WorldWideScience

Sample records for cryogenic magnet tests

  1. Testing of Prototype Magnetic Suspension Cryogenic Transfer Line

    Science.gov (United States)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.

    2006-04-01

    A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.

  2. Cryogenic Infrastructure for Testing of LHC Series Superconducting Magnets

    CERN Document Server

    Axensalva, J; Herblin, L; Lamboy, J P; Tovar-Gonzalez, A; Vuillerme, B

    2005-01-01

    The ~1800 superconducting magnets for the LHC machine shall be entirely tested at reception before their installation in the tunnel. For this purpose and in order to reach the reliability and efficiency at the nominal load required for an industrial operation for several years, we have gradually upgraded and retrofitted the cryogenic facilities installed in the early nineties for the testing at CERN of prototypes and preseries magnets. The final infrastructure of the test station, dedicated to check industrially the quality of the series magnets, is now nearly complete. We present the general layout and describe the overall performance of the system.

  3. A Cryogenic Test Stand for LHC Quadrupole Magnets

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Huang, Y.; Orris, D.F.; Peterson, T.J.; Rabehl, R.J.

    2004-01-01

    A new test stand for testing LHC interaction region (IR) quadrupole magnets at the Fermilab Magnet Test Facility has been designed and operated. The test stand uses a double bath system with a lambda plate to provide the magnet with a stagnant bath of pressurized He II at 1.9 K and 0.13 MPa. A cryostated magnet 0.91 m in diameter and up to 13 m in length can be accommodated. This paper describes the system design and operation. Issues related to both 4.5 K and 1.9 K operations and magnet quenching are highlighted. An overview of the data acquisition and cryogenics controls systems is also included

  4. First Cryogenic Testing of the ATLAS Superconducting Prototype Magnets

    CERN Document Server

    Delruelle, N; Haug, F; Mayri, C; Orlic, J P; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroids and the barrel toroid made of eight coils (BT) symmetrically placed around the central axis of the detector. All these magnets will be individually tested in an experimental area prior to their final installation in the underground cavern of the LHC collider. A dedicated cryogenic test facility has been designed and built for this purpose. It mainly consists of a 1'200 W at 4.5 K refrigerator, a 10 kW liquid nitrogen pre-cooling unit, a cryostat housing liquid helium centrifugal pumps, a distribution valve box and transfer lines. Prior to the start of the series tests of the BT magnets, two model coils are used at this facility. The first one, the so-called B00 of comparatively small size, contains the three different types of superconductors used for the ATLAS magnets which are wound on a cylindrical mandrel. The second magnet, the B0, is a reduced model of basically identical design concept as the...

  5. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-03-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and non-high current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  6. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Barger, R.K.; Bianchi, A.J.; Cooper, W.E.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-01-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and nonhigh current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  7. Large Cryogenic Infrastructure for LHC Superconducting Magnet and Cryogenic Component Tests: Layout, Commissioning and Operational Experience

    International Nuclear Information System (INIS)

    Calzas, C.; Chanat, D.; Knoops, S.; Sanmarti, M.; Serio, L.

    2004-01-01

    The largest cryogenic test facility at CERN, located at Zone 18, is used to validate and to test all main components working at cryogenic temperature in the LHC (Large Hadron Collider) before final installation in the machine tunnel. In total about 1300 main dipoles, 400 main quadrupoles, 5 RF-modules, eight 1.8 K refrigeration units will be tested in the coming years.The test facility has been improved and upgraded over the last few years and the first 18 kW refrigerator for the LHC machine has been added to boost the cryogenic capacity for the area via a 25,000 liter liquid helium dewar. The existing 6 kW refrigerator, used for the LHC Test String experiments, will also be employed to commission LHC cryogenic components.We report on the design and layout of the test facility as well as the commissioning and the first 10,000 hours operational experience of the test facility and the 18 kW LHC refrigerator

  8. Cryogenic test facility instrumentation with fiber optic and fiber optic sensors for testing superconducting accelerator magnets

    Science.gov (United States)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Castaldo, B.; Consales, M.; Cusano, A.; Giordano, M.; Giloux, C.; Perez, J. C.; Sansone, L.; Viret, P.

    2017-12-01

    The magnets for the next steps in accelerator physics, such as the High Luminosity upgrade of the LHC (HL- LHC) and the Future Circular Collider (FCC), require the development of new technologies for manufacturing and monitoring. To meet the HL-LHC new requirements, a large upgrade of the CERN SM18 cryogenic test facilities is ongoing with the implementation of new cryostats and cryogenic instrumentation. The paper deals with the advances in the development and the calibration of fiber optic sensors in the range 300 - 4 K using a dedicated closed-cycle refrigerator system composed of a pulse tube and a cryogen-free cryostat. The calibrated fiber optic sensors (FOS) have been installed in three vertical cryostats used for testing superconducting magnets down to 1.9 K or 4.2 K and in the variable temperature test bench (100 - 4.2 K). Some examples of FOS measurements of cryostat temperature evolution are presented as well as measurements of strain performed on a subscale of High Temperature Superconducting magnet during its powering tests.

  9. A cryogenic test stand for full length SSC magnets with superfluid capability

    International Nuclear Information System (INIS)

    Peterson, T.J.; Mazur, P.O.

    1989-02-01

    The Fermilab Magnet Test Facility performs testing of the full scale SSC magnets on test stands capable of simulating the cryogenic environment of the SSC main ring. One of these test stands, Stand 5, also has the ability to operate the magnet under test at temperatures from 1.8K to 4.5K with either supercritical helium or subcooled liquid, providing at least 25 Watts of refrigeration. At least 50 g/s flow is available from 2.3K to 4.5K, whereas superfluid operation occurs with zero flow. Cooldown time from 4.5K to 1.8K is 1.5 hours. A maximum current capability of 10,000 amps is provided, as is instrumentation to monitor and control the cryogenic conditions. This paper describes the cryogenic design of this test stand. 8 refs., 6 figs

  10. Design and construction of the SSCL magnet test laboratory cryogenic systems

    International Nuclear Information System (INIS)

    Freeman, M.A.; Kobel, T.A.

    1992-01-01

    The intent of this document is to provide a brief summary of the execution, by Process Systems International, Inc. (PSI), of the Design and Construction of the SSCL Magnet Test Laboratory Cryogenic Systems. This $30 million project requires the expenditure of over 200,000 manhours and the procurement of $17 million in materials within a two year period. SSC magnets will be performance tested at the Magnet Test Laboratory (MTL) and the Accelerator System String Test (ASST) facility under conditions simulating the environment of the SSC main ring. The cryogenic system consists of test stands (five for MTL, one for ASST) and the associated equipment including cryogenic storage, purification, thermal conditioning, and helium refrigeration necessary to support the test program

  11. MFTF magnet cryogenics

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1981-07-01

    The prime requirement of the cryogenics of the magnets is to assure a superconducting state for the magnet coils, a large task considering their enormous size. The following presentation addresses the principal topics that have been considered in this cryogenic design

  12. A Cryogenic Test Stand for Large Superconducting Solenoid Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Orris, D. [Fermilab; Soyars, W. [Fermilab; Sylvester, C. [Fermilab

    2013-01-01

    A new test stand for testing large superconducting solenoid magnets at the Fermilab Central Helium Liquifier (CHL) has been designed, and operated. This test stand has been used to test a coupling coil for the Muon Ionization Cooling Experiment (MICE), and future uses include solenoids for the Fermilab mu2e experiment. This paper describes the test stand design and operation including controlled cool-down and warm-up. Overviews of the process controls system and the quench management system are also included.

  13. Cryogenic Design of the New High Field Magnet Test Facility at CERN

    Science.gov (United States)

    Benda, V.; Pirotte, O.; De Rijk, G.; Bajko, M.; Craen, A. Vande; Perret, Ph.; Hanzelka, P.

    In the framework of the R&D program related to the Large Hadron Collider (LHC) upgrades, a new High Field Magnet (HFM) vertical test bench is required. This facility located in the SM18 cryogenic test hall shall allow testing of up to 15 tons superconducting magnets with energy up to 10 MJ in a temperature range between 1.9 K and 4.5 K. The article describes the cryogenic architecture to be inserted in the general infrastructure of SM18 including the process and instrumentation diagram, the different operating phases including strategy for magnet cool down and warm up at controlled speed and quench management as well as the design of the main components.

  14. Cryogenic magnet tests for the LHC process operation using web-based tools and facilities

    CERN Document Server

    Hemelsoet, G H; Chohan, V; Veyrunes, E

    2005-01-01

    For the Large Hadron Collider under construction at CERN, an essential requirement is the acceptance test of its 1706 Cryo-magnets in cryogenic conditions in a purpose-built facility at CERN. Several teams ensure the proper operation of the infrastructure on a round the clock basis. The cold test part is one of the key elements amongst many other essential activities requiring magnet transport and connections/disconnections, cryogenic preparation and pumping, cooling down to 1.9 K as well warm up before disconnection & removal. All these operations involve multi-tasking and usage of 12 test benches with nominal turn-round time per dipole magnet of 120 hours. It also involves multiple teams of industrial contractors, a support contract for cryogenics operation, CERN staff in magnet testing Operation, aided by a large external collaboration of visiting staff for round the clock operation. This paper gives a flavour of the operation and exposes the software tools that were necessary, designed and developed t...

  15. Automatic Management Systems for the Operation of the Cryogenic Test Facilities for LHC Series Superconducting Magnets

    CERN Document Server

    Tovar-Gonzalez, A; Herblin, L; Lamboy, J P; Vullierme, B

    2006-01-01

    Prior to their final preparation before installation in the tunnel, the ~1800 series superconducting magnets of the LHC machine shall be entirely tested at reception on modular test facilities. The operation 24 hours per day of the cryogenic test facilities is conducted in turn by 3-operator teams, assisted in real time by the use of the Test Bench Priorities Handling System, a process control application enforcing the optimum use of cryogenic utilities and of the "Tasks Tracking System", a web-based e-traveller application handling 12 parallel 38-task test sequences. This paper describes how such computer-based management systems can be used to optimize operation of concurrent test benches within technical boundary conditions given by the cryogenic capacity, and how they can be used to study the efficiency of the automatic steering of all individual cryogenic sub-systems. Finally, this paper presents the overall performance of the cryomagnet test station for the first complete year of operation at high produ...

  16. TPC magnet cryogenic system

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system

  17. Cryogenic Permanent Magnet Undulators

    International Nuclear Information System (INIS)

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-01-01

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm 2 Co 17 or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  18. Upgrade of the cryogenic infrastructure of SM18, CERN main test facility for superconducting magnets and RF cavities

    Science.gov (United States)

    Perin, A.; Dhalla, F.; Gayet, P.; Serio, L.

    2017-12-01

    SM18 is CERN main facility for testing superconducting accelerator magnets and superconducting RF cavities. Its cryogenic infrastructure will have to be significantly upgraded in the coming years, starting in 2019, to meet the testing requirements for the LHC High Luminosity project and for the R&D program for superconducting magnets and RF equipment until 2023 and beyond. This article presents the assessment of the cryogenic needs based on the foreseen test program and on past testing experience. The current configuration of the cryogenic infrastructure is presented and several possible upgrade scenarios are discussed. The chosen upgrade configuration is then described and the characteristics of the main newly required cryogenic equipment, in particular a new 35 g/s helium liquefier, are presented. The upgrade implementation strategy and plan to meet the required schedule are then described.

  19. Testing the intrinsic noise of a coil-magnet actuator for cryogenic gravitational wave interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Falferi, Paolo, E-mail: falferi@science.unitn.it [Istituto di Fotonica e Nanotecnologie, CNR-Fondazione Bruno Kessler, 38123 Povo, Trento (Italy); INFN, Gruppo Collegato di Trento, Sezione di Padova, 38123 Povo, Trento (Italy)

    2011-07-21

    The third generation gravitational wave interferometers that will operate underground and at cryogenic temperatures will need a complex and sophisticated control system to satisfy the requirements on the alignment and position of its optics and keep the detector at its working point. The force actuators of the control systems of the present interferometers are for the most part coil-magnet actuators. To check the possibility of using these actuators also at low temperature we have tested the magnetization and the magnetization noise of an SmCo magnet at 4.2 K. The magnetization loss, measured with a fluxgate magnetometer, is 7%. The magnetization noise has been measured with a superconducting quantum interference device magnetometer. The application of dc and ac (0.1 Hz) magnetic fields of an amplitude comparable to that needed to produce on the magnet a force large enough for the control system does not change the measured noise. The equivalent maximum force noise produced by the actuator as a result of the magnetization noise of the magnet has been evaluated. Its effect on the sensitivity of a third generation interferometer (Einstein Telescope) is negligible with respect to the most relevant fundamental noise contributions.

  20. Testing the intrinsic noise of a coil-magnet actuator for cryogenic gravitational wave interferometers

    International Nuclear Information System (INIS)

    Falferi, Paolo

    2011-01-01

    The third generation gravitational wave interferometers that will operate underground and at cryogenic temperatures will need a complex and sophisticated control system to satisfy the requirements on the alignment and position of its optics and keep the detector at its working point. The force actuators of the control systems of the present interferometers are for the most part coil-magnet actuators. To check the possibility of using these actuators also at low temperature we have tested the magnetization and the magnetization noise of an SmCo magnet at 4.2 K. The magnetization loss, measured with a fluxgate magnetometer, is 7%. The magnetization noise has been measured with a superconducting quantum interference device magnetometer. The application of dc and ac (0.1 Hz) magnetic fields of an amplitude comparable to that needed to produce on the magnet a force large enough for the control system does not change the measured noise. The equivalent maximum force noise produced by the actuator as a result of the magnetization noise of the magnet has been evaluated. Its effect on the sensitivity of a third generation interferometer (Einstein Telescope) is negligible with respect to the most relevant fundamental noise contributions.

  1. Comparison of different cryogenic control strategies via simulation applied to a superconducting magnet test bench at CERN

    Science.gov (United States)

    Arpaia, P.; Coppier, H.; De Paola, D.; di Bernardo, M.; Guarino, A.; Pedemonte, B. Luz; Pezzetti, M.

    2017-12-01

    Industrial process controllers for cryogenic systems used in test facilities for superconducting magnets are typically PIDs, tuned by operational expertise according to users’ requirements (covering cryogenic transients and associated thermo-mechanical constraints). In this paper, an alternative fully-automatic solution, equally based on PID controllers, is proposed. Following the comparison of the operational expertise and alternative fully-automatic approaches, a new process control configuration, based on an estimated multiple-input/multiple-output (MIMO) model is proposed. The new MIMO model-based approach fulfils the required operational constraints while improving performance compared to existing solutions. The analysis and design work is carried out using both theoretical and numerical tools and is validated on the case study of the High Field Magnet (HFM) cryogenic test bench running at the SM18 test facility located at CERN. The proposed solution have been validated by simulation using the CERN ECOSIMPRO software tools using the cryogenic library (CRYOLIB [1]) developed at CERN.

  2. Superconducting magnets and cryogenics: proceedings

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1986-01-01

    Separate abstracts were prepared for 70 papers in these workshop proceeedings. Topics covered include: superconducting accelerator magnet research and development; superconductor development; electrical measurements; magnet design and construction methods; field correction methods; power schemes and quench protection; cryogenic systems; and magnet measurements

  3. Cryogenic Testing of High Current By-Pass Diode Stacks for the Protection of the Superconducting Magnets in the LHC

    Science.gov (United States)

    Gharib, A.; Hagedorn, D.; Della Corte, A.; Fiamozzi Zignani, C.; Turtu, S.; Brown, D.; Rout, C.

    2004-06-01

    For the protection of the LHC superconducting magnets, about 2100 specially developed by-pass diodes were manufactured by DYNEX SEMICONDUCTOR LTD (Lincoln, GB) and about 1300 of these diodes were mounted into diode stacks and submitted to tests at cryogenic temperatures. To date about 800 dipole diode stacks and about 250 quadrupole diode stacks for the protection of the superconducting lattice dipole and lattice quadrupole magnets have been assembled at OCEM (Bologna,Italy) and successfully tested in liquid helium at ENEA (Frascati, Italy). This report gives an overview of the test results obtained so far. After a short description of the test installations and test procedures, a statistical analysis is presented for test data during diode production as well as for the performance of the diode stacks during testing in liquid helium, including failure rates and degradation of the diodes.

  4. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...

  5. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  6. Kodak AMSD Cryogenic Test Plans

    Science.gov (United States)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  7. Cryogenic testing of by-pass diode stacks for the superconducting magnets of the large hadron collider at CERN

    International Nuclear Information System (INIS)

    Della Corte, A.; Catitti, A.; Chiarelli, S.; Di Ferdinando, E.; Verdini, L.; Gharib, A.; Hagedorn, D.; Turtu, S.; Basile, G. L.; Taddia, G.; Talli, M.; Viola, R.

    2002-01-01

    A dedicated facility prepared by ENEA (Italian Agency for Energy and Environment) for the cryogenic testing of by-pass diodes for the protection of the CERN Large Hadron Collider main magnets will be described. This experimental activity is in the frame of a contract awarded to OCEM, an Italian firm active in the field of electronic devices and power supplies, in collaboration with ENEA, for the manufacture and testing of all the diode stacks. In particular, CERN requests the measurement of the reverse and forward voltage diode characteristics at 300 K and 77 K, and endurance test cycles at liquid helium temperature. The experimental set-up at ENEA and data acquisition system developed for the scope will be described and the test results reported

  8. Helium leak testing of superconducting magnets, thermal shields and cryogenic lines of SST -1

    International Nuclear Information System (INIS)

    Thankey, P.L.; Joshi, K.S.; Semwal, P.; Pathan, F.S.; Raval, D.C.; Khan, Z.; Patel, R.J.; Pathak, H.A.

    2005-01-01

    Tokamak SST - 1 is under commissioning at Institute for Plasma Research. It comprises of a toroidal doughnut shaped plasma chamber, surrounded by liquid helium cooled superconducting magnets, housed in a cryostat chamber. The cryostat has two cooling circuits, (1) liquid nitrogen cooling circuit operating at 80 K to minimize the radiation heat load on the magnets, and (2) liquid helium cooling circuit to cool magnets and cold mass support structure to 4.5 K. In this paper we describe (a) the leak testing of copper - SS joints, brazing joints, interconnecting joints of the superconducting magnets, and (b) the leak testing of the liquid nitrogen cooling circuit, comprising of the main supply header, the thermal shields, interconnecting pipes, main return header and electrical isolators. All these tests were carried out using both vacuum and sniffer methods. (author)

  9. Cryogenic test facility at VECC, Kolkata

    International Nuclear Information System (INIS)

    Sarkar, Amit; Bhunia, Uttam; Pradhan, J.; Sur, A.; Bhandari, R.K.; Ranganathan, R.

    2003-01-01

    In view of proposed K-500 superconducting cyclotron project, cryogenic test facility has been set up at the centre. The facility can broadly be categorized into two- a small scale test facility and a large scale test facility. This facility has been utilized for the calibration of liquid helium level probe, cryogenic temperature probe, and I-B plot for a 7 T superconducting magnet. Spiral-shaped superconducting short sample with specific dimension and specially designed stainless steel sample holder has already been developed for the electrical characterisation. The 1/5 th model superconducting coil along with its quench detection circuit and dump resistor has also been developed

  10. Cryogenic system for the HERA magnet measurement facility

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Clausen, M.; Kebler, G.

    1986-01-01

    This paper describes the design for a helium, cryogenic distribution system that allows independent operation and testing of superconducting magnets of the HERA project before they are installed in the 6-km ring tunnel. The 820-GeV proton storage ring of HERA will contain approximately 650 magnets having superconducting coils which are clamped by aluminum/stainless-steel collars and surrounded by a yoke of magnetic iron at liquid helium temperature. When the magnets arive at DESY from the manufacture, each magnet will be individually tested at helium operating conditions in the magnet measurement facility to insure the quality of the magnetic characteristics and the cryogenic performance. The capabilities of the cryogenic system and the schedule for magnet testing are discussed

  11. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  12. Test of a cryogenic helium pump

    International Nuclear Information System (INIS)

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  13. Room temperature cryogenic test interface

    International Nuclear Information System (INIS)

    Faris, S. M.; Davidson, A.; Moskowitz, P. A.; Sai-Halasz, G. A.

    1985-01-01

    This interface permits the testing of high speed semiconductor devices (room-temperature chips) by a Josephson junction sampling device (cryogenic chip) without intolerable loss of resolution. The interface comprises a quartz pass-through plug which includes a planar transmission line interconnecting a first chip station, where the cryogenic chip is mounted, and a second chip station, where the semiconductor chip to be tested is temporarily mounted. The pass-through plug has a cemented long half-cylindrical portion and short half-cylindrical portion. The long portion carries the planar transmission line, the ends of which form the first and second chip mounting stations. The short portion completes the cylinder with the long portion for part of its length, where a seal can be achieved, but does not extend over the chip mounting stations. Sealing is by epoxy cement. The pass-through plug is sealed in place in a flange mounted to the chamber wall. The first chip station, with the cryogenic chip attached, extends into the liquid helium reservoir. The second chip station is in the room temperature environment required for semiconductor operation. Proper semiconductor operating temperature is achieved by a heater wire and control thermocouple in the vicinity of each other and the second chip mounting station. Thermal isolation is maintained by vacuum and seals. Connections for power and control, for test result signals, for temperature control and heating, and for vacuum complete the test apparatus

  14. Development of cryogenic permanent magnet undulator

    International Nuclear Information System (INIS)

    Hara, Toru; Tanaka, Takashi; Shirasawa, Katsutoshi; Kitamura, Hideo; Bizen, Teruhiko; Seike, Takamitsu; Marechal, Xavier; Tsuru, Rieko; Iwaki, Daisuke

    2005-01-01

    A short period undulator increases not only the photon energy of undulator radiation, but also the brilliance due to its increased number of undulator periods. As a result, brilliant undulator radiation becomes available in the photon energy range, which is currently covered by wigglers. In order to develop a short period undulator, high performance magnets are indispensable and superconductive undulators have been actively investigated in recent years. In this paper, however, we propose a new approach, so called a cryogenic permanent magnet undulator using NdFeB magnets at the temperatures around 150 K. The current status of this cryogenic permanent magnet undulator development at SPring-8 is presented including the results of the magnetic field measurements on a prototype undulator. (author)

  15. Cryogenic instrumentation for ITER magnets

    Science.gov (United States)

    Poncet, J.-M.; Manzagol, J.; Attard, A.; André, J.; Bizel-Bizellot, L.; Bonnay, P.; Ercolani, E.; Luchier, N.; Girard, A.; Clayton, N.; Devred, A.; Huygen, S.; Journeaux, J.-Y.

    2017-02-01

    Accurate measurements of the helium flowrate and of the temperature of the ITER magnets is of fundamental importance to make sure that the magnets operate under well controlled and reliable conditions, and to allow suitable helium flow distribution in the magnets through the helium piping. Therefore, the temperature and flow rate measurements shall be reliable and accurate. In this paper, we present the thermometric chains as well as the venturi flow meters installed in the ITER magnets and their helium piping. The presented thermometric block design is based on the design developed by CERN for the LHC, which has been further optimized via thermal simulations carried out by CEA. The electronic part of the thermometric chain was entirely developed by the CEA and will be presented in detail: it is based on a lock-in measurement and small signal amplification, and also provides a web interface and software to an industrial PLC. This measuring device provides a reliable, accurate, electromagnetically immune, and fast (up to 100 Hz bandwidth) system for resistive temperature sensors between a few ohms to 100 kΩ. The flowmeters (venturi type) which make up part of the helium mass flow measurement chain have been completely designed, and manufacturing is on-going. The behaviour of the helium gas has been studied in detailed thanks to ANSYS CFX software in order to obtain the same differential pressure for all types of flowmeters. Measurement uncertainties have been estimated and the influence of input parameters has been studied. Mechanical calculations have been performed to guarantee the mechanical strength of the venturis required for pressure equipment operating in nuclear environment. In order to complete the helium mass flow measurement chain, different technologies of absolute and differential pressure sensors have been tested in an applied magnetic field to identify equipment compatible with the ITER environment.

  16. Proposal for the award of a contract for the supply, testing, installation and commissioning of the proximity cryogenic system for the ATLAS toroid magnet system

    CERN Document Server

    European Organization for Nuclear Research

    2002-01-01

    This document concerns the award of a contract for the supply, testing, installation and commissioning of the proximity cryogenic system for the ATLAS toroid magnet system. Following a market survey carried out among 61 firms in ten Member States and 14 firms in three non-Member States, a call for tenders (IT-2624/EP/ATLAS) was sent on 19 April 2002 to four firms and three consortia in six Member States and two firms in one non-Member State. By the closing date, CERN had received three tenders. The Finance Committee is invited to agree to the negotiation of a contract with AIR LIQUIDE ITALIA (IT), the lowest bidder, for the supply, testing, installation and commissioning of the proximity cryogenic system for the ATLAS toroid magnet system for a total amount not exceeding 2 840 000 euros (4 191 300 Swiss francs), not subject to revision. The rate of exchange which has been used is that stipulated in the tender. This procurement will be financed by the ATLAS Common Fund and CERN's contribution will not exceed 8...

  17. Magnet and cryogenics for ISABELLE

    International Nuclear Information System (INIS)

    Thomas, D.B.

    1975-01-01

    A critical review was made of the present status and future plans of the Brookhaven National Laboratory superconducting magnet program with respect to the planned ISABELLE storage rings. Recommendations are made on possible technical improvements, the future development program, and areas where cost reduction should be sought

  18. Below-Ambient and Cryogenic Thermal Testing

    Science.gov (United States)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  19. Performance of the MFTF magnet cryogenic power leads

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1983-01-01

    The cryogenic power lead system for the MFTF superconducting magnets has been acceptance tested and operated with the magnets. This system, which includes 5-m-long superconducting buses, 1.5-m-long vapor-cooled transition leads, external warm buses, and a cryostack, can conduct up to 6000 A (dc) and operate adiabatically for long periods. We present both design details and performance data; our MFTF version is an example of a reliable lead system for large superconducting magnets contained in a much larger vacuum vessel

  20. A hall for assembly and cryogenic tests

    International Nuclear Information System (INIS)

    Beaunier, J.; Buhler, S.; Caruette, A.; Chevrollier, R.; Junquera, T.; Le Scornet, J.C.

    1999-01-01

    Cryodrome, an assembly hall and the testing ground for cryogenic equipment and R and D experiments for the superconducting cavities is going to be transformed for its future missions. The cryogenic utilities, especially the He low pressure pumping capacity, was rearranged and extended to a new area. Space was provided to install CRYHOLAB, a new horizontal cryostat for cavity testing. Automatic control and supervision of the utilities and the experimental area are rebuilt and updated. (authors)

  1. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; Fermilab

    2006-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  2. CRYOGENIC INFRASTRUCTURE FOR FERMILAB'S ILC VERTICAL CAVITY TEST FACILITY

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  3. Cryogenic test of the equivalence principle

    International Nuclear Information System (INIS)

    Worden, P.W. Jr.

    1976-01-01

    The weak equivalence principle is the hypothesis that the ratio of internal and passive gravitational mass is the same for all bodies. A greatly improved test of this principle is possible in an orbiting satellite. The most promising experiments for an orbital test are adaptations of the Galilean free-fall experiment and the Eotvos balance. Sensitivity to gravity gradient noise, both from the earth and from the spacecraft, defines a limit to the sensitivity in each case. This limit is generally much worse for an Eotvos balance than for a properly designed free-fall experiment. The difference is related to the difficulty of making a balance sufficiently isoinertial. Cryogenic technology is desirable to take full advantage of the potential sensitivity, but tides in the liquid helium refrigerant may produce a gravity gradient that seriously degrades the ultimate sensitivity. The Eotvos balance appears to have a limiting sensitivity to relative difference of rate of fall of about 2 x 10 -14 in orbit. The free-fall experiment is limited by helium tide to about 10 -15 ; if the tide can be controlled or eliminated the limit may approach 10 -18 . Other limitations to equivalence principle experiments are discussed. An experimental test of some of the concepts involved in the orbital free-fall experiment is continuing. The experiment consists in comparing the motions of test masses levitated in a superconducting magnetic bearing, and is itself a sensitive test of the equivalence principle. At present the levitation magnets, position monitors and control coils have been tested and major noise sources identified. A measurement of the equivalence principle is postponed pending development of a system for digitizing data. The experiment and preliminary results are described

  4. Cryogenics around the 11.7 T MRI Iseult magnet

    International Nuclear Information System (INIS)

    Bredy, P.; Belorgey, J.; Chesny, P.; Hervieu, B.; Lannou, H.; Juster, F. P.; Abdel-Maksoud, W.; Mayri, C.; Molinie, F.; Payn, A.

    2010-01-01

    As part of the Iseult/Inumac project, the development of a 500 MHz whole body MRI magnet has been launched in 2006. This magnet with a central field of 11.7 T in a warm bore of 900 mm has outstanding specifications with respect to usual MRI systems. The normal operation of this magnet will need the construction of a cryo-plant able to cool its superconducting coils with pressurized HeII 1.8 K. A helium liquefier and 4.2 K/1.8 K refrigeration stage will be installed in the vicinity of the magnet. Before that, a magnet test facility (Seht-'station d'essais huit teslas') installed at CEA/Saclay has been built in order to validate technical and control-process aspects during all operating phases: cooling down, nominal operation, quench event. The cryogenic system has been designed according to the principles foreseen for Iseult. The facility integration, commissioning, and operating results will be presented. The design of the final cryogenic installation for Iseult magnet, adapted to the facility experiences, is previously described. (authors)

  5. Cryogenics for the MuCool Test Area (MTA)

    International Nuclear Information System (INIS)

    Darve, Christine; Norris, Barry; Pei, Liujin

    2006-01-01

    MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner

  6. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  7. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  8. Cryogenic in situ microcompression testing of Sn

    International Nuclear Information System (INIS)

    Lupinacci, A.; Kacher, J.; Eilenberg, A.; Shapiro, A.A.; Hosemann, P.; Minor, A.M.

    2014-01-01

    Characterizing plasticity mechanisms below the ductile-to-brittle transition temperature is traditionally difficult to accomplish in a systematic fashion. Here, we use a new experimental setup to perform in situ cryogenic mechanical testing of pure Sn micropillars at room temperature and at −142 °C. Subsequent electron microscopy characterization of the micropillars shows a clear difference in the deformation mechanisms at room temperature and at cryogenic temperatures. At room temperature, the Sn micropillars deformed through dislocation plasticity, while at −142 °C they exhibited both higher strength and deformation twinning. Two different orientations were tested, a symmetric (1 0 0) orientation and a non-symmetric (4 5 ¯ 1) orientation. The deformation mechanisms were found to be the same for both orientations

  9. (abstract) Cryogenic Telescope Test Facility

    Science.gov (United States)

    Luchik, T. S.; Chave, R. G.; Nash, A. E.

    1995-01-01

    An optical test Dewar is being constructed with the unique capability to test mirrors of diameter less than or equal to 1 m, f less than or equal to 6, at temperatures from 300 to 4.2 K with a ZYGO Mark IV interferometer. The design and performance of this facility will be presented.

  10. Commissioning of the Cryogenic System for the ATLAS Superconducting Magnets

    CERN Document Server

    Delruelle, N; Bradshaw, T; Haug, F; ten Kate, H H J; Passardi, Giorgio; Pengo, R; Pezzetti, M; Pirotte, O; Rochford, J

    2006-01-01

    The paper describes the test results of the helium cryoplant for the superconducting magnets of the ATLAS particle detector at CERN. It consists of two refrigerators used in common by all the magnets and of two proximity cryogenic systems (PCS) interfacing respectively the toroids and the central solenoid. Emphasis is given to the commissioning of the refrigerators: the main unit of 6 kW equivalent capacity at 4.5 K and the thermal shield refrigerator providing 20 kW between 40 K and 80 K. The first unit is used for refrigeration at 4.5 K and for the cooling of three sets of 20 kA current leads, while the second one provides, in addition to the 20 kW refrigeration of the thermal shields, 60 kW for the cool-down to 100 K of the 660 ton cold mass of the magnets. The tests, carried out with the equipment in the final underground configuration, are extended to the PCS that includes the large liquid helium centrifugal pumps (each providing 1.2 kg/s) for forced-flow cooling of the magnets and the complex distributi...

  11. Field Testing of Cryogenic Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, Aaron [Sustainable Energy Solutions, LLC; Frankman, Dave [Sustainable Energy Solutions, LLC; Baxter, Andrew [Sustainable Energy Solutions, LLC; Stitt, Kyler [Sustainable Energy Solutions, LLC; Baxter, Larry [Sustainable Energy Solutions, LLC; Brigham Young Univ., Provo, UT (United States)

    2017-07-17

    Sustainable Energy Solutions has been developing Cryogenic Carbon Capture™ (CCC) since 2008. In that time two processes have been developed, the External Cooling Loop and Compressed Flue Gas Cryogenic Carbon Capture processes (CCC ECL™ and CCC CFG™ respectively). The CCC ECL™ process has been scaled up to a 1TPD CO2 system. In this process the flue gas is cooled by an external refrigerant loop. SES has tested CCC ECL™ on real flue gas slip streams from subbituminous coal, bituminous coal, biomass, natural gas, shredded tires, and municipal waste fuels at field sites that include utility power stations, heating plants, cement kilns, and pilot-scale research reactors. The CO2 concentrations from these tests ranged from 5 to 22% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at a modest rate. The CCC CFG™ process has been scaled up to a .25 ton per day system. This system has been tested on real flue gas streams including subbituminous coal, bituminous coal and natural gas at field sites that include utility power stations, heating plants, and pilot-scale research reactors. CO2 concentrations for these tests ranged from 5 to 15% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at 90+%. Hg capture was also verified and the resulting effluent from CCC CFG™ was below a 1ppt concentration. This paper will focus on discussion of the capabilities of CCC, the results of field testing and the future steps surrounding the development of this technology.

  12. Development of a cryogenic permanent magnet undulator at the ESRF

    International Nuclear Information System (INIS)

    Kitegi, Ch.

    2008-12-01

    In 2004, at SPring-8, Toru Hara proposed a new concept of undulator with a short period and a high field: the Cryogenic Permanent Magnet Undulator (CPMU). The purpose of this concept is to cool Nd 2 Fe 14 B magnets at 150 K. This cooling allows magnets which have a higher remanence to be used, up to 40% higher than that of the magnets traditionally used in undulators. In order to assess the technological possibility of producing such undulator, a 2 m long undulator with a 18 mm period has been proposed at the ESRF. This piece of work presents the design and the construction of this CPMU at the ESRF. First a magnetic model of the CPMU is introduced; it is based on measurements of the magnetization curve at cryogenic temperature performed at the Louis Neel Laboratory. This model forecasts an increase of the peak field of 8% and of the field integral of 0.2 Gm at around 150 K. A unique magnetic measurement bench has been developed at the ESRF. This bench allows both the in vacuum local field and field integral to be measured. Its design and construction are presented. Finally we have reviewed the measurements at room and cryogenic temperature. These measurements are in agreement with the magnetic model. (author)

  13. Superconductivity, magnetics, cryogenics, and vacuum coating

    International Nuclear Information System (INIS)

    Akin, J.E.; Ballou, J.K.; Beaver, R.J.

    1975-01-01

    The Engineering Sciences Department continued to provide consultation, design, and experiment to support the plasma physics activities of the Division while inaugurating a comprehensive program to develop superconducting magnets for toroidal fusion devices. This newly funded program is aimed at producing toroidal superconducting magnets for an experimental power reactor by the mid 1980's. Other superconducting work, such as the 14-T niobium tin solenoid designed last year for use in Moessbauer experiments, has been fabricated, successfully tested, and delivered to the Physics Division. This coil, which used a 1.27-cm wide Nb 3 Sn conductor operating at 14 T with a coil current density of 11,000 A/cm, represents an advance in the state-of-the-art. The conceptual design was provided for a subcooler to extend the ORMAK operating temperature to 70 0 K and thus allow operation at fields up to 25 kG with the present generators. The detailed design, fabrication, installation supervision, and acceptance testing of the subcooler were provided by the UCCND engineering organization. Further support to the ORMAK program was provided by the vacuum-coating activity through an investigation of sputtering erosion of the ORMAK liner. In addition, a program was undertaken to develop a variety of refractory surfaces of metals, alloys, and intermetallic compounds on stainless steel for use as first walls in future fusion devices. Adherent thick-film metallic and compound coatings deposited in vacuum by several mechanisms were produced and tested. (U.S.)

  14. Cryogenic Characteristics of the ATLAS Barrel Toroid Superconducting Magnet

    CERN Document Server

    Pengo, R; Delruelle, N; Pezzetti, M; Pirotte, O; Passardi, Giorgio; Dudarev, A; ten Kate, H

    2008-01-01

    ATLAS, one of the experiments of the LHC accelerator under commissioning at CERN, is equipped with a large superconducting magnet the Barrel Toroid (BT) that has been tested at nominal current (20500 A). The BT is composed of eight race-track superconducting coils (each one weights about 45 tons) forming the biggest air core toroidal magnet ever built. By means of a large throughput centrifugal pump, a forced flow (about 10 liter/second at 4.5 K) provides the indirect cooling of the coils in parallel. The paper describes the results of the measurements carried out on the complete cryogenic system assembled in the ATLAS cavern situated 100 m below the ground level. The measurements include, among other ones, the static heat loads, i.e., with no or constant current in the magnet, and the dynamic ones, since additional heat losses are produced, during the current ramp-up or slow dump, by eddy currents induced on the coil casing.

  15. Results of radiation tests at cryogenic temperature on some selected organic materials for the LHC

    International Nuclear Information System (INIS)

    Tavlet, M.; Schoenbacher, H.

    1999-01-01

    In the near future, particle accelerators and detectors as well as fusion reactors will operate at cryogenic temperatures. At temperatures as low as 2 K, the organic materials used for the insulation of the superconducting magnets and cables will be exposed to high radiation levels. In this work, a representative selection of organic materials comprising insulating films, cable insulations and epoxy-type-impregnated resins were exposed to neutron and gamma radiation of nuclear reactors, both at ambient and cryogenic temperatures, and were subsequently mechanically tested. The results show that the radiation degradation is never worse in a cryogenic fluid than it is in usual ambient conditions. (author)

  16. Cryogenic techniques for large superconducting magnets in space

    International Nuclear Information System (INIS)

    Green, M.A.

    1988-12-01

    A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points. Both of these methods will extend the ASTROMAG cryogenic operating life from 2 years to almost 4 years. 14 refs., 8 figs., 4 tabs

  17. Cryogenic system for the 45 Tesla hybrid magnet

    International Nuclear Information System (INIS)

    Van Sciver, S.W.; Miller, J.R.; Welton, S.; Schneider-Muntau, H.J.; McIntosh, G.E.

    1994-01-01

    The 45 Tesla hybrid magnet system will consist of a 14 Tesla superconducting outsert magnet and a 31 Tesla water cooled insert. The magnet is planned for operation in early 1995 at the National High Magnetic Field Laboratory. Its purpose is to provide the highest DC magnetic fields for the materials research community. The present paper discusses the overall design of the cryogenic system for the superconducting magnet. Unique features of this system include static 1.8 K pressurized He II as a coolant for the magnet and a refrigerated structural support system for load transfer during fault conditions. The system will consist of two connected cryostats. The magnet is contained within one cryostat which has a clear warm bore of 616 mm and is designed to be free of system interfaces and therefore minimize interference with the magnet user. A second supply cryostat provides the connections to the refrigeration system and magnet power supply. The magnet and supply cryostats are connected to each other through a horizontal services duct section. Issues to be discussed in the present paper include design and thermal analysis of the magnet system during cooldown and in steady state operation and overall cryogenic system design

  18. Infrared detectors and test technology of cryogenic camera

    Science.gov (United States)

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  19. Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced Gravity

    Science.gov (United States)

    Marchetta, J. G.; Hochstein, J. I.

    2002-01-01

    Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced strong evidence that a magnetic positioning system may be a feasible alternative technology for use in the management of cryogenic propellants onboard spacecraft. The results of these preliminary studies have indicated that further investigation of the physical processes and potential reliability of such a system is required. The utility of magnetic fields as an alternative method in cryogenic propellant management is dependent on its reliability and flexibility. Simulations and experiments have previously yielded evidence in support of the magnetic positive positioning (MPP) process to predictably reorient LOX for a variety of initial conditions. Presently, though, insufficient evidence has been established to support the use of magnetic fields with respect to the long-term storage of cryogenic propellants. Current modes of propellant storage have met with a moderate level of success and are well suited for short duration missions using monopropellants. However, the storage of cryogenic propellants warrants additional consideration for long-term missions. For example, propellant loss during storage is due to vaporization by incident solar radiation and the vaporized ullage must be vented to prevent excessive pressurization of the tank. Ideally, positioning the fluid in the center of the tank away from the tank wall will reduce vaporization by minimizing heat transfer through the tank wall to the liquid. A second issue involves the capability of sustaining a stable fluid configuration at tank center under varying g-levels or perturbations propellant storage. Results presented herein include comparisons illustrating the influence of gravity, fluid volume, and the magnetic field on a paramagnetic fluid, LOX. The magnetic Bond number is utilized as predictive correlating parameter for investigating these processes. A dimensionless relationship between the Bom and Bo was sought with the goal of

  20. On-board cryogenic system for magnetic levitation of trains

    Energy Technology Data Exchange (ETDEWEB)

    Baldus, S A.W.; Kneuer, R; Stephan, A

    1975-02-01

    An experimental car based on electrodynamic levitation with superconducting magnets was developed and manufactured with an on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. Processes and components are discussed, and a brief description of the first results for the whole system under simulation conditions is given.

  1. On-board cryogenic system for magnetic levitation of trains

    International Nuclear Information System (INIS)

    Asztalos, St.; Baldus, W.; Kneuer, R.; Stephan, A.

    1974-01-01

    An experimental car based on electrodynamic levitation with superconducting magnets has been developed and manufactured by AEG, BBC, Siemens and other partners, together with Linde AG as the firm responsible for the on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotatable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. This paper reports on processes and components. A brief description of the first results for the whole system under simulation conditions is given. (author)

  2. Cryogenic tests of the first two LHC quadrupole prototypes

    International Nuclear Information System (INIS)

    Genevey, P.; Deregel, J.; Perot, J.; Rifflet, J.M.; Vedrine, P.; Cortella, J.; Le Coroller, A.

