WorldWideScience

Sample records for cryogenic helium flow

  1. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  2. Recent Developments and Qualification of Cryogenic Helium Flow Meters

    CERN Document Server

    Bézaguet, Alain-Arthur; Serio, L

    2002-01-01

    Flow measurement of cryogenic fluids is a useful diagnostic tool not only to assess thermal performance of superconducting devices and related components but also for early diagnosis of faulty components/systems and to assure the correct sharing of cryogenic power. It is mainly performed on the recovery at room temperature of vapor from liquid boil-off due to lack of commercially available robust and precise cryogenic mass flow meters. When high-accuracy or fast-time response is needed, or individual gas recovery at room temperature is not available, it is necessary to measure directly the fluid feed at cryogenic temperature. The results of extensive testing of industrially available and in-house developed flowmeters outlining characteristics and advantages of each measuring method are presented.

  3. Flow field analysis of high-speed helium turboexpander for cryogenic refrigeration and liquefaction cycles

    Science.gov (United States)

    Sam, Ashish Alex; Ghosh, Parthasarathi

    2017-03-01

    Turboexpander constitutes one of the vital components of Claude cycle based helium refrigerators and liquefiers that are gaining increasing technological importance. These turboexpanders which are of radial inflow in configuration are generally high-speed micro turbines, due to the low molecular weight and density of helium. Any improvement in efficiency of these machines requires a detailed understanding of the flow field. Computational Fluid Dynamics analysis (CFD) has emerged as a necessary tool for the determination of the flow fields in cryogenic turboexpanders, which is often not possible through experiments. In the present work three-dimensional transient flow analysis of a cryogenic turboexpander for helium refrigeration and liquefaction cycles were performed using Ansys CFX®, to understand the flow field of a high-speed helium turboexpander, which in turn will help in taking appropriate decisions regarding modifications of established design methodology for improved efficiency of these machines. The turboexpander is designed based on Balje's nsds diagram and the inverse design blade profile generation formalism prescribed by Hasselgruber and Balje. The analyses include the study of several losses, their origins, the increase in entropy due to these losses, quantification of losses and the effects of various geometrical parameters on these losses. Through the flow field analysis it was observed that in the nozzle, flow separation at the nozzle blade suction side and trailing edge vortices resulted in loss generation, which calls for better nozzle blade profile. The turbine wheel flow field analysis revealed that the significant geometrical parameters of the turbine wheel blade like blade inlet angle, blade profile, tip clearance height and trailing edge thickness need to be optimised for improved performance of the turboexpander. The detailed flow field analysis in this paper can be used to improve the mean line design methodology for turboexpanders used

  4. Advances in Helium Cryogenics

    Science.gov (United States)

    Sciver, S. W. Van

    This review provides a survey of major advances that have occurred in recent years in the area of helium cryogenics. Helium-temperature cryogenics is the enabling technology for a substantial and growing number of low-temperature systems from superconducting magnets to space-based experimental facilities. In recent years there have been many advances in the technology of low-temperature helium, driven mostly by new applications. However, to keep the review from being too broad, this presentation focuses mainly on three of the most significant advances. These are: (1) the development of large-scale recuperative refrigeration systems mainly for superconducting magnet applications in accelerators and other research facilities; (2) the use of stored superfluid helium (He II) as a coolant for spacebased astrophysics experiments; and (3) the application of regenerative cryocoolers operating at liquid helium temperatures primarily for cooling superconducting devices. In each case, the reader should observe that critical technologies were developed to facilitate these applications. In addition to these three primary advances, other significant helium cryogenic technologies are briefly reviewed at the end of this chapter, along with some vision for future developments in these areas.

  5. Investigations of pulsed heat loads on a forced flow supercritical helium loop. Part B: Simulation of the cryogenic circuit

    Science.gov (United States)

    Vallcorba, R.; Hitz, D.; Rousset, B.; Lagier, B.; Hoa, C.

