe laser resulted in a stable average output power of up to 10 mW. Tunability from 7015 to 7160 A was achieved by changing the temperature from 77 to 111 K.

  18. SBIR Grant:No-Vibration Agile Cryogenic Optical Refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard

    2013-04-09

    Optical refrigeration is currently the only all-solid-state cryocooling technology that has been demonstrated. Optical cryocoolers are devices that use laser light to cool small crystal or glass cooling elements. The cooling element absorbs the laser light and reradiates it at higher energy, an example of anti-Stokes fluorescence. The dif-ference between the energy of the outgoing and incoming light comes from the thermal energy of the cooling element, which in turn becomes colder. Entitled No-Vibration Agile Cryocoolers using Optical Refrigeration, this Phase I proposal directly addressed the continued development of the optical refrigerator components necessary to transition this scientific breakthrough into National Nu-clear Security Administration (NNSA) sensor applications in line with the objectives of topic 50b. ThermoDynamic Films LLC (TDF), in collaboration with the University of New Mexico (UNM), cooled an optical-refrigerator cooling element comprised of an ytterbium-doped yttrium lithium fluoride (Yb:YLF) crystal from room tempera-ture to 123 K with about 2% efficiency. This is the world record in optical refrigera-tion and an important step toward revolutionizing cryogenic systems for sensor ap-plications. During this period, they also designed and analyzed the crucial elements of a prototype optical refrigerator including the thermal link that connects the cool-ing element with the load.

  19. Measured Performance of Four New 18 kW@4.5 K Helium Refrigerators for the LHC Cryogenic System

    CERN Document Server

    Gruehagen, Henning

    2005-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include four new 4.5 K-helium refrigerators, to cover part of the cooling needs of the LHC at the 4.5-20 K and 50-75 K levels. Two refrigerators are delivered by Air Liquide, France, and two by Linde Kryotechnik, Switzerland. During the last three years, all four refrigerators have been installed and commissioned at four different points along the LHC. The specified requirements of the refrigerators are presented, with special focus on the capacities at the various temperature levels. The capacities of the refrigerators were measured using a dedicated test cryostat, and the measured performance for all four installations is presented, and compared to the guaranteed performance in the original proposal of the suppliers. Finally, the process design of the two supplies is compared, and their differences and similarities briefly analysed.

  20. The advantages of using a digital temperature controller in a miniature Stirling cryogenic refrigerator for infrared imagers

    Science.gov (United States)

    Ganot, A.; Pundak, N.

    2007-04-01

    Modern Infra-Red (IR) night-vision thermal imagers for reconnaissance, surveillance, recognition and targeting rely mostly on Stirling-cycle cryogenic refrigerators thanks to their high thermodynamic efficiency. Traditionally, rotary cryogenic refrigerators comprised analog temperature controllers for controlling the cold-tip temperature. These controllers usually consist operational amplifiers, comparators, resistors and capacitors. The fine-tuning of the pre-set cold-tip temperature is achieved by setting a potentiometer to a certain resistance. It is known that potentiometers are affected by environmental temperature variations, continuous exposure to extreme temperatures, and aging. Another aspect of using a potentiometer is the difficulty for the customer to change the pre-set cold tip temperature, particularly with the RICOR On-Board (patented) controllers. Even without the use of potentiometers, the accuracy and stability of the analog components are not sufficient for the increasing requirements of advanced IR detectors at various environmental temperatures, loads, and input voltages. Moreover, manufacturers of cryogenic refrigerators could improve the reliability and traceability of their products by adding various functions to the controllers. A digital temperature controller that is based on a highly integrated flash MCU could serve both goals: improve the accuracy of the cold-tip temperature, and provide with extra features aimed at improving the functionality and reliability of the refrigerators. This paper describes the various functions and advantages of an integral ("on-board") digital temperature controller that was developed in RICOR Vacuum and Cryogenic Systems.

  1. Flow field analysis of high-speed helium turboexpander for cryogenic refrigeration and liquefaction cycles

    Science.gov (United States)

    Sam, Ashish Alex; Ghosh, Parthasarathi

    2017-03-01

    Turboexpander constitutes one of the vital components of Claude cycle based helium refrigerators and liquefiers that are gaining increasing technological importance. These turboexpanders which are of radial inflow in configuration are generally high-speed micro turbines, due to the low molecular weight and density of helium. Any improvement in efficiency of these machines requires a detailed understanding of the flow field. Computational Fluid Dynamics analysis (CFD) has emerged as a necessary tool for the determination of the flow fields in cryogenic turboexpanders, which is often not possible through experiments. In the present work three-dimensional transient flow analysis of a cryogenic turboexpander for helium refrigeration and liquefaction cycles were performed using Ansys CFX®, to understand the flow field of a high-speed helium turboexpander, which in turn will help in taking appropriate decisions regarding modifications of established design methodology for improved efficiency of these machines. The turboexpander is designed based on Balje's nsds diagram and the inverse design blade profile generation formalism prescribed by Hasselgruber and Balje. The analyses include the study of several losses, their origins, the increase in entropy due to these losses, quantification of losses and the effects of various geometrical parameters on these losses. Through the flow field analysis it was observed that in the nozzle, flow separation at the nozzle blade suction side and trailing edge vortices resulted in loss generation, which calls for better nozzle blade profile. The turbine wheel flow field analysis revealed that the significant geometrical parameters of the turbine wheel blade like blade inlet angle, blade profile, tip clearance height and trailing edge thickness need to be optimised for improved performance of the turboexpander. The detailed flow field analysis in this paper can be used to improve the mean line design methodology for turboexpanders used

  2. Ultra-low vibration linear stirling cryogenic refrigerator for sub-nano resolution microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2008-04-01

    Wide use of so called "dry-cooling" technology, eventually replacing the LN2 cooling approach in high-resolution instrumentation, such as Scanning Electronic Microscopes, Helium Ion Microscopes, Superconductive Quantum Interference Devices, etc., motivates further quieting of appropriate cryogenic refrigerators. Linear Stirling cryogenic refrigerators are known to be a major source of harmful vibration export compromising the overall performance of vibration-sensitive equipment. The dual-piston approach to a design of a linear compressor yields inherently low vibration export and, therefore, is widely accepted across the industry. However, the residual vibration disturbance originated even from the technological tolerances, natural wear and contamination cannot be completely eliminated. Moreover, a vibration disturbance produced by a pneumatically driven cold head is much more powerful as compared to this of a compressor. The authors successfully redesigned the existing Ricor model K535 Stirling cryogenic refrigerator for use in vibration-sensitive electronic microscopy, where the image resolution is specified in angstroms. The objective was achieved by passive mechanical counterbalancing of the expander portion of the refrigerator, in a combination with an active two-axis control of residual vibrations, relying on National Instruments CompactRIO hardware, incorporating a real-time processor and reconfigurable FPGA for reliable stand-alone embedded application, developed using LabVIEW graphical programming tools. The attainable performance of the Ultra-Low Vibration linear Stirling cryogenic refrigerator RICOR model K535-ULV was evaluated through the full-scale experimentation.

  3. High Effectiveness Heat Exchanger for Cryogenic Refrigerators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative high performance cryogenic heat exchanger manufactured of titanium by photo-etching and diffusion bonding. This is a parallel plate design...

  4. Micro-structured heat exchanger for cryogenic mixed refrigerant cycles

    Science.gov (United States)

    Gomse, D.; Reiner, A.; Rabsch, G.; Gietzelt, T.; Brandner, J. J.; Grohmann, S.

    2017-12-01

    Mixed refrigerant cycles (MRCs) offer a cost- and energy-efficient cooling method for the temperature range between 80 and 200 K. The performance of MRCs is strongly influenced by entropy production in the main heat exchanger. High efficiencies thus require small temperature gradients among the fluid streams, as well as limited pressure drop and axial conduction. As temperature gradients scale with heat flux, large heat transfer areas are necessary. This is best achieved with micro-structured heat exchangers, where high volumetric heat transfer areas can be realized. The reliable design of MRC heat exchangers is challenging, since two-phase heat transfer and pressure drop in both fluid streams have to be considered simultaneously. Furthermore, only few data on the convective boiling and condensation kinetics of zeotropic mixtures is available in literature. This paper presents a micro-structured heat exchanger designed with a newly developed numerical model, followed by experimental results on the single-phase pressure drop and their implications on the hydraulic diameter.

  5. A cryogen-free dilution refrigerator based Josephson qubit measurement system

    Science.gov (United States)

    Tian, Ye; Yu, H. F.; Deng, H.; Xue, G. M.; Liu, D. T.; Ren, Y. F.; Chen, G. H.; Zheng, D. N.; Jing, X. N.; Lu, Li; Zhao, S. P.; Han, Siyuan

    2012-03-01

    We develop a small-signal measurement system on cryogen-free dilution refrigerator which is suitable for superconducting qubit studies. Cryogen-free refrigerators have several advantages such as less manpower for system operation and large sample space for experiment, but concern remains about whether the noise introduced by the coldhead can be made sufficiently low. In this work, we demonstrate some effective approaches of acoustic isolation to reduce the noise impact. The electronic circuit that includes the current, voltage, and microwave lines for qubit coherent state measurement is described. For the current and voltage lines designed to have a low pass of dc-100 kHz, we show that the measurements of Josephson junction's switching current distribution with a width down to 1 nA, and quantum coherent Rabi oscillation and Ramsey interference of the superconducting qubit can be successfully performed.

  6. Boiling of multicomponent working fluids used in refrigeration and cryogenic systems

    Science.gov (United States)

    Mogorychny, V. I.; Dolzhikov, A. S.

    2017-11-01

    Working fluids based on mixtures are widely used in cryogenic and refrigeration engineering. One of the main elements of low-temperature units is a recuperative heat exchanger where the return flow cools the direct (cold regeneration is carrying out) resulting in continuous boiling and condensation of the multicomponent working fluid in the channels. The temperature difference between the inlet and outlet of the heat exchanger can be more than 100K, which leads to a strong change in thermophysical properties along its length. In addition, the fraction of the liquid and vapor phases in the flow varies very much, which affects the observed flow regimes in the heat exchanger channels. At the moment there are not so many experimental data and analytical correlations that would allow to estimate the heat transfer coefficient during the flow of a two-phase mixture flow at low temperatures. The work is devoted to the study of the boiling process of multicomponent working fluids used in refrigeration and cryogenic engineering. The description of the method of determination of heat transfer coefficient during boiling of mixtures in horizontal heated channel is given as well as the design of the experimental stand allowing to make such measurements. This stand is designed on the basis of a refrigeration unit operating on the Joule-Thomson throttle cycle and makes it possible to measure the heat transfer coefficient with a good accuracy. Also, the calculated values of the heat transfer coefficient, obtained with the use of various correlations, are compared with the existing experimental data. Knowing of the heat transfer coefficient will be very useful in the design of heat exchangers for low-temperature units operating on a mixture refrigerant.

  7. Cryogenic Heat Load and Refrigeration Capacity Management at the Large Hadron Collider (LHC)

    CERN Document Server

    Claudet, S; Serio, L; Tavian, L; Van Weelderen, R; Wagner, U

    2009-01-01

    The Large Hadron Collider (LHC) is a 26.7 km high-energy proton and ion collider based on several thousand high-field superconducting magnets operating in superfluid helium below 2 K, now under commissioning at CERN. After a decade of development of the key technologies, the project was approved for construction in 1994 and the industrial procurement for the cryogenic system launched in 1997, concurrently with the completion of the R&D program. This imposed to base the sizing of the refrigeration plants on estimated and partially measured values of static and dynamic heat loads, with adequate uncertainty and overcapacity coefficients to cope with unknowns in machine configuration and in physical processes at work. With the cryogenic commissioning of the complete machine, full-scale static heat loads could be measured, thus confirming the correctness of the estimates and the validity of the approach, and safeguarding excess refrigeration capacity for absorbing the beam-induced dynamic loads. The metho...

  8. 2nd Biennial Conference on Refrigeration for Cryogenic Sensors and Electronic Systems

    CERN Document Server

    1983-01-01

    This proceedings documents the output of the Second Biennial Conference on Refrigeration for Cryogenic Sensors and Electronic Systems held at the National Aeronautics and Space Administration's Goddard Space Flight Center, Greenbelt, Maryland, on December 7-8, 1982. Building on the first open meeting hosted by the National Bureau of Standards in 1980, the focus of this second meeting was again on low-temperature, closed-cycle cooler technology. However, higher temperature coolers (77 K), with technology applicable to the low temperature coolers, were considered to be within the scope of this meeting. This second conference consisted of 30 papers presented by representatives of industry, government, and academia. The conference proceedings reproduced here was published by the NASA Goddard Space Flight Center in Greenbelt Maryland as NASA Conference Publication 2287.

  9. Concepts for a low-vibration and cryogen-free tabletop dilution refrigerator

    Science.gov (United States)

    Uhlig, Kurt

    2017-10-01

    The purpose of this article is to describe several concepts of how to cool a modern tabletop dilution refrigerator (DR) with a cryogen-free pulse tube cryocooler (PTC). Tabletop DRs have come more and more into the focus of scientists, recently, because they offer easy access to the mixing chamber mounting plate from all directions and because of their very short cooldown times. However, these milli-Kelvin coolers are precooled with LHe which makes their handling inconvenient and often expensive. In the paper it is explained how a cryocooler can be directly coupled to a DR unit making the use of LHe superfluous. Furthermore, concepts are discussed where a tabletop DR is cooled by a remote PTC; PTC and DR are mounted in separate vacuum containers which are connected by a stainless steel bellows tube. This kind of apparatus would offer an extremely low level of vibration at the mixing chamber mounting plate.

  10. Performance analysis of irreversible quantum Stirling cryogenic refrigeration cycles and their parametric optimum criteria

    Science.gov (United States)

    Lin, Bihong; Chen, Jincan

    2006-08-01

    The influence of both the quantum degeneracy and the finite-rate heat transfer between the working substance and the heat reservoirs on the optimal performance of an irreversible Stirling cryogenic refrigeration cycle using an ideal Fermi or Bose gas as the working substance is investigated, based on the theory of statistical mechanics and thermodynamic properties of ideal quantum gases. The inherent regeneration losses of the cycle are analysed. Expressions for several important performance parameters such as the coefficient of performance, cooling rate and power input are derived. By using numerical solutions, the cooling rate of the cycle is optimized for a given power input. The maximum cooling rate and the corresponding parameters are calculated numerically. The optimal regions of the coefficient of performance and power input are determined. In particular, the optimal performance of the cycle in the strong and weak gas degeneracy cases and the high temperature limit are discussed in detail. The analytic expressions of some optimized parameters are derived. Some optimum criteria are given. The distinctions and connections between the Stirling refrigeration cycles working with the ideal quantum and classical gases are revealed.

  11. CRYOGENIC MAGNETS

    Science.gov (United States)

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  12. Influence of the astrophysical requirements on dilution refrigerator design

    Science.gov (United States)

    Sirbi, Adriana; Pouilloux, Benjamin; Benoit, Alain; Lamarre, Jean-Michel

    1999-12-01

    A 300 K to 0.1 K space prototype is developed in cooperation with CRTBT, IAS Air Liquide and RAL, under CNES and ESA contracts, to demonstrate the feasibility of such a cooling system. The heart of the system is a 4 K to 0.1 K open cycle dilution refrigerator circulating 3He and 4He. All the tests are now completed. The design of this system is chosen like the nominal solution for PLANCK/HFI instrument. Since scientific requirements have changed, the design of the prototype has to be adjusted to receive the focal plane of HFI (High Frequency Instrument) instrument of PLANCK. The main goal is to optimise 3He consumption without degrading both mechanical and thermal performances. This paper presents the prototype architecture, the dilution refrigerator and the associated tests. The suitability to PLANCK mission is also assessed.

  13. A versatile, refrigerant- and cryogen-free cryofocusing–thermodesorption unit for preconcentration of traces gases in air

    Directory of Open Access Journals (Sweden)

    F. Obersteiner

    2016-10-01

    Full Text Available We present a compact and versatile cryofocusing–thermodesorption unit, which we developed for quantitative analysis of halogenated trace gases in ambient air. Possible applications include aircraft-based in situ measurements, in situ monitoring and laboratory operation for the analysis of flask samples. Analytes are trapped on adsorptive material cooled by a Stirling cooler to low temperatures (e.g. −80 °C and subsequently desorbed by rapid heating of the adsorptive material (e.g. +200 °C. The set-up involves neither the exchange of adsorption tubes nor any further condensation or refocusing steps. No moving parts are used that would require vacuum insulation. This allows for a simple and robust design. Reliable operation is ensured by the Stirling cooler, which neither contains a liquid refrigerant nor requires refilling a cryogen. At the same time, it allows for significantly lower adsorption temperatures compared to commonly used Peltier elements. We use gas chromatography – mass spectrometry (GC–MS for separation and detection of the preconcentrated analytes after splitless injection. A substance boiling point range of approximately −80 to +150 °C and a substance mixing ratio range of less than 1 ppt (pmol mol−1 to more than 500 ppt in preconcentrated sample volumes of 0.1 to 10 L of ambient air is covered, depending on the application and its analytical demands. We present the instrumental design of the preconcentration unit and demonstrate capabilities and performance through the examination of analyte breakthrough during adsorption, repeatability of desorption and analyte residues in blank tests. Examples of application are taken from the analysis of flask samples collected at Mace Head Atmospheric Research Station in Ireland using our laboratory GC–MS instruments and by data obtained during a research flight with our in situ aircraft instrument GhOST-MS (Gas chromatograph for the Observation of Tracers

  14. Vibration-induced electrical noise in a cryogen-free dilution refrigerator: Characterization, mitigation, and impact on qubit coherence

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Rachpon; Laucht, Arne; Dehollain, Juan Pablo; Bar, Daniel; Freer, Solomon; Simmons, Stephanie; Muhonen, Juha T.; Morello, Andrea, E-mail: a.morello@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney NSW 2052 (Australia)

    2016-07-15

    Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5–10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnose and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube.

  15. Low cost microminiature refrigerators for large unit volume applications

    Science.gov (United States)

    Duboc, R. M., Jr.

    1983-01-01

    Photolithographic techniques were employed to fabricate small Joule-Thomson refrigerators in laminated substrates. The gas passages of a J-T refrigerator are formed by etching channels as narrow as 50 microns and as shallow as 5 microns in glass plates which are laminated together. Circular refrigerators on the order of 1.5 centimeters in diameter and .75 millimeters thick were produced which cool down to cryogenic temperatures in a few seconds, using Argon or Nitrogen, with no vacuum or radiation insulation. Smaller refrigerators are developed for both faster cooldown and low refrigeration capacity applications. By using this technology, custom refrigerators can be designed to meet specific application requirements.

  16. Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines

    Science.gov (United States)

    Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath

    2017-04-01

    The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.

  17. Progress towards cryogenic temperatures in intra-cavity optical refrigeration using a VECSEL

    Science.gov (United States)

    Albrecht, Alexander R.; Ghasemkhani, Mohammadreza; Cederberg, Jeffrey G.; Seletskiy, Denis V.; Melgaard, Seth D.; Sheik-Bahae, Mansoor

    2013-03-01

    We report on the use of a high power InGaAs quantum well vertical external-cavity surface-emitting laser (VECSEL) emitting at a wavelength of 1020 nm for intra-cavity cooling of a 5% Yb-doped YLF crystal to 148 K from room temperature. Similar crystals have now reached temperatures below the NIST-defined cryogenic temperature of 123 K when pumped outside a laser cavity. We discuss the progress, advantages, and challenges of laser cooling inside a VECSEL cavity, including the VECSEL active region design, cavity design, and cooling sample choice for optimal cooling.

  18. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  19. Split-Stirling, linear-resonant, cryogenic refrigerators for detector cooling

    Science.gov (United States)

    Lehrfeld, D.

    1983-01-01

    For the past decade, military IR systems have preferred to see cryogenic coolers provided as split units; separating the functions of compressor and cold-end for system packaging and vibration isolation reasons. A family of split-cycle coolers designed for long MTBF and in the final stages of development is the focus of the discussion. Their technological evolution, from multi-year-MTBF satellite system Stirling coolers developed in the U.S., and the UA 7011 cooler (the first all-linear, military, production cooler) developed in Holland, is explained. Two new split-cycle machines are discussed. They provided 1/4 watt and 1 watt (nominal capacity) at 80 K and 85 K respectively. These linear-resonant, free-displacer Stirling coolers are designed for thousands of hours of service-free operation. They are designed to be compatible with standard U.S. 60 element and 120/180 element detector/dewars, respectively.

  20. Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks

    Science.gov (United States)

    Vandresar, Neil T.; Haberbusch, Mark S.

    1994-01-01

    Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.

  1. A novel cryogenic magnetic refrigerant metal-organic framework based on 1D gadolinium(III) chain

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qun; Li, Peng-Fei [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Zou, Zhi-Ming, E-mail: 2014005@glut.edu.cn [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Liu, Zheng [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Liu, Shu-Xia, E-mail: liusx@nenu.edu.cn [Key Laboratory of Polyoxometalate Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China)

    2017-02-15

    A metal-organic framework (MOF) based on gadolinium ion (Gd{sup 3+}) and tricarboxylate ligand, [Gd(BTPCA)(H{sub 2}O)]·2DMF·3H{sub 2}O (Gd-BTPCA) (H{sub 3}BTPCA =1,1′,1′-(benzene-1,3,5-triyl)tripiperidine-4-carboxylic acid; DMF=dimethylformamide), was synthesized and structurally characterized. The adjacent Gd{sup 3+} ions are intraconnected by the carboxylate groups of the BTPCA{sup 3-} ligands to form a 1D Gd{sup 3+} ion chain. The 1D Gd{sup 3+} ion chains are interconnected by the BTPCA{sup 3-} ligands, giving rise to a 3D framework with 1D open channel. The magnetic studies indicate that Gd-BTPCA exhibits weak ferromagnetic interactions, and acts as a cryogenic magnetic refrigerant having the magnetic entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Graphical abstract: A 1D gadolinium(III) chains-based metal-organic framework performed ferromagnetic coupling on the magnetic property. Magnetic investigation reveals that Gd-BTPCA exhibits the entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Highlights: • The MOF based on gadolinium ion and tricarboxylate ligand was synthesized. • This MOF is connected with 1D Gd{sup 3+} ions chain and the carboxylate groups of BTPCA{sup 3-} ligands. • The magnetic studies indicate that the MOF exhibits the weak ferromagnetic interactions. • Magnetic investigation reveals that the MOF exhibits the high entropy change.

  2. mK-Scanning Probe Microscope(mK-SPM) operating in a Cryogen-Free Dilution Refrigerator at 20mK

    Science.gov (United States)

    Dede, Munir; Karci, Ozgur; Snelling, Chris; Oral, Ahmet

    2012-02-01

    Dramatic increase in liquid helium price limits the usage of cryogenic equipment. Dry cryogen-free dilution refrigerators(DR) systems are promising platforms to run mK-Scanning Probe Microscopes(mK-SPM) systems with a number of operating modes: STM, AFM, MFM, EFM, SSRM, PFM, etc. We present the design of a mK-Scanning Probe Microscope (mK-SPM) operating in a cryogen-free DR. An Oxford Instrument cryogen-free DR(Triton DR200) with 200uW cooling power and 7mK base temperature is used for the experiments. A 1W Pulse Tube cryocooler is integrated into the DR. After wiring and attaching the microscope we achieved 20mK base temperature. Piezo driven Stick slip coarse approach mechanism is used to bring the sample in to close proximity of the sample. In these initial results we deliberately did not take any precautions to isolate the pumping lines, attached to the DR and the DR itself. The turbomolecular pump was attached directly to the top plate of the DR. We first tested our mK-SPM in Scanning Tunnelling Microscope (STM) mode as it is the most sensitive of the SPM techniques. An image, using a gold coated 6μm period calibration grating at 20mK, obtained under these rudimentary conditions.

  3. Energy labels for refrigeration / AC equipment minimum efficiency requirements

    NARCIS (Netherlands)

    Gerwen, R.J.M. van; Sluis, S.M. van der

    1998-01-01

    Energy labelling for refrigeration and air conditioning equipment is one of the best ways to stimulate energy efficiency and energy saving, without limiting free trade. Particularly in the European Union, interest in energy labelling is increasing and for some product groups mandatory or voluntary

  4. Proposal for the award of a contract for the supply and installation of the cryogenic helium refrigeration system for the CMS experiment

    CERN Document Server

    1999-01-01

    This document concerns the award of a contract for the supply and installation of the cryogenic helium refrigeration system for the CMS Experiment. Following a market survey carried out among 22 firms in seven Member States and seven firms in two non-Member States, a call for tenders (IT-2576/EP/CMS) was sent on 17 February 1999 to two firms in two Member States and one firm in one non-Member State. By the closing date, CERN had received two tenders. The Finance Committee is invited to agree to the negotiation of a contract with AIR LIQUIDE (FR), the lowest bidder, for the supply and installation of a cryogenic helium refrigeration system for an amount of 4 552 500 euros, subject to revision, with an option for one liquid nitrogen dewar and a one-year extension of the warranty period, for an amount of 205 000 euros, subject to revision, bringing the total amount to 4 757 500 euros. At the rate of exchange given in the tender, this amount is equal to 7 612 000 Swiss francs. This procurement will be financed by...

  5. Testing the LHC magnet cryogenic systems

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The magnets in the LHC will be cooled to 1.9 K (- 270.3°C). To keep this 27 km long machine at such a low temperatures requires one of the largest refrigeration systems in the world. These pictures show the cryogenics plant in the testing area.

  6. 5-year operation experience with the 1.8 K refrigeration units of the LHC cryogenic system

    CERN Document Server

    Ferlin, G; Claudet, S; Pezzetti, M

    2015-01-01

    Since 2009, the Large Hadron Collider (LHC) is in operation at CERN. The LHC superconducting magnets distributed over eight sectors of 3.3-km long are cooled at 1.9 K in pressurized superfluid helium. The nominal operating temperature of 1.9 K is produced by eight 1.8-K refrigeration units based on centrifugal cold compressors (3 or 4 stages depending to the vendor) combined with warm volumetric screw compressors with sub-atmospheric suction. After about 5 years of continuous operation, we will present the results concerning the availability for the final user of these refrigeration units and the impact of the design choice on the recovery time after a system trip. We will also present the individual results for each rotating machinery in terms of failure origin and of Mean Time between Failure (MTBF), as well as the consolidations and upgrades applied to these refrigeration units.

  7. Technology requirements to be addressed by the NASA Lewis Research Center Cryogenic Fluid Management Facility program

    Science.gov (United States)

    Aydelott, J. C.; Rudland, R. S.

    1985-01-01

    The NASA Lewis Research Center is responsible for the planning and execution of a scientific program which will provide advance in space cryogenic fluid management technology. A number of future space missions were identified that require or could benefit from this technology. These fluid management technology needs were prioritized and a shuttle attached reuseable test bed, the cryogenic fluid management facility (CFMF), is being designed to provide the experimental data necessary for the technology development effort.

  8. Helium refrigeration system for hydrogen liquefaction applications

    Science.gov (United States)

    Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.

    2017-02-01

    Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.

  9. Cryogenic propellant management: Integration of design, performance and operational requirements

    Science.gov (United States)

    Worlund, A. L.; Jamieson, J. R., Jr.; Cole, T. W.; Lak, T. I.

    1985-01-01

    The integration of the design features of the Shuttle elements into a cryogenic propellant management system is described. The implementation and verification of the design/operational changes resulting from design deficiencies and/or element incompatibilities encountered subsequent to the critical design reviews are emphasized. Major topics include: subsystem designs to provide liquid oxygen (LO2) tank pressure stabilization, LO2 facility vent for ice prevention, liquid hydrogen (LH2) feedline high point bleed, pogo suppression on the Space Shuttle Main Engine (SSME), LO2 low level cutoff, Orbiter/engine propellant dump, and LO2 main feedline helium injection for geyser prevention.

  10. Thermoacoustic refrigeration

    Science.gov (United States)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-12-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  11. Cryogenic engineering problems in the development of superconducting power transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Edeskuty, F.J.

    1978-01-01

    The successful operation of the superconducting power transmission line requires the simultaneous development of a cryogenic refrigeration system and cryogenic enclosure in addition to the obvious requirement of a satisfactory cable and its integration into an external power transmission system. The requirements for the cryogenic system originate with the temperature requirements of the cable which are in turn dictated by the superconductor properties. In addition to allowable heat leaks and thermal expansion questions, the cryogenic engineer must also address the problems of electrical and thermal transients, system cooldown, and nonsteady state operation.

  12. Microminiature Refrigeration

    Science.gov (United States)

    Little, W. A.

    2008-03-01

    The dramatic growth of industrial cryogenics in the past century has overshadowed the need for cryogenics on a smaller scale. Today, small scale, MEMS or microminiature refrigerators constitute a small part of the field, but one with a unique role to play, often in instrumentation. Key attributes of these coolers have proved to be their small size, low noise, fast response, and low cost. The small size has enabled the integration of the instrument and cooler. The fast response and low noise have made possible instruments of unique capabilities. Opportunities exist for the seamless integration of cryogenics in other products, but to succeed here, companies need strength in both cryogenics and a broad range of other disciplines, including materials science, electronics, and software. To offset economies of scale, new fabrication technologies have had to be created, and others are needed. Some key elements remain to be developed before more widespread use of this technology will be seen. Better miniature heat exchangers and regenerators are needed. Development of miniature compressors to power the coolers could herald a new world of cooled devices analogous to the revolution created by fractional horsepower electric motors in the past fifty years. Opportunities abound!

  13. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    Science.gov (United States)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-01

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  14. Large Cryogenics Systems at 1.8 K

    CERN Document Server

    Tavian, L

    2000-01-01

    Cryogenics is now widely present in large accelerator projects using applied superconductivity. Economical considerations permanently require an increase of the performance of superconducting devices. One way to do this consists to lower their operating temperature and to cool them with superfluid helium. For this purpose, large cryogenic systems at 1.8 K producing refrigeration capacity in the kW range have to be developed and implemented. These cryogenic systems require large pumping capacity at very low pressure based on integral cold compression or mixed cold-warm compression. This paper describes and compares the different cooling methods with saturated or pressurised superfluid helium, gives the present status of the available process machinery with their practical performance, and reviews the different thermodynamical cycles for producing refrigeration below 2 K, with emphasis on their operational compliance.

  15. Fundamentals of cryogenic engineering

    CERN Document Server

    Mukhopadhyay, Mamata

    2014-01-01

    The author, with her vast and varied experience in teaching and allied fields, clearly enunciates the behaviour and various properties of common cryogenic fluids, methods of liquefaction, and separation and applications of cryogens with thermodynamic analysis for process selection. This profusely illustrated study with clear-cut diagrams and process charts, should serve not only as a textbook for students but also as an excellent reference for researchers and practising engineers on design of cryogenic refrigeration, and liquefaction and separation process plants for various applications.

  16. Commissioning the Cryogenic System of the First LHC Sector

    CERN Document Server

    Millet, F; Ferlin, G; Perin, A; Rabehl, R; Riddone, G; Ronayette, L; Serio, L; Soubiran, M; Tavian, L

    2008-01-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4  W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioning is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the crit...

  17. Greenhouse Gas Reporting Requirements Related to Stationary Refrigeration and Air Conditioning

    Science.gov (United States)

    Provides links to information about parts of the 2009 Mandatory Reporting of Greenhouse Gases Rule that are relevant to owners and importers of stationary refrigeration and air-conditioning equipment.

  18. Status of the ESS cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Weisend II, J. G.; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L. [European Spallation Source ESS AB, SE-22100 Lund (Sweden)

    2014-01-29

    The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

  19. Two isostructural 3D lanthanide coordination networks (Ln = Gd(3+), Dy(3+)) with squashed cuboid-type nanoscopic cages showing significant cryogenic magnetic refrigeration and slow magnetic relaxation.

    Science.gov (United States)

    Biswas, Soumava; Jena, Himanshu Sekhar; Adhikary, Amit; Konar, Sanjit

    2014-04-21

    Two isostructural lanthanide-based 3D coordination networks [Ln = Gd(3+) (1), Dy(3+)(2)] with densely packed distorted cuboid nanoscopic cages are reported for the first time. Magnetic characterization reveals that complex 1 shows a significant cryogenic magnetocaloric effect (-ΔSm = 44 J kg(-1) K(-1)), whereas 2 shows slow relaxation of magnetization.

  20. Air Liquides Contribution to the CERN Lhc Refrigeration System

    Science.gov (United States)

    Dauguet, P.; Gistau-Baguer, G. M.; Briend, P.; Hilbert, B.; Monneret, E.; Villard, J. C.; Marot, G.; Delcayre, F.; Mantileri, C.; Hamber, F.; Courty, J. C.; Hirel, P.; Cohu, A.; Moussavi, H.

    2008-03-01

    The Large Hadron Collider (LHC) is the largest particle accelerator in the world. It is a superconducting machine over 27 km in circumference. Its magnets and cavities require helium refrigeration and liquefaction over the temperature range of 1.8 K to 300 K. This is the largest cryogenic system in the world with respect to the needed cryogenic power: 144-kW equivalent power at 4.5 K. The LHC cryogenic system is composed of 8×18 kW at 4.5 K refrigerators, 8×2.4 kW at 1.8 K systems, 5 main valve boxes, more than 27 km of helium transfer lines and around 300 service modules connecting the transfer line to the magnet and cavity strings. More than half of these components have been designed, manufactured, installed and commissioned by Air Liquide. Due to the huge size of the project, the engineering, construction and commissioning of the equipment has lasted for 8 years, from the first order of equipment in 1998 to final commissioning in 2006. Specifications, architecture and the Air Liquide design of major components of the LHC Refrigeration System are presented in this paper.

  1. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  2. Cryogenic distribution system for the first cell

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D P; Schneider, W J

    1980-01-01

    The ISABELLE refrigeration system utilizes compressed liquid helium to supply refrigeration to nearly 1100 superconducting bending and focusing magnets. These magnets steer the proton orbits of the accelerator and are arranged into two interlocking rings. The cryogenic distribution system that is used to transmit the helium cooling from the central refrigerator to the superconducting magnets makes up a substantial portion (34%) of the total heat load that the refrigerator must be capable of supplying. This piping system has been designed to minimize the heat input into the refrigeration system. The design and test results of the distribution system in use on the ISABELLE prototype, the first cell are described.

  3. Cryogenic engineering fifty years of progress

    CERN Document Server

    Reed, Richard

    2007-01-01

    Cryogenic Engineering: Fifty Years of Progress is a benchmark reference work which chronicles the major developments in the field. Starting with an historical background dating to the 1850s, this book reviews the development of data resources now available for cryogenic fields and properties of materials. The advances in cryogenic fundamentals are covered by reviews of cryogenic principles, cryogenic insulation, low-loss storage systems, modern liquefaction processes, helium cryogenics and low-temperature thermometry. Several well-established applications resulting from cryogenic advances include aerospace cryocoolers and refrigerators, use of LTS and HTS systems in electrical applications, and recent changes in cryopreservation. Extensive references are provided for the readers interested in the details of these cryogenic engineering advances.

  4. Air-Liquide 1.8 K refrigeration units for CERN LHC project

    CERN Document Server

    Hilbert, B; Caillaud, A

    2002-01-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K, these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN- preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given. (5 refs).

  5. Air liquide 1.8 K refrigeration units for CERN LHC project

    Science.gov (United States)

    Hilbert, Benoît; Gistau-Baguer, Guy M.; Caillaud, Aurélie

    2002-05-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K [1, 2]. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K [3], these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN-preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given.