    1994-01-01

    Two LHC (Large Hadron Collider) twin aperture quadrupole prototypes were constructed at CEA Saclay (a CERN-CEA collaboration agreement). Their main characteristics are: 3.05 m length, 56 mm coil aperture, 180 mm between the two apertures, 252 T/m nominal gradient at 15060 A. They have been tested and measured in the 1.8 K Saclay test facility in an horizontal cryostat. The magnets are instrumented in order to investigate their behaviour during cool-down, stand-by, powering and current ramping, quenching and warming-up. A summary of the cryogenic, mechanical, pressure and electrical measurements is presented. The quench protection heaters are efficient down to 3000 A. Losses during ramping up and down are reported. (from authors) 5 fig., 11 ref

  3. Cryogenics

    International Nuclear Information System (INIS)

    Fradkov, A.B.

    1991-01-01

    The application of cryogenics in various areas of science and technology is related in a popular way. Utilization of cryogenics in the following production processes is described: separation of air, gas mixtures; production of helium; separation of hydrogen isotopes; production of deuterium. Applications of cryogenics in refrigerating engineering, superconductivity and high-energy physics, controlled thermonuclear fusion, superconducting electric motors and electric energy storages are considered

  4. Cryogenic techniques for large superconducting magnets in space

    Science.gov (United States)

    Green, M. A.

    1989-01-01

    A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points.

  5. ATLAS magnet common cryogenic, vacuum, electrical and control systems

    CERN Document Server

    Miele, P; Delruelle, N; Geich-Gimbel, C; Haug, F; Olesen, G; Pengo, R; Sbrissa, E; Tyrvainen, H; ten Kate, H H J

    2004-01-01

    The superconducting Magnet System for the ATLAS detector at the LHC at CERN comprises a Barrel Toroid, two End Cap Toroids and a Central Solenoid with overall dimensions of 20 m diameter by 26 m length and a stored energy of 1.6 GJ. Common proximity cryogenic and electrical systems for the toroids are implemented. The Cryogenic System provides the cooling power for the 3 toroid magnets considered as a single cold mass (600 tons) and for the CS. The 21 kA toroid and the 8 kA solenoid electrical circuits comprise both a switch-mode power supply, two circuit breakers, water cooled bus bars, He cooled current leads and the diode resistor ramp-down unit. The Vacuum System consists of a group of primary rotary pumps and sets of high vacuum diffusion pumps connected to each individual cryostat. The Magnet Safety System guarantees the magnet protection and human safety through slow and fast dump treatment. The Magnet Control System ensures control, regulation and monitoring of the operation of the magnets. The update...

  6. The cryogenic system for the superconducting solenoid magnet of the CMS experiment

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Lottin, J C; Lottin, J P; Lyraud, C

    1998-01-01

    The design concept of the CMS experiment, foreseen for the Large Hadron Collider (LHC) project at CERN, is based on a superconducting solenoid magnet. The large coil will be made of a four layers winding generating the 4 T uniform magnetic induction required by the detector. The length of the solenoid is 13 m with an inner diameter of 5.9 m. The mass kept at liquid helium temperature totals 220 t and the electromagnetic stored energy is 2.7 GJ. The windings are indirectly cooled with a liquid helium flow driven by a thermosyphon effect. The external cryogenic system consists of a 1.5 kW at 4.5 K (entropy equivalent) cryoplant including an additional liquid nitrogen precooling unit and a 5000 litre liquid helium buffer. The whole magnet and cryogenic system will be tested at the surface by 2003 before final installation in the underground area of LHC.

  7. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  8. Cryogenic expansion joint for large superconducting magnet structures

    Science.gov (United States)

    Brown, Robert L.

    1978-01-01

    An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.

  9. Proposal for a cryogenic magnetic field measurement system for SSC dipole magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Hansen, L.

    1991-03-01

    This proposal describes the research and development required, and the subsequent fabrication of, a system capable of making integrated magnetic multipole measurements of cryogenic 40-mm-bore SSC dipole magnets utilizing a cryogenic probe. Our experience and some preliminary studies indicate that it is highly unlikely that a 16-meter-long probe can be fabricated that will have a twist below several milliradians at cryogenic temperatures. We would anticipate a twist of several milliradians just as a result of cooldown stresses. Consequently, this proposal describes a segmented 16-meter-long probe, for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system will be described. The duration of an integral measurement at one current is expected to be under 10 seconds. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1-meter models of SSC magnets with a cryogenic probe. It should be noted that the expansion of the dipole bore from 40 to 50 mm may make a warm-finger device practical at a cost of approximately one quarter of the cryogenic probe. A warm quadrupole measurement system can be based upon the same principles. 5 refs., 9 figs., 1 tab

  10. A Low Heat Inleak Cryogenic Station for Testing HTS Current Leads for the Large Hadron Collider

    CERN Document Server

    Ballarino, A; Gomes, P; Métral, L; Serio, L; Suraci, A

    1999-01-01

    The LHC will be equipped with about 8000 superconducting magnets of all types. The total current to be transported into the cryogenic enclosure amounts to some 3360 kA. In order to reduce the heat load into the liquid helium, CERN intends to use High Temperature Superconducting (HTS) material for leads having current ratings up to 13 kA. The resistive part of the leads is cooled by forced flow of gaseous helium between 20 K and 300 K. The HTS part of the lead is immersed in a 4.5 K liquid helium bath, operates in self cooling conditions and is hydraulically separated from the resistive part. A cryogenic test station has been designed and built in order to assess the thermal and electrical performances of 13 kA prototype current leads. We report on the design, commissioning and operation of the cryogenic test station and illustrate its performance by typical test results of HTS current leads.

  11. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-09-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  12. Cryogenics

    International Nuclear Information System (INIS)

    Shukla, R.K.

    1990-01-01

    Cryogenics refers to the coldest area known in nature. This temperature range has an upper limit arbitrarily defined as -100 degrees C (-250 degrees C by some) and a lower limit of absolute zero. These limits separate it from the temperature range generally used in refrigerating engineering. One important application of cryogenics is the separation ad purification of air into its various components (oxygen, nitrogen, argon, and the rare gases). Other important developments have been the large-scale production of liquid hydrogen; helium extraction from natural gas; storage and transport of liquefied gases such as oxygen, argon, nitrogen, helium, neon, xenon, and hydrogen; liquefaction of natural gas for ocean transport and peak shaving; and many new types of cryogenic refrigeration devices. This paper introduces the topic of cryogenic engineering. Cryogenic processes generally range from ambient conditions to the boiling point of the cryogenic fluid. Cryogenic cycles also incorporate two or more pressure levels. These properties must also cover the vapor, vapor-liquid, and sometimes the solid regions. Therefore, the physical properties of fluids over a great range of temperatures and pressures must be known. Solubility of contaminants must be known in order to design for their removal. The main physical properties for design purposes are those usually used in unit operations, such as fluid flow, heat transfer, and the like, in addition to those directly related to the Joule-Thomson effect and expansion work. Properties such as density, viscosity, thermal conductivity, heat capacity, enthalpy, entropy, vapor pressure, and vapor-liquid equilibriums are generally obtained in graphical, tabular, or equation form, as a function of temperature and pressure

  13. Cryogenic testing and analysis associated with Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1996-01-01

    An upgrade of the Tevatron cryogenic system was installed and commissioned in 1993 to allow lower temperature operation. As a result, higher energy operation of the Fermilab superconducting Tevatron accelerator is possible. Following the installation and initial commissioning, it was decided to continue the current colliding beam physics run at the previous energy of 900 GeV. This has allowed the author to perform parasitic lower temperature tests in the Tevatron over the last year and a half. This paper presents the results of operational experiences and thermal and hydraulic testing which have taken place. The primary goal of the testing is to better understand the operation of the cold compressor system, associated instrumentation, and the performance of the existing magnet system during lower temperature operation. This will lead to a tentatively scheduled higher energy test run in the fall of 1995. The test results have shown that more elaborate controlling methods are necessary in order to achieve reliable system operation. Fortunately, the new satellite refrigerator controls system is capable of the expansion necessary to reach this goal. New features are being added to the controls systems which will allow for more intelligent control and better diagnostics for component monitoring and trending

  14. Cryogenic testing and analysis associated with Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1996-09-01

    An upgrade of the Tevatron cryogenic system was installed and commissioned in 1993 to allow lower temperature operation. As a result, higher energy operation is possible. Following the installation and initial commissioning, it was decided to continue the current colliding beam physics at the previous energy of 900 GeV. This has allowed us to perform parasitic lower temperature tests in the Tevatron over the last year and a half. This paper presents the results of operational experiences and thermal and hydraulic testing which has taken place. The primary goal of the testing is to better understand the operation of the cold compressor system, associated instrumentation, and the performance of the existing magnet system during lower temperature operation. This will lead to a tentatively scheduled higher energy test run in the fall of 1995. The test results have shown that more elaborate controlling methods are necessary in order to achieve reliable system operation. Fortunately, our new satellite refrigerator controls system is capable of the expansion necessary to reach our goal. New features are being added to the control system which will allow for more intelligent control and better diagnostics for component monitoring and trending

  15. Magnetization behavior of ferrofluids with cryogenically imaged dipolar chains

    International Nuclear Information System (INIS)

    Klokkenburg, M; Erne, B H; Mendelev, V; Ivanov, A O

    2008-01-01

    Theories and simulations have demonstrated that field-induced dipolar chains affect the static magnetic properties of ferrofluids. Experimental verification, however, has been complicated by the high polydispersity of the available ferrofluids, and the morphology of the dipolar chains was left to the imagination. We now present the concentration- and field-dependent magnetization of particularly well-defined ferrofluids, with a low polydispersity, three different average particle sizes, and with dipolar chains that were imaged with and without magnetic field using cryogenic transmission electron microscopy. At low concentrations, the magnetization curves obey the Langevin equation for noninteracting dipoles. Magnetization curves for the largest particles strongly deviate from the Langevin equation but quantitatively agree with a recently developed mean-field model that incorporates the field-dependent formation and alignment of flexible dipolar chains. The combination of magnetic results and in situ electron microscopy images provides original new evidence for the effect of dipolar chains on the field-dependent magnetization of ferrofluids

  16. Cryogenic System for the Cryomodule Test Stand at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    White, Michael J. [Fermilab; Hansen, Benjamin [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-10-09

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description of the heat load measurement plan.

  17. Radiation Requirements and Testing of Cryogenic Thermometers for the Ilc

    Science.gov (United States)

    Barnett, T.; Filippov, Yu. P.; Filippova, E. Yu.; Mokhov, N. V.; Nakao, N.; Klebaner, A. L.; Korenev, S. A.; Theilacker, J. C.; Trenikhina, J.; Vaziri, K.

    2008-03-01

    Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox® and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results.

  18. Radiation requirements and testing of cryogenic thermometers for the ILC

    International Nuclear Information System (INIS)

    Barnett, T.; Filippov, Yu.P.; Mokhov, N.V.; Nakao, N.; Klebaner, A.L.; Korenev, S.A.; Theilacker, J.C.; Trenikhina, J.; Vaziri, K.

    2007-01-01

    Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox(reg s ign) and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results

  19. Cryogenic magnetic coil and superconducting magnetic shield for neutron electric dipole moment searches

    Science.gov (United States)

    Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.

    2017-08-01

    A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.

  20. Test plan for air monitoring during the Cryogenic Retrieval Demonstration

    International Nuclear Information System (INIS)

    Yokuda, E.

    1992-06-01

    This report presents a test plan for air monitoring during the Cryogenic Retrieval Demonstration (CRD). Air monitors will be used to sample for the tracer elements neodymium, terbium, and ytterbium, and dysprosium. The results from this air monitoring will be used to determine if the CRD is successful in controlling dust and minimizing contamination. Procedures and equipment specifications for the test are included

  1. Cryogenics

    International Nuclear Information System (INIS)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V.

    1997-01-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  2. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    International Nuclear Information System (INIS)

    Chantant, M.; Genini, L.; Bayetti, P.; Millet, F.; Wanner, M.; Massaut, V.; Corte, A. Della; Ardelier-Desage, F.; Catherine-Dumont, V.; Dael, A.; Decool, P.; Donati, A.; Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P.; Jamotton, P.; Jourdheuil, L.; Juster, F.P.

    2011-01-01

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  3. Performance of the JT-60SA cryogenic system under pulsed heat loads during acceptance tests

    Science.gov (United States)

    Hoa, C.; Bonne, F.; Roussel, P.; Lamaison, V.; Girard, S.; Fejoz, P.; Goncalves, R.; Vallet, J. C.; Legrand, J.; Fabre, Y.; Pudys, V.; Wanner, M.; Cardella, A.; Di Pietro, E.; Kamiya, K.; Natsume, K.; Ohtsu, K.; Oishi, M.; Honda, A.; Kashiwa, Y.; Kizu, K.

    2017-12-01

    The JT-60SA cryogenic system a superconducting tokamak currently under assembly at Naka, Japan. After one year of commissioning, the acceptance tests were successfully completed in October 2016 in close collaboration with Air Liquide Advanced Technologies (ALaT), the French atomic and alternative energies commission (CEA), Fusion for Energy (F4E) and the Quantum Radiological Science and Technology (QST). The cryogenic system has several cryogenic users at various temperatures: the superconducting magnets at 4.4 K, the current leads at 50 K, the thermal shields at 80 K and the divertor cryo-pumps at 3.7 K. The cryogenic system has an equivalent refrigeration power of about 9.5 kW at 4.5 K, with peak loads caused by the nuclear heating, the eddy currents in the structures and the AC losses in the magnets during cyclic plasma operation. The main results of the acceptance tests will be reported, with emphasis on the management of the challenging pulsed load operation using a liquid helium volume of 7 m3 as a thermal damper.

  4. New Scanning Electron Microscope Used for Cryogenic Tensile Testing

    CERN Multimedia

    Maximilien Brice

    2013-01-01

    At CERN engineering department's installation for cryogenic tensile testing, the new scanning electron microscope (SEM) allows for detailed optical observations to be carried out. Using the SEM, surface coatings and tensile properties of materials can investigated in order to better understand how they behave under different conditions.

  5. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.; Nelson, R.L.

    1986-01-01

    This paper will include an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem will be discussed to present a basic composite of the entire facility

  6. Test method for measuring insulation values of cryogenic pipes

    NARCIS (Netherlands)

    Velthuis, J.F.M.; Blokland, H.; Klaver, B.W.; Beld, C. van de

    2010-01-01

    In this paper a large-area heat flux and temperature sensor (HFT) is used for the evaluation of the insulation value of cryogenic pipes. The HFT is flexible and clamp-on. The test method is relatively simple and can be used in-situ. The HFT makes it possible to monitor insulation performance over

  7. Cryogenics bringing the temperature down, underground

    CERN Multimedia

    2005-01-01

    The first 600m of the LHC cryogenic distribution line (QRL), which will feed the accelerator's superconducting magnets, has passed initial validating tests of its mechanical design at room and cryogenic temperatures.

  8. Cryogenic system of the prototype of the superconducting magnet for a deuteron cyclotron-1

    International Nuclear Information System (INIS)

    Alenitskij, Yu.G.; Buzdavin, A.P.; Vasilenko, A.T.

    1987-01-01

    The results achieved in developing a cryogenic system for the superconducting magnet of the deuteron cyclotron are described. The cryogenic system consists of a liquefier-refrigerator with the output 40 l.h, or 150 W of power taken off at 4.5 K, a satellite refrigerator, a cryostat of the superconductiong magnet coil and vessels for liquid nitrogen and helium. Now auxiliary equipment is being mounted and the main parts of the magnet are being manufatured

  9. Development of bonding techniques for cryogenic components. 1. HIP bonding tests between Ti and cryogenic stainless steels

    International Nuclear Information System (INIS)

    Saito, Shigeru; Ouchi, Nobuo; Ishiyama, Shintaro; Tsuchiya, Yoshinori; Nakajima, Hideo

    2002-05-01

    Around the super conducting (SC) coils of SC linear accelerator or fusion reactor, several kinds of dissimilar material joints will be needed. In case of fusion reactor, pure titanium has been proposed as jacket material of SC coil. Pure titanium has many advantages, for instance, almost same thermal expansion with Nb 3 Sn SC coil, non-magnetivity and good workability. However, it is difficult to bond Ti and cryogenic stainless steels by welding. Therefore, it is necessary to develop new bonding techniques and we started the development of the bonding technology by hot isostatic press (HIP) method to bond titanium with stainless steels. In this experiments, optimization of HIP bonding condition and evaluation of bonding strength were performed by metallurgical observation, mechanical property tests and heat cycle test. (author)

  10. Cryogenic actuator testing for the SAFARI ground calibration setup

    Science.gov (United States)

    de Jonge, C.; Eggens, M.; Nieuwenhuizen, A. C. T.; Detrain, A.; Smit, H.; Dieleman, P.

    2012-09-01

    For the on-ground calibration setup of the SAFARI instrument cryogenic mechanisms are being developed at SRON Netherlands Institute for Space Research, including a filter wheel, XYZ-scanner and a flipmirror mechanism. Due to the extremely low background radiation requirement of the SAFARI instrument, all of these mechanisms will have to perform their work at 4.5 Kelvin and low-dissipative cryogenic actuators are required to drive these mechanisms. In this paper, the performance of stepper motors, piezoelectric actuators and brushless DC-motors as cryogenic actuators are compared. We tested stepper motor mechanical performance and electrical dissipation at 4K. The actuator requirements, test setup and test results are presented. Furthermore, design considerations and early performance tests of the flipmirror mechanism are discussed. This flipmirror features a 102 x 72 mm aluminum mirror that can be rotated 45°. A Phytron stepper motor with reduction gearbox has been chosen to drive the flipmirror. Testing showed that this motor has a dissipation of 49mW at 4K with a torque of 60Nmm at 100rpm. Thermal modeling of the flipmirror mechanism predicts that with proper thermal strapping the peak temperature of the flipmirror after a single action will be within the background level requirements of the SAFARI instrument. Early tests confirm this result. For low-duty cycle operations commercial stepper motors appear suitable as actuators for test equipment in the SAFARI on ground calibration setup.

  11. Cryogenic distribution system for ITER proto-type cryoline test

    International Nuclear Information System (INIS)

    Bhattacharya, R.; Shah, N.; Badgujar, S.; Sarkar, B.

    2012-01-01

    Design validation for ITER cryoline will be carried out by proto-type test on cryoline. The major objectives of the test will be to ensure the mechanical integrity, reliability, thermal stress and heat load as well as checking of assembly and fabrication procedures. The cryogenics system has to satisfy the functional operating scenario of the cryoline. Cryoplant, distribution box (DB) including liquid helium (LHe) tank constitute the cryogenic system for the test. Conceptual system architecture is proposed with a commercially available refrigerator/liquefier and custom designed DB housing cold compressor, cold circulator as well as phase separator with sub-merged heat exchanger. System level optimization, mainly with DB and LHe tank with options, has been studied to minimize the cold power required for the system. Aspen HYSYS is used for the purpose of process simulation. The paper describes the system architecture and the optimized design as well as process simulation with associated results. (author)

  12. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  13. Current measurement system utilizing cryogenic techniques for the absolute measurement of the magnetic flux quantum

    International Nuclear Information System (INIS)

    Endo, T.; Murayama, Y.; Sakamoto, Y.; Sakuraba, T.; Shiota, F.

    1989-01-01

    A series of systems composed of cryogenic devices such as a Josephson potentiometer and a cryogenic current comparator has been proposed and developed to precisely measure a current with any value up to 1 A. These systems will be used to measure the injected electrical energy with an uncertainty of the order of 0.01 ppm or less in the absolute measurement of the magnetic flux quantum by superconducting magnetic levitation. Some preliminary experiments are described

  14. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Nelson, R.L.; Chronis, W.C.

    1985-08-01

    This paper includes an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem discussed to present a basic composite of the entire facility. The following subsystems are included: 500kW nitrogen reliquefier, subcoolers, and distribution system; 15kW helium refrigerator/liquefier and distribution system; helium recovery and storage system; rough vacuum and high vacuum systems

  15. New Technique for Cryogenically Cooling Small Test Articles

    Science.gov (United States)

    Rodriquez, Karen M.; Henderson, Donald J.

    2011-01-01

    Convective heat removal techniques to rapidly cool small test articles to Earth-Moon L2 temperatures of 77 K were accomplished through the use of liquid nitrogen (LN2). By maintaining a selected pressure range on the saturation curve, test articles were cooled below the LN2 boiling point at ambient pressure in less than 30 min. Difficulties in achieving test pressures while maintaining the temperature tolerance necessitated a modification to the original system to include a closed loop conductive cold plate and cryogenic shroud

  16. Testing the Foundations of Relativity Using Cryogenic Optical Resonators

    Science.gov (United States)

    Müller, H.; Braxmaier, C.; Herrmann, S.; Pradl, O.; Lämmerzahl, C.; Mlynek, J.; Schiller, S.; Peters, A.

    We present a new generation of experiments using cryogenic optical resonators(COREs) to test the foundations of relativity. The experiments test the isotropy of the speed of light (Michelson-Morley experiment), the independece of the speed of light from the velocity of the laboratory (Kennedy-Thorndike experiments), and the gravitational redshift for clocks based on an electronic transition. Compared with the best previous results, our tests have already yielded improvements up to a factor of three. Future versions promise significant improvements.

  17. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  18. New generation of cryogen free advanced superconducting magnets for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kirichek, O; Adroja, D T; Manuel, P; Bewley, R I; Brown, J; Kouzmenko, G; Wotherspoon, R

    2012-01-01

    Recent advances in superconducting technology and cryocooler refrigeration have resulted in a new generation of advanced superconducting magnets for neutron beam applications. These magnets have outstanding parameters such as high homogeneity and stability at highest magnetic fields possible, a reasonably small stray field, low neutron scattering background and larger exposure to neutron detectors. At the same time the pulse tube refrigeration technology provides a complete re-condensing regime which allows to minimise the requirements for cryogens without introducing additional noise and mechanical vibrations. The magnets can be used with dilution refrigerator insert which expands the temperature range from 20mK to 300K. Here we are going to present design, test results and the operational data of the 14T magnet for neutron diffraction and the 9T wide angle chopper magnet for neutron spectroscopy developed by Oxford Instruments in collaboration with ISIS neutron source. First scientific results obtained from the neutron scattering experiments with these magnets are also going to be discussed.

  19. A low cost support post for SSC quadrupole magnets and other cryogenic applications

    International Nuclear Information System (INIS)

    Hiller, M.W.; Kunz, R.J.; Lehmann, G.A.; Nilles, M.J.

    1994-01-01

    An injection molded support post has been designed and tested for use in the cryostat of the 5.4 meter long SSC Collider Quadrupole Magnet (CQM). This glass reinforced thermoplastic support is less costly than the complex alternative post designs that consist of filament wound tubes with thermal shrink fit metallic end pieces. The near net shape injection molding process delivers customized components at production rates suitable for present and proposed large scale cryogenic projects such as large accelerators, SMES, and Maglev. In addition, standard shapes (plates, tubes, threaded rods, and fasteners) comprised of this composite are available as catalog items. This paper presents the design considerations, material testing, and validation of predicted structural performance through component testing. Test results reported herein include compressive strength validations as well as previously unreported creep, thermal conductivity, and thermal contraction data. A delineated reliability method is discussed for verifying compliance with apportioned reliability targets using a synthesis of the FEA and test data. Also the design approach and data presented here can be extended toward the design of low cost mass produced supports for other cryogenic applications

  20. Interferometric study on the mass transfer in cryogenic distillation under magnetic field

    Science.gov (United States)

    Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.

    2017-12-01

    Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.

  1. Cryogenic refrigeration. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning cryogenic refrigeration or cryocooling. Design, development, testing, and evaluation of cryogenic cooling systems are discussed. Design applications in spacecraft, magnet cooling, superconductors, liquid fuel storage, radioastronomy, and medicine are presented. Material properties at cryogenic temperatures and cryogenic rocket propellants are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  2. A 6 kW at 4.5 K helium refrigerator for CERN's Cryogenic Test Station

    International Nuclear Information System (INIS)

    Gistau, G.M.; Bonneton, M.

    1994-01-01

    For purposes of testing the present LEP superconducting resonant cavities and the future LHC magnets, CERN built a test station the cryogenic power of which is presently supplied by a dedicated 6 kW at 4.5 K helium refrigerator. The thermodynamic cycle is discussed and special emphasis is put on a new cryogenic expansion turbine operating in the liquid phase. Information is given about: the cycle screw compressors' performances, the general performance of the refrigerator, the expected efficiency enhancement due to the liquid turbine, an off-design turn down operation

  3. Fast Cycled Superconducting Magnet - Connecting hydraulically the Fast Cycled magnet to the cryogenic feed box.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Photo 1 : Connecting hydraulically the Fast Cycled magnet to the cryogenic feed box. Patrck Viret and Guy Deferne technicians of TE-MSC-TF in SM18. - Photo 2 : Installation of the Fast Cycled Superconducting Magnet (FCM) to the new cold feed box in Sm18. - Photo 3 : Connecting the powering cables of the FCM to the feed box. - Photo 5/6 : The connections of the Fast Cycled Magnet. Intermediate pieces. - Photo 7 : Hydraulic connections of the Fast Cycle Magnet cable to allow the cooling of the magnet’s conductor ( Cable in conduit type) with supercritical helium. - Photo 8 : Verification of the connection: design versus reality. Guy Deferne and Frederick Rougemont, technicians of TE-MSC-TE in SM18.

  4. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  5. Upgrade of the cryogenic CERN RF test facility

    International Nuclear Information System (INIS)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented

  6. Development and testing of immersed-Bz diodes with cryogenic anodes

    International Nuclear Information System (INIS)

    Bruner, Nichelle Lee; Cordova, Steve Ray; Oliver, Bryan Velten; Portillo, Salvador; Cooper, Graham; Puetz, Elizabeth A.; Johnston, Mark D.; Hahn, Kelly Denise; McLean, John; Molina, Isidro; Droemer, Darryl W.; Welch, Dale R.; Rovang, Dean Curtis; Van De Valde, David M.; Gregerson, Darryl; Maenchen, John Eric; O'Malley, John

    2005-01-01

    Sandia National Laboratories is investigating and developing high-dose, high-brightness flash radiographic sources. The immersed-B z diode employs large-bore, high-field solenoid magnets to help guide and confine an intense electron beam from a needle-like cathode 'immersed' in the axial field of the magnet. The electron beam is focused onto a high-atomic-number target/anode to generate an intense source of bremsstrahlung X-rays. Historically, these diodes have been unable to achieve high dose (> 500 rad (at) m) from a small spot (< 3 mm diameter). It is believed that this limitation is due in part to undesirable effects associated with the interaction of the electron beam with plasmas formed at either the anode or the cathode. Previous research concentrated on characterizing the behavior of diodes, which used untreated, room temperature (RT) anodes. Research is now focused on improving the diode performance by modifying the diode behavior by using cryogenic anodes that are coated in-situ with frozen gases. The objective of these cryogenically treated anodes is to control and limit the ion species of the anode plasma formed and hence the species of the counter-streaming ions that can interact with the electron beam. Recent progress in the development, testing and fielding of the cryogenically cooled immersed diodes at Sandia is described.

  7. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel

    International Nuclear Information System (INIS)

    Akhbarizadeh, Amin; Amini, Kamran; Javadpour, Sirus

    2012-01-01

    Highlights: ► Deep cryogenic increases the carbide percentage and make a more homogenous distribution. ► Deep cryogenic improve the wear resistance and corrosion behavior of 1.2080 tool steel. ► Applying the magnetic field weaker the carbide distribution and decreases the carbides percentage. ► Magnetized samples showed weaker corrosion and wear behavior. -- Abstract: This work concerns with the effect of applying an external magnetic field on the corrosion behavior, wear resistance and microstructure of 1.2080 (D2) tool steel during the deep cryogenic heat treatment. These analyses were performed via scanning electron microscope (SEM), optical microscope (OM), transmission electron microscope (TEM) and X-ay diffraction (XRD) to study the microstructure, a pin-on-disk wear testing machine to study the wear behavior, and linear sweep voltammetry to study the corrosion behavior of the samples. It was shown that the deep cryogenic heat treatment eliminates retained austenite and makes a more uniform carbide distribution with higher percentage. It was also observed that the deep cryogenic heat treatment improves the wear behavior and corrosion resistance of 1.2080 tool steel. In comparison between the magnetized and non-magnetized samples, the carbide percentage decreases and the carbide distribution weakened in the magnetized samples; subsequently, the wear behavior and corrosion resistance attenuated compared in the magnetized samples.

  8. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R ampersand D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets

  9. Cryogenics for a vertical test stand facility for testing superconducting radio frequency cavities at RRCAT

    International Nuclear Information System (INIS)

    Gupta, Prabhat Kumar; Kumar, Manoj; Kush, P.K.

    2015-01-01

    Vertical Test Stand (VTS) Facility is located in a newly constructed building of Cryo-Engineering and Cryo-Module Development Division (CCDD). This test facility is one of the important facilities to develop SCRF technologies for superconducting accelerators like Indian Spallation Neutron Source. VTS has to be used for regular testing of the Superconducting Radio Frequency (SRF) Niobium cavities at nominal frequency of 1.3 GHz/ 650 MHz at 4 K / 2 K liquid helium (LHe) bath temperatures. Testing of these cavities at 2 K evaluates cavity processing methods, procedures and would also serve as a pre-qualification test for cavity to test it in horizontal cryostat, called horizontal test stand, with other cavity components such as tuner and helium vessel. Cryogenic technologies play a major role in these cavity testing facilities. Achieving and maintaining a stable temperature of 2 K in these test stands on regular and reliable basis is a challenging task and require broad range of cryogenic expertise, large scale system level understanding and many in-house technological and process developments. Furthermore this test stand will handle large amount of liquid helium. Therefore, an appropriately designed infrastructure is required to handle such large amount of helium gas generated during the operation of VTS .This paper describes the different cryogenic design aspects, initial cryogenic operation results and different cryogenic safety aspects. (author)

  10. Beating liquid helium: the technologies of cryogen-free superconducting magnets

    Science.gov (United States)

    Burgoyne, John

    2015-03-01

    Cryogen-free superconducting magnets have been available now for almost 15 years, but have only become standard commercial products in more recent years. In this review we will consider the pros and cons of ``dry'' design including superconducting wire development and selection, thermal budgeting, and the alternative methods for achieving magnet cooling.

  11. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  12. Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer

    Science.gov (United States)

    Schrading, J. Nicolas

    2013-01-01

    The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  13. Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer

    Science.gov (United States)

    Shrading, Nicholas J.

    2012-01-01

    The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  14. Investigation of cryogenic irradiation influence on mechanical and physical properties of ITER magnetic system insulation materials

    International Nuclear Information System (INIS)

    Kozlov, A.V.; Scherbacov, E.N.; Dudchenko, N.A.; Shihalev, V.S.; Bedin, V.V.; Paltusov, N.A.; Korsunskiy, V.E.

    1998-01-01

    A set of methods of cryogenic irradiation influence test on mechanical and physical properties of insulation of ITER magnetic system are presented in this paper. Investigations are carried out without intermediate warming up of samples. A Russian insulating composite material was irradiated in the IVV-2M reactor. The ratio of energy absorbed by insulation materials from neutron irradiation to that from gamma irradiation can be varied from ∝(25:75)% to ∝(50:50)% in the reactor. The test results on the thermal expansion, thermal conductivity and gas evolution of the above material are presented. It was shown, that cryogenic irradiation up to the fluence ∝2 x 10 22 n/m 2 (E ≥ 0.1 MeV) leads to 0.27% linear size changes along layers of fiber-glass, the thermal conductivity coefficient is decreased on 15% at 100 k in perpendicular direction to fiber-glass plane, and thermal coefficient of linear expansion (TCLE) has anomalous temperature dependence. (orig.)

  15. Irradiation effect of the insulating materials for fusion superconducting magnets at cryogenic temperature

    Science.gov (United States)

    Kobayashi, Koji; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    In ITER, superconducting magnets should be used in such severe environment as high fluence of fast neutron, cryogenic temperature and large electromagnetic forces. Insulating material is one of the most sensitive component to radiation. So radiation resistance on mechanical properties at cryogenic temperature are required for insulating material. The purpose of this study is to evaluate irradiation effect of insulating material at cryogenic temperature by gamma-ray irradiation. Firstly, glass fiber reinforced plastic (GFRP) and hybrid composite were prepared. After irradiation at room temperature (RT) or liquid nitrogen temperature (LNT, 77 K), interlaminar shear strength (ILSS) and glass-transition temperature (Tg) measurement were conducted. It was shown that insulating materials irradiated at room temperature were much degraded than those at cryogenic temperature.

  16. Performance of Magnetic-Superconductor Non-Contact Harmonic Drive for Cryogenic Space Applications: Speed, Torque and Efficiency Measurements

    Science.gov (United States)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Valiente-Blanco, Ignacio; Cristache, Cristian; Alvarez-Valenzuela, Marco-Antonio; Sanchez-Garcia-Casarrubios, Juan

    2015-09-01

    Harmonic Drives are widely used in space mainly because of their compactness, large reduction ratio ad zero backlash. However, their use in extreme environments like in cryogenic temperatures is still a challenge. Lubrication, lifetime and fatigue are still issues under these conditions.The MAGDRIVE project, funded by the EU Space FP7 was devoted to test a new concept of harmonic drive reducer. By using the magnetic distance force interactions of magnets and ferromagnetic materials, all the conventional mechanical elements of a Harmonic Drives (teeth, flexspline and ball bearings) are substituted by contactless mechanical components (magnetic gear and superconducting magnetic bearings). The absence of contact between any moving parts prevents wear, lubricants are no longer required and the operational life time is greatly increased. As the magnetic transmission is continuous there is no backlash in the reduction. MAG SOAR Company is already providing contactless mechanical components for space applications able to operate in a wide range of temperatures.In this paper the tests results of a -1:20 ratio MAGDRIVE prototype are reported. In these tests successful operation at 40 K and 10-3 Pa was demonstrated for more than 1.5 million input cycles. A maximum torque of 3 Nm and efficiency higher than 75% at 3000 rpm were demonstrated. The maximum tested input speed was 3000 rpm -six times the previous existing record for harmonic drives at cryogenic temperature.

  17. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Science.gov (United States)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  18. Instrumentation, Field Network and Process Automation for the Cryogenic System of the LHC Test String

    CERN Document Server

    Suraci, A; Balle, C; Blanco-Viñuela, E; Casas-Cubillos, J; Gomes, P; Pelletier, S; Serio, L; Vauthier, N; Balle, Ch.

    2001-01-01

    CERN is now setting up String 2, a full-size prototype of a regular cell of the LHC arc. It is composed of two quadrupole, six dipole magnets, and a separate cryogenic distribution line (QRL) for the supply and recovery of the cryogen. An electrical feed box (DFB), with up to 38 High Temperature Superconducting (HTS) leads, powers the magnets. About 700 sensors and actuators are distributed along four Profibus DP and two Profibus PA field buses. The process automation is handled by two controllers, running 126 Closed Control Loops (CCL). This paper describes the cryogenic control system, associated instrumentation, and their commissioning.

  19. Spiral 2 cryogenic system overview: Design, construction and performance test

    Energy Technology Data Exchange (ETDEWEB)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S. [Air Liquide Advanced Technologies, Sassenage (France); Souli, M. [GANIL, Caen (France); Commeaux, C. [IPN, Orsay (France)

    2014-01-29

    The new particle accelerator project Spiral 2 at GANIL (“Grand Accélérateur d’Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  20. Neutron Irradiation Tests of Calibrated Cryogenic Sensors at Low Temperatures

    CERN Document Server

    Junquera, T; Thermeau, J P; Casas-Cubillos, J

    1998-01-01

    This paper presents the advancement of a program being carried out in view of selecting the cryogenic temperature sensors to be used in the LHC accelerator. About 10,000 sensors will be installed around the 26.6 km LHC ring, and most of them will be exposed to high radiation doses during the accelerator lifetime. The following thermometric sensors : carbon resistors, thin films, and platinum resistors, have been exposed to high neutron fluences (>10$^15$ n/cm$^2$) at the ISN (Grenoble, France) Cryogenic Irradiation Test Facility. A cryostat is placed in a shielded irradiation vault where a 20 MeV deuteron beam hits a Be target, resulting in a well collimated and intense neutron beam. The cryostat, the on-line acquisition system, the temperature references and the main characteristics of the irradiation facility are described. The main interest of this set-up is its ability to monitor online the evolution of the sensors by comparing its readout with temperature references that are in principle insensitive to t...

  1. Experimental investigation of optical fiber temperature sensors at cryogenic temperature and in high magnetic fields

    International Nuclear Information System (INIS)

    Tanaka, Y.; Ogata, M.; Nagashima, K.; Agawa, H.; Matsuura, S.; Kumagai, Y.

    2010-01-01

    If it is possible to monitor the conditions in the cryogenic equipments including the super-conducting magnets, the indication of failure can be detected beforehand and the reliability in the operation can improve. Optical fiber temperature sensing is an advantageous method in terms of heat invasion, electric insulation, etc. Therefore, the experiments which confirm the characteristics of optical fiber temperature sensors at cryogenic temperatures and in high magnetic fields were performed, and the possibility of measuring under these conditions was confirmed. However, since the resolution of temperature was a problem, the method of analysis that predicts the measurements was contrived, and the method to improve the problem was examined.

  2. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  3. Cryogenic Testing of Different Seam Concepts for Multilayer Insulation Systems

    Science.gov (United States)

    Johnson, Wesley L.; Fesmire, J. E.

    2009-01-01

    Recent testing in a cylindrical, comparative cryostat at the Cryogenics Test Laboratory has focused on various seam concepts for multilayer insulation systems. Three main types of seams were investigated: straight overlap, fold-over, and roll wrapped. Each blanket was comprised of 40 layer pairs of reflector and spacer materials. The total thickness was approximately 12.5-mm, giving an average layer density of 32 layers per centimeter. The blankets were tested at high vacuum, soft vacuum, and no vacuum using liquid nitrogen to maintain the cold boundary temperature at 77 K. Test results show that all three seam concepts are all close in thermal performance; however the fold-over method provides the lowest heat flux. For the first series of tests, seams were located 120 degrees around the circumference of the cryostat from the previous seam. This technique appears to have lessened the degradation of the blanket due to the seams. In a follow-on test, a 20 layer blanket was tested in a roll wrapped configuration and then cut down the side of the cylinder, taped together, and re-tested. This test result shows the thermal performance impact of having the seams all in one location versus having the seams clocked around the vessel. This experimental investigation indicates that the method of joining the seams in multilayer insulation systems is not as critical as the quality of the installation process.

  4. Some General Principles in Cryogenic Design, Implementation, and Testing

    Science.gov (United States)

    Dipirro, Michael James

    2015-01-01

    Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.

  5. Cryogenic properties of austenitic stainless steels for superconducting magnet

    International Nuclear Information System (INIS)

    Nohara, K.; Kato, T.; Ono, Y.; Sasaki, T.; Suzuki, S.

    1983-01-01

    The present study examines the magnetic and mechanical properties of a variety of austenitic stainless steels and high maganese steel which are candidate materials for the superconducting magnet attached to high energy particle accelerators. The effect of a specified heat treatment for the precipitation of intermetallic compound Nb3Sn to be used as superconductor on ductility and toughness are especially examined. It is found that nitrogen-strengthened austenitic stainless steels have high strength and good ductility and toughness, but that these are destroyed by precipitation treatment. The poor ductility and toughness after precipitation are caused by a weakening of the grain boundaries due to the agglomerated chromium carbide percipitates. The addition of vanadium suppresses this effect by refining the grain. Austenitic steels are found to have low magnetic permeabilities and Neel temperatures, and show serrated flow in traction test due to strained martensitic transformation. High manganese steel has extremely low permeability, a Neel temperature about room temperature, and has a serrated flow in traction test due to adiabatic deformation at liquid helium temperature

  6. Design, production, and testing of field effect transistors. [cryogenic MOSFETS

    Science.gov (United States)

    Sclar, N.

    1982-01-01

    Cryogenic MOSFETS (CRYOFETS), specifically designed for low temperature preamplifier application with infrared extrinsic detectors were produced and comparatively tested with p-channel MOSFETs under matched conditions. The CRYOFETs exhibit lower voltage thresholds, high source-follower gains at lower bias voltage, and lower dc offset source voltage. The noise of the CRYOFET is found to be 2 to 4 times greater than the MOSFET with a correspondingly lower figure of merit (which is established for source-follower amplifiers). The device power dissipation at a gain of 0.98 is some two orders of magnitude lower than for the MOSFET. Further, CRYOFETs are free of low temperature I vs V character hysteresis and balky conduction turn-on effects and operate effectively in the 2.4 to 20 K range. These devices have promise for use on long term duration sensor missions and for on-focal-plane signal processing at low temperatures.

  7. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    Science.gov (United States)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  8. Successful magnet quench test for CAST.

    CERN Multimedia

    Brice Maximilien

    2002-01-01

    The CERN Axion Solar Telescope (CAST) consists of a prototype LHC dipole magnet with photon detectors at each end. It searches for very weakly interacting neutral particles called axions, which should originate in the core of the Sun. The telescope, located at Point 8, can move vertically within its wheeled platform, which travels horizontally along tracks in the floor. In this way, the telescope can view the Sun at sunrise through one end and at sunset through the other end. It has been cooled down to below 1.8 K and reached ~95% of its final magnetic field of 9 tesla before a quench was induced to test the whole cryogenic system under such conditions. The cryogenic system responded as expected to the magnet quench and CAST is now ready to start its three-year search for solar axions. Photos 01 & 02 : Members of the LHC cryogenics team pose in front of the axion telescope on the day of the first quench test, together with some of the CAST collaboration.

  9. HTS power lead testing at the Fermilab magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  10. HTS power lead testing at the Fermilab magnet test facility

    International Nuclear Information System (INIS)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.