    2012-07-01

    The VINCENTA software is applied to model the transient thermal-hydraulic flow of the HELIOS supercritical helium circuit. This cryogenic circuit is equipped with dedicated heating to simulate pulsed heat loads - See Part A for the description of the experimental set up. Currently, one of the main important problems to be solved is the control and smoothing of heat pulses in the cryogenic circuit to keep the refrigerator in stable operation. In this context, the aim of the present development is to get a predictive model for the experimental management of overall heat loads absorbed by the refrigerator as well as to better understand the associated physical phenomena. This preliminary model is validated with early experiments performed with the HELIOS test facility which is dedicated to simulate representative pulsed loads related to the Japanese tokamak JT60-SA. This article presents the first comparison between model and experiments for two JT60-SA relevant scaled down pulses: (20 s/600 s-1000 W) and (60 s/1800 s-750 W).

  6. A New Method for Measurement of Helium Mass Flow Rate in the Cryogenic System of TORE SUPRA

    Institute of Scientific and Technical Information of China (English)

    Ouyang Zhengrong; Pascal Reynaud

    2005-01-01

    The TORE SUPRA Tokamak was built by EURATOM-CEA association. The NbTi conductor of superconducting coils is inserted in a tight enclosure filled with pressurized superfluid helium of 0.125 MPa at 1.8 K [1]. The thick casing is cooled to 4.5 K by 1.8 MPa in 4.5 K supercritical helium circulation. Around this thick casing, a 80 K thermal shield protects the parts at very low temperatures from the thermal radiation, which is cooled by pressurized helium at 80 K and 1.8 MPa. A new measurement method for helium mass flow rate of 80 K shield and 4.5 K casing is described in this paper. The commissioning was done on the two helium loops of the cryoplant: the supercritical 4.5 K thick casing and 80 K shields. The purpose is to improve control of the 4.5 K and 80 K refrigeration loops.

  7. A Cryogenic Flow Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of cryogens in spacecraft propellant...

  8. INVESTIGATION STUDIES ON SUB-COOLING OF CRYOGENIC LIQUIDS USING HELIUM INJECTION METHOD

    Directory of Open Access Journals (Sweden)

    T. Ramesh

    2014-01-01

    Full Text Available In cryogenic propellants, the sub-cooling of cryogenic propellants contained in tanks is an important and effective method for bringing down the lift-off mass of launch vehicle and thus the performance of the rocket engine is greatly improved. This study presents the technical and experimental studies conducted on cryogenic liquids such as Liquid Oxygen, Liquid Nitrogen and Liquid Hydrogen using helium injection method. The influence of cooled Helium on the degree of sub-cooling and the variation in flow rate of Helium gas admitted are discussed. The experimental and theoretical studies indicate that the sub-cooling technique using helium injection is a very simple method and can be very well adopted in propellant tanks used for ground and launch vehicle applications. The overall cooling effect for rocket application is also discussed. The critical values of the non-dimensional parameters and injected helium temperatures are also estimated.

  9. Helium Inventory Management For LHC Cryogenics

    CERN Document Server

    Pyarali, Maisam

    2017-01-01

    The LHC is a 26.7 km circumference ring lined with superconducting magnets that operate at 1.9 K. These magnets are used to control the trajectory of beams of protons traveling in opposite directions and collide them at various experimental sites across the LHC where their debris is analyzed. The focus of this paper is the cryogenic system that allows the magnets to operate in their superconducting states. It aims to highlight the operating principles of helium refrigeration and liquefaction, with and without nitrogen pre-cooling; discuss the various refrigerators and liquefiers used at CERN for both LHC and Non-LHC applications, with their liquefaction capacities and purposes; and finally to deliberate the management of the LHC inventory and how it contributes to the strategic decision CERN makes regarding the inventory management during the Year-End Technical Stop (YETS), Extended Year-End Technical Stop (EYETS) and long shutdowns.

  10. Cryogenic helium gas circulation system for advanced characterization of superconducting cables and other devices

    Science.gov (United States)

    Pamidi, Sastry; Kim, Chul Han; Kim, Jae-Ho; Crook, Danny; Dale, Steinar

    2012-04-01

    A versatile cryogenic test bed, based on circulating cryogenic helium gas, has been designed, fabricated, and installed at the Florida State University Center for Advanced Power Systems (FSU-CAPS). The test bed is being used to understand the benefits of integrating the cryogenic systems of multiple superconducting power devices. The helium circulation system operates with four sets of cryocooler and heat exchanger combinations. The maximum operating pressure of the system is 2.1 MPa. The efficacy of helium circulation systems in cooling superconducting power devices is evaluated using a 30-m-long simulated superconducting cable in a flexible cryostat. Experiments were conducted at various mass flow rates and a variety of heat load profiles. A 1-D thermal model was developed to understand the effect of the gas flow parameters on the thermal gradients along the cable. Experimental results are in close agreement with the results from the thermal model.