  6. Conceptual design of the JT-60SA cryogenic system

    Science.gov (United States)

    Lamaison, V.; Beauvisage, J.; Fejoz, P.; Girard, S.; Gonvalves, R.; Gondé, R.; Heloin, V.; Michel, F.; Hoa, C.; Kamiya, K.; Roussel, P.; Vallet, J.-C.; Wanner, M.; Yoshida, K.

    2014-01-01

    The superconducting tokamak JT-60 Super Advanced (JT-60SA) is part of the Broader Approach Programme agreed between Europe and Japan. Among other in kind contributions, CEA is in charge of supplying the Cryogenic System which includes a Warm Compression Station, the Refrigerator Cold Box, the Auxiliary Cold Box, a compressed air station and the vacuum systems. The cryogenic system requires a refrigeration capacity of about 8 kW equivalent at 4.5 K. It will supply cryopump panels at 3.7 K, superconducting magnets and cold structures at 4.4 K, HTS current leads at 50 K, and thermal shields between 80 K and 100 K. The contract for design, manufacture, installation and commissioning was signed between CEA and Air Liquide Advanced Technologies (AL-AT) in November 2012. The Cryogenic System shall be operational in 2016. The paper presents the main technical requirements and the limit of supply, the description of the process proposed by AL-AT, the main components, the preliminary layout and the interfaces at the JT-60SA Naka site.

  7. The cryogenics design of the SuperCDMS SNOLAB experiment

    Science.gov (United States)

    Hollister, M. I.; Bauer, D. A.; Dhuley, R. C.; Lukens, P.; Martin, L. D.; Ruschman, M. K.; Schmitt, R. L.; Tatkowski, G. L.

    2017-12-01

    The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is a direct detection dark matter experiment intended for deployment to the SNOLAB underground facility in Ontario, Canada. With a payload of up to 186 germanium and silicon crystal detectors operating below 15 mK, the cryogenic architecture of the experiment is complex. Further, the requirement that the cryostat presents a low radioactive background to the detectors limits the materials and techniques available for construction, and heavily influences the design of the cryogenics system. The resulting thermal architecture is a closed cycle (no liquid cryogen) system, with stages at 50 and 4 K cooled with gas and fluid circulation systems and stages at 1 K, 250 mK and 15 mK cooled by the lower temperature stages of a large, cryogen-free dilution refrigerator. This paper describes the thermal design of the experiment, including details of the cooling systems, mechanical designs and expected performance of the system under operational conditions.

  8. Flammable refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Gerwen, R.J.M. van; Verwoerd, M.; Oostendorp, P.A. [Netherlands Organization for Applied Scientific Research TNO, Apeldoorn (Netherlands). Dept. of Refrigeration and Heat Pump Technology

    1999-07-01

    Hydrocarbons are promising alternatives for CFC, HCFC and HFC refrigerants. Due to their flammable nature, safety aspects have to be considered carefully. The world-wide situation concerning acceptability and practical application of flammable refrigerants is becoming more and more complex and confusing. Quantification of the risks of using flammable refrigerants in specific applications is the only way to make the situation clear and to discuss this topic on the basis of facts and figures. Several Quantitative Risk Assessments (QRA) have been carried out by TNO, resulting in risk figures to be compared with generally accepted risk criteria. In addition, risk reducing measures may be evaluated by using the same kind of QRA's. The example QRA's carried out for the cooling system of a bulk milk tank and for a residential heat pump, show acceptable risk levels, as long as the proper safety measures are applied. Other QRA's for several applications (domestic refrigerators, air dehumidifiers, automotive air-conditioning etc.) containing up to a few kilograms of hydrocarbon refrigerant confirm these results. Several national, European and international (draft) standards and guidelines are available, almost always being inconsistent or conflicting. Most of them are based on refrigeration expertise and experience, and not on a quantification of the risks. A Working Group of CEN/TC 182 currently identifies and quantifies the risks of flammable refrigerants, creating a solid basis for a revision of the European safety standard for refrigerating systems and heat pumps. (orig.)

  9. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  10. Nanocoatings for Wicking of Low-Viscosity Cryogens Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances continue to be made in areas of novel materials and mechanical refrigeration equipment for the thermal management of cryogens in applications from space...

  11. Note: Cryogenic heat switch with stepper motor actuator.

    Science.gov (United States)

    Melcher, B S; Timbie, P T

    2015-12-01

    A mechanical cryogenic heat switch has been developed using a commercially available stepper motor and control electronics. The motor requires 4 leads, each carrying a maximum, pulsed current of 0.5 A. With slight modifications of the stepper motor, the switch functions reliably in vacuum at temperatures between 300 K and 4 K. The switch generates a clamping force of 262 N at room temperature. At 4 K it achieves an "on state" thermal conductance of 5.04 mW/K and no conductance in the "off state." The switch is optimized for cycling an adiabatic demagnetization refrigerator.

  12. Note: Cryogenic heat switch with stepper motor actuator

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, B. S., E-mail: bsmelche@syr.edu; Timbie, P. T., E-mail: pttimbie@wisc.edu [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-12-15

    A mechanical cryogenic heat switch has been developed using a commercially available stepper motor and control electronics. The motor requires 4 leads, each carrying a maximum, pulsed current of 0.5 A. With slight modifications of the stepper motor, the switch functions reliably in vacuum at temperatures between 300 K and 4 K. The switch generates a clamping force of 262 N at room temperature. At 4 K it achieves an “on state” thermal conductance of 5.04 mW/K and no conductance in the “off state.” The switch is optimized for cycling an adiabatic demagnetization refrigerator.

  13. Operational Experience with a Cryogenic Axial-Centrifugal Compressor

    CERN Document Server

    Decker, L; Löhlein, K; Purtschert, W; Ziegler, B L; Lebrun, P; Tavian, L; Brunovsky, I; Tucek, L

    1998-01-01

    The Large Hadron Collider (LHC), presently under construction at CERN, requires large refrigeration capacity at 1.8 K. Compression of gaseous helium at cryogenic temperatures is therefore inevitable. Together with subcontractors, Linde Kryotechnik has developed a prototype machine. This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating at ambient temperature. Integrated in a test facility for superconducting magnets the machine has been commissioned without major problems and successfully gone through the acceptance test in autumn 1995. Subsequent steps were initiated to improve efficiency of this prototype. This paper describes operating experience gained so far and reports on measured performance prior to and after constructional modifications.

  14. Parametric optimum analysis of an irreversible Ericsson cryogenic ...

    Indian Academy of Sciences (India)

    the Ericsson cryogenic refrigeration cycle using a quantum gas as the working fluid cannot process the condition of perfect regeneration [18,23,24]. Therefore, it is one of the important tasks in the optimal performance analysis of the Ericsson cryo- genic refrigeration cycle to consider the influence of the quantum degeneracy ...

  15. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    CERN Document Server

    AUTHOR|(CDS)2067931

    2016-01-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices – magnets and high-frequency cavities – distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic flu...

  16. Economics of Large Helium Cryogenic Systems experience from Recent Projects at CERN

    CERN Document Server

    Claudet, S; Lebrun, P; Tavian, L; Wagner, U

    1999-01-01

    Large projects based on applied superconductivity, such as particle accelerators, tokamaks or SMES, require powerful and complex helium cryogenic systems, the cost of which represents a significant, if not dominant fraction of the total capital and operational expenditure. It is therefore important to establish guidelines and scaling laws for costing such systems, based on synthetic estimators of their size and performance. Although such data has already been published for many years, the experience recently gathered at CERN with the LEP and LHC projects, which have de facto turned the laboratory into a major world cryogenic center, can be exploited to update this information and broaden the range of application of the scaling laws. We report on the economics of 4.5 K and 1.8 K refrigeration, cryogen distribution and storage systems, and indicate paths towards their cost-to-performance optimisation.

  17. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    Science.gov (United States)

    Lebrun, Ph

    2017-02-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices - magnets and high-frequency cavities - distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.

  18. High Temperature Superconducting Space Experiment II (HTSSE II) cryogenic design

    Science.gov (United States)

    Kawecki, T. G.; Chappie, S. S.; Mahony, D. R.

    At 60 to 80 K large performance gains are possible from high temperature superconducting (HTS) microwave devices for communications applications. The High Temperature Superconducting Space Experiment II (HTSSE II) will demonstrate eight HTS experiments in space for up to 3 years of operation. HTSSE II is the first application of HTS technology to space. In addition to demonstrating HTS devices, an important secondary goal is to demonstrate the cryogenic technologies required for long life HTS space applications. HTSSE II utilizes a British Aerospace 80 K Stirling cycle cryocooler to refrigerate a central cryogenic bus of seven HTS experiments and has an additional stand-alone TRW HTS experiment cooled by a TRW Stirling cycle cryocooler. The HTSSE II flight unit has been assembled and has successfully passed vibration and thermal vacuum environmental tests. HTSSE II was developed on a fixed budget and a fast track schedule of 24 months and is due to launch in March 1997 on the ARGOS spacecraft. This paper presents the design and test results of the cryogenic subsystem, cryocooler integration and a cryogenic coaxial cable I/O assembly.

  19. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  20. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  1. 46 CFR 111.79-15 - Receptacles for refrigerated containers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Receptacles for refrigerated containers. 111.79-15... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Receptacles § 111.79-15 Receptacles for refrigerated containers. Receptacles for refrigerated containers must meet one of the following: (a) Each receptacle for refrigerated...

  2. 46 CFR 151.40-11 - Refrigeration systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  3. 46 CFR 98.25-35 - Refrigerated systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Refrigerated systems. 98.25-35 Section 98.25-35 Shipping... § 98.25-35 Refrigerated systems. (a) Where refrigerated systems are installed to maintain the... acting as a stand-by unit. (c) Refrigerated tanks shall be insulated in conformance with the requirements...

  4. Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander

    Science.gov (United States)

    Joshi, D. M.; Patel, H. K.; Shah, D. K.

    2015-04-01

    Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the

  5. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  6. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. From history to modern refrigeration cycles (1/5) Refrigerants, standard cryostats, cryogenic design (2/5) Heat transfer and insulation (3/5) Safety in cryoge...

  7. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, huge detectors and accelerators. With the termination of the LHC, CERN will in fact become the world’s largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. Monday 5.12.2005 Introduction: From History to Modern Refrigeration Cycles (Goran Perinic) Tuesday 6.12.2005 Refrigerants, Standard Cryostats, Cryogenic Des...

  8. Evolution of the Standard Helium Liquefier and Refrigerator Range Designed by Air Liquide DTA, France.

    Science.gov (United States)

    Caillaud, A.; Crispel, S.; Grabié, V.; Delcayre, F.; Aigouy, G.

    2008-03-01

    The standard helium liquefier and refrigerator range, called Helial and designed by Air Liquide DTA, has recently been upgraded in order to improve the efficiency of these machines. Indeed, over the multi-range markets requiring these cryogenic systems, (international laboratories, aerospace applications, synchrotrons, HTS applications…), the technological solution has to provide increasingly high performances. The new Helial Evolution range, equipped with very reliable DTA turbo-expanders, constitutes a highly efficient product for this wide application field. The optimizations, adaptations and results of the Helial Evolution series, doubling the performance for the same power consumption, will be presented.

  9. Refrigeration and Food Safety

    Science.gov (United States)

    ... Forms Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District ... 286) Actions ${title} Loading... Refrigeration and Food Safety History of Refrigeration Importance of Refrigeration Types of Bacteria ...

  10. Design of a Dry Dilution Refrigerator for MMC Gamma Detector Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Boyd, Stephen [Univ. of New Mexico, Albuquerque, NM (United States); Cantor, Robin

    2017-04-03

    The goal of this LCP is to develop an ultra-high resolution gamma detector based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material to replace current Au:Er sensors. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers. MMC detectors require operating temperatures of ~15 mK and thus the use of a dilution refrigerator, and the desire for user-friendly operation without cryogenic liquids requires that this refrigerator use pulse-tube pre-cooling to ~4 K. For long-term reliability, we intend to re-design the heat switch that is needed to apply the magnetizing current to the Ag:Er sensor and that used to fail in earlier designs after months of operation. A cryogenic Compton veto will be installed to reduce the spectral background of the MMC, especially at low energies where ultra-high energy resolution is most important. The goals for FY16 were 1) to purchase a liquid-cryogen-free dilution refrigerator and adapt it for MMC operation, and 2) to fabricate Ag:Er-based MMC γ-detectors with improved performance and optimize their response. This report discusses the design of the instruments, and progress in MMC detector fabrication. Details of the MMC fabrication have been discussed in an April 2016 report to DOE.

  11. Validation and Performance of the LHC Cryogenic System through Commissioning of the First Sector

    CERN Document Server

    Serio, L; Casas-Cubillos, J; Chakravarty, A; Claudet, S; Gicquel, F; Gomes, P; Kumar, M; Kush, PK; Millet, F; Perin, A; Rabehl, R; Singh, MR; Soubiran, M; Tavian, L

    2008-01-01

    The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was established and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.

  12. Energy Efficiency of large Cryogenic Systems: the LHC Case and Beyond

    CERN Document Server

    Claudet, S; Ferlin, G; Lebrun, P; Tavian, L; Wagner, U

    2013-01-01

    Research infrastructures for high-energy and nuclear physics, nuclear fusion and production of high magnetic fields are increasingly based on applied superconductivity and associated cryogenics in their quest for scientific breakthroughs at affordable capital and operation costs, a condition for their acceptance and sustained funding by society. The thermodynamic penalty for operating at low temperature makes energy efficiency a key requirement for their large cryogenic systems, from conceptual design to procurement, construction and operation. Meeting this requirement takes a combined approach on several fronts in parallel: management of heat loads and sizing of cooling duties, distribution of cooling power matching the needs of the superconducting devices, efficient production of refrigeration, optimal control resting on precise instrumentation and diagnostics, as well as a targeted industrial procurement policy. The case of the Large Hadron Collider (LHC) at CERN is presented. Potential improvements for fu...

  13. Thermoacoustic refrigerator for space applications

    Science.gov (United States)

    Garrett, Steven L.; Adeff, Jay A.; Hofler, Thomas J.

    1993-10-01

    A new spacecraft cryocooler which uses resonant high-amplitude sound waves in inert gases to pump heat is described. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). A space-qualified thermoacoustic refrigerator was flown on the Space Shuttle Discovery (STS-42) in January, 1992. It was entirely autonomous, had no sliding seals, required no lubrication, used mostly low-tolerance machined parts, and contained no expensive components. Thermoacoustics is shown to be a competitive candidate for food refrigerator/freezers and commercial/residential air conditioners. The design and performance of the Space Thermo/Acoustic Refrigerator (STAR) is described.

  14. NASA Advanced Refrigerator/Freezer Technology Development Project Overview

    Science.gov (United States)

    Cairelli, J. E.

    1995-01-01

    NASA Lewis Research Center (LeRC) has recently initiated a three-year project to develop the advanced refrigerator/freezer (R/F) technologies needed to support future life and biomedical sciences space experiments. Refrigerator/freezer laboratory equipment, most of which needs to be developed, is enabling to about 75 percent of the planned space station life and biomedical science experiments. These experiments will require five different classes of equipment; three storage freezers operating at -20 C, -70 C and less than 183 C, a -70 C freeze-dryer, and a cryogenic (less than 183 C) quick/snap freezer. This project is in response to a survey of cooling system technologies, performed by a team of NASA scientists and engineers. The team found that the technologies, required for future R/F systems to support life and biomedical sciences spaceflight experiments, do not exist at an adequate state of development and concluded that a program to develop the advanced R/F technologies is needed. Limitations on spaceflight system size, mass, and power consumption present a significant challenge in developing these systems. This paper presents some background and a description of the Advanced R/F Technology Development Project, project approach and schedule, general description of the R/F systems, and a review of the major R/F equipment requirements.

  15. ENERGY STAR Certified Commercial Refrigerators and Freezers

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Commercial Refrigerators and Freezers that are effective as of October 1, 2014. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=commer_refrig.pr_crit_commercial_refrigerators

  16. Basics of Low-temperature Refrigeration

    CERN Document Server

    Alekseev, A.

    2014-07-17

    This chapter gives an overview of the principles of low temperature refrigeration and the thermodynamics behind it. Basic cryogenic processes - Joule-Thomoson process, Brayton process as well as Claude process - are described and compared. A typical helium laboratory refrigerator based on Claude process is used as a typical example of a low-temperature refrigeration system. A description of the hardware components for helium liquefaction is an important part of this paper, because the design of the main hardware components (compressors, turbines, heat exchangers, pumps, adsorbers, etc.) provides the input for cost calculation, as well as enables to estimate the reliability of the plant and the maintenance expenses. All these numbers are necessary to calculate the economics of a low temperature application.

  17. Refrigeration for a supraconducting 1000 MVA generator

    Energy Technology Data Exchange (ETDEWEB)

    Nienaber, U.; Stephan, A.; Weber, J.

    1985-01-01

    The author discusses the requirements made on the refrigerating system for high-capacity turbogenerators. He presents the block diagram of the refrigerating system, explains the associated tasks, demonstrates the selected process by means of the process flow diagram of the He refrigerator system, describes the major components like loop compressor with oil separator, gas and oil flow, cold box, expansion turbine and process control. (HAG).

  18. Simulator of Cryogenic process and Refrigeration, and its Control in scientific -nuclear facilities with EcosimPro; Simulador de procesos criogenicos y de refrigeracion y de su control en las grandes instalaciones cienfificas nucleares con Ecosimpro

    Energy Technology Data Exchange (ETDEWEB)

    Veleiro Blanco, A. M.

    2011-07-01

    The cryogenic plants and their control in Scientific-Nuclear Facilities is complicated by the large number of variables and the wide range of variation during operation. Initially the design and control of these systems in CERN was based on stationary calculations which non yielded the expected results. Due to its complexity, the dynamic simulation is the only way to get adequate results during operational transients.

  19. Surface-confined molecular coolers for cryogenics.

    Science.gov (United States)

    Lorusso, Giulia; Jenkins, Mark; González-Monje, Pablo; Arauzo, Ana; Sesé, Javier; Ruiz-Molina, Daniel; Roubeau, Olivier; Evangelisti, Marco

    2013-06-04

    An excellent molecule-based cryogenic magnetic refrigerant, gadolinium acetate tetrahydrate, is here used to decorate selected portions of silicon substrate. By quantitative magnetic force microscopy for a variable applied magnetic field near liquid-helium temperature, the molecules are demonstrated to hold their magnetic properties intact, and therefore their cooling functionality, after their deposition. These results represent a step forward towards the realization of a molecule-based micro-refrigerating device at very low temperatures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Stirling Refrigerator

    Science.gov (United States)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  1. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  2. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  3. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  4. High-Performance, Low Environmental Impact Refrigerants

    Science.gov (United States)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  5. Effects of Acoustic and Fluid Dynamic Interactions in Resonators: Applications in Thermoacoustic Refrigeration

    Science.gov (United States)

    Antao, Dion Savio

    Thermoacoustic refrigeration systems have gained increased importance in cryogenic cooling technologies and improvements are needed to increase the efficiency and effectiveness of the current cryogenic refrigeration devices. These improvements in performance require a re-examination of the fundamental acoustic and fluid dynamic interactions in the acoustic resonators that comprise a thermoacoustic refrigerator. A comprehensive research program of the pulse tube thermoacoustic refrigerator (PTR) and arbitrarily shaped, circular cross-section acoustic resonators was undertaken to develop robust computational models to design and predict the transport processes in these systems. This effort was divided into three main focus areas: (a) studying the acoustic and fluid dynamic interactions in consonant and dissonant acoustic resonators, (b) experimentally investigating thermoacoustic refrigeration systems attaining cryogenic levels and (c) computationally studying the transport processes and energy conversion through fluid-solid interactions in thermoacoustic pulse tube refrigeration devices. To investigate acoustic-fluid dynamic interactions in resonators, a high fidelity computational fluid dynamic model was developed and used to simulate the flow, pressure and temperature fields generated in consonant cylindrical and dissonant conical resonators. Excitation of the acoustic resonators produced high-amplitude standing waves in the conical resonator. The generated peak acoustic overpressures exceeded the initial undisturbed pressure by two to three times. The harmonic response in the conical resonator system was observed to be dependent on the piston amplitude. The resultant strong acoustic streaming structures in the cone resonator highlighted its potential over a cylindrical resonator as an efficient mixer. Two pulse tube cryogenic refrigeration (PTR) devices driven by a linear motor (a pressure wave generator) were designed, fabricated and tested. The characterization

  6. Baseline Design of the Cryogenic System for EURECA

    CERN Document Server

    Burghart, Gerhard

    2010-01-01

    Dark Matter appears to dominate the matter in the Universe. EURECA (EUropean Rare Event Calorimeter Array), a large European collaboration, was set up to discover and study directlyWeakly Interacting Massive Particles (WIMPs), which are the main candidates for non-baryonic Dark Matter. Therefore, a large mass of several tons, consisting of the detector and the support structure needs to be cooled by a dilution refrigerator to a temperature of 10 mK. The requirement for an ultra-low radioactivity prohibits the use of a heat exchanger made of sintered silver, which so far is the only material to achieve the required very high cooling power at very low temperature. Design studies of several critical components of the cryogenic system, such as the main shielding, the fast exchange of detector material and the proximity cryogenics, have been accomplished and the most suitable solutions were determined to meet the scientific requirements. For a reliable prediction of the required cooling power of the large detector...

  7. Cryogenic MEMS Technology for Sensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of cryogenic microwave components, such as focal plane polarization modulators, first requires an RF MEMS switching technology that operates...

  8. High Reliability Cryogenic Piezoelectric Valve Actuator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  9. Simulation of absorption refrigeration system for automobile application

    Directory of Open Access Journals (Sweden)

    Ramanathan Anand

    2008-01-01

    Full Text Available An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixture for its favorable thermodynamic and transport properties compared to the conventional refrigerants utilized in vapor compression refrigeration applications. The pump power required for the proposed vapor absorption refrigeration system was found lesser than the power required to operate the compressor used in the conventional vapor compression refrigeration system. A possible arrangement of the absorption system for automobile application is proposed.

  10. ENERGY STAR Certified Commercial Refrigerators and Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Commercial Refrigerators and Freezers that are...

  11. ENERGY STAR Laboratory Grade Refrigerators and Freezers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1 ENERGY STAR Program Requirements for Laboratory Grade Refrigerators and Freezers that...

  12. Piezoelectric driven thermo-acoustic refrigerator

    Science.gov (United States)

    Chinn, D. G.; Nouh, M.; Aldraihem, O.; Baz, A.

    2011-03-01

    Thermoacoustic refrigeration is an emerging refrigeration technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants. This technology uses acoustic waves to pump heat across a temperature gradient. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this paper, the design, construction, operation, and modeling of a piezoelectric-driven thermoacoustic refrigerator are detailed. This refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3 W of heat across an 18 degree C temperature difference with an input power of 7.6 W. The performance characteristics of this class of thermoacoustic-piezoelectric refrigerator are modeled using DeltaEC software and the predictions are validated experimentally. The obtained results confirm the validity of the developed model. Furthermore, the potential of piezoelectric actuation as effective means for driving thermoacoustic refrigerators is demonstrated as compared to the conventional electromagnetic loudspeakers which are heavy and require high actuation energy. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of other piezoelectric driven thermoacoustic refrigerator configurations.

  13. Status of the SPIRAL 2 LINAC cryogenic system

    Science.gov (United States)

    Ghribi, A.; Bernaudin, P.-E.; Vassal, A.; Bonne, F.

    2017-07-01

    SPIRAL 2 is a state of the art superconducting linear accelerator expected to deliver some of the highest intensity rare isotope beams on earth. The project has been in development/design, fabrication and installation for over 10 years and is now reaching its final critical stages before commissioning. One of its most critical parts is a cryoplant and a cryodistribution system that feed the heart of the accelerator with the necessary refrigeration power and allow the required pressure and thermal regulation to be achieved and maintained in a reliable way. This paper summarises the latest updates of the cryogenic system before the first cool down trials. It also plots the strategies and R&D efforts undertaken to tackle some of the challenges that SPIRAL 2 is expected to face.

  14. Refrigerating machine oil

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, K.

    1981-03-17

    Refrigerating machine oil to be filled in a sealed motorcompressor unit constituting a refrigerating cycle system including an electric refrigerator, an electric cold-storage box, a small-scaled electric refrigerating show-case, a small-scaled electric cold-storage show-case and the like, is arranged to have a specifically enhanced property, in which smaller initial driving power consumption of the sealed motor-compressor and easier supply of the predetermined amount of the refrigerating machine oil to the refrigerating system are both guaranteed even in a rather low environmental temperature condition.

  15. 49 CFR 179.102-17 - Hydrogen chloride, refrigerated liquid.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen chloride, refrigerated liquid. 179.102-17...) § 179.102-17 Hydrogen chloride, refrigerated liquid. Each tank car used to transport hydrogen chloride, refrigerated liquid must comply with the following special requirements: (a) The tank car must comply with...

  16. 49 CFR 179.102-1 - Carbon dioxide, refrigerated liquid.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Carbon dioxide, refrigerated liquid. 179.102-1...) § 179.102-1 Carbon dioxide, refrigerated liquid. (a) Tank cars used to transport carbon dioxide, refrigerated liquid must comply with the following special requirements: (1) All plates for tank, manway nozzle...

  17. Features of applying systems approach for evaluating the reliability of cryogenic systems for special purposes

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2016-01-01

    Full Text Available Summary. The analysis of cryogenic installations confirms objective regularity of increase in amount of the tasks solved by systems of a special purpose. One of the most important directions of development of a cryogenics is creation of installations for air separation product receipt, namely oxygen and nitrogen. Modern aviation complexes require use of these gases in large numbers as in gaseous, and in the liquid state. The onboard gas systems applied in aircraft of the Russian Federation are subdivided on: oxygen system; air (nitric system; system of neutral gas; fire-proof system. Technological schemes ADI are in many respects determined by pressure of compressed air or, in a general sense, a refrigerating cycle. For the majority ADI a working body of a refrigerating cycle the divided air is, that is technological and refrigerating cycles in installation are integrated. By this principle differentiate installations: low pressure; average and high pressure; with detander; with preliminary chilling. There is also insignificant number of the ADI types in which refrigerating and technological cycles are separated. These are installations with external chilling. For the solution of tasks of control of technical condition of the BRV hardware in real time and estimates of indicators of reliability it is offered to use multi-agent technologies. Multi-agent approach is the most acceptable for creation of SPPR for reliability assessment as allows: to redistribute processing of information on elements of system that leads to increase in overall performance; to solve a problem of accumulating, storage and recycling of knowledge that will allow to increase significantly efficiency of the solution of tasks of an assessment of reliability; to considerably reduce intervention of the person in process of functioning of system that will save time of the person of the making decision (PMD and will not demand from it special skills of work with it.

  18. Status of the Cryogenic System Commissioning at SNS

    CERN Document Server

    Casagrande, Fabio; Campisi, Isidoro E; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Gurd, Pamela; Hatfield, Daniel; Howell, Matthew; Knudsen, Peter; Stout, Daniel; Strong, William

    2005-01-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

  19. Cryogen free cryostat for neutron scattering experiments

    Science.gov (United States)

    Kirichek, O.; Down, R. B. E.; Manuel, P.; Keeping, J.; Bowden, Z. A.

    2014-12-01

    Most very low temperature (below 1K) experiments at advanced neutron facilities are based on dilution and 3He refrigerator inserts used with Orange cryostats, or similar systems. However recent increases in the cost of liquid helium caused by global helium supply problems, has raised significant concern about the affordability of such cryostats. Here we present the design and test results of a cryogen free top-loading cryostat with a standard KelvinoxVT® dilution refrigerator insert which provides sample environment for neutron scattering experiments in the temperature range 35 mK - 300 K. The dilution refrigerator insert operates in a continuous regime. The cooling time of the insert is similar to one operated in the Orange cryostat. The main performance criteria such as base temperature, cooling power, and circulation rate are compatible with the technical specification of a standard dilution refrigerator. In fact the system offers operating parameters very similar to those of an Orange cryostat, but without the complication of cryogens. The first scientific results obtained in ultra-low temperature neutron scattering experiment with this system are also going to be discussed.

  20. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  1. Physics of cryogenics an ultralow temperature phenomenon

    CERN Document Server

    Zohuri, Bahman

    2018-01-01

    Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics.

  2. The detector calibration system for the CUORE cryogenic bolometer array

    Science.gov (United States)

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; Ejzak, Larissa; Lenz, Daniel; Lim, Kyungeun E.; Heeger, Karsten M.; Maruyama, Reina H.; Nucciotti, Angelo; Sangiorgio, Samuele; Wise, Thomas

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  3. The detector calibration system for the CUORE cryogenic bolometer array

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, Jeremy S., E-mail: jeremy.cushman@yale.edu [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Dally, Adam [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Davis, Christopher J. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Ejzak, Larissa; Lenz, Daniel [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lim, Kyungeun E. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Heeger, Karsten M., E-mail: karsten.heeger@yale.edu [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Maruyama, Reina H. [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Nucciotti, Angelo [Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126 (Italy); INFN – Sezione di Milano Bicocca, Milano I-20126 (Italy); Sangiorgio, Samuele [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Wise, Thomas [Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520 (United States); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of {sup 130}Te and other rare events. The CUORE detector consists of 988 TeO{sub 2} bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  4. Cryogenic Adsorption of Nitrogen and Carbon Dioxide in Activated Carbon

    Science.gov (United States)

    Shen, Fuzhi; Liu, Huiming; Xu, Dong; Zhang, Hengcheng; Lu, Junfeng; Li, Laifeng

    2017-09-01

    Activated carbon have been used for a long time at low temperature for cryogenic applications. The knowledge of adsorption characteristics of activated carbon at cryogenic temperature is essential for some specific applications. However, such experimental data are very scare in the literature. In order to measure the adsorption characteristics of activated carbon under variable cryogenic temperatures, an adsorption measurement device was presented. The experiment system is based on the commercially available PCT-pro adsorption analyzer coupled to a two-stage Gifford McMahon refrigerator, which allows the sample to be cooled to 4.2K. Cryogenic environment can be maintained steadily without the cryogenic liquid through the cryocooler and temperature can be controlled precisely between 5K and 300K by the temperature controller. Adsorption measurements were performed in activated carbon for carbon dioxide and nitrogen and the adsorption isotherm were obtained.

  5. Cryogenic Selective Surfaces

    Science.gov (United States)

    Youngquist, Robert; Nurge, Mark; Gibson, Tracy; Johnson, Wesley

    2017-01-01

    The NASA Innovative Advanced Concept (NIAC) program has been funding work at KSC on a novel coating that should allow cryogenic materials to be stored in deep space. The NIAC Symposium will be the last week of September and it is a requirement that the funded material be presented both orally and at a poster session. This DAA submission is requesting approval to go public with both the presentation and the poster.

  6. First Assessment of Reliability Data for the LHC Accelerator and Detector Cryogenic System Components

    CERN Document Server

    Perinic, G; Alonso-Canella, I; Balle, C; Barth, K; Bel, J F; Benda, V; Bremer, J; Brodzinski, K; Casas-Cubillos, J; Cuccuru, G; Cugnet, M; Delikaris, D; Delruelle, N; Dufay-Chanat, L; Fabre, C; Ferlin, G; Fluder, C; Gavard, E; Girardot, R; Haug, F; Herblin, L; Junker, S; Klabi , T; Knoops, S; Lamboy, J P; Legrand, D; Metselaar, J; Park, A; Perin, A; Pezzetti, M; Penacoba-Fernandez, G; Pirotte, O; Rogez, E; Suraci, A; Stewart, L; Tavian, L J; Tovar-Gonzalez, A; Van Weelderen, R; Vauthier, N; Vullierme, B; Wagner, U

    2012-01-01

    The Large Hadron Collider (LHC) cryogenic system comprises eight independent refrigeration and distribution systems that supply the eight 3.3 km long accelerator sectors with cryogenic refrigeration power as well as four refrigeration systems for the needs of the detectors ATLAS and CMS. In order to ensure the highest possible reliability of the installations, it is important to apply a reliability centred approach for the maintenance. Even though large scale cryogenic refrigeration exists since the mid 20th century, very little third party reliability data is available today. CERN has started to collect data with its computer aided maintenance management system (CAMMS) in 2009, when the accelerator has gone into normal operation. This paper presents the reliability observations from the operation and the maintenance side, as well as statistical data collected by the means of the CAMMS system.

  7. Commercial refrigeration: bet on green fluids; Refrigeration commerciale: pari sur les fluides verts

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2004-08-01

    Thanks to the collaboration between the user (Carrefour supermarkets), the fitter (CEF Nord) and the material manufacturer (Heatcraft Refrigeration), the new Carrefour supermarket of Collegien (Paris region, France) uses CO{sub 2} (R-744) as refrigerating fluid for the negative temperature refrigeration and ice slurries production units for the positive temperature cooling of 6100 m{sup 2} of fresh products. The new installation requires less refrigerating fluid and less maintenance than a classical direct expansion system. The ice slurry system allows to save 15 to 30% of electric power. Short paper. (J.S.)

  8. Extreme solid state refrigeration using nanostructured Bi-Te alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Lima Sharma, Ana L. (San Jose State University, San Jose, CA); Spataru, Dan Catalin; Medlin, Douglas L.; Sharma, Peter Anand; Morales, Alfredo Martin

    2009-09-01

    Materials are desperately needed for cryogenic solid state refrigeration. We have investigated nanostructured Bi-Te alloys for their potential use in Ettingshausen refrigeration to liquid nitrogen temperatures. These alloys form alternating layers of Bi{sub 2} and Bi{sub 2}Te{sub 3} blocks in equilibrium. The composition Bi{sub 4}Te{sub 3} was identified as having the greatest potential for having a high Ettingshausen figure of merit. Both single crystal and polycrystalline forms of this material were synthesized. After evaluating the Ettingshausen figure of merit for a large, high quality polycrystal, we simulated the limits of practical refrigeration in this material from 200 to 77 K using a simple device model. The band structure was also computed and compared to experiments. We discuss the crystal growth, transport physics, and practical refrigeration potential of Bi-Te alloys.

  9. New Regenerative Cycle for Vapor Compression Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Bergander

    2005-08-29

    second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

  10. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    CERN Document Server

    Parente, C; Munday, A; Wiggins, P

    2006-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

  11. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    National Research Council Canada - National Science Library

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    2012-01-01

    .... These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption...

  12. Refrigerants for Vapour Compression Refrigeration Systems

    Indian Academy of Sciences (India)

    ; global warming; CFC; HCFC; HFC; HFO; zeotropic mixture; natural fluids. Author Affiliations. G Venkatarathnam1 S Srinivasa Murthy1. Refrigeration and Airconditioning Laboratory, Department of Mechanical Engineering, Indian Institute of ...

  13. Shuttle Kit Freezer Refrigeration Unit Conceptual Design

    Science.gov (United States)

    Copeland, R. J.

    1975-01-01

    The refrigerated food/medical sample storage compartment as a kit to the space shuttle orbiter is examined. To maintain the -10 F in the freezer kit, an active refrigeration unit is required, and an air cooled Stirling Cycle refrigerator was selected. The freezer kit contains two subsystems, the refrigeration unit, and the storage volume. The freezer must provide two basic capabilities in one unit. One requirement is to store 215 lbs of food which is consumed in a 30-day period by 7 people. The other requirement is to store 128.3 lbs of medical samples consisting of both urine and feces. The unit can be mounted on the lower deck of the shuttle cabin, and will occupy four standard payload module compartments on the forward bulkhead. The freezer contains four storage compartments.