    2005-01-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV CO interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads

  11. LHC Magnet Tests Operational Techniques and Empowerment for Successful Completion

    CERN Document Server

    Chohan, V; Priestnall, K; Pirotte, F; Veyrunes, E; Ali, N; Awale, P; Bahuguna, S; Bhunia, U; Chauhan, V; Dixit, M; Gore, J; John, J; Kandaswamy, E; Kasbekar, A; Kashyap, P; Kasliwal, A; Kulkarni, C; Laddha, A; Malhotra, S; Mascarenhas, M; Mishra, J; Motiwala, P; Nair, K; Narayanan, R; Padmakumar, S; Pagare, A; Peruppayikkad, D; Raghunathan, S; Rao, S; Roy, D; Sharma, S; Shimjith, S; Singh, S; Sonnis, S; Sridhar, S; Surendran, P; Tikaria, A

    2007-01-01

    The LHC magnet tests operation team developed various innovative techniques, particularly since early 2004, to complete the superconductor magnet tests by Feb. 2007. Overall and cryogenic priority handling, rapid on-bench thermal cycling, rule-based goodness evaluation on round-the-clock basis, multiple, mashed web systems are some of these techniques applied with rigour for successful tests completion in time. This paper highlights these operation empowerment tools which had a pivotal role for success. A priority handling method was put in place to enable maximum throughput from twelve test benches, having many different constraints. For the cryogenics infrastructure, it implied judicious allocation of limited resources to the benches. Rapid On-Bench Thermal Cycle was a key strategy to accelerate magnets tests throughput, saving time and simplifying logistics. First level magnet appraisal was developed for 24 hr decision making so as to prepare a magnet further for LHC or keep it on standby. Web based system...

  12. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  13. Cryogenics will cool LHC

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Results of the investigation into the cryogenic regulating line (QRL) performed by the LHC laboratory are presented. It is projected that eight cryogenic units located in five places around the LHC ring will provide superconducting magnets by liquid helium through eight cryogenic regulating lines of 3.2 km each. All QRL zones remain to be independent. CERN uses three test units with the aim of the certification of chosen constructions and verification of their thermal and mechanical efficiency before starting full-scale production [ru

  14. Leak testing of cryogenic components — problems and solutions

    Science.gov (United States)

    Srivastava, S. P.; Pandarkar, S. P.; Unni, T. G.; Sinha, A. K.; Mahajan, K.; Suthar, R. L.

    2008-05-01

    A prototype of Cold Neutron Source (CNS) for Dhruva Reactor is being manufactured at Centre for Design and Manufacture (CDM), BARC, Mumbai for validating the mechanical and thermal engineering design aspects, besides checking the integrity of all joints and components at low temperature, 77K. Task of a Cold Neutron Source is to generate cold neutrons by cooling down the thermal neutrons, which are originally produced in a nuclear research reactor. The complete Cold Neutron Source system comprises a complex arrangement of moderator pot, transfer line (piping), pumps, refrigerators, storage tanks, a heat exchanger and associated controls and instrumentation. The heart of the system is moderator pot in which water (moderator) is cooled down by Liquid Nitrogen (LN2) being circulated through an annular cavity machined on the walls of the pot. Transfer lines for LN2 basically consist of two concentric Stainless Steel flexible pipes, which are joined to the inlet and outlet Aluminium tubes of the moderator pot through transition joints. Leak in any component may result in loss of liquid Nitrogen, degradation of vacuum, which in turn may affect the heat removal efficiency of the source. Hence, leak testing was considered a very important quality control tool and all joints and components were subjected to helium leak test using mass spectrometer leak detector (MSLD) at cryogenic temperature. During one of the earlier experiments, flow of LN2 through inner flexible pipe of the transfer line resulted in rise of pressure in the vacuum annulus and sweating on the outer flexible pipe. After investigations it was found that large thermal stress compounded with mechanical stress resulted in cracks in the inner pipe. Accordingly design was modified to get leak proof transfer line assembly. Further, during leak testing of thin wall moderator pot, gross leak was observed on the outer jacket welded joint. Leak was so large that even a small amount of Helium gas in the vicinity of the

  15. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  16. Cryogenic Pupil Alignment Test Architecture for Aberrated Pupil Images

    Science.gov (United States)

    Bos, Brent; Kubalak, David A.; Antonille, Scott; Ohl, Raymond; Hagopian, John G.

    2009-01-01

    A document describes cryogenic test architecture for the James Webb Space Telescope (JWST) integrated science instrument module (ISIM). The ISIM element primarily consists of a mechanical metering structure, three science instruments, and a fine guidance sensor. One of the critical optomechanical alignments is the co-registration of the optical telescope element (OTE) exit pupil with the entrance pupils of the ISIM instruments. The test architecture has been developed to verify that the ISIM element will be properly aligned with the nominal OTE exit pupil when the two elements come together. The architecture measures three of the most critical pupil degrees-of-freedom during optical testing of the ISIM element. The pupil measurement scheme makes use of specularly reflective pupil alignment references located inside the JWST instruments, ground support equipment that contains a pupil imaging module, an OTE simulator, and pupil viewing channels in two of the JWST flight instruments. Pupil alignment references (PARs) are introduced into the instrument, and their reflections are checked using the instrument's mirrors. After the pupil imaging module (PIM) captures a reflected PAR image, the image will be analyzed to determine the relative alignment offset. The instrument pupil alignment preferences are specularly reflective mirrors with non-reflective fiducials, which makes the test architecture feasible. The instrument channels have fairly large fields of view, allowing PAR tip/tilt tolerances on the order of 0.5deg.

  17. Ring to measure magnetic permeability at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    While for magn. permeability measurements at room temperature a split-coil permeameter is used (see photo 7708553X), for measurements at cryogenic temperatures the excitation and the flux-measuring coils are wound directly on the ring sample by means of a toroidal winding machine. The ring in the picture was made to select the mild steel for the ISR Prototype Superconducting Quadrupole(see photo 7702690X). The excitation coil was wound with 1 mm diam. copper wire and had about 2730 turns. For measurements at 4.2 K a max. current of 90 A was used. See also photos 7708553X,7708100,7708103.

  18. Cryogenic hydrogen data pertinent to magnetic fusion energy

    International Nuclear Information System (INIS)

    Souers, P.C.

    1979-01-01

    To aid future hydrogen fusion researchers, I have correlated the measured physical and chemical properties of the hydrogens below 30 0 K. I have further estimated these properties for deuterium--deuterium tritide--tritium (D 2 --DT--T 2 ) fusion fuel. My resulting synthesis offers a timely view and review of cryogenic hydrogen properties, plus some hydrogen data to room temperature. My general thrust is for workers new to the field, although my discussion of the scientific background of the material would suit specialists

  19. Comparison of cryogenic (hydrogen) and TESPEL (polystyrene) pellet particle deposition in a magnetically confined plasma

    Science.gov (United States)

    McCarthy, K. J.; Tamura, N.; Combs, S. K.; Panadero, N.; Ascabíbar, E.; Estrada, T.; García, R.; Hernández Sánchez, J.; López Fraguas, A.; Navarro, M.; Pastor, I.; Soleto, A.; TJ-II Team

    2017-10-01

    A cryogenic pellet injector (PI) and tracer encapsulated solid pellet (TESPEL) injector system has been operated in combination on the stellarator TJ-II. This unique arrangement has been created by piggy-backing a TESPEL injector onto the backend of a pipe-gun-type PI. The combined injector provides a powerful new tool for comparing ablation and penetration of polystyrene TESPEL pellets and solid hydrogen pellets, as well as for contrasting subsequent pellet particle deposition and plasma perturbation under analogous plasma conditions. For instance, a significantly larger increase in plasma line-averaged electron density, and electron content, is observed after a TESPEL pellet injection compared with an equivalent cryogenic pellet injection. Moreover, for these injections from the low-magnetic-field side of the plasma cross-section, TESPEL pellets deposit electrons deeper into the plasma core than cryogenic pellets. Finally, the physics behind these observations and possible implications for pellet injection studies are discussed.

  20. Design of cryogenic heat exchangers for a superconducting magnet

    International Nuclear Information System (INIS)

    Chrusciel, W.A.; Tao, B.Y.; Ventura, S.A.

    1976-01-01

    Computer programs were written to design and simulate the behavior of three heat exchangers for cooling supercritical helium to approximately 4.3 0 K at 4 atm. Helium, at 1, 3, or 5 gm/sec, is cooled by passing it through 0.635-cm-diam copper tubing immersed in a liquid nitrogen bath, through a copper, concentric tube, counter-current heat exchanger, and then through 0.635-cm copper tubing immersed in a liquid helium bath. The helium then enters a superconducting test magnet and finally passes through the annulus of the countercurrent exchanger before venting to the atmosphere. Several acceptable designs are presented that meet design and space limitations

  1. Radiation tests at cryogenic temperature on selected organic materials for LHC

    International Nuclear Information System (INIS)

    Humer, K.; Weber, H.W.; Szeless, B.; Tavlet, M.

    1997-01-01

    Future multi-TeV particle accelerators like the CERN Large Hadron Collider (LHC) will use superconducting magnets in which organic materials will be exposed to high radiation levels at temperatures as low as 2 K. A representative selection of organic materials comprising insulating films, cable insulations, epoxy resins and composites were exposed to neutron and gamma radiation of a nuclear reactor. Depending on the type of materials, the integrated radiation doses varied between 180 kGy and 155 MGy. During irradiation, the samples were kept close to the boiling temperature of liquid nitrogen, i.e. at 80 K, and thereafter stored in liquid nitrogen and transferred at the same temperature into the testing device for measurement of tensile and flexural strength. Tests were carried out on the same materials at similar dose rates at room temperature, and the results are compared with the ones obtained at cryogenic temperature. They show that within the selected dose range, a number of organic materials are suitable for use in radiation fields of the LHC at cryogenic temperature

  2. Results of radiation tests at cryogenic temperature on some selected organic materials for the LHC

    International Nuclear Information System (INIS)

    Schoenbacher, H.; Szeless, B.; Tavlet, M.; Humer, K.; Weber, H.W.

    1996-01-01

    Future multi-TeV particle accelerators like the CERN Large Hadron Collider (LHC) will use superconducting magnets where organic materials will be exposed to high radiation levels at temperatures as low as 2 K. A representative selection of organic materials comprising insulating films, cable insulations, and epoxy-type impregnated resins were exposed to neutron and gamma radiation of a nuclear reactor. Depending on the type of materials, the integrated radiation doses varied between 180 kGy and 155 MGy. During irradiation, the samples were kept close to the boiling temperature of liquid nitrogen i.e. ∼ 80 K and thereafter stored in liquid nitrogen and transferred at the same temperature into the testing device for measurement of tensile and flexural strength. Tests were carried out on the same materials at similar dose rates at room temperature, and the results were compared with those obtained at cryogenic temperature. They show that, within the selected dose range, a number of organic materials are suitable for use in the radiation field of the LHC at cryogenic temperature. (orig.)

  3. Cryogenics - Its influence on the selection of the ASTROMAG superconducting magnet coils

    Science.gov (United States)

    Green, M. A.

    1990-01-01

    ASTROMAG, a particle astrophysics experimental facility proposed for running alongside a Space Station, has a large superconducting magnet to analyze particles coming from deep space. Several types of magnets were investigated for use in the ASTROMAG central facility. The factors which influence the selection of the magnet coil design include: (1) the upper limit of particle momentum resolved (proportional to the integrated field) as a function of solid angle; (2)cryogenic design and its effect on cryogen lifetime for a given central facility mass; and (3) the overall cost of the magnet coils and cryostat. Four magnet types are analyzed in this paper. These include a simple two-coil solenoid (the baseline design),two disk coils at the ends of the helium tank, a two-coil toroid and a thin solenoid plus bucking coil. A balance must be struck between cryostat lifetime, total mass and the integrated field through the detectors. This balance tends to favor coils which are in the same vacuum vessel as the cryogen.

  4. Gas gap heat switch for a cryogen-free magnet system

    International Nuclear Information System (INIS)

    Barreto, J; De Sousa, P Borges; Martins, D; Bonfait, G; Catarino, I; Kar, S

    2015-01-01

    Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported. (paper)

  5. Cryogenics in CEBAF HMS dipole

    International Nuclear Information System (INIS)

    Bogensberger, P.; Ramsauer, F.; Brindza, P.; Wines, R.; Koefler, H.

    1994-01-01

    The paper will report upon the final design, manufacturing and tests of CEBAF's HMS Dipole cryogenic equipment. The liquid nitrogen circuits, the helium circuits and thermal insulation of the magnet will be addressed. The cryogenic reservoir and control module as an integral part of the HMS Dipole magnet will be presented. The construction, manufacturing, tests and final performance of the HMS Dipole cryogenic system will be reported. The LN 2 circuit and the He circuit are tied together by the control system for cool down, normal operation and standby. This system monitors proper temperature differences between both circuits and controls the cryogenic supply to meet the constraints. Implementation of the control features for the cryogenic system into the control system will be reported

  6. Mechanical Tensile Testing of Titanium 15-3-3-3 and Kevlar 49 at Cryogenic Temperatures

    Science.gov (United States)

    James, Bryan L.; Martinez, Raul M.; Shirron, Peter; Tuttle, Jim; Galassi, Nicholas M.; Mcguinness, Daniel S.; Puckett, David; Francis, John J.; Flom, Yury

    2011-01-01

    Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thennal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.

  7. A Cryogenic RF Material Testing Facility at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Martin, David; Tantawi, Sami; Yoneda, Charles; /SLAC

    2012-06-22

    The authors have developed an X-band SRF testing system using a high-Q copper cavity with an interchangeable flat bottom for the testing of different materials. By measuring the Q of the cavity, the system is capable to characterize the quenching magnetic field of the superconducting samples at different power level and temperature, as well as the surface resistivity. This paper presents the most recent development of the system and testing results.

  8. First Operational Experience and Performance Optimization of the ATLAS Magnet Cryogenic System

    CERN Document Server

    Delruelle, N; Dudarev, A; Passardi, G; Ten Kate, H H J

    2012-01-01

    The ATLAS magnet system, comprising a superconducting central solenoid and three superconducting toroids, has been successfully ramped up for the first time to the nominal operational current of 20.4 kA on 4th August 2008. Since then, new cryogenic operational challenges have been raised, like the smoothing of steady-state parameters, the enhancing of transient procedures to minimize thermal shocks on the magnet cold masses, the optimization of the complex cryogenic system in order to reduce the compressors electric consumption and finally how to avoid regular clogging of the shield refrigerator by water contamination. This paper presents the heat load identification of the various cryogenic sub-systems done at 4.5 K and how one of these loads was reduced, what was gained - in term of electrical consumption - by tuning the turbines settings of the main refrigerator and finally the first consolidation of the cryogenic system implemented in order to minimize the detector downtime during LHC beam runs.

  9. Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe-Mn-Al-Ni Shape Memory Alloys

    Science.gov (United States)

    Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke

    2017-12-01

    Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.

  10. Magnetic properties of the austenitic stainless steels at cryogenic temperatures

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tsuchiya, K.; Itoh, K.; Kobayashi, S.

    2002-01-01

    The magnetization was measured for the austenitic stainless steel of SUS304, SUS304L, SUS316, and SUS316L with the temperature from 5K to 300K and the magnetic field from 0T to 10T. The field dependences of the magnetizations changed at about 0.7T and 4T. The dependence was analyzed with ranges of 0-0.5T, 1-3T, and 5-10T. There was not so much difference between those stainless steels for the usage at small fields and 300 K. The SUS316 and SUS316L samples showed large non-linearity at high fields and 5K. Therefore, SUS304 was recommended for usage at high fields and low temperatures to design superconducting magnets with the linear approximation of the field dependence of magnetization

  11. Feasibility study of parallel conduction cooling of NbTi magnet and sample probe in a cryogen-free magnet system

    Science.gov (United States)

    Catarino, I.; Soni, V.; Barreto, J.; Martins, D.; Kar, S.

    2017-02-01

    The conduction cooling of both a 6 T superconducting magnet along with a sample probe in a parallel configuration is addressed in this work. A Gifford-McMahon (GM) cryocooler is directly cooling the NbTi magnet, which aims to be kept at 4 K, while a gas-gap heat switch (GGHS) manages the cooling power to be diverted to the sample probe, which may be swept from 4 K up to 300 K. A first prototype of a GGHS was customized and validated for this purpose. A sample probe assembly has been designed and assembled with the existing cryogen-free magnet system. The whole test setup and components are described and the preliminary experimental results on the integration are presented and discussed. The magnet was charged up to 3 T with a 4 K sample space and up to 1 T with a sweeping sample space temperature up to 300 K while acting on the GGHS. Despite some identified thermal insulation problems that occurred during this first test, the overall results demonstrated the feasibility of the cryogen-free parallel conduction cooling on study.

  12. Cryogenic Properties of Inorganic Insulation Materials for ITER Magnets: A Review

    International Nuclear Information System (INIS)

    Simon, N.J.

    1994-01-01

    Results of a literature search on the cryogenic properties of candidate inorganic insulators for the ITER TF magnets are reported. The materials investigated include: Al 2 O 3 , AlN, MgO, porcelain, SiO 2 , MgAl 2 O 4 , ZrO 2 , and mica. A graphical presentation is given of mechanical, elastic, electrical, and thermal properties between 4 and 300 K. A companion report reviews the low temperature irradiation resistance of these materials

  13. StructUre and test results of the Tokamak-7 device cryogenic system

    International Nuclear Information System (INIS)

    Babaev, I.V.; VolobUev, A.N.; Zhul'kin, V.F.

    1982-01-01

    A cryogenic system (CS) of the Tokamak-7 (T-7) installation with the longitudinal field superconducting magnetic system (SMS) is described. The CS is designed for cool-down, cryostatic cooling and heating of the T-7 cryogenic objects and consists of a helium system (HS) and a nitrogen cryogenic system (NCS). The HS consists of:a a heliUm delivery system intended for distributing and controlling the helium flows in the SMS; cryogenic helium units; a 1.25 m 3 volume for storing liquid helium; a compressor compartment using piston compressors at the 3 MPa operating pressure and 140 g/s total capacity; gaseous helium storages (3600 m 3 under normal conditions); helium cleaning and drying systems; a gas holder of 20 m 3 operating volume; cryogenic pipelines and pipe fittings. The NCS operates on delivered nitrogen and includes a 120 m 3 liquid nitrogen storage, evaporators and electric heaters producing up to 230 g/s of gaseous nitrogen at 300 K, a separator, cryogenic pipelines and fittings. It is found that the CS has the necessary cold production reserve, ensures reliable operation of the Tokamak-7 device and permits to carry out practically continuous plasma experiments

  14. Development of cryogenic undulators with PrFeB magnets at SOLEIL

    Energy Technology Data Exchange (ETDEWEB)

    Valléau, M., E-mail: valleau@synchrotron-soleil.fr; Benabderrahmane, C.; Briquez, F.; Berteaud, P.; Tavakoli, K.; Zerbib, D.; Chapuis, L.; Marteau, F.; Marcouillé, O.; El Ajjouri, T.; Vétéran, J.; Sharma, G.; Tilmont, M.; Castro, J. Da Silva; N’Guyen, M.-H.; Béchu, N.; Rommeluère, P.; Louvet, M.; Nadji, A.; Herbeaux, C. [Synchrotron-Soleil, L’Orme des Merisisers, 91192 BP 34, Gif Sur Yvette (France); and others

    2016-07-27

    Short period high field undulators are of interest for X-ray brilliance enhancement in synchrotron radiation applications and for compact Free Electron Lasers. Cryogenic in-vacuum undulators [1] are one of the possible solutions. At SOLEIL, PrFeB magnets were directly chosen, even if still under development at that time. Indeed, they enable to avoid the spin transition reorientation phenomenon which occurs with NdFeB magnets [2] and the magnets can be cooled down directly at 77 K. The first selected grade CR53 from Hitachi presents a remanence of 1.35 T at 293 K and 1.57 T at 77 K, with a coercivity of 1355 kA/m at 293 K and 6000 kA/m at 77 K. A 2 m long cryogenic undulator of period 18 mm was first built in-house, with a specific Hall probe bench directly installed in the final vacuum chamber. This first cryogenic undulator has been in operation on the storage ring for 4 years [3]. A second U18 cryo-ready undulator using a slightly different magnet grade with a higher coercivity and modules with magnets surrounded by two half poles for easier magnetic optimization is under construction. A third 3 m long cryo-ready undulator U15 with a period of 15 mm is under development. It will be first used for the LUNEX5 FEL [4, 5] project (COXINEL demonstration of FEL amplification with a laser wakefield acceleration [6]). The measurement bench will include a correction of the Hall probe position and angle, the field integrals will be measured with a stretched wire.

  15. DFBX boxes -- electrical and cryogenic distribution boxes for the superconducting magnets in the LHC straight sections

    International Nuclear Information System (INIS)

    Zbasnik, Jon P.; Corradi, Carol A.; Gourlay, S.A.; Green, MichaelA.; Hafalia, Aurelio Q.; Kajiyama, Yoichi Jr.; Knolls, Michael J.; LaMantia, Roberto F.; Rasson, Joseph E.; Reavill, Dulie; Turner, William C.

    2002-01-01

    DFBX distribution boxes provide cryogenic and electrical services to superconducting quadrupoles and to a superconducting dipole at either end of four of the long straight sections in the LHC. The DFBX boxes also provide instrumentation and quench protection to the magnets. Current for the quadrupole and the dipole magnet is delivered through leads that combine HTS and gas cooled leads. Current for the 600 A and 120 A correction magnets is provided by pure gas-cooled leads. The bus bars from the leads to the magnets pass through low leak-rate lambda plugs between 1.8 K and 4.4 K. The heat leak into the 1.9 K region from the liquid helium tank is determined by the design of the lambda plugs. This paper describes the DFBX boxes and their function of delivering current and instrumentation signals to the magnets

  16. Three axis vector magnet set-up for cryogenic scanning probe microscopy

    International Nuclear Information System (INIS)

    Galvis, J. A.; Herrera, E.; Buendía, A.; Guillamón, I.; Vieira, S.; Suderow, H.; Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M.

    2015-01-01

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi 2 Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert

  17. Three axis vector magnet set-up for cryogenic scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Galvis, J. A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias Universidad Autónoma de Madrid, 28049 Madrid (Spain); Departamento de Ciencias Naturales Facultad de Ingeniería Universidad Central, Bogotá (Colombia); Herrera, E.; Buendía, A. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias Universidad Autónoma de Madrid, 28049 Madrid (Spain); Guillamón, I.; Vieira, S.; Suderow, H. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Condensed Matter Physics Center (IFIMAC), Facultad de Ciencias Universidad Autónoma de Madrid, 28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Azpeitia, J.; Luccas, R. F.; Munuera, C.; García-Hernandez, M. [Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); and others

    2015-01-15

    We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.2T for XY-plane magnetic fields. We describe a scanning tunneling microscopy-spectroscopy (STM-STS) set-up, operating in a dilution refrigerator, which includes a new high voltage ultralow noise piezodrive electronics and discuss the noise level due to vibrations. STM images and STS maps show atomic resolution and the tilted vortex lattice at 150 mK in the superconductor β-Bi{sub 2}Pd. We observe a strongly elongated hexagonal lattice, which corresponds to the projection of the tilted hexagonal vortex lattice on the surface. We also discuss Magnetic Force Microscopy images in a variable temperature insert.

  18. Construction of cryogenic testing system and tensile deformation behavior of AISI 300 series stainless steels at cryogenic temperatures

    International Nuclear Information System (INIS)

    Lee, H.M.; Nahm, S.H.; Huh, Y.H.; Lee, J.J.; Bahng, G.W.

    1990-01-01

    For practical application of cryogenic engineering, development and characterization of structural materials for use at low temperatures are essential. For these purposes, a system for mechanical testing at liquid helium temperatures was developed and it was shown that the precision and accuracy of the system met the requirements of standards for materials testing machines. Using this system, tensile deformation behavior of AISI 304,316 and 310S austenitic stainless steels at cryogenic temperatures was investigated. Tests were conducted on round, tensile specimens having a 6.25mm diameter at 4,77, and 295 K and loading rate was 0.5mm/min. Serrations were observed in all alloys at 4 K. The stress-displacement curves at 77 and 4 K showed different tendency from those at 298 K. As the testing temperature decreased, ultimate strengths of 304 and 316 were largely increased compared to the increase of yield strengths, but the increase of ultimate strength of 310S was almost the same to that of yield strength. Type 310S had the highest yield strength and the lowest tensile strength at all temperatutes. These tensile characteristics were considered to be strongly affected by austenite stability.(Author)

  19. Compressive fatigue tests on a unidirectional glass/polyester composite at cryogenic temperatures

    International Nuclear Information System (INIS)

    Stone, E.L.; El-Marazki, L.O.; Young, W.C.

    1979-01-01

    The fatigue testing of a unidirectional glass-reinforced polyester composite at cryogenic temperatures to simulate the cyclic compressive loads of the magnet support struts in a superconductive magnetic energy storage unit is reported. Right circular cylindrical specimens were tested at 77, 4.2 K and room temperature at different stress levels using a 1-Hz haversine waveform imposed upon a constant baseload in a load-controlled closed-loop electrohydraulic test machine. Two failure modes, uniform mushrooming near one end and a 45 deg fracture line through the middle of the specimen, are observed, with no systematic difference in fatigue life between the modes. Fatigue lives obtained at 77 and 4.2 K are found to be similar, with fatigue failure at 100,000 cycles occurring at stress levels of 70 and 75% of the ultimate compressive strengths of specimens at room temperature and 77 K, respectively. The room temperature fatigue lives of the glass/polyester specimens are found to be intermediate between those reported for glass/epoxy composites with different glass contents costing over twice as much

  20. A high field and cryogenic test facility for neutron irradiated superconducting wire

    Science.gov (United States)

    Nishimura, A.; Miyata, H.; Yoshida, M.; Iio, M.; Suzuki, K.; Nakamoto, T.; Yamazaki, M.; Toyama, T.

    2017-12-01

    A 15.5 T superconducting magnet and a variable temperature insert (VTI) system were installed at a radiation control area in Oarai center in Tohoku University to investigate the superconducting properties of activated superconducting materials by fast neutron. The superconductivity was measured at cryogenic temperature and high magnetic field. During these tests, some inconvenient problems were observed and the additional investigation was carried out. The variable temperature insert was designed and assembled to perform the superconducting property tests. without the liquid helium. To remove the heat induced by radiation and joule heating, high purity aluminum rod was used in VTI. The thermal contact was checked by FEM analysis and an additional support was added to confirm the decreasing the stress concentration and the good thermal contact. After the work for improvement, it was affirmed that the test system works well and all troubles were resolved. In this report, the improved technical solution is described and the first data set on the irradiation effect on Nb3Sn wire is presented.

  1. LHC Magnet test failure

    CERN Multimedia

    2007-01-01

    "On Tueday, March 22, a Fermilab-built quadrupole magnet, one of an "inner triplet" of three focusing magnets, failed a high-pressure test at Point 5 in the tunnel of the LHC accelerator at CERN. Since Tuesday, teams at CERN and Fermilab have worked closely together to address the problem and have identified the cause of the failure. Now they are at work on a solution.:" (1 page)

  2. Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility

    Science.gov (United States)

    Xavier, M.; Raj, R. Edwin; Narayanan, V.

    2017-02-01

    Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.

  3. Cryogenic analysis of forced-cooled, superconducting TF magnets for compact tokamak reactors

    International Nuclear Information System (INIS)

    Kerns, J.A.; Slack, D.S.; Miller, J.R.

    1988-01-01

    Current designs for compact tokamak reactors require the toroidal- field (TF) superconducting magnets to produce fields from 10 to 15 T at the winding pack, using high-current densities to high nuclear heat loads (greater than 1 kW/coil in some instances), which are significantly greater than the conduction and radiation heat loads for which cryogenic systems are usually designed. A cryogenic system for the TF winding pack for two such tokamak designs has been verified by performing a detailed, steady-state heat-removal analysis. Helium properties along the forced-cooled conductor flow path for a range of nuclear heat loads have been calculated. The results and implications of this analysis are presented. 12 refs., 6 figs

  4. Cryogenic aspects of the mirror fusion test facility

    International Nuclear Information System (INIS)

    Sterbentz, W.H.; Nelson, R.L.

    1979-01-01

    This paper covers the design and construction of the MFTF cryogenic system and a description of the operating procedures throughout the many functional modes. The coils and the cryopanels for maintaining the high vacuum environment weigh 417,000 kg (920,000 lb) and must be cooled from room temperature to 4.5 k. The cryogenic system for MFTF consists of a closed-loop helium system with a 3000-W helium refrigerator that uses gas-bearing expansion turbines and oil-flooded screw compressors. In addition, liquid helium storage facilities have adequate capacity for standby operation, and a complete helium-purification plant is capable of processing 17 m 3 /min (600 scfm). An open-loop liquid nitrogen system (with provision for later addition of a nitrogen recondenser) provides the required refrigeration for the radiation shields that must be maintained at 85 K

  5. Full Cryogenic Test of 600 A HTS Hybrid Current Leads for the LHC

    CERN Document Server

    Al-Mosawi, MK; Beduz, C; Ballarino, A; Yang, Y

    2007-01-01

    For full cryogenic test of CERN 600 A High Temperature Superconducting (HTS) current leads prior to integration into the Large Hadron Collider (LHC), a ded. facility has been designed, constructed and operated at the University of Southampton. The facility consists of purpose-built test cryostats, 20 K helium gas supply, helium gas flow and temperature control systems and quench protection system. Over 400 such leads have already been successfully tested and qualified for installation at CERN. This paper describes various design and operation aspects of the test facility and presents the detailed cryogenic test results of the CERN 600 A current leads, including steady state 20 K flow rates.

  6. A Cryogenic Test Set-Up for the Qualification of Pre-Series Test Cells for the LHC Cryogenic Distribution Line

    CERN Document Server

    Livran, J; Parente, C; Riddone, G; Rybkowski, D; Veillet, N

    2000-01-01

    Three pre-series Test Cells of the LHC Cryogenic Distribution Line (QRL) [1], manufactured by three European industrial companies, will be tested in the year 2000 to qualify the design chosen and verify the thermal and mechanical performances. A dedicated test stand (170 m x 13 m) has been built for extensive testing and performance assessment of the pre-series units in parallel. They will be fed with saturated liquid helium at 4.2 K supplied by a mobile helium dewar. In addition, LN2 cooled helium will be used for cool-down and thermal shielding. For each of the three pre-series units, a set of end boxes has been designed and manufactured at CERN. This paper presents the layout of the cryogenic system for the pre-series units, the calorimetric methods as well as the results of the thermal calculation of the end box test.

  7. Nickel--chromium strain gages for cryogenic stress analysis of superconducting structures in high magnetic fields

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.; Hirzel, D.G.

    1977-01-01

    Evaluation and calibration measurements were performed on commercial nickel-chromium metal-foil strain gages in a high-magnetic-field (12 T), liquid-helium (4.2 K) environment. The purpose was to fully characterize strain gages for use at cryogenic temperatures in high magnetic fields. In this study, the magnetoresistance of a number of strain gages was measured in three orthogonal directions at mechanical strain levels to 8900 μm/m. As a result, a unique calibration curve was defined for magnetoresistance strain errors that is independent of strain level and field direction to 12 T at 4.2 K. A current strain-gage application is the measurement of superconductor mechanical properties. These gages will soon be used in the stress analysis of superconducting fusion magnets during cooldown from ambient temperatures and during operation at 4.2 K with magnetic fields to 12 T

  8. Cryogen free high magnetic field and low temperature sample environments for neutron scattering - latest developments

    International Nuclear Information System (INIS)

    Burgoyne, John

    2016-01-01

    Continuous progress has been made over many years now in the provision of low- and ultra-low temperature sample environments, together with new high-field superconducting magnets and increased convenience for both the user and the neutron research facility via new cooling technologies. Within Oxford Instrument's experience, this has been achieved in many cases through close collaboration with neutron scientists, and with the neutron facilities' sample environment leaders in particular. Superconducting magnet designs ranging from compact Small Angle (SANS) systems up to custom-engineered wide-angle scattering systems have been continuously developed. Recondensing, or 'zero boil-off' (ZBO), systems are well established for situations in which a high field magnet is not conducive to totally cryogen free cooling solutions, and offer a reliable route with the best trade-offs of maximum system capability versus running costs and user convenience. Fully cryogen free solutions for cryostats, dilution refrigerators, and medium-field magnets are readily available. Here we will present the latest technology developments in these options, describing the state-of-the art, the relative advantages of each, and the opportunities they offer to the neutron science community. (author)

  9. A Cryogenic Magnetostrictive Actuator Using a Persistent High Temperature Superconducting Magnet. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett; Bromberg, Leslie; Teter, J. P.

    2000-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSCCO 2212 with a magnetostrictive element will be discussed.

  10. Cryogenic Properties of Inorganic Insulation Materials for ITER Magnets: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Simon, N.J.

    1994-12-01

    Results of a literature search on the cryogenic properties of candidate inorganic insulators for the ITER TF magnets are reported. The materials investigated include: Al{sub 2}O{sub 3}, AlN, MgO, porcelain, SiO{sub 2}, MgAl{sub 2}O{sub 4}, ZrO{sub 2}, and mica. A graphical presentation is given of mechanical, elastic, electrical, and thermal properties between 4 and 300 K. A companion report reviews the low temperature irradiation resistance of these materials.

  11. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    Science.gov (United States)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  12. Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL

    International Nuclear Information System (INIS)

    Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

    2011-01-01

    A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m 3 storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

  13. Use of thermal sieve to allow optical testing of cryogenic optical systems.

    Science.gov (United States)

    Kim, Dae Wook; Cai, Wenrui; Burge, James H

    2012-05-21

    Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.

  14. Cryogenic aspects of a demountable toroidal field magnet system for tokamak type fusion reactors

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Powell, J.; Lehner, J.

    1977-01-01

    A new concept for superconducting Toroidal Field (TF) magnet construction is presented. It is termed the ''Demountable Externally Anchored Low Stress'' (DEALS) magnet system. In contrast to continuous wound conventional superconducting coils, each magnet coil is made from several straight coil segments to form a polygon which can be joined and disjoined to improve reactor maintenance accessibility or to replace failed coil segments if necessary. A design example is presented of a DEALS magnet system for a UWMAK II size reactor. The overall magnet system is described, followed by a detailed analysis of the major heat loads in order to assess the refrigeration requirements for the concept. Despite the increased heat loads caused by high current power leads (200,000 amps) and the coil warm reinforcement support system, the analysis shows that at most, only about one percent (approximately 20 Mw) of the plant electrical output (approximately 2,000 Mw) is needed to operate the magnet cryogenic system. The advantages and the drawbacks of the DEALS magnet system are also discussed. The advantages include: capability to replace failed coils, increased accessibility to the blanket shield assembly, reduced reliability requirements for the magnet, much lower stress in conductor, easier application of improved high field brittle superconductors like Nb 3 Sn, improved magnet safety features, etc. The drawbacks are the increased refrigeration requirements and the necessity of a movable coil support system. A comparison with a conventional magnet system is made. It is concluded that the benefits of the DEALS approach far outweigh its penalties, and that the DEALS concept is the most practical, economical way to construct TF magnet systems for Tokamak reactors

  15. Cryogenic testing of fluoropolymer-coated stainless steel tubing

    International Nuclear Information System (INIS)

    Dooley, J.B.

    1989-11-01

    Stainless steel tubing coated internally with two different types of fluorinated polymers were subjected to microscopic examination after a welding operation had been performed on the tubing. The welded assemblies were photographed and subjected to repeated cycles between liquid helium and room temperature. The green tetrafluoroethylene (TFE) coating peeled back in the area subjected to welding heat and displayed cracking all over its surface without regard to proximity to the weld area. The dark fluorinated ethylene propylene (FEP) coating showed a tendency to char or burn away progressively in the weld area. The dark (FEP) coating did not crack as extensively as the green TFE coating, but did show a few areas of ''crazing'' or cracking of the topmost surface after cryogenic exposure. 12 figs

  16. Cryogenic aspects of the experience in operating the U-25 superconducting MHD magnet in conjunction with the MHD generator

    International Nuclear Information System (INIS)

    Niemann, R.C.; Mataya, K.F.; Smith, R.P.; McWilliams, D.A.; Borden, R.; Streeter, M.H.; Wickson, R.; Privalov, N.P.

    1978-01-01

    In order to facilitate the rapid development of MHD technology for the generation of electrical energy, the U.S. and U.S.S.R. are jointly conducting research within the framework of the Program of Scientific and Technical Cooperation. The Institute for High Temperature (IVTAN) of the U.S.S.R. has designed and fabricated a special MHD facility which uses as its base much of the equipment of the existing U-25 Facility. The new MHD fow train consisting of a combustor, magnet, channel, and diffuser is named U-25B. The U.S. has provided a superconducting magnet system for the U-25B MHD Facility. As a result of these joint efforts, a unique and broad range of experimental test conditions similar to those that will exist in operation of commercial MHD generators has been created. The United States Superconducting Magnet System (U.S. SCMS) was designed, fabricated, and delivered to the U-25B Facility by the Argonne National Laboratory (ANL) under the sponsorship of the U.S. Department of Energy. The following description focuses on the cryogenic-related aspects of the magnet system commissioning and operation in the U.S.S.R

  17. Ten years of cryo-magnetic W7-X test facility construction and operation

    International Nuclear Information System (INIS)

    Renard, B.; Dispau, G.; Donati, A.; Genini, L.; Gournay, J.F.; Kuster, O.; Molinie, F.; Schild, T.; Touzery, R.; Vieillard, L.; Walter, C.

    2011-01-01

    The construction, commissioning, and operation phases of the W7-X cryo-magnetic test facility in CEA Saclay lasted ten years. The large diversity of equipments called, specialties involved and problems solved attest the expertise that was required to operate the test facility and test the coils. Nearly one hundred cryogenic tests were performed on the seventy W7-X coils, at a rate always increasing, using two cryostats each holding two coils. This paper presents the test facility and its operation first, the cryogenic difficulties that were confronted with their solutions, the electro-magnetic difficulties encountered along with corrective actions, and finally the instrumentation and data acquisition aspects. (authors)

  18. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  19. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-01-01

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems

  20. Instrumentation, Field Network And Process Automation for the LHC Cryogenic Line Tests

    CERN Document Server

    Bager, T; Bertrand, G; Casas-Cubillos, J; Gomes, P; Parente, C; Riddone, G; Suraci, A

    2000-01-01

    This paper describes the cryogenic control system and associated instrumentation of the test facility for 3 pre-series units of the LHC Cryogenic Distribution Line. For each unit, the process automation is based on a Programmable Logic Con-troller implementing more than 30 closed control loops and handling alarms, in-terlocks and overall process management. More than 160 sensors and actuators are distributed over 150 m on a Profibus DP/PA network. Parameterization, cali-bration and diagnosis are remotely available through the bus. Considering the diversity, amount and geographical distribution of the instru-mentation involved, this is a representative approach to the cryogenic control system for CERN's next accelerator.

  1. Tests on irradiated magnet-insulator materials

    International Nuclear Information System (INIS)

    Schmunk, R.E.; Miller, L.G.; Becker, H.

    1983-01-01

    Fusion-reactor coils, located in areas where they will be only partially shielded, must be fabricated from materials which are as resistant to radiation as possible. They will probably incorporate resistive conductors with either water or cryogenic cooling. Inorganic insulators have been recommended for these situations, but the possibility exists that some organic insulators may be usuable as well. Results were previously reported for irradiation and testing of three glass reinforced epoxies: G-7, G-10, and G-11. Thin disks of these materials, nominally 0.5 mm thick by 11.1 mm diameter, were tested in compressive fatigue, a configuration and loading which represents reasonably well the magnet environment. In that work G-10 was shown to withstand repeated loading to moderately high stress levels without failure, and the material survived better at liquid nitrogen temperature than at room temperature

  2. Analysis and test of a breadboard cryogenic hydrogen/Freon heat exchanger

    Science.gov (United States)

    Desjardins, L. F.; Hooper, J.

    1973-01-01

    System studies required to verify a tube-in-tube cryogenic heat exchanger as optimum for the space shuttle mission are described. Design of the optimum configuration, which could be fabricated from commercially available hardware, is discussed. Finally, testing of the proposed configuration with supercritical hydrogen and Freon 21 is discussed and results are compared with thermal and dynamic analysis.

  3. Development and flight test of metal-lined CFRP cryogenic tank for reusable rocket

    Science.gov (United States)

    Higuchi, Ken; Takeuchi, Shinsuke; Sato, Eiichi; Naruo, Yoshihiro; Inatani, Yoshifumi; Namiki, Fumiharu; Tanaka, Kohtaro; Watabe, Yoko

    2005-07-01

    A cryogenic tank made of carbon fiber reinforced plastic (CFRP) shell with aluminum thin liner has been designed as a liquid hydrogen (LH2) tank for an ISAS reusable launch vehicle, and the function of it has been proven by repeated flights onboard the test vehicle called reusable vehicle testing (RVT) in October 2003. The liquid hydrogen tank has to be a pressure vessel, because the fuel of the engine of the test vehicle is supplied by fuel pressure. The pressure vessel of a combination of the outer shell of CFRP for strength element at a cryogenic temperature and the inner liner of aluminum for gas barrier has shown excellent weight merit for this purpose. Interfaces such as tank outline shape, bulk capacity, maximum expected operating pressure (MEOP), thermal insulation, pipe arrangement, and measurement of data are also designed to be ready onboard. This research has many aims, not only development of reusable cryogenic composite tank but also the demonstration of repeated operation including thermal cycle and stress cycle, familiarization with test techniques of operation of cryogenic composite tanks, and the accumulation of data for future design of tanks, vehicle structures, safety evaluation, and total operation systems.

  4. Results of KEPCO HTS cable system tests and design of hybrid cryogenic system

    International Nuclear Information System (INIS)

    Lim, J.H.; Sohn, S.H.; Yang, H.S.; Hwang, S.D.; Kim, D.L.; Ryoo, H.S.; Choi, H.O.