  11. Cold Helium Gas Pressurization For Spacecraft Cryogenic Propulsion Systems

    Science.gov (United States)

    Morehead, Robert L.; Atwell. Matthew J.; Hurlbert, Eric A.; Melcher, J. C.

    2017-01-01

    To reduce the dry mass of a spacecraft pressurization system, helium pressurant may be stored at low temperature and high pressure to increase mass in a given tank volume. Warming this gas through an engine heat exchanger prior to tank pressurization both increases the system efficiency and simplifies the designs of intermediate hardware such as regulators, valves, etc. since the gas is no longer cryogenic. If this type of cold helium pressurization system is used in conjunction with a cryogenic propellant, though, a loss in overall system efficiency can be expected due to heat transfer from the warm ullage gas to the cryogenic propellant which results in a specific volume loss for the pressurant, interpreted as the Collapse Factor. Future spacecraft with cryogenic propellants will likely have a cold helium system, with increasing collapse factor effects as vehicle sizes decrease. To determine the collapse factor effects and overall implementation strategies for a representative design point, a cold helium system was hotfire tested on the Integrated Cryogenic Propulsion Test Article (ICPTA) in a thermal vacuum environment at the NASA Glenn Research Center Plum Brook Station. The ICPTA vehicle is a small lander-sized spacecraft prototype built at NASA Johnson Space Center utilizing cryogenic liquid oxygen/liquid methane propellants and cryogenic helium gas as a pressurant to operate one 2,800lbf 5:1 throttling main engine, two 28lbf Reaction Control Engines (RCE), and two 7lbf RCEs (Figure 1). This vehicle was hotfire tested at a variety of environmental conditions at NASA Plum Brook, ranging from ambient temperature/simulated high altitude, deep thermal/high altitude, and deep thermal/high vacuum conditions. A detailed summary of the vehicle design and testing campaign may be found in Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing, AIAA JPC 2017.

  12. Performance Studies on Sub-cooling of Cryogenic Liquids Used for Rocket Propulsion Using Helium Bubbling

    Directory of Open Access Journals (Sweden)

    Ramesh T

    2014-03-01

    Full Text Available The sub-cooling of cryogenic propellants contained in tanks is an important and effective method for bringing down the lift-off mass of launch vehicle and thus the performance of the rocket engine is greatly improved. This paper presents the technical and experimental studies conducted on cryogenic liquids such as Liquid Oxygen, Liquid Nitrogen, and Liquid Hydrogen using helium bubbling method. The influence of cooled Helium on the degree of sub-cooling and the variation in flow rate of Helium gas admitted are discussed. The experimental and theoretical studies indicate that the sub-cooling technique using helium injection is a very simple method and can be very well adopted in propellant tanks used for ground and launch vehicle applications.

  13. A Cryogenic Flow Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the success of the phase I effort, Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of...

  14. A cryogenic axial-centrifugal compressor for superfluid helium refrigeration

    CERN Document Server

    Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L

    1997-01-01

    CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.

  15. Cryogenic adsorber design in a helium refrigeration system

    Science.gov (United States)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  16. A High Reliability Gas-driven Helium Cryogenic Centrifugal Compressor

    CERN Document Server

    Bonneton, M; Gistau-Baguer, Guy M; Turcat, F; Viennot, P

    1998-01-01

    A helium cryogenic compressor was developed and tested in real conditions in 1996. The achieved objective was to compress 0.018 kg/s Helium at 4 K @ 1000 Pa (10 mbar) up to 3000 Pa (30 mbar). This project was an opportunity to develop and test an interesting new concept in view of future needs. The main features of this new specific technology are described. Particular attention is paid to the gas bearing supported rotor and to the pneumatic driver. Trade off between existing technologies and the present work are presented with special stress on the bearing system and the driver. The advantages are discussed, essentially focused on life time and high reliability without maintenance as well as non pollution characteristic. Practical operational modes are also described together with the experimental performances of the compressor. The article concludes