  14. CRYOGENIC DEWAR

    Science.gov (United States)

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  15. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, Gordon B.; Langton, Brian J.; /SLAC; Little, William A.; /MMR-Technologies, Mountain View, CA; Powers, Jacob R; Schindler, Rafe H.; /SLAC; Spektor, Sam; /MMR-Technologies, Mountain View, CA

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results from a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)

  16. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...... operated at 77 K is designed and implemented for C imaging at 3 T (32.13 MHz), using off-the-shelves components. The design is based on a high electron mobility transistor (ATF54143) in a common source configuration. Required auxiliary circuitry for optimal cryogenic preamplifier performance is also...... presented consisting of a voltage regulator (noise free supply voltage and optimal power consumption), switch, and trigger (for active detuning during transmission to protect the preamplifier). A gain of 18 dB with a noise temperature of 13.7 K is achieved. Performing imaging experiments in a 3 T scanner...

  17. Cryogenic fluid management program flight concept definition

    Science.gov (United States)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  18. A Ross-Stirling spacecraft refrigerator

    Science.gov (United States)

    Walker, G.; Scott, M.; Zylstra, S.

    A spacecraft refrigerator was investigated capable of providing cooling for storage of food and biological samples in the temperature range 0-20 F with cooling capacity in the range of 1 to 2 kW, operating for long periods with great reliability. The system operated on the Stirling refrigeration cycle using the spacecraft life-support gases as the working fluid. A prototype spacecraft Stirling refrigerator was designed, built, and tested with air as the working fluid. The system performance was satisfactory, meeting the requirements specified above. Potential applications for the prototype unit are mentioned.

  19. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M. [Calm (James M.), Great Falls, VA (United States)

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  20. ARTI refrigerant database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  1. Beyond the Large Hadron Collider: a first look at cryogenics for CERN future circular colliders

    CERN Document Server

    Lebrun, Ph

    2015-01-01

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities req...

  2. Use of PROFIBUS for cryogenic instrumentation at XFEL

    Science.gov (United States)

    Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.

    2017-12-01

    The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.

  3. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case

  4. An Optimal Control Approach for an Overall Cryogenic Plant Under Pulsed Heat Loads

    CERN Document Server

    Gómez Palacin, Luis; Blanco Viñuela, Enrique; Maekawa, Ryuji; Chalifour, Michel

    2015-01-01

    This work deals with the optimal management of a cryogenic plant composed by parallel refrigeration plants, which provide supercritical helium to pulsed heat loads. First, a data reconciliation approach is proposed to estimate precisely the refrigerator variables necessary to deduce the efficiency of each refrigerator. Second, taking into account these efficiencies, an optimal operation of the system is proposed and studied. Finally, while minimizing the power consumption of the refrigerators, the control system maintains stable operation of the cryoplant under pulsed heat loads. The management of the refrigerators is carried out by an upper control layer, which balances the relative production of cooling power in each refrigerator. In addition, this upper control layer deals with the mitigation of malfunctions and faults in the system. The proposed approach has been validated using a dynamic model of the cryoplant developed with EcosimPro software, based on first principles (mass and energy balances) and the...

  5. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  6. Cryogenic Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The storage of cryogenic propellants is challenging because heat leaks into the cryogenic storage tanks no matter how good the insulation, resulting in a necessity...

  7. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  8. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  9. Refrigerants and environment

    Science.gov (United States)

    Tsvetkov, O. B.; Laptev, Yu A.

    2017-11-01

    The refrigeration and air-conditioning industries are important sectors of the economy and represents about 15 % of global electricity consumptions. The chlorofluorocarbons also called CFCs are a class of refrigerants containing the halogens chlorine and/or fluorine on a carbon skeleton. Because of their environmental impact the Montreal Protocol was negotiated in 1987 to limit the production of certain CFCs and hydrochlirofluorocarbons (HCFCs) in developed and developing countries. The halogenated refrigerants are depleting the ozone layer also major contribution to the greenhouse effect. To be acceptable as a refrigerant a fluid must satisfy a variety of thermodynamic criteria and should be environment friendly with zero Ozone Depletion Potential and low Global Warming Potential. The perspective of a future phase down of HFCs is considered in this report taking into account a strategy for the phase out of HCFCs and perspective of choosing of various refrigerant followed by safety issues.

  10. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1992-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R- 125, R-134a, R-141b, R142b, R-143a, R-152a, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses polyalkylene glycol (PAG), ester, and other lubricants. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits.

  11. Helium Inventory Management For LHC Cryogenics

    CERN Document Server

    Pyarali, Maisam

    2017-01-01

    The LHC is a 26.7 km circumference ring lined with superconducting magnets that operate at 1.9 K. These magnets are used to control the trajectory of beams of protons traveling in opposite directions and collide them at various experimental sites across the LHC where their debris is analyzed. The focus of this paper is the cryogenic system that allows the magnets to operate in their superconducting states. It aims to highlight the operating principles of helium refrigeration and liquefaction, with and without nitrogen pre-cooling; discuss the various refrigerators and liquefiers used at CERN for both LHC and Non-LHC applications, with their liquefaction capacities and purposes; and finally to deliberate the management of the LHC inventory and how it contributes to the strategic decision CERN makes regarding the inventory management during the Year-End Technical Stop (YETS), Extended Year-End Technical Stop (EYETS) and long shutdowns.

  12. Cryogenic system for a superconducting spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Porter, J.

    1983-08-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4K heat load of 150 watts; the LN/sub 2/ circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations.

  13. Cryogenic System for a Superconducting Spectrometer

    Science.gov (United States)

    Porter, John

    1983-08-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4K heat load of 150 watts; the LN2 circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations.

  14. Cryogenic system for a superconducting spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN/sub 2/ circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations.

  15. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  16. New Copper-based Heat Exchangers for Alternative Refrigerants

    OpenAIRE

    Shabtay, Yoram; Black, John; Kraft, Frank

    2014-01-01

    The ongoing global effort to replace current refrigerants with zero Ozone Depletion Potential (ODP) and virtually zero Global Warming Potential (GWP) refrigerants has important implications for heat exchangers, air conditioning system design, and the materials choices in these designs. Natural refrigerants with higher flammability, CO2, new HFC blends, and new HFO’s each place different requirements on the heat exchanger design, whether it be for higher equipment efficiency, to reduce refrige...

  17. Cryogenics maintenance strategy

    Science.gov (United States)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  18. Cryogenic System for the Cryomodule Test Stand at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    White, Michael J. [Fermilab; Hansen, Benjamin [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-10-09

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description of the heat load measurement plan.

  19. Thermal Design of a Protomodel Space Infrared Cryogenic System

    Directory of Open Access Journals (Sweden)

    Hyung Suk Yang

    2006-06-01

    Full Text Available A Protomodel Space Infrared Cryogenic System (PSICS cooled by a stirling cryocooler has been designed. The PSICS has an IR sensor inside the cold box which is cooled by a stirling cryocooler with refrigeration capacity of 500mW at 80K in a vacuum vessel. It is important to minimize the heat load so that the background thermal noise can be reduced. In order to design the cryogenic system with low heat load and to reduce the remained heat load, we have performed numerical analyses. In this paper, we present the design factors and the results obtained by the thermal analysis of the PSICS.

  20. Beam Effects on the Cryogenic System of LEP2

    CERN Document Server

    Gayet, P; Winkler, G

    1998-01-01

    The LEP collider was operated during 1996 for the first time with superconducting cavities at the four interaction points. During operation for physics it was observed that the dissipated heat in the cavities is not only a function of the acceleration gradient, but depends also on beam characteristics such as intensity, bunch length and beam current. These beam effects had not been foreseen in the original heat budget of the LEP cryogenic system. The observations indicating the beam effect and its origin are presented. The available capacity of the refrigerators demonstrates that cryogenics might become a limiting factor for the performance of the LEP collider.

  1. Refrigerants for Vapour Compression Refrigeration Systems

    Indian Academy of Sciences (India)

    With the mandate of Montreal Protocol banning ozone de- pleting substances, and Kyoto Protocol later on curtailing the use of substances which contribute to global warming, con- ventional refrigerants are to be replaced by environment- friendly working fluids. Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons ...

  2. Cryogenic system characteristics for the transitional heat disturbance of the CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Katsumi; Hamada, Kazuya; Matsui, Kunihiro; Hara, Eiji; Kato, Takashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-06-01

    The CS model coil cryogenic system had experienced many transient disturbances because of AC losses and quenches during the coil experiment. The cryogenic system adopted a forced-flow circulating loop to refrigerate the coil system by supercritical helium, and it was observed how the disturbances affected the refrigeration loop. When the disturbance occurred, the loop pressure suddenly increased such as an adiabatic-compression phenomenon in an incompressible fluid loop. Thermal disturbance, however, generated and grew in the coil-cooling channels and moved with the coolant velocity. Through the observation of disturbance, a cryogenic-system operation method that could control the influence because of disturbance was developed. The method functioned by 25 times of the transient disturbance and did not cause the cryogenic system to stop. (author)

  3. Pulse Tube Refrigerator

    Science.gov (United States)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  4. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  5. The toxicity of refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1996-07-01

    This paper presents toxicity data and exposure limits for refrigerants. The data address both acute (short-term, single exposure) and chronic (long-term, repeated exposure) effects, with emphasis on the former. The refrigerants covered include those in common use for the last decade, those used as components in alternatives, and selected candidates for future replacements. The paper also reviews the toxicity indicators used in both safety standards and building, mechanical, and fire codes. It then outlines current classification methods for refrigerant safety and relates them to standard and code usage.

  6. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Science.gov (United States)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  7. Refrigerant saving automotive air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Muso, M.; Kitahara, Y. (Hitachi, Ltd., Tokyo (Japan))

    1990-06-01

    Based on the phaseout schedule of harmful fleons controlled in the Montreal Protocl, as the first step to alter them into harmless ones, the reduction of fleon consumption was attempted for automotive air-conditioning systems. As saving measures against refrigerant, the following methods were pursued: (1) the volume reduction of air conditioner elements, such as the use of thin pipes, (2) the improvement of liquid and gas secession to reduce a refrigerant weight in a receiver-drier, (3) the reduction of refrigerant leakage from flexible hoses or compressor seals, and (4) more precise determination of a suitable refrigerant weight, such as the adoption of narrower weight tolerance. The low-permeable flexible hose with an inner thin nylon tube was developed, and a suitable refrigerant weight was determined from a register discharge air temperature, and furthermore, the tolerance was narrowed from {plus minus} 0.1kg to {plus minus} 0.05kg. As a result, required refrigerant was successfully reduced by 31-35%. 2 refs., 6 figs., 2 tabs.

  8. Development of a high efficiency, automatic defrosting refrigerator-freezer

    Science.gov (United States)

    Topping, R. F.; Lee, W. D.

    The development of an energy efficient refrigerator freezer prototype to accelerate the commercialization of residential, high efficiency refrigerator freezers is described. A computer model developed to simulate the cabinet and refrigeration unit performance was used to evaluate alternative designs and optimize the cabinet insulation as well as the refrigeration component integration. Placement of polyurethane foam insulation in the cabinet and thicker insulation in the doors were used to reduce the closed door heat load of the prototype. Modifications to the evaporator system provide automatic frost-free operation with a significantly reduced defrost energy requirement. Resulting higher moisture levels in the refrigerator compartment enhance fresh food storage. A dual control system, different from most models which use only one active control, provides precise temperature regulation in both the freezer and refrigerator compartments.

  9. Prediction of thermodynamic properties of refrigerants using data mining

    Energy Technology Data Exchange (ETDEWEB)

    Kuecueksille, Ecir Ugur, E-mail: ecir@tef.sdu.edu.t [Department of Mechanical Education, Technical Education Faculty, Sueleyman Demirel University, 32260 Isparta (Turkey); Selbas, Resat, E-mail: selbas@tef.sdu.edu.t [Department of Mechanical Education, Technical Education Faculty, Sueleyman Demirel University, 32260 Isparta (Turkey); Sencan, Arzu, E-mail: sencan@tef.sdu.edu.t [Department of Mechanical Education, Technical Education Faculty, Sueleyman Demirel University, 32260 Isparta (Turkey)

    2011-02-15

    The analysis of vapor compression refrigeration systems requires the availability of simple and efficient mathematical formulations for the determination of thermodynamic properties of refrigerants. The aim of this study is to determine thermodynamic properties as enthalpy, entropy and specific volume of alternative refrigerants using data mining method. Alternative refrigerants used in the study are R134a, R404a, R407c and R410a. The results obtained from data mining have been compared to actual data from the literature. The study shows that the data mining methodology is successfully applicable to determine enthalpy, entropy and specific volume values for any temperature and pressure of refrigerants. Therefore, computation time reduces and simulation of vapor compression refrigeration systems is fairly facilitated.

  10. Cool sound: the future of refrigeration? Thermodynamic and heat transfer issues in thermoacoustic refrigeration

    Science.gov (United States)

    Herman, C.; Travnicek, Z.

    2006-04-01

    During the past two decades the thermoacoustic refrigeration and prime mover cycles gained importance in a variety of refrigeration applications. Acoustic work, sound, can be used to generate temperature differences that allow the transport of heat from a low temperature reservoir to an ambient at higher temperature, thus forming a thermoacoustic refrigeration system. The thermoacoustic energy pumping cycle can also be reversed: temperature difference imposed along the stack plates can lead to sound generation. In this situation the thermoacoustic system operates as a prime mover. Sound generated by means of this thermoacoustic energy conversion process can be utilized to drive different types of refrigeration devices that require oscillatory flow for their operation, such as thermoacoustic refrigerators, pulse tubes and Stirling engines. In order for a thermoacoustic refrigeration or prime mover system as well as a thermoacoustic prime mover driving a non-thermoacoustic refrigeration system to be competitive on the current market, it has to be optimized in order to improve its overall performance. Optimization can involve improving the performance of the entire system as well as its components. The paper addresses some of the thermodynamic and heat transfer issues relevant in improving the performance of the thermoacoustic system, such as optimization for maximum COP, maximum cooling load and the role of the heat exchangers. Results obtained using the two optimization criteria are contrasted in the paper to illustrate the complexity of the optimization process.

  11. Quantum-circuit refrigerator

    Science.gov (United States)

    Tan, Kuan Yen; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Masuda, Shumpei; Möttönen, Mikko

    2017-05-01

    Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.

  12. Quantum-circuit refrigerator

    Science.gov (United States)

    Tan, Kuan Yen; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Masuda, Shumpei; Möttönen, Mikko

    2017-01-01

    Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed. PMID:28480900

  13. Public Refrigerated Warehouses

    Data.gov (United States)

    Department of Homeland Security — The International Association of Refrigerated Warehouses (IARW) came into existence in 1891 when a number of conventional warehousemen took on the demands of storing...

  14. Refrigeration oils for low GWP refrigerants in various applications

    Science.gov (United States)

    Saito, R.; Sundaresan, S. G.

    2017-08-01

    The practical use of the refrigeration systems is considered as a methods to suppress global warming. The replacement of a refrigerant with a new one that has lower global warming potential (GWP) has been underway for several years. For the application fields of refrigerators, domestic air conditioners, automotive air conditioners and hot water dispensers, the investigation has almost finished. It is still underway for the application fields of commercial air conditioners and chillers, refrigeration facilities for cold storage, etc. And now, the refrigeration system is being applied in various ways to decrease global warming above the generation of electric power with organic Rankine cycle, the binary electric generation with ground source heat pump, and so on. In these situations, various refrigerants are developed and several kinds of suitable refrigeration oils are selected. This paper presents the consideration of suitable refrigeration oil for the various low GWP refrigerants.

  15. Refrigerated display cabinets; Butikskyla

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, Per

    2000-07-01

    This report summarizes experience from SP research and assignments regarding refrigerated transport and storage of food, mainly in the retail sector. It presents the fundamentals of heat and mass transfer in display cabinets with special focus on indirect systems and secondary refrigerants. Moreover, the report includes a brief account of basic food hygiene and the related regulations. The material has been compiled for educational purposes in the Masters program at Chalmers Technical University.

  16. Refrigeration systems and applications

    CERN Document Server

    Dincer, Ibrahim

    2010-01-01

    Refrigeration Systems and Applications, 2nd edition offers a comprehensive treatise that addresses real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and the practical applications of refrigeration technology. New and unique analysis techniques (including exergy as a potential tool), models, correlations, procedures and applications are covered, and recent developments in the field are included - many of which are taken from the author's own research activities in this area. The book also includes so

  17. Cryogenics system: strategy to achieve nominal performance and reliable operation

    CERN Document Server

    Bremer, J; Casas, J; Claudet, S; Delikaris, D; Delruelle, N; Ferlin, G; Fluder, C; Perin, A; Perinic, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the overcapacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the "cannibalization" of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of ...

  18. Design, construction and start up by Air Liquide of two 18 kW at 45 K helium refrigerators for the new CERN accelerator (LHC)

    CERN Document Server

    Dauguet, P; Delcayre, F; Ghisolfi, A; Gistau-Baguer, Guy M; Guerin, C A; Hilbert, B; Marot, G; Monneret, E

    2004-01-01

    CERN in Switzerland is presently building a new particle accelerator labeled as the LHC. This 27 km accelerator will, for the first time at such a large scale, operate at cryogenic temperatures with superconducting magnets and radio-frequency cavities. For that purpose, Air Liquide has designed, constructed and started up two custom designed refrigerators. The cryogenic power of each of these refrigerators is equivalent to 18 kW at 4.5 K. In order to produce the cryogenic power requested by the LHC accelerator at the different temperature levels with a very high efficiency, a custom design thermodynamic cycle has been chosen. This cycle, the major components of the refrigerators and the results obtained during the reception tests of the refrigerators are presented in this paper.

  19. Design, Construction and Start Up by Air Liquide of Two 18 kW at 4.5 K Helium Refrigerators for the New CERN Accelerator : LHC

    Science.gov (United States)

    Dauguet, P.; Briend, P.; Delcayre, F.; Ghisolfi, A.; Gistau-Baguer, G. M.; Guerin, C.; Hilbert, B.; Marot, G.; Monneret, E.

    2004-06-01

    CERN in Switzerland is presently building a new particle accelerator labeled as the LHC. This 27 km accelerator will, for the first time at such a large scale, operate at cryogenic temperatures with superconducting magnets and radio-frequency cavities. For that purpose, Air Liquide has designed, constructed and started up two custom designed refrigerators. The cryogenic power of each of these refrigerators is equivalent to 18 kW at 4.5 K. In order to produce the cryogenic power requested by the LHC accelerator at the different temperature levels with a very high efficiency, a custom design thermodynamic cycle has been chosen. This cycle, the major components of the refrigerators and the results obtained during the reception tests of the refrigerators are presented in this paper.

  20. Refrigerated Warehouse Demand Response Strategy Guide

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Doug [VaCom Technologies, San Luis Obispo, CA (United States); Castillo, Rafael [VaCom Technologies, San Luis Obispo, CA (United States); Larson, Kyle [VaCom Technologies, San Luis Obispo, CA (United States); Dobbs, Brian [VaCom Technologies, San Luis Obispo, CA (United States); Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  1. A Magnetically Coupled Cryogenic Pump

    Science.gov (United States)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  2. A Possible 1.8 K Refrigeration Cycle for the Large Hadron Collider

    CERN Document Server

    Millet, F; Tavian, L; Wagner, U

    1998-01-01

    The Large Hadron Collider (LHC) under construction at the European Laboratory for Particle Physics, CERN, will make use of superconducting magnets operating below 2.0 K. This requires, for each of the eight future cryogenic installations, an isothermal cooling capacity of up to 2.4 kW obtained by vaporisation of helium II at 1.6 kPa and 1.8 K. The process design for this cooling duty has to satisfy several demands. It has to be adapted to four already existing as well as to four new refrigerators. It must cover a dynamic range of one to three, and it must to allow continuous pump-down from 4.5 K to 1.8 K. A possible solution, as presented in this paper, includes a combination of cold centrifugal and warm volumetric compressors. It is characterised by a low thermal load on the refrigerator, and a large range of adaptability to different operation modes. The expected power factor for 1.8 K cooling is given, and the proposed control strategy is explained.

  3. Surface tension confined liquid cryogen cooler

    Science.gov (United States)

    Castles, Stephen H.; Schein, Michael E.

    1989-04-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  4. Systematic modelling and simulation of refrigeration systems

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1998-01-01

    The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose of the s......The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose...... of the simulation, to select appropriate component models and to set up the equations in a well-arranged way. In this paper the outline of such a method is proposed and examples showing the use of this method for simulation of refrigeration systems are given....

  5. Page 1 Cryogenic refrigeration methods - 225 from top to bottom ...

    Indian Academy of Sciences (India)

    heat exchangers in the reverse order to the still where the liquid column ends. Here. 'He' is separated from He” by supplying external heat. He vapours are removed by the vacuum pump and the vapours coming out of the still constitute more than 95% of He” since the vapour pressure of He" at 0.6 K is negligible. Referring ...

  6. Cryogen-free dilution refrigerator for bolometric search of ...

    Indian Academy of Sciences (India)

    The MC temperature is monitored using a couple of calibrated carbon speer resistors and a paramagnetic cerium magnesium nitrate (CMN) thermometer. A calibrated plat- inum resistor (Pt-1000) is mounted on the MC to monitor temperatures above 10 K, during the cool down. The resistance measurements are done using ...

  7. Cryogen-free dilution refrigerator for bolometric search of ...

    Indian Academy of Sciences (India)

    based Neutrino Observatory, Tata Institute of Fundamental Research, Mumbai 400 005, India; Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005, India; Department of Condensed Matter ...

  8. Commissioning of the Cryogenic Plant for the Cryogenic Storage Ring (CSR) at Heidelberg

    CERN Document Server

    von Hahn, R; Grieser, M; Haberstroh, C; Kaiser, D; Lange, M; Laux, F; Menk, S; Orlov, D A; Repnow, R; Sieber, T; Quack, H; Varju, J; Wolf A

    2009-01-01

    At the Max-Planck-Institute for Nuclear Physics in Heidelberg a next generation electrostatic storage ring for low velocity atomic and molecular ion beams is under construction. In contrast to existing electrostatic storage rings, the Cryogenic Storage Ring CSR will be cooled down to temperatures below 2 K. Thus acting as a large cryopump it will provide long storage times and, in addition, open a new field of quantum state controlled molecular physics due to a low heat radiation background from space-like environment. A concept for cooling the storage ring has been developed and is presently tested by means of a linear trap as a prototype with a length of 1/10 of the planned ring. A commercial refrigerator with 21 W at 2 K has been successfully commissioned and was connected to the prototype. This paper presents the status of the cryogenic plant after the commissioning and one year of operation.

  9. Stirling-type pulse tube refrigerator (PTR) with cold compression: Cold compressor, colder expander

    Science.gov (United States)

    Park, Jiho; Ko, Junseok; Cha, Jeongmin; Jeong, Sangkwon

    2016-03-01

    This research paper focuses on the performance prediction and its validation via experimental investigation of a Stirling-type pulse tube refrigerator (PTR) equipped with a cold linear compressor. When the working gas is compressed at cryogenic temperature, the acoustic power (PV power) can be directly transmitted through the regenerator to the pulsating tube without experiencing unnecessary precooling process. The required PV power generated by the linear compressor, furthermore, can be significantly diminished due to the relatively small specific volume of the working gas at low temperature. The PTR can reach lower temperature efficiently with higher heat lift at the corresponding temperature than other typical single-stage Stirling-type PTRs. Utilizing a cryogenic reservoir as a warm end and regulating the entire operating temperature range of the PTR will enable a PTR to operate efficiently under space environment. In this research, the experimental validation as a proof of concept was carried out to demonstrate the capability of PTR operating between 80 K and 40 K. The linear compressor was submerged in a liquid nitrogen bath and the lowest temperature was measured as 38.5 K. The test results were analyzed to identify loss mechanisms with the simple numerical computation (linear model) which considers the dynamic characteristics of the cold linear compressor with thermo-hydraulic governing equations for each of sub components of the PTR. All the mass flows and pressure waves were assumed to be sinusoidal.

  10. Delivery at CERN and installation of the LHC underground refrigerator 1.8K in UX85 (point 8).

    CERN Multimedia

    Caterina BERTONE (TS-IC-HS)

    2004-01-01

    Series of photographs showing the delivery, handling and installation of the LHC cryogenic refrigerator in point 8 (UX85). The LHC cryogenic fluid (liquid helium at 1.9 K) is produced by cryogenic refrigerators (QURC) that are situated in the shafts and in the underground tunnel areas: 8 new units are being installed to reinforce the existing LEP cryogenic units. Each of them has an overall weight of about 25 t, the shape of a huge reversed L, 2-m wide, 7-m long and around 7-m high. Each QURC is installed in a different cavern/pit and is surrounded by a multitude of other services; consequentially it demands a detailed handling study, the procurement/design of dedicated handling tools and several days for installation of any single part.

  11. Introduction to cryogenic engineering

    CERN Multimedia

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  12. CFC substitutes for refrigeration engineering. FCKW-Substitute fuer die Kaeltetechnik

    Energy Technology Data Exchange (ETDEWEB)

    Henrici, R. (Hoechst AG, Forschung und Entwicklung Chemikalien, Frankfurt am Main (Germany))

    1993-12-01

    The international attempts ot protect the earth atmosphere have accelerated the world-wide search for CFC substitutes. Enormous efforts have been undertaken in the last few years to solve the problems occurring with new refrigerants and to find suitable lubricants. The article discusses the following subjects: Requirements on future refrigerants, effects on the ''greenhouse problem'', toxicological properties, problems in practical application, trends of development, refrigerant mixtures, conversion of older plants, recycling of refrigerants. (SR)

  13. Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sharma, Vishaldeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Environmental concerns are driving regulations for the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry towards lower GWP alternatives to HFC refrigerants. Existing lower GWP refrigerant alternatives include hydrocarbons, such as propane (R-290) and isobutane (R-600a), as well as carbon dioxide (R-744), ammonia (R-717), and R-32. In addition, new lower GWP refrigerant alternatives are currently being developed by refrigerant manufacturers, including hydrofluoro-olefin (HFO) and unsaturated hydrochlorofluorocarbon (HCFO) refrigerants. The selection of an appropriate refrigerant for a given refrigeration application should be based on several factors, including the GWP of the refrigerant, the energy consumption of the refrigeration system over its operating lifetime, and leakage of refrigerant over the system lifetime. For example, focusing on energy efficiency alone may overlook the significant environmental impact of refrigerant leakage; while focusing on GWP alone might result in lower efficiency systems that result in higher indirect impact over the equipment lifetime. Thus, the objective of this Collaborative Research and Development Agreement (CRADA) between

  14. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Cain, J.M. (Calm (James M.), Great Falls, VA (United States))

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  15. A Cryogenic Flow Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of cryogens in spacecraft propellant...

  16. Status of the LBNF Cryogenic System

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, D. [Fermilab; Adamowski, M. [Fermilab; Bremer, J. [CERN; Delaney, M. [Fermilab; Diaz, A. [CERN; Doubnik, R. [Fermilab; Haaf, K. [Fermilab; Hentschel, S. [Fermilab; Norris, B. [Fermilab; Voirin, E. [Fermilab

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 ton of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the models of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  17. Status of the LBNF Cryogenic System

    Science.gov (United States)

    Montanari, D.; Adamowski, M.; Bremer, J.; Delaney, M.; Diaz, A.; Doubnik, R.; Haaf, K.; Hentschel, S.; Norris, B.; Voirin, E.

    2017-12-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  18. ARTI Refrigerant Database

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  19. Indirect refrigeration systems with natural refrigerants

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Christensen, Kim Gardø; Jensen, Per Henrik

    1998-01-01

    Heat transfer for boiling and condensing carbon dioxide has been investigated.Heat transfer for carbon dioxide evaporating inside pipe has been measured and compared with Shah's correlation. The measured heat transfer coefficient is much higher than the value determined with the correlation.A she......-and-tube heat exchanger with carbon dioxide on the shell side and flow ice inside the tubes has been used to investigate the heat transfer for condensing carbon dioxide.At leats is mentioned results obtained with a frozen food display case using carbone dioxide as refrigerant....

  20. Data-Driven Control of Refrigeration System

    DEFF Research Database (Denmark)

    Vinther, Kasper

    Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive and it is import......Refrigeration is used in a wide range of applications, e.g., for storage of food at low temperatures to prolong shelf life and in air conditioning for occupancy comfort. The main focus of this thesis is control of supermarket refrigeration systems. This market is very competitive...... conditions make optimal tuning of controllers a difficult and time consuming task. These are also some of the challenges which make advanced model-based control difficult, and a model-based controller will often be tailored to a specific system. The focus in this thesis is therefore instead on development...... of data-driven control strategies with a higher plug and play potential. One of the main control challenges in refrigeration systems is proper control of superheat for efficient and safe operation of the system. This task can be performed by an electronic expansion valve and requires two sensors, which...

  1. Influence of Oil on Refrigerant Evaporator Performance

    Science.gov (United States)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  2. Refrigeration a history

    CERN Document Server

    Gantz, Carroll

    2015-01-01

    For thousands of years, humans coped with heat by harvesting and storing natural ice and devising natural cooling systems that utilized ventilation and evaporation. By the mid 1800s, people began developing huge refrigeration machines to manufacture ice. By the early 1900s, engineers developed electric domestic refrigerators, which by 1927 were affordable convenient household appliances. By then, an increasingly sophisticated public demanded more modern-looking appliances than engineers could produce, and a new breed of designers entered the manufacturing world to provide them. During the Depr

  3. MOSFET's for Cryogenic Amplifiers

    Science.gov (United States)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  4. Experimental Investigation of COP Using Hydro Carbon Refrigerant in a Domestic Refrigerator

    Science.gov (United States)

    Peyyala, Anusha; Sudheer, N. V. V. S., Dr

    2017-08-01

    Under the Montreal protocol 1987 researchers worked on the possibility of alternative refrigerants like Hydroflourocarbon’s [HFC’s] and Hydrocarbon’s[HC’s] to replace refrigerants Chloroflourocarbon’s [CFC’s] and Hydrochlorofluorocarbons [HCFC’s] in air-conditioning and cooling systems that are destroying the ozone layer. On October 15, 2016 one hundred and ninety plus countries including India came to an agreement called Kigali Amendment to phase out potent green house gases by 2045 there by preventing 0.5 C rise in global temperature by 2050. Under this agreement India agreed to a timeline to reduce the use of HFC’s by 85% of their baseline by 2045. HFC’s are a family of greenhouse gases that are largely used in refrigerators and air conditioners which have reduced the Ozone Depleting Potential [ODP] but increased the Global Warming Potential [GWP]. Refrigeration and its applications are important in almost all branches of industry, so engineers have to become aware of its principles, uses and limitations. Since the decade there are major changes in the choice of refrigerants due to environmental factors. This issue is on-going and new developments should be developed to decrease the environmental problems. So the aim of this paper is to present the experimental analysis of Coefficient of performance [COP] values using R134a [HFC] & R600a [HC] as Refrigerants in Domestic refrigerator using conventional and nonconventional energy sources. Based on the results, usage of R600a in domestic refrigerators will reduce the ODP and also GWP problems which fulfills the nominal requirements of human beings without any effects.

  5. Support of NASA ADR/ Cross-Enterprise NRA Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10K to 50mK, Development of a Heat Switch

    Science.gov (United States)

    Richards, Paul L.

    2005-01-01

    Mechanical heat switches are used in conjunction with sorption refrigerators, adiabatic demagnetization refrigerators and for other cryogenic tasks including the pre-cooling cryogenic systems. They use a mechanical actuator which closes Au plated Cu jaws on an Au plated Cu bar. The thermal conductance in the closed position is essentially independent of the area of the jaws and proportional to the force applied. It varies linearly with T. It is approximately 10mW/K for 200 N at 1.5K. In some applications, the heat switch can be driven from outside the cryostat by a rotating rod and a screw. Such heat switches are available commercially from several sources. In other applications, including systems for space, it is desirable to drive the switch using a cold linear motor, or solenoid. Superconducting windings are used at temperatures s 4.2K to minimize power dissipation, but are not appropriate for pre-cooling a system at higher temperatures. This project was intended to improve the design of solenoid activated mechanical heat switches and to provide such switches as required to support the development of Advanced Adiabatic Demagnetization Refrigerators for Continuous Cooling from 10 K to 50 mK at GSFC. By the time funding began in 5/1/01, the immediate need for mechanical heat switches at GSFC had subsided but, at the same time, the opportunity had arisen to improve the design of mechanical heat switching by incorporating a "latching solenoid". In this device, the solenoid current is required only for changing the state of the switch and not during the whole time that the switch is closed.

  6. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb [CTA Architects Engineers, Boise, ID (United States); Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Arthur, Rob [CTA Architects Engineers, Boise, ID (United States); Heath, Richard [CTA Architects Engineers, Boise, ID (United States); Rono, James [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  7. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    Science.gov (United States)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-01

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  8. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    Science.gov (United States)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    2017-08-08

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  9. Electrocaloric refrigeration: an innovative, emerging, eco-friendly refrigeration technique

    Science.gov (United States)

    Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.

    2017-01-01

    Nowadays, the refrigeration is responsible of about 15% of the overall energy consumption all over the world. Actually most of the refrigerant fluids working in vapor compression plants (VCPs) are environmentally harmful, since they presents high GWP (Global Warming Potential), which leads to a substantial warming of both earth surface and atmosphere. Electrocaloric refrigeration (ER) is an innovative, emerging refrigeration technique based on solid state refrigerant that shows a great potential. It fits in the context of environment-friendly refrigeration systems, whom are spreading increasingly to replace VCPs. ER is founded on electrocaloric effect that is a physical phenomenon found in materials with dielectric properties, electrocaloric materials. The thermodynamical cycle that best is addressed to the electrocaloric refrigeration is Active Electrocaloric Regeneration cycle (AER) that consists of two adiabatic and two isofield stages. The core of an electrocaloric refrigerator is the regenerator whom operates both as refrigerant and regenerator in an AER cycle. In this paper, we compare the energetic performance of a commercial R134a refrigeration plant to that of an electrocaloric refrigerator working with an AER cycle. The comparison is performed in term of TEWI index (Total Equivalent Warming Impact) that includes both direct and indirect contributions to global warming.

  10. Cryogenic Flange and Seal Evaluation

    Science.gov (United States)

    Ramirez, Adrian

    2014-01-01

    The assembly of flanges, seals, and pipes are used to carry cryogenic fluid from a storage tank to the vehicle at launch sites. However, after a certain amount of cycles these raised face flanges with glass-filled Teflon gaskets have been found to have torque relaxation and are as a result susceptible to cryogenic fluid leakage if not re-torqued. The intent of this project is to identify alternate combinations of flanges and seals which may improve thermal cycle performance and decrease re-torque requirements. The general approach is to design a test fixture to evaluate leak characteristics between spiral and concentric serrations and to test alternate flange and seal combinations. Due to insufficient time, it was not possible to evaluate these different types of combinations for the combination that improved thermal cycle performance the most. However, the necessary drawings for the test fixture were designed and assembled along with the collection of the necessary parts.

  11. Parametric studies on floating pad journal bearing for high speed cryogenic turboexpanders

    Science.gov (United States)

    Jain, A.; Jadhav, M. M.; Karimulla, S.; Chakravarty, A.

    2017-12-01

    Most modern medium and large capacity helium liquefaction/refrigeration plants employ high speed cryogenic turboexpanders in their refrigeration/liquefaction cycles as active cooling devices. The operating speed of these turboexpanders is in the range of 3000-5000 Hz and hence specialized types of bearings are required. Floating pad journal bearing, which is a special type of tilting pad journal bearing, where mechanical pivots are absent and pads are fully suspended in gas, can be a good solution for stable operation of these high speed compact rotors. The pads are separated from shaft as well as from housing by fluid film between them, and both these sides of pad are interconnected by a network of feed holes. The work presented in this article aims to characterize floating pad journal bearings through parametric studies. The steady state performance characteristics of the bearing are represented by load capacity, stiffness coefficients and heat generation rate of the bearing. The geometrical parameters such as bearing clearances, preload of pads, etc. are varied and performance characteristics of the floating pad journal bearing are studied and presented. The dependence of stiffness coefficients on rotational speed of shaft is also analyzed.