    2010-01-01

    In order to investigate the compatibility as a power utility facility, Korea Electric Power Corporation (KEPCO) had installed a 22.9 kV, 1250 A, 100 m long high temperature superconducting (HTS) power cable system. Using the HTS cable, various tests have been performed to investigate electrical and thermo-mechanical properties. Since 2005, a series of thermal cycle tests between liquid nitrogen (LN 2 ) and ambient temperatures have been conducted using a vacuum-pump driven open-loop cryogenic system with a capacity of 3 kW. In the tests, although the open-loop cryogenic system was reliable to operate the HTS cable system, it was not effective in economic view point because LN 2 consumption was larger than expected. In order to secure against unexpected emergencies and solve the problem of LN 2 consumption, a hybrid cryogenic system was designed and installed. A stirling cryocooler was employed and combined with the open-loop cryogenic system. Considering the average heat load at rated condition, the cooling capacity of the cryocooler was determined to 4 kW at 77 K. In this paper, results of performance tests and the design of the hybrid cooling system are presented.

  5. The cryogenic pumping section of KATRIN and the test experiment TRAP

    CERN Document Server

    Eichelhardt, F

    2011-01-01

    The Karlsruhe Tritium Neutrino experiment (KATRIN) employs a Cryogenic Pumping Section (CPS) at ~ 4.5 K to suppress the tritium penetration into the spectrometers. A test experiment (TRAP - Tritium Argon frost Pump) has been set up to investigate the tritium pumping performance of the CPS.

  6. Dynamic simulations for preparing the acceptance test of JT-60SA cryogenic system

    Science.gov (United States)

    Cirillo, R.; Hoa, C.; Michel, F.; Poncet, J. M.; Rousset, B.

    2016-12-01

    Power generation in the future could be provided by thermo-nuclear fusion reactors like tokamaks. There inside, the fusion reaction takes place thanks to the generation of plasmas at hundreds of millions of degrees that must be confined magnetically with superconductive coils, cooled down to around 4.5 K. Within this frame, an experimental tokamak device, JT-60SA is currently under construction in Naka (Japan). The plasma works cyclically and the coil system is subject to pulsed heat loads. In order to size the refrigerator close to the average power and hence optimizing investment and operational costs, measures have to be taken to smooth the heat load. Here we present a dynamic model of the JT-60SA's Auxiliary Cold box (ACB) for preparing the acceptance tests of the refrigeration system planned in 2016 in Naka. The aim of this study is to simulate the pulsed load scenarios using different process controls. All the simulations have been performed with EcosimPro® and the associated cryogenic library: CRYOLIB.

  7. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    1995-01-01

    The CEBAF cryogenic system consists of 3 refrigeration systems: Cryogenic Test Facility (CTF), Central Helium Liquefier (CHL), and End Station Refrigerator (ESR). CHL is the main cryogenic system for CEBAF, consisting of a 4.8 kW, 2.0 K refrigerator and transfer line system to supply 2.0 K and 12 kW of 50 K shield refrigeration for the Linac cavity cryostats and 10 g/s of liquid for the end stations. This paper describes the 9-year effort to commission these systems, concentrating on CHL with the cold compressors. The cold compressors are a cold vacuum pump with an inlet temperature of 3 K which use magnetic bearings, thereby eliminating the possibility of air leaks into the subatmospheric He

  8. Adaptability of optimization concept in the context of cryogenic distribution for superconducting magnets of fusion machine

    Science.gov (United States)

    Sarkar, Biswanath; Bhattacharya, Ritendra Nath; Vaghela, Hitensinh; Shah, Nitin Dineshkumar; Choukekar, Ketan; Badgujar, Satish

    2012-06-01

    Cryogenic distribution system (CDS) plays a vital role for reliable operation of largescale fusion machines in a Tokamak configuration. Managing dynamic heat loads from the superconducting magnets, namely, toroidal field, poloidal field, central solenoid and supporting structure is the most important function of the CDS along with the static heat loads. Two concepts are foreseen for the configuration of the CDS: singular distribution and collective distribution. In the first concept, each magnet is assigned with one distribution box having its own sub-cooler bath. In the collective concept, it is possible to share one common bath for more than one magnet system. The case study has been performed with an identical dynamic heat load profile applied to both concepts in the same time domain. The choices of a combined system from the magnets are also part of the study without compromising the system functionality. Process modeling and detailed simulations have been performed for both the options using Aspen HYSYS®. Multiple plasma pulses per day have been considered to verify the residual energy deposited in the superconducting magnets at the end of the plasma pulse. Preliminary 3D modeling using CATIA® has been performed along with the first level of component sizing.

  9. Superconducting magnet development capability of the LLNL [Lawrence Livermore National Laboratory] High Field Test Facility

    International Nuclear Information System (INIS)

    Miller, J.R.; Shen, S.; Summers, L.T.

    1990-02-01

    This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility

  10. The tests at Saclay of the stellarator W7X superconducting magnets

    International Nuclear Information System (INIS)

    Jacquemet, M.

    2000-05-01

    The tests on the superconducting magnets should allow to check at ambient or cryogenic temperature, the mechanical behaviour and the lack of leak from the conductor, the correct configuration of the cable in the pipe, the electric insulation, the magnet behaviour during a transition, the buckling and mechanical constraints on the whole. (N.C.)

  11. Operation of the cryogenic system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Chronis, W.C.; Slack, D.S.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory (LLNL) was designed to cool the entire MFTF-B system from ambient to operating temperature in less than 10 days. The system was successfully operated in the recent plant and capital equipment (PACE) acceptance tests, and results from these tests helped us correct problem areas and improve the system

  12. Remote monitoring system for the cryogenic system of superconducting magnets in the SuperKEKB interaction region

    Science.gov (United States)

    Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.

    2017-12-01

    A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.

  13. Lessons Learned During Cryogenic Optical Testing of the Advanced Mirror System Demonstrators (AMSDs)

    Science.gov (United States)

    Hadaway, James; Reardon, Patrick; Geary, Joseph; Robinson, Brian; Stahl, Philip; Eng, Ron; Kegley, Jeff

    2004-01-01

    Optical testing in a cryogenic environment presents a host of challenges above and beyond those encountered during room temperature testing. The Advanced Mirror System Demonstrators (AMSDs) are 1.4 m diameter, ultra light-weight (mA2), off-axis parabolic segments. They are required to have 250 nm PV & 50 nm RMS surface figure error or less at 35 K. An optical testing system, consisting of an Instantaneous Phase Interferometer (PI), a diffractive null corrector (DNC), and an Absolute Distance Meter (ADM), was used to measure the surface figure & radius-of-curvature of these mirrors at the operational temperature within the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The Ah4SD program was designed to improve the technology related to the design, fabrication, & testing of such mirrors in support of NASA s James Webb Space Telescope (JWST). This paper will describe the lessons learned during preparation & cryogenic testing of the AMSDs.

  14. A cryogenic tensile testing apparatus for micro-samples cooled by miniature pulse tube cryocooler

    International Nuclear Information System (INIS)

    Chen, L B; Liu, S X; Gu, K X; Zhou, Y; Wang, J J

    2015-01-01

    This paper introduces a cryogenic tensile testing apparatus for micro-samples cooled by a miniature pulse tube cryocooler. At present, tensile tests are widely applied to measure the mechanical properties of materials; most of the cryogenic tensile testing apparatus are designed for samples with standard sizes, while for non-standard size samples, especially for microsamples, the tensile testing cannot be conducted. The general approach to cool down the specimens for tensile testing is by using of liquid nitrogen or liquid helium, which is not convenient: it is difficult to keep the temperature of the specimens at an arbitrary set point precisely, besides, in some occasions, liquid nitrogen, especially liquid helium, is not easily available. To overcome these limitations, a cryogenic tensile testing apparatus cooled by a high frequency pulse tube cryocooler has been designed, built and tested. The operating temperatures of the developed tensile testing apparatus cover from 20 K to room temperature with a controlling precision of ±10 mK. The apparatus configurations, the methods of operation and some cooling performance will be described in this paper. (paper)

  15. A gamma- and X-ray detector for cryogenic, high magnetic field applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.L., E-mail: roblcoop@indiana.edu [Indiana University, Bloomington, IN 47408 (United States); Alarcon, R. [Arizona State University, Tempe, AZ 85287 (United States); Bales, M.J. [University of Michigan, Ann Arbor, MI 48109 (United States); Bass, C.D. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Beise, E.J. [University of Maryland, College Park, MD 20742 (United States); Breuer, H., E-mail: breuer@enp.umd.edu [University of Maryland, College Park, MD 20742 (United States); Byrne, J. [University of Sussex, Brighton, BN1 9QH (United Kingdom); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48109 (United States); Coakley, K.J. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Dewey, M.S.; Fu, C. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Gentile, T.R., E-mail: thomas.gentile@nist.gov [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Mumm, H.P.; Nico, J.S. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); O' Neill, B. [Arizona State University, Tempe, AZ 85287 (United States); Pulliam, K. [Tulane University, New Orleans, LA 70118 (United States); Thompson, A.K. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Wietfeldt, F.E. [Tulane University, New Orleans, LA 70118 (United States)

    2012-11-01

    As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was operated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector are presented, as well as information on operation of APDs at cryogenic temperatures.

  16. Cryogenic Beam Loss Monitors for the Superconducting Magnets of the LHC

    CERN Document Server

    Bartosik, MR; Sapinski, M; Kurfuerst, C; Griesmayer, E; Eremin, V; Verbitskaya, E

    2014-01-01

    The Beam Loss Monitor detectors close to the interaction points of the Large Hadron Collider are currently located outside the cryostat, far from the superconducting coils of the magnets. In addition to their sensitivity to lost beam particles, they also detect particles coming from the experimental collisions, which do not contribute significantly to the heat deposition in the superconducting coils. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and dangerous quench-provoking beam losses from the primary proton beams will be challenging. The system can be optimised by locating beam loss monitors as close as possible to the superconducting coils, inside the cold mass in a superfluid helium environment, at 1.9 K. The dose then measured by such Cryogenic Beam Loss Monitors would more precisely correspond to the real dose deposited in the coil. The candidates under investigation for such detectors are based on p+-n-n+ si...

  17. Cryogenic Considerations for Superconducting Magnet Design for the Material Plasma Exposure eXperiment

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; Demko, Dr. Jonathan A [LeTourneau University, Texas; Lumsdaine, Arnold [ORNL; Caughman, John B [ORNL; Goulding, Richard Howell [ORNL; McGinnis, William Dean [ORNL; Bjorholm, Thomas P [ORNL; Rapp, Juergen [ORNL

    2015-01-01

    In order to determine long term performance of plasma facing components such as diverters and first walls for fusion devices, next generation plasma generators are needed. A Material Plasma Exposure eXperiment (MPEX) has been proposed to address this need through the generation of plasmas in front of the target with electron temperatures of 1-15 eV and electron densities of 1020 to 1021 m-3. Heat fluxes on target diverters could reach 20 MW/m2. In order generate this plasma, a unique radio frequency helicon source and heating of electrons and ions through Electron Bernstein Wave (EBW) and Ion Cyclotron Resonance Heating (ICRH) has been proposed. MPEX requires a series of magnets with non-uniform central fields up to 2 T over a 5m length in the heating and transport region and 1 T uniform central field over a 1-m length on a diameter of 1.3 m. Given the field requirements, superconducting magnets are under consideration for MPEX. In order to determine the best construction method for the magnets, the cryogenic refrigeration has been analyzed with respect to cooldown and operational performance criteria for open-cycle and closed-cycle systems, capital and operating costs of these system, and maturity of supporting technology such as cryocoolers. These systems will be compared within the context of commercially available magnet constructions to determine the most economical method for MPEX operation. The current state of the MPEX magnet design including details on possible superconducting magnet configurations will be presented.

  18. ITER Task T332a (1995): Low-inventory cryogenic distillation tests

    International Nuclear Information System (INIS)

    Woodall, K.; Robins, J.; Bellamy, D.

    1996-01-01

    Previous work at Ontario Hydro Technologies (OHT) had shown that small hydrogen cryogenic columns could be stably controlled and designed to much lower inventories than had been previously thought possible. Among the results were measurements of height equivalent to a theoretical plate (HETP) versus holdup for Helipak A and B packings in columns up to 20 mm diameter. ITER cryogenic distillation column designs suggest that the final high-tritium column could be 30-70 mm diameter. The objective of this ITER task was to test scale-up of OHT low inventory columns to ITER dimensions. In 1994 OHT built a suitable test facility. In 1995, two low-inventory packings were tested. (author) 4 refs., 6 figs

  19. Cryogenic magnet case and distributed structural materials for high-field superconducting magnets

    International Nuclear Information System (INIS)

    Summers, L.T.; Miller, J.R.; Kerns, J.A.; Myall, J.O.

    1987-01-01

    The superconducting magnets of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) will generate high magnetic fields over large bores. The resulting electromagnetic forces require the use of large volumes of distributed steel and thick magnet case for structural support. Here we review the design allowables, calculated loads and forces, and structural materials selection for TIBER II. 7 refs., 2 figs., 3 tabs

  20. Testing of the MFTF magnets

    International Nuclear Information System (INIS)

    Kozman, T.A.; Chang, Y.; Dalder, E.N.C.

    1982-01-01

    This paper describes the cooldown and testing of the first yin-yang magnet for the Mirror Fusion Test Facility. The introduction describes the superconducting magnet; the rest of the paper explains the tests prior to and including magnet cooldown and final acceptance testing. The MFTF (originally MX) was proposed in 1976 and the project was funded for construction start in October 1977. Construction of the first large superconducting magnet set was completed in May 1981 and testing started shortly thereafter. The acceptance test procedures were reviewed in May 1981 and the cooldown and final acceptance test were done by the end of February 1982. During this acceptance testing the magnet achieved its full design current and field

  1. FaceSheet Push-off Tests to Determine Composite Sandwich Toughness at Cryogenic Temperatures

    Science.gov (United States)

    Gates, Thomas S.; Herring, Helen M.

    2001-01-01

    A new novel test method, associated analysis, and experimental procedures are developed to investigate the toughness of the facesheet-to-core interface of a sandwich material at cryogenic temperatures. The test method is designed to simulate the failure mode associated with facesheet debonding from high levels of gas pressure in the sandwich core. The effects of specimen orientation are considered, and the results of toughness measurements are presented. Comparisons are made between room and liquid nitrogen (-196 C) test temperatures. It was determined that the test method is insensitive to specimen facesheet orientation and strain energy release rate increases with a decrease in the test temperature.

  2. Cryogenic test of the 4 K / 2 K insert for the ARIEL e-Linac cryomodule

    International Nuclear Information System (INIS)

    Laxdal, R. E.; Ma, Y.; Harmer, P.; Kishi, D.; Koveshnikov, A.; Muller, N.; Vrielink, A.; O'Brien, M.; Ahammed, M.

    2014-01-01

    The ARIEL project at TRIUMF requires a 50 MeV superconducting electron linac consisting of five nine cell 1.3 GHz cavities divided into three cryomodules with one, two and two cavities in each module respectively. LHe is distributed in parallel to each module at 4 K and at ∼1.2 bar. Each module has a cryogenic insert on board that receives the 4 K liquid and produces 2 K into a cavity phase separator. The module combines a 4 K phase separator, a plate and fin heat exchanger from DATE and a J-T valve expanding into the 2 K phase separator. The unit also supplies 4 K liquid to thermal intercepts in the module in siphon loops that return the vaporized liquid to the 4 K reservoir. For testing purposes the unit is outfitted with a dummy 2 K phase separator and thermal intercepts with variable heaters that mimic the final heat loads in order to test the cryogenic performance. The design of the 4 K / 2 K insert, the results of the cold tests and a summary of the test infrastructure including cryogenics services will be presented

  3. Cryogenic test of the 4 K / 2 K insert for the ARIEL e-Linac cryomodule

    Energy Technology Data Exchange (ETDEWEB)

    Laxdal, R. E.; Ma, Y.; Harmer, P.; Kishi, D.; Koveshnikov, A.; Muller, N.; Vrielink, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC (Canada); O' Brien, M. [University of British Columbia, Vancouver (Canada); Ahammed, M. [Variable Energy Cyclotron Center, Kolkata (India)

    2014-01-29

    The ARIEL project at TRIUMF requires a 50 MeV superconducting electron linac consisting of five nine cell 1.3 GHz cavities divided into three cryomodules with one, two and two cavities in each module respectively. LHe is distributed in parallel to each module at 4 K and at ∼1.2 bar. Each module has a cryogenic insert on board that receives the 4 K liquid and produces 2 K into a cavity phase separator. The module combines a 4 K phase separator, a plate and fin heat exchanger from DATE and a J-T valve expanding into the 2 K phase separator. The unit also supplies 4 K liquid to thermal intercepts in the module in siphon loops that return the vaporized liquid to the 4 K reservoir. For testing purposes the unit is outfitted with a dummy 2 K phase separator and thermal intercepts with variable heaters that mimic the final heat loads in order to test the cryogenic performance. The design of the 4 K / 2 K insert, the results of the cold tests and a summary of the test infrastructure including cryogenics services will be presented.

  4. The Mirror Fusion Test Facility cryogenic system: Performance, management approach, and present equipment status

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.

    1987-01-01

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) is a 14-kW, 4.35-K helium refrigeration system that proved to be highly successful and cost-effective. All operating objectives were met, while remaining within a few percent of initial cost and schedule plans. The management approach used in MFTF allowed decisions to be made quickly and effectively, and it helped keep costs down. Manpower levels, extent and type of industrial participation, key aspects of subcontractor specifications, and subcontractor interactions are reviewed, as well as highlights of the system tests, operation, and present equipment status. Organizations planning large, high-technology systems may benefit from this experience with the MFTF cryogenic system

  5. Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.

  6. Simple test for physical stability of cryogenic tank insulation

    Science.gov (United States)

    Rossello, D.

    1968-01-01

    Qualitative test determines the ability of insulation liners used on liquid hydrogen tanks to withstand stresses produced by the thermal shocks imparted to the insulation during tank filling and drainage. Test specimens are bonded to metal plates with a low thermal expansion coefficient and are immersed in liquid hydrogen.

  7. Tests of industrial ethylene-propylene rubber high voltage cable for cryogenic use

    CERN Document Server

    Balhan, B; Goddard, B; Muratori, G; Otwinowski, S; Rieubland, Jean Michel; Wang, H; CERN. Geneva. SPS and LEP Division

    1999-01-01

    At the beginning of 1999 UCLA has received a prototype High Voltage Cryogenic Cable supplied fee of charge by Pirelli. The cable is intended for more than ten years of service at 100 kV D.C. and liquid argon temperature. Thecable uses an all welded construction, whichi is axially tight and free of ionizable voids. The cable was submitted to a number of mechanical and electrical tests as described below.

  8. Mirror fusion test facility cryogenic system - performance, management approach, and present equipment status

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.

    1988-01-01

    The cryogenic system for the MFTF is a helium refrigeration system that proved to be successful and cost effective. All operating objectives were met while remaining within a few percent of the initial cost and schedule plans. The management approach used at MFTF is assessed. Manpower levels, extent and type of industrial participation, and subcontractor specifications and interactions are reviewed along with highlights of system testing, documentation, and operation

  9. SEU tests performed on the digital communication system for LHC cryogenic instrumentation

    International Nuclear Information System (INIS)

    Casas-Cubillos, J.; Faccio, F.; Gomes, P.; Martin, M.A.; Rodriguez-Ruiz, M.A.

    2002-01-01

    The future LHC particle accelerator will use a large number of cryogenic sensors and actuators, most of which are located inside the machine tunnel and therefore in a radiation environment. These elements will communicate through a fieldbus. This paper reports the irradiation study carried out on WorldFIP fieldbus communication system. A digital communication system based on WorldFIP fieldbus protocol has been implemented and single event effects and total ionizing dose radiation tests have been performed on it

  10. Installation for fatigue testing of materials at cryogenic temperatures

    International Nuclear Information System (INIS)

    Abushenkov, I.D.; Chernetskij, V.K.; Il'ichev, V.Ya.

    1986-01-01

    A new installation for mechanical fatigue tests of structural material samples is described, in which the possibility to conduct tests in the range of lower temperatures (4.2-300 K) is ensured. The installation permits to carry out fatigue tests using the method of axial loading of annular (up to 6 mm in diameter) and plane (up to 12 mm wide) samples during symmetric, asymmetric and pulsing loading cycles. It is shown that the installation suggested has quite extended operation possibilities and, coincidentally, it is characterized by design simplicity, compactness, comparatively low metal consumption and maintenance convenience

  11. Automatic control of NASA Langley's 0.3-meter cryogenic test facility

    Science.gov (United States)

    Thibodeaux, J. J.; Balakrishna, S.

    1980-01-01

    Experience during the past 6 years of operation of the 0.3-meter transonic cryogenic tunnel at the NASA Langley Research Center has shown that there are problems associated with efficient operation and control of cryogenic tunnels using manual control schemes. This is due to the high degree of process crosscoupling between the independent control variables (temperature, pressure, and fan drive speed) and the desired test condition (Mach number and Reynolds number). One problem has been the inability to maintain long-term accurate control of the test parameters. Additionally, the time required to change from one test condition to another has proven to be excessively long and much less efficient than desirable in terms of liquid nitrogen and electrical power usage. For these reasons, studies have been undertaken to: (1) develop and validate a mathematical model of the 0.3-meter cryogenic tunnel process, (2) utilize this model in a hybrid computer simulation to design temperature and pressure feedback control laws, and (3) evaluate the adequacy of these control schemes by analysis of closed-loop experimental data. This paper will present the results of these studies.

  12. Testing of a cryogenic recooler heat exchanger at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Nicoletti, A.; Wu, K.C.

    1993-01-01

    Brookhaven National Laboratory has tested a recooler heat exchanger intended to be used in the cryogenic system of the Relativistic Heavy Ion Collider. The unit is required to transfer 225 Watts from a supercritical helium stream flowing at 100 g/s to a helium bath boiling at 4.25 K. Measurements made with heat loads of 50 to over 450 Watts on the unit indicate its cooling capacity is greater than 400 Watts, as expected, and it will be suitable for use in the RHIC ring. Presented are the modifications made to BNL's MAGCOOL test facility that were necessary for testing, test procedure, and recooler performance

  13. ITER task T48 (1994); low-inventory cryogenic distillation tests

    International Nuclear Information System (INIS)

    Woodall, K.; Robins, J.; Bellamy, D.

    1995-01-01

    Previous work at Ontario Hydro Technologies (OHT) had shown that small cryogenic columns could be stably controlled and designed to much lower inventories than had been previously thought possible. Among the results were measurements of Height-of-Equivalent-Theoretical-Plate (HETP) versus holdup for Heli-Pak A and B in columns up to 20 mm diameter. ITER cryogenic distillation column designs suggest that the final high-tritium columns could be 30-70 mm diameter. The objective of this ITER task was to design and construct a column section for demonstration of scale-up of low inventory cryogenic distillation. The experiments were to be carried out in an upgraded Cryogenics Distillation Laboratory at OHT, in the facility used for previous low-inventory column tests. The ITER scaled-up test system as the following characteristics: 55 W condenser capacity; 30 mm diameter column loaded with Helipak B; 1500 mm packed height. The first task was to design and build the scaled-up test facility. In order to reduce costs, it was necessary to use existing 30-35 W helium refrigerators. Therefore, to provide 60-W duty to the scaled-up column, the two refrigerators had to be well coupled thermally, but not mechanically, since the refrigerator cold heads have very thin shells. The solution was to attach the column firmly to one cold head and indirectly to an adjacent cold head through flexible copper braid. Several iterations were required to obtain the desired good heat transfer with flexible mechanical connection. This facility is now operational and ready to begin measurements on the 30 mm column. Also during 1994, the Princeton Tritium Processing System (TPS) was installed and commissioned. The results from this experience are relevant to the ITER distillation system. 2 refs., 10 figs

  14. ITER task T48 (1994); low-inventory cryogenic distillation tests

    Energy Technology Data Exchange (ETDEWEB)

    Woodall, K; Robins, J; Bellamy, D [Ontario Hydro, Toronto, ON (Canada). Research Div.; Sood, S; Fong, C [Ontario Hydro, Toronto, ON (Canada)

    1995-01-01

    Previous work at Ontario Hydro Technologies (OHT) had shown that small cryogenic columns could be stably controlled and designed to much lower inventories than had been previously thought possible. Among the results were measurements of Height-of-Equivalent-Theoretical-Plate (HETP) versus holdup for Heli-Pak A and B in columns up to 20 mm diameter. ITER cryogenic distillation column designs suggest that the final high-tritium columns could be 30-70 mm diameter. The objective of this ITER task was to design and construct a column section for demonstration of scale-up of low inventory cryogenic distillation. The experiments were to be carried out in an upgraded Cryogenics Distillation Laboratory at OHT, in the facility used for previous low-inventory column tests. The ITER scaled-up test system as the following characteristics: 55 W condenser capacity; 30 mm diameter column loaded with Helipak B; 1500 mm packed height. The first task was to design and build the scaled-up test facility. In order to reduce costs, it was necessary to use existing 30-35 W helium refrigerators. Therefore, to provide 60-W duty to the scaled-up column, the two refrigerators had to be well coupled thermally, but not mechanically, since the refrigerator cold heads have very thin shells. The solution was to attach the column firmly to one cold head and indirectly to an adjacent cold head through flexible copper braid. Several iterations were required to obtain the desired good heat transfer with flexible mechanical connection. This facility is now operational and ready to begin measurements on the 30 mm column. Also during 1994, the Princeton Tritium Processing System (TPS) was installed and commissioned. The results from this experience are relevant to the ITER distillation system. 2 refs., 10 figs.

  15. Fiber Bragg Grating Dilatometry in Extreme Magnetic Field and Cryogenic Conditions

    Directory of Open Access Journals (Sweden)

    Marcelo Jaime

    2017-11-01

    Full Text Available In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (ΔL/L as low as a few parts in one hundred million (≈10−8. The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber’s index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.

  16. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  17. Subcooler assembly for SSC single magnet test program

    International Nuclear Information System (INIS)

    Wu, K.C.; Brown, D.P.; Sondericker, J.H.; Farah, Y.; Zantopp, D.; Nicoletti, A.

    1991-01-01

    A subcooler assembly has been designed, constructed and installed in the MAGCOOL magnet test area at Brookhaven National Laboratory. Since July 1989, it has been used for testing SSC magnets. This subcooler assembly and cryogenic system are the first of its kind ever built. Today, with more than 5000 hours of operating time, the subcooler has proved to be a reliable unit with individual components meeting design expectations. The lowest temperatures achieved with one SSC dipole are 3.0 K at the suction of the cold vacuum pump and 3.2 K at the return of the magnet. The system performs well in both steady state operation and during magnet quench, subcooling, cooldown and warmup. 4 refs., 7 figs

  18. ITER task T332a (1996) low-inventory cryogenic distillation tests

    International Nuclear Information System (INIS)

    Woodall, K.; Bellamy, D.

    1997-02-01

    The overall objective of this ITER task was to perform tests which would improve the accuracy of the ITER Isotope Separation System (ISS) tritium inventory estimates and to allow designers to lower the tritium and hydrogen inventory estimates. The work program was also designed to give a better understanding of cryogenic distillation hydraulics and provide information which would improve process control. The work program this year addressed the following specific task objectives. Measure the detailed hydraulics for deuterium/deuterium hydride mixtures in a cryogenic distillation column using Helipak C packing. Determine maximum vapour velocity, HETP and tritium and deuterium inventory data for a column that can be operated right up to flooding conditions. Determine if a proprietary surface treatment improves the wetting characteristics for hydrogen on stainless steel packing. Measure the isotope separation and inventory performance of a Helipak C column large enough to handle up to 45 mm. Investigate additional hydraulic effects in the reboiler and column. 7 refs., 7 figs

  19. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    Science.gov (United States)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  20. Mirror Fusion Test Facility magnet

    International Nuclear Information System (INIS)

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  1. Design, fabrication, and calibration of a cryogenic search-coil array for harmonic analysis of quadrupole magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Barale, P.J.; Hassenzahl, W.V.; Nelson, D.H.; O'Neill, J.W.; Schafer, R.V.; Taylor, C.E.

    1987-09-01

    A cryogenic search-coil array has been fabricated at LBL for harmonic error analysis of SSC model quadrupoles. It consists of three triplets of coils; the center-coil triplet is 10 cm long, and the end coil triplets are 70 cm long. Design objectives are a high bucking ratio for the dipole and quadrupole signals and utility at cryogenic operating currents (∼6 kA) with sufficient sensitivity for use at room-temperature currents (∼10 A). the design and fabrication are described. Individual coils are mechanically measured to +-5 μm, and their magnetic areas measured to 0.05%. A computer program has been developed to predict the quadrupole and dipole bucking ratios from the mechanical and magnetic measurements. The calibration procedure and accuracy of the array are specified. Results of measurements of SSC model quadrupoles are presented. 1 ref., 4 figs

  2. Alternate design concept for the SSC dipole magnet cryogenic support post

    International Nuclear Information System (INIS)

    Lipski, A.; Nicol, T.H.; Richardson, R.

    1991-03-01

    New materials and developments in the field of advanced composites have created the opportunity to take a fresh look into the design of the cryogenic supports for SSC collider dipole cryostats. Although the present reentrant post design meets the structural and thermal requirements, its assembly requires precision and proficiency. The objective of the proposed alternate concept is to reduce the overall cost of the support post by means of simplifying and optimizing its component design and assembly process. The present shrink fitted tube assembly may potentially be replaced by injection molded parts. New resin systems with lower thermal conductivity and high strength properties enable the utilization of automated production techniques such as injection molding and filament winding. This paper will provide analysis and design information for the alternate support post concept and compare its test performance and cost to the present support post. 3 refs., 12 figs., 4 tabs

  3. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry.

    Science.gov (United States)

    Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  4. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry

    Science.gov (United States)

    Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  5. Pumps for cryogenic liquids with superconducting magnetic bearings. Final report; Pumpen fuer kryogene Fluessigkeiten mit supraleitenden Magnetlagern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, G.; Fuchs, G.; Sorber, J.; Brosche, H.; Richter, M.; Frenzel, C.

    2000-07-01

    A liquid nitrogen pump with contactless superconducting magnetic bearings was to be developed on the basis of an available motor with superconducting bearings. Contactless superconducting magnetic bearings require practically no servicing. A high demand for pumps for cryogenic liquids is expected with the impending use of hydrogen as an energy source. The pumping of liquid nitrogen was demonstrated successfully with the new test aggregate. The maximum pumped volume was 17 l/min at a lift of 0.5 m and 6 l/min at a lift of 1 m. In all, 15 hours of operation were registered in the superconducting state of the bearing, which included 2 hours of uninterrupted pump operation. The higher speed range for which magnetic bearings are optimally suited was not reached. Operation at higher frequencies was impossible either because of stronger resonance amplituees or because the power system was too weak. [German] Ziel des Vorhabens war die Entwicklung einer Pumpe fuer fluessigen Stickstoff mit beruehrungslosen supraleitenden Magnetlagern auf der Basis eines vorhandenen supraleitend gelagerten Motors. Die beruehrungslose supraleitende Magnetlager sind praktisch wartungsfrei. Ein Bedarf an Pumpen fuer kryogene Fluessigkeiten entsteht insbesondere durch den in naher Zukunft zu erwartenden Einsatz von Wasserstoff als Energietraeger. Mit dem entworfenen Aggregat wurde das Pumpen von Fluessigstickstoff erfolgreich demonstriert. Der Foerderstrom betrug bei 0,5m Foerderhoehe maximal 17 l/min; beim 1m Foerderhoehe wurden maximal 6 l/min gemessen. Es wurden insgesamt ca. 15 Betriebsstunden in supraleitenden Zustand des Lagers, darunter 2 Stunden ununterbrochener Pumpbetrieb registriert. Der hoehere Drehzahlbereich, fuer den das Magnetlager eigentlich paedestiniert ist, konnte nicht erreicht werden. Ein Betrieb bei hoeheren (Ist-)Frequenzen war nicht moeglich, entweder durch staerkere Resonanzausschlaege oder durch einen zu schwachen Antrieb. (orig.)

  6. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    Science.gov (United States)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  7. James Webb Space Telescope Core 2 Test - Cryogenic Thermal Balance Test of the Observatorys Core Area Thermal Control Hardware

    Science.gov (United States)

    Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian

    2016-01-01

    The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.

  8. Experimental test of magnetic photons

    International Nuclear Information System (INIS)

    Lakes, R.S.

    2004-01-01

    A 'magnetic' photon hypothesis associated with magnetic monopoles is tested experimentally. These photons are predicted to easily penetrate metal. Experimentally the optical transmittance T of a metal foil was less than 2x10-17. The hypothesis is not supported since it predicts T=2x10-12

  9. Challenges of in-vacuum and cryogenic permanent magnet undulator technologies

    Directory of Open Access Journals (Sweden)

    Jui-Che Huang

    2017-06-01

    Full Text Available An in-vacuum undulator (IVU provides a means to reach high-brilliance x rays in medium energy storage rings. The development of short period undulators with low phase errors creates the opportunity for an unprecedented brilliant light source in a storage ring. Since the spectral quality from cryogenic permanent magnet undulators (CPMUs has surpassed that of IVUs, NdFeB or PrFeB CPMUs have been proposed for many new advanced storage rings to reach high brilliance x-ray photon beams. In a low emittance ring, not only the performance of the undulator but also the choice of the lattice functions are important design considerations. Optimum betatron functions and a zero-dispersion function shall be provided in the straight sections for IVU/CPMUs. In this paper, relevant factors and design issues for IVUs and CPMUs are discussed together with many technological challenges in short period undulators associated with beam induced–heat load, phase errors, and the deformation of support girders.

  10. Challenges of in-vacuum and cryogenic permanent magnet undulator technologies

    Science.gov (United States)

    Huang, Jui-Che; Kitamura, Hideo; Yang, Chin-Kang; Chang, Cheng-Hsing; Chang, Cheng-Hsiang; Hwang, Ching-Shiang

    2017-06-01

    An in-vacuum undulator (IVU) provides a means to reach high-brilliance x rays in medium energy storage rings. The development of short period undulators with low phase errors creates the opportunity for an unprecedented brilliant light source in a storage ring. Since the spectral quality from cryogenic permanent magnet undulators (CPMUs) has surpassed that of IVUs, NdFeB or PrFeB CPMUs have been proposed for many new advanced storage rings to reach high brilliance x-ray photon beams. In a low emittance ring, not only the performance of the undulator but also the choice of the lattice functions are important design considerations. Optimum betatron functions and a zero-dispersion function shall be provided in the straight sections for IVU/CPMUs. In this paper, relevant factors and design issues for IVUs and CPMUs are discussed together with many technological challenges in short period undulators associated with beam induced-heat load, phase errors, and the deformation of support girders.

  11. Advancing Cardiovascular, Neurovascular and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    Directory of Open Access Journals (Sweden)

    Thoralf eNiendorf

    2015-11-01

    Full Text Available Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF coils in small animal MR as a means of boosting image quality (e.g. by supporting MR microscopy and making data acquisition more efficient (e.g. by reducing measuring time; both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (biomedical imaging, molecular medicine and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (pathophysiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular and renal disease will be discussed.

  12. Proposal for the award of a contract for the supply of the external cryogenic sub-system for the magnets of the ATLAS experiment

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the supply, including design, installation, commissioning and testing at CERN of the external cryogenic sub-system for the magnets of the ATLAS experiment. Following a market survey carried out among 28 firms in eight Member States and eight firms in two non-Member States, a call for tenders (IT-2807/EP/ATLAS) was sent on 17 August 2000 to two firms in two Member States. By the closing date, CERN had received tenders from the two firms. The Finance Committee is invited to agree to the negotiation of a contract with LINDE KRYOTECHNIK (CH), the lowest bidder, for the design, supply, installation, commissioning and testing at CERN of the external cryogenic sub-system for the magnets of the ATLAS experiment for a total amount of 6 652 000 Swiss francs, not subject to revision, with options for interconnecting low- and high-pressure warm piping and for spare parts, for an additional amount of 910 170 Swiss francs, not subject to revision, bringing the total amount...

  13. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  14. Commissioning the cryogenic system of the first LHC sector

    International Nuclear Information System (INIS)

    Millet, F.; Claudet, S.; Ferlin, G.; Perin, A.; Riddone, G.; Serio, L.; Soubiran, M.; Tavian, L.; CERN; Ronayette, L.; GHMFL, Grenoble; Rabehl, R.; Fermilab

    2007-01-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioning is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test

  15. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  16. Thermal Performance Testing of Cryogenic Multilayer Insulation with Silk Net Spacers

    International Nuclear Information System (INIS)

    Johnson, W L; Frank, D J; Nast, T C; Fesmire, J E

    2015-01-01

    Early comprehensive testing of cryogenic multilayer insulation focused on the use of silk netting as a spacer material. Silk netting was used for multiple test campaigns that were designed to provide baseline thermal performance estimates for cryogenic insulation systems. As more focus was put on larger systems, the cost of silk netting became a deterrent and most aerospace insulation firms were using Dacron (or polyester) netting spacers by the early 1970s. In the midst of the switch away from silk netting there was no attempt to understand the difference between silk and polyester netting, though it was widely believed that the silk netting provided slightly better performance. Without any better reference for thermal performance data, the silk netting performance correlations continued to be used. In order to attempt to quantify the difference between the silk netting and polyester netting, a brief test program was developed. The silk netting material was obtained from Lockheed Martin and was tested on the Cryostat-100 instrument in three different configurations, 20 layers with both single and double netting and 10 layers with single netting only. The data show agreement within 15 - 30% with the historical silk netting based correlations and show a substantial performance improvement when compared to previous testing performed using polyester netting and aluminum foil/fiberglass paper multilayer insulation. Additionally, the data further reinforce a recently observed trend that the heat flux is not directly proportional to the number of layers installed on a system. (paper)

  17. Toroidal simulation magnet tests

    International Nuclear Information System (INIS)

    Walstrom, P.L.; Domm, T.C.

    1975-01-01

    A number of different schemes for testing superconducting coils in a simulated tokamak environment are analyzed for their merits relative to a set of test criteria. Two of the concepts are examined in more detail: the so-called cluster test scheme, which employs two large background field coils, one on either side of the test coil, and the compact torus, a low-aspect ratio toroidal array of a small number of coils in which all of the coils are essentially test coils. Simulation of the pulsed fields of the tokamak is discussed briefly

  18. Cold test facility for 1.8 m superconducting model magnets at the SSC

    International Nuclear Information System (INIS)

    LaBarge, A.

    1993-07-01

    A new facility has been constructed to measure the characteristic features of superconducting model magnets and cable at cryogenic temperatures -- a function which supports the design and development process for building full-scale accelerator magnets. There are multiple systems operating in concert to test the model magnets, namely: cryogenic, magnet power, data acquisition and system control. A typical model magnet test includes the following items: (1) warm measurements of magnet coils, strain gauges and voltage taps; (2) hipot testing of insulation integrity; (3) cooling with liquid nitrogen and then liquid helium; (4) measuring quench current and magnetic field; (5) magnet warm-up. While the magnet is being cooled to 4.22 K, the mechanical stress is monitored through strain gauges. Current is then ramped into the magnet until it reaches some maximum value and the magnet transitions from the superconducting state to the normal state. Normal-zone propagation is monitored using voltage taps on the magnet coils during this process, thus indicating where the transition began. The current ramp is usually repeated until a plateau current is reached, where the magnet has mechanically settled

  19. SNS Cryogenic Test Facility Kinney Vacuum Pump Commissioning and Operation at 2 K

    Science.gov (United States)

    DeGraff, B.; Howell, M.; Kim, S.; Neustadt, T.

    2017-12-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) has built and commissioned an independent Cryogenic Test Facility (CTF) in support of testing in the Radio-frequency Test Facility (RFTF). Superconducting Radio-frequency Cavity (SRF) testing was initially conducted with the CTF cold box at 4.5 K. A Kinney vacuum pump skid consisting of a roots blower with a liquid ring backing pump was recently added to the CTF system to provide testing capabilities at 2 K. System design, pump refurbishment and installation of the Kinney pump will be presented. During the commissioning and initial testing period with the Kinney pump, several barriers to achieve reliable operation were experienced. Details of these lessons learned and improvements to skid operations will be presented. Pump capacity data will also be presented.

  20. SNS Cryogenic Test Facility Kinney Vacuum Pump Commissioning and Operation at 2 K

    Energy Technology Data Exchange (ETDEWEB)

    Degraff, Brian D. [ORNL; Howell, Matthew P. [ORNL; Kim, Sang-Ho [ORNL; Neustadt, Thomas S. [ORNL

    2017-07-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) has built and commissioned an independent Cryogenic Test Facility (CTF) in support of testing in the Radio-frequency Test Facility (RFTF). Superconducting Radio-frequency Cavity (SRF) testing was initially conducted with the CTF cold box at 4.5 K. A Kinney vacuum pump skid consisting of a roots blower with a liquid ring backing pump was recently added to the CTF system to provide testing capabilities at 2 K. System design, pump refurbishment and installation of the Kinney pump will be presented. During the commissioning and initial testing period with the Kinney pump, several barriers to achieve reliable operation were experienced. Details of these lessons learned and improvements to skid operations will be presented. Pump capacity data will also be presented.

  1. Innovative Ultra-High Efficiency Cryogenic Actuators for Rocket Test Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The SBIR Phase I project will develop advanced ultra-high efficiency cryogenic actuators for NASA cryogenic fluid transfer application. The actuator will have low...

  2. The test facility for the short prototypes of the LHC superconducting magnets

    International Nuclear Information System (INIS)

    Delsolaro, W. Venturini; Arn, A.; Bottura, L.; Giloux, C.; Mompo, R.; Siemko, A.; Walckiers, L.

    2002-01-01

    The LHC development program relies on cryogenic tests of prototype and model magnets. This vigorous program is pursued in a dedicated test facility based on several vertical cryostats working at superfluid helium temperatures. The performance of the facility is detailed. Goals and test equipment for currently performed studies are reviewed: quench analysis and magnet protection studies, measurement of the field quality, test of ancillary electrical equipment like diodes and busbars. The paper covers the equipment available for tests of prototypes and some special series of LHC magnets to come

  3. The test facility for the short prototypes of the LHC superconducting magnets

    Science.gov (United States)

    Delsolaro, W. Venturini; Arn, A.; Bottura, L.; Giloux, C.; Mompo, R.; Siemko, A.; Walckiers, L.

    2002-05-01

    The LHC development program relies on cryogenic tests of prototype and model magnets. This vigorous program is pursued in a dedicated test facility based on several vertical cryostats working at superfluid helium temperatures. The performance of the facility is detailed. Goals and test equipment for currently performed studies are reviewed: quench analysis and magnet protection studies, measurement of the field quality, test of ancillary electrical equipment like diodes and busbars. The paper covers the equipment available for tests of prototypes and some special series of LHC magnets to come.

  4. Cylindrical cryogenic calorimeter testing of six types of multilayer insulation systems

    Science.gov (United States)

    Fesmire, J. E.; Johnson, W. L.

    2018-01-01

    Extensive cryogenic thermal testing of more than 100 different multilayer insulation (MLI) specimens was performed over the last 20 years for the research and development of evacuated reflective thermal insulation systems. From this data library, 26 MLI systems plus several vacuum-only systems are selected for analysis and comparison. The test apparatus, methods, and results enabled the adoption of two new technical consensus standards under ASTM International. Materials tested include reflectors of aluminum foil or double-aluminized Mylar and spacers of fiberglass paper, polyester netting, silk netting, polyester fabric, or discrete polymer standoffs. The six types of MLI systems tested are listed as follows: Mylar/Paper, Foil/Paper, Mylar/Net, Mylar/Blanket, Mylar/Fabric, Mylar/Discrete. Also tested are vacuum-only systems with different cold surface materials/finishes including stainless steel, black, copper, and aluminum. Testing was performed between the boundary temperatures of 78 K and 293 K (and up to 350 K) using a thermally guarded one-meter-long cylindrical calorimeter (Cryostat-100) for absolute heat flow measurement. Cold vacuum pressures include the full range from 1 × 10-6 torr to 760 torr with nitrogen as the residual gas. System variations include number of layers from one to 80 layers, layer densities from 0.5 to 5 layers per millimeter, and installation techniques such layer-by-layer, blankets (multi-layer assemblies), sub-blankets, seaming, butt-joining, spiral wrapping, and roll-wrapping. Experimental thermal performance data for the different MLI systems are presented in terms of heat flux and effective thermal conductivity. Benchmark cryogenic-vacuum thermal performance curves for MLI are given for comparison with different insulation approaches for storage and transfer equipment, cryostats, launch vehicles, spacecraft, or science instruments.

  5. Design, implementation, and testing of a cryogenic loading capability on an engineering neutron diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, T. R.; Krishnan, V. B.; Vaidyanathan, R. [Department of Mechanical, Materials, and Aerospace Engineering, Advanced Materials Processing and Analysis Center (AMPAC), University of Central Florida, Orlando, Florida 32816 (United States); Clausen, B.; Sisneros, T.; Livescu, V.; Brown, D. W.; Bourke, M. A. M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2010-06-15

    A novel capability was designed, implemented, and tested for in situ neutron diffraction measurements during loading at cryogenic temperatures on the spectrometer for materials research at temperature and stress at Los Alamos National Laboratory. This capability allowed for the application of dynamic compressive forces of up to 250 kN on standard samples controlled at temperatures between 300 and 90 K. The approach comprised of cooling thermally isolated compression platens that in turn conductively cooled the sample in an aluminum vacuum chamber which was nominally transparent to the incident and diffracted neutrons. The cooling/heat rate and final temperature were controlled by regulating the flow of liquid nitrogen in channels inside the platens that were connected through bellows to the mechanical actuator of the load frame and by heaters placed on the platens. Various performance parameters of this system are reported here. The system was used to investigate deformation in Ni-Ti-Fe shape memory alloys at cryogenic temperatures and preliminary results are presented.

  6. Design of a cryogenic test facility for evaluating the performance of interferometric components of the SPICA/SAFARI instrument

    Science.gov (United States)

    Veenendaal, Ian T.; Naylor, David A.; Gom, Brad G.

    2014-08-01

    The Japanese SPace Infrared telescope for Cosmology and Astrophysics (SPICA), a 3 m class telescope cooled to ~ 6 K, will provide extremely low thermal background far-infrared observations. An imaging Fourier transform spectrometer (SAFARI) is being developed to exploit the low background provided by SPICA. Evaluating the performance of the interferometer translation stage and key optical components requires a cryogenic test facility. In this paper we discuss the design challenges of a pulse tube cooled cryogenic test facility that is under development for this purpose. We present the design of the cryostat and preliminary results from component characterization and external optical metrology.

  7. Magnetic Launch Assist Demonstration Test

    Science.gov (United States)

    2001-01-01

    This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  8. Cryogenic and Gas System Piping Pressure Tests (A Collection of PT Permits)

    International Nuclear Information System (INIS)

    Rucinski, Russell A.

    2002-01-01

    This engineering note is a collection of pipe pressure testing documents for various sections of piping for the D-Zero cryogenic and gas systems. High pressure piping must conform with FESHM chapter 5031.1. Piping lines with ratings greater than 150 psig have a pressure test done before the line is put into service. These tests require the use of pressure testing permits. It is my intent that all pressure piping over which my group has responsibility conforms to the chapter. This includes the liquid argon and liquid helium and liquid nitrogen cryogenic systems. It also includes the high pressure air system, and the high pressure gas piping of the WAMUS and MDT gas systems. This is not an all inclusive compilation of test documentation. Some piping tests have their own engineering note. Other piping section test permits are included in separate safety review documents. So if it isn't here, that doesn't mean that it wasn't tested. D-Zero has a back up air supply system to add reliability to air compressor systems. The system includes high pressure piping which requires a review per FESHM 5031.1. The core system consists of a pressurized tube trailer, supply piping into the building and a pressure reducing regulator tied into the air compressor system discharge piping. Air flows from the trailer if the air compressor discharge pressure drops below the regulator setting. The tube trailer is periodically pumped back up to approximately 2000 psig. A high pressure compressor housed in one of the exterior buildings is used for that purpose. The system was previously documented, tested and reviewed for Run I, except for the recent addition of piping to and from the high pressure compressor. The following documents are provided for review of the system: (1) Instrument air flow schematic, drg. 3740.000-ME-273995 rev. H; (2) Component list for air system; (3) Pressure testing permit for high pressure piping; (4) Documentation from Run I contained in D-Zero Engineering note

  9. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  10. Commissioning of the LHC Cryogenic System Subsystems Cold Commissioning in Preparation of Full Sector Tests

    CERN Document Server

    Serio, L; Ferlin, G; Gilbert, N; Gruehagen, Henning; Knoops, S; Parente, C; Sanmartí, M

    2006-01-01

    The cryogenic system for the Large Hadron Collider accelerator is presently in its final phase of installation and commissioning at nominal operating temperatures. The refrigeration capacity for the LHC will be produced using eight large cryogenic plants installed on five technical sites and distributed around the 26.7-km circumference ring located in a deep underground tunnel. The status of the cryogenic system commissioning is presented together with the experience gained in operating and commissioning it.

  11. Vent rate of superconducting magnets during quench in the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.

    1979-01-01

    When a superconducting magnet goes normal, resistive heating in the conductor evaporates surrounding LHe, which must be vented. The nature and speed at which the magnet goes normal and He is vented are not subject to rigorous analysis. This paper presents vent data from an existing magnet. An approximate mathematical model is derived and fitted to the data to permit scaling of vent requirements to larger size magnets. The worst case models of the vent employed in Mirror Fusion Test Facility (MFTF) cryogenic system design are also presented

  12. Natural remanent magnetization and rock magnetic parameters from the North-East Atlantic continental margin : Insights from a new, automated cryogenic magnetometer at the Geological Survey of Norway

    Science.gov (United States)

    Klug, Martin; Fabian, Karl; Knies, Jochen; Sauer, Simone

    2017-04-01

    Natural remanent magnetization (NRM) and rock magnetic parameters from two locations, West Barents Sea ( 71.6°N,16.2°E) and Vestnesa Ridge, NW Svalbard ( 79.0°N, 6.9°E), were acquired using a new, automatically operating cryogenic magnetometer system at the Geological Survey of Norway. The magnetometer setup comprises an automated robot sample feeding, dynamic operation and measurement monitoring, and customised output-to-database data handling. The setup is designed to dynamically enable a variety of parallel measurements with several coupled devices (e.g. balance, MS2B) to effectively use dead-time in between the otherwise time-consuming measurements with the cryogen magnetometer. Web-based access allows remote quality control and interaction 24/7 and enables high sample throughput. The magnetic properties are combined with geophysical, geochemical measurements and optical imaging, both radiographic and colour images, from high-resolution core-logging. The multidisciplinary approach enables determination and interpretation of content and formation of the magnetic fraction, and its development during diagenetic processes. Besides palaeomagnetic age determination the results offer the opportunity to study sediment transformation processes that have implications for the burial and degradation of organic matter. The results also help to understand long and short-term variability of sediment accumulation. Chemical sediment stability is directly linked to environmental and climate variability in the polar marine environment during the recent past.

  13. Fiber optic cryogenic sensors for superconducting magnets and superconducting power transmission lines at CERN

    Science.gov (United States)

    Chiuchiolo, A.; Bajko, M.; Perez, J. C.; Bajas, H.; Consales, M.; Giordano, M.; Breglio, G.; Palmieri, L.; Cusano, A.

    2014-08-01

    The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

  14. Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

    Science.gov (United States)

    Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will

    2015-01-01

    As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.

  15. Full-power test of a string of magnets comprising a half-cell of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Burgett, W.; Christianson, M.; Coombes, R.

    1992-10-01

    In this paper we describe the full-powered operation of a string of industrially-fabricated magnets comprising a half-cell of the Superconducting Super Collider (SSC). The completion of these tests marks the first successful operation of a major SSC subsystem. The five 15-m long dipole magnets in the string had an aperture of 50 mm and the single 5-m long quadrupole aperture was 40 mm. Power and cryogenic connections were made to the string through spool pieces that are prototypes for SSC operations. The string was cooled to cryogenic temperatures in early July, 1992, and power tests were performed at progressively higher currents up to the nominal SSC operating point above 6500 amperes achieved in mid-August. In this paper we report on the electrical and cryogenic performance of the string components and the quench protection system during these initial tests

  16. ESCAR, tests of superconducting bending magnets at the accelerator site

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Lambertson, G.R.; Meuser, R.B.; Rechen, J.B.

    1979-03-01

    ESCAR (Experimental Superconducting Accelerator Ring) was conceived as a project in accelerator technology development which would provide data and experience to insure that planning for larger superconducting synchrotrons would proceed in a knowledgeable and responsible manner. It was to consist of the fabrication and operation of a relatively small proton synchrotron and storage ring with superconducting magnet elements for all of the main ring. The project was funded and design work began in July 1974. During the next two years it became increasingly apparent that the funding rate was directly limiting the rate of completion of ESCAR and that an intermediate goal, a test of the unconventional aspects of the project, was desirable. To that end, twelve dipole bending magnets, one-half of those required for the total ring, were installed at the site along with the 1500 watt helium refrigerator, cryogenic distribution system, electrical power supplies, vacuum systems, and necessary instrumentation. This truncated system was put through an extended series of tests which were completed in June 1978 at which time the ESCAR Project was terminated. ESCAR, and the dipole magnets have been described previously. The results of the systems tests have also been reported. The tests involving the dipole magnets are described

  17. Comparison of Achievable Magnetic Fields with Superconducting and Cryogenic Permanent Magnet Undulators – A Comprehensive Study of Computed and Measured Values

    Energy Technology Data Exchange (ETDEWEB)

    Moog, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Dejus, R. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sasaki, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    Magnetic modeling was performed to estimate achievable magnetic field strengths of superconducting undulators (SCUs) and to compare them with those of cryogenically cooled permanent magnet undulators (CPMUs). Starting with vacuum (beam stay-clear) gaps of 4.0 and 6.0 mm, realistic allowances for beam chambers (in the SCU case) and beam liners (in the CPMU case) were added. (A 6.0-mm vacuum gap is planned for the upgraded APS). The CPMU magnetic models consider both CPMUs that use NdFeB magnets at ~150 K and PrFeB magnets at 77 K. Parameters of the magnetic models are presented along with fitted coefficients of a Halbach-type expression for the field dependence on the gap-to-period ratio. Field strengths for SCUs are estimated using a scaling law for planar SCUs; an equation for that is given. The SCUs provide higher magnetic fields than the highest-field CPMUs – those using PrFeB at 77 K – for period lengths longer than ~14 mm for NbTi-based SCUs and ~10 mm for Nb3Sn-based SCUs. To show that the model calculations and scaling law results are realistic, they are compared to CPMUs that have been built and NbTi-based SCUs that have been built. Brightness tuning curves of CPMUs (PrFeB) and SCUs (NbTi) for the upgraded APS lattice are also provided for realistic period lengths.

  18. Sapphire scintillation tests for cryogenic detectors in the Edelweiss dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Luca, M

    2007-07-15

    Identifying the matter in the universe is one of the main challenges of modern cosmology and astrophysics. An important part of this matter seems to be made of non-baryonic particles. Edelweiss is a direct dark matter search using cryogenic germanium bolometers in order to look for particles that interact very weakly with the ordinary matter, generically known as WIMPs (weakly interacting massive particles). An important challenge for Edelweiss is the radioactive background and one of the ways to identify it is to use a larger variety of target crystals. Sapphire is a light target which can be complementary to the germanium crystals already in use. Spectroscopic characterization studies have been performed using different sapphire samples in order to find the optimum doping concentration for good low temperature scintillation. Ti doped crystals with weak Ti concentrations have been used for systematic X ray excitation tests both at room temperature and down to 30 K. The tests have shown that the best Ti concentration for optimum room temperature scintillation is 100 ppm and 50 ppm at T = 45 K. All concentrations have been checked by optical absorption and fluorescence. After having shown that sapphire had interesting characteristics for building heat-scintillation detectors, we have tested if using a sapphire detector was feasible within a dark matter search. During the first commissioning tests of Edelweiss-II, we have proved the compatibility between a sapphire heat scintillation detector and the experimental setup. (author)

  19. Cryogenic thermometer calibration system using a helium cooling loop and a temperature controller [for LHC magnets

    CERN Document Server

    Chanzy, E; Thermeau, J P; Bühler, S; Joly, C; Casas-Cubillos, J; Balle, C

    1998-01-01

    The IPN-Orsay and CERN are designing in close collaboration a fully automated cryogenic thermometer calibration facility which will calibrate in 3 years 10,000 cryogenic thermometers required for the Large Hadron Collider (LHC) operation. A reduced-scale model of the calibration facility has been developed, which enables the calibration of ten thermometers by comparison with two rhodium-iron standard thermometers in the 1.8 K to 300 K temperature range under vacuum conditions. The particular design, based on a helium cooling loop and an electrical temperature controller, gives good dynamic performances. This paper describes the experimental set-up and the data acquisition system. Results of experimental runs are also presented along with the estimated global accuracy for the calibration. (3 refs).

  20. Superconducting magnet tests and measurements for the LHC

    International Nuclear Information System (INIS)

    Chohan, V.; )

    2011-01-01

    By end of 2007, the LHC construction, installation and interconnection phases had come to a close with the cooling down of the 8 sectors progressively in 2007-8; the first beams were successfully circulated at injection energies in Sept. 2008 in both rings. For the testing of the 1706 LHC lattice magnets in cryogenic conditions and its successful completion by end 2006, considerable challenges had to be overcome since 2002 to assure certain semi-routine operation at the purpose built tests facility at CERN. In particular, the majority of staff for tests and measurement purposes was provided by India on a rotating, one-year-stay basis, as part of the CERN-India Collaboration for LHC. This was complemented by some CERN accelerator operation staff. From only 95 dipoles tested in year 2003, the completion of tests of all 1706 magnets by early 2007 was made possible by the efforts and innovative ideas in improving and managing the work flow as well as the test rates which came from the Operation team; amongst these, certain novel ideas to stream-line the test procedures as proposed and implemented successfully by the Indian Associates deserve a special mention. This presentation will give an insight to this as well an overall view of the operation related issues in light of different tests and, measurements, constraints and limits. Finally, an indication of how the tests and measurements have contributed to the LHC running will be given. (author)

  1. Super-light-weighted HB-Cesic® mirror cryogenic test

    Science.gov (United States)

    Devilliers, Christophe; Krödel, Matthias R.; Sodnik, Zoran; Robert, Patrick

    2017-11-01

    Future scientific space missions require ever more demanding large optics that work at cryogenic temperatures. In the frame of a Darwin assessment study conducted under ESA contract by TAS, the need of future very lightweight cryogenic mirrors with superior optical quality has been identified. Such mirrors need to be of size up to 3.5 m in diameter, with a mass of less than 250 kg (i.e. 25 kg/m2) and possess excellent optical quality at cryogenic temperature down to 40 K.

  2. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    Science.gov (United States)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the

  3. Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, Joshua T. [Jefferson Lab, Newport News, VA; Biallas, George H. [Jefferson Lab, Newport News, VA; Brown, G.; Butler, David E. [Jefferson Lab, Newport News, VA; Carstens, Thomas J. [Jefferson Lab, Newport News, VA; Chudakov, Eugene A. [Jefferson Lab, Newport News, VA; Creel, Jonathan D. [Jefferson Lab, Newport News, VA; Egiyan, Hovanes [Jefferson Lab, Newport News, VA; Martin, F.; Qiang, Yi [Jefferson Lab, Newport News, VA; Smith, Elton S. [Jefferson Lab, Newport News, VA; Stevens, Mark A. [Jefferson Lab, Newport News, VA; Spiegel, Scot L. [Jefferson Lab, Newport News, VA; Whitlatch, Timothy E. [Jefferson Lab, Newport News, VA; Wolin, Elliott J. [Carnegie Mellon University , Pittsburgh, PA; Ghoshal, Probir K. [Jefferson Lab, Newport News, VA

    2015-06-01

    JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete the system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.

  4. A novel cryogenic magnetic refrigerant metal-organic framework based on 1D gadolinium(III) chain

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qun; Li, Peng-Fei [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Zou, Zhi-Ming, E-mail: 2014005@glut.edu.cn [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Liu, Zheng [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Liu, Shu-Xia, E-mail: liusx@nenu.edu.cn [Key Laboratory of Polyoxometalate Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China)

    2017-02-15

    A metal-organic framework (MOF) based on gadolinium ion (Gd{sup 3+}) and tricarboxylate ligand, [Gd(BTPCA)(H{sub 2}O)]·2DMF·3H{sub 2}O (Gd-BTPCA) (H{sub 3}BTPCA =1,1′,1′-(benzene-1,3,5-triyl)tripiperidine-4-carboxylic acid; DMF=dimethylformamide), was synthesized and structurally characterized. The adjacent Gd{sup 3+} ions are intraconnected by the carboxylate groups of the BTPCA{sup 3-} ligands to form a 1D Gd{sup 3+} ion chain. The 1D Gd{sup 3+} ion chains are interconnected by the BTPCA{sup 3-} ligands, giving rise to a 3D framework with 1D open channel. The magnetic studies indicate that Gd-BTPCA exhibits weak ferromagnetic interactions, and acts as a cryogenic magnetic refrigerant having the magnetic entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Graphical abstract: A 1D gadolinium(III) chains-based metal-organic framework performed ferromagnetic coupling on the magnetic property. Magnetic investigation reveals that Gd-BTPCA exhibits the entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Highlights: • The MOF based on gadolinium ion and tricarboxylate ligand was synthesized. • This MOF is connected with 1D Gd{sup 3+} ions chain and the carboxylate groups of BTPCA{sup 3-} ligands. • The magnetic studies indicate that the MOF exhibits the weak ferromagnetic interactions. • Magnetic investigation reveals that the MOF exhibits the high entropy change.

  5. Results on testing pilot industrial batch of SC magnets for the UNK

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Balbekov, V.I.; Chirkov, P.N.; Dolzhenkov, V.I.; Gertsev, K.F.; Gridasov, V.I.; Myznikov, K.P.; Smirnov, N.L.; Sychev, V.A.

    1992-01-01

    IHEP has developed and studied the superconducting dipoles and quadrupoles of the regular part of the UNK main ring which satisfy the requirements imposed on them. The pilot-industrial batch of the UNK SC magnets has been produced now. The reproducibility of the magnet characteristics is studied and the mass production technology is optimized with this batch. The results of the cryogenic tests and the magnetic field measurements for the UNK SC dipoles of the pilot-industrial batch are presented. (author) 5 refs.; 6 figs.; 1 tab

  6. Ultracold neutron source at the PULSTAR reactor: Engineering design and cryogenic testing

    Energy Technology Data Exchange (ETDEWEB)

    Korobkina, E., E-mail: ekorobk@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, 2500 Stinson Drive, Box 7909, Raleigh, NC 27695 (United States); Medlin, G. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Wehring, B.; Hawari, A.I. [Department of Nuclear Engineering, North Carolina State University, 2500 Stinson Drive, Box 7909, Raleigh, NC 27695 (United States); Huffman, P.R.; Young, A.R. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States); Beaumont, B. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Palmquist, G. [Department of Physics, North Carolina State University, 2401 Stinson Drive, Box 8202, Raleigh, NC 27695 (United States); Triangle Universities Nuclear Laboratory, 116 Science Drive, Box 90308, Durham, NC 27708 (United States)

    2014-12-11

    Construction is completed and commissioning is in progress for an ultracold neutron (UCN) source at the PULSTAR reactor on the campus of North Carolina State University. The source utilizes two stages of neutron moderation, one in heavy water at room temperature and the other in solid methane at ∼40K, followed by a converter stage, solid deuterium at 5 K, that allows a single down scattering of cold neutrons to provide UCN. The UCN source rolls into the thermal column enclosure of the PULSTAR reactor, where neutrons will be delivered from a bare face of the reactor core by streaming through a graphite-lined assembly. The source infrastructure, i.e., graphite-lined assembly, heavy-water system, gas handling system, and helium liquefier cooling system, has been tested and all systems operate as predicted. The research program being considered for the PULSTAR UCN source includes the physics of UCN production, fundamental particle physics, and material surface studies of nanolayers containing hydrogen. In the present paper we report details of the engineering and cryogenic design of the facility as well as results of critical commissioning tests without neutrons.

  7. Cryogenic Fiber Optic Assemblies for Spaceflight Environments: Design, Manufacturing, Testing, and Integration

    Science.gov (United States)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.

  8. Integrated cryogenic sensors

    International Nuclear Information System (INIS)

    Juanarena, D.B.; Rao, M.G.

    1991-01-01

    Integrated cryogenic pressure-temperature, level-temperature, and flow-temperature sensors have several advantages over the conventional single parameter sensors. Such integrated sensors were not available until recently. Pressure Systems, Inc. (PSI) of Hampton, Virginia, has introduced precalibrated precision cryogenic pressure sensors at the Los Angeles Cryogenic Engineering Conference in 1989. Recently, PSI has successfully completed the development of integrated pressure-temperature and level-temperature sensors for use in the temperature range 1.5-375K. In this paper, performance characteristics of these integrated sensors are presented. Further, the effects of irradiation and magnetic fields on these integrated sensors are also reviewed

  9. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  10. Third-generation site characterization: Cryogenic core collection, nuclear magnetic resonance, and electrical resistivity

    Science.gov (United States)

    Kiaalhosseini, Saeed

    In modern contaminant hydrology, management of contaminated sites requires a holistic characterization of subsurface conditions. Delineation of contaminant distribution in all phases (i.e., aqueous, non-aqueous liquid, sorbed, and gas), as well as associated biogeochemical processes in a complex heterogeneous subsurface, is central to selecting effective remedies. Arguably, a factor contributing to the lack of success of managing contaminated sites effectively has been the limitations of site characterization methods that rely on monitoring wells and grab sediment samples. The overarching objective of this research is to advance a set of third-generation (3G) site characterization methods to overcome shortcomings of current site characterization techniques. 3G methods include 1) cryogenic core collection (C3) from unconsolidated geological subsurface to improve recovery of sediments and preserving key attributes, 2) high-throughput analysis (HTA) of frozen core in the laboratory to provide high-resolution, depth discrete data of subsurface conditions and processes, 3) resolution of non-aqueous phase liquid (NAPL) distribution within the porous media using a nuclear magnetic resonance (NMR) method, and 4) application of a complex resistivity method to track NAPL depletion in shallow geological formation over time. A series of controlled experiments were conducted to develop the C 3 tools and methods. The critical aspects of C3 are downhole circulation of liquid nitrogen via a cooling system, the strategic use of thermal insulation to focus cooling into the core, and the use of back pressure to optimize cooling. The C3 methods were applied at two contaminated sites: 1) F.E. Warren (FEW) Air Force Base near Cheyenne, WY and 2) a former refinery in the western U.S. The results indicated that the rate of core collection using the C3 methods is on the order of 30 foot/day. The C3 methods also improve core recovery and limits potential biases associated with flowing sands

  11. Nd{sub 2}Fe{sub 14}B and Pr{sub 2}Fe{sub 14}B magnets characterisation and modelling for cryogenic permanent magnet undulator applications

    Energy Technology Data Exchange (ETDEWEB)

    Benabderrahmane, C., E-mail: chamseddine.benabderrahmane@synchrotron-soleil.fr [Synchrotron SOLEIL, St Aubin (France); Berteaud, P.; Valleau, M.; Kitegi, C.; Tavakoli, K.; Bechu, N.; Mary, A.; Filhol, J.M.; Couprie, M.E. [Synchrotron SOLEIL, St Aubin (France)

    2012-03-21

    Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE{sub 2}Fe{sub 14}B (Rare Earth based magnets) at cryogenic temperatures for achieving short period high magnetic field. In particular, using Praseodymium instead of Neodymium generally employed for insertion devices avoids limitation due to Spin Reorientation Transition phenomenon. Magnetic properties of magnet samples (Nd{sub 2}Fe{sub 14}B and Pr{sub 2}Fe{sub 14}B) versus temperature have been investigated and applied to a 20 mm period Nd{sub 2}Fe{sub 14}B (BH50) and to a 18 mm period Pr{sub 2}Fe{sub 14}B (CR53) systems. Four period undulators have been built, characterised and compared to the models.

  12. Temperature dependence of magnetic descriptors of Magnetic Adaptive Testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Tomáš, Ivan; Takagi, T.

    2010-01-01

    Roč. 46, č. 2 (2010), s. 509-512 ISSN 0018-9464 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.052, year: 2010

  13. Cryogen free low temperature sample environment for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kirichek, O; Evans, B E; Down, R B E; Bowden, Z A

    2009-01-01

    Recent increase in liquid helium cost caused by global helium supply problems rose significant concern about affordability of conventional cryogenic equipment. Luckily the progress in cryo-cooler technology offers a new generation of cryogenic systems with significantly reduced consumption and in some cases nearly complete elimination of cryogens. These cryogen-free systems also offer the advantage of operational simplicity and require less space than conventional cryogen-cooled systems. The ISIS facility carries on an internal development program intended to substitute gradually all conventional cryogenic systems with cryogen free systems preferably based on pulse tube refrigerators. A unique feature of this cryo-cooler is the absence of cold moving parts. This considerably reduces vibrations and increases the reliability of the cold head. The program includes few development projects which are aiming to deliver range of cryogen free equipment including top-loading cryostat, superconducting magnets and dilution refrigerators. Here we are going to describe the design of these systems and discuss the results of prototypes testing.

  14. Cryogenics safety

    International Nuclear Information System (INIS)

    Reider, R.

    1977-01-01

    The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described

  15. Design of horizontal test cryostat for testing two 650 MHz cavities: cryogenic considerations

    Science.gov (United States)

    Khare, P.; Gilankar, S.; Kush, P. K.; Lakshminarayanan, A.; Choubey, R.; Ghosh, R.; Jain, A.; Patel, H.; Gupta, P. D.; Hocker, A.; Ozelis, J. P.; Geynisman, M.; Reid, C.; Poloubotko, V.; Mitchell, D.; Peterson, T. J.; Nicol, T. H.

    2017-02-01

    Horizontal Test Cryostat has been designed for testing two 650 MHz "dressed" Superconducting Radio Frequency (SCRF) cavities in a single testing cycle at Raja Ramanna Centre for Advanced Technology, India (RRCAT) in collaboration with Fermi National Accelerator Laboratory, USA (FNAL). This cryostat will facilitate testing of two 5-cell 650 MHz SCRF cavities, in CW or pulsed regime, for upcoming High Intensity Superconducting Proton Accelerator projects at both countries. Two such HTS facilities are planned, one at RRCAT for Indian Spallation Neutron Source project (ISNS), which is on the horizon, and the other at FNAL, USA. A test cryostat, a part of horizontal test stand-2 (HTS-2) will be set up at RRCAT for Indian project. In order to maximize the utility of this facility, it can also be used to test two dressed 9-cell 1.3 GHz cavities and other similarly-sized devices. The facility assumes, as an input, the availability of liquid nitrogen at 80 K and liquid helium at 4.5 K and 2 K, with a refrigeration capacity of approximately 50 W at 2 K. Design work of cryostat has been completed and now procurement process is in progress. This paper discusses salient features of the cryostat. It also describes different design calculations and ANSYS analysis for cool down of few subsystems like cavity support system and liquid nitrogen cooled thermal radiation shield of horizontal test cryostat..

  16. Cryogenic STM in 3D vector magnetic fields realized through a rotatable insert.

    Science.gov (United States)

    Trainer, C; Yim, C M; McLaren, M; Wahl, P

    2017-09-01

    Spin-polarized scanning tunneling microscopy (SP-STM) performed in vector magnetic fields promises atomic scale imaging of magnetic structure, providing complete information on the local spin texture of a sample in three dimensions. Here, we have designed and constructed a turntable system for a low temperature STM which in combination with a 2D vector magnet provides magnetic fields of up to 5 T in any direction relative to the tip-sample geometry. This enables STM imaging and spectroscopy to be performed at the same atomic-scale location and field-of-view on the sample, and most importantly, without experiencing any change on the tip apex before and after field switching. Combined with a ferromagnetic tip, this enables us to study the magnetization of complex magnetic orders in all three spatial directions.

  17. Superconducting solenoid model magnet test results

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab

    2006-08-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests.

  18. Superconducting solenoid model magnet test results

    International Nuclear Information System (INIS)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; Tompkins, J.C.; Wokas, T.; Fermilab

    2006-01-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests

  19. SMTMS - SM18 Magnet Tests Management System: a Brief User Guide for Operation

    CERN Document Server

    Chohan, N; CERN. Geneva. AB Department

    2004-01-01

    As the number of magnets to be tested under cryogenic conditions increased during the course of 2003, it was clear that a versatile computer-based tool was urgently required for keeping track of all the necessary tests that were carried out for each magnet as well as the outcome of the tests. It was also essential to keep track of the times taken during different phases in magnet preparation for the tests, including Cryogenic connections, cool-downs, warm ups and so forth. SMTMS uses the CERN provided backbone in Web based services and Access database to fulfil these urgent needs and was successfully made operational within a very short time. It has considerably eased & simplified the work in operation for cold testing the magnets with a few permanent core operational staff and a considerably large number of rotational personnel of short duration. This is because SMTMS is now the exclusive & unique Web-based tool to manage the tests and collate the essential electrical characterisation and quench resu...

  20. The LHC SSS cold mass inside the cryostat. The complexity of the bus-bars for the power supply of the magnets and cryogenic links can be seen. The two apertures in the centre will house the beam lines

    CERN Document Server

    2003-01-01

    The LHC SSS cold mass inside the cryostat. The complexity of the bus-bars for the power supply of the magnets and cryogenic links can be seen. The two apertures in the centre will house the beam lines

  1. The Management of Cryogens at CERN

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Serio, L; Tavian, L

    2005-01-01

    CERN is a large user of industrially procured cryogens essentially liquid helium and nitrogen. Recent contracts have been placed by the Organization for the delivery of quantities up to 280 tons of liquid helium over four years and up to 50000 tons of liquid nitrogen over three years. Main users are the very large cryogenic system of the LHC accelerator complex, the physics experiments using superconducting magnets and liquefied gases and all the related test facilities whether industrial or laboratory scale. With the commissioning of LHC, the need of cryogens at CERN will considerably increase and the procurement policy must be adapted accordingly. In this paper, we discuss procurement strategy for liquid helium and nitrogen, including delivery rates, distribution methods and adopted safety standards. Global turnover, on site re-liquefaction capacity, operational consumption, accidental losses, purification means and storage capacity will be described. Finally, the short to medium term evolution of the Orga...

  2. Technical presentation: BGM Cryogenic Engineering Limited

    CERN Multimedia

    Caroline Laignel - FI Department

    2006-01-01

    13 - 14 June 2006 TECHNICAL PRESENTATION BGM Cryogenic Engineering Limited 09:00 - 18:00, 60-2-016, Main Building. Presentation on BGM: 11:00 - 12:00, 60-2-016, Main Building. BGM Cryogenic Engineering Limited manufactures assemblies, sub-assemblies and machined components for the cryogenic technology sector. The primary markets served include superconducting magnets used in the healthcare sector (eg MRI body scanners), spectroscopy and NMR equipment for numerous R & D and technology applications, high vacuum applications and particle physics research. BGM has specialist assembly capability including stainless steel and aluminium welding, vacuum testing, electromechanical assembly and metal finishing. BGM offers a ‘one stop shop'facility to satisfy any customer requirement. Through our design partner we can offer a full design and modelling service, including 3D modelling and production of 2D drawings on your own borders. We can conduct heat load and force calculations and advise on the best...

  3. Magnetic susceptibility of Inconel alloys 718, 625, and 600 at cryogenic temperatures

    Science.gov (United States)

    Goldberg, Ira B.; Mitchell, Michael R.; Murphy, Allan R.; Goldfarb, Ronald B.; Loughran, Robert J.

    1990-01-01

    After a hydrogen fuel bleed valve problem on the Discovery Space Shuttle was traced to the strong magnetization of Inconel 718 in the armature of the linear variable differential transformer near liquid hydrogen temperatures, the ac magnetic susceptibility of three samples of Inconel 718 of slightly different compositions, one sample of Inconel 625, and on sample of Inconel 600 were measured as a function of temperature. Inconel 718 alloys are found to exhibit a spin glass state below 16 K. Inconel 600 exhibits three different magnetic phases, the lowest-temperature state (below 6 K) being somewhat similar to that of Inconel 718. The magnetic states of the Inconel alloys and their magnetic susceptibilities appear to be strongly dependent on the exact composition of the alloy.

  4. Evaluation of metal-foil strain gages for cryogenic application in magnetic fields

    International Nuclear Information System (INIS)

    Freynik, H.S. Jr.; Roach, D.R.; Deis, D.W.; Hirzel, D.G.

    1977-01-01

    The requirement for the design and construction of large superconducting magnet systems for fusion research has raised a number of new questions regarding the properties of composite superconducting conductors. One of these, the effect of mechanical stress on the current-carrying capacity of Nb 3 Sn, is of major importance in determining the feasibility of constructing large magnets with this material. A typical experiment for determining such data involves the measurement of critical current versus magnetic field while the conductor is being mechanically strained to various degrees. Techniques are well developed for the current and field measurements, but much less so for the accurate measurement of strain at liquid-helium temperature in a high magnetic field. A study was made of commercial, metal-foil strain gages for use under these conditions. The information developed can also be applied to the use of strain gages as diagnostic tools in superconducting magnets

  5. Make way for the ATLAS magnet

    CERN Multimedia

    2007-01-01

    On 5 and 6 February, the first ATLAS End Cap Toroid magnet was transported to begin a two-month regime of cryogenic testing. The magnet is scheduled to be installed in the cavern the first week of June.

  6. Mirror fusion test facility magnet system. Final design report

    International Nuclear Information System (INIS)

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-01-01

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy

  7. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  8. Radiation Resistance and Life Time Estimates at Cryogenic Temperatures of Series Produced By-Pass Diodes for the LHC Magnet Protection

    Science.gov (United States)

    Denz, R.; Gharib, A.; Hagedorn, D.

    2004-06-01

    For the protection of the LHC superconducting magnets about 2100 specially developed by-pass diodes have been manufactured in industry and more than one thousand of these diodes have been mounted into stacks and tested in liquid helium. By-pass diode samples, taken from the series production, have been submitted to irradiation tests at cryogenic temperatures together with some prototype diodes up to an accumulated dose of about 2 kGy and neutron fluences up to about 3.0 1013 n cm-2 with and without intermediate warm up to 300 K. The device characteristics of the diodes under forward bias and reverse bias have been measured at 77 K and ambient versus dose and the results are presented. Using a thermo-electrical model and new estimates for the expected dose in the LHC, the expected lifetime of the by-pass diodes has been estimated for various positions in the LHC arcs. It turns out that for all of the by-pass diodes across the arc elements the radiation resistance is largely sufficient. In the dispersion suppresser regions of the LHC, on a few diodes annual annealing during the shut down of the LHC must be applied or those diodes may need to be replaced after some time.

  9. The DAΦNE cryogenic system

    International Nuclear Information System (INIS)

    Modena, M.

    1997-12-01

    The DAΦNE Project utilises superconductivity technology for a total of six superconducting magnets: the two Experiment magnets (KLOE and FINUDA) and the four Compensator Solenoid magnets needed to compensate the magnetic effect of the Experiment magnets on the electron and positron beams. This effect, on beams of 510 MeV (nominal DAΦNE Energy), is expected to be relevant, especially with the aim of achieving a very high luminosity, which is the main target of the Project. The KLOE superconducting magnet has two possible working positions: the first in the DAΦNE Hall, when the Experiment will be in operation, and the second one in the KLOE Assembly Hall. This second position is the first to be utilised for the KLOE magnet Acceptance Test and magnetic field mapping, prior to the mounting of all the experimental apparatus inside the magnet. This note intends to present the DAΦNE Cryogenic System and how the authors have converged to the definition of a common Cryogenic System compatible with all the six superconducting magnets

  10. Construction and testing of the Mirror Fusion Test Facility magnets

    International Nuclear Information System (INIS)

    Kozman, T.; Shimer, D.; VanSant, J.; Zbasnik, J.

    1986-08-01

    This paper describes the construction and testing of the Mirror Fusion Test Facility superconducting magnet set. Construction of the first Yin Yang magnet was started in 1978. And although this particular magnet was later modified, the final construction of these magnets was not completed until 1985. When completed these 42 magnets weighed over 1200 tonnes and had a maximum stored energy of approximately 1200 MJ at full field. Together with power supplies, controls and liquid nitrogen radiation shields the cost of the fabrication of this system was over $100M. General Dynamics/Convair Division was responsible for the system design and the fabrication of 20 of the magnets. This contract was the largest single procurement action at the Lawrence Livermore National Laboratory. During the PACE acceptance tests, the 26 major magnets were operated at full field for more than 24 hours while other MFTF subsystems were tested. From all of the data, the magnets operated to the performance specifications. For physics operation in the future, additional helium and nitrogen leak checking and repair will be necessary. In this report we will discuss the operation and testing of the MFTF Magnet System, the world's largest superconducting magnet set built to date. The topics covered include a schedule of the major events, summary of the fabrication work, summary of the installation work, summary of testing and test results, and lessons learned

  11. Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

    1993-01-01

    Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications

  12. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  13. Cryogenic rf test of the first SRF cavity etched in an rf Ar/Cl2 plasma

    Science.gov (United States)

    Upadhyay, J.; Palczewski, A.; Popović, S.; Valente-Feliciano, A.-M.; Im, Do; Phillips, H. L.; Vušković, L.

    2017-12-01

    An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF) accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity's inner wall was then exposed to the capacitive discharge in a mixture of Argon and Chlorine. The inner wall acted as the grounded electrode, while kept at elevated temperature. The processing was accomplished by axially moving the dc-biased, corrugated inner electrode and the gas flow inlet in a step-wise manner to establish a sequence of longitudinally segmented discharges. The cavity was then tested in a standard vertical test stand at cryogenic temperatures. The rf tests and surface condition results, including the electron field emission elimination, are presented.

  14. Cryogenic rf test of the first SRF cavity etched in an rf Ar/Cl2 plasma

    Directory of Open Access Journals (Sweden)

    J. Upadhyay

    2017-12-01

    Full Text Available An apparatus and a method for etching of the inner surfaces of superconducting radio frequency (SRF accelerator cavities are described. The apparatus is based on the reactive ion etching performed in an Ar/Cl2 cylindrical capacitive discharge with reversed asymmetry. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity was used. The single cell cavity was mechanically polished and buffer chemically etched and then rf tested at cryogenic temperatures to provide a baseline characterization. The cavity’s inner wall was then exposed to the capacitive discharge in a mixture of Argon and Chlorine. The inner wall acted as the grounded electrode, while kept at elevated temperature. The processing was accomplished by axially moving the dc-biased, corrugated inner electrode and the gas flow inlet in a step-wise manner to establish a sequence of longitudinally segmented discharges. The cavity was then tested in a standard vertical test stand at cryogenic temperatures. The rf tests and surface condition results, including the electron field emission elimination, are presented.

  15. Development and operation of a Pr_{2}Fe_{14}B based cryogenic permanent magnet undulator for a high spatial resolution x-ray beam line

    Directory of Open Access Journals (Sweden)

    C. Benabderrahmane

    2017-03-01

    Full Text Available Short period, high field undulators are used to produce hard x-rays on synchrotron radiation based storage ring facilities of intermediate energy and enable short wavelength free electron laser. Cryogenic permanent magnet undulators take benefit from improved magnetic properties of RE_{2}Fe_{14}B (Rare Earth based magnets at low temperatures for achieving short period, high magnetic field and high coercivity. Using Pr_{2}Fe_{14}B instead of Nd_{2}Fe_{14}B, which is generally employed for undulators, avoids the limitation caused by the spin reorientation transition phenomenon, and simplifies the cooling system by allowing the working temperature of the undulator to be directly at the liquid nitrogen one (77 K. We describe here the development of a full scale (2 m, 18 mm period Pr_{2}Fe_{14}B cryogenic permanent magnet undulator (U18. The design, construction and optimization, as well as magnetic measurements and shimming at low temperature are presented. The commissioning and operation of the undulator with the electron beam and spectrum measurement using the Nanoscopmium beamline at SOLEIL are also reported.