  12. Solar Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  13. A breath of fresh air for cryogenics training

    CERN Multimedia

    HSE Unit

    2014-01-01

    Whether you work full-time in a cryogenic installation or are required to handle cryogenic substances temporarily, you need to have followed the appropriate safety training.   Photo: Christoph Balle. Two new training courses are now available in English and French at CERN: “Cryogenic Safety – Fundamentals” (at the Prévessin Training Centre) and “Cryogenic Safety – Helium Transfer” (at the Cryolab). The first covers the content of levels 1 and 2 of the old “Cryogenic Safety” course. The second is a completely new course for CERN: it covers specific aspects of the transfer of liquid helium, such as the evaporation process of helium and the associated risks to human health (asphyxia due to displacement of oxygen), the colour code for gas bottles, etc. These training modules have been rewritten in response to the increase in the number of projects involving cryogenics and following various related incident...

  14. Thermal conductance modeling and characterization of the SuperCDMS-SNOLAB sub-Kelvin cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Dhuley, R. C. [Fermilab; Hollister, M. I. [Fermilab; Ruschman, M. K. [Fermilab; Martin, L. D. [Fermilab; Schmitt, R. L. [Fermilab; Tatkowski, Tatkowski,G.L. [Fermilab; Bauer, D. a. [Fermilab; Lukens, P. T. [Fermilab

    2017-09-13

    The detectors of the Super Cryogenic Dark Matter Search experiment at SNOLAB (SuperCDMS SNOLAB) will operate in a seven-layered cryostat with thermal stages between room temperature and the base temperature of 15 mK. The inner three layers of the cryostat, which are to be nominally maintained at 1 K, 250 mK, and 15 mK, will be cooled by a dilution refrigerator via conduction through long copper stems. Bolted and mechanically pressed contacts, at and cylindrical, as well as exible straps are the essential stem components that will facilitate assembly/dismantling of the cryostat. These will also allow for thermal contractions/movements during cooldown of the sub-Kelvin system. To ensure that these components and their contacts meet their design thermal conductance, prototypes were fabricated and cryogenically tested. The present paper gives an overview of the SuperCDMS SNOLAB sub-Kelvin architecture and its conductance requirements. Results from the conductance measurements tests and from sub-Kelvin thermal modeling are discussed.

  15. Materials for room temperature magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl Hansen, B.

    2010-07-15

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material to change its temperature when a magnetic field is applied or removed. For room temperature cooling, one utilizes that the magnetocaloric effect peaks near magnetic phase transitions and so the materials of interest all have a critical temperature within the range of 250 - 310 K. A magnetic refrigerant should fulfill a number of criteria, among these a large magnetic entropy change, a large adiabatic temperature change, preferably little to no thermal or magnetic hysteresis and the material should have the stability required for long term use. As the temperature range required for room temperature cooling is some 40 - 50 K, the magnetic refrigerant should also be able to cover this temperature span either by exhibiting a very broad peak in magnetocaloric effect or by providing the opportunity for creating a materials series with varying transition temperatures. (Author)

  16. Commissioning of the Cryogenic System for the ATLAS Superconducting Magnets

    CERN Document Server

    Delruelle, N; Bradshaw, T; Haug, F; ten Kate, H H J; Passardi, Giorgio; Pengo, R; Pezzetti, M; Pirotte, O; Rochford, J

    2006-01-01

    The paper describes the test results of the helium cryoplant for the superconducting magnets of the ATLAS particle detector at CERN. It consists of two refrigerators used in common by all the magnets and of two proximity cryogenic systems (PCS) interfacing respectively the toroids and the central solenoid. Emphasis is given to the commissioning of the refrigerators: the main unit of 6 kW equivalent capacity at 4.5 K and the thermal shield refrigerator providing 20 kW between 40 K and 80 K. The first unit is used for refrigeration at 4.5 K and for the cooling of three sets of 20 kA current leads, while the second one provides, in addition to the 20 kW refrigeration of the thermal shields, 60 kW for the cool-down to 100 K of the 660 ton cold mass of the magnets. The tests, carried out with the equipment in the final underground configuration, are extended to the PCS that includes the large liquid helium centrifugal pumps (each providing 1.2 kg/s) for forced-flow cooling of the magnets and the complex distributi...

  17. Cryogenic Fluid Management Technology Development Roadmaps

    Science.gov (United States)

    Stephens, J. R.; Johnson, W. L.

    2017-01-01

    Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.

  18. Effects of leakage through clearance seals on the performance of a 10 K Stirling-cycle refrigerator

    Science.gov (United States)

    Keung, C. S.; Lindale, E.

    1985-01-01

    The use of clearance seals is essential to achieve long life, wear free operation of Stirling cycle cryogenic refrigerators. The effect of leakage through clearance seals on the performance of such a refrigerator operating at temperatures ranging from 20 K down to 10 K was determined. The ability of a Stirling cycle refrigerator to achieve 10 K with clearance seals was successfully demonstrated. It is indicated that the leakage flow undergoes gap regeneration before reaching the cold expansion volume. A simple model of gap regeneration was used to estimate the regeneration loss due to the leakage flow. This regeneration process minimizes the loss in refrigerator performance caused by the clearance seal leakage. It is found that clearance seals remain effective down to a refrigeration temperature of 10 K.

  19. Cryogenics theory, processes and applications

    CERN Document Server

    Hayes, Allyson E

    2011-01-01

    Cryogenics is the study of the production of very low temperature (below -150 -C, -238 -F or 123 K) and the behaviour of materials at those temperatures. This book presents current research from across the globe in the study of cryogenics, including the effect of cryogenic treatment on microstructure and mechanical properties of light weight alloys; the application of Fiber Bragg grating sensors at cryogenic temperatures; cryogenic grinding; liquid oxygen magnetohydrodynamics; and, genetic engineering techniques used to improve tolerance to cryopreservation.

  20. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  1. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  2. Potential of the tractor-trailer and container segments as entry markets for a proposed refrigeration technology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Davis, L.J.; Garrett, B.A.

    1987-05-01

    The refrigerated trailer and container segments of the transportation industry are evaluated as potential entry markets for a proposed absorption refrigeration technology. To perform this analysis the existing transportation refrigeration industry is characterized; this includes a description of the current refrigeration technology, rating systems, equipment manufacturers, maintenance requirements, and sales trends. This information indicates that the current transportation refrigeration industry is composed of two major competitors, Thermo King and Carrier. In addition, it has low profit potential, some barriers to entry and low growth potential. Data are also presented that characterize the transportation refrigeration consumers, specifically, major groups, market segmentation, consumer decision process, and buying criteria. This consumer information indicates that the majority of refrigerated trailer consumers are private carriers, and that the majority of refrigerated container consumers are shipping companies. Also, these consumers are primarily interested in buying reliable equipment at a low price, and are quite satisfied with existing refrigeration equipment.

  3. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers

    Science.gov (United States)

    Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.

    2007-04-01

    Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.

  4. Thermofluid Analysis of Magnetocaloric Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Gluesenkamp, Kyle R [ORNL; Vineyard, Edward Allan [ORNL; Benedict, Michael [GE Appliances

    2014-01-01

    While there have been extensive studies on thermofluid characteristics of different magnetocaloric refrigeration systems, a conclusive optimization study using non-dimensional parameters which can be applied to a generic system has not been reported yet. In this study, a numerical model has been developed for optimization of active magnetic refrigerator (AMR). This model is computationally efficient and robust, making it appropriate for running the thousands of simulations required for parametric study and optimization. The governing equations have been non-dimensionalized and numerically solved using finite difference method. A parametric study on a wide range of non-dimensional numbers has been performed. While the goal of AMR systems is to improve the performance of competitive parameters including COP, cooling capacity and temperature span, new parameters called AMR performance index-1 have been introduced in order to perform multi objective optimization and simultaneously exploit all these parameters. The multi-objective optimization is carried out for a wide range of the non-dimensional parameters. The results of this study will provide general guidelines for designing high performance AMR systems.

  5. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    Science.gov (United States)

    Joshi, D. M.

    2017-09-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  6. Isothermal vitrification methodology development for non-cryogenic storage of archival human sera.

    Science.gov (United States)

    Less, Rebekah; Boylan, Kristin L M; Skubitz, Amy P N; Aksan, Alptekin

    2013-04-01

    Biorepositories worldwide collect human serum samples and store them for future research. Currently, hundreds of biorepositories across the world store human serum samples in refrigerators, freezers, or liquid nitrogen without following any specific cryopreservation protocol. This method of storage is both expensive and potentially detrimental to the biospecimens. To decrease both cost of storage and the freeze/thaw stresses, we explored the feasibility of storing archival human serum samples at non-cryogenic temperatures using isothermal vitrification. When biospecimens are vitrified, biochemical reactions can be stopped, the specimen ceases to degrade, and macromolecules can be stabilized without requiring cryogenic storage. In this study, 0.2, 0.4, or 0.8M trehalose; 0, 0.005 or 0.01M dextran; and 0 or 10% (v/v) glycerol was added to human serum samples. The samples were either dried diffusively as sessile droplets or desiccated under vacuum after they are adsorbed onto glass microfiber filters. The glass transition temperatures (Tg) of the desiccated samples were measured by temperature-ramp Fourier Transform Infrared (FTIR) spectroscopy. Sera samples vitrified at 4±2°C when 0.8M trehalose and 0.01M dextran were added and the samples were vacuum dried for two hours. Western immunoblotting showed that vitrified serum proteins were minimally degraded when stored for up to one month at 4°C. About 80% of all proteins were recovered after storage at 4°C on glass microfiber filters, and recovery did not decrease with storage time. These results demonstrated the feasibility of long-term storage of vitrified serum at hypothermic (and non-cryogenic) temperatures. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  8. On Refrigerant Compressors

    OpenAIRE

    McGovern, Jim

    1988-01-01

    The purpose of the work was to critically re-examine and investigate the evaluation of refrigerant compressors and to determine and discriminate between the factors which influence their characteristics. The objectives also included the investigation of techniques by which the characteristics can be established and the suggestion of ways in which compressor performance can be described and quantified. The particular compressor which was tested was of the reciprocating open type. Existing theo...

  9. Multilayer Thermionic Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, G.D.

    1999-08-30

    A review is presented of our program to construct an efficient solid state refrigerator based on thermionic emission of electrons over periodic barriers in the solid. The experimental program is to construct a simple device with one barrier layer using a three layers: metal-semiconductor-metal. The theoretical program is doing calculations to determine: (i) the optimal layer thickness, and (ii) the thermal conductivity.

  10. Space Infrared Telescope Facility cryogenic and optical technology

    Science.gov (United States)

    Mason, P.; Kiceniuk, T.; Plamondon, J.; Petrick, W.

    1991-01-01

    SIRTF will require new liquid helium cryogenics and optical technology at liquid helium temperatures to meet the scientific requirements. In particular, it will require a helium cryogenic system operating at 1.25 K with a lifetime of five years. The optical system will require a 1-m mirror operating at 2 K, which is diffraction limited at 3 microns. This paper describes the advances which will be needed and the approaches to be taken.

  11. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Beshr, Mohamed [University of Maryland, College Park; Aute, Vikrant [University of Maryland, College Park; Abdelaziz, Omar [ORNL; Fricke, Brian A [ORNL; Radermacher, Reinhard [University of Maryland, College Park

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  12. Performance simulation of refrigerated display cabinets operating with refrigerants R22 and R404A

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Y.T. [Mechanical Engineering, School of Engineering and Design, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Cropper, R. [Formerly School of Engineering, North East Wales Institute, Plas Coch Campus, Mold Road, Wrexham L11 2AW (United Kingdom)

    2008-08-15

    This paper describes the analysis and performance comparison of a display cabinet system using refrigerant R404A and its substitute refrigerant R22. The model of the display cabinet is developed at steady state and integrated from three main component sub-models, air-cooling finned-tube evaporator, air curtain and display cabinet body. The evaporator model is built up based on the distributed method, which can simulate the heat exchangers with different circuit structures. The frost effect on the performance of the evaporator is included in the model. The correlations for the heat transfer and pressure drop calculations of both air and refrigerant sides are purposely selected in the evaporator model. In addition, the evaporator model has been validated with experimental results at steady states from published literature. Several correlated functions from the detailed numerical solution are used for the model of the air curtain. Some simplifications are also utilized for the model of display cabinet body. The performance simulation and comparison of the display cabinet using refrigerants R404A and R22 are carried out at different indoor ambient conditions especially at varied ambient air humidity to mimic the actual indoor space conditions in super stores. Some significant results such as the comparison of cooling load requirement for different refrigerant display cases have been obtained from the simulation, which can significantly contribute to the optimal cabinet design and operating analysis. (author)

  13. Materials for Room Temperature Magnetic Refrigeration

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considere...... cooling is some 40 – 50 K, the magnetic refrigerant should also be able to cover this temperature span either by exhibiting a very broad peak in magnetocaloric effect or by providing the opportunity for creating a materials series with varying transition temperatures.......Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered...... candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material...

  14. Magnetic refrigeration down to 1.6 K for the future circular collider e$^+$e$^-$

    CERN Document Server

    Tkaczuk, Jakub; Millet, Francois; Rousset, Bernard; Duval, Jean Marc

    2017-01-01

    High-field superconducting rf cavities of the future circular collider e+e− may require a kW-range superfluid helium refrigeration down to 1.6 K. Magnetic refrigeration operating below 4.2 K can be an alternative to the compression/expansion helium refrigeration. A significant difference between this application and previous magnetic refrigerator studies is its large cooling power, up to 103 times larger than the other designs. Principles of magnetic refrigeration are described and various technical solutions are compared. A numerical model for the static magnetic refrigerator is presented, validated, and adapted to the needs of the positron-electron version of the future circular collider. A preliminary design of magnetic refrigerator suitable for low temperature, kW-range cooling is studied.

  15. THERMOELECTRIC REFRIGERATION USING PELTIER EFFECT

    OpenAIRE

    Prof. Rajendra. P. Patil*, Pradhyumna Suryawanshi, Akshay Pawar, Avdhoot Pawar

    2017-01-01

    In the field of military and medical science there are refrigerators used to cool samples or specimens for preservation. They include refrigeration units for storing blood plasma and other blood products, as well as vaccines and other medical or pharmaceutical supplies. They differ from standard refrigerators used in homes or restaurant because they need to be very hygienic and completely reliable. However, in case of transportation of component from one place to another place there is no ref...

  16. 10 CFR 431.64 - Uniform test method for the measurement of energy consumption of commercial refrigerators...

    Science.gov (United States)

    2010-01-01

    ... Institute (ARI) Standard 1200-2006, “Performance Rating of Commercial Refrigerated Display Merchandisers and... Requirements for Self-contained Commercial Refrigerated Display Merchandisers and Storage Cabinets... Remote Commercial Refrigerated Display Merchandisers and Storage Cabinets.” (Incorporated by reference...

  17. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    Science.gov (United States)

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  18. Energy series. What about refrigerators and freezers?

    OpenAIRE

    Grisso, Robert D. (Robert Dwight), 1956-; Walker, Martha A.

    2009-01-01

    In most households, the refrigerator is the single biggest energy consuming kitchen appliance. This publication offers tips for choosing the most energy efficient refrigerator or freezer, operating it efficiently, and recycling your old refrigerator.

  19. Experience with two large-scale Hell-cryostats for a superconducting RF particle separator working in closed cycle with a 300 W refrigerator

    CERN Document Server

    Barth, W

    1976-01-01

    The contribution of the Karlsruhe Institut fur Experimental Kernphysik to the RF particle separator at the SPS/CERN consists of the two superconducting deflectors and their Hell-cryostats with the cryogenic and vacuum accessories. The cryostats have to fulfil specifications concerning tightness, thermal insulation, adjustment of the cavities to the beam and reliability. Corresponding cryogenic and RF tests are performed in Karlsruhe before a 300 W refrigerator simulating normal and emergency conditions. Following a description of cryostats design the results of these measurements are compared with the specifications. Operating experience with the cryostats in closed circuit with the refrigerator are reported. (5 refs).

  20. NASA's Cryogenic Fluid Management Technology Project

    Science.gov (United States)

    Tramel, Terri L.; Motil, Susan M.

    2008-01-01

    The Cryogenic Fluid Management (CFM) Project's primary objective is to develop storage, transfer, and handling technologies for cryogens that will support the enabling of high performance cryogenic propulsion systems, lunar surface systems and economical ground operations. Such technologies can significantly reduce propellant launch mass and required on-orbit margins, reduce or even eliminate propellant tank fluid boil-off losses for long term missions, and simplify vehicle operations. This paper will present the status of the specific technologies that the CFM Project is developing. The two main areas of concentration are analysis models development and CFM hardware development. The project develops analysis tools and models based on thermodynamics, hydrodynamics, and existing flight/test data. These tools assist in the development of pressure/thermal control devices (such as the Thermodynamic Vent System (TVS), and Multi-layer insulation); with the ultimate goal being to develop a mature set of tools and models that can characterize the performance of the pressure/thermal control devices incorporated in the design of an entire CFM system with minimal cryogen loss. The project does hardware development and testing to verify our understanding of the physical principles involved, and to validate the performance of CFM components, subsystems and systems. This database provides information to anchor our analytical models. This paper describes some of the current activities of the NASA's Cryogenic Fluid Management Project.

  1. Development of Advanced Tools for Cryogenic Integration

    Science.gov (United States)

    Bugby, D. C.; Marland, B. C.; Stouffer, C. J.; Kroliczek, E. J.

    2004-06-01

    This paper describes four advanced devices (or tools) that were developed to help solve problems in cryogenic integration. The four devices are: (1) an across-gimbal nitrogen cryogenic loop heat pipe (CLHP); (2) a miniaturized neon CLHP; (3) a differential thermal expansion (DTE) cryogenic thermal switch (CTSW); and (4) a dual-volume nitrogen cryogenic thermal storage unit (CTSU). The across-gimbal CLHP provides a low torque, high conductance solution for gimbaled cryogenic systems wishing to position their cryocoolers off-gimbal. The miniaturized CLHP combines thermal transport, flexibility, and thermal switching (at 35 K) into one device that can be directly mounted to both the cooler cold head and the cooled component. The DTE-CTSW, designed and successfully tested in a previous program using a stainless steel tube and beryllium (Be) end-pieces, was redesigned with a polymer rod and high-purity aluminum (Al) end-pieces to improve performance and manufacturability while still providing a miniaturized design. Lastly, the CTSU was designed with a 6063 Al heat exchanger and integrally welded, segmented, high purity Al thermal straps for direct attachment to both a cooler cold head and a Be component whose peak heat load exceeds its average load by 2.5 times. For each device, the paper will describe its development objective, operating principles, heritage, requirements, design, test data and lessons learned.

  2. Aerogel Blanket Insulation Materials for Cryogenic Applications

    Science.gov (United States)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  3. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  4. MCP-based photodetectors for cryogenic applications

    Science.gov (United States)

    Dharmapalan, R.; Mane, A.; Byrum, K.; Demarteau, M.; Elam, J.; May, E.; Wagner, R.; Walters, D.; Xia, L.; Xie, J.; Zhao, H.

    2016-02-01

    The Argonne MCP-based photo detector is an offshoot of the Large Area Pico-second Photo Detector (LAPPD) project, wherein 6 cm × 6 cm sized detectors are made at Argonne National Laboratory. We have successfully built and tested our first detectors for pico-second timing and few mm spatial resolution. We discuss our efforts to customize these detectors to operate in a cryogenic environment. Initial plans aim to operate in liquid argon. We are also exploring ways to mitigate wave length shifting requirements and also developing bare-MCP photodetectors to operate in a gaseous cryogenic environment.

  5. 136Xe enrichment through cryogenic distillation

    Science.gov (United States)

    Back, H. O.; Bottenus, D. R.; Clayton, C.; Stephenson, D.; TeGrotenhuis, W.

    2017-09-01

    The next generation of 136Xe neutrinoless double beta decay experiments will require on the order of 5 tons of enriched 136Xe. By estimating the relative volatilities of the xenon isotopes and using standard chemical engineering techniques we explore the feasibility of using cryogenic distillation to produce 5 tons of 80% enriched 136Xe in 5-6 years. With current state-of-the-art distillation column packing materials we can estimate the total height of a traditional cryogenic distillation column. We also report on how Micro Channel Distillation may reduce the overall size of a distillation system for 136Xe production.

  6. Energy analysis of a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch; Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    From 1995 to 1998, an energy test method for supermarket refrigeration systems was developed in a project financed by the Danish Energy Agency. The purpose of the energy test method is to provide the means for evaluating the energy efficiency of these systems. The test method requires measurements...... of air temperatures and energy consumption to be carried out on the selected supermarket refrigeration system. In addition to the measurements required by the method, more measurements of individual energy consumptions have been carried in the case described in this paper. The purpose of the additional...... systems and therefore the experience with its application is limited. In the future, the energy test method may be used for evaluation of the efficiency of a new system or the improvement in efficiency when optimising an existing system....

  7. Technical presentation: BGM Cryogenic Engineering Limited

    CERN Multimedia

    Caroline Laignel - FI Department

    2006-01-01

    13 - 14 June 2006 TECHNICAL PRESENTATION BGM Cryogenic Engineering Limited 09:00 - 18:00, 60-2-016, Main Building. Presentation on BGM: 11:00 - 12:00, 60-2-016, Main Building. BGM Cryogenic Engineering Limited manufactures assemblies, sub-assemblies and machined components for the cryogenic technology sector. The primary markets served include superconducting magnets used in the healthcare sector (eg MRI body scanners), spectroscopy and NMR equipment for numerous R & D and technology applications, high vacuum applications and particle physics research. BGM has specialist assembly capability including stainless steel and aluminium welding, vacuum testing, electromechanical assembly and metal finishing. BGM offers a ‘one stop shop'facility to satisfy any customer requirement. Through our design partner we can offer a full design and modelling service, including 3D modelling and production of 2D drawings on your own borders. We can conduct heat load and force calculations and advise on the best...

  8. Experimental study of a mixed refrigerant Joule-Thomson cryocooler using a commercial air-conditioning scroll compressor

    Science.gov (United States)

    Lee, Jisung; Lee, Kyungsoo; Jeong, Sangkwon

    2013-05-01

    Mixed refrigerant Joule-Thomson (MR J-T) cryocoolers have been used to create cryogenic temperatures and are simple, efficient, cheap, and durable. However, compressors for MR J-T cryocoolers still require optimization. As the MR J-T cryocooler uses a commercial scroll compressor developed for air-conditioning systems, compressor overheating due to the use of less optimized refrigerants may not be negligible, and could cause compressor malfunction due to burn-out of scroll tip seals. Therefore, in the present study, the authors propose procedures to optimize compressor operation to avoid the overheating issue when the MR J-T cryocooler is used with a commercial oil lubricated scroll compressor, and the present experimental results obtained for a MR J-T cryocooler. A single stage 1.49 kW (2 HP) scroll compressor designed for R22 utilizing a mixture of nitrogen and hydrocarbons was used in the present study. As was expected, compressor overheating and irreversible high temperatures at a compressor discharge port were found at the beginning of compressor operation, which is critical, and hence, the authors used a water injection cooling system for the compressor to alleviate temperature overshooting. In addition, a portion of refrigerant in the high-pressure stream was by-passed into the compressor suction port. This allowed an adequate compression ratio, prevented excessive temperature increases at the compressor discharge, and eventually enabled the MR J-T cryocooler to operate stably at 121 K. The study shows that commercial oil lubricated scroll compressors can be used for MR J-T cryocooling systems if care is exercised to avoid compressor overheating.

  9. Impact resistance cryogenic bunker fuel tanks

    NARCIS (Netherlands)

    Voormeeren, L.O.; Atli-Veltin, B.; Vredeveldt, A.W.

    2014-01-01

    The increasing use of liquefied natural gas (LNG) as bunker fuel in ships, calls for an elaborate study regarding the risks involved. One particular issue is the vulnerability of cryogenic LNG storage tanks with respect to impact loadings, such as ship collisions and dropped objects. This requires

  10. Cryogenic control system of the large COMPASS polarized target

    CERN Document Server

    Gautheron, F; Baum, G; Berglund, P; Doshita, N; Görtz, S; Gustafsson, K K; Horikawa, N; Kisselev, Yu V; Koivuniemi, J H; Kondo, K; Meyer, Werner T; Reicherz, G

    2004-01-01

    The dilution refrigerator used to cool the large COMPASS polarized target is monitored through a PC running LabVIEW trademark 6.1 under Windows 2000 trademark . About 60 parameters of the target (temperatures, pressures, flow rates) are continuously plotted and checked. They are periodically recorded in an Oracle trademark database and in a data file. An alarm for every parameter can be individually activated and optionally connected to a GSM (Global System for Mobile Communication) delivery message system. A web server receives and publishes the online status of the target with online tables and graphics on a dedicated COMPASS polarized target information web site. A Siemens programmable logic controller (PLC) powered by an uninterruptable source keeps the cryogenic system safe and stable during the long beam periods by controlling valves and interlocks. This safety feature protects the dilution refrigerator against potential damages in case of power failure.

  11. Electrocaloric Refrigeration for Superconductors

    Science.gov (United States)

    1977-02-01

    hardening is unspecified. The error bars on the data are for a 7 W/cmK minimum conductivity and a 14 W/cmK maximum conductivity for OFHC copper at 15 K...shortly. Cooling to as low as 0.05 K was demonstrated in CN doped RbCl . Electrocaloric refrigeration using KCl:OH has been used for ther...ym thicknesses were used along with several bonding agents: epoxy (Epibond 100-A), Corning jlass code 750 AGB devitrifying glaze, and DuPont 822 5

  12. Cryogenic permanent magnet undulators

    Directory of Open Access Journals (Sweden)

    Toru Hara

    2004-05-01

    Full Text Available In order to obtain high magnetic fields in a short period undulator, superconductive undulators have been actively investigated in recent years. In this paper, however, we propose a new approach, the cryogenic permanent magnet undulator (CPMU design, using permanent magnets at the cryogenic temperature of liquid nitrogen or higher. This cryogenic scheme can be easily adapted to currently existing in-vacuum undulators and it improves the magnetic field performance by 30%–50%. Unlike superconductive undulators operating around the liquid helium temperature, there is no big technological difficulty such as the thermal budget problem. In addition, existing field correction techniques are applicable to the CPMUs. Since there is no quench in the CPMUs, the operation of the CPMUs has the same reliability as conventional permanent magnet undulators.

  13. Cryogenics for Fusion

    Science.gov (United States)

    Dauguet, P.; Gistau-Baguer, G. M.; Bonneton, M.; Boissin, J. C.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F.

    2008-03-01

    Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to "fusion for energy" will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

  14. Advances in Cryogenics at the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    1998-01-01

    After a decade of intensive R&D in the key technologies of high-field superconducting accelerator magnets and superfluid helium cryogenics, the Large Hadron Collider (LHC) has now fully entered its co nstruction phase, with the adjudication of major procurement contracts to industry. As concerns cryogenic engineering, this R&D program has resulted in significant developments in several fields, amon g which thermo-hydraulics of two-phase saturated superfluid helium, efficient cycles and machinery for large-capacity refrigeration at 1.8 K, insulation techniques for series-produced cryostats and mu lti-kilometre long distribution lines, large-current leads using high-temperature superconductors, industrial precision thermometry below 4 K, and novel control techniques applied to strongly non-line ar processes. We review the most salient advances in these domains.

  15. A Simplified Cryogenic Distribution Scheme for the Large Hadron Collider

    CERN Document Server

    Chorowski, M; Lebrun, P; Riddone, G; Serio, L; Tavian, L; Wagner, U; Van Weelderen, R

    1998-01-01

    The Large Hadron Collider (LHC), currently under construction at CERN, will make use of superconducting magnets operating in superfluid helium below 2 K. The reference cryogenic distribution scheme was based, in each 3.3 km sector served by a cryogenic plant, on a separate cryogenic distribution line which feeds elementary cooling loops corresponding to the length of a half-cell (53 m). In order to decrease the number of active components, cryogenic modules and jumper connections between distribution line and magnet strings a simplified cryogenic scheme is now implemented, based on cooling loops corresponding to the length of a full-cell (107 m) and compatible with the LHC requirements. Performance and redundancy limitations are discussed with respect to the previous scheme and balanced against potential cost savings.

  16. Self-supporting refrigerated truck

    NARCIS (Netherlands)

    Beukers, A.; De Winter, S.E.E.; Brouwer, W.D.

    1997-01-01

    Self-supporting refrigerated truck comprising a floor, two side walls, a front bulkhead and a roof. The components are all constructed as sandwich panels. The connection between the rear axle construction of the refrigerated truck and the front is not provided with longitudinal beams. The function

  17. Energy optimisation of domestic refrigerators

    DEFF Research Database (Denmark)

    Jakobsen, Arne; Rasmussen, Bjarne D.

    1998-01-01

    This paper describes the main results of a research project with the objective of reducing the energy consumption of domestic refrigerators by increasing the efficiency of the refrigeration system. The improvement of the system efficiency was to be obtained by:1) Introducing continuous operation...

  18. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Anindya [Fermilab; Rane, Tejas [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  19. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K; Kondo, T [Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Yoshioka, S; Kamiya, K; Numazawa, T [Tsukuba Magnet Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan)], E-mail: kmatsu@kenroku.kanazawa-u.ac.jp

    2009-02-01

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle succeeded in liquefying hydrogen at 20K. Above liquefaction temperature, a regenerative refrigeration cycle should be necessary to precool hydrogen gas, because adiabatic temperature change of magnetic material is reduced due to a large lattice specific heat of magnetic materials. We have tested an AMR device as the precooling stage. It was confirmed for the first time that AMR cycle worked around 20 K.

  20. Cryogenic regenerative heat exchangers

    CERN Document Server

    Ackermann, Robert A

    1997-01-01

    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  1. Cryogenic generator cooling

    Science.gov (United States)

    Eckels, P. W.; Fagan, T. J.; Parker, J. H., Jr.; Long, L. J.; Shestak, E. J.; Calfo, R. M.; Hannon, W. F.; Brown, D. B.; Barkell, J. W.; Patterson, A.

    The concept for a hydrogen cooled aluminum cryogenic generator was presented by Schlicher and Oberly in 1985. Following their lead, this paper describes the thermal design of a high voltage dc, multimegawatt generator of high power density. The rotor and stator are cooled by saturated liquid and supercritical hydrogen, respectively. The brushless exciter on the same shaft is also cooled by liquid hydrogen. Component development testing is well under way and some of the test results concerning the thermohydraulic performance of the conductors are reported. The aluminum cryogenic generator's characteristics are attractive for hydrogen economy applications.

  2. Zero Boil-Off Methods for Large Scale Liquid Hydrogen Tanks Using Integrated Refrigeration and Storage

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-01-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multi-layer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  3. Ormosil Beads for Insulation of Ground Cryogenic Storage Tanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced materials are required to insulate cryogenic storage and distribution systems for liquid propellants such as hydrogen and oxygen, used in orbital transfer...

  4. Temperature Sensing Solution for Cryogenic Space Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic systems, heavily used in rocket ground testing, space station operations, shuttle launch systems, etc, require a large number of temperature sensors for...

  5. ISO and EIGA standards for cryogenic vessels and accessories

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The EIGA/WG 6’s scope is cryogenic vessels and accessories, including their design, material compatibility, operational requirements and periodical inspection. The specific responsibilities include monitoring international standardization (ISO, CEN) and regulations (UN, TPED, PED...

  6. Performance evaluation of cryogenic counter-flow heat exchangers with longitudinal conduction, heat in-leak and property variations

    Science.gov (United States)

    Jiang, Q. F.; Zhuang, M.; Zhu, Z. G.; Y Zhang, Q.; Sheng, L. H.

    2017-12-01

    Counter-flow plate-fin heat exchangers are commonly utilized in cryogenic applications due to their high effectiveness and compact size. For cryogenic heat exchangers in helium liquefaction/refrigeration systems, conventional design theory is no longer applicable and they are usually sensitive to longitudinal heat conduction, heat in-leak from surroundings and variable fluid properties. Governing equations based on distributed parameter method are developed to evaluate performance deterioration caused by these effects. The numerical model could also be applied in many other recuperators with different structures and, hence, available experimental data are used to validate it. For a specific case of the multi-stream heat exchanger in the EAST helium refrigerator, quantitative effects of these heat losses are further discussed, in comparison with design results obtained by the common commercial software. The numerical model could be useful to evaluate and rate the heat exchanger performance under the actual cryogenic environment.

  7. Waste heat for refrigeration. Comparative analysis of four steam-based refrigeration processes; Abwaerme zur Kaelteerzeugung. Vier dampfbetriebene Kaelteerzeugungsverfahren im Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Kuschka, M. [York Deutschland, Nuernberg (Germany); Hilligweg, A. [Georg-Simon-Ohm-Fachhochschule Nuernberg (Germany). Fachbereich Maschinenbau und Versorgungstechnik

    2004-10-01

    Steam can make refrigeration more efficient in cases where high-temperature waste heat is available at low cost and where refrigeration is required year-round. (orig.) [German] Steht Abwaerme auf hohem Temperaturniveau kostenguenstig zur Verfuegung und wird gleichzeitig ganzjaehrige Kaelte benoetigt, kann die Verwendung von Dampf die Wirschaftlichkeit der Kaelteerzeugung erhoehen. (orig.)

  8. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    Science.gov (United States)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  9. Overall Characteristics of 9 kW Class Helium Refrigerator for Experimental Fusion Device

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, S [National Institute for Fusion Science, 322-Oroshi, Toki, Gifu, 509-5292 (Japan); Moriuchi, S [National Institute for Fusion Science, 322-Oroshi, Toki, Gifu, 509-5292 (Japan); Maekawa, R [National Institute for Fusion Science, 322-Oroshi, Toki, Gifu, 509-5292 (Japan); Noguchi, M [Mayekawa Mfg. Co., Ltd., 2-13-1 Botan, Koutouku, Tokyo, 135-8482 (Japan); Kuramochi, K [Mayekawa Mfg. Co., Ltd., 2-13-1 Botan, Koutouku, Tokyo, 135-8482 (Japan); Kishi, T [Mayekawa Mfg. Co., Ltd., 2-13-1 Botan, Koutouku, Tokyo, 135-8482 (Japan); Mito, T [National Institute for Fusion Science, 322-Oroshi, Toki, Gifu, 509-5292 (Japan)

    2006-06-01

    The cryogenic system for the experimental fusion device, LHD has an equivalent refrigeration capacity of 9.1 kW at 4.4 K, and will refrigerate all sets of superconducting coils, their supporting structures, superconducting bus-lines and current leads. Eight sets of oil injected screw-type compressors with the massflow rate of 1100 g/s are equipped. Massflow rate to coldbox was controlled to 700 g/s, and the other of 400 g/s was bypassed. To minimize the bypass flow and to reduce the power consumption, overall operating characteristics of the helium refrigerator were investigated in this report. A power consumption of 500 kW was decreased by reducing the massflow rate of 200 g/s in the bypass circuit.

  10. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  11. GaAs JFETs for Extremely Low-Noise, Deep Cryogenic Sensor Readout Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultrasensitive sensors used in NASAs scientific missions (for example infrared sensors) typically require operation at deep cryogenic temperatures for optimum...

  12. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  13. Proceedings of the 26th International Cryogenic Engineering Conference - International Cryogenic Material Conference 2016

    Science.gov (United States)

    Datta, T. S.; Sharma, R. G.; Kar, S.