  16. On the cryogenic magnetic transition and martensitic transformation of the austenite phase of 7MoPLUS duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.H., E-mail: KHLO@umac.m [Department of Electromechanical Engineering, University of Macau, Macau (China); Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Lai, J.K.L. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong)

    2010-08-15

    The magnetic behaviour and martensitic transformation at cryogenic temperatures (down to 4 K) of the austenite phase of the duplex stainless steel (DSS), 7MoPLUS, were studied. As regards the prediction of Neel temperature, the empirical expressions for austenitic stainless steels are not applicable to the austenite phase of 7MoPLUS, although the composition of the austenite phase falls within the composition ranges within which the expressions were developed. Regarding the prediction of martensitic point Ms, the applicability of 'old' and recently developed expressions has been examined. The recently developed expressions, which take into account more alloying elements and their interactions, are not suitable for the austenite phase of 7MoPLUS. But for the 'old', simpler expressions, they seem to be valid in the sense that they all predict high stability of the austenite phase. Results obtained from 7MoPLUS were qualitatively the same as those obtained from another DSS, designated as 2205. Reasons for the applicability and inapplicability of these empirical expressions are suggested.

  17. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties.

    Science.gov (United States)

    He, Yuxin; Yang, Song; Liu, Hu; Shao, Qian; Chen, Qiuyu; Lu, Chang; Jiang, Yuanli; Liu, Chuntai; Guo, Zhanhu

    2018-05-01

    The epoxy nanocomposites with ordered multi-walled carbon nanotubes (MWCNTs) were used to influence the micro-cracks resistance of carbon fiber reinforced epoxy (CF/EP) laminate at 77 K, Oxidized MWCNTs functionalized with Fe 3 O 4 (Fe 3 O 4 /O-MWCNTs) with good magnetic properties were prepared by co-precipitation method and used to modify epoxy (EP) for cryogenic applications. Fe 3 O 4 /O-MWCNTs reinforced carbon fiber epoxy composites were also prepared through vacuum-assisted resin transfer molding (VARTM). The ordered Fe 3 O 4 /O-MWCNTs were observed to have effectively improved the mechanical properties of epoxy (EP) matrix at 77 K and reduce the coefficient of thermal expansion (CTE) of EP matrix. The ordered Fe 3 O 4 /O-MWCNTs also obviously improved the micro-cracks resistance of CF/EP composites at 77 K. Compared to neat EP, the CTE of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites was decreased 37.6%. Compared to CF/EP composites, the micro-cracks density of ordered Fe 3 O 4 /O-MWCNTs modified CF/EP composites at 77 K was decreased 37.2%. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  19. Test of a cryogenic set-up for a 10 meter long liquid nitrogen cooled superconducting power cable

    DEFF Research Database (Denmark)

    Træholt, Chresten; Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa

    2000-01-01

    High temperature superconducting power cables may be cooled by a forced flow of sub-cooled liquid nitrogen. One way to do this is to circulate the liquid nitrogen (LN2) by means of a mechanical pump through the core of the cable and through a sub-cooler.Besides the cooling station, the cryogenics...... cable. We report on our experimental set-up for testing a 10 meter long high temperature superconducting cable with a critical current of 3.2 kA at 77K. The set-up consists of a custom designed cable end termination, current lead, coolant feed-through, liquid nitrogen closed loop circulation system...

  20. Nickel--chromium strain gages for cryogenic stress analysis of superconducting structures in high magnetic fields

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Magnetoresistance measurements of strain gages were made. The magnitude and variation of the magnetoresistance of a large number of strain gages were measured for the following conditions: (1) dc magnetic fields up to 12 T, (2) three orthogonal field directions, (3) increasing and decreasing fields, (4) a wide range of strain levels, and (5) liquid helium temperature

  1. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    International Nuclear Information System (INIS)

    Kosek, Jacek; Lopez, Roberto; Tommasini, Davide; Rodriguez-Mateos, Felix

    2014-01-01

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes

  2. Non-destructive qualification tests for ITER cryogenic axial insulating breaks

    Energy Technology Data Exchange (ETDEWEB)

    Kosek, Jacek [Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland and CERN, Geneva 23,CH-1211 (Switzerland); Lopez, Roberto; Tommasini, Davide [CERN, Geneva 23,CH-1211 (Switzerland); Rodriguez-Mateos, Felix [CERN, Geneva 23,CH-1211, Switzerland and ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France)

    2014-01-29

    In the ITER superconducting magnets the dielectric separation between the CICC (Cable-In-Conduit Conductors) and the helium supply pipes is made through the so-called insulating breaks (IB). These devices shall provide the required dielectric insulation at a 30 kV level under different types of stresses and constraints: thermal, mechanical, dielectric and ionizing radiations. As part of the R and D program, the ITER Organization launched contracts with industrial companies aimed at the qualification of the manufacturing techniques. After reviewing the main functional aspects, this paper describes and discusses the protocol established for non-destructive qualification tests of the prototypes.

  3. Prototype HL-LHC magnet undergoes testing

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A preliminary short prototype of the quadrupole magnets for the High-Luminosity LHC has passed its first tests.   The first short prototype of the quadrupole magnet for the High Luminosity LHC. (Photo: G. Ambrosio (US-LARP and Fermilab), P. Ferracin and E. Todesco (CERN TE-MSC)) Momentum is gathering behind the High-Luminosity LHC (HL-LHC) project. In laboratories on either side of the Atlantic, a host of tests are being carried out on the various magnet models. In mid-March, a short prototype of the quadrupole magnet underwent its first testing phase at the Fermilab laboratory in the United States. This magnet is a pre-prototype of the quadrupole magnets that will be installed near to the ATLAS and CMS detectors to squeeze the beams before collisions. Six quadrupole magnets will be installed on each side of each experiment, giving a total of 24 magnets, and will replace the LHC's triplet magnets. Made of superconducting niobium-tin, the magnets will be more powerful than their p...

  4. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  5. The Cryogenic Design of the Phase I Upgrade Inner Triplet Magnets for LHC

    CERN Document Server

    van Weelderen, R; Peterson, T

    2011-01-01

    The LHC is operating with beam since end 2009. However, with the present interaction region magnets it cannot reach its nominal performance and a phased approach to upgrading them to reach that nominal performance is taken. The first phase of the LHC interaction region upgrade was approved by Council in December 2007. This phase relies on the mature Nb-Ti superconducting magnet technology with the target of increasing the LHC luminosity to 2 to 3×1034 cm-2s-1, while relying on the existing infrastructure which limits the total heat removal capacity at 1.9 K to 500 W. The Phase I Upgrade LHC interaction region final focus magnets will include four superconducting quadrupoles (low-β triplets) and one superconducting dipole (D1) cooled with pressurized, static superfluid helium (HeII) at 1.9 K. The heat absorbed in pressurized HeII, which may be more than 30 W/m due to dynamic heating from the particle beam halo, will be conducted to saturated He II at about 1.9 K and removed by the low pressure vapour. This p...

  6. Cryogenic Fiber Optic Sensors for Superconducting Magnets and Power Transmission Lines in High Energy Physics Applications

    CERN Document Server

    AUTHOR|(CDS)2081689; Bajko, Marta

    In the framework of the Luminosity upgrade of the Large Hadron Collider (HL - LHC), a remarkable R&D effort is now ongoing at the European Organization for Nuclear Research (CERN) in order to develop a new generation of accelerator magnets and superconducting power transmission lines. The magnet technology will be based on Nb$_{3}$Sn enabling to operate in the 11 - 13 T range. In parallel, in order to preserve the power converters from the increasing radiation level, high power transmission lines are foreseen to feed the magnets from free - radiation zones. These will be based on high temperature superconductors cooled down with helium gas in the range 5 - 30 K. The new technologies will require advanced design and fabrication approaches as well as adapted instrumentation for monitoring both the R&D phase and operation. Resistive sensors have been used so far for voltage, temperature and strain monitoring but their integration still suffers from the number of electrical wires and the complex compensat...

  7. Superconducting magnets, cryostats, and cryogenics for the interaction region of the SSC

    International Nuclear Information System (INIS)

    Jayakumar, R.J.; Abramovich, S.; Zhmad, A.

    1993-10-01

    The Superconducting Super Collider (SSC) has two counterrotating 20-TeV proton beams that will be made to collide at specific interaction points to carry out high energy physics experiments. The Collider ring has two sites, West and East, for such Interaction Regions (IRs), and the conceptual design of the East Interaction Region is underway. The East IR, in the present stage of design, has two interaction points, the requirements for which have been specified in terms of distance L* to the nearest magnet and the beam luminosity. Based on these requirements, the optics for transition from arc regions or utility regions to the IR and for focusing the beams have been obtained. The optical arrangement consists of a tuning section of quadrupoles, the strength of which is adjusted to obtain the required beta squeeze; a pair of bending dipoles to reduce the beam separation from the nominal 900 mm to 450 mm; an achromat section of quadrupoles, which consist of two cold masses in one cryostnother pair of dipoles to bring the beams together at the required crossing angle; and a set of final focus quads facing the interaction point. The optics is symmetric about the interaction point, and the two interaction points are separated by a hinge region consisting of superconducting dipoles and quadrupoles similar to the arc region. In the regions where the beams are vertically bent and straightened out by dipoles, the beam traverses warm regions provided for placing beam collimators. The superconducting magnets, including the final focus quadrupoles, operate with supercritical He at 4 atm and a nominal temperature of 4.15 K. In this paper, descriptions of the magnets, the cryostats, and cryo bypasses around the warm region and interaction points are provided. Also discussed are the cooling requirements and design for the final focus quadrupole, which receives significant heat load from beam radiation

  8. Use of the TACL [Thaumaturgic Automated Control Logic] system at CEBAF [Continuous Electron Beam Accelerator Facility] for control of the Cryogenic Test Facility

    International Nuclear Information System (INIS)

    Navarro, E.; Keesee, M.; Bork, R.; Grubb, C.; Lahti, G.; Sage, J.

    1989-01-01

    A logic-based control software system, called Thaumaturgic Automated Control Logic (TACL), is under development at the Continuous Electron Beam Accelerator Facility in Newport News, VA. The first version of the software was placed in service in November, 1987 for control of cryogenics during the first superconducting RF cavity tests at CEBAF. In August, 1988 the control system was installed at the Cryogenic Test Facility (CTF) at CEBAF. CTF generated liquid helium in September, 1988 and is now in full operation for the current round of cavity tests. TACL is providing a powerful and flexible controls environment for the operation of CTF. 3 refs

  9. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    International Nuclear Information System (INIS)

    Willms, R.S.; Taylor, D.J.; Enoeda, Mikio; Okuno, Kenji

    1994-01-01

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB's) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H 2 and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is an practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier

  10. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    Science.gov (United States)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  11. Status of Cryogenic System for Spallation Neutron Source's Superconducting Radiofrequency Test Facility at Oak Ridge National Lab

    International Nuclear Information System (INIS)

    Xu, Ting; Casagrande, Fabio; Ganni, Venkatarao; Knudsen, Peter N.; Strong, William Herb

    2011-01-01

    Spallation Neutron Source (SNS) at Oak Ridge National Lab (ORNL) is building an independent cryogenic system for its Superconducting Radiofrequency Test Facility (SRFTF). The scope of the system is to support the SNS cryomodule test and cavity test at 2-K (using vacuum pump) and 4.5K for the maintenance purpose and Power Upgrade Project of SNS, and to provide the part of the cooling power needed to backup the current CHL to keep Linac at 4.5-K during CHL maintenance period in the future. The system is constructed in multiple phases. The first phase is to construct an independent 4K helium refrigeration system with helium Dewar and distribution box as load interface. It is schedule to be commissioned in 2013. Here we report the concept design of the system and the status of the first phase of this project.

  12. Program user's manual: cryogen system for the analysis for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    1979-04-01

    The Mirror Fusion Test Facility being designed and constructed at the Lawrence Livermore Laboratory requires a liquid helium liquefaction, storage, distribution, and recovery system and a liquid nitrogen storage and distribution system. To provide a powerful analytical tool to aid in the design evolution of this system through hardware, a thermodynamic fluid flow model was developed. This model allows the Lawrence Livermore Laboratory to verify that the design meets desired goals and to play what if games during the design evolution. For example, what if the helium flow rate is changed in the magnet liquid helium flow loop; how does this affect the temperature, fluid quality, and pressure. This manual provides all the information required to run all or portions of this program as desired. In addition, the program is constructed in a modular fashion so changes or modifications can be made easily to keep up with the evolving design

  13. Development of a vacuum leak test method for large-scale superconducting magnet test facilities

    International Nuclear Information System (INIS)

    Kawano, Katsumi; Hamada, Kazuya; Okuno, Kiyoshi; Kato, Takashi

    2006-01-01

    Japan Atomic Energy Agency (JAEA) has developed leak detection technology for liquid helium temperature experiments in large-scale superconducting magnet test facilities. In JAEA, a cryosorption pump that uses an absorbent cooled by liquid nitrogen with a conventional helium leak detector, is used to detect helium gas that is leaking from pressurized welded joints of pipes and valves in a vacuum chamber. The cryosorption pump plays the role of decreasing aerial components, such as water, nitrogen and oxygen, to increase the sensitivity of helium leak detection. The established detection sensitivity for helium leak testing is 10 -10 to 10 -9 Pam 3 /s. A total of 850 welded and mechanical joints inside the cryogenic test facility for the ITER Central Solenoid Model Coil (CSMC) experiments have been tested. In the test facility, 73 units of glass fiber-reinforced plastic (GFRP) insulation break are used. The amount of helium permeation through the GFRP was recorded during helium leak testing. To distinguish helium leaks from insulation-break permeation, the helium permeation characteristic of the GFRP part was measured as a function of the time of helium charging. Helium permeation was absorbed at 6 h after helium charging, and the detected permeation is around 10 -7 Pam 3 /s. Using the helium leak test method developed, CSMC experiments have been successfully completed. (author)

  14. A Cryogenic Magnetostrictive Actuator using a Persistent High Temperature Superconducting Magnet, Part 1: Concept and Design. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett C.; Bromberg, Leslie; Teter, J. P.

    2001-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications, such as Next Generation Space Telescope (NGST), the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Very fast charging and discharging of HTS tubes, as short as 100 microseconds, has been demonstrated. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSSCO 2212 with a

  15. Radiation Tests on the Complete System of the Instrumentation of the LHC Cryogenics at the CERN Neutrinos to Gran Sasso (CNGS) Test Facility

    CERN Document Server

    Gousiou, E; Casas Cubillos, J; de la Gama Serrano, J

    2009-01-01

    There are more than 6000 electronic cards for the instrumentation of the LHC cryogenics, housed in crates and distributed around the 27 km tunnel. Cards and crates will be exposed to a complex radiation field during the 10 years of LHC operation. Rad-tol COTS and rad-hard ASIC have been selected and individually qualified during the design phase of the cards. The test setup and the acquired data presented in this paper target the qualitative assessment of the compliance with the LHC radiation environment of an assembled system. It is carried out at the CNGS test facility which provides exposure to LHC-like radiation field.

  16. Tribological properties of magnet structural materials at cryogenic temperatures in vacuum

    International Nuclear Information System (INIS)

    Iwabuchi, Akira; Shimizu, Tomoharu; Yoshino, Yasuhiro; Iida, Shin-ichiro; Sugimoto, Makoto; Yoshida, Kiyoshi.

    1994-01-01

    Tribological properties of structural materials of a superconducting magnet for a nuclear fusion reactor were investigated at temperatures of 293 K, 77 K and about 5 K in vacuum. Specimen materials were JN1, JN2 and SUS316L steels, copper and its alloys, and GFRP. The properties of the coefficient of friction against the number of cycles were classified into two groups; smooth friction and fluctuating friction. The latter was caused by the strong adhesion dependent on the material combination and temperature. The coefficient of friction of the smooth friction was low less than 0.6. The upper coefficient of friction of fluctuating friction reaches more than 3. The temperature dependence of the coefficient of friction was also examined from 5 K to 130 K. Combinations of Cu-Cu and JN2-cupronickel showed high friction over the temperature, but JN1-Cu and JN2-Cu showed clear temperature dependence where the friction was high at temperatures between 45 K and 90 K. (author)

  17. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  18. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  19. Manufacturing and Testing of Accelerator Superconducting Magnets

    International Nuclear Information System (INIS)

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process

  20. Manufacturing and Testing of Accelerator Superconducting Magnets

    CERN Document Server

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb$_{3}$Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  1. Manufacturing and Testing of Accelerator Superconducting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  2. Magnetic Measurement System for the NSLS Superconducting Undulator Vertical Test Facility

    CERN Document Server

    Harder, David; Skaritka, John

    2005-01-01

    One of the challenges of small-gap superconducting undulators is measurement of magnetic fields within the cold bore to characterize the device performance and to determine magnetic field errors for correction or shimming, as is done for room-temperature undulators. Both detailed field maps and integrated field measurements are required. This paper describes a 6-element, cryogenic Hall probe field mapper for the NSLS Superconducting Undulator Vertical Test Facility (VTF). The probe is designed to work in an aperture only 3 mm high. A pulsed-wire insert is also being developed, for visualization of the trajectory, for locating steering errors and for determining integrated multi-pole errors. The pulsed-wire insert will be interchangeable with the Hall probe mapper. The VTF and the magnetic measurement systems can accommodate undulators up to 0.4 m in length.

  3. Magnetic Nondestructive Testing Techniques of Constructional Steel

    Directory of Open Access Journals (Sweden)

    Xiong Er-gang

    2016-01-01

    Full Text Available Steel is a kind of ferromagnetic material, which is extensively applied in such fields as buildings, bridges, railways, machines and lifeline engineering etc. Those engineering structures built of constructional steel will unavoidably experience some damages during their service lifetime, thus which will influence the distribution regularity of internal forces in structures, result in over-stresses, cause the local failure of structures, and even lead to collapse of the whole structure. Therefore, it is a pressing topic to study how to directly evaluate the real-time stressed states of structural members, damages and steel characteristics in present structural health monitoring and diagnosing fields. And the achievements of this research will be of theoretical significance and of application value of engineering. This paper summarizes varieties of new magnetic nondestructive testing techniques used in constructional steel, respectively investigates the testing principles, characteristics and application for the magnetic Barkhausen noise technique, magnetic acoustic emission technique, magnetic flux leakage technique, magnetic memory technique and magnetic absorption technique, and points out the problems present in the application of these new techniques to actual testing and the further research objective.

  4. Cryogenic systems for detectors and particle accelerators

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1988-01-01

    It's been one hundred years since the first successful experiments were carried out leading to the liquefaction of oxygen which birthed the field of cryogenics and about sixty years since cryogenics went commercial. Originally, cryogenics referred to the technology and art of producing low temperatures but today the definition adopted by the XII Congress of the International Institute of Refrigeration describes cryogenics as the study of phenomena, techniques, and concepts occurring at our pertaining to temperatures below 120 K. Modern acceptance of the importance and use of cryogenic fluids continues to grow. By far, the bulk of cryogenic products are utilized by industry for metal making, agriculture, medicine, food processing and as efficient storage of fuels. Cryogenics has found many uses in the scientific community as well, enabling the development of ultra low noise amplifiers, fast cold electronics, cryopumped ultra high vacuums, the production of intense magnetic fields and low loss power transmission through the sue of cryogenically cooled superconductors. High energy physic research has been and continues to use cryogenic hardware to produce liquids used as detector targets and to produce refrigeration necessary to cool superconducting magnets to design temperature for particle accelerator applications. In fact, today's super accelerators achieve energies that would be impossible to reach with conventional copper magnets, demonstrating that cryogenics has become an indispensable ingredient in today's scientific endeavors

  5. Six movements measurement system employed for GAIA secondary mirror positioning system vacuum tests at cryogenic temperatures

    Science.gov (United States)

    Ramos Zapata, Gonzalo; Sánchez Rodríguez, Antonio; Garranzo García-Ibarrola, Daniel; Belenguer Dávila, Tomás

    2008-07-01

    In this work, the optical measurement system employed to evaluate the performance of a 6 degrees of freedom (dof) positioning mechanism under cryogenic conditions is explored. The mechanism, the flight model of three translations and three rotations positioning mechanism, was developed by the Spanish company SENER (for ASTRIUM) to fulfil the high performance requirements from ESA technology preparatory program for the positioning of a secondary mirror within the GAIA Astrometric Mission. Its performance has been evaluated under vacuum and temperature controlled conditions (up to a 10-6mbar and 100K) at the facilities of the Space Instrumentation Laboratory (LINES) of the Aerospace Technical Nacional Institute of Spain (INTA). After the description of the 'alignment tool' developed to compare a fixed reference with the optical signal corresponding to the movement under evaluation, the optical system that allows measuring the displacements and the rotations in the three space directions is reported on. Two similar bread-boards were defined and mounted for the measurements purpose, one containing two distancemeters, in order to measure the displacements through the corresponding axis, and an autocollimator in order to obtain the rotations on the plane whose normal vector is the axis mentioned before, and other one containing one distancemeter and one autocollimator. Both distancemeter and autocollimator measurements have been combined in order to extract the information about the accuracy of the mechanism movements as well as their repeatability under adverse environmental conditions.

  6. Test of Topmetal-II{sup −} in liquid nitrogen for cryogenic temperature TPCs

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Shuguang; Fan, Yan; An, Mangmang; Chen, Chufeng; Huang, Guangming; Liu, Jun; Pei, Hua; Sun, Xiangming, E-mail: xmsun@phy.ccnu.edu.cn; Yang, Ping; Wang, Dong; Xiao, Le; Wang, Zhen; Wang, Kai; Zhou, Wei

    2016-09-11

    Topmetal-II{sup −} is a highly pixelated direct charge sensor that contains a 72×72 pixel array of 83 μm pitch size. The key feature of Topmetal-II{sup −} is that it can directly collect charges via metal nodes of each pixel to form two-dimensional images of charge cloud distributions. Topmetal-II{sup −} was proved to measure charged particles without amplification at room temperature. To measure its performance at cryogenic temperature, a Topmetal-II{sup −} sensor is embedded into a liquid nitrogen dewar. The results presented in this paper show that Topmetal-II{sup −} can also operate well at this low temperature with a noise (ENC) of 12 e{sup −} lower than that at room temperature (13 e{sup −}). From the noise perspective, Topmetal-II{sup −} is a promising candidate for the next generation readout of liquid argon and xenon time projection chamber (TPC) used in experiments searching for neutrinoless double beta decay and dark matter.

  7. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  8. A versatile magnetic refrigeration test device

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Petersen, Thomas Frank; Pryds, Nini

    2008-01-01

    of the applied magnetic field. An advanced two-dimensional numerical model has previously been implemented in order to help in the optimization of the design of a refrigeration test device. Qualitative agreement between the results from model and the experimental results is demonstrated for each of the four...... different parameter variations mentioned above. (C) 2008 American Institute of Physics....

  9. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  10. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  11. Thin Cryogenic X-ray Windows

    CERN Document Server

    Niinikoski, T O; Davenport, M; Elias, N; Aune, S; Franz, J

    2009-01-01

    We describe the construction and tests of cryogenic X-ray windows of 47 mm diameter made of 15 ìm thick polypropylene foil glued on a UHV flange and supported with a strongback mesh machined by electro-erosion. These hermetic windows of the solar axion telescope of the CAST experiment at CERN withstand the static and dynamic pressures of the buffer gas that are normally below 130 mbar, but may reach 1.2 bar when the magnet quenches. They were tested at 60 K up to 3.5 bar static pressure without permanent deformation.

  12. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    Science.gov (United States)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  13. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  14. Training manuals for nondestructive testing using magnetic particles

    Science.gov (United States)

    1968-01-01

    Training manuals containing the fundamentals of nondestructive testing using magnetic particle as detection media are used by metal parts inspectors and quality assurance specialists. Magnetic particle testing involves magnetization of the test specimen, application of the magnetic particle and interpretation of the patterns formed.

  15. A modular and extensible data acquisition and control system for testing superconducting magnets

    International Nuclear Information System (INIS)

    Darryl F. Orris and Ruben H. Carcagno

    2001-01-01

    The Magnet Test Facility at Fermilab tests a variety of full-scale and model superconducting magnets for both R and D and production. As the design characteristics and test requirements of these magnets vary widely, the magnet test stand must accommodate a wide range of Data Acquisition (DAQ) and Control requirements. Such a system must provide several functions, which includes: quench detection, quench protection, power supply control, quench characterization, and slow DAQ of temperature, mechanical strain gauge, liquid helium level, etc. The system must also provide cryogenic valve control, process instrumentation monitoring, and process interlock logic associated with the test stand. A DAQ and Control system architecture that provides the functionality described above has been designed, fabricated, and put into operation. This system utilizes a modular approach that provides both extensibility and flexibility. As a result, the complexity of the hardware is minimized while remaining optimized for future expansion. The architecture of this new system is presented along with a description of the different technologies applied to each module. Commissioning and operating experience as well as plans for future expansion are discussed

  16. Magnetic Launch Assist System Demonstration Test

    Science.gov (United States)

    2001-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  17. Properties of strain gages at cryogenic temperature

    International Nuclear Information System (INIS)

    Shibata, Nobuo; Fujiyoshi, Toshimitsu.

    1978-01-01

    At the time of developing superconduction generators, the stress measurement for rotor parts is required to grasp the safety and performance of the rotor at cryogenic temperature, which is cooled with liquid helium. In case of carrying out the stress measurement with strain gages, the problems are as follows. The strain gages and lead wires are exposed to cryogenic temperature from 4 to 10 K and strong magnetic field of about 3T, and subjected to high centrifugal acceleration of about 500G. In order to establish the techniques of the stress measurement under such conditions, the adhesives and damp-proof coatings for strain gages and strain gages themselves in Japan and foreign countries were examined on the properties at cryogenic temperature. As for the properties of strain gages, mainly the apparent strain owing to temperature change was investigated, and the change of the gage factors was studies only at liquid nitrogen temperature. The stress measurement with strain gages at low temperature had been studied in detail down to liquid nitrogen temperature concerning LNG tanks. The experimental apparatus, the samples, the testing methods and the test results of cooling tests on adhesives and damp-proof coatings, and the temperature characteristics of strain gages are reported. The usable adhesives and coatings were found, and correction by accurate temperature measurement is required for apparent strain. (Kako, I.)

  18. Superconductor shields test chamber from ambient magnetic fields

    Science.gov (United States)

    Hildebrandt, A. F.

    1965-01-01

    Shielding a test chamber for magnetic components enables it to maintain a constant, low magnetic field. The chamber is shielded from ambient magnetic fields by a lead foil cylinder maintained in a superconducting state by liquid helium.

  19. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    Brindza, P.; Rode, C.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. These accelerating cavities are arranged in pairs in a cryounit. The ensemble of four cryounits (8 cavities) together with their end caps makes up a complete cryostat called a cryogenic module. The four cryounit helium vessels are cross connected to each other and share a common cryogen supply, radiation shield and insulating vacuum. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2 K and the 4.5 K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0 K at .031 ATM and 4.4 K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  20. Cryogenic Propellant Storage and Transfer

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Flight Demonstration development has been canceled in favor of a ground test bed development for of passive/active cryogenic propellant storage, transfer, and...

  1. Cryogenics for SMES

    International Nuclear Information System (INIS)

    McIntosh, G.E.

    1981-01-01

    A wide-ranging study of superconducting magnetic energy storage (SMES) structural and cryogenic requirements was made. Concepts and computational methods have been developed for all of the major problems in these areas. Design analyses have been made to provide more detailed information on some items and experimental work has been performed to create data bases in the areas of superfluid heat transfer, superfluid dielectric properties, heat transfer from conductors, and in the thermal and mechanical properties of materials at low temperatures. In most cases optimum solutions have not been made because of the developing nature of the overall study but methodology for optimization has been worked out for essentially all SMES cryogenic and structural elements. The selection of 1.8 K cooling and all aluminum systems in bedrock continues to be the best choice

  2. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  3. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  4. Cryogenic testing of the 2.1 GHz five-cell superconducting RF cavity with a photonic band gap coupler cell

    Science.gov (United States)

    Arsenyev, Sergey A.; Temkin, Richard J.; Haynes, W. Brian; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Tajima, Tsuyoshi; Boulware, Chase H.; Grimm, Terrence L.; Rogacki, Adam R.

    2016-05-01

    We present results from cryogenic tests of the multi-cell superconducting radio frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving high average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery-linacs (ERLs). Beam current in ERLs is limited by the beam break-up instability, caused by parasitic higher order modes (HOMs) interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The multi-cell cavity was designed and fabricated of niobium. Two cryogenic (vertical) tests were conducted. The high unloaded Q-factor was demonstrated at a temperature of 4.2 K at accelerating gradients up to 3 MV/m. The measured value of the unloaded Q-factor was 1.55 × 108, in agreement with prediction.

  5. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C; Jimenez D, J; Cejudo A, J; Hernandez M, V [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  6. 21 CFR 870.3690 - Pacemaker test magnet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...

  7. Cryogenic regenerators

    International Nuclear Information System (INIS)

    Kush, P.; Joshi, S.C.; Thirumaleshwar, M.

    1986-01-01

    Importance of regenerators in cryogenic refrigerators is highlighted. Design aspects of regenerator are reviewed and the factors involved in the selection of regenerator material are enumerated. Various methods used to calculate the heat transfer coefficient and regenerator effectiveness are mentioned. Variation of effectiveness with various parameters is calculated by a computer programme using the ideal, Ackermann and Tipler formulae. Results are presented in graphical form. Listing of the computer programme is given in the Appendix. (author)

  8. Development of a test procedure for cryogenic adhesive tapes; Entwicklung einer Testprozedur fuer kryogene Klebebaender

    Energy Technology Data Exchange (ETDEWEB)

    Funke, Thomas; Haberstroh, Christoph [TU Dresden (Germany). Bitzer-Professur fuer Kaelte-, Kryo- und Kompressorentechnik; Mayrhofer, Robert; Stipsitz, Johannes [RUAG Space GmbH, Wien (Austria)

    2016-07-01

    At cryostats and dewars for lowest temperatures - especially in connection with liquid-helium cooling at around 4 K, as well at the most applications of the superconductivity - often joints and shutters on the base of low-temperature suited adhesive tapes are required. A current method for the thermal isolation of cold surfaces is their covering with highly reflecting aluminium foils, which are fastened by adhesive aluminium tapes. Selection, usage, and reliability estimation of presumably suited adhesive tapes respectively aluminium tapes occurs presently rather heuristically. A corresponding testing apparature for the measurement of the maximal pulling force was developed and tested by means of a series of test measurements. The testing set-up and measurement results for the validation of the measurement concept with adhesive aluminium tapes are presented in this contribution.

  9. Magnetic test of chiral dynamics in QCD

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    2014-01-01

    Strong magnetic fields in the range eB≫m π 2 effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,f π . We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉| u,d grows quadratically with eB for eB<0.2 GeV 2 and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions

  10. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  11. Evolution, calibration, and operational characteristics of the two-dimensional test section of the Langley 0.3-meter transonic cryogenic tunnel

    Science.gov (United States)

    Ladson, Charles L.; Ray, Edward J.

    1987-01-01

    Presented is a review of the development of the world's first cryogenic pressure tunnel, the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). Descriptions of the instrumentation, data acquisition systems, and physical features of the two-dimensional 8- by 24-in, (20.32 by 60.96 cm) and advanced 13- by 13-in (33.02 by 33.02 cm) adaptive-wall test-section inserts of the 0.3-m TCT are included. Basic tunnel-empty Mach number distributions, stagnation temperature distributions, and power requirements are included. The Mach number capability of the facility is from about 0.20 to 0.90. Stagnation pressure can be varied from about 80 to 327 K.

  12. FENIX [Fusion ENgineering International eXperimental]: A test facility for ITER [International Thermonuclear Experimental Reactor] and other new superconducting magnets

    International Nuclear Information System (INIS)

    Slack, D.S.; Patrick, R.E.; Miller, J.R.

    1990-01-01

    The Fusion ENgineering International eXperimental (FENIX) Test Facility which is nearing completion at Lawrence Livermore National Laboratory, is a 76-t set of superconducting magnets housed in a 4-m-diameter cryostat. It represents a significant step toward meeting the testing needs for the development of superconductors appropriate for large-scale magnet applications such as the International Thermonuclear Experimental Reactor (ITER). The magnet set is configured to allow radial access to the 0.4-m-diameter high-field region where maximum fields up to 14 T will be provided. The facility is fitted with a thermally isolated test well with a port to the high-field region that allows insertion and removal of test conductors without disturbing the cryogenic environment of the magnets. It is expected that the facility will be made available to magnet developers internationally, and this paper discusses its general design features, its construction, and its capabilities

  13. Proposal to negotiate, without competitive tendering, a contract for the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for the LHC

    CERN Document Server

    2001-01-01

    This document concerns the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for the LHC. Following a market survey (MS-2602/LHC/LHC) carried out amoung 37 firms in twelve Member States and six firms in two non-Member States, a price enquiry for qualifying prototypes was sent on 20 November 1998 to nine selected firms and the received prototypes were evaluated. As a result of this process a request for quotation was sent to one firm The Finance Committee is invited to agree to the negotiation of a contract with the firm EMERSON PROCESS MANAGEMENT/FISHER-ROSEMOUNT (CH), without competitive tendering, for the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for an amount of 1 804 840 Swiss francs, not subject to revision, with options for up to 10 additional cryogenic helium mass flowmeters and an extension of the guarantee period to five years for all units for an amount of 219 090 Swiss francs, not subject to revision, bringing the total amount to 2 023 930 Swi...

  14. The neutral beam test facility cryopumping operation: preliminary analysis and design of the cryogenic system

    International Nuclear Information System (INIS)

    Gravil, B.; Henry, D.; Cordier, J.J.; Hemsworth, R.; Van Houtte, D.

    2004-01-01

    The ITER neutral beam heating and current drive system is to be equipped with a cryosorption cryopump made up of 12 panels connected in parallel, refrigerated by 4.5 K 0.4 MPa supercritical helium. The pump is submitted to a non homogeneous flux of H 2 or D 2 molecules, and the absorbed flux varies from 3 Pa.m -3 .s -1 to 35 Pa.m -3 .s -1 . In the frame of the 'ITER first injector and test facility CSU-EFDA task' (TW3-THHN-IITF1), the ITER reference cryo-system and cryo-plant designs have been assessed and compared to optimised designs devoted to the Neutral Beam Test Facility (NBTF). The 4.5 K cryo-panel, which has a mass of about 1000 kg, must be periodically regenerated up to 90 K and occasionally to 470 K. The cool-down time after regeneration depends strongly on the refrigeration capacity. Fast regeneration and cool-down of the cryo-panels are not considered a priority for the test facility operation, and an analysis of the consequences of a limited cold power refrigerator on the cooling down time has been carried out and will be discussed. This paper presents a preliminary evaluation of the NBTF cryo-plant and the associated process flow diagram. (authors)

  15. Design of load-to-failure tests of high-voltage insulation breaks for ITER's cryogenic network

    CERN Document Server

    Langeslag, S A E; Aviles Santillana, I; Sgobba, S; Foussat, A

    2015-01-01

    The development of new generation superconducting magnets for fusion research, such as the ITER experiment, is largely based on coils wound with so-called cable-in-conduit conductors. The concept of the cable-in-conduit conductor is based on a direct cooling principle, by supercritical helium, flowing through the central region of the conductor, in close contact with the superconducting strands. Consequently, a direct connection exists between the electrically grounded helium coolant supply line and the highly energised magnet windings. Various insulated regions, constructed out of high-voltage insulation breaks, are put in place to isolate sectors with different electrical potential. In addition to high voltages and significant internal helium pressure, the insulation breaks will experience various mechanical forces resulting from differential thermal contraction phenomena and electro-magnetic loads. Special test equipment was designed, prepared and employed to assess the mechanical reliability of the insul...

  16. Influence of Thermal Cycling on Cryogenic Thermometers

    CERN Document Server

    Balle, C; Rieubland, Jean Michel; Suraci, A; Togny, F; Vauthier, N

    1999-01-01

    The stringent requirements on temperature control of the superconducting magnets for the Large Hadron Collider (LHC), impose that the cryogenic temperature sensors meet compelling demands such as long-term stability, radiation hardness, readout accuracy better than 5 mK at 1.8 K and compatibility with industrial control equipment. This paper presents the results concerning long-term stability of resistance temperature sensors submitted to cryogenic thermal cycles. For this task a simple test facility has been designed, constructed and put into operation for cycling simultaneously 115 cryogenic thermometers between 300 K and 4.2 K. A thermal cycle is set to last 71/4 hours: 3 hours for either cooling down or warming up the sensors and 1 respectively 1/4 hour at steady temperature conditions at each end of the temperature cycle. A Programmable Logic Controller (PLC) drives automatically this operation by reading 2 thermometers and actuating on 3 valves and 1 heater. The first thermal cycle was accomplished in a...

  17. Non-destructive testing: magnetizing equipment for magnetic particle inspection

    International Nuclear Information System (INIS)

    1975-07-01

    Magnetizing equipment for magnetic particle inspection serves to produce a magnetic field of suitable size and direction in a workpiece under examination. The characteristic parameters of this equipment are given in this standard along with their method of determination if this is necessary. (orig./AK) [de

  18. Design, fabrication and test of a liquid hydrogen titanium honeycomb cryogenic test tank for use as a reusable launch vehicle main propellant tank

    Science.gov (United States)

    Stickler, Patrick B.; Keller, Peter C.

    1998-01-01

    Reusable Launch Vehicles (RLV's) utilizing LOX\\LH2 as the propellant require lightweight durable structural systems to meet mass fraction goals and to reduce overall systems operating costs. Titanium honeycomb sandwich with flexible blanket TPS on the windward surface is potentially the lightest-weight and most operable option. Light weight is achieved in part because the honeycomb sandwich tank provides insulation to its liquid hydrogen contents, with no need for separate cryogenic insulation, and in part because the high use temperature of titanium honeycomb reduces the required surface area of re-entry thermal protection systems. System operability is increased because TPS needs to be applied only to surfaces where temperatures exceed approximately 650 K. In order to demonstrate the viability of a titanium sandwich constructed propellant tank, a technology demonstration program was conducted including the design, fabrication and testing of a propellant tank-TPS system. The tank was tested in controlled as well as ambient environments representing ground hold conditions for a RLV main propellant tank. Data collected during each test run was used to validate predictions for air liquefaction, outside wall temperature, boil-off rates, frost buildup and its insulation effects, and the effects of placing a thermal protection system blanket on the external surface. Test results indicated that titanium honeycomb, when used as a RLV propellant tank material, has great promise as a light-weight structural system.

  19. Engineering and Cryogenic Testing of the ISAC-II Medium Beta Cryomodule

    CERN Document Server

    Stanford, G; Laxdal, R E; Rawnsley, B; Ries, T; Sekatchev, I

    2004-01-01

    The medium beta section of the ISAC-II Heavy Ion Accelerator consists of five cryomodules each containing four quarter wave bulk niobium resonators and one superconducting solenoid. A prototype cryomodule has been designed and assembled at TRIUMF. The cryomodule vacuum space contains a mu-metal shield, an LN2 cooled, copper, thermal shield, plus the cold mass and support system. This paper will describe the design goals, engineering choices and fabrication and assembly techniques as well as report the results of the initial cold tests. In particular we will summarize the alignment procedure and the results from the wire position monitoring system.

  20. NASA Prototype All Composite Tank Cryogenic Pressure Tests to Failure with Structural Health Monitoring

    Science.gov (United States)

    Werlink, Rudolph J.; Pena, Francisco

    2015-01-01

    This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.

  1. Cryogenic implications for DT

    International Nuclear Information System (INIS)

    Souers, P.C.

    1977-10-01

    Cryogenic hydrogen data is being compiled for magnetic fusion engineering. Many physical properties of DT can be extrapolated from H 2 and D 2 values. The phase diagram properties of the D 2 -DT-T 2 mixture are being measured. Three properties which will be greatly affected by tritium should be measured. In order of their perceived importance, they are: (1) solid thermal conductivity, (2) solid mechanical strength, and (3) gaseous electrical conductivity. The most apparent need for DT data is in Tokomak fuel pellet injection. Cryopumping and distillation applications are also considered

  2. Cryogenic photodetectors

    Science.gov (United States)

    Chardin, G.

    2000-03-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  3. Cryogenic photodetectors

    CERN Document Server

    Chardin, G

    2000-01-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  4. Dielectronic recombination experiments with tungsten ions at the test storage ring and development of a single-particle detector at the cryogenic storage ring

    International Nuclear Information System (INIS)

    Spruck, Kaija

    2015-05-01

    This work is about electron-ion collision experiments at the ion storage rings of the Max Planck Institute for Nuclear Physics in Heidelberg. Absolute recombination rate coefficients of highly-charged tungsten ions featuring an open 4-f-shell structure have been measured at the heavy-ion storage ring TSR. The resulting plasma rate coefficients have been used to probe the significance of newly developed theoretical approaches. Plasma rate coefficients of highly-charged tungsten ions are in particular interesting for the development of plasma models for nuclear fusion reactors, since tungsten is a foreseeable impurity in the fusion plasma. In the relevant temperature range, the experimental results exceed the theoretical data used so far by up to a factor of 10, showing the need for more reliable theoretical calculations. Furthermore, based on the design of the detectors which have been used in the experiments at TSR, a movable single-particle detector for electron-ion recombination studies at the cryogenic storage ring CSR has been developed and installed within the scope of this work. The device has been designed specifically to meet the requirements of the CSR regarding low ion energies and cryogenic ambient temperature conditions. In a series of experiments, the detector was carefully characterised and successfully tested for its compatibility with these requirements. The detector was part of the infrastructure used for the room-temperature commissioning of CSR (2014) and is currently operated as a single-particle counter during the first cryogenic operation of CSR in 2015.

  5. Dielectronic recombination experiments with tungsten ions at the test storage ring and development of a single-particle detector at the cryogenic storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Spruck, Kaija

    2015-05-15

    This work is about electron-ion collision experiments at the ion storage rings of the Max Planck Institute for Nuclear Physics in Heidelberg. Absolute recombination rate coefficients of highly-charged tungsten ions featuring an open 4-f-shell structure have been measured at the heavy-ion storage ring TSR. The resulting plasma rate coefficients have been used to probe the significance of newly developed theoretical approaches. Plasma rate coefficients of highly-charged tungsten ions are in particular interesting for the development of plasma models for nuclear fusion reactors, since tungsten is a foreseeable impurity in the fusion plasma. In the relevant temperature range, the experimental results exceed the theoretical data used so far by up to a factor of 10, showing the need for more reliable theoretical calculations. Furthermore, based on the design of the detectors which have been used in the experiments at TSR, a movable single-particle detector for electron-ion recombination studies at the cryogenic storage ring CSR has been developed and installed within the scope of this work. The device has been designed specifically to meet the requirements of the CSR regarding low ion energies and cryogenic ambient temperature conditions. In a series of experiments, the detector was carefully characterised and successfully tested for its compatibility with these requirements. The detector was part of the infrastructure used for the room-temperature commissioning of CSR (2014) and is currently operated as a single-particle counter during the first cryogenic operation of CSR in 2015.

  6. New proposal of mechanical reinforcement structures to annular REBaCuO bulk magnet for compact and cryogen-free NMR spectrometer

    Science.gov (United States)

    Fujishiro, H.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.

    2018-07-01

    We have proposed new reinforcement structures using an aluminum alloy ring to the annular REBaCuO bulks applicable to compact and cryogen-free 400 MHz (9.4 T) nuclear magnetic resonance (NMR) spectrometer using a numerical simulation of mechanical stress. The thermal compressive stress, σθcool, which was applied to the annular bulks during cooling due to the difference of thermal expansion coefficient between bulk and aluminum alloy, became fairly enhanced at the surface of the uppermost bulk for the new reinforcement structures, compared to the conventional reinforcement with the same height as the annular bulk, in which the compressive σθcool value was reduced. During field-cooled magnetization (FCM), the electromagnetic hoop stress, σθFCM, became the maximum at the innermost edge of the uppermost ring bulk at intermediate time step. The actual total hoop stress, σθ (= σθcool + σθFCM), due to both cooling and FCM processes was also analyzed and the new ring structures are fairly effective to reduce the σθ value and became lower than the fracture strength of the bulk. The new reinforcement structures have a possibility to avoid the fracture of the bulks and to realize a 400 MHz NMR spectrometer.

  7. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    Science.gov (United States)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  8. Magnetic Particle Testing, RQA/M1-5330.16.

    Science.gov (United States)

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on magnetic particle testing. The subject is divided under the following headings: Introduction, Principles of Magnetic Particle Testing, Magnetic Particle Test…

  9. The B00 model coil in the ATLAS Magnet Test Facility

    CERN Document Server

    Dudarev, A; ten Kate, H H J; Anashkin, O P; Keilin, V E; Lysenko, V V

    2001-01-01

    A 1-m size model coil has been developed to investigate the transport properties of the three aluminum-stabilized superconductors used in the ATLAS magnets. The coil, named B00, is also used for debugging the cryogenic, power and control systems of the ATLAS Magnet Test Facility. The coil comprises two double pancakes made of the barrel toroid and end-cap toroid conductors and a single pancake made of the central solenoid conductor. The pancakes are placed inside an aluminum coil casing. The coil construction and cooling conditions are quite similar to the final design of the ATLAS magnets. The B00 coil is well equipped with various sensors to measure thermal and electrodynamic properties of the conductor inside the coils. Special attention has been paid to the study of the current diffusion process and the normal zone propagation in the ATLAS conductors and windings. Special pick-up coils have been made to measure the diffusion at different currents and magnetic field values. (6 refs).

  10. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  11. Collider Dipole Magnet test program from development through production

    International Nuclear Information System (INIS)

    Bailey, R.E.

    1991-01-01

    Verification of CDM performance, reliability, and magnet production processes will be accomplished during the development phase of the program. Key features of this program include thorough in process testing of magnet subassemblies, verification of the magnetic field quality, and demonstration of the CDM performance during the formal qualification program. Reliability demonstration of the CDM design includes component tests and an accelerated life test program. Prototype magnet phase will address achievement of magnet performance goals through a program of fabrications, test, analysis, redesign as required and procurement of modified parts for a second fabrication run. This process would be repeated again if necessary, and would conclude with a final design for the production magnets. Production process validation will address the effects that key production processes have upon magnet performance, using the magnets produced during the Preproduction phase

  12. In-Space Cryogenic VOST Connect/Disconnect, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel cryogenic couplings will be designed, fabricated and tested. Intended for in-space use at cryogenic propellant depots, the couplings are based on patented...

  13. LDR cryogenics

    Science.gov (United States)

    Nast, T.

    1988-01-01

    A brief summary from the 1985 Large Deployable Reflector (LDR) Asilomar 2 workshop of the requirements for LDR cryogenic cooling is presented. The heat rates are simply the sum of the individual heat rates from the instruments. Consideration of duty cycle will have a dramatic effect on cooling requirements. There are many possible combinations of cooling techniques for each of the three temperatures zones. It is clear that much further system study is needed to determine what type of cooling system is required (He-2, hybrid or mechanical) and what size and power is required. As the instruments, along with their duty cycles and heat rates, become better defined it will be possible to better determine the optimum cooling systems.

  14. Modernization of NASA's Johnson Space Center Chamber: A Payload Transport Rail System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sam; Homan, Jonathan; Speed, John

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the "Great Observatories", scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describe the challenges of developing, integrating and modifying new payload rails capable of transporting payloads within the thermal vacuum chamber up to 65,000 pounds. Ambient and Cryogenic Operations required to configure for testing will be explained. Lastly review historical payload configurations stretching from the Apollo program era to current James Webb Space Telescope testing.

  15. Development of superconducting magnets for magnetically levitated trains

    International Nuclear Information System (INIS)

    Ohno, E.; Iwamoto, M.; Ogino, O.; Kawamura, T.

    1974-01-01

    Superconducting magnets will play a vital role in magnetically levitated trains, producing lift, guidance and propulsion forces. The main problems in the design are the current density of coils and the cryogenic thermal insulation. This paper describes the development of full-scale levitation magnets with length of 1.55m and width of 0.3 or 0.5m. Dynamic levitation tests using small model magnets are also presented. (author)

  16. Experience with High Voltage Tests of the W7-X Magnets in Paschen-Minimum Conditions

    International Nuclear Information System (INIS)

    Petersen-Zarling, B.M.; Risse, K.; Viebke, H.; Gustke, D.; Ehmler, H.; Baldzuhn, J.; Sborchia, C.; Scheller, H.

    2006-01-01

    The W7-X machine is a low-shear stellarator of the Wendelstein line, which is being assembled at the IPP Branch Institute of Greifswald, Germany. The machine features a superconducting magnet system with 50 non-planar and 20 planar magnets operated at about 6 T and discharged with peak voltage levels up to 6 kV. Following the factory tests, the magnets are delivered to CEA Saclay, France, for the final acceptance tests at cryogenic condition. A series of high voltage tests in air and vacuum are part of the final acceptance test. During these tests the quality of the insulation, especially the hand-wrapped ground insulation in the termination area, has proven not to be adequate. In order to improve the reliability of the insulation system and detect defects for early repair, high voltage tests in reduced pressure of air (Paschen-minimum conditions) have been added as part of the factory acceptance procedure. This has been implemented in the vacuum chambers of BNN/Ansaldo for the test of the 50 non-planar coils, while other tests have been carried out at CEA/Saclay after cold testing. IPP has also installed a vacuum tank to perform Paschen tests during the preparation of all the coils for assembly, including also the 20 planar coils which cannot be tested at the manufacturer Tesla. These tests have proven to be a powerful tool to detect hidden insulation defects and void/cavities in the primary impregnation system, which could not be detected otherwise with the standard high voltage tests. This paper will summarize the background and experience accumulated in about 2 years of Paschen tests on the W7-X coils, including a description of the equipment, main results and statistics, weak points detected and repaired on the coils, and possibilities of improvements in the development and production of the W7-X magnets. The importance and the need of Paschen tests as part of the acceptance procedure for superconducting magnets to be used in future projects will also be

  17. A Cryogenic Test Station for the Pre-series 2400 W @ 1.8 K Refrigeration Units for the LHC

    CERN Document Server

    Claudet, S; Gully, P; Jäger, B; Millet, F; Roussel, P; Tavian, L

    2002-01-01

    The cooling capacity below 2 K for the superconducting magnets in the Large Hadron Collider (LHC), at CERN, will be provided by eight refrigeration units at 1.8 K, each of them coupled to a 4.5 K refrigerator. The supply of the series units is linked to successful testing and acceptance of the pre-series delivered by the two selected vendors. To properly assess the performance of specific components such as cold compressors and some process specificities a dedicated test station is necessary. The test station is able to process up to 130 g/s between 4.5 & 20 K and aims at simulating the steady and transient operational modes foreseen for the LHC. After recalling the basic characteristics of the 1.8 K refrigeration units and the content of the acceptance tests of the pre-series, the principle of the test cryostat is detailed. The components of the test station and corresponding layout are described. The first testing experience is presented as well as preliminary results of the pre-series units.

  18. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  19. The last magnet on the bench

    CERN Multimedia

    2007-01-01

    A ceremony was held on Thursday, 1st March, to commemorate the end of the cryostat assembly and cryogenic testing on the LHC super-conducting magnets. The team, consisting of CERN staff, several industrial support teams and a hundred guest engineers from India, have tested 2000 magnets over the last four years.

  20. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  1. Experience gained during Manufacture and Testing of the W7-X Superconducting Magnets

    International Nuclear Information System (INIS)

    Wanner, M.; Sborchia, C.; Risse, K.; Viebke, H.; Baldzuhn, J.

    2006-01-01

    The W7-X basic device is presently being assembled at the Greifswald branch of IPP. The specific field configurations of this helical advanced stellarator are realised by a symmetric arrangement of 50 non-planar and 20 planar superconducting coils. In order to sustain the large electromagnetic forces and moments, all coils are bolted to a massive coil support structure and supported against each other by inter-coil support elements. Cooling of superconductor and the casing is provided by supercritical helium. For all coils the same cable-in-conduit conductor is used. This conductor is formed by a NbTi cable which is co-extruded in an aluminium jacket. Low-resistive electrical joints connect the conductor layers within a winding package and potential break provide electrical insulation of the helium pipes. After insulation and vacuum pressure impregnation, the winding packages are embedded in stainless steel casings, which are then finish-machined and equipped with cooling pipes. During a rapid shut-down of the magnet system the windings may experience voltages up to several kilovolts. High voltage tests under degraded vacuum conditions (Paschen tests) provide a sensitive method to detect weak points in the electrical insulation. Manufacture of the magnets is in a well advanced stage. All winding packages are completed, many of them are integrated in the casings and several coils have already been delivered for cold testing. These tests are performed in a cryogenic test facility at CEA Saclay. Tests at nominal operating conditions and quench tests confirmed the electric layout and the specified margin. Design changes have been implemented during fabrication due to more detailed structural analyses. Some manufacturing processes had to be modified and re-qualified to allow repair of weaknesses defects found during tests. The presentation will give an overview of the production status of the superconducting coils, the experiences gained during fabrication of the

  2. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    NARCIS (Netherlands)

    Stoll, M.; Bakker, J. M.; Steimle, T. C.; Meijer, G.; Peters, A.

    2008-01-01

    We report on the buffer- gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 10(6) cm(-3) at a temperature of 650 mK. Storage times of up to 180 ms have been observed, corresponding to a 20- fold lifetime enhancement with respect to the

  3. Operational Experience with a Cryogenic Axial-Centrifugal Compressor

    CERN Document Server

    Decker, L; Löhlein, K; Purtschert, W; Ziegler, B L; Lebrun, P; Tavian, L; Brunovsky, I; Tucek, L

    1998-01-01

    The Large Hadron Collider (LHC), presently under construction at CERN, requires large refrigeration capacity at 1.8 K. Compression of gaseous helium at cryogenic temperatures is therefore inevitable. Together with subcontractors, Linde Kryotechnik has developed a prototype machine. This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating at ambient temperature. Integrated in a test facility for superconducting magnets the machine has been commissioned without major problems and successfully gone through the acceptance test in autumn 1995. Subsequent steps were initiated to improve efficiency of this prototype. This paper describes operating experience gained so far and reports on measured performance prior to and after constructional modifications.

  4. Nondestructive evaluation of low carbon steel by magnetic adaptive testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Tomáš, Ivan; Kobayashi, S.

    2010-01-01

    Roč. 25, č. 2 (2010), s. 125-132 ISSN 1058-9759 R&D Projects: GA ČR GA102/06/0866; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * steel * magnetic hysteresis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.771, year: 2010

  5. Nondestructive characterization of ductile cast iron by magnetic adaptive testing

    Czech Academy of Sciences Publication Activity Database

    Vértesy, G.; Uchimoto, T.; Tomáš, Ivan; Takagi, T.

    2010-01-01

    Roč. 322, č. 20 (2010), s. 3117-3121 ISSN 0304-8853 R&D Projects: GA ČR GA101/09/1323; GA AV ČR 1QS100100508 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic NDE * magnetic adaptive testing * magnetic hysteresis * cast iron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.689, year: 2010

  6. The DFBX cryogenic distribution boxes for the LHC straight sections

    International Nuclear Information System (INIS)

    Zbasnik, Jon P.; Corradi, Carol A.; Green, Michael A.; Kajiyama, Y.; Knolls, Michael J.; LaMantia, Roberto F.; Rasson, Joseph E.; Reavill, Dulie; Turner, William C.

    2002-01-01

    The DFBX distribution boxes are designed to connect the LHC cryogenic distribution system to the interaction region quadrupoles [1] and dipoles for the Large Hadron Collider (LHC). The DFBX distribution boxes also have the current leads for the superconducting interaction region magnets and the LHC interaction region correction coils. The DFBX boxes also connect the magnet and cryogenic instrumentation to the CERN data collection system. The DFBX boxes serve as the cryogenic circulation center and the nerve center for four of the LHC straight sections. This report describes primarily the cryogenic function of the DFBXs

  7. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  8. Prospects for the use of high-Tc superconductors in fusion magnets and options for their test in SULTAN

    International Nuclear Information System (INIS)

    Wesche, Rainer; Bruzzone, Pierluigi; March, Stephen; Marinucci, Claudio; Stepanov, Boris; Uglietti, Davide

    2013-01-01

    Highlights: ► RE-123 tapes j c ≥ 500 A/cm (77 K) would enable fusion magnets operating above 20 K. ► Quench studies indicate that the protection of RE-123 fusion magnets is a challenge. ► Possibilities to test 50 kA class HTS conductors in SULTAN have been identified. ► HTS bus bar of large thermal resistance needed to connect sample and NbTi flux pump. ► Tests in the 20–50 K range require additional changes in the SULTAN cryogenics. -- Abstract: In the last few years, the critical current densities of long commercially available REBa 2 Cu 3 O 7−x (RE-123, where RE represents Y or a rare earth element) coated conductors have reached values of 250 A/cm-width at 77 K and zero applied field. Even higher values of 600 A/cm-w (77 K, B = 0) have been demonstrated in shorter lengths. The attractive features of the use of these high-T c superconductors (HTS) are operation temperatures above 20 K and/or magnetic fields higher than those envisaged for the ITER TF coils. Possible operation conditions for HTS fusion magnets have been studied taking into consideration the possible further improvements of RE-123 coated conductors. Investigations of stability and quench behavior indicate that stability is not a problem, whereas quench detection and protection need attention. Because of the high currents necessary for fusion magnets, many tapes need to be assembled into a transposed conductor. The qualification of HTS conductors for fusion magnets would require their test at magnetic fields of 11 T and currents well above 10 kA. The possibilities to test straight HTS conductor samples in SULTAN have been considered. For a test at 4.5 K, only the development of a low resistance joint between the HTS conductor under test and the NbTi transformer of SULTAN would be necessary. Tests up to 20 K would require that the HTS sample is connected with the NbTi transformer by a conduction-cooled HTS bus bar of large thermal resistance similar to the HTS module of a current

  9. Fundamental of cryogenics (for superconducting RF technology)

    CERN Document Server

    Pierini, Paolo

    2013-01-01

    This review briefly illustrates a few fundamental concepts of cryogenic engineering, the technological practice that allows reaching and maintaining the low-temperature operating conditions of the superconducting devices needed in particle accelerators. To limit the scope of the task, and not to duplicate coverage of cryogenic engineering concepts particularly relevant to superconducting magnets that can be found in previous CAS editions, the overview presented in this course focuses on superconducting radio-frequency cavities.

  10. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  11. Cryogenics '88

    International Nuclear Information System (INIS)

    1988-04-01

    The proceedings has four chapters: Processes and apparatus of low-temperature installations, Superconductors and magnets, Gas separators, Helium liquefiers and cryostats. It contains a total of 56 papers of which 4 belong in the INIS scope. (J.B.)

  12. Design, manufacturing and tests of first cryogen-free MgB2 prototype coils for offshore wind generators

    International Nuclear Information System (INIS)

    Sarmiento, G; Sanz, S; Pujana, A; Merino, J M; Apiñaniz, S; Marino, I; Iturbe, R; Nardelli, D

    2014-01-01

    Although renewable sector has started to take advantage of the offshore wind energy recently, the development is very intense. Turbines reliability, size, and cost are key aspects for the wind industry, especially in marine locations. A superconducting generator will allow a significant reduction in terms of weight and size, but cost and reliability are two aspects to deal with. MgB 2 wire is presented as one promising option to be used in superconducting coils for wind generators. This work shows the experimental results in first cryogen-free MgB 2 prototype coils, designed according to specific requirements of TECNALIA's wind generator concept.

  13. Introduction to magnetic resonance and its application to dipole magnet testing

    International Nuclear Information System (INIS)

    Clark, W.G.

    1992-01-01

    An introduction to the features of magnetic resonance that are essential for understanding its application to testing accelerator dipole magnets is presented, including the accuracy that can be expected in field measurements and the factors that limit it. The use of an array of coils to measure the multipole moments of dipole magnets is discussed

  14. Supervision software for string 2 magnet test facility of large hadron collider project

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Sanadhya, Vivek; Lal, Pradeep; Goel, Vijay; Mukhopadhyay, S.; Saha, Shilpi

    2001-01-01

    The Supervisory Control and Data Acquisition (SCADA) software for the String 2 test facility at CERN, Geneva is developed by BARC under the framework of CERN-DAE collaboration for LHC. The supervision application is developed using PCVue32 SCADA/MMI software. The String 2 test facility prototypes one full cell of LHC and is aimed at studying and validating the individual and collective behaviour of the superconducting magnets, before installing in the tunnel. The software integrates monitoring and supervisory control of all the main subsystems of String 2 such as Cryogenics, Vacuum, Power converters, Magnet protection, Energy extraction and interlock systems. It incorporates animated process synoptics, loop and equipment control panels, configurable trend windows for real-time and historical trending of process parameters, user settability for interlock and alarm thresholds, logging of process events, equipment faults and operator activity. The plant equipment are controlled by a variety of field located Programmable Logic Controllers and VME crates which communicate process IO to the central IO server using both vendor specific and custom protocols. The system leverages OPC (OLE for Process Controls) technology for realising a generic IO server. A large number of geographically distributed client stations are arranged to provide the process specific operator interface and these are connected to the Main IO server over CERN wide intranet and internet. (author)

  15. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  16. Process and device for magnetic crack testing

    International Nuclear Information System (INIS)

    Seiler, D.; Meili, E.; Fuchs, E.

    1983-01-01

    There is a problem of sufficient crack depth discrimination to suppress fault signals or pictures due to unevenness not caused by cracks. To solve this, when magnetising in the preferred direction of adhesion, the effect depending on the direction of the crack, before magnetic powder detection, magnetic powder is blown on, showing the fault and for the comparison of the adhesion effect crack direction characteristics it is blown on parallel to the preferred direction, or if one wants to stress the directional characteristic, it is blown on transversely to the preferred direction. In both cases one blows with the same force, without removing the magnetic powder remnants relevant to faults in the intended crack areas. This strong blowing removes the magnetic powder remnants relevant to interference and not relevant to faults. (orig./HP) [de

  17. Design and testing of a coaxial linear magnetic spring with integral linear motor. [for spacecraft energy storage

    Science.gov (United States)

    Patt, P. J.

    1985-01-01

    The design of a coaxial linear magnetic spring which incorporates a linear motor to control axial motion and overcome system damping is presented, and the results of static and dynamic tests are reported. The system has nominal stiffness 25,000 N/m and is designed to oscillate a 900-g component over a 4.6-mm stroke in a Stirling-cycle cryogenic refrigerator being developed for long-service (5-10-yr) space applications (Stolfi et al., 1983). Mosaics of 10 radially magnetized high-coercivity SmCO5 segments enclosed in Ti cans are employed, and the device is found to have quality factor 70-100, corresponding to energy-storage efficiency 91-94 percent. Drawings, diagrams, and graphs are provided.

  18. Spin Crossover and the Magnetic P- T Phase Diagram of Hematite at High Hydrostatic Pressures and Cryogenic Temperatures

    Science.gov (United States)

    Gavriliuk, A. G.; Struzhkin, V. V.; Mironovich, A. A.; Lyubutin, I. S.; Troyan, I. A.; Chow, P.; Xiao, Y.

    2018-02-01

    The magnetic properties of the α-Fe2O3 hematite at a high hydrostatic pressure have been studied by synchrotron Mössbauer spectroscopy (nuclear forward scattering (NFS)) on iron nuclei. Time-domain NFS spectra of hematite have been measured in a diamond anvil cell in the pressure range of 0-72 GPa and the temperature range of 36-300 K in order to study the magnetic properties at a phase transition near a critical pressure of 50 GPa. In addition, Raman spectra at room temperature have been studied in the pressure range of 0-77 GPa. Neon has been used as a pressure-transmitting medium. The appearance of an intermediate electronic state has been revealed at a pressure of 48 GPa. This state is probably related to the spin crossover in Fe3+ ions at their transition from the high-spin state (HS, S = 5/2) to a low-spin one (LS, S = 1/2). It has been found that the transient pressure range of the HS-LS crossover is extended from 48 to 55 GPa and is almost independent of the temperature. This surprising result differs fundamentally from other cases of the spin crossover in Fe3+ ions observed in other crystals based on iron oxides. The transition region of spin crossover appears because of thermal fluctuations between HS and LS states in the critical pressure range and is significantly narrowed at cooling because of the suppression of thermal excitations. The magnetic P- T phase diagram of α-Fe2O3 at high pressures and low temperatures in the spin crossover region has been constructed according to the results of measurements.

  19. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  20. Quench tests of Nb3Al small racetrack magnets

    International Nuclear Information System (INIS)

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; Fermilab; NIMC, Tsukuba; KEK, Tsukuba

    2007-01-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed

  1. Quench tests of Nb3Al small racetrack magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2007-08-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed.

  2. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    Science.gov (United States)

    Stoll, Michael; Bakker, Joost M.; Steimle, Timothy C.; Meijer, Gerard; Peters, Achim

    2008-09-01

    We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106cm-3 at a temperature of 650mK . Storage times of up to 180ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the He3 buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule- He3 collision cross sections of 1.6×10-18 and 3.1×10-17cm2 are extracted for CrH and MnH, respectively. Furthermore, elastic molecule- He3 collision cross sections of 1.4(±0.5)×10-14cm2 are determined for both species. We conclude that the confinement time of these molecules in a magnetic trapping field is limited by inelastic collisions with the helium atoms leading to Zeeman relaxation.

  3. An object-oriented approach to cryogenic control systems for the CERN test facilities: a case study based on the UNICOS framework.

    CERN Document Server

    Dudek, Michał

    2010-01-01

    This paper consists of two parts, the first of which is more general and presents the reason of particle collision research, the LHC accelerator and its main detectors (Chapter 1). It also provides information about the test stations in SM18, the cryogenic architecture of the hall and the significant properties of the liquid helium, which make him perfect coolant for the superconducting devices (Chapter 2). The second part of this thesis presents the revamping of the SM18 test facility. It describes the previous functional view and changes that were done. The new layout of the Radio Frequency Cavities rack and communication is also presented (Chapter 3). Chapter 4 gives the information about the software frameworks, code generation for the PLC and the synoptic production.

  4. Method and apparatus for balancing the magnetic field detecting loops of a cryogenic gradiometer using trimming coils and superconducting disks

    International Nuclear Information System (INIS)

    Lutes, C.L.

    1982-01-01

    An apparatus for and a method of measuring the difference in intensity between two coplanar magnetic field vector components at two different points in space. The device is comprised of two interconnected, relatively large, loop patterns of opposite, flux cancelling, winding sense. One or both loops include a trimming element that is itself formed of two interconnected, relatively small, loop patterns of opposite, flux cancelling, winding sense. The device is analyzed for imbalance between the two large loops and is then balanced by placing a balancing superconducting disk of the proper characteristic in or near one of the two small loops of the trimming element. The so-trimmed apparatus forms a gradiometer of substantially improved mensuration

  5. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    OpenAIRE

    Stoll, M.; Bakker, J.; Steimle, T.; Meijer, G.; Peters, A.

    2008-01-01

    We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106 cm−3 at a temperature of 650 mK. Storage times of up to 180 ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the 3He buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule-3He collision cross sections of 1.6×10−18 and 3.1×10−17 cm2 are extracted for CrH and MnH, respec...

  6. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  7. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  8. Characterization of magnetic tunnel junction test pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Kjær, Daniel; Nielsen, Peter Folmer

    2015-01-01

    We show experimentally as well as theoretically that patterned magnetic tunnel junctions can be characterized using the current-in-plane tunneling (CIPT) method, and the key parameters, the resistance-area product (RA) and the tunnel magnetoresistance (TMR), can be determined. The CIPT method...

  9. Superconducting magnet package for the TESLA test facility

    International Nuclear Information System (INIS)

    Koski, A.; Bandelmann, R.; Wolff, S.

    1996-01-01

    The magnetic lattice of the TeV electron superconducting linear accelerator (TESLA) will consist of superconducting quadrupoles for beam focusing and superconducting correction dipoles for beam steering, incorporated in the cryostats containing the superconducting cavities. This report describes the design of these magnets, presenting details of the magnetic as well as the mechanical design. The measured characteristics of the TESLA Test Facility (TTF) quadrupoles and dipoles are compared to the results obtained from numerical computations

  10. Development of bonding techniques for cryogenic components (2). HIP bonding between Cu Alloys and Ti, cryogenic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Ouchi, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukaya, Kiyoshi [Nihon Advanced Technology Ltd., Tokai, Ibaraki (Japan); Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchiya, Yoshinori; Nakajima, Hideo [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2003-03-01

    Several joints between dissimilar materials are required in the superconducting (SC) magnet system of SC linear accelerator or fusion reactor, Pure titanium (Ti) is one of candidate materials for a jacket of SC coil of fusion reactor because Ti is non-magnetic material and has a feature that its thermal expansion is similar to SC material in addition to good corrosion resistance and workability. Also, Ti does not require strict control of environment during reaction heat treatment of SC material. Copper (Cu) or Cu-alloy is used in electrical joints and cryogenic stainless steel (SS) is used in cryogenic pipes. Therefore, it is necessary to develop new bonding techniques for joints between Ti, Cu, and SS because jacket, electrical joint and cryogenic pipe have to be bonded each other to cool SC coils. Japan Atomic Energy Research Institute (JAERI) has started to develop dissimilar material joints bonded by hot isostatic pressing (HIP), which can bring a high strength joint with good tolerance and can applied to a large or complex geometry device. HIP conditions for Cu-Ti, Cu alloy-Ti, Cu alloy-SS were investigated in this study and most stable HIP condition were evaluated by microscopic observation, tensile and bending tests at room temperature. (author)

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  12. A new building for testing magnets

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    A ceremony to mark the laying of the foundation stone of Building 311, which will house a magnetic measurement laboratory, took place on 22 September.   Olaf Dunkel, head of the Building 311 project, José Miguel Jiménez, head of the Technology Department, and Lluis Miralles, head of the Site Management and Buildings Department, during the ceremony for the laying of the foundation stone of Building 311. Lluis Miralles, head of the Site Management and Buildings Department, José Miguel Jiménez, head of the Technology Department, Roberto Losito, head of the Engineering Department, and Simon Baird, head of the Occupational Health and Safety and Environmental Protection Unit, officially laid the foundation stone of Building 311 during a ceremony on Thursday, 22 September. Situated beside the water tower, the building will house a magnetic measurement laboratory for the Technology Department. With a floor space of around 1400 square metres, it will comprise a...

  13. Fermilab R and D test facility for SSC magnets

    International Nuclear Information System (INIS)

    Strait, J.; Bleadon, M.; Hanft, R.; Lamm, M.; McGuire, K.; Mantsch, P.; Mazur, P.O.; Orris, D.; Pachnik, J.

    1989-01-01

    The test facility used for R and D testing of full scale development dipole magnets for the SSC is described. The Fermilab Magnet Test Facility, originally built for production testing of Tevatron magnets, has been substantially modified to allow testing also of SSC magnets. Two of the original six test stands have been rebuilt to accommodate testing of SSC magnets at pressures between 1.3 Atm and 4 Atm and at temperatures between 1.8 K and 4.8 K and the power system has been modified to allow operation to at least 8 kA. Recent magnets have been heavily instrumented with voltage taps to allow detailed study of quench location and propagation and with strain gage based stress, force and motion transducers. A data acquisition system has been built with a capacity to read from each SSC test stand up to 220 electrical quench signals, 32 dynamic pressure, temperature and mechanical transducer signals during quench and up to 200 high precision, low time resolution, pressure, temperature and mechanical transducer signals. The quench detection and protection systems is also described. 23 refs., 4 figs. 2 tabs

  14. Advances in cryogenic engineering. Volume 27 - Proceedings of the Cryogenic Engineering Conference, San Diego, CA, August 11-14, 1981

    Science.gov (United States)

    Fast, R. W.

    Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250

  15. Tests of high gradient superconducting quadrupole magnets for the Tevatron

    International Nuclear Information System (INIS)

    Lamm, M.J.; Carson, J.; Gourlay, S.; Hanft, R.; Koepke, K.; Mantsch, P.; McInturff, A.D.; Riddiford, A.; Strait, J.

    1989-09-01

    Tests have been completed on three prototype magnets and two production magnets to be used for the Tevatron Dφ/Bφ low- β insertion. These cold iron, two shell quadrupoles are made of 36 strand Rutherford type NbTi superconducting cable. Magnet field gradients well in excess of the design 1.41 T/cm have been achieved at a transfer function of 0.291 T/cm/kA. Quench performance at 4.2 K and 3.7 K and magnetic multipole measurement data are presented and discussed. 9 refs., 4 figs., 4 tabs

  16. Strong, Ductile Rotor For Cryogenic Flowmeters

    Science.gov (United States)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  17. Magnet design and test of positron emission tomography cyclotron

    International Nuclear Information System (INIS)

    Wei Tao; Yang Guojun; He Xiaozhong; Pang Jian; Zhao Liangchao; Zhang Kaizhi

    2012-01-01

    An 11 MeV H - compact cyclotron used for medical radioactive isotope production is under construction in Institute of Fluid Physics, CAEP. The cyclotron magnet adopts the design of small valley gaps and coulee structure which can provide high average magnetic field and strong focus ability. To achieve 5 × 10 -4 measuring accuracy, a magnetic field mapping system has been developed. After iterative correction using field measurement data, the total phase excursion of the cyclotron is within ± 9° and the first harmonic is less than 10 -3 T, which are all acceptable. Furthermore, the beam testing declares the successful construction of the cyclotron magnet. Besides, some magnetic field influence factors were discussed, including the magnetic field distortion and measurement error. (authors)

  18. Super Conducting and Conventional Magnets Test & Mapping Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Vertical Magnet Test Facility: Accommodate a device up to 3.85 m long, 0.61 m diameter, and 14,400 lbs. Configured for 5 psig sub-cooled liquid helium bath cooling...

  19. Magnetic shielding tests for MFTF-B neutral beamlines

    International Nuclear Information System (INIS)

    Kerns, J.; Fabyan, J.; Wood, R.; Koger, P.

    1983-01-01

    A test program to determine the effectiveness of various magnetic shielding designs for MFTF-B beamlines was established at Lawrence Livermore National Laboratory (LLNL). The proposed one-tenth-scale shielding-design models were tested in a uniform field produced by a Helmholtz coil pair. A similar technique was used for the MFTF source-injector assemblies, and the model test results were confirmed during the Technology Demonstration in 1982. The results of these tests on shielding designs for MFTF-B had an impact on the beamline design for MFTF-B. The iron-core magnet and finger assembly originally proposed were replaced by a simple, air-core, race-track-coil, bending magnet. Only the source injector needs to be magnetically shielded from the fields of approximately 400 gauss

  20. Thermal Expansion and Magnetostriction Measurements at Cryogenic Temperature Using the Strain Gauge Method

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2018-03-01

    Full Text Available Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra-low temperature (<77 K environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gauge method based on a Physical Properties Measurements System (PPMS. The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  1. Thermal expansion and magnetostriction measurements at cryogenic temperature using the strain gage method

    Science.gov (United States)

    Wang, Wei; Liu, Huiming; Huang, Rongjin; Zhao, Yuqiang; Huang, Chuangjun; Guo, Shibin; Shan, Yi; Li, Laifeng

    2018-03-01

    Thermal expansion and magnetostriction, the strain responses of a material to temperature and a magnetic field, especially properties at low temperature, are extremely useful to study electronic and phononic properties, phase transitions, quantum criticality, and other interesting phenomena in cryogenic engineering and materials science. However, traditional dilatometers cannot provide magnetic field and ultra low temperature (<77 K) environment easily. This paper describes the design and test results of thermal expansion and magnetostriction at cryogenic temperature using the strain gage method based on a Physical Properties Measurements System (PPMS). The interfacing software and automation were developed using LabVIEW. The sample temperature range can be tuned continuously between 1.8 K and 400 K. With this PPMS-aided measuring system, we can observe temperature and magnetic field dependence of the linear thermal expansion of different solid materials easily and accurately.

  2. The potential around a test charge in magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.; Salimullah, M.

    1996-01-01

    The potential of a test dust particle in a magnetized dusty plasma is calculated, taking into account the dielectric constant associated with electrostatic ion-cyclotron waves. Besides the well-known Debye-Hueckel screening potential, an oscillatory potential distribution around a test dust particle is found, which strongly depends on the strength of the external magnetic field. copyright 1996 American Institute of Physics

  3. New facility for testing LHC HTS power leads

    CERN Document Server

    Rabehl, Roger Jon; Fehér, S; Huang, Y; Orris, D; Pischalnikov, Y; Sylvester, C D; Tartaglia, M

    2005-01-01

    A new facility for testing HTS power leads at the Fermilab Magnet Test Facility has been designed and operated. The facility has successfully tested 19 pairs of HTS power leads, which are to be integrated into the Large Hadron Collider Interaction Region cryogenic feed boxes. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. HTS power lead test results from the commissioning phase of the project are also presented.

  4. Magnetic Non-destructive Testing of Plastically Deformed Mild Steel

    Directory of Open Access Journals (Sweden)

    Jozef Pala

    2004-01-01

    Full Text Available The Barkhausen noise analysis and coercive field measurement have been used as magnetic non-destructive testing methods for plastically deformed high quality carbon steel specimens. The strain dependence of root mean square value and power spectrum of the Barkhausen noise and the coercive field are explained in terms of the dislocation density. The specimens have been subjected to different magnetizing frequencies to show the overlapping nature of the Barkhausen noise. The results are discussed in the context of usage of magnetic non-destructive testing to evaluate the plastic deformation of high quality carbon steel products.

  5. A look at magnetic crack testing at an international level

    International Nuclear Information System (INIS)

    Deutsch, V.; Cost, H.; Schug, W.

    1984-01-01

    On an international level, there are several different magnetization processes in use for magnetic particle crack testing. Anglo-Saxon countries implement two separate working cycles with a DC current or field respectively. France has introduced combined sequential magnetization using a DC field. For German speaking countries, a combination of out-of-phase AC fields represents the state of the art. Comparisons present the advantages and disadvantages involved. Consequences arising from the equipment used are indicated by way of an example of a new generation of crack testing equipment. (orig.) [de

  6. CEBAF cryogenic system design

    International Nuclear Information System (INIS)

    Rode, C.; Brindza, P.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. There is one recirculating arc for each energy beam that is circulating and any three of the four correlated energies may be supplied to any of the three experimental halls. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2K and the 4.5K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0K at .031 ATM and 4.4K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  7. Cryogenic system of steady state superconducting Tokamak SST-1: Operational experience and controls

    International Nuclear Information System (INIS)

    Sarkar, B.; Tank, Jignesh; Panchal, Pradip; Sahu, A.K.; Bhattacharya, Ritendra; Phadke, Gaurang; Gupta, N.C.; Gupta, Girish; Shah, Nitin; Shukla, Pawan; Singh, Manoj; Sonara, Dasarath; Sharma, Rajiv; Saradha, S.; Patel, J.C.; Saxena, Y.C.

    2006-01-01

    The cryogenic system of SST-1 consists of the helium cryogenic system and the nitrogen cryogenic system. The main components of the helium cryogenic system are (a) 1.3 kW helium refrigerator/liquefier (HRL) and (b) warm gas management system (WGM), where as, the nitrogen cryogenic system called as liquid nitrogen (LN 2 ) management system consists of storage tanks and a distribution system. The helium flow distribution and control to different sub-systems is achieved by the integrated flow distribution and control (IFDC) system. The HRL has been commissioned and operated for performing a single toroidal field coil test as well as for the first commissioning of SST-1 superconducting-magnets up to 68 K. Analysis of the results shows that the compressor and turbine parameters of the HRL, namely, the speed and pressure are very stable during operation of the HRL, confirming to the reliability in control of thermo-dynamic parameters of the system. The thermal shield of the SST-1 cryostat consists of ten different types of panels, which have been cooled down to the minimum temperature of 80 K and maintained during the first commissioning of SST-1. The operation and controls of the LN2 management system have been found to be as per the design consideration

  8. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  9. Cryogenic system for TRISTAN superconducting RF cavity

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Yuuji; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Ishimaru, Y.

    1990-01-01

    A cryogenic system consisting of a helium refrigerator (4 kW at 4.4 K) and a liquid helium distribution transfer system for TRISTAN 508 MHz 32 x 5-cell superconducting RF cavities was designed and constructed. After the performance test of the cryogenic system, 16 x 5-cell superconducting RF cavities in 8 cryostats were installed in underground TRISTAN electron-positron collider and connected to the helium refrigerator on the ground level through the transfer line (total length about 330 m) and cooled by liquid helium pool boiling in parallel. The cryogenic system and its operation experience are described. (author)

  10. TEST RESULTS FOR LHC INSERTION REGION DEPOLE MAGNETS

    International Nuclear Information System (INIS)

    MURATORE, J.; JAIN, A.; ANERELLA, M.; COSSOLINO, J.

    2005-01-01

    The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has made 20 insertion region dipoles for the Large Hadron Collider (LHC) at CERN. These 9.45 m-long, 8 cm aperture magnets have the same coil design as the arc dipoles now operating in the Relativistic Heavy Ion Collider (RHIC) at BNL and are of single aperture, twin aperture, and double cold mass configurations. They are required to produce fields up to 4.14 T for operation at 7.56 TeV. Eighteen of these magnets have been tested at 4.5 K using either forced flow supercritical helium or liquid helium. The testing was especially important for the twin aperture models, whose construction was very different from the RHIC dipoles, except for the coil design. This paper reports on the results of these tests, including spontaneous quench performance, verification of quench protection heater operation, and magnetic field quality

  11. Performance of new 400-MHz HTS power-driven magnet NMR technology on typical pharmaceutical API, cinacalcet HCl.

    Science.gov (United States)

    Silva Elipe, Maria Victoria; Donovan, Neil; Krull, Robert; Pooke, Donald; Colson, Kimberly L

    2018-04-17

    After years towards higher field strength magnets, nuclear magnetic resonance (NMR) technology in commercial instruments in the past decade has expanded at low and high magnetic fields to take advantage of new opportunities. At lower field strengths, permanent magnets are well established, whereas for midrange and high field, developments utilize superconducting magnets cooled with cryogenic liquids. Recently, the desire to locate NMR spectrometers in nontypical NMR laboratories has created interest in the development of cryogen-free magnets. These magnets require no cryogenic maintenance, eliminating routine filling and large cryogen dewars in the facility. Risks of spontaneous quenches and safety concerns when working with cryogenic liquids are eliminated. The highest field commercially available cryogen-free NMR magnet previously reported was at 4.7 T in 2013. Here we tested a prototype cryogen-free 9.4-T power-driven high-temperature-superconducting (HTS) magnet mated to commercial NMR spectrometer electronics. We chose cinacalcet HCl, a typical active pharmaceutical ingredient, to evaluate its performance towards structure elucidation. Satisfactory standard 1D and 2D homonuclear and heteronuclear NMR results were obtained and compared with those from a standard 9.4-T cryogenically cooled superconducting NMR instrument. The results were similar between both systems with minor differences. Further comparison with different shims and probes in the HTS magnet system confirmed that the magnet homogeneity profile could be matched with commercially available NMR equipment for optimal results. We conclude that HTS magnet technology works well providing results comparable with those of standard instruments, leading us to investigate additional applications for this magnet technology outside a traditional NMR facility. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Deformation behavior of austenitic stainless steel at deep cryogenic temperatures

    Science.gov (United States)

    Han, Wentuo; Liu, Yuchen; Wan, Farong; Liu, Pingping; Yi, Xiaoou; Zhan, Qian; Morrall, Daniel; Ohnuki, Somei

    2018-06-01

    The nonmagnetic austenite steels are the jacket materials for low-temperature superconductors of fusion reactors. The present work provides evidences that austenites transform to magnetic martensite when deformation with a high-strain is imposed at 77 K and 4.2 K. The 4.2 K test is characterized by serrated yielding that is related to the specific motion of dislocations and phase transformations. The in-situ transmission electron microscope (TEM) observations in nanoscale reveal that austenites achieve deformation by twinning under low-strain conditions at deep cryogenic temperatures. The generations of twins, martensitic transformations, and serrated yielding are in order of increasing difficulty.