    2017-02-01

    Session There were 6 plenary talks delivered by the eminent scientist/ technologists. The topics on which these talks were delivered were Cryogenics for Indian Space Programme, The Cold Chain, Super-fluid Cooling Technology, Review on Superconducting Materials in China, Review on Cryogenics and Superconductivity for present day MRI and finally the Mendelssohn Award lecture on the 50 years of Cryogenics and Superconductivity for High Energy Physics. Other than the plenary talks, there were 102 oral presentations covered in 18 technical sessions, out of which 21 were Invited Talks. Each session was dedicated to a specific topic like Large Scale Cryogenics, Cryogenics for Accelerators, Fusion and Space, Cryocoolers, Heat Transfer, Cryogenic Instrumentation, Superconducting Materials, Superconducting Magnets & Cavities, Power Applications, LNG & Safety etc. In addition to oral presentations there were three poster sessions spread over three days and a total of 250 posters were displayed. 4. Award Session There was a dedicated session on Award Ceremony. Dr Haishan Cao, post doctoral researcher at the University of Twente, The Netherlands received the 2016 Klipping Award for his work on Micro-machined Joule-Thomson coolers. The ICMC Cryogenic Material Awardee for Excellence (2016) was Prof. Kazumasa Iida, Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University. Japan. The paper published in ” Cryogenics 72 (2015), p 111-121 by J. Bartlett, G. Hardy, and I.D. Hepburn, titled “Performance of a fast response miniature Adiabatic Demagnetization Refrigerator using a single crystal tungsten magneto resistive heat switch” was selected for the best paper award. The prestigious 2016 Mendelssohn Award was given to Dr. Philippe Lebrun of CERN, Geneva, Switzerland for his life-long contribution to Cryogenics and Superconductivity for accelerator programme. Each awardees was also presented with a complimentary book from Springer Nature through

  14. Magnetic Refrigeration and the Magnetocaloric Effect

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank; Pryds, Nini; Smith, Anders

    2006-01-01

    Magnetic refrigeration at room temperature is an emerging technology for refrigeration, which promises low energy consumption and is environmentalle friendly. Magnetic refrigeration is based on the magnetocaloric effect, which manifests itself as a reversibel increase in temperature when magnetic...... material are plased in a magnetic field. This paper introduces and describes magnetic refrigeration cycles and the magnetocaloric effect, and shows how magnetic refrigeration can be an alternative to vapour-compression refrigeration,. A review of the Danish research on magnetic refrigeration at Risø...

  15. Cryogenics for HL-LHC

    Science.gov (United States)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  16. The LHC Cryogenic Operation Availability Results from the First Physics Run of Three Years

    CERN Document Server

    Delikaris, D; Claudet, S; Ferlin, G; Tavian, L; Wagner, U

    2013-01-01

    The LHC (Large Hadron Collider) accelerator consists in eight cryogenically independent sectors, each 3.3 km long with a cold mass of 4’500 t cooled at 1.9 K. Each helium cryogenic plant combines an 18 kW at 4.5 K refrigerator and a 2.4 kW at 1.8 K refrigeration unit. Since early operation for physics in November 2009, the availability has been above 90% for more than 260 days per year, ending at 94.8% in 2012 and corresponding to an equivalent availability of more than 99% per independent sector. The operation and support methodology as well as the achieved performance results are presented. Emphasis is given on implementing operational return for short, medium and long term consolidations. Perspective for restart after the first long shutdown of the LHC works will be described.

  17. A new ultra-low-temperature cryogen-free experimental platform

    Science.gov (United States)

    Batey, G.; Matthews, A. J.; Patton, M.

    2014-12-01

    We report the introduction of a new cryogen-free dilution refrigerator experimental platform that provides significant performance enhancements, in several key areas, over the current generation of systems. In particular the ability to: install more experimental services; install higher-field experimental magnets; dissipate more power at the ~ 4 K stage; and to attain higher cooling powers and lower base-temperatures (below 3.5 mK) at the mixing chamber plate.

  18. CRYOGENIC PROCESSES IN LOESS

    Directory of Open Access Journals (Sweden)

    V. N. Konishchev

    2017-01-01

    Full Text Available This paper presents a new approach to the analysis of the genetic nature of the mineral substance of loessial rocks. At the present time, the prevailing view on this issue is the eolian accumulation of loess, while the influence of other factors of formation has not been practically taken into account. However, loess accumulation can be explained by other mechanisms, e.g., active processes of cryogenic weathering under a very harsh climate. The latter concept is based on the results of analysis of wedge-shaped structures in loess thickness, as well as numerous data of spore-pollen, microfaunistic, and other types of analysis. Further developing concepts of loess formation, the authors made an attempt to assess the degree of influence of cryogenic processes on the composition and structure of loess. The proposed method is based on a differentiated analysis of the distribution of the main rock-forming minerals (quartz and feldspars along the granulometric spectrum. Two criteria are proposed − the coefficient of cryogenic contrast and the heavy fraction coefficient (i.e., the coefficient of distribution of heavy minerals − which allow determining the degree of participation of cryogenic processes, as well as aeolian and aqueous sedimentation, in the formation of loessial rocks. This method was used to study two sections of loessial thickness − in the south of the Russian Plain and within the Loess Plateau of China. The results of the study revealed the role of cryogenic factors in the formation of the composition of the loess horizons of soil-loess sequences of different territories. Particularly clearly the effect of cryogenesis was manifested in the loess section in the south of the Russian Plain. In the section of the Loess Plateau, only the youngest deposits of the last formation stage are affected by cryogenesis. It follows that not only within the long-term periglacial permafrost zone, but also under the conditions of seasonal freezing

  19. High Efficiency Refrigeration Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A refrigeration cycle is proposed for development which can reduce compressor work and increase cooling effect, by eliminating a portion of the irreversabilities...

  20. Toward High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industr......Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...... in industrial refrigeration systems....

  1. Towards High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industr......Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design...... in industrial refrigeration systems....

  2. Regulating Power from Supermarket Refrigeration

    DEFF Research Database (Denmark)

    O'Connell, Niamh; Madsen, Henrik; Pinson, Pierre

    2014-01-01

    This paper presents an analysis of the demand response capabilities of a supermarket refrigeration system, with a particular focus on the suitability for participation in the regulating power market. An ARMAX model of a supermarket refrigeration system is identified using experimental data from...... be represented in a manner that is sufficiently simple to communicate to a market operator in the form of a bid for the provision of regulating power....

  3. Progress Toward a Compact 0.05 K Magnet Refrigerator Operating from 10 K

    Science.gov (United States)

    Canavan, Edgar; Shirron, Peter; DiPirro, Micheal; Tuttle, James; Jackson, Michael; King, Todd; Numazawa, Takenori

    2003-01-01

    Much of the most interesting information regarding our universe is hidden in the sub-millimeter, infrared, and x-rays bands of the spectrum, to which our atmosphere is largely opaque. Thus, missions exploring these bands are a very important part of NASA s Space Science program. Coincidentally, the most sensitive detectors in these spectral regions operate at extremely low temperatures, typically 0.05 - 0.10 K. Generally these temperatures will be achieved using magnetic refrigerators, also know as Adiabatic Demagnetization Refrigerators, or ADRs. Current ADRs, such as the one used in the XRS-II instrument on the Astro-E2 satellite, use a single-stage to cool detectors from 1.3 K to 0.06 K. The ADR is designed so that it can absorb the heat on the detector stage for at least 24 hours before it must stop, warm up to the helium bath temperature (1.3 K), and dump the accumulated heat. Future detector arrays will be much larger and will have higher heat dissipation. Furthermore, future missions will use mechanical cryocoolers to provide upper stage cooling, but they can only reach 4 - 10 K. Trying to scale heavy (-15 kg) single stage ADRs up to the higher heat loads and higher heat rejection temperatures required leads to unacceptably large systems. The GSFC Cryogenics Branch has developed the Continuous ADR (CADR) to solve this problem. The CADR consists of a series of ADR stages that sequentially pass heat from the load up to the high temperature heat sink. The stage connected to the load remains at a constant temperature. The continuous stage effectively decouples detector operation from ADR operation, allowing the ADR stages to be cycled much more rapidly. Rapid cycling leads to higher cooling power density. The cascading, multistage arrangement allows the magnetic refrigerant of each stage to be optimized for its own temperature swing. In the past year, we have made good progress toward a 0.05 to 10K system. A four-stage system that operates from 4.2 K was

  4. Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    Science.gov (United States)

    Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.

    2007-01-01

    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.

  5. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  6. Dimensional stability considerations for cryogenic metals

    Science.gov (United States)

    Wigley, D. A.

    1983-01-01

    Work performed as part of an effort to identify, and where possible separate out, some of the factors that contribute to dimensional stability in cryogenic wind tunnel models is reported. Initial problems were encountered with two dimensional models made of 15-5 PH stainless steel, which warped significantly after being subjected to cryogenic testing in the 0.3 Meter Transonic Cryogenic Tunnel. Subsequently, an effort was undertaken to investigate the mechanisms that could cause model warpage during cryogenic testing. The two basic mechanisms that can lead to warpage are (1) metallurgical structural instability in which one phase transforms partially or fully into a second phase which has a different crystal structure and volume, and (2) deformation due to the creation, or relief, of unbalanced induced or residual stresses. In the case of the 15-5 PH airfoils, it is highly probable that metallurgical instability was responsible for most of the observed warpage. A particular specimen configuration was established for use in the systematic evaluation of the factors influencing warpage. Preliminary studies of a specimen made of VASCOMAX 200 suggest the possibility of manipulating the stresses in the surface layers by appropriate combinations of milling and grinding steps. This opens up the possibility of correcting or establishing the required surface profile of an airfoil.

  7. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-01-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  8. Flexure bearing cryocoolers at Thales Cryogenics

    Science.gov (United States)

    Meijers, M.; Benschop, A. A. J.; Mullié, J. C.

    2002-05-01

    Thales Cryogenics (NL) and Thales Cryogenie (F), formerly known as Signal Usfa and Cryotechnologies, closely co-operate in the field of production and development of linear and rotary cryocoolers. Over the past years, Thales Cryogenics has developed a complete range of Stirling cryocoolers with flexure bearings. In this paper the main design features of the flexure bearing compressor are explained. With these flexure bearing cryocoolers, which are available in slip-on configuration as well as IDCA (Integrated Detector Cooler Assembly), up to 6 W @80 K cooling power can be obtained. Also a pulse tube cryocooler with a specified cooling power of 500 mW @80 K has been developed. Two specific production machines have been developed and introduced in the production line. With this equipment Thales Cryogenics has been able to further improve the quality and reproducibility of its coolers. Up to now, several flexure bearing cryocoolers have been built and integrated in various new commercial and military applications requiring long life cryocoolers. Besides this, Thales Cryogenics is active in several space applications in co-operation with Air Liquide/DTA.

  9. Magneto Caloric Properties of Polycrystalline Gd2O2S for an Adiabatic Demagnetization Refrigerator

    Directory of Open Access Journals (Sweden)

    Fukuda H.

    2017-01-01

    Full Text Available Currently, many space missions that use cryogenic equipment are being planned. In particular, high resolution sensors, such as transition edge sensors, require very low operating temperatures, below 100 mK. Adiabatic demagnetization refrigerator (ADR systems are a useful tool for producing ultra-low temperatures in space because these devices can operate independently of gravity. The magnetic material is one of the most important components with respect to effectiveness of the cooling power. Thus, we could increase the cooling power using a magnetic material that has a large entropy change over the operating temperature range. Polycrystalline Gd2O2S (GOS, which was developed by Numazawa et al, can be used as such as a magnetic regenerator material. Furthermore, GOS has a very large specific heat and a magnetic phase transition temperature of about 5.2 K. These features make GOS suitable for use in the high temperature stage of an ADR. In this study, we measured and evaluated the physical properties of GOS for applications to ADRs.

  10. Cryogenic support system

    Science.gov (United States)

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  11. Cryogenic treatment of gas

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  12. A compact cryogenic pump

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  13. Refrigeration and Air Conditioning Mechanic: Apprenticeship Course Outline. Apprenticeship and Industry Training. 1411.2

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Refrigeration and Air Conditioning Mechanic apprenticeship training is a journeyman who will: (1) supervise, train and coach apprentices; (2) use and maintain hand and power tools to the standards of competency and safety required in the trade; (3) have a thorough knowledge of the principle components of refrigeration systems,…

  14. Exploring policy strategies for mitigating HFC emissions from refrigeration and air conditioning

    NARCIS (Netherlands)

    Hekkenberg, M.; Uiterkamp, Anton J. M. Schoot

    The growing demand for cooling throughout the world, possibly increased by global climate change, requires the implementation of policies to mitigate the related greenhouse gas (GHG) emissions from energy and refrigerant use in the refrigeration and air conditioning (RAC) sector. This article aims

  15. 76 FR 17573 - Energy Conservation Standards for Commercial Refrigeration Equipment: Public Meeting and...

    Science.gov (United States)

    2011-03-30

    ... refrigerators, freezers and refrigerator-freezers with transparent and solid doors designed for holding... Conservation Act of 1975, as amended, (EPCA or the Act) sets forth a variety of provisions designed to improve... is required to design each standard for this equipment to: (1) Achieve the maximum improvement in...

  16. Construction and commissioning of a hydrogen cryogenic distillation system for tritium recovery at ICIT Rm. Valcea

    Energy Technology Data Exchange (ETDEWEB)

    Ana, George, E-mail: george.ana@icsi.ro [Institute for Cryogenic and Isotopic Technologies, Rm. Valcea (Romania); Cristescu, Ion [Karlsruhe Istitute for Technologies, Tritium Laboratory, Eggenstein-Leopoldshaffen (Germany); Draghia, Mirela [ISTECH, Timisoara (Romania); Bucur, Ciprian; Balteanu, Ovidiu; Vijulie, Mihai; Popescu, Gheorghe; Costeanu, Claudiu; Sofilca, Nicolae; Stefan, Iulia; Daramus, Robert; Niculescu, Alina; Oubraham, Anisoara; Spiridon, Ionut; Vasut, Felicia; Moraru, Carmen; Brad, Sebastian [Institute for Cryogenic and Isotopic Technologies, Rm. Valcea (Romania); Pasca, Gheorghe [ISTECH, Timisoara (Romania)

    2016-05-15

    Highlights: • Cryogenic distillation (CD) process is being employed for tritium separation from tritiated hydrogen mixtures. • Process control and safety phylosophy with the detritiation plant from Rm. Vâlcea. • Tests undertaken prior to commissioning of the CD system from Rm. Vâlcea. • Preliminary experiments with the CD system (non-radiological). - Abstract: Cryogenic distillation (CD) of hydrogen in combination with Liquid Phase Catalytic Exchange (LPCE) or Combined Electrolytic Catalytic Exchange (CECE) process is used for tritium removal/recovery from tritiated water. Tritiated water is being obtained after long time operation of CANDU reactors, or in case of ITER mainly by the Detritiation System (DS). The cryogenic distillation system (CDS) used to remove/recover tritium from a hydrogen stream consists of a cascade of cryogenic distillation columns and a refrigeration unit which provides the cooling capacity for the condensers of CD columns. The columns, together with the condensers and the process heat-exchangers are accommodated in a vacuumed cold box. In the particularly case of the ICIT Plant, the cryogenic distillation cascade consists of four columns with diameters between 100–7 mm and it has been designed to process up to 10 mc/h of tritiated deuterium. This paper will present the steps undertaken for construction and commissioning of a pilot plant for tritium removal/recovery by cryogenic distillation of hydrogen. The paper will show besides preliminary data obtained during commissioning, also general characteristics of the plant and its equipments.

  17. Computer program for analysis of split-Stirling-cycle cryogenic coolers

    Science.gov (United States)

    Brown, M. T.; Russo, S. C.

    1983-01-01

    A computer program for predicting the detailed thermodynamic performance of split-Stirling-cycle refrigerators has been developed. The mathematical model includes the refrigerator cold head, free-displacer/regenerator, gas transfer line, and provision for modeling a mechanical or thermal compressor. To allow for dynamic processes (such as aerodynamic friction and heat transfer) temperature, pressure, and mass flow rate are varied by sub-dividing the refrigerator into an appropriate number of fluid and structural control volumes. Of special importance to modeling of cryogenic coolers is the inclusion of real gas properties, and allowance for variation of thermo-physical properties such as thermal conductivities, specific heats and viscosities, with temperature and/or pressure. The resulting model, therefore, comprehensively simulates the split-cycle cooler both spatially and temporally by reflecting the effects of dynamic processes and real material properties.

  18. Cryogen Free Ultra-Low Temperature Cryostat for Neutron Scattering Experiments

    Science.gov (United States)

    Downa, R. B. E.; Kirichek, O.; Manuel, P.; Keeping, J.; Bowden, Z. A.

    Most ultra-low temperature (below 1K) experiments at advanced neutron facilities are based on dilution and 3He refrigerator inserts used with Orange cryostats, or similar systems. However recent increases in liquid helium costs; caused by global helium supply problems, has raised significant concern about the affordability of such cryostats. Here we present the design and test results of a cryogen free top-loading cryostat which provides neutron scattering sample environment within the temperature range 1.25 - 300 K. The high cooling power of the cryostat 0.23 W at 1.9 K enables the operation of a dilution refrigerator insert in a continuous regime; which expands the low temperature margin of the temperature range to 35 mK. The cooling time of the dilution refrigerator insert is similar to one operated in an Orange cryostat. The main performance criteria such as base temperature, cooling power, and circulation rate are compatible with the technical specification of a standard dilution refrigerator. In fact the system offers operating parameters very similar to those of an Orange cryostat, but without the complication of cryogens. The first scientific results obtained in an ultra-low temperature neutron scattering experiment with this system are also going to be discussed.

  19. Shock compression of liquid helium and helium-hydrogen mixtures : development of a cryogenic capability for shock compression of liquid helium on Z, final report for LDRD Project 141536.

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Andrew J.; Knudson, Marcus D.; Shelton, Keegan P.; Hanson, David Lester

    2010-10-01

    This final report on SNL/NM LDRD Project 141536 summarizes progress made toward the development of a cryogenic capability to generate liquid helium (LHe) samples for high accuracy equation-of-state (EOS) measurements on the Z current drive. Accurate data on He properties at Mbar pressures are critical to understanding giant planetary interiors and for validating first principles density functional simulations, but it is difficult to condense LHe samples at very low temperatures (<3.5 K) for experimental studies on gas guns, magnetic and explosive compression devices, and lasers. We have developed a conceptual design for a cryogenic LHe sample system to generate quiescent superfluid LHe samples at 1.5-1.8 K. This cryogenic system adapts the basic elements of a continuously operating, self-regulating {sup 4}He evaporation refrigerator to the constraints of shock compression experiments on Z. To minimize heat load, the sample holder is surrounded by a double layer of thermal radiation shields cooled with LHe to 5 K. Delivery of LHe to the pumped-He evaporator bath is controlled by a flow impedance. The LHe sample holder assembly features modular components and simplified fabrication techniques to reduce cost and complexity to levels required of an expendable device. Prototypes have been fabricated, assembled, and instrumented for initial testing.

  20. Theoretical study on the efficacy of the cold compressor based cryogenic cycles

    Science.gov (United States)

    Jadhav, Mohananand; Chakravarty, A.; Atrey, M. D.

    2017-02-01

    Cold compressor based cycles have emerged as practical necessity for sub 4.5K (sub atmospheric) large scale cryogenic systems as used in most modern high energy accelerators and tokamaks. The concept of cold compressor can be applied in a generalized way for even atmospheric (high pressure) cycles, if justified. A rise in temperature is exhibited at the exit of the cold compressor due to pressurization and the inefficiency involved in the process. This rise in temperature results in gain of sensible heat, and acts like a refrigeration load at that temperature. This loss can only be acceptable if other advantages of cold compressors are substantial. In the present work, it is tried to explore the possibility of using the emerged cold compressor technology for medium scale cryogenics. One of the objectives of the study is to develop a cold compressor based refrigeration cycle which can be implemented using the present infrastructure at Cryo-Technology Division, Bhabha Atomic Research Centre (BARC). In this endeavour, a cryogenic cycle analysis tool is developed and is validated against the process data available for 2K cryogenic plant at LHC. Three cold compressor based modifications are proposed to the presently installed modified Claude cycle based helium liquefier. These three cases are analysed and compared.

  1. First Operational Experience and Performance Optimization of the ATLAS Magnet Cryogenic System

    CERN Document Server

    Delruelle, N; Dudarev, A; Passardi, G; Ten Kate, H H J

    2012-01-01

    The ATLAS magnet system, comprising a superconducting central solenoid and three superconducting toroids, has been successfully ramped up for the first time to the nominal operational current of 20.4 kA on 4th August 2008. Since then, new cryogenic operational challenges have been raised, like the smoothing of steady-state parameters, the enhancing of transient procedures to minimize thermal shocks on the magnet cold masses, the optimization of the complex cryogenic system in order to reduce the compressors electric consumption and finally how to avoid regular clogging of the shield refrigerator by water contamination. This paper presents the heat load identification of the various cryogenic sub-systems done at 4.5 K and how one of these loads was reduced, what was gained - in term of electrical consumption - by tuning the turbines settings of the main refrigerator and finally the first consolidation of the cryogenic system implemented in order to minimize the detector downtime during LHC beam runs.

  2. High-pressure refrigeration system with CO2 in automobile air-conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Wertenbach, J.; Kauf, F. [Daimler-Benz, Stuttgart (Germany)

    1998-12-31

    Due to high consumer acceptance of automobile air conditioning systems, the discussion of the effects of refrigerants on global warming is becoming more important to an environmentally-aware public. The consumption of fossil fuels to operate air conditioning systems, combined with refrigerant emissions, contribute to the greenhouse effect. Substitution of conventional refrigerants with CO2 reduces the load on heat-adsorbing gases in our atmosphere by providing an environment-friendly alternative. Because the amount of engine power devoted to air conditioning systems is limited, carbon dioxide makes an attractive substitute for HFC refrigerants in vehicle applications. In this paper, TEWI-figures for a vehicle with A/C System are considered, and the reduction potential due to CO2 as refrigerant as a motive for phasing out current technology is shown. This includes a comparison of COP`s between a conventional cold vapor cycle and the transcritical refrigerant cycle using CO2 to evaluate benefits and disadvantages. The high pressure refrigerant cycle has to be seen in the light of the requirement profile for introduced MACS. Furthermore, assorted results from the European RACE (Refrigeration and Automotive Climate systems under Environmental aspects) project are presented. The theory of the refrigerant cycle, tests results, packaging in a vehicle, and first experiences of component development are discussed, as well as difficulties in adapting this `Green Technology` to a car. 7 refs.

  3. Field Testing of Cryogenic Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, Aaron [Sustainable Energy Solutions, LLC; Frankman, Dave [Sustainable Energy Solutions, LLC; Baxter, Andrew [Sustainable Energy Solutions, LLC; Stitt, Kyler [Sustainable Energy Solutions, LLC; Baxter, Larry [Sustainable Energy Solutions, LLC; Brigham Young Univ., Provo, UT (United States)

    2017-07-17

    Sustainable Energy Solutions has been developing Cryogenic Carbon Capture™ (CCC) since 2008. In that time two processes have been developed, the External Cooling Loop and Compressed Flue Gas Cryogenic Carbon Capture processes (CCC ECL™ and CCC CFG™ respectively). The CCC ECL™ process has been scaled up to a 1TPD CO2 system. In this process the flue gas is cooled by an external refrigerant loop. SES has tested CCC ECL™ on real flue gas slip streams from subbituminous coal, bituminous coal, biomass, natural gas, shredded tires, and municipal waste fuels at field sites that include utility power stations, heating plants, cement kilns, and pilot-scale research reactors. The CO2 concentrations from these tests ranged from 5 to 22% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at a modest rate. The CCC CFG™ process has been scaled up to a .25 ton per day system. This system has been tested on real flue gas streams including subbituminous coal, bituminous coal and natural gas at field sites that include utility power stations, heating plants, and pilot-scale research reactors. CO2 concentrations for these tests ranged from 5 to 15% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at 90+%. Hg capture was also verified and the resulting effluent from CCC CFG™ was below a 1ppt concentration. This paper will focus on discussion of the capabilities of CCC, the results of field testing and the future steps surrounding the development of this technology.

  4. Aerogel Insulation to Support Cryogenic Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking a high performance thermal insulation material for cryogenic applications in space launch development. Many of the components in cryogenic...

  5. Cryogenic Propellant Storage and Transfer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cryogenic Propellant Storage and Transfer project will demonstrate the capability to safely and efficiently store, transfer and measure cryogenic propellants,...

  6. A maintenance strategy for a multi-valve cryogenic distribution system

    Science.gov (United States)

    Fydrych, J.; Consogno, G.

    2017-12-01

    Big scientific facilities that use cryogenic technologies usually need to transfer and distribute cooling power from a cryogenic plant to cryogenic users. This requires a cryogenic distribution system which includes a number of valve boxes at the interfaces to the cryomodules and magnet cryostats. Such systems consist of a number of components which can malfunction or get damaged in many ways leading to unwanted shut downs of the entire facility. In order to avoid these problems or mitigate their consequences the cryogenic distribution system should be properly operated and maintained. This requires planning of maintenance works, storing spare parts and ordering some service works. The paper presents a maintenance strategy for a multivalve cryogenic distribution system.

  7. The Proximity Cryogenic System for the ATLAS Toroidal Magnets

    CERN Document Server

    Baynham, D Elwyn; Brown, G; Cragg, D; Crook, M; Haug, F; Mayri, C; Orlowska, A H; Passardi, Giorgio; Pengo, R; ten Kate, H H J; Rochford, J; Sole, D

    2002-01-01

    ATLAS is a very high-energy detector for the Large Hadron Collider (LHC) at CERN. The superconducting magnet used to provide the required magnetic field consists of four sub-systems: a central solenoid and a very large toroidal magnet comprising two end-cap magnets and the barrel toroid magnet. The associated cryogenic system, currently in the final specification and procurement phase has been sub-divided into three parts: internal, proximity and external. The internal cryogenics minimizes and extracts the heat loads to/from the 4.5 K cold mass and its thermal shields, while the proximity cryogenics takes the cooling capacity generated by the external common system and distributes it to the four magnets according to the various operating scenarios. Two independent proximity cryogenic systems have been designed taking into account the difference in cooling principle of the solenoid and the three toroids, respectively.

  8. The proximity cryogenic system for the ATLAS toroidal magnets

    Science.gov (United States)

    Haug, F.; Passardi, G.; Pengo, R.; ten Kate, H.; Baynham, E.; Bradshaw, T.; Brown, G.; Cragg, D.; Crook, M.; Orlowska, A. H.; Rochford, J.; Sole, D.; Mayri, C.

    2002-05-01

    ATLAS is a very high-energy detector for the Large Hadron Collider (LHC) at CERN. The superconducting magnet used to provide the required magnetic field consists of four sub-systems: a central solenoid and a very large toroidal magnet comprising two end-cap magnets and the barrel toroid magnet. The associated cryogenic system, currently in the final specification and procurement phase has been sub-divided into three parts: internal, proximity and external. The internal cryogenics minimizes and extracts the heat loads to/from the 4.5 K cold mass and its thermal shields, while the proximity cryogenics takes the cooling capacity generated by the external common system and distributes it to the four magnets according to the various operating scenarios. Two independent proximity cryogenic systems have been designed taking into account the difference in cooling principle of the solenoid and the three toroids, respectively.

  9. Modular, Rapid Propellant Loading System/Cryogenic Testbed

    Science.gov (United States)

    Hatfield, Walter, Sr.; Jumper, Kevin

    2012-01-01

    The Cryogenic Test Laboratory (CTL) at Kennedy Space Center (KSC) has designed, fabricated, and installed a modular, rapid propellant-loading system to simulate rapid loading of a launch-vehicle composite or standard cryogenic tank. The system will also function as a cryogenic testbed for testing and validating cryogenic innovations and ground support equipment (GSE) components. The modular skid-mounted system is capable of flow rates of liquid nitrogen from 1 to 900 gpm (approx equals 3.8 to 3,400 L/min), of pressures from ambient to 225 psig (approx equals 1.5 MPa), and of temperatures to -320 F (approx equals -195 C). The system can be easily validated to flow liquid oxygen at a different location, and could be easily scaled to any particular vehicle interface requirements

  10. Overview of the Long-Baseline Neutrino Facility cryogenic system

    CERN Document Server

    Montanari, David; Bremer, Johan; Delaney, Michael; Aurelien, Diaz; Doubnik, Roza; Haaf, Kevin; Hentschel, Steve; Norris, Barry; Voirin, Erik

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. It also details the status of the design, ...

  11. Recirculating cryogenic hydrogen maser

    Energy Technology Data Exchange (ETDEWEB)

    Huerlimann, M.D.; Hardy, W.N.; Berlinsky, A.J.; Cline, R.W.

    1986-08-01

    We report on the design and initial testing of a new type of hydrogen maser, operated at dilution refrigerator temperatures, in which H atoms circulate back and forth between a microwave-pumped state selector and the maser cavity. Other novel design features include liquid-/sup 4/He-coated walls, He-cooled electronics, and the use of microscopic magnetic particles to relax the two lowest hyperfine levels in the state selector. Stabilities at least as good as that of a Rb clock and a high-stability quartz oscillator are observed for measuring times between 1 and 300 s.

  12. Experience on a cryogenic linear mechanism based on superconducting levitation

    Science.gov (United States)

    Serrano-Tellez, Javier; Romera-Juarez, Fernando; González-de-María, David; Lamensans, Mikel; Argelaguet-Vilaseca, Heribert; Pérez-Díaz, José-Luis; Sánchez-Casarrubios, Juan; Díez-Jiménez, Efrén.; Valiente-Blanco, Ignacio

    2012-09-01

    The instrumentation of many space missions requires operation in cryogenic temperatures. In all the cases, the use of mechanisms in this environment is a matter of concern, especially when long lifetime is required. With the aim of removing lifetime concerns and to benefit from the cryogenic environment, a cryogenic contactless linear mechanism has been developed. It is based on the levitation of a permanent magnet over superconductor disks. The mechanism has been designed, built, and tested to assess the performances of such technology. The levitation system solves the mechanical contact problems due to cold-welding effects, material degradation by fatigue, wearing, backlash, lubrication...etc, at cryogenic temperatures. In fact, the lower is the temperature the better the superconductor levitation systems work. The mechanism provides a wide stroke (18mm) and high resolution motion (1μm), where position is controlled by changing the magnetic field of its environment using electric-magnets. During the motion, the moving part of the mechanism levitates supported by the magnetic interaction with the high temperature type II superconductors after reaching the superconductor state down to 90K. This paper describes the results of the complete levitation system development, including extensive cryogenic testing to measure optically the motion range, resolution, run-outs and rotations in order to characterize the levitation mechanism and to verify its performance in a cryogenic environment.

  13. Performance of Screw Compressor for Small-Capacity Helium Refrigerators

    Science.gov (United States)

    Urashin, Masayuki; Matsubara, Katsumi; Izunaga, Yasushi

    A helium compressor is one of the important components comprising a cryogenic refrigerator. The purpous of this investigation is to develop a new small-capacity helium screw compressor. The performance of a single-stage compressor at high compression ratio and the cooling performance of the compressor are investigated. A semi-hermetic screw compressor with new profile screw rotors, with which high performance can be obtained, is utilized in this investigation. Lubricating oil is applied to cool the compressor motor and the compressed gas. As a result, an overall isentropic efficiency of 80% is obtained when helium is compressed to a compression ratio of 19.8 with a single-stage screw compressor. At the same time, the temperature of a compressor motor and discharge gas can be maintained at low levels. Therefore, it is found that a single-stage screw compressor can compress helium to high compression ratio.

  14. Properties of a two stage adiabatic demagnetization refrigerator

    Science.gov (United States)

    Fukuda, H.; Ueda, S.; Arai, R.; Li, J.; Saito, A. T.; Nakagome, H.; Numazawa, T.

    2015-12-01

    Currently, many space missions using cryogenic temperatures are being planned. In particular, high resolution sensors such as Transition Edge Sensors need very low temperatures, below 100 mK. It is well known that the adiabatic demagnetization refrigerator (ADR) is one of most useful tools for producing ultra-low temperatures in space because it is gravity independent. We studied a continuous ADR system consisting of 4 stages and demonstrated it could provide continuous temperatures around 100 mK. However, there was some heat leakage from the power leads which resulted in reduced cooling power. Our efforts to upgrade our ADR system are presented. We show the effect of using the HTS power leads and discuss a cascaded Carnot cycle consisting of 2 ADR units.

  15. A review of pulse tube refrigeration

    Science.gov (United States)

    Radebaugh, Ray

    1990-01-01

    This paper reviews the development of the three types of pulse tube refrigerators: basic, resonant, and orifice types. The principles of operation are given. It is shown that the pulse tube refrigerator is a variation of the Stirling-cycle refrigerator, where the moving displacer is substituted by a heat transfer mechanism or by an orifice to bring about the proper phase shifts between pressure and mass flow rate. A harmonic analysis with phasors is described which gives reasonable results for the refrigeration power, yet is simple enough to make clear the processes which give rise to the refrigeration. The efficiency and refrigeration power are compared with those of other refrigeration cycles. A brief review is given of the research being done at various laboratories on both one- and two-stage pulse tubes. A preliminary assessment of the role of pulse tube refrigerators is discussed.

  16. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    Science.gov (United States)

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  17. Refrigeration system having dual suction port compressor

    Science.gov (United States)

    Wu, Guolian

    2016-01-05

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  18. 16 CFR Appendix A2 to Part 305 - Refrigerators and Refrigerators-Freezers With Manual Defrost

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Refrigerators and Refrigerators-Freezers With Manual Defrost A2 Appendix A2 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION... Refrigerators-Freezers With Manual Defrost Range Information Manufacturer's Rated Total Refrigerated Volume in...

  19. Load forecasting for supermarket refrigeration

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Aalborg Nielsen, Henrik

    This report presents a study of models for forecasting the load for supermarket refrigeration. The data used for building the forecasting models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. The load for refrigeration is the sum of all cabinets in the supermarket, both low and medium temperature cabinets, and spans a period of one year. As input to the forecasting models the ambient temperature observed near the supermarket together with weather forecasts are used. Every hour...... the hourly load for refrigeration for the following 42 hours is forecasted. The forecast models are adaptive linear time-series models which are fitted with a computationally efficient recursive least squares scheme. The dynamic relations between the inputs and the load is modeled by simple transfer...

  20. Dilution Refrigeration of Multi-Ton Cold Masses

    CERN Document Server

    Wikus, P; CERN. Geneva

    2007-01-01

    Dilution refrigeration is the only means to provide continuous cooling at temperatures below 250 mK. Future experiments featuring multi-ton cold masses require a new generation of dilution refrigeration systems, capable of providing a heat sink below 10 mK at cooling powers which exceed the performance of present systems considerably. This thesis presents some advances towards dilution refrigeration of multi-ton masses in this temperature range. A new method using numerical simulation to predict the cooling power of a dilution refrigerator of a given design has been developed in the framework of this thesis project. This method does not only allow to take into account the differences between an actual and an ideal continuous heat exchanger, but also to quantify the impact of an additional heat load on an intermediate section of the dilute stream. In addition, transient behavior can be simulated. The numerical model has been experimentally verified with a dilution refrigeration system which has been designed, ...

  1. Recent Progress in Power Refrigeration below 2 K for Superconducting Accelerators

    CERN Document Server

    Claudet, Serge

    2005-01-01

    As a result of technico-economical optimization and quest for increased performance, 2 K cryogenics is now present in large accelerator projects using superconducting magnets or acceleration cavities. Consequently, large cryogenic systems producing refrigeration capacity below 2 K in the kW range and with high efficiency over a large dynamic range are needed. After CEBAF and SNS, this is the case for the Large Hadron Collider (LHC) project at CERN for which eight 2.4 kW @ 1.8 K refrigeration units are needed to cool each a 3.3 km long sector of high-field magnets. Combining cold hydrodynamic compressors in series with warm volumetric compressors, complete pre-series units as well as sets of series cold compressors have been intensively tested and validated from two different industrial suppliers. After recalling the possible 2 K refrigeration cycles and their comparative merits, this paper describes the specific features of the LHC system and presents the achieved performance with emphasis on the progress in...

  2. The CERN cryogenic test facility for the ATLAS barrel toroid magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    2000-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m/sup 2/ experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and i...

  3. The CERN Cryogenic Test Facility for the Atlas Barrel Toroid Magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    1999-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m2 experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and its ins...

  4. Improving demand response potential of a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Pedersen, Rasmus; Schwensen, John; Biegel, Benjamin

    2017-01-01

    through tests on a full scale supermarket refrigeration system made available by Danfoss A/S. The conducted application test shows that feedback based on food temperature can increase the demand flexibility during a step by approx. 60 % the first 70 minutes and up to 100%over the first 150 minutes...... a method for estimating food temperature based on measurements of evaporator expansion valve opening degree. This method requires no additional hardware or system modeling. We demonstrate the estimation method on a real supermarket display case and the applicability of knowing food temperature is shown...... - thereby strengthening the demand response potential of supermarket refrigeration systems....

  5. Wheel-type magnetic refrigerator

    Science.gov (United States)

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  6. Load forecasting of supermarket refrigeration

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Buth; Bacher, Peder; Madsen, Henrik

    2016-01-01

    This paper presents a novel study of models for forecasting the electrical load for supermarket refrigeration. The data used for building the models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. Every hour the hourly electrical load for refrigeration is forecasted for the following 42 h. The forecast models are adaptive linear time series models. The model has two regimes; one for opening hours and one for closing hours, this is modeled by a regime switching model and two different...

  7. Alternatives to ozone depleting refrigerants in test equipment

    Science.gov (United States)

    Hall, Richard L.; Johnson, Madeleine R.

    1995-01-01

    This paper describes the initial results of a refrigerant retrofit project at the Aerospace Guidance and Metrology Center (AGMC) at Newark Air Force Base, Ohio. The objective is to convert selected types of test equipment to properly operate on hydrofluorocarbon (HFC) alternative refrigerants, having no ozone depleting potential, without compromising system reliability or durability. This paper discusses the primary technical issues and summarizes the test results for 17 different types of test equipment: ten environmental chambers, two ultralow temperature freezers, two coolant recirculators, one temperature control unit, one vapor degreaser, and one refrigerant recovery system. The postconversion performance test results have been very encouraging: system capacity and input power remained virtually unchanged. In some cases, the minimum operating temperature increased by a few degrees as a result of the conversion, but never beyond AGMC's functional requirements.

  8. Electron refrigeration in hybrid structures with spin-split superconductors

    Science.gov (United States)

    Rouco, M.; Heikkilä, T. T.; Bergeret, F. S.

    2018-01-01

    Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel coupling spin-split superconductors with regular ones allows for a highly efficient refrigeration of the latter.

  9. FRIB Cryogenic Distribution System and Status

    Energy Technology Data Exchange (ETDEWEB)

    Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Laverdure, Nathaniel A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Yang, Shuo [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nellis, Timothy [Michigan State Univ., East Lansing, MI (United States); Jones, S. [Michigan State Univ., East Lansing, MI (United States); Casagrande, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    The MSU-FRIB cryogenic distribution system supports the 2 K primary, 4 K primary, and 35 - 55 K shield operation of more than 70 loads in the accelerator and the experimental areas. It is based on JLab and SNS experience with bayonet-type disconnects between the loads and the distribution system for phased commissioning and maintenance. The linac transfer line, which features three separate transfer line segments for additional independence during phased commissioning at 4 K and 2 K, connects the folded arrangement of 49 cryomodules and 4 superconducting dipole magnets and a fourth transfer line supports the separator area cryo loads. The pressure reliefs for the transfer line process lines, located in the refrigeration room outside the tunnel/accelerator area, are piped to be vented outdoors. The transfer line designs integrate supply and return flow paths into a combined vacuum space. The main linac distribution segments are produced in a small number of standard configurations; a prototype of one such configuration has been fabricated at Jefferson Lab and has been installed at MSU to support testing of a prototype FRIB cryomodule.

  10. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  11. Low-noise cryogenic transmission line

    Science.gov (United States)

    Norris, D.

    1987-01-01

    New low-noise cryogenic input transmission lines have been developed for the Deep Space Network (DSN) at 1.668 GHz for cryogenically cooled Field Effect Transistors (FET) and High Electron Mobility Transistor (HEMT) amplifiers. These amplifiers exhibit very low noise temperatures of 5 K to 15 K, making the requirements for a low-noise input transmission line critical. Noise contribution to the total amplifier system from the low-noise line is less than 0.5 K for both the 1.668-GHz and 2.25-GHz FET systems. The 1.668-GHz input line was installed in six FET systems which were implemented in the DSN for the Venus Balloon Experiment. The 2.25-GHz input line has been implemented in three FET systems for the DSN 34-m HEF antennas, and the design is currently being considered for use at higher frequencies.

  12. Solar Refrigerators Store Life-Saving Vaccines

    Science.gov (United States)

    2014-01-01

    Former Johnson Space Center engineer David Bergeron used his experience on the Advanced Refrigeration Technology Team to found SunDanzer Refrigeration Inc., a company specializing in solar-powered refrigerators. The company has created a battery-free unit that provides safe storage for vaccines in rural and remote areas around the world.

  13. 49 CFR 173.174 - Refrigerating machines.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or less...

  14. 46 CFR 154.702 - Refrigerated carriage.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigerated carriage. 154.702 Section 154.702 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1...

  15. Method and apparatus for desuperheating refrigerant

    Energy Technology Data Exchange (ETDEWEB)

    Zess, James A. (Kelso, WA); Drost, M. Kevin (Richland, WA); Call, Charles J. (Richland, WA)

    1997-01-01

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim.

  16. Cryogenic fluid management experiment

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  17. Cryogenic Piezoelectric Actuator

    Science.gov (United States)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  18. Refrigeration Cycle Design for Refrigerant Mixtures by Molecular Simulation

    Czech Academy of Sciences Publication Activity Database

    Smith, W.R.; Francová, Magda; Kowalski, M.; Nezbeda, Ivo

    2010-01-01

    Roč. 75, č. 4 (2010), s. 383-391 ISSN 0010-0765 R&D Projects: GA AV ČR IAA400720710 Grant - others:NSERC(CA) OGP1041 Institutional research plan: CEZ:AV0Z40720504 Keywords : refrigerants * molecular simulations * vapor–liquid equilibrium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.853, year: 2010

  19. Densely Packed Lanthanide Cubane Based 3D Metal-Organic Frameworks for Efficient Magnetic Refrigeration and Slow Magnetic Relaxation.

    Science.gov (United States)

    Biswas, Soumava; Mondal, Amit Kumar; Konar, Sanjit

    2016-03-07

    Two isostructural densely packed squarato-bridged lanthanide-based 3D metal-organic frameworks (MOFs) [Ln5(μ3-OH)5(μ3-O)(CO3)2(HCO2)2(C4O4)(H2O)2] [Ln = Gd (1) and Dy (2)] show giant cryogenic magnetic refrigeration (for 1) and slow magnetic relaxation (for 2). The structural analyses reveal the presence of a self-assembled crown-shaped building unit with a cubane-based rectangular moiety that leads to a special array of metal centers in 3D space in the complexes. Magnetic investigations confirm that complex 1 exhibits one of the largest cryogenic magnetocaloric effects among the molecular magnetic refrigerant materials reported so far (-ΔSm = 64.0 J kg(-1) K(-1) for ΔH = 9 T at 3 K). The cryogenic cooling effect (of 1) is also quite comparable with that of the commercially used magnetic refrigerant gadolinium-gallium garnet, whereas for complex 2, slow relaxation of magnetization was observed below 10 K.

  20. Active Cooling for Downhole Instrumentation: Miniature Thermoacoustic Refrigerator.

    Science.gov (United States)

    Bennett, Gloria Adame

    1991-02-01

    A miniature active cooling system capable of providing multi-watt refrigeration for thermally protecting downhole instruments used in hot geothermal wells is researched, developed and designed. The engineering design process is used to develop design criteria and design constraints and to select potential refrigeration processes. A literature search identifies nine physical and chemical processes and twenty six systems appropriate for a feasibility study. Each refrigeration process is investigated to search for suitable high temperature components and a refrigerant, thereby eliminating only three processes and nine systems. Consistent analysis of an ideal thermodynamic cycle for each of the six remaining refrigeration processes further reduces the choices to three processes and seven systems. Final selection requires consideration of refrigerator and geothermal logging system thermal, mechanical and electrical interactions to define failure modes, insure compatibility with existing hardware, and allow adaptability to changes in design criteria. Results of calculations from postulated design criteria changes provide insight into design simplicity and data for further selection. A decision model is constructed and used to organize design constraints and criteria and sort out those useful for making a final selection. Final selection is based on maximizing system simplicity and providing graceful degradation in case of refrigerator failure. The consistent design, systematic analysis and unbiased selection process represent a body of research results that is new to this technology and provides a potential for advance not realized to date. The selected thermoacoustic process and the designed refrigeration system are analyzed in detail, with numerical models constructed for each subsystem, and component and for the component interactions. The thermoacoustic wave equation is extended to allow sloped rather than parallel acoustic plates. This extension increases acoustic

  1. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    Science.gov (United States)

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  2. Hierarchy of two-phase flow models for autonomous control of cryogenic loading operation

    Science.gov (United States)

    Luchinskiy, Dmitry G.; Ponizovskaya-Devine, Ekaterina; Hafiychuk, Vasyl; Kashani, Ali; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara

    2015-12-01

    We report on the development of a hierarchy of models of cryogenic two-phase flow motivated by NASA plans to develop and maturate technology of cryogenic propellant loading on the ground and in space. The solution of this problem requires models that are fast and accurate enough to identify flow conditions, detect faults, and to propose optimal recovery strategy. The hierarchy of models described in this presentation is ranging from homogeneous moving- front approximation to separated non-equilibrium two-phase cryogenic flow. We compare model predictions with experimental data and discuss possible application of these models to on-line integrated health management and control of cryogenic loading operation.

  3. High Efficiency, Low Emission Refrigeration System

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2016-08-01

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the high refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced for

  4. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  5. Solar-Powered Refrigeration System

    Science.gov (United States)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  6. Strategy for conformity of non-standard cryogenic equipment

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    CERN as an intergovernmental organization establishes its own Safety Rules as necessary for its proper functioning. In particular, the CERN General Safety Instruction for cryogenic equipment requires that cryogenic pressure equipment at CERN shall comply with the European Pressure Equipment Directive (PED). However, due to the particular features of some of the cryogenic equipment required for the accelerators, as well as the existence of international collaborations with in-kind contributions from non-EU countries, full compliance with the PED may not always be achieved. This situation is foreseen in the Safety Rules, where CERN HSE will define the Safety requirements applicable to such equipment as well as any eventual additional compensatory measure as to ensure a commensurate level of Safety for our pressure equipment. Where compliance with PED may not be achieved, CERN HSE will become the de facto Notified Body and therefore be in charge of the assessment of the conformity of the equipment to the applica...

  7. Simulation and experimental research of heat leakage of cryogenic transfer lines

    Science.gov (United States)

    Deng, B. C.; Xie, X. J.; Pan, W.; Jiang, R. X.; Li, J.; Yang, S. Q.; Li, Q.

    2017-12-01

    The heat leakage of cryogenic transfer lines directly influences the performance of large-scale helium refrigerator. In this paper, a thermal model of cryogenic transfer line considering numerical simulation of support coupled with MLI was established. To validate the model, test platform of cryogenic transfer lines with the merits of disassembly outer pipe and changeable easily multi-layer insulation has been built. The experimental results of heat leakage through overall length of cryogenic transfer lines, support and multi-layer insulation were obtained. The heat leakages of multi-layer insulation, a support and the overall leakage are 1.02 W/m, 0.44 W and 1.46 W/m from experimental data, respectively. The difference of heat leakage of MLI between experiment and simulation were less than 5%. The temperature distribution of support and MLI obtained in presented model in good agreement with experimental data. It is expected to reduce the overall heat leakage of cryogenic transfer lines further by optimizing structure of support based on the above thermal model and test platform in this paper.

  8. Keeping Cool With Solar-Powered Refrigeration

    Science.gov (United States)

    2003-01-01

    In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.

  9. Cryogenic cooler apparatus

    Science.gov (United States)

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  10. Cryogenic Cam Butterfly Valve

    Science.gov (United States)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  11. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  12. Influence of Thermal Cycling on Cryogenic Thermometers

    CERN Document Server

    Balle, C; Rieubland, Jean Michel; Suraci, A; Togny, F; Vauthier, N

    1999-01-01

    The stringent requirements on temperature control of the superconducting magnets for the Large Hadron Collider (LHC), impose that the cryogenic temperature sensors meet compelling demands such as long-term stability, radiation hardness, readout accuracy better than 5 mK at 1.8 K and compatibility with industrial control equipment. This paper presents the results concerning long-term stability of resistance temperature sensors submitted to cryogenic thermal cycles. For this task a simple test facility has been designed, constructed and put into operation for cycling simultaneously 115 cryogenic thermometers between 300 K and 4.2 K. A thermal cycle is set to last 71/4 hours: 3 hours for either cooling down or warming up the sensors and 1 respectively 1/4 hour at steady temperature conditions at each end of the temperature cycle. A Programmable Logic Controller (PLC) drives automatically this operation by reading 2 thermometers and actuating on 3 valves and 1 heater. The first thermal cycle was accomplished in a...

  13. TankSIM: A Cryogenic Tank Performance Prediction Program

    Science.gov (United States)

    Bolshinskiy, L. G.; Hedayat, A.; Hastings, L. J.; Moder, J. P.; Schnell, A. R.; Sutherlin, S. G.

    2015-01-01

    Accurate prediction of the thermodynamic state of the cryogenic propellants in launch vehicle tanks is necessary for mission planning and successful execution. Cryogenic propellant storage and transfer in space environments requires that tank pressure be controlled. The pressure rise rate is determined by the complex interaction of external heat leak, fluid temperature stratification, and interfacial heat and mass transfer. If the required storage duration of a space mission is longer than the period in which the tank pressure reaches its allowable maximum, an appropriate pressure control method must be applied. Therefore, predictions of the pressurization rate and performance of pressure control techniques in cryogenic tanks are required for development of cryogenic fluid long-duration storage technology and planning of future space exploration missions. This paper describes an analytical tool, Tank System Integrated Model (TankSIM), which can be used for modeling pressure control and predicting the behavior of cryogenic propellant for long-term storage for future space missions. It is written in the FORTRAN 90 language and can be compiled with any Visual FORTRAN compiler. A thermodynamic vent system (TVS) is used to achieve tank pressure control. Utilizing TankSIM, the following processes can be modeled: tank self-pressurization, boiloff, ullage venting, and mixing. Details of the TankSIM program and comparisons of its predictions with test data for liquid hydrogen and liquid methane will be presented in the final paper.

  14. An Analysis of 50mK and 300mK Cryogenic Environments for Future ESA Science Missions

    Science.gov (United States)

    Reed, J.; Perkinson, M. C.; D'Arrigo, P.; Geelen, K.; Hepburn, I.; Brockley-Blatt, C.; Duband, L.; Bradshaw, T.

    2008-03-01

    A number of future European Space Agency (ESA), science missions may require detector cooling to sub-Kelvin temperatures. One such mission is the X-ray Evolving Universe Spectroscopy (XEUS), mission, which is a candidate for the ESA Cosmic Vision 2015-2025 plan, following XMM-Newton and Chandra. The Detector Spacecraft model payload comprises a passively cooled wide-field camera at 200K, and one of two narrow-field instruments at 300mK and 50mK. As with several other science missions, the required lifetime is at least 5 years, with a 10 year goal, necessitating the use of long-life closed cycle cooling systems. Under contract to ESA, Astrium has worked with the Mullard Space Science Laboratory (MSSL), Rutherford Appleton Laboratory (RAL), and CEA-SBT, to propose a payload accommodation design for XEUS capable of meeting the demanding requirements. Our baseline consists of a two stage Adiabatic Demagnetization Refrigerator (ADR), at 50mK, and a helium sorption cooler at 300mK. Each system will be pre-cooled by a closed cycle J-T system, similar to Planck, at 2.5K or 4K, which itself will be pre-cooled by a two-stage Stirling cycle cooler, at 17K or 18K. This paper describes the mission, and discusses the cryogenic architectures in depth.

  15. Long-life micro vacuum chamber for a micromachined cryogenic cooler

    NARCIS (Netherlands)

    Cao, Haishan; Vermeer, Cristian Hendrik; Vanapalli, Srinivas; Holland, Herman J.; ter Brake, Hermanus J.M.

    2015-01-01

    Micromachined cryogenic coolers can be used for cooling small electronic devices to improve their performance. However, for reaching cryogenic temperatures, they require a very good thermal insulation from the warm environment. This is established by a vacuum space that for adequate insulation has

  16. Baseline Configuration of the Cryogenic System for the International Linear Collider

    CERN Document Server

    Casas-Cubillos, J; Claudet, S; Ganni, R; Klebaner, A; Parma, V; Peterson, T; Riddone, G; Rode, C; Rousset, B; Serio, L; Tavian, L; Theilacker, J; Vullierme, B; Van Weelderen, R; Weisend, J

    2007-01-01

    The paper discusses the main constraints and boundary conditions and describes the baseline configuration of the International Linear Collider (ILC) cryogenic system. The cryogenic layout, architecture and the cooling principle are presented. The paper addresses a plan for study and development required to demonstrate and improve the performance, to reduce cost and to attain the desired reliability.

  17. A Novel Flow Measurement System for Cryogenic Two-Phase Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flow rate measurements for cryogenic propellants are required for spacecraft and space exploration systems. Such a requirement has been hampered by lack of fast and...

  18. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.

    Science.gov (United States)

    Haidari, Leila A; Brown, Shawn T; Wedlock, Patrick; Connor, Diana L; Spiker, Marie; Lee, Bruce Y

    2017-04-19

    Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as "electric refrigerators") at different locations in the supply chain under various circumstances. At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. Copyright © 2017. Published

  19. Lightweight Inflatable Cryogenic Tank Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an inflatable and lightweight polymer-fabric structured pressure vessel designed for the containment of cryogenic fluids....

  20. Cryogenic Acoustic Suppression Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will explore and test the feasibility and effectiveness of using a cryogenic fluid (liquid nitrogen) to facilitate acoustic suppression in a...

  1. Cryogenic MEMS Pressure Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A directly immersible cryogenic MEMS pressure sensor will be developed. Each silicon die will contain a vacuum-reference and a tent-like membrane. Offsetting thermal...

  2. A Cryogenic Flow Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the success of the phase I effort, Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of...

  3. Balanced design and commissioning of a 500W/4.5K helium refrigerator and its liquefier

    Science.gov (United States)

    Lu, X. F.; Y Zhang, Q.; Qiu, L. L.; Fu, B.; Zhou, Z. W.

    2017-12-01

    A 500W/4.5K helium refrigerator for ADS (Accelerator Driven Subcritical) project of CAS (Chinese Academy of Sciences) has been designed. The functional requirements and process analysis of this helium refrigerator are described. Based on the regulation of the high pressure, a balanced design between refrigeration capacity and liquefaction capacity for equal Carnot work with the same high efficiencies is presented. The constraints of components and operation strategies in refrigeration mode and liquefaction mode are discussed. Commissioning results indicated that this 500W/4.5K helium refrigerator can provide 5.74g/s (or 165L/h) liquid helium in liquefaction mode or 550W at 4.5K in refrigeration mode with the respective FOM (Figure of Merit) of 14% or 13.2%. Existing problems were analyzed and discussed through comparing the theoretical calculation and experimental data, and some suggestions are given at the end of this paper.

  4. Miniaturized Air-to-Refrigerant Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Radermacher, Reinhard [Univ. of Maryland, College Park, MD (United States); Bacellar, Daniel [Univ. of Maryland, College Park, MD (United States); Aute, Vikrant [Univ. of Maryland, College Park, MD (United States); Huang, Zhiwei [Univ. of Maryland, College Park, MD (United States); Hwang, Yunho [Univ. of Maryland, College Park, MD (United States); Ling, Jiazhen [Univ. of Maryland, College Park, MD (United States); Muehlbauer, Jan [Univ. of Maryland, College Park, MD (United States); Tancabel, James [Univ. of Maryland, College Park, MD (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Mingkan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-23

    Air-to-refrigerant Heat eXchangers (HX) are an essential component of Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) systems, serving as the main heat transfer component. The major limiting factor to HX performance is the large airside thermal resistance. Recent literature aims at improving heat transfer performance by utilizing enhancement methods such as fins and small tube diameters; this has lead to almost exhaustive research on the microchannel HX (MCHX). The objective of this project is to develop a miniaturized air-to-refrigerant HX with at least 20% reduction in volume, material volume, and approach temperature compared to current state-of-the-art multiport flat tube designs and also be capable of production within five years. Moreover, the proposed HX’s are expected to have good water drainage and should succeed in both evaporator and condenser applications. The project leveraged Parallel-Parametrized Computational Fluid Dynamics (PPCFD) and Approximation-Assisted Optimization (AAO) techniques to perform multi-scale analysis and shape optimization with the intent of developing novel HX designs whose thermal-hydraulic performance exceeds that of state-of-the-art MCHX. Nine heat exchanger geometries were initially chosen for detailed analysis, selected from 35+ geometries which were identified in previous work at the University of Maryland, College Park. The newly developed optimization framework was exercised for three design optimization problems: (DP I) 1.0kW radiator, (DP II) 10kW radiator and (DP III) 10kW two-phase HX. DP I consisted of the design and optimization of 1.0kW air-to-water HX’s which exceeded the project requirements of 20% volume/material reduction and 20% better performance. Two prototypes for the 1.0kW HX were prototyped, tested and validated using newly-designed airside and refrigerant side test facilities. DP II, a scaled version DP I for 10kW air-to-water HX applications, also yielded optimized HX designs

  5. Performance evaluation of heat exchanger for mixed refrigerant J-T cryocooler

    Science.gov (United States)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-09-01

    In mixed refrigerant Joule-Thomson cryocooler, a multi-component mixture of nitrogen-hydrocarbons undergoes evaporation and condensation process in a helical coiled heat exchanger simultaneously at different pressures. Experimental data and empirical correlations for predicting heat transfer coefficients of evaporating and condensing streams of multi-component mixtures at cryogenic temperatures are unavailable. As a result, design of these heat exchangers is a challenging task. The present work aims to address this challenge. It assesses the existing condensation correlations against the calculated data obtained during experimentation. Experiments are conducted to determine overall heat transfer coefficients along the length of the heat exchanger for various mixtures. The paper studies the applicability of these correlations to the multi-component mixtures at cryogenic temperatures.

  6. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  7. Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems

    Science.gov (United States)

    Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana

    2017-12-01

    At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.

  8. Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator.

    Science.gov (United States)

    MacDonald, A J R; Popowich, G G; Hauer, B D; Kim, P H; Fredrick, A; Rojas, X; Doolin, P; Davis, J P

    2015-01-01

    We have developed a system for tapered fiber measurements of optomechanical resonators inside a dilution refrigerator, which is compatible with both on- and off-chip devices. Our apparatus features full three-dimensional control of the taper-resonator coupling conditions enabling critical coupling, with an overall fiber transmission efficiency of up to 70%. Notably, our design incorporates an optical microscope system consisting of a coherent bundle of 37,000 optical fibers for real-time imaging of the experiment at a resolution of ∼1 μm. We present cryogenic optical and optomechanical measurements of resonators coupled to tapered fibers at temperatures as low as 9 mK.

  9. Control and operation cost optimization of the HISS cryogenic system

    Science.gov (United States)

    Porter, J.; Bieser, F.; Anderson, D.

    1983-08-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable design to provide a maximum particle bending field of 3 tesla. A previous paper describes the cryogenic facility including helium refrigeration and gas management. A control strategy which has allowed full time unattended operation, along with significant nitrogen and power cost reductions is discussed. Reduction of liquid nitrogen consumption was accomplished by using the sensible heat available in the cold exhaust gas. Measured nitrogen throughput agrees with calculations for sensible heat utilization of zero to 70%. Calculated consumption saving over this range is 40 liters per hour for conductive losses to the supports only. It is found that the measured throughput differential for the total system is higher.

  10. Control and operation cost optimization of the HISS cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Porter, J.; Bieser, F.; Anderson, D.

    1983-08-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable design to provide a maximum particle bending field of 3 tesla. A previous paper describes the cryogenic facility including helium refrigeration and gas management. This paper discusses a control strategy which has allowed full time unattended operation, along with significant nitrogen and power cost reductions. Reduction of liquid nitrogen consumption has been accomplished by making use of the sensible heat available in the cold exhaust gas. Measured nitrogen throughput agrees with calculations for sensible heat utilization of zero to 70%. Calculated consumption saving over this range is 40 liters per hour for conductive losses to the supports only. The measured throughput differential for the total system is higher.

  11. Development of a New Air Liquide Cryogenic Expander

    Science.gov (United States)

    Marot, G.; Courty, J. C.; Delcayre, F.; Drevard, L.; Durand, F.; Gianese, P.

    2006-04-01

    Air Liquide's Advanced Technology Division is a manufacturer of cryogenic expanders. More than 450 units are now working around the world, mainly dedicated to liquefiers, refrigerators and H2-CO purification units. In order to cope with the power increase of these units, a new expander called "TC7" has been developed and tested. This expander permits turbine wheel diameters up to 110 mm, while the other units of the range (from TC3 to TC6, by increasing wheel diameter) are limited to 78 mm. The maximum flow rate is therefore doubled. The main technical features of the existing range have been kept, and adapted in size: static radial and thrust bearings, low loss casing, variety of wheel shapes (radial-radial shrouded or un-shrouded, radial-axial). This paper describes the main design characteristics of this new expander, together with manufacturing aspects and test results.

  12. Installation and pre-commissioning of the cryogenic system of JT-60SA tokamak

    Science.gov (United States)

    Hoa, C.; Michel, F.; Roussel, P.; Fejoz, P.; Girard, S.; Goncalves, R.; Lamaison, V.; Natsume, K.; Kizu, K.; Koide, Y.; Yoshida, K.; Cardella, A.; Portone, A.; Verrecchia, M.; Wanner, M.; Beauvisage, J.; Bertholat, F.; Gaillard, G.; Heloin, V.; Langevin, B.; Legrand, J.; Maire, S.; Perrier, J. M.; Pudys, V.

    2017-02-01

    The cryogenic system for the superconducting tokamak JT-60SA is currently being commissioned in Naka, Japan and shall be ready for operation in summer 2016. This contribution is part of the Broader Approach agreement between Japan and Europe. With an equivalent refrigeration capacity of about 9.5 kW at 4.5 K the cryogenic system will supply cryo-pump panels at 3.7 K, superconducting magnets and their structures at 4.4 K, high temperature superconducting current leads at 50 K and thermal shields between 80 K and 100 K. The system has been specifically designed to handle large pulse loads at 4.4 K during plasma operation. The mechanical and electrical assembly of the cryogenic system has been achieved within six months by October 2015. The main contractor Air Liquide Advanced Technology (AL-aT) have supplied eight parallel working screw compressors with a common oil removal and dryer system, a Refrigeration Cold Box and an Auxiliary Cold box with cold rotating machines. F4E has provided six GHe storage vessels and QST has provided the complete infrastructure and the facilities for the utilities. The paper gives an overview of the main design features, the infrastructure and the status of installation and pre-commissioning.

  13. Development of cryogenic installations for large liquid argon neutrino detectors

    CERN Document Server

    Adamowski, M; Geynisman, M; Hentschel, S; Montanari, D; Nessi, M; Norris, B

    2015-01-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these...

  14. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-01-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between multiple identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five GRC provided coupons with 25 layers was shown to be +/- 8.4 whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0. A second group of 10 coupons have been fabricated by Yetispace and tested by Florida State University, through the first 4 tests, the repeatability has been shown to be +/- 16. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  15. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  16. Study on the Materials for Compressor and Reliability of Refrigeration Circuit in Refrigerator with R134a Refrigerant

    Science.gov (United States)

    Komatsubara, Takeo; Sunaga, Takasi; Takahasi, Yasuki

    R134a was selected as the alternative refrigerant for R12 because of the similar thermodynamic properties with R12. But refrigeration oil for R12 couldn't be used for R134a because of the immiscibility with R134a. To solve this problem we researched miscible oil with R134a and selected polyol ester oil (POE) as refrigeration oil. But we found sludge deposition into capillary tube after life test of refrigerator with POE and detected metal soap, decomposed oil and alkaline ions by analysis of sludge. This results was proof of phenomena like oil degradation, precipitation of process materials and wear of compressor. Therefore we improved stability and lubricity of POE, reevaluated process materials and contaminations in refrigerating circuit. In this paper we discuss newly developed these technologies and evaluation results of it by life test of refrigerator.

  17. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study☆

    Science.gov (United States)

    Haidari, Leila A.; Brown, Shawn T.; Wedlock, Patrick; Connor, Diana L.; Spiker, Marie; Lee, Bruce Y.

    2017-01-01

    Background Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Methods Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as “electric refrigerators”) at different locations in the supply chain under various circumstances. Results At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Conclusion Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar

  18. Load forecasting of supermarket refrigeration

    DEFF Research Database (Denmark)

    Rasmussen, Lisa Buth; Bacher, Peder; Madsen, Henrik

    2016-01-01

    This paper presents a novel study of models for forecasting the electrical load for supermarket refrigeration. The data used for building the models consists of load measurements, local climate measurements and weather forecasts. The load measurements are from a supermarket located in a village...... in Denmark. Every hour the hourly electrical load for refrigeration is forecasted for the following 42 h. The forecast models are adaptive linear time series models. The model has two regimes; one for opening hours and one for closing hours, this is modeled by a regime switching model and two different...... methods for predicting the regimes are tested. The dynamic relation between the weather and the load is modeled by simple transfer functions and the non-linearities are described using spline functions. The results are thoroughly evaluated and it is shown that the spline functions are suitable...

  19. CO2 as a refrigerant

    CERN Document Server

    2014-01-01

    A first edition, the IIR guide “CO2 as a Refrigerant” highlights the application of carbon dioxide in supermarkets, industrial freezers, refrigerated transport, and cold stores as well as ice rinks, chillers, air conditioning systems, data centers and heat pumps. This guide is for design and development engineers needing instruction and inspiration as well as non-technical experts seeking background information on a specific topic. Written by Dr A.B. Pearson, a well-known expert in the field who has considerable experience in the use of CO2 as a refrigerant. Main topics: Thermophysical properties of CO2 – Exposure to CO2, safety precautions – CO2 Plant Design – CO2 applications – Future prospects – Standards and regulations – Bibliography.

  20. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    Science.gov (United States)

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  1. Suction muffler for refrigeration compressor

    Science.gov (United States)

    Nelson, Richard T.; Middleton, Marc G.

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  2. Carbon Dioxide in Supermarket Refrigeration

    OpenAIRE

    Sawalha, Samer

    2008-01-01

    This thesis theoretically and experimentally investigates different aspects of the application of CO2 in supermarket refrigeration. Theoretical analysis has been performed using computer simulation models developed to simulate CO2 indirect, NH3/CO2 cascade, CO2 trans-critical and direct expansion (DX) R404A systems. The models supported the selection of the CO2 system solutions to be tested experimentally and facilitated the design of NH3/CO2 cascade and trans-critical systems test rigs. Perf...

  3. A Simulation Modeling Approach Method Focused on the Refrigerated Warehouses Using Design of Experiment

    Science.gov (United States)

    Cho, G. S.

    2017-09-01

    For performance optimization of Refrigerated Warehouses, design parameters are selected based on the physical parameters such as number of equipment and aisles, speeds of forklift for ease of modification. This paper provides a comprehensive framework approach for the system design of Refrigerated Warehouses. We propose a modeling approach which aims at the simulation optimization so as to meet required design specifications using the Design of Experiment (DOE) and analyze a simulation model using integrated aspect-oriented modeling approach (i-AOMA). As a result, this suggested method can evaluate the performance of a variety of Refrigerated Warehouses operations.

  4. Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, John [TIAX LLC, Lexington, MA (United States)

    2013-04-04

    Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerants – HFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making the global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.

  5. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  6. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia

    2003-01-01

    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  7. Dual Cryogenic Capacitive Density Sensor

    Science.gov (United States)

    Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

    2009-01-01

    A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

  8. Refrigeration and the Reduction of the Takeoff Rate of Bushmeat

    Directory of Open Access Journals (Sweden)

    Andrew J. Buck

    2017-01-01

    Full Text Available Rising incomes in the developing world has led to increased consumption of bushmeat as a luxury good with a mounting risk of species extirpation. In a two-period model with stochastic supply, this article shows that the simple expedient of introducing refrigeration to the bushmeat markets can lead to the reduction of harvest rates. In the absence of refrigeration, all bushmeat brought to the market must be sold immediately, putting downward pressure on price and sending the incorrect signal to hunters that everything they kill can and will be sold. With refrigeration, it is possible to carry over inventory from one period to the next, which in turn limits harvests. Although harvest rates fall unequivocally, there may be no incentive for market participants to introduce refrigeration. This last result is explained through the use of the economists’ notion of economic welfare as measured by consumer and producer surplus. Achieving the socially desirable goal of lower harvest rates may require third-party intervention in the market.

  9. Load management for refrigeration systems: Potentials and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Grein, Arne, E-mail: a.grein@tu-berlin.de [University of Technology Berlin, Institute for Energy Technology, Department of Energy Systems, Einsteinufer 25 (TA8), 10587 Berlin (Germany); Pehnt, Martin [Institute for Energy and Environmental Research Heidelberg (ifeu), Wilckensstr. 3, 69120 Heidelberg (Germany)

    2011-09-15

    As a strategy to deal with the increasing intermittent input of renewable energy sources in Germany, the adaptation of power consumption is complementary to power-plant regulation, grid expansion and physical energy storage. One demand sector that promises strong returns for load management efforts is cooling and refrigeration. In these processes, thermal inertia provides a temporal buffer for shifting and adjusting the power consumption of cooling systems. We have conducted an empirical investigation to obtain a detailed and time-resolved bottom-up analysis of load management for refrigeration systems in the city of Mannheim, Germany. We have extrapolated our results to general conditions in Germany. Several barriers inhibit the rapid adoption of load management strategies for cooling systems, including informational barriers, strict compliance with legal cooling requirements, liability issues, lack of technical experience, an inadequate rate of return and organizational barriers. Small commercial applications of refrigeration in the food-retailing and cold storage in hotels and restaurants are particularly promising starting points for intelligent load management. When our results are applied to Germany, suitable sectors for load management have theoretical and achievable potential values of 4.2 and 2.8 GW, respectively, amounting to about 4-6% of the maximum power demand in Germany. - Highlights: > Potential and barriers for implementation of load shifting for refrigeration. > Empirical investigation for time-resolved bottom-up analysis in Mannheim, Germany. > Suitable sectors and further recommendations for introducing load management.> Extrapolation of results from local to national level.

  10. Adsorption refrigeration technology theory and application

    CERN Document Server

    Wang, Ruzhu; Wu, Jingyi

    2014-01-01

    Gives readers a detailed understanding of adsorption refrigeration technology, with a focus on practical applications and environmental concerns Systematically covering the technology of adsorption refrigeration, this book provides readers with a technical understanding of the topic as well as detailed information on the state-of-the-art from leading researchers in the field. Introducing readers to background on the development of adsorption refrigeration, the authors also cover the development of adsorbents, various thermodynamic theories, the design of adsorption systems and adsorption refri

  11. Energy efficient for refrigeration and air conditioning

    OpenAIRE

    Abdeen Mustafa Omer

    2015-01-01

    Over the years, all parts of a commercial refrigerator, such as the compressor, heat exchangers, refrigerant, and packaging, have been improved considerably due to the extensive research and development efforts carried out by academia and industry. However, the achieved and anticipated improvement in conventional refrigeration technology are incremental since this technology is already nearing its fundamentals limit of energy efficiency is described is ‘magnetic refrigeration’ which is an evo...

  12. Economic evaluation of solar-powered triple-fluid Einstein refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    Qenawy, A.M.; El-Dib, A.W.F.; Ghoraba, M.M. [Cairo Univ., Giza (Egypt). Mechanical Power Dept., Faculty of Engineering

    2006-07-01

    The renewed interest in solar cooling systems can be attributed to rising energy prices and environmental concerns. However, the controlling factor for successful commercialization of such systems is their economic feasibility. In response, systems using solar energy are being actively developed. An alternative to vapor compression systems is the absorption refrigerator cycle which can be driven by low grade energy such as solar energy. Single pressure absorption systems are characterized by absorbing and refrigerant mediums as well as by a pressure-equalizing medium. Two cycles of this type exist, namely the ammonia-water-hydrogen (AWH) and the Einstein cycles. In the Einstein refrigeration cycle, the generator produces ammonia, the pressure-equalizing fluid that lowers the liquid butane partial pressure in the evaporator, thereby producing a cooling effect. In the proposed system, the solar collector acts as the generator. This paper investigated the economics of solar powered Einstein refrigeration system for use in the food industry or for ice production in isolated fish villages in Egypt. Such an icemaker could be used to refrigerate vaccines, meat, dairy products or vegetables. The ice can be sold as a commercial product, or used in a cooler or icebox refrigerator. Solar energy is required to produce the cooling effect in the solar powered Einstein refrigeration cycle. Although solar radiant energy is free, the equipment required to convert it to a useful cooling is not. The system ice production cost was found to be approximately 50 per cent more than other conventional refrigeration systems. Although the initial cost of the solar refrigerator was found to be relatively high, it could be an acceptable solution if this equipment is mass produced. The use of the system is essential in rural areas which do not have electric service. 12 refs., 4 figs.

  13. Integrated heat exchanger design for a cryogenic storage tank

    Science.gov (United States)

    Fesmire, J. E.; Tomsik, T. M.; Bonner, T.; Oliveira, J. M.; Conyers, H. J.; Johnson, W. L.; Notardonato, W. U.

    2014-01-01

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  14. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    Science.gov (United States)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-12-01

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Because each subsystem has to be far away from each other and be placed in the distant location, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  15. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  16. Spiral 2 cryogenic system overview: Design, construction and performance test

    Energy Technology Data Exchange (ETDEWEB)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S. [Air Liquide Advanced Technologies, Sassenage (France); Souli, M. [GANIL, Caen (France); Commeaux, C. [IPN, Orsay (France)

    2014-01-29

    The new particle accelerator project Spiral 2 at GANIL (“Grand Accélérateur d’Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  17. Spiral 2 cryogenic system overview: Design, construction and performance test

    Science.gov (United States)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S.; Souli, M.; Commeaux, C.

    2014-01-01

    The new particle accelerator project Spiral 2 at GANIL ("Grand Accélérateur d'Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  18. A Cryogenic High-Reynolds Turbulence Experiment at CERN

    CERN Document Server

    Bézaguet, Alain-Arthur; Knoops, S; Lebrun, P; Pezzetti, M; Pirotte, O; Bret, J L; Chabaud, B; Garde, G; Guttin, C; Hébral, B; Pietropinto, S; Roche, P; Barbier-Neyret, J P; Baudet, C; Gagne, Y; Poulain, C; Castaing, B; Ladam, Y; Vittoz, F

    2002-01-01

    The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively ...

  19. A word from the DG: A cryogenic success

    CERN Multimedia

    2007-01-01

    The beginning of this month saw the start of a new phase in the LHC project, with its first inauguration, for the LHC cryogenics. This was marked with a symposium in the Globe attended by 178 representatives of the industrial partners and research institutes involved. It also coincided with stable low-temperature operation of the cryogenic plant for sector 7-8, the first sector of the LHC to be cooled down. A look at the LHC web site (http://lhc.web.cern.ch/lhc/) shows this steady operation. The cryogenic system for the LHC is the largest and most complex ever built, involving many large devices on an industrial scale, where reliability is of paramount importance. The LHC’s energy of 7 TeV required a high magnetic field provided by niobium-titanium coils operating at 1.9 K. This is a new temperature regime for large-scale cryogenics, chosen to make use of the excellent heat-transfer properties of helium in its superfluid state. The final design for the LHC cryogenics had to incorporate both newly ordered ...

  20. An Overview of Recent Cryogenic Fluid Management Developments

    Science.gov (United States)

    Hedayat, A.; Johnson, W. L.; Stephens, J. R.

    2017-01-01

    (GRC, MSFC, JSC, and KSC) collaborated to investigate multiple different hardware combinations, refrigeration cycles, and integration techniques to minimize power and mass of the storage and liquefaction system. Moreover, high efficiency, high capacity cryocoolers are an element of CFM which is essential for achieving NASA's future long duration missions. Currently in development is a 20W at 20K unit for use with liquid hydrogen. It is scheduled for delivery to NASA in the summer of 2017. Two Phase I SBIRS have recently concluded resulting in the preliminary design of two different 90K units, each having a refrigeration capacity of approximately 150W. Once the development efforts are complete, these high capacity 90K units will be integrated into the design of NASA's Liquid Oxygen (LOX)/Methane applications such as the Lander and Ascent Vehicles, or possibly an in-space stage. CFM technology is critical to the success of missions to Mars, Planetary Exploration, and In-Situ Resource Utilization (ISRU) for cryogenic propellant production. NASA is focusing on the development of CFM technologies needed to provide necessary data and relevant experience to support informed decisions on implementation of design of cryogenic systems for long term space missions. Lessons learned from the described CFM developments would lead to enhanced safety and reliability and enabling technologies which could allow NASA to meet future space exploration goals.

  1. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 1: Refrigerant Properties

    Energy Technology Data Exchange (ETDEWEB)

    Mark O. McLinden; Arno Laesecke; Eric W. Lemmon; Joseph W. Magee; Richard A. Perkins

    2002-08-30

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of measuring thermodynamic properties R125, R410A and R507A, measuring viscosity and thermal conductivity of R410A and R507A and comparing data to mixture models in NIST REFPROP database. For R125, isochoric (constant volume) heat capacity was measured over a temperature range of 305 to 397 K (32 to 124 C) at pressures up to 20 MPa. For R410A, isochoric heat capacity was measured along 8 isochores with a temperature range of 303 to 397 K (30 to 124 C) at pressures up to 18 MPa. Pressure-density-temperature was also measured along 14 isochores over a temperature range of 200 to 400 K (-73 to 127 C) at pressures up to 35 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. For R507A, viscosity was measured along 5 isotherms over a temperature range of 301 to 421 K (28 to 148 C) at pressures up to 83 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. Mixture models were developed to calculate the thermodynamic properties of HFC refrigerant mixtures containing R32, R125, R134a and/or R125. The form of the model is the same for all the blends considered, but blend-specific mixing functions are required for the blends R32/125 (R410 blends) and R32/134a (a constituent binary of R407 blends). The systems R125/134a, R125/143a, R134a/143a, and R134a/152a share a common, generalized mixing function. The new equation of state for R125 is believed to be the most accurate and comprehensive formulation of the properties for that fluid. Likewise, the mixture model developed in this work is the

  2. Collapsible Cryogenic Storage Vessel Project

    Science.gov (United States)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  3. Continuous Magnetic Refrigerators for Cooling in the 0.05 to 10 K Range

    Science.gov (United States)

    Shirron, Peter; DiPirro, Michael; Canavan, Edgar; Tuttle, James; Panek, John; Jackson, Michael; King, Todd; Numazawa, Takenori; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    Low temperature refrigeration is an increasingly vital technology for NASA's Space Science program since most detectors being developed for x-ray, IR and sub-millimeter missions must be cooled to below 100 mK in order to meet the requirements for energy and spatial resolution. For space applications, magnetic refrigeration has an inherent advantage over alternative techniques because it does not depend on gravity. Adiabatic demagnetization refrigerators, or ADRs, are relatively simple, solid state devices. The basic elements are a magnetocaloric refrigerant (usually an encapsulated paramagnetic salt) located in the bore of a superconducting magnet, and a heat switch linking the salt to a heat sink. The alignment of magnetic spins with the magnetic field causes the refrigerant to warm as the magnetic field increases and cool as the field decreases. Thus the simple process of magnetizing the refrigerant to high field with the heat switch closed, then demagnetizing it with the heat switch open allows one to obtain temperatures well below 100 mK using a heat sink as warm as 4.2 K. The refrigerant can maintain a low temperature for a length of time depending on the applied and parasitic heat loads, its mass, and the initial magnetic field strength. Typically ADRs are designed for 12-24 hours of hold time, after which they must be warmed up and recycled.

  4. 136 Xe enrichment through cryogenic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Back, Henning O.; Bottenus, Daniel R.; Clayton, Christopher K.; Stephenson, David E.; TeGrotenhuis, Ward E.

    2017-09-01

    The next generation of 136Xe neutrinoless double beta decay experiments will require on the order of 5 tons of enriched 136Xe. By estimating the relative volatilities of the xenon isotopes and using standard chemical engineering techniques we explore the feasibility of using cryogenic distillation to produce 5 tons of 80% enriched 136Xe in 5-6 years. With current state-of-the-art distillation column packing materials we can estimate the total height of a traditional cryogenic distillation column. We also, report on how Micro Channel Distillation may reduce the overall size of a distillation system for 136Xe production.

  5. Beam screen regenerative heating cryogenic impact and feasibility

    CERN Document Server

    Tavian, Laurent

    2003-01-01

    Desorbtion of gas (H2, CO, CO2...) trapped on the beam screen wall is envisaged by regenerative heating to temperature varying between 40 K and 90 K depending on the gas species. This new requirement has direct consequences on the cold mass heat loads, on the heating capacity needed to reach the regeneration conditions, as well as on the heater and piping configuration. This note presents different configuration schemes, studies the cryogenic feasibility with existing limitations and gives the impact on the cryogenic system in terms of additional equipment and corresponding extra costs.

  6. Natural refrigerants in commercial and household refrigerators and freezers; Natuurlijke koudemiddelen in commerciele en huishoud koel- en vrieskasten

    Energy Technology Data Exchange (ETDEWEB)

    Havenaar, D.

    2008-01-15

    Refrigerators and freezers manufactured by Gram are completely free of CFCs (including the insulation of the cabinets) because they are using natural refrigerants and save 47-74% energy. Natural refrigerants do not influence the ozon layer and almost they do not contribute to global warming. But they have a higher cooling capacity that requires less refrigerants with the same result. [Dutch] Koel- en vrieskasten van Gram zijn volledig HFK vrij (ook de isolatie van de kasten) en maken gebruik van natuurlijke koudemiddelen en besparen 47-74% energie. Natuurlijke koudemiddelen tasten de ozonlaag niet aan en vormen nagenoeg geen bijdrage aan het broeikaseffect maar hebben een groter koelvermogen, waardoor minder koudemiddelvulling nodig is voor hetzelfde resultaat. Ook wordt gebruik gemaakt van speciale componenten met laag energiegebruik. Het energiegebruik is de helft tot een kwart ten opzichte van gebruikelijke kosten. De besparing op jaarbasis in Nederland bedraagt totaal circa 200.000 kWh. Hierdoor wordt het milieu in de sector 'huishoud- en commerciele koeling' aanzienlijk minder belast.

  7. Refrigerant charge management in a heat pump water heater

    Science.gov (United States)

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  8. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    Science.gov (United States)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  9. Cryogenics bringing the temperature down, underground

    CERN Multimedia

    2005-01-01

    The first 600m of the LHC cryogenic distribution line (QRL), which will feed the accelerator's superconducting magnets, has passed initial validating tests of its mechanical design at room and cryogenic temperatures.

  10. Cryogenic Microcooling, A micromachined cold stage operating with a sorption compressor in a vapor compression cycle

    NARCIS (Netherlands)

    Burger, Johannes Faas

    2001-01-01

    Cryocoolers are refrigerators capable of reaching temperatures below roughly 120 kelvin. Such coolers are used for cooling of, for instance, superconducting electronics and magnets, (infrared) detectors, and cryopumps. Low-temperature applications requiring very little cooling power, such as a

  11. Cryogenic distribution box for Fermi National Accelerator Laboratory

    Science.gov (United States)

    Svehla, M. R.; Bonnema, E. C.; Cunningham, E. K.

    2017-12-01

    Meyer Tool & Mfg., Inc (Meyer Tool) of Oak Lawn, Illinois is manufacturing a cryogenic distribution box for Fermi National Accelerator Laboratory (FNAL). The distribution box will be used for the Muon-to-electron conversion (Mu2e) experiment. The box includes twenty-seven cryogenic valves, two heat exchangers, a thermal shield, and an internal nitrogen separator vessel, all contained within a six-foot diameter ASME coded vacuum vessel. This paper discusses the design and manufacturing processes that were implemented to meet the unique fabrication requirements of this distribution box. Design and manufacturing features discussed include: 1) Thermal strap design and fabrication, 2) Evolution of piping connections to heat exchangers, 3) Nitrogen phase separator design, 4) ASME code design of vacuum vessel, and 5) Cryogenic valve installation.

  12. Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Barry [Fermilab; Bremer, Johan [CERN; Chalifour, Michel [Fermilab; Delaney, Mike [Fermilab; Dinnon, Mike [Fermilab; Doubnik, Roza [Fermilab; Geynisman, Michael [Fermilab; Hentschel, Steve [Fermilab; Kim, Min Jeong [Fermilab; Stefanik, Andy [Fermilab; Tillman, Justin [Fermilab; Zuckerbrot, Mike [Fermilab

    2017-01-01

    The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260 ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned, and

  13. Activities of the enterprise Linde on the field of cryogenics - within the meaning of the bequest of Carl von Linde. Linde-Aktivitaeten auf dem Gebiet der Kryotechnik im Sinne des Vermaechtnisses von Carl von Linde

    Energy Technology Data Exchange (ETDEWEB)

    Patzelt, A. (Linde AG, Werksgruppe Verfahrenstechnik und Anlagenbau, Hoellriegelskreuth (Germany))

    1992-01-01

    The patent for the liquefaction of air and other gases by Carl von Linde was the basis for the set up of a refrigeration industry. In the area of cryogenics at temperatures between liquid hydrogen and liquid helium the actual status will presented by 3 examples. (orig.).

  14. Cryogenic thermometry with a common diode: type BAS16

    NARCIS (Netherlands)

    Rijpma, A.P.; ter Brake, Hermanus J.M.

    2006-01-01

    Cryogenic test experiments often require a large number of temperatures to be monitored. In order to reduce cost, we investigated the feasibility of low-cost common diodes. We chose the Philips BAS16 diode in a type SOT23 package. By means of Stycast 2850FT, these diodes were glued into alumina

  15. Cryogenic linear Paul trap for cold highly charged ion experiments

    DEFF Research Database (Denmark)

    Schwarz, Maria; Versolato, Oscar; Windberger, Alexander

    2012-01-01

    Storage and cooling of highly charged ions require ultra-high vacuum levels obtainable by means of cryogenic methods. We have developed a linear Paul trap operating at 4 K capable of very long ion storage times of about 30 h. A conservative upper bound of the H2 partial pressure of about 10−15 mbar...

  16. A pressurized He II cryogenic system for the superconducting magnet test facility at KEK

    CERN Document Server

    Kimura, N; Iida, M; Tanaka, K; Tsuchiya, K; Ajima, Y; Higashi, N; Nakamoto, T; Nakamoto, K; Ohuchi, N; Ogitsu, T; Shintomi, T; Sugawara, S; Takahashi, N; Terashima, A; Wachi, Y; Yamamoto, A

    2002-01-01

    A cryogenic system for the test facility of high gradient superconducting quadrupole magnets for the Large Hadron Collider (LHC) at CERN has been constructed at KEK. It consists of a vertical double-bath cryostat in He II at an atmospheric pressure, a vacuum pumping system and a pair of refrigerator/liquefiers to maximize the cooling capacity to test 6.3 m long magnets. The system has been successfully operated in the first cold test at the 6.3 m prototype magnet since March 2001 with a refrigeration power of 55.5 W at 1.9 K. The design and test results are described in this paper. (6 refs).

  17. Experimental And Numerical Investigations of Ejector Jet Refrigeration System With Primary Stream Swirl

    OpenAIRE

    Parveen Banu, Jiautheen; Mallikarjuna, Jawali Maharudrappa; Mani, Annamalai

    2016-01-01

    Among the various heat powered refrigerated systems, vapour jet refrigeration system (VJRS) is attractive because of its simple and rugged nature. Ejector is a key component in VJRS and the performance of the whole system depends on the effective performance of the ejector. Ejector can be operated with low grade energy by utilizing the heat from solar energy, waste heat from industrial exhaust, automobile exhaust, etc, at minimum temperature of about 60°C[1]. Besides that, this system requir...

  18. Silicon Germanium Cryogenic Low Noise Amplifiers

    Science.gov (United States)

    Bardin, J. C.; Montazeri, S.; Chang, Su-Wei

    2017-05-01

    Silicon germanium heterojunction bipolar transistors have emerged in the last decade as an excellent option for use in cryogenic low noise amplifiers. This paper begins with a review of the critical developments that have led to today’s cryogenic low noise amplifiers. Next, recent work focused on minimizing the power consumption of SiGe cryogenic amplifiers is presented. Finally, open issues related to the cryogenic noise properties of SiGe HBTs are discussed.

  19. Cryogenic safety organisation at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  20. High speed cryogenic monodisperse targets

    Science.gov (United States)

    Boukharov, A.; Vishnevkii, E.

    2017-11-01

    The basic possibility of creation of high speed cryogenic monodisperse targets is shown. According to calculations at input of thin liquid cryogenic jets with a velocity of bigger 100 m/s in vacuum the jets don’t manage to freeze at distance to 1 mm and can be broken into monodisperse drops. Drops due to evaporation are cooled and become granules. High speed cryogenic monodisperse targets have the following advantages: direct input in vacuum (there is no need for a chamber of a triple point chamber and sluices), it is possible to use the equipment of a cluster target, it is possible to receive targets with a diameter of D 100m/s), exact synchronization of the target hitting moment in a beam with the moment of sensors turning on.

  1. The Mirror Fusion Test Facility cryogenic system: Performance, management approach, and present equipment status

    Energy Technology Data Exchange (ETDEWEB)

    Slack, D.S.; Chronis, W.C.

    1987-06-08

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) is a 14-kW, 4.35-K helium refrigeration system that proved to be highly successful and cost-effective. All operating objectives were met, while remaining within a few percent of initial cost and schedule plans. The management approach used in MFTF allowed decisions to be made quickly and effectively, and it helped keep costs down. Manpower levels, extent and type of industrial participation, key aspects of subcontractor specifications, and subcontractor interactions are reviewed, as well as highlights of the system tests, operation, and present equipment status. Organizations planning large, high-technology systems may benefit from this experience with the MFTF cryogenic system.

  2. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (LHC)

    CERN Document Server

    Claudet, S; Tavian, L; Wagner, U

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world’s largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility..

  3. Cryogen free cooling of ASTRO-H SXS Helium Dewar from 300 K to 4 K

    Science.gov (United States)

    Kanao, Ken'ichi; Yoshida, Seiji; Miyaoka, Mikio; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Narasaki, Katsuhiro; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuji; Sato, Yoichi; Okamoto, Atsushi; Noda, Hirofumi; DiPirro, Michel J.; Shirron, Peter J.

    2017-12-01

    Soft X-ray Spectrometer instrument (SXS) is one of the primary scientific instruments of ASTRO-H. SXS has a cold detector that is cooled to 50 mK by using a multi-stage Adiabatic Demagnetization Refrigerator (ADR). SXS Dewar containing ADR provides 1.3 K heat sink by using liquid helium in nominal operation. After liquid helium is dried up, 4 K heat sink is provided by using mechanical coolers. Both nominal operation and cryogen free operation were successfully demonstrated. This paper describes the test result of cryogen free operation and cool-down performance from room temperature by using only mechanical coolers without liquid helium. The coolers on the Dewar cooled down cold mass from around 300 K to 4 K with 260 W electric power in 40 days. Cold mass is 35 kg in 4 K area including the helium tank, ADR and detector assembly.

  4. Development and testing of a passive check valve for cryogenic applications

    Science.gov (United States)

    Moore, B. D.; Maddocks, J. R.; Miller, F. K.

    2014-11-01

    Several cryogenic technologies use check valves, such as the Cold Cycle Dilution Refrigerator (CCDR) and the Hybrid Pulse-Tube/Reverse-Brayton Cryocooler. This paper details the development of a reed-style passive check valve with a PTFE seat for cryogenic applications. The experimental results of tests on the valve using helium gas at temperatures from 293 K down to 5.2 K, verify a scaling argument based on fundamental fluid dynamics that allows results from 78 K to be used in predicting valve performance at much lower temperatures. The scaling argument is then applied to a test conducted at the normal boiling point of Nitrogen to examine the results of improved fabrication methods.

  5. Refrigeration generation using expander-generator units

    Science.gov (United States)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  6. Commissioning of a 20 K helium refrigeration system for NASA-JSC Chamber-A

    Science.gov (United States)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2014-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL's Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (23 metric tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the design, project execution and commissioning results.

  7. 20 K Helium Refrigeration System for NASA-JSC Chamber-A

    Science.gov (United States)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhelef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope. The chamber previously and currently still has helium cryopumping panels (CPP) and LN2 shrouds used to create Low Earth Orbit environments. Now with the new refrigerator and new helium shrouds (45 x 65 ) the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Labs, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate a inverse coefficient of performance better than 70 W/W for a 18 KW load at 20 K (accounting for liquid nitrogen precooling power) that remains essentially constant down to 1/3 of this load. Even at 10 percent of the maximum capacity, the performance is better than 140 W/W at 20K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10kW at 15 K to 100 kW at 100K. The refrigerator is capable of operating at any load temperature from 15K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  8. Commissioning of a 20 K Helium Refrigeration System for NASA-JSC Chamber A

    Science.gov (United States)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center s Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  9. The cryogenic photon detection system for the ALPS II experiment. Characterization, optimization and background rejection

    Energy Technology Data Exchange (ETDEWEB)

    Bastidon, Noemi Alice Chloe

    2017-01-12

    The search for new fundamental bosons at very low mass is the central objective of the ALPS II experiment which is currently set up at the Deutsches Elektronen-Synchrotron (DESY, Hamburg). This experiment follows the light-shining-through-the-wall concept where photons could oscillate into weakly interacting light bosons in front of a wall and back into photons behind the wall, giving the impression that light can shine through a light tight barrier. In this concept, the background-free detection of near-infrared photons is required to fully exploit the sensitivity of the apparatus. The high efficiency single-photon detection in the near-infrared is challenging and requires a cryogenic detector. In this project, a Transition-Edge Sensor (TES) operated below 100mK will be used to detect single photons. This thesis focuses on the characterization and optimization of the ALPS II detector system including an Adiabatic Demagnetisation Refrigerator (ADR) with its two-stage pulse-tube cooler, two TES detectors and their Superconducting Quantum Interference Devices (SQUIDs) read-out system. Stability of the detection system over time is a priority in the ALPS II experiment. It is in this context that the cooling system has been subjected to many upgrades. In the framework of this thesis, the cooling setup has been studied in detail in order to optimize its cooling performances. Furthermore, the stability of the detector has been studied according to various criteria. Other essential parameters of the ALPS II experiment are its detection efficiency and its background rate. Indeed, the sensitivity of the experiment directly depends on these two characteristics. Both elements have been studied in depth in order to define if the chosen TES detector will meet ALPS IIc specifications.

  10. Managing the cryogenic systems of SCUBA-2 for long term operation

    Science.gov (United States)

    Cookson, Jamie L.; Bintley, Dan

    2016-07-01

    SCUBA-2 has been operational on JCMT producing excellent science for almost 5 years. We describe the strategy and methods that we have evolved to keep one of the world's first "dry dilution refrigerators" and the other cryogenic systems working effectively at the summit of Mauna Kea, keeping the instrument functioning at peak efficiency for extended periods (over 12 months at a time), with minimum downtime. We discuss new plans to reduce day-to-day operational costs and to add remote management of the gas handling systems, as we look to the future and envisage another ten years of SCUBA-2 science.

  11. The development of cryogenic wind tunnels and their application to maneuvering aircraft technology

    Science.gov (United States)

    Polhamus, E. C.; Boyden, R. F.

    1981-01-01

    The cryogenic wind tunnel and its potential for advancing maneuvering aircraft technology is discussed. A brief overview of the cryogenic wind tunnel concept and the capabilities and status of the Langley cryogenic facilities is given, as is a review of the considerations leading to the selection of the cryogenic concept such as capital and operating costs of the tunnel, model and balance construction implications, and test condition. Typical viscous, compressibility and aeroelastic effects encountered by maneuvering aircraft are illustrated and the unique ability of the cryogenic wind tunnels to isolate and investigate these parameters while simulating full scale conditions is discussed. The status of the Langley cryogenic wind tunnel facilities is reviewed and their operating envelopes described in relation to maneuvering aircraft research and development requirements. The status of cryogenic testing technology specifically related to aircraft maneuverability studies including force balances and buffet measurement techniques is discussed. Included are examples of research carried out in the Langley 0.3 meter transonic cryogenic wind tunnel to verify the various techniques.

  12. Cryogenic thermal diode heat pipes

    Science.gov (United States)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  13. Cryogenic wind-tunnel technology

    Science.gov (United States)

    Kilgore, R. A.

    1977-01-01

    The cryogenic concept and the advantages it offers with respect to achieving full scale Reynolds number in a moderate size tunnel at reasonable levels of dynamic pressure are described. Aspects which must be considered during the development of a facility that uses gaseous nitrogen as the test gas are examined. These include the properties of nitrogen, particularly at high pressure; isentropic expansion and normal shock flows in nitrogen; real gas ratios; and the problem of condensation. Sources of information on cryogenic technology are cited.

  14. Performance of the JT-60SA cryogenic system under pulsed heat loads during acceptance tests

    Science.gov (United States)

    Hoa, C.; Bonne, F.; Roussel, P.; Lamaison, V.; Girard, S.; Fejoz, P.; Goncalves, R.; Vallet, J. C.; Legrand, J.; Fabre, Y.; Pudys, V.; Wanner, M.; Cardella, A.; Di Pietro, E.; Kamiya, K.; Natsume, K.; Ohtsu, K.; Oishi, M.; Honda, A.; Kashiwa, Y.; Kizu, K.

    2017-12-01

    The JT-60SA cryogenic system a superconducting tokamak currently under assembly at Naka, Japan. After one year of commissioning, the acceptance tests were successfully completed in October 2016 in close collaboration with Air Liquide Advanced Technologies (ALaT), the French atomic and alternative energies commission (CEA), Fusion for Energy (F4E) and the Quantum Radiological Science and Technology (QST). The cryogenic system has several cryogenic users at various temperatures: the superconducting magnets at 4.4 K, the current leads at 50 K, the thermal shields at 80 K and the divertor cryo-pumps at 3.7 K. The cryogenic system has an equivalent refrigeration power of about 9.5 kW at 4.5 K, with peak loads caused by the nuclear heating, the eddy currents in the structures and the AC losses in the magnets during cyclic plasma operation. The main results of the acceptance tests will be reported, with emphasis on the management of the challenging pulsed load operation using a liquid helium volume of 7 m3 as a thermal damper.

  15. Cryogenic Grinding: a Physical Technique to Retain Volatile Content in Natural Products

    Science.gov (United States)

    Saxena, Rohit; Soni, Aditi; Saxna, S. N.; Rathore, S. S.; Barnwal, P.

    Cryogenics is the study of the production of very low temperature (below -150°C, -238°F or 123K) and the behavior of materials at those temperatures. Similarly, cryogenic grinding is a term supported by the act of grinding a thing at very low temperature. This technique is generally used to grind the material, which contains heat labile constituents viz- volatile oils in seed spices. Due to high fat content in spices, heat is generated, while energy is used to fracture a particle into a smaller size in conventional grinding process. During the normal grinding process, this generated heat causes temperature rise of grinder upto 950C. The increased temperature is responsible for a loss of volatile content in the tune of about 30% and also produces dark colour powder. Generally, continuous operation is not possible in normal grinding process due to melting of fat and sticking of powder on the grinding surface. The loss of volatile content can be significantly reduced by cryogenic grinding technique using liquid nitrogen or liquid carbon dioxide that provides the refrigeration needed to pre-cool the spices and maintain the desired low temperature by absorbing the heat generated during the grinding operation. The extremely low temperature during grinder condenses the volatile matter and retains their presence in spices. The application of cryogenic technology for grinding of spices has been scientifically proved to be a suitable technique with negligible loss of volatile content and improved colour of oil and grinding operation of seeds.

  16. TRANSPORT PROPERTIES FOR REFRIGERANT MIXTURES

    Directory of Open Access Journals (Sweden)

    V. Geller

    2014-06-01

    Full Text Available A set of models to predict viscosity and thermal conductivity of refrigerant mixtures is developed. A general model for viscosity and thermal conductivity use the three contributions sum form (the dilute-gas terms, the residual terms, and the liquid terms. The corresponding states model is recommended to predict the dense gas transport properties over a range of reduced density from 0 to 2. It is shown that the RHS model provides the most reliable results for the saturated-liquid and the compressed-liquid transport properties over a range of given temperatures from 0,5 to 0,95.

  17. Refrigeration and air-conditioning

    CERN Document Server

    Hundy, G H; Welch, T C

    2008-01-01

    Now in its fourth edition, this respected text delivers a comprehensive introduction to the principles and practice of refrigeration. Clear and straightforward, it is designed for students (NVQ/vocational level) and professional HVAC engineers, including those on short or CPD courses. Inexperienced readers are provided with a comprehensive introduction to the fundamentals of the technology. With its concise style yet broad sweep the book covers most of the applications professionals will encounter, enabling them to understand, specify, commission, use and maintain these systems. Many readers w

  18. Optimal design of the first stage of the plate-fin heat exchanger for the EAST cryogenic system

    Science.gov (United States)

    Qingfeng, JIANG; Zhigang, ZHU; Qiyong, ZHANG; Ming, ZHUANG; Xiaofei, LU

    2018-03-01

    The size of the heat exchanger is an important factor determining the dimensions of the cold box in helium cryogenic systems. In this paper, a counter-flow multi-stream plate-fin heat exchanger is optimized by means of a spatial interpolation method coupled with a hybrid genetic algorithm. Compared with empirical correlations, this spatial interpolation algorithm based on a kriging model can be adopted to more precisely predict the Colburn heat transfer factors and Fanning friction factors of offset-strip fins. Moreover, strict computational fluid dynamics simulations can be carried out to predict the heat transfer and friction performance in the absence of reliable experimental data. Within the constraints of heat exchange requirements, maximum allowable pressure drop, existing manufacturing techniques and structural strength, a mathematical model of an optimized design with discrete and continuous variables based on a hybrid genetic algorithm is established in order to minimize the volume. The results show that for the first-stage heat exchanger in the EAST refrigerator, the structural size could be decreased from the original 2.200 × 0.600 × 0.627 (m3) to the optimized 1.854 × 0.420 × 0.340 (m3), with a large reduction in volume. The current work demonstrates that the proposed method could be a useful tool to achieve optimization in an actual engineering project during the practical design process.

  19. Cryogenic setup for trapped ion quantum computing.

    Science.gov (United States)

    Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40Ca+ and 88Sr+ ions. The instability of the laser manipulating the optical qubits in 40Ca+ is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10-15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40Ca+ ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  20. How small can thermal machines be? The smallest possible refrigerator

    OpenAIRE

    Linden, Noah; Popescu, Sandu; Skrzypczyk, Paul

    2009-01-01

    We investigate the fundamental dimensional limits to thermodynamic machines. In particular we show that it is possible to construct self-contained refrigerators (i.e. not requiring external sources of work) consisting of only a small number of qubits and/or qutrits. We present three different models, consisting of two qubits, a qubit and a qutrit with nearest-neighbour interactions, and a single qutrit respectively. We then investigate fundamental limits to their performance; in particular we...

  1. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  2. Lightweight, Cost Effective LOX Compatible Aerogel Insulation Material for Cryogenic Fluid Transfer Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy-efficient cryogenic insulation is an imperative requirement for the future of space travel. In order to advance the space program, NASA must find cost...

  3. Advanced, Long-Life Cryocooler Technology for Zero-Boil-Off Cryogen Storage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-life, high-capacity cryocoolers are a critical need for future space systems utilizing stored cryogens. The cooling requirements for planetary and...

  4. Thin Aerogel as a Spacer in Multi-Layer Insulation for Cryogenic Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long duration storage of large quantities of cryogenic fluids for propulsion, power, and life-support is an essential requirement for long-term missions into space....

  5. Energy efficient control of a refrigeration plant

    DEFF Research Database (Denmark)

    Rasmussen, Henrik; Larsen, Lars F. S.

    2009-01-01

    This paper proposes a novel method for superheat and capacity control of refrigeration systems. The new idea is to control the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed and used in a backstepping design o...... and the methods are evaluated with respect to energy efficiency....

  6. ACTIVATED CARBON/REFRIGERANT COMBINATIONS FOR ...

    African Journals Online (AJOL)

    ES Obe

    No. 1, March, 2001. 53. ACTIVATED CARBON/REFRIGERANT COMBINATIONS. FOR SOLAR REFRIGERATION APPLICATION. By. E.E. ANYANWU. 1. AND N.V. .... may be assumed that the perfect gas law is obeyed approximately by the vapour. Thus,. (2). Hence by integrating,. This linear relationship between log P and.

  7. ESO2 Optimization of Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Madsen, Henrik; Heerup, Christian

    Supermarket refrigeration systems consists of a number of display cases, cooling cabinets and cold rooms connected to a central compressor pack. This configuration saves energy compared to placing a compressor at each cooling site. The classical control setup of a supermarket refrigeration system...

  8. Natural refrigerants. Special issue; Natuurlijke koudemiddelen. Special

    Energy Technology Data Exchange (ETDEWEB)

    Hoogkamer, J.; Forbes Pearson, S.; Van der Sluis, S.M.; Van Gerwen, R.; Gerrard, A.; Roberti, F.; Broeze, J.; Lukasse, L.; Wictor, E.; Oskam, G.; Bouazzaoui, S.; Infante Feirreira, C.A.; Langreck, J.; Gerritsen, J.; Bakker, R.; Uges, P.G.H.; Buitenhuis, H.; Havenaar, D.; Kwakman, N.; Jans, R.

    2008-11-15

    In 21 short and longer articles attention is paid to the use of natural refrigerants as a substitute for current refrigerants. [Dutch] In 21 korte en langere artikelen wordt in dit nummer aandacht besteed aan de toepassing van natuurlijke koudemiddelen als vervanging van de huidige in gebruik zijnde koudemiddelen.

  9. 7 CFR 58.154 - Refrigerated storage.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Refrigerated storage. 58.154 Section 58.154 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... § 58.154 Refrigerated storage. Finished product in containers subject to such conditions that will...

  10. Automatic control of cryogenic wind tunnels

    Science.gov (United States)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  11. Evolvable Cryogenics (ECRYO) Pressure Transducer Calibration Test

    Science.gov (United States)

    Diaz, Carlos E., Jr.

    2015-01-01

    This paper provides a summary of the findings of recent activities conducted by Marshall Space Flight Center's (MSFC) In-Space Propulsion Branch and MSFC's Metrology and Calibration Lab to assess the performance of current "state of the art" pressure transducers for use in long duration storage and transfer of cryogenic propellants. A brief historical narrative in this paper describes the Evolvable Cryogenics program and the relevance of these activities to the program. This paper also provides a review of three separate test activities performed throughout this effort, including: (1) the calibration of several pressure transducer designs in a liquid nitrogen cryogenic environmental chamber, (2) the calibration of a pressure transducer in a liquid helium Dewar, and (3) the calibration of several pressure transducers at temperatures ranging from 20 to 70 degrees Kelvin (K) using a "cryostat" environmental chamber. These three separate test activities allowed for study of the sensors along a temperature range from 4 to 300 K. The combined data shows that both the slope and intercept of the sensor's calibration curve vary as a function of temperature. This homogeneous function is contrary to the linearly decreasing relationship assumed at the start of this investigation. Consequently, the data demonstrates the need for lookup tables to change the slope and intercept used by any data acquisition system. This ultimately would allow for more accurate pressure measurements at the desired temperature range. This paper concludes with a review of a request for information (RFI) survey conducted amongst different suppliers to determine the availability of current "state of the art" flight-qualified pressure transducers. The survey identifies requirements that are most difficult for the suppliers to meet, most notably the capability to validate the sensor's performance at temperatures below 70 K.

  12. Inferential Framework for Autonomous Cryogenic Loading Operations

    Science.gov (United States)

    Luchinsky, Dmitry G.; Khasin, Michael; Timucin, Dogan; Sass, Jared; Perotti, Jose; Brown, Barbara

    2017-01-01

    We address problem of autonomous cryogenic management of loading operations on the ground and in space. As a step towards solution of this problem we develop a probabilistic framework for inferring correlations parameters of two-fluid cryogenic flow. The simulation of two-phase cryogenic flow is performed using nearly-implicit scheme. A concise set of cryogenic correlations is introduced. The proposed approach is applied to an analysis of the cryogenic flow in experimental Propellant Loading System built at NASA KSC. An efficient simultaneous optimization of a large number of model parameters is demonstrated and a good agreement with the experimental data is obtained.

  13. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  14. Review of investigations in eco-friendly thermoacoustic refrigeration system

    Directory of Open Access Journals (Sweden)

    Raut Ashish S.

    2017-01-01

    Full Text Available To reduce greenhouse gas emissions, internationally research and development is intended to improve the performance of conventional refrigeration system also growth of new-fangled refrigeration technology of potentially much lesser ecological impact. This paper gives brief review of research and development in thermoacoustic refrigeration also the existing situation of thermoacoustic refrigeration system. Thermoacoustic refrigerator is a novel sort of energy conversion equipment which converts acoustic power into heat energy by thermoacoustic effect. Thermoacoustic refrigeration is an emergent refrigeration technology in which there are no moving elements or any environmentally injurious refrigerants during its working. The concept of thermoacoustic refrigeration system is explained, the growth of thermoacoustic refrigeration, various investigations into thermoacoustic refrigeration system, various optimization techniques to improve coefficient of performance, different stacks and resonator tube designs to improve heat transfer rate, various gases, and other parameters like sound generation have been reviewed.

  15. The study and performance of a modified conventional refrigerator to serve as a PV powered one

    Energy Technology Data Exchange (ETDEWEB)

    Kaplanis, Socrates; Papanastasiou, Nikolaos

    2006-05-15

    This paper describes the design and development stages to convert a conventional refrigerator to a solar powered one. The development of such a system was effected and the results of this work to provide a cost effective version are given. A conventional refrigerator was chosen and some changes were introduced to reduce the cooling load and consequently the power required. Tests were carried out to study the performance of the refrigerator components and especially the compressor's, as well as the refrigerator as a whole. The latter tests are the well-known pull down tests. The cost effective final product was searched via a PV sizing package developed for the purpose of this project incorporating the LCC analysis. (author)

  16. Oil cooled, hermetic refrigerant compressor

    Science.gov (United States)

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  17. Novel materials for laser refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus P [Los Alamos National Laboratory

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  18. Initial parametric results using CYCLEZ: A LMTD-specified, Lorenz-Meutzner cycle refrigerator-freezer model

    Science.gov (United States)

    Rice, C. Keith; Sand, James R.

    A computer model representing a two-evaporator, two-intercooler refrigerator-freezer operating at steady-state with nonazeotropic refrigerant mixtures (CYCLEZ) has been developed at Oak Ridge National Laboratory (ORNL). This model is being used to assess the effects of system design and operating parameters on the cycle performance of a refrigerator-freezer designed around the Lorenz-Meutzner (L-M) circuit. Separate evaporators for the freezer and fresh-food compartments are modeled, as well as two intercoolers that subcool liquid refrigerant from the condenser by heat transfer with low-pressure refrigerant. The CYCLEZ refrigerator/freezer model is derived from the CYCLEZ heat-pump model developed originally by the National Institute of Standards and Technology (NIST). CYCLEZ currently uses the Carnahan-Starling-DeSantis (CSD) equation-of-state to compute refrigerant thermodynamic properties, so that new refrigerants can easily be added. Condenser and evaporator heat-exchanger performance are defined by user-specified overall LMTDs which allow equivalent heat-exchanger sizing per unit refrigeration load to be maintained for different refrigerant mixtures. A more consistent formulation of overall heat-exchanger LMTD is applied across the condenser superheated and two-phase regions as well as over the two evaporators. Source and sink conditions are specified in terms of inlet and outlet temperatures of the external fluid streams. Intercooler high-side (subcooling) delta Ts and relative fresh-food-to-freezer load ratio are also user-specified. These features make this model well suited for evaluating the optimal thermodynamic cycle requirements of the five heat exchangers used in the L-M refrigerator/freezer circuit.

  19. Sources of Cryogenic Data and Information

    Science.gov (United States)

    Mohling, R. A.; Hufferd, W. L.; Marquardt, E. D.

    It is commonly known that cryogenic data, technology, and information are applied across many military, National Aeronautics and Space Administration (NASA), and civilian product lines. Before 1950, however, there was no centralized US source of cryogenic technology data. The Cryogenic Data Center of the National Bureau of Standards (NBS) maintained a database of cryogenic technical documents that served the national need well from the mid 1950s to the early 1980s. The database, maintained on a mainframe computer, was a highly specific bibliography of cryogenic literature and thermophysical properties that covered over 100 years of data. In 1983, however, the Cryogenic Data Center was discontinued when NBS's mission and scope were redefined. In 1998, NASA contracted with the Chemical Propulsion Information Agency (CPIA) and Technology Applications, Inc. (TAI) to reconstitute and update Cryogenic Data Center information and establish a self-sufficient entity to provide technical services for the cryogenic community. The Cryogenic Information Center (CIC) provided this service until 2004, when it was discontinued due to a lack of market interest. The CIC technical assets were distributed to NASA Marshall Space Flight Center and the National Institute of Standards and Technology. Plans are under way in 2006 for CPIA to launch an e-commerce cryogenic website to offer bibliography data with capability to download cryogenic documents.

  20. LHC Cryogenics on the mend

    CERN Document Server

    2004-01-01

    On 29 September, repairs began on the LHC cryogenic distribution line, or QRL, to replace a faulty part that occurs in the hundreds of elements of the line that are already on-site. The Accelerator Technology Department is designing a work programme to finish the repairs as soon as possible and minimize delays to the rest of the LHC project.

  1. Champagne for the cryogenics teams

    CERN Multimedia

    2005-01-01

    Christmas has come early for the LHC as a complete sector of the cryogenic distribution line has been operating at 10 degrees Kelvin (-263°C) for the past two weeks, just a few degrees above the machine's nominal operating temperature.

  2. Survey of cryogenic semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  3. Cryogenic MMIC Low Noise Amplifiers

    Science.gov (United States)

    Weinreb, S.; Gaier, T.; Fernandez, J.; Erickson, N.; Wielgus, J.

    2000-01-01

    Monolithic (MMIC) and discrete transistor (MIC) low noise amplifiers are compared on the basis of performance, cost, and reliability. The need for cryogenic LNA's for future large microwave arrays for radio astronomy is briefly discussed and data is presented on a prototype LNA for the 1 to 10 GZH range along with a very wideband LNA for the 1 to 60 GHz range.

  4. The 4.5K refrigerators for the LHC are all present and correct!

    CERN Multimedia

    2004-01-01

    Acceptance procedures for the last of the LHC 4.5 K refrigerators have been completed at Point 6. All that now remains to be done, to have the LHC refrigeration system ready by the end of 2005, is to upgrade the refrigerators recovered from LEP and install the 1.8 K cooling system. By now you will be well aware that the LHC's superconducting magnets cannot operate unless they are cooled to 1.8 K (-271°C) (see Bulletin 13-14/2002). Eight 4.5 K refrigerators, one for each sector of the LHC, are required to achieve this. In December last year the last of these refrigerators, specially designed for the LHC, was accepted at Point 6. "It is a big step forwards for the LHC's refrigeration system, as it takes its cooling capacity at 4.5 K to 140 kW, that is to say almost 40,000 litres of liquid helium per hour, a capacity never previously attained. The progress achieved since the days of LEP is impressive, particularly if one bears in mind the extent of the infrastructure required, " (see...

  5. Thermoeconomic Optimization of Cascade Refrigeration System Using Mixed Carbon Dioxide and Hydrocarbons at Low Temperature Circuit

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2016-12-01

    Full Text Available Many applications and industrial processes require very low cooling temperature, such as cold storage in the biomedical field, requiring temperature below -80 °C. However,single-cycle refrigeration systems can only achieve the effective cooling temperature of -40 °C and, also, the performance of the cycle will decrease drastically for cooling temperatures lower than -35°C. Currently, most of cascade refrigeration systems use refrigerants that have ozone depletion potential (ODP and global warming potential (GWP, therefore, in this study, a cascade system is simulated using a mixture of environmentally friendly refrigerants, namely, carbon dioxide and a hydrocarbon (propane, ethane or ethylene as the refrigerant of the low temperature circuit. A thermodynamic analysis is performed to determine the optimal composition of the mixture of carbon dioxide and hydrocarbons in the scope of certain operating parameters. In addition, an economic analysis was also performed to determine the annual cost to be incurred from the cascade refrigeration system. The multi-objective/thermoeconomic optimization points out optimal operating parameter values of the system, to addressing both exergy efficiency and its relation to the costs to be incurred.

  6. ngVLA Cryogenic Subsystem Concept

    Science.gov (United States)

    Wootten, Al; Urbain, Denis; Grammer, Wes; Durand, S.

    2018-01-01

    The VLA’s success over 35 years of operations stems in part from dramatically upgraded components over the years. The time has come to build a new array to lead the radio astronomical science into its next 40 years. To accomplish that, a next generation VLA (ngVLA) is envisioned to have 214 antennas with diameters of 18m. The core of the array will be centered at the current VLA location, but the arms will extend out to 1000km.The VLA cryogenic subsystem equipment and technology have remained virtually unchanged since the early 1980s. While adequate for a 27-antenna array, scaling the current system for an array of 214 antennas would be prohibitively expensive in terms of operating cost and maintenance. The overall goal is to limit operating cost to within three times the current level, despite having 8 times the number of antennas. To help realize this goal, broadband receivers and compact feeds will be utilized to reduce both the size and number of cryostats required. The current baseline front end concept calls for just two moderately-sized cryostats for the entire 1.2-116 GHz frequency range, as opposed to 8 in the VLA.For the ngVLA cryogenics, our objective is a well-optimized and efficient system that uses state-of-the-art technology to minimize per-antenna power consumption and maximize reliability. Application of modern technologies, such as variable-speed operation for the scroll compressors and cryocooler motor drives, allow the cooling capacity of the system to be dynamically matched to thermal loading in each cryostat. Significantly, power savings may be realized while the maintenance interval of the cryocoolers is also extended.Finally, a receiver designed to minimize thermal loading can produce savings directly translating to lower operating cost when variable-speed drives are used. Multi-layer insulation (MLI) on radiation shields and improved IR filters on feed windows can significantly reduce heat loading.Measurements done on existing cryogenic

  7. Facesheet Delamination of Composite Sandwich Materials at Cryogenic Temperatures

    Science.gov (United States)

    Gates, Thomas S.; Odegard, Gregory M.; Herring, Helen M.

    2003-01-01

    The next generation of space transportation vehicles will require advances in lightweight structural materials and related design concepts to meet the increased demands on performance. One potential source for significant structural weight reduction is the replacement of traditional metallic cryogenic fuel tanks with new designs for polymeric matrix composite tanks. These new tank designs may take the form of thin-walled sandwich constructed with lightweight core and composite facesheets. Life-time durability requirements imply the materials must safely carry pressure loads, external structural loads, resist leakage and operate over an extremely wide temperature range. Aside from catastrophic events like tank wall penetration, one of the most likely scenarios for failure of a tank wall of sandwich construction is the permeation of cryogenic fluid into the sandwich core and the subsequent delamination of the sandwich facesheet due to the build-up of excessive internal pressure. The research presented in this paper was undertaken to help understand this specific problem of core to facesheet delamination in cryogenic environments and relate this data to basic mechanical properties. The experimental results presented herein provide data on the strain energy release rate (toughness) of the interface between the facesheet and the core of a composite sandwich subjected to simulated internal pressure. A unique test apparatus and associated test methods are described and the results are presented to highlight the effects of cryogenic temperature on the measured material properties.

  8. Manufacturing A Refrigerator with Heat Recovery Unit

    Directory of Open Access Journals (Sweden)

    Mustafa Mohammed Kadhim

    2018-02-01

    Full Text Available This study aims to exploite the rejected heating energy from condenser and benefit from it to reheat the foods and other materials. It can also be employed to improve the coefficient of performance of a refrigerator at the same time by using approximately the same consumption electrical energy used to operate the compressor and refrigerator in general. This idea has been implemented by manufacturing of a refrigerator with using additional part has the same metal and condenser pipe diameters but its surface area does not exceed 40% from total surface area of the condenser and its design as an insulated cabinet from all sides to prevent heat leakage through it and located between the compressor and the condenser. Small electrical fan has been added inside this cabinet to provide a suitable air circulation and a homogenous temperature distribution inside the cabinet space. It is expected that the super heating energy of refrigerant (R134a which comes out of the compressor would be removed  inside this cabinet and this insist to condensate the refrigerant (cooling fluid with a rate higher than that used in the normal refrigerator only. Three magnetic valves have been used in order to control the refrigerant flow in state of operation the refrigerator only or to gather with heating cabinet. To measure the temperatures at each process of the simple vapor compression refrigeration cycle, nine temperature sensors at input and output of each compressor, condenser and an evaporator in additional to input of cabinet and inside it and on evaporator surface have been provided. Five pressure gages have been used to measure the value of pressure and compare it for the two states of operation. The consumption of electrical energy  can be calculated by adding an ammeter and a voltmeter and compare between the consumption energy of both states. The obtained results show that there is an improvement in the coeffecient of performance in state of operation the

  9. A review of carbon dioxide as a refrigerant in refrigeration technology

    Directory of Open Access Journals (Sweden)

    Paul Maina

    2015-09-01

    Full Text Available Tough environmental laws and stringent government policies have revolutionised the refrigeration sector, especially concerning the cycle fluid known as the refrigerant. It has been observed that only natural refrigerants are environmentally benign. When other refrigerant qualities are considered, especially those relating to toxicity and flammability, carbon dioxide emerges as the best among the natural refrigerants. However, carbon dioxide based refrigerants are not without drawbacks. Even though the use of R744 a carbon dioxide based refrigerant gas has solved the direct effect of emissions on the environment, studies to investigate the indirect effects of these systems are needed. Improvement in existing technical solutions and the formulation of additional solutions to existing R744 refrigeration problems is paramount if this technology is to be accepted by all, especially in areas with warm climates. National policies geared to green technologies are important to clear the way and provide support for these technologies. It is clear that carbon dioxide is one of the best refrigerants and as environmental regulations become more intense, it will be the ultimate refrigerant of the future.

  10. OPTIMAL DESIGN AND OPERATION OF HELIUM REFRIGERATION SYSTEMS USING THE GANNI CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Venkatarao Ganni, Peter Knudsen

    2010-04-01

    The constant pressure ratio process, as implemented in the floating pressure - Ganni cycle, is a new variation to prior cryogenic refrigeration and liquefaction cycle designs that allows for optimal operation and design of helium refrigeration systems. This cycle is based upon the traditional equipment used for helium refrigeration system designs, i.e., constant volume displacement compression and critical flow expansion devices. It takes advantage of the fact that for a given load, the expander sets the compressor discharge pressure and the compressor sets its own suction pressure. This cycle not only provides an essentially constant system Carnot efficiency over a wide load range, but invalidates the traditional philosophy that the (‘TS’) design condition is the optimal operating condition for a given load using the as-built hardware. As such, the Floating Pressure- Ganni Cycle is a solution to reduce the energy consumption while increasing the reliability, flexibility and stability of these systems over a wide operating range and different operating modes and is applicable to most of the existing plants. This paper explains the basic theory behind this cycle operation and contrasts it to the traditional operational philosophies presently used.

  11. Cryogenic Refractive Index of Heraeus Homosil Glass

    Science.gov (United States)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-01-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.343.16 m and temperature range of 120335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASAs Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a field-widened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitivity performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dndT) and dispersion relation (dnd) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in literature.

  12. Cryogenic Silicon Microstrip Detector Modules for LHC

    CERN Document Server

    Perea-Solano, B

    2004-01-01

    CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

  13. Plant-wide performance optimisation – The refrigeration system case

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Green, Torben; Razavi-Far, Roozbeh

    2012-01-01

    This paper investigates the problem of plant-wide performance optimisation seen from an industrial perspective. The refrigeration system is used as a case study, because it has a distributed control architecture and operates in steady state conditions, which is common for many industrial applicat......This paper investigates the problem of plant-wide performance optimisation seen from an industrial perspective. The refrigeration system is used as a case study, because it has a distributed control architecture and operates in steady state conditions, which is common for many industrial...... applications in the process industry. The paper addresses the fact that dynamic performance of the system is important, to ensure optimal changes between different operation conditions. To enable optimisation of the dynamic controller behaviour a method for designing the required excitation signal is presented....... Furthermore, invasive weed optimisation is used to find the optimal parameters for local controllers based on the plant wide performance measure....

  14. New age water chillers with water as refrigerant

    CERN Document Server

    Kühnl-Kinel, J

    1998-01-01

    Vacuum-process technology producing chilled water needs no refrigerant of the conventional kind, but water from the process itself is used to generate cooling. This eye-catching novelty incorporates many of the considerations about the future of refrigerants: "ozone friendly", no extra demands for safety measures or for skilful operators, no special requirements concerning the installation's components, lower maintenance costs since leakages can be accommodated from the system. Vacuum-process technology may be used not only for production of chilled water but also for Binary Ice - pumpable suspension of minute ice crystals in an aqueous solution. This means that all the advantages related to a latent heat system may become available.

  15. Performance Assessment and Active System Monitoring for Refrigeration Systems

    DEFF Research Database (Denmark)

    Green, Torben

    The refrigeration system in a supermarket is an important part of the business for the supermarkets, both in terms of the possibility it provides and because of the associated cost of operating the system. It provides the possibility of selling chilled and frozen food but on the other hand...... that quanties and measure the criteria has been developed in this project. The quality is measured by the control errors in the system because there is a connection between the quality of the stored goods and the ability of the refrigeration system to provide the required temperature. A deviation from...... the controller set-point corresponds to a temperature deviation,which will eventually harm the stored goods. The energy eciency is measured by the coecient of performance, COP, which basically is the delivered cooling power divided by the consumed electrical power of the system. The reliability criteria...

  16. CERN experience and strategy for the maintenance of cryogenic plants and distribution systems

    CERN Document Server

    Serio, L; Claudet, S; Delikaris, D; Ferlin, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2015-01-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented.

  17. Main Consolidations and Improvements of the Control System and Instrumentation for the LHC Cryogenics

    CERN Document Server

    Fluder, C; Bremer, J; Bremer, K; Ivens, B; Casas-Cubillos, J; Claudet, S; Gomes, P; Ivens, B; Perin, A; Pezzetti, M; Tovar-Gonzalez, A; Vauthier, N

    2013-01-01

    Operation of the LHC during 2010 and 2011 with 3.5 TeV beam energy and luminosity up to 3.65x1033 cm-2 s-1, led to radiation-induced failures of micro-electronic devices used in the cryogenic control system. Mitigating actions addressed equipment relocation and corrective patches on electronics and software. Driven by the technical requirements and by feedback from the cryogenic operation team, numerous consolidations and improvements were implemented on-the-fly, enhancing availability and operability of the LHC cryogenics. Furthermore, additional diagnostic tools, test benches, technical procedures and trainings have been provided to strengthen first line support services.

  18. Ferroelectric Stirling-Cycle Refrigerator

    Science.gov (United States)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    A Stirling-cycle refrigerator has a three-pump configuration and pumping sequence, in which one pump serves as a compressor. one pump serves as an expander, and one pump serves as a displacer. The pumps are ferroelectrically actuated diaphragm pumps which are coordinated by synchronizing the ferroelectric-actuator voltages in such a way that the net effect of the displacer is to reduce the deleterious effect of dead space; that is, to circulate a greater fraction of the working fluid through the heat exchangers than would be possible by use of the compressor and expander alone. In addition. the displacer can be controlled separately to make the flow of working fluid in the heat exchangers turbulent (to increase the rate of transfer of heat at the cost of greater resistance to flow) or laminar (to decrease the resistance to flow at the cost of a lower heat-transfer rate).

  19. PIPER Continuous Adiabatic Demagnetization Refrigerator

    Science.gov (United States)

    Kimball, Mark O.; Shirron, Peter J.; Canavan, Edgar R.; James, Bryan L.; Sampson, Michael A.; Letmate, Richard V.

    2017-01-01

    We report upon the development and testing of a 4-stage adiabatic demagnetization refrigerator (ADR) capable of continuous cooling at 0.100 Kelvin. This cooler is being built to cool the detector array aboard NASA's Primordial Inflation Polarization Explorer (PIPER) observatory. The goal of this balloon mission is to measure the primordial gravitational waves that should exist if the theory of cosmological inflation is correct. At altitude, the ADR will hold the array of transition-edge sensors at 100 mK continuously while periodically rejecting heat to a 1.2 K pumped helium bath. During testing on ground, the array is held at the same temperature but heat is rejected to a 4.2 K helium bath indicating the flexibility in this coolers design.

  20. A versatile magnetic refrigeration test device

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Petersen, Thomas Frank; Pryds, Nini

    2008-01-01

    A magnetic refrigeration test device has been built and tested. The device allows variation and control of many important experimental parameters, such as the type of heat transfer fluid, the movement of the heat transfer fluid, the timing of the refrigeration cycle, and the magnitude...... of the applied magnetic field. An advanced two-dimensional numerical model has previously been implemented in order to help in the optimization of the design of a refrigeration test device. Qualitative agreement between the results from model and the experimental results is demonstrated for each of the four...

  1. Mathematical analysis of a Vuilleumier refrigerator.

    Science.gov (United States)

    Sherman, A.

    1971-01-01

    A comprehensive analysis of the Vuilleumier refrigerator was conducted. This analysis includes the effects of nonisothermal gas heat addition and rejection, hot and cold regenerator inefficiencies, conduction losses, and gas leakage losses. A computer program was written which solves the equations resulting from the analysis. The program calculates internal pressures, temperatures, and gas flow rates as functions of refrigerator crank angle, as well as overall refrigerator cooling load and power input. Comparisons between the program results and available data show good agreement, with a marked improvement over the predictions of the ideal model.

  2. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  3. Refrigerant charge management in a heat pump water heater

    Science.gov (United States)

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  4. The Use of Water Vapor as a Refrigerant: Impact of Cycle Modifications on Commercial Viability

    Energy Technology Data Exchange (ETDEWEB)

    Brandon F. Lachner, Jr.; Gregory F. Nellis; Douglas T. Reindl

    2004-08-30

    This project investigated the economic viability of using water as the refrigerant in a 1000-ton chiller application. The most attractive water cycle configuration was found to be a flash-intercooled, two-stage cycle using centrifugal compressors and direct contact heat exchangers. Component level models were developed that could be used to predict the size and performance of the compressors and heat exchangers in this cycle as well as in a baseline, R-134a refrigeration cycle consistent with chillers in use today. A survey of several chiller manufacturers provided information that was used to validate and refine these component models. The component models were integrated into cycle models that were subsequently used to investigate the life-cycle costs of both an R-134a and water refrigeration cycle. It was found that the first cost associated with the water as a refrigerant cycle greatly exceeded the savings in operating costs associated with its somewhat higher COP. Therefore, the water refrigeration cycle is not an economically attractive option to today's R-134a refrigeration system. There are a number of other issues, most notably the requirements associated with purging non-condensable gases that accumulate in a direct contact heat exchanger, which will further reduce the economic viability of the water cycle.

  5. G2 Autonomous Control for Cryogenic Delivery Systems

    Science.gov (United States)

    Dito, Scott J.

    2014-01-01

    The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.

  6. Spiral 2 Cryogenic System for The Superconducting LINAC

    Science.gov (United States)

    Ghribi, A.; Bernaudin, P.-E.; Bert, Y.; Commeaux, C.; Houeto, M.; Lescalié, G.

    2017-02-01

    SPIRAL 21 is a rare isotope accelerator dedicated to the production of high intensity beams (E = 40 MeV, I = 5 mA). The driver is a linear accelerator (LINAC) that uses bulk Niobium made quarter wave RF cavities. 19 cryomodules inclose one or two cavities respectively for the low and the high energy sections. To supply the 1300 W at 4.2 K required to cool down the LINAC, a cryogenic system has been set up. The heart of the latter is a 3 turbines geared HELIAL®LF (ALAT2) cold box that delivers both the liquid helium for the cavities and the 60 K Helium gaz for the thermal screens. 19 valve-boxes insure cryogenic fluid distribution and management. Key issues like cool down speed or cavity RF frequency stability are closely linked to the cryogenic system management. To overcome these issues, modelling and simulation efforts are being undertaken prior to the first cool down trials. In this paper, we present a status update of the Spiral 2 cryogenic system and the cool down strategy considered for its commissioning.

  7. Ambient and Cryogenic, Decade Bandwidth, Low Noise Receiving System for Radio Astronomy Using Sinuous Antenna

    Science.gov (United States)

    Gawande, Rohit Sudhir

    of the composite structure resulting in frequency dependent impedance variations. We demonstrate, using simulations and measurements, how the return loss can be improved by modifying the sinuous geometry. The feed-LNA combination is characterized for important properties such as return loss, system noise, far field beam patterns including cross-polarization over a wide frequency range. The system is developed as a feed for a parabolic reflector. The overall system performance is calculated in terms of the A/Tsys ratio. A cryogenic version would have a direct impact on specialized observing applications requiring large instantaneous bandwidths with high sensitivity. A novel cryogenic implementation of this system is demonstrated using a Stirling cycle, one-stage refrigerator. The cryocooler offers advantages like low cost, light weight, small size, low power consumption, and does not require routine maintenance. The higher antenna input impedance and a balanced feeding method for the sinuous antenna offers a unique set of challenges when developing a cryogenic system.

  8. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Pradeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vineyard, Edward Allan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-07-19

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

  9. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    Science.gov (United States)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  10. Recent achievements with a cryogenic ultra-lightweighted HB-Cesic mirror

    Science.gov (United States)

    Krödel, Matthias R.; Hofbauer, Peter; Devilliers, Christophe; Sodnik, Zoran; Robert, Patrick

    2010-07-01

    During the past two years, ECM, Germany, together with Mitsubishi Electric Corporation (MELCO), Japan, developed a new carbon-fiber-reinforced SiC material, called HB-Cesic®, which possesses superior mechanical and thermal cryogenic properties compared to traditional Cesic®. This combination makes HB-Cesic® an excellent choice for large cryogenic mirrors, which will be required for future scientific space missions, such as SPICA and DARWIN. ESA contracted Thales Alenia Space (TAS), France, to design a super-lightweighted HB-Cesic® mirror with a diameter of 600 mm, isostatic fixations, and a special astigmatism compensation device (ACD) for mirror shape control. The mirror was manufactured by ECM, polished and coated by Société Européenne de Systèmes Optiques (SESO), France, and tested to cryogenic temperatures by TAS. The measured wave-front error at ambient and cryogenic temperatures demonstrated the excellent homogeneity of HB-Cesic® and TAS' expertise in mirror mounting. Furthermore, when thermally actuated, the ACD exhibited perfect control of the mirror shape. This success confirmed HB-Cesic®'s superior material properties and its applicability to future cryogenic space mirrors. In this paper we describe the design and fabrication process of this cryogenic mirror and give test results at ambient and cryogenic temperatures.

  11. A theoretical and experimental study of a novel refrigerant compressor

    Science.gov (United States)

    Eames, I. W.

    A refrigerant compressor concept was envisaged consisting of a small scale centrifugal compressor driven by a high frequency induction motor on a common shaft with an impeller supported in aerodynamic bearings. The combination of state-of-the-art compressor, bearing and motor technologies potentially provides refrigerator designers with improved system performance and better compressor reliability with significant reductions in weight and physical size at reduced capital and running costs. A detailed description of the prototype compressor unit is included. The concept is compared with conventional compressor systems, and key areas of research requiring detailed investigation are identified. The following are described and/or evaluated: (1) the results of a literature survey into performance of centrifugal compressors; (2) the electric motor; (3) an investigation into the design of the drive shaft and bearing assemblies; (4) external and internal sources of machine vibration; (5) the manufacture of the prototype compressor unit; (6) testing of the compressor unit; (7) development problems encountered during testing; and (8) a computer simulation study of the behavior of a refrigeration system incorporating the prototype compressor. Aspects of the manufacture considered include surface finishes, tolerancing, heat treatments, and balancing processes.

  12. Compressor Properties in Sucking Two Phase Refrigerant

    Science.gov (United States)

    Inoue, Seiji; Nakayama, Masahiro; Matsuoka, Fumio

    A simulation model is proposed to analyze refrigerant properties in suction,compression and discharge process in rotary compressors,and compressor performance is analyzed by the calculations and the experiments in this paper. Heat transfer coefficients between the cylinder and refrigerant both in sucking two phase and superheated gas refrigerant have been evaluated by the calculations performed under the condition of the experiments since the validity of the simulation model has been proved by the agreement of the calculation results with the experimental ones. Linear relationship of discharge and cylinder temperature to compressor frequency and suction quality has been clarified by the experimental results. Mechanisms of the compressor performance have also analyzed by the refrigerant properties in the compression mechanism calculated every angle of the rolling piston in detail.

  13. Designing a magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal...... magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated...... as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR...

  14. Modelling refrigerant distribution in microchannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A stu...... out of the evaporator is kept constant. It is shown that the cooling capacity of the evaporator is reduced significantly, both in the case of unevenly distributed inlet quality and for the case of non-uniform airflow on the outside of the channels.......The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...

  15. Enclosure for thermoelectric refrigerator and method

    Science.gov (United States)

    Park, Brian V. (Inventor); McGrath, Ralph D. (Inventor)

    1997-01-01

    An enclosed structure is provided for use with a refrigerator having a door assembly. The enclosed structure preferably contains superinsulation materials and a plurality of matching drawers. The enclosed structure preferably includes corner joints which minimize thermal energy transfer between adjacent superinsulation panels. The refrigerator may include a cooling system having a thermoelectric device for maintaining the temperature within the refrigerator at selected values. If desired, a fluid cooling system and an active gasket may also be provided between the door assembly and the enclosed structure. The fluid cooling system preferably includes a second thermoelectric device to maintain the temperature of fluid flowing through the active gasket at a selected value. The drawers associated with the refrigerator may be used for gathering, processing, shipping and storing food or other perishable items.

  16. REFRIGERATION ESPECIALLY FOR VERY LOW TEMPERATURES

    Science.gov (United States)

    Kennedy, P.B.; Smith, H.R. Jr.

    1960-09-13

    A refrigeration system for producing very low temperatures is described. The system of the invention employs a binary mixture refrigerant in a closed constant volume, e.g., Freon and ethylene. Such mixture is compressed in the gaseous state and is then separated in a fractionating column element of the system. Thenceforth, the first liquid to separate is employed stagewise to cool and liq uefy successive portions of the refrigerant at successively lower temperatures by means of heat exchangers coupled between the successive stages. When shut down, all of the volumes of the system are interconnected and a portion of the refrigerant remains liquid at ambient temperatures so that no dangerous overpressures develop. The system is therefore rugged, simple and dependable in operation.

  17. COMPUTER SIMULATION OF A STIRLING REFRIGERATING MACHINE

    Directory of Open Access Journals (Sweden)

    V.V. Trandafilov

    2015-10-01

    Full Text Available In present numerical research, the mathematical model for precise performance simulation and detailed behavior of Stirling refrigerating machine is considered. The mathematical model for alpha Stirling refrigerating machine with helium as the working fluid will be useful in optimization of these machines mechanical design. Complete non-linear mathematical model of the machine, including thermodynamics of helium, and heat transfer from the walls, as well as heat transfer and gas resistance in the regenerator is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. Important design parameters are varied and their effect on Stirling refrigerating machine performance determined. The simulation results of Stirling refrigerating machine which include heat transfer and coefficient of performance are presented.

  18. Model Based Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth

    for automation of these procedures, that is to incorporate some "intelligence" in the control system, this project was started up. The main emphasis of this work has been on model based methods for system optimizing control in supermarket refrigeration systems. The idea of implementing a system optimizing......-couplings resulting in large disturbances. In supermarkets refrigeration systems the temperature control in the refrigerated display cases are maintained by hysteresis controllers. Based on a model predictive hybrid framework a novel approach for desynchronization is presented. The approach is applied.......e. by degrading the performance. The method has been successfully applied on a test frigeration system for minimization of the power consumption; the hereby gained experimental results will be presented. The present control structure in a supermarket refrigeration system is distributed, which means...

  19. Defrost Temperature Termination in Supermarket Refrigeration Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Brian A [ORNL; Sharma, Vishaldeep [ORNL

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

  20. Cryogenic microwave anisotropic artificial materials

    Science.gov (United States)

    Trang, Frank

    This thesis addresses analysis and design of a cryogenic microwave anisotropic wave guiding structure that isolates an antenna from external incident fields from specific directions. The focus of this research is to design and optimize the radome's constituent material parameters for maximizing the isolation between an interior receiver antenna and an exterior transmitter without significantly disturbing the transmitter antenna far field characteristics. The design, characterization, and optimization of high-temperature superconducting metamaterials constitutive parameters are developed in this work at X-band frequencies. A calibrated characterization method for testing arrays of split-ring resonators at cryogenic temperature inside a TE10 waveguide was developed and used to back-out anisotropic equivalent material parameters. The artificial material elements (YBCO split-ring resonators on MgO substrate) are optimized to improve the narrowband performance of the metamaterial radome with respect to maximizing isolation and minimizing shadowing, defined as a reduction of the transmitted power external to the radome. The optimized radome is fabricated and characterized in a parallel plate waveguide in a cryogenic environment to demonstrate the degree of isolation and shadowing resulting from its presence. At 11.12 GHz, measurements show that the HTS metamaterial radome achieved an isolation of 10.5 dB and the external power at 100 mm behind the radome is reduced by 1.9 dB. This work demonstrates the feasibility of fabricating a structure that provides good isolation between two antennas and low disturbance of the transmitter's fields.