  13. Beam testing of the lab model 2700 head magnet

    International Nuclear Information System (INIS)

    Hutcheon, R.M.; Gillies, B.A.

    1981-07-01

    A modern cancer therapy electron accelerator unit must satisfy many design constraints, one of which is the isocentric height above floor level. Usually 130 cm is considered the maximum height at which a nurse can work with a patient. The advent of higher energy machines has increasingly made this more difficult to achieve, as higher magnetic fields are required in the magnet that directs the beam onto the patient. A new 270 0 doubly achromatic magnet configuration has been developed which minimizes the isocentre height for a given maximum energy and maximum magnetic field. The system is an asymmetric two magnet configuration, with zero field index, equal fields and a bend of greater than 180 0 in the first magnet. It is compact, easy to manufacture and relatively insensitive to assembly tolerances. Energy defining slits are easily incorporated in the design and can readily be radiation shielded. Input and output beam matching and steering is easily accomplished with a compact input quadrupole doublet and small steering windings. The design and bench testing of such a head magnet for a 25 MeV electron accelerator is described in report AECL-7057. The present report details the testing of the magnet at both 10 and 21 MeV using the variable energy electron beam from the Therac 25 cancer therapy accelerator

  14. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  15. Introduction to cryogenic engineering

    CERN Multimedia

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  16. Cryogenics for LDR

    Science.gov (United States)

    Kittel, Peter

    1988-01-01

    Three cryogenic questions of importance to Large Deployable Reflector (LDR) are discussed: the primary cooling requirement, the secondary cooling requirement, and the instrument changeout requirement.

  17. Wall adjustment strategy software for use with the NASA Langley 0.3-meter transonic cryogenic tunnel adaptive wall test section

    Science.gov (United States)

    Wolf, Stephen W. D.

    1988-01-01

    The Wall Adjustment Strategy (WAS) software provides successful on-line control of the 2-D flexible walled test section of the Langley 0.3-m Transonic Cryogenic Tunnel. This software package allows the level of operator intervention to be regulated as necessary for research and production type 2-D testing using and Adaptive Wall Test Section (AWTS). The software is designed to accept modification for future requirements, such as 3-D testing, with a minimum of complexity. The WAS software described is an attempt to provide a user friendly package which could be used to control any flexible walled AWTS. Control system constraints influence the details of data transfer, not the data type. Then this entire software package could be used in different control systems, if suitable interface software is available. A complete overview of the software highlights the data flow paths, the modular architecture of the software and the various operating and analysis modes available. A detailed description of the software modules includes listings of the code. A user's manual is provided to explain task generation, operating environment, user options and what to expect at execution.

  18. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  19. Test results of BM109 magnet field stability during ramping

    International Nuclear Information System (INIS)

    Kristalinski, A.

    1992-12-01

    This report presents results of the measured lag between the current ramp and the following magnetic field rise in BM109 magnets. The purpose of these tests is to choose identical ramping programs for PC4AN1, PC4AN2 and PC4AN3 magnets. The lag occurs due to the large eddy currents in the magnets' solid iron cores. The experiment requires a magnetic field stability of 0.1% during beam presence. Using existing equipment and a program slope of 100 Amp/sec starting at Tl yields fields within the 0.05% of set value. Add to this 0.05% for P.S. regulation to meet the required field stability of 0.1%. This program yields annual savings of $200,000 (assuming 100% usage) . Additional savings can be made by using faster slopes, but this requires additional controls

  20. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  1. Quench detection electronics testing protocol for SST-1 magnets

    International Nuclear Information System (INIS)

    Banaudha, Moni; Varmora, Pankaj; Parghi, Bhadresh; Prasad, Upendra

    2017-01-01

    Quench Detection (QD) system consisting 204 signal channels has been successfully installed and working well during plasma experiment of SST-1 Tokamak. QD system requires testing, validation and maintenance in every SST-1 campaign for better reliability and maintainability of the system. Standalone test of each channel of the system is essential for hard-ware validation. The standard Testing Protocol follow in every campaign which validate each section of QD electronics as well as voltage tap signal cables which are routed inside the cryostat and then extended outside of the SST-1 machine up-to the magnet control room. Fiber link for Quench signal transmission to the SST-1 magnet power supply is also test and validate before every plasma campaign. Precise instrument used as a dummy source of quench signal and for manual quench generation to test the each channel and Master Quench Logic. Each signal Integrated with the magnet DAQ system, signal observed at 1Hz and 50Hz configuration to validate the logging data, compare with actual and previous test data. This paper describes the testing protocol follow in every campaign to validate functionality of QD electronics, limitation of testing, test results and overall integration of the quench detection system for SST-1 magnet. (author)

  2. A facility to test short superconducting accelerator magnets at Fermilab

    International Nuclear Information System (INIS)

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J.; Butteris, J.; McInturff, A.D.; Coulter, K.J.

    1992-10-01

    During the past four years the Superconducting Magnet R ampersand D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-β Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented

  3. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Chandrasekaran, Saravan Kumar [Fermilab; Crawford, Anthony [Fermilab; Harms, Elvin [Fermilab; Leibfritz, Jerry [Fermilab; Wu, Genfa [Fermilab

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and to keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.

  4. Development and test of a cryogenic trap system dedicated to confinement of radioactive volatile isotopes in SPIRAL2 post-accelerator

    Science.gov (United States)

    Souli, M.; Dolégiéviez, P.; Fadil, M.; Gallardo, P.; Levallois, R.; Munoz, H.; Ozille, M.; Rouillé, G.; Galet, F.

    2011-12-01

    A cryogenic trap system called Cryotrap has been studied and developed in the framework of nuclear safety studies for SPIRAL2 accelerator. The main objective of Cryotrap is to confine and reduce strongly the migration of radioactive volatile isotopes in beam lines. These radioactive gases are produced after interaction between a deuteron beam and a fissile target. Mainly, Cryotrap is composed by a vacuum vessel and two copper thermal screens maintained separately at two temperatures T1=80 K and T2=20 K. A Cryocooler with two stages at previous temperatures is used to remove static heat losses of the cryostat and ensure an efficient cooling of the system. Due to strong radiological constraints that surround Cryotrap, the coupling system between Cryocooler and thermal screens is based on aluminum thermo-mechanical contraction. The main objective of this original design is to limit direct human maintenance interventions and provide maximum automated operations. A preliminary prototype of Cryotrap has been developed and tested at GANIL laboratory to validate its design, and determine its thermal performance and trapping efficiency. In this paper, we will first introduce briefly SPIRAL2 project and discuss the main role of Cryotrap in nuclear safety of the accelerator. Then, we will describe the proposed conceptual design of Cryotrap and its main characteristics. After that, we will focus on test experiment and analyze experimental data. Finally, we will present preliminary results of gas trapping efficiency tests.

  5. Testing the performance of a cryogenic visualization system on thermal counterflow by using hydrogen and deuterium solid tracers

    Czech Academy of Sciences Publication Activity Database

    La Mantia, M.; Chagovets, Tymofiy; Rotter, M.; Skrbek, L.

    2012-01-01

    Roč. 83, č. 5 (2012), "055109-1"-"055109-8" ISSN 0034-6748 Grant - others:GA ČR(CZ) GAP203/11/0442; EU COST(XE) MP0806 Institutional research plan: CEZ:AV0Z10100520 Keywords : tracer particles * piv * superfluid helium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.602, year: 2012

  6. Test results of the UNK superconducting dipole magnets

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Gridasov, V.I.

    1993-01-01

    Results of studied, training, temperature and velocity dependence of 25 critical current of superconducting magnets (SC), as well as, of dynamic losses of dipole and statical inflows in UNK operating cycle at currents that are higher than critical ones (5250 A), are presented. Service life tests of SC-dipole demonstrated that their design may ensure durable operation of magnets under UNK conditions. Conclusions are made that temperature margin of magnets equal to 0.8 K will enable to ensure their reliable operation under dynamic and radiation heat releases at acceleration and extraction of beam, as well as, under emergency extraction of stored energy. 4 refs.; 5 figs

  7. Full length SSC R and D dipole magnet test results

    International Nuclear Information System (INIS)

    Strait, J.; Bleadon, M.; Brown, B.C.

    1989-03-01

    Four full scale SSC development dipole magnets have been tested for mechanical and quench behavior. Two are of a design similar to previous magnets but contain a number of improvements, including more uniform coil size, higher pre-stress and a redesigned inner-outer coil splice. One exceeds the SSC operating current on the second quench but the other appears to be limited by damaged superconductor to a lower current. The other two magnets are of alternate designs. One trains erratically and fails to reach a plateau and the other reaches plateau after four quenches. 12 refs., 4 figs

  8. Cryogenic polarized target facility: status

    International Nuclear Information System (INIS)

    Gould, C.; Nash, H.K.; Roberson, N.; Schneider, M.; Seagondollar, W.; Soderstrum, J.

    1985-01-01

    The TUNL cryogenically polarized target facility consists of a 3 He- 4 He dilution refrigerator and a superconducting magnet, together capable of maintaining samples at between 10 and 20 mK in magnetic fields up to 7 Tesla. At these temperatures and magnetic fields brute-force nuclear orientation occurs. Polarizations from 20 to 60% are attainable in about twenty nonzero spin nuclei. Most are metals, ranging in mass from 6 Li to 209 Bi, but the nuclei 1 H and 3 He are also polarizable via this method. The main effort is directed towards a better determination of the effective spin-spin force in nuclei. These experiments are briefly described and the beam stabilization system, cryostat and polarized 3 He targets are discussed

  9. Large superconductors and joints for fusion magnets: From conceptual design to testing at full scale

    Science.gov (United States)

    Ciazynski, D.; Duchateau, J. L.; Decool, P.; Libeyre, P.; Turck, B.

    2001-02-01

    A new kind of superconductor, using the cable-in-conduit concept, is emerging, mainly in the context of fusion activity. At present no large Nb3Sn magnet in the world is operating using this concept. The difficulty of this technology, which has now been studied for 20 years, is that it requires major advances in several interconnected new fields, such as handling a large number (1000) of superconducting strands, high current conductors (50 kA), forced flow cryogenics, Nb3Sn technology, low loss conductors in pulsed operation, high current connections and high voltage insulation (10 kV), as well as demonstration of its economical and industrial feasibility. CEA has been very much involved, during the past ten years, in this development, which took place in the framework of the NET and ITER technological programmes. One major milestone was reached in 1998-1999 with the successful tests by Euratom-CEA of three full size conductor and connection samples in the SULTAN facility in Switzerland.

  10. MOSFET's for Cryogenic Amplifiers

    Science.gov (United States)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  12. Cryogenic microsize Hall sensors

    International Nuclear Information System (INIS)

    Kvitkovic, J.; Polak, M.

    1993-01-01

    Hall sensors have a variety of applications in magnetic field measurements. The active area of the Hall sensor does not play an important role in measuring of homogeneous magnetic field. Actually Hall sensors are widely used to measure profiles of magnetic fields produced by magnetization currents in samples of HTC superconductors, as well as of LTC ones. Similar techniques are used to measure magnetization of both HTC and LTC superconductors. In these cases Hall sensor operates in highly inhomogeneous magnetic fields. Because of that, Hall sensors with very small active area are required. We developed and tested Hall sensors with active area 100 μm x 100 μm - type M and 50 μm x 50 μm - type V. Here we report on the most imporant parameters of these units, as well as on their properties as differential magnetometer. (orig.)

  13. Studies on laws of stress-magnetization based on magnetic memory testing technique

    Science.gov (United States)

    Ren, Shangkun; Ren, Xianzhi

    2018-03-01

    Metal magnetic memory (MMM) testing technique is a novel testing method which can early test stress concentration status of ferromagnetic components. Under the different maximum tensile stress, the relationship between the leakage magnetic field of at certain point of cold rolled steel specimen and the tensile stress was measured during the process of loading and unloading by repeated. It shows that when the maximum tensile stress is less than 610 MPa, the relationship between the magnetic induction intensity and the stress is linear; When the maximum tensile stress increase from 610 MPa to 653 MPa of yield point, the relationship between the magnetic induction intensity and the tensile becomes bending line. The location of the extreme point of the bending line will move rapidly from the position of smaller stress to the larger stress position, and the variation of magnetic induction intensity increases rapidly. When the maximum tensile stress is greater than the 653 MPa of yield point, the variation of the magnetic induction intensity remains large, and the position of the extreme point moves very little. In theoretical aspects, tensile stress is to be divided into ordered stress and disordered stress. In the stage of elastic stress, a microscopic model of the order stress magnetization is established, and the conclusions are in good agreement with the experimental data. In the plastic deformation stage, a microscopic model of disordered stress magnetization is established, and the conclusions are in good agreement with the experimental data, too. The research results can provide reference for the accurate quantitative detection and evaluation of metal magnetic memory testing technology.

  14. Series Supply of Cryogenic Venturi Flowmeters for the ITER Project

    International Nuclear Information System (INIS)

    André, J; Poncet, J M; Ercolani, E; Clayton, N; Journeaux, J Y

    2015-01-01

    In the framework of the ITER project, the CEA-SBT has been contracted to supply 277 venturi tube flowmeters to measure the distribution of helium in the superconducting magnets of the ITER tokamak. Six sizes of venturi tube have been designed so as to span a measurable helium flowrate range from 0.1 g/s to 400g/s. They operate, in nominal conditions, either at 4K or at 300K, and in a nuclear and magnetic environment. Due to the cryogenic conditions and the large number of venturi tubes to be supplied, an individual calibration of each venturi tube would be too expensive and time consuming. Studies have been performed to produce a design which will offer high repeatability in manufacture, reduce the geometrical uncertainties and improve the final helium flowrate measurement accuracy. On the instrumentation side, technologies for differential and absolute pressure transducers able to operate in applied magnetic fields need to be identified and validated. The complete helium mass flow measurement chain will be qualified in four test benches: - A helium loop at room temperature to insure the qualification of a statistically relevant number of venturi tubes operating at 300K.- A supercritical helium loop for the qualification of venturi tubes operating at cryogenic temperature (a modification to the HELIOS test bench). - A dedicated vacuum vessel to check the helium leak tightness of all the venturi tubes. - A magnetic test bench to qualify different technologies of pressure transducer in applied magnetic fields up to 100mT. (paper)

  15. Quench propagation tests on the LHC superconducting magnet string

    CERN Document Server

    Coull, L; Krainz, G; Rodríguez-Mateos, F; Schmidt, R

    1996-01-01

    The installation and testing of a series connection of superconducting magnets (three 10 m long dipoles and one 3 m long quadrupole) has been a necessary step in the verification of the viability of the Large Hadron Collider at CERN. In the LHC machine, if one of the lattice dipoles or quadrupoles quenches, the current will be by-passed through cold diodes and the whole magnet chain will be de-excited by opening dump switches. In such a scenario it is very important to know whether the quench propagates from the initially quenching magnet to adjacent ones. A series of experiments have been performed with the LHC Test String powered at different current levels and at different de-excitation rates in order to understand possible mechanisms for such a propagation, and the time delays involved. Results of the tests and implications regarding the LHC machine operation are described in this paper.

  16. Cryogenic moderator simulations: confronting reality

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities

  17. Magnetoviscosity in magnetic fluids: Testing different models of the magnetization equation

    Directory of Open Access Journals (Sweden)

    Huei Chu Weng

    2013-09-01

    Full Text Available Despite a long research history, theoretical predictions for the material properties as well as the flow fields and characteristics of magnetic fluids were not well consistent with the experimental data. The lack of a universally accepted magnetization equation for accurately modeling hydrodynamics of magnetic fluids/nanofluids is particularly a major issue. In this paper, we give an overview on the continuum theory and test the six well-known models via comparisons with magnetoviscosity measurements to make clear the magnetization relaxation due to the rotation of magnetic particles and see how well they make predictions on the basis of numerical calculations. Results reveal that the ML model leads to unexplainable behavior. Moreover, the WC model with a ‘relaxation rate’ modification is found to reproduce the predictions of the MRSh model, which agree well with experimental data. The revised WC model (WCC should therefore be preferred.

  18. Test-electron analysis of the magnetic reconnection topology

    Science.gov (United States)

    Borgogno, D.; Perona, A.; Grasso, D.

    2017-12-01

    Three-dimensional (3D) investigations of the magnetic reconnection field topology in space and laboratory plasmas have identified the abidance of magnetic coherent structures in the stochastic region, which develop during the nonlinear stage of the reconnection process. Further analytical and numerical analyses highlighted the efficacy of some of these structures in limiting the magnetic transport. The question then arises as to what is the possible role played by these patterns in the dynamics of the plasma particles populating the chaotic region. In order to explore this aspect, we provide a detailed description of the nonlinear 3D magnetic field topology in a collisionless magnetic reconnection event with a strong guide field. In parallel, we study the evolution of a population of test electrons in the guiding-center approximation all along the reconnection process. In particular, we focus on the nonlinear spatial redistribution of the initially thermal electrons and show how the electron dynamics in the stochastic region depends on the sign and on the value of their velocities. While the particles with the highest positive speed populate the coherent current structures that survive in the chaotic sea, the presence of the manifolds calculated in the stochastic region defines the confinement area for the electrons with the largest negative velocity. These results stress the link between the magnetic topology and the electron motion and contribute to the overall picture of a non-stationary fluid magnetic reconnection description in a geometry proper to physical systems where the effects of the curvature can be neglected.

  19. Thermal optimum analyses and mechanical design of 10-kA, vapor-cooled power leads for SSC superconducting magnet tests at MTL

    International Nuclear Information System (INIS)

    Shu, Q.S.; Demko, J.; Dorman, R.; Finan, D.; Hatfield, D.; Syromyatnikov, I.; Zolotov, A.; Mazur, P.; Peterson, T.

    1992-08-01

    The spiral-fin, 10-kA, helium vapor-cooled power leads have been designed for Superconducting Super Collider superconducting magnet tests at the Magnet Test Laboratory. In order to thermally optimize the parameters of the power leads, the lead diameters-which minimize the Carnot work for several different lengths, two different fin geometries, and two RRR values of the lead materials-were determined. The cryogenic refrigeration and liquefaction loads for supporting the leads have also been calculated. The optimum operational condition with different currents is discussed. An improved mechanical design of the 10-kA power leads was undertaken, with careful consideration of the cryogenic and mechanical performance. In the design, a new thermal barrier device to reduce heat conduction from the vacuum and gas seal area was employed. Therefore, the electric insulation assembly, which isolates the ground potential parts of the lead from the high-power parts, was moved into a warm region in order to prevent vacuum and helium leakage in the 0-ring seals due to transient cold temperature. The instrumentation for testing the power leads is also discussed

  20. The Livermore Free-Electron Laser Program Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Burns, M.J.; Kulke, B.; Deis, G.A.; Frye, R.W.; Kallman, J.S.; Ollis, C.W.; Tyler, G.C.; Van Maren, R.D.; Weiss, W.C.

    1987-01-01

    The Lawrence Livermore National Laboratory (LLNL) Free-Electron Laser Program Magnet Test Laboratory supports the ongoing development of the Induction Linac Free Electron Laser (IFEL) and uses magnetic field measurement systems that are useful in the testing of long periodic magnetic structures, electron-beam transport magnets, and spectrometer magnets. The major systems described include two computer-controlled, three-axis Hall probe-and-search coil transports with computer-controlled data acquisition; a unique, automated-search coil system used to detect very small inaccuracies in wiggler fields; a nuclear magnetic resonance (NMR)-based Hall probe-calibration facility; and a high-current DC ion source using heavy ions of variable momentum to model the transport of high-energy electrons. Additionally, a high-precision electron-beam-position monitor for use within long wigglers that has a positional resolution of less than 100 μm is under development in the laboratory and will be discussed briefly. Data transfer to LLNL's central computing facility and on-line graphics enable us to analyze large data sets quickly. 3 refs

  1. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  2. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-06-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented.

  3. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    International Nuclear Information System (INIS)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-01-01

    In support of the development of a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented

  4. Development and test of LARP technological quadrupole (TQC) magnet

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab /LBL, Berkeley

    2006-08-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented.

  5. Development and test of LARP technological quadrupole (TQC) magnet

    International Nuclear Information System (INIS)

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.

    2006-01-01

    In support of the development of a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented

  6. Pressurized helium II-cooled magnet test facility

    International Nuclear Information System (INIS)

    Warren, R.P.; Lambertson, G.R.; Gilbert, W.S.; Meuser, R.B.; Caspi, S.; Schafer, R.V.

    1980-06-01

    A facility for testing superconducting magnets in a pressurized bath of helium II has been constructed and operated. The cryostat accepts magnets up to 0.32 m diameter and 1.32 m length with current to 3000 A. In initial tests, the volume of helium II surrounding the superconducting magnet was 90 liters. Minimum temperature reached was 1.7 K at which point the pumping system was throttled to maintain steady temperature. Helium II reservoir temperatures were easily controlled as long as the temperature upstream of the JT valve remained above T lambda; at lower temperatures control became difficult. Positive control of the temperature difference between the liquid and cold sink by means of an internal heat source appears necessary to avoid this problem. The epoxy-sealed vessel closures, with which we have had considerable experience with normal helium vacuum, also worked well in the helium II/vacuum environment

  7. Cryogenic Thermometer Calibration Facility at CERN

    CERN Document Server

    Balle, C; Thermeau, J P

    1998-01-01

    A cryogenic thermometer calibration facility has been designed and is being commissioned in preparation for the very stringent requirements on the temperature control of the LHC superconducting magnets. The temperature is traceable in the 1.5 to 30 K range to standards maintained in a national metrological laboratory by using a set of Rhodium-Iron temperature sensors of metrological quality. The calibration facility is designed for calibrating simultaneously 60 industrial cryogenic thermometers in the 1.5 K to 300 K temperature range, a thermometer being a device that includes both a temperature sensor and the wires heat-intercept. The thermometers can be calibrated in good and degraded vacuum or immersed in the surrounding fluid and at different Joule self-heating conditions that match those imposed by signal conditioners used in large cryogenic machinery. The calibration facility can be operated in an automatic mode and all the control and safety routines are handled by a Programmable Logic Controller (PLC)...

  8. Designs of pulsed power cryogenic transformers

    International Nuclear Information System (INIS)

    Singh, S.K.; Heyne, C.J.; Hackowrth, D.T.; Shestak, E.J.; Eckels, P.W.; Rogers, J.D.

    1988-01-01

    The Westinghouse Electric Corporation has completed designs of three pulsed power cryogenic transformers of three pulsed power cryogenic transformers for the Los Alamos National Laboratory. These transformers will be configured to transfer their stored energy sequentially to an electro-magnetic launcher and form a three-stage power supply. The pulse transformers will act as two winding energy storage solenoids which provide a high current and energy pulse compression by transforming a 50 kA power supply into a megamp level power supply more appropriate for the electromagnetic launcher duty. This system differs from more traditional transformer applications in that significant current levels do not exists simultaneously in the two windings of the pulse transformer. This paper describes the designs of the pulsed power cryogenic transformers

  9. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  10. Physics of cryogenics an ultralow temperature phenomenon

    CERN Document Server

    Zohuri, Bahman

    2018-01-01

    Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics.

  11. Laboratory facility for production of cryogenic targets for hot plasma experiments

    International Nuclear Information System (INIS)

    Sadowski, M.; Szydlowski, A.; Jakubowski, L.; Cwiek, E.

    1990-10-01

    Results of preliminary operational tests of the cryogenic stand designed for the production of small droplets of liquid hydrogen or deuterium are presented. Such cryogenic micro-targets are needed for nuclear and thermonuclear experiments. (author)

  12. Cryogenic instrumentation needs in the controlled thermonuclear research program

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    The magnet development effort for the controlled thermonuclear research program will require extensive testing of superconducting coils at various sizes from small-scale models to full-size prototypes. Extensive use of diagnostic instrumentation will be required and to make detailed comparisons of predicted and actual performance in magnet tests and to monitor the test facility for incipient failure modes. At later stages of the program, cryogenic instrumentation will be required to monitor magnet system performance in fusion power reactors. Measured quantities may include temperature, strain, deflection, coil resistance, helium coolant pressure and flow, current, voltages, etc. The test environment, which includes high magnetic fields (up to 8-10 T) and low temperature, makes many commercial measuring devices inoperative or at least inaccurate. In order to ensure reliable measurements, careful screening of commercial devices for performance in the test environment will be required. A survey of potentially applicable instrumentation is presented along with available information on operation in the test environment based on experimental data or on analysis of the physical characteristics of the device. Areas where further development work is needed are delineated

  13. Fundamentals of cryogenic engineering

    CERN Document Server

    Mukhopadhyay, Mamata

    2014-01-01

    The author, with her vast and varied experience in teaching and allied fields, clearly enunciates the behaviour and various properties of common cryogenic fluids, methods of liquefaction, and separation and applications of cryogens with thermodynamic analysis for process selection. This profusely illustrated study with clear-cut diagrams and process charts, should serve not only as a textbook for students but also as an excellent reference for researchers and practising engineers on design of cryogenic refrigeration, and liquefaction and separation process plants for various applications.

  14. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  15. Cryogenics theory, processes and applications

    CERN Document Server

    Hayes, Allyson E

    2011-01-01

    Cryogenics is the study of the production of very low temperature (below -150 -C, -238 -F or 123 K) and the behaviour of materials at those temperatures. This book presents current research from across the globe in the study of cryogenics, including the effect of cryogenic treatment on microstructure and mechanical properties of light weight alloys; the application of Fiber Bragg grating sensors at cryogenic temperatures; cryogenic grinding; liquid oxygen magnetohydrodynamics; and, genetic engineering techniques used to improve tolerance to cryopreservation.

  16. Conceptual design of the cryogenic system and estimation of the recirculated power for CFETR

    Science.gov (United States)

    Liu, Xiaogang; Qiu, Lilong; Li, Junjun; Wang, Zhaoliang; Ren, Yong; Wang, Xianwei; Li, Guoqiang; Gao, Xiang; Bi, Yanfang

    2017-01-01

    The China Fusion Engineering Test Reactor (CFETR) is the next tokamak in China’s roadmap for realizing commercial fusion energy. The CFETR cryogenic system is crucial to creating and maintaining operational conditions for its superconducting magnet system and thermal shields. The preliminary conceptual design of the CFETR cryogenic system has been carried out with reference to that of ITER. It will provide an average capacity of 75 to 80 kW at 4.5 K and a peak capacity of 1300 kW at 80 K. The electric power consumption of the cryogenic system is estimated to be 24 MW, and the gross building area is about 7000 m2. The relationships among the auxiliary power consumed by the cryogenic system, the fusion power gain and the recirculated power of CFETR are discussed, with the suggestion that about 52% of the electric power produced by CFETR in phase II must be recirculated to run the fusion test reactor.

  17. Test and evaluation of conductors for superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Schermer, R.I.; Hassenzahl, W.V.

    1976-01-01

    Pancake coils of a monolithic conductor and several different types of braid and cable, using a variety of insulating tapes and bonding resins were constructed. The coils were tested to quench in self-field at currents up to 2700 A. Results are presented for the training behavior of the various coils as compared to short-sample tests. A conductor composed of several braids or cables in parallel, which will be suitable for the in situ fabrication of large magnets is described

  18. Testing of Photomultiplier Tubes in a Magnetic Field

    Science.gov (United States)

    Waldron, Zachary; A1 Collaboration

    2016-09-01

    The A1 collaboration at MAMI in Mainz, Germany has designed a neutron detector that can be used in experiments to measure the electric form factor of the neutron. They will measure elastic scattering from the neutron, using the polarized electron beam from MAMI at A1's experimental hall. The detector will be composed of two walls of staggered scintillator bars which will be read out by photomultiplier tubes (PMT), connected to both ends of each scintillator via light guides. The experiment requires a magnetic field with strength of 1 Tesla, 2m away from the first scintillator wall. The resulting fringe field is sufficient to disrupt the PMTs, despite the addition of Mu Metal shielding. The effects of the fringe field on these PMTs was tested to optimize the amplification of the PMTs. A Helmholtz Coil was designed to generate a controlled magnetic field with equivalent strength to the field that the PMTs will encounter. The PMTs were read out using a multi-channel analyzer, were tested at various angles relative to the magnetic field in order to determine the optimal orientation to minimize signal disruption. Tests were also performed to determine: the neutron detector response to cosmic radiation; and the best method for measuring a magnetic field's strength in two dimensions. National Science Foundation Grant No. IIA-1358175.

  19. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  20. Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser

    International Nuclear Information System (INIS)

    Tobar, Michael Edmund; Wolf, Peter; Bize, Sebastien; Santarelli, Giorgio; Flambaum, Victor

    2010-01-01

    The cryogenic sapphire oscillator at the Paris Observatory has been continuously compared to various hydrogen masers since 2001. The early data sets were used to test local Lorentz invariance in the Robertson-Mansouri-Sexl (RMS) framework by searching for sidereal modulations with respect to the cosmic microwave background, and represent the best Kennedy-Thorndike experiment to date. In this work, we present continuous operation over a period of greater than six years from September 2002 to December 2008 and present a more precise way to analyze the data by searching the time derivative of the comparison frequency. Because of the long-term operation we are able to search both sidereal and annual modulations. The results give P KT =β RMS -α RMS -1=-1.7(4.0)x10 -8 for the sidereal and -23(10)x10 -8 for the annual term, with a weighted mean of -4.8(3.7)x10 -8 , a factor of 8 better than previous. Also, we analyze the data with respect to a change in gravitational potential for both diurnal and annual variations. The result gives β H-Maser -β CSO =-2.7(1.4)x10 -4 for the annual and -6.9(4.0)x10 -4 for the diurnal terms, with a weighted mean of -3.2(1.3)x10 -4 . This result is 2 orders of magnitude better than other tests that use electromagnetic resonators. With respect to fundamental constants a limit can be provided on the variation with ambient gravitational potential and boost of a combination of the fine structure constant (α), the normalized quark mass (m q ), and the electron to proton mass ratio (m e /m p ), setting the first limit on boost dependence of order 10 -10 .

  1. A flexible and configurable system to test accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jerzy M. Nogiec et al.

    2001-07-20

    Fermilab's accelerator magnet R and D programs, including production of superconducting high gradient quadrupoles for the LHC insertion regions, require rigorous yet flexible magnetic measurement systems. Measurement systems must be capable of handling various types of hardware and extensible to all measurement technologies and analysis algorithms. A tailorable software system that satisfies these requirements is discussed. This single system, capable of distributed parallel signal processing, is built on top of a flexible component-based framework that allows for easy reconfiguration and run-time modification. Both core and domain-specific components can be assembled into various magnet test or analysis systems. The system configured to comprise a rotating coil harmonics measurement is presented. Technologies as Java, OODB, XML, JavaBeans, software bus and component-based architectures are used.

  2. Lightweight superconducting magnet for a test facility of magnetic suspension for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, S; Fujino, H; Onodera, K; Hirai, K

    1973-01-01

    Light weight superconducting magnets are required in the magnetic suspension of high speed trains. A ring shaped magnet consisting of two C-shaped superconducting coils was manufactured and tested. Twisted multifilament Nb-TI wires were used for the superconducting coils and the concept of the pipe structure for a cryostat was adopted. These improved the reliability and reduced the weight. In order to minimize the amount of heat leak into the cryostat, and FRP support with a hinge structure was used against the lift force. The superconducting coil generates a magnetomotive force of 200 kAT at a rated current of 855 A and the dimensions and weight of the whole unit are 1540 mm (outer diameter) and 560 mm (height), and 650 kG, respectively. The suspension test was done in the persistent current mode. The suspension height of 80 mm was observed at an exciting current of 800 A.

  3. Cryogenics system: strategy to achieve nominal performance and reliable operation

    International Nuclear Information System (INIS)

    Bremer, J.; Brodzinski, K.; Casas, J.; Claudet, S.; Delikaris, D.; Delruelle, N.; Ferlin, G.; Fluder, C.; Perin, A.; Perinic, G.; Pezzetti, M.; Pirotte, O.; Tavian, L.; Wagner, U.

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the over-capacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the 'cannibalization' of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of interventions (e.g. cryo-magnet removal) which can be done without affecting the operating conditions of the adjacent sector. This creates additional constrains and possible extra down-time in the schedule of the shutdowns including the hardware commissioning. This presentation focuses on the consolidation plan foreseen during the LS1 to improve the performance of the LHC cryogenic system in terms of availability and sectorization. (authors)

  4. The Future with Cryogenic Fluid Dynamics

    Science.gov (United States)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  5. Scheduling the powering tests

    CERN Document Server

    Barbero-Soto, E; Casas-Lino, M P; Fernandez-Robles, C; Foraz, K; Pojer, M; Saban, R; Schmidt, R; Solfaroli-Camillocci, M; Vergara-Fernandez, A

    2008-01-01

    The Large Hadron Collider is now entering in its final phase before receiving beam, and the activities at CERN between 2007 and 2008 have shifted from installation work to the commissioning of the technical systems ("hardware commissioning"). Due to the unprecedented complexity of this machine, all the systems are or will be tested as far as possible before the cool-down starts. Systems are firstly tested individually before being globally tested together. The architecture of LHC, which is partitioned into eight cryogenically and electrically independent sectors, allows the commissioning on a sector by sector basis. When a sector reaches nominal cryogenic conditions, commissioning of the magnet powering system to nominal current for all magnets can be performed. This paper briefly describes the different activities to be performed during the powering tests of the superconducting magnet system and presents the scheduling issues raised by co-activities as well as the management of resources.

  6. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  7. Potential of the test particle in the magnetic field. I

    International Nuclear Information System (INIS)

    Sestak, B.

    1980-01-01

    The problem of the test particle potential in an external homogeneous magnetic field is solved in an unmagnetized plasma. It is shown that for the case when the parallel velocity component of the test particle is greater than the thermal velocity of the background particles, the potential is of a Coulomb character while for the case where the parallel velocity component is less than the thermal velocity the potential is of a Debye character. The Larmor radius of the test particle appears as an additional parameter in these potentials. (author)

  8. Status of the Cryogenic Storage Ring (CSR)

    Energy Technology Data Exchange (ETDEWEB)

    Menk, Sebastian; Becker, Arno; Berg, Felix; Blaum, Klaus; Fellenberger, Florian; Froese, Michael; Goullon, Johannes; Grieser, Manfred; Krantz, Claude; Lange, Michael; Laux, Felix; Repnow, Roland; Schornikov, Andrey; Hahn, Robert von; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik (MPIK), 69117 Heidelberg (Germany); Spruck, Kaija [Institut fuer Atom- und Molekuelphysik Justus-Liebig-Universitaet, 35392 Giessen (Germany)

    2012-07-01

    A novel cryogenic storage ring is currently under construction at the MPIK. By electrostatic ion optical elements, the 35 m circumference Cryogenic Storage Ring will be able to store ions at energies of up to 300 keV per charge unit without any mass limitations. The CSR consists of a cryogenic ({proportional_to}5 K) beam pipe surrounded by two radiation shields (40 and 80 K) in a large outer, thermal insulation vacuum. Extreme vacuum (density {proportional_to}10{sup 3} cm{sup -3}) will be achieved by 2 K cryopumping as demonstrated in a prototype ion beam trap. The ion optics was completely assembled within the precision cryogenic mounting and shielding structure of the first corner. There, cooldown tests to {proportional_to}40 K were performed which confirmed the required sub-millimeter accuracy of the specially designed electrode positioning under large temperature changes. The high-voltage connections to the cryogenic electrodes were installed and breakdown tests will be reported. Based on the test results the beam pipe, electrode mounting and shielding structures are under final construction for mounting during 2012.

  9. Cryogenic systems for large superconducting accelerators/storage rings

    International Nuclear Information System (INIS)

    Brown, D.P.

    1981-01-01

    Particle accelerators and storage rings which utilize superconducting magnets have presented cryogenic system designers, as well as magnet designers, with many new challenges. When such accelerators were first proposed, little operational experience existed to guide the design. Two superconducting accelerators, complete with cryogenic systems, have been designed and are now under construction. These are the Fermilab Doubler Project and the Brookhaven National Laboratory ISABELLE Project. The cryogenic systems which developed at these two laboratories share many common characteristics, especially as compared to earlier cryogenic systems. Because of this commonality, these characteristics can be reasonably taken as also being representative of future systems. There are other areas in which the two systems are dissimilar. In those areas, it is not possible to state which, if either, will be chosen by future designers. Some of the design parameters for the two systems are given

  10. FST-formation of cryogenic layer inside spherical shells of HiPER-class. Results of mathematical modeling and mock-ups testing

    International Nuclear Information System (INIS)

    Belolipetskiy, A.A.; Lalinina, E.A.; Panina, L.V.

    2010-01-01

    Complete text of publication follows. Current stage in the IFE research has passed to a closing stage: creation of the experimental reactor and realization of electric power generation. HiPER is a proposed European High Power laser Energy Research facility dedicated to demonstrating the feasibility of laser driven fusion for IFE reactor. The HiPER facility operation requires the formation and delivery of spherical shock ignition cryogenic targets with a rate of several Hz. The targets must be free-standing, or un-mounted. At the Lebedev Physical Institute (LPI), significant progress has been made in the technology development based on rapid fuel layering inside moving free-standing targets which refers to as FST layering method. It allows one to form cryogenic targets with a required rate. In this report, we present the results of a feasibility study on high rep-rate formation of HiPER-class targets by FST. We consider two types of the baseline target for shock ignition. The first one (BT-2) is a 2.094-mm diameter compact polymer shell with a 3 μm thick wall. The solid layer thickness is 211 μm. The second (BT-2a) consists of a 2.046-mm diameter compact polymer shell (3 μm thick also) having a DT-filled CH foam (70 μm) on its inner surface, and then a 120 μm thick solid layer of pure DT. The work addresses the physical concept, and the modeling results of the major stages of FST technologies for different shell materials: Filling stage optimization (computation): optimal filling of a target batch up to ∼ 1000 atm at 300 K requires minimizing the diffusion fill time due to using the ramp filling method for both BT-2 and BT-2a; Depressurization stage optimization (computation and experiments): it requires providing the shell container leak proofness during the process of its cooling down to a depressurization temperature. This allows one to fulfill the technical requirements on the risks minimization associated with the damage of the HiPER-class targets

  11. Cryogenic explosion environment modeling and testing of space shuttle and light-weight radioisotope heater unit interactions

    International Nuclear Information System (INIS)

    Johnson, E.W.

    1985-10-01

    In order to assess the risk to the world's populace in the event of a Space Shuttle accident when radioisotope-containing heat sources are on board, testing of that system must be performed to determine release point, environments required, and the size distribution of the released fuel. To evaluate the performance of the Light-Weight Radioisotope Heater Unit (LWRHU) (101 of these 1-W items are placed on the Galileo spacecraft which will be launched from the Space Shuttle), some high-velocity impact and flyer plate testing was carried out. The results showed that a bare urania-fueled LWRHU clad (approximately 1-mm thick platinum-30 wt % rhodium alloy) will withstand 1100 m/s flyer plate (3.5-mm thick aluminum) impacts and 330 m/s impacts upon the Space Shuttle floor (approximately 12-mm thick aluminum) without rupture or fuel release. Velocities in the order of 600 m/s on a steel surface will cause clad failure with fuel release. The fuel breakup patterns were characterized as to quantity in a specific size range. These data were employed in the formal Safety Analysis Report for the LWRHU to support the planned 1986 Galileo launch. 19 figs

  12. The LHC cryogenic operation for first collisions and physics run

    CERN Document Server

    Brodzinski, K; Benda, V; Bremer, J; Casas-Cubillos, J; Claudet, S; Delikaris, D; Ferlin, G; Fernandez Penacoba, G; Perin, A; Pirotte, O; Soubiran, M; Tavian, L; van Weelderen, R; Wagner, U

    2011-01-01

    The Large Hadron Collider (LHC) cryogenic system was progressively and successfully run for the LHC accelerator operation period starting from autumn 2009. The paper recalls the cryogenic system architecture and main operation principles. The system stability during magnets powering and availability periods for high energy beams with first collisions at 3.5 TeV are presented. Treatment of typical problems, weak points of the system and foreseen future consolidations will be discussed.

  13. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  14. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  15. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  16. The LHC cryogenic system and operational experience from the first three years run

    International Nuclear Information System (INIS)

    Delikaris, Dimitri; Tavian, Laurent

    2014-01-01

    The LHC (Large Hadron Collider) accelerator helium cryogenic system consists of eight cryogenically independent sectors, each 3.3 km long, all cooled and operated at 1.9 K. The overall, entropy equivalent, installed cryogenic capacity totalizes 144 kW (a) 4.5 K including 19.2 kW (a) 1.8 K with an associated helium inventory of 130 ton. The LHC cryogenic system is considered among the most complex and powerful in the world allowing the cooling down to superfluid helium temperature of 1.9 K. of the accelerators' high field superconducting magnets distributed over the 26.7 km underground ring. The present article describes the LHC cryogenic system and its associated cryogen infrastructure. Operational experience, including cryogen management, acquired from the first three years of LHC operation is finally presented. (author)

  17. Cryogen therapy of skin cancer

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors studied the cure of skin cancer in particular cryogen therapy of skin cancer. They noted that cryogen therapy of skin cancer carried new possibilities and improved results of neoplasms treatment

  18. Uses of cryogenics in power industry

    Energy Technology Data Exchange (ETDEWEB)

    Jungnickel, H

    1975-05-01

    A review of the present and possible future uses of cryogenic engineering and applied superconductivity. The applications discussed cover: transport of natural gas, superconducting N/sub 2/-filled cable for 275 kV. Cable with Ni/Ti conductor, homopolar machines with dix-type superconducting field coils, and superconducting magnetic propulsion. Important references to original works from different countries describing the latest developments are given.

  19. A Cryogenic Infrared Calibration Target

    Science.gov (United States)

    Wollack, E. J.; Kinzer, R. E., Jr.; Rinehart, S. A.

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to approx.4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented

  20. Experimental test of nuclear magnetization distribution and nuclear structure models

    International Nuclear Information System (INIS)

    Beirsdorfer, P; Crespo-Lopez-Urrutia, J R; Utter, S B.

    1999-01-01

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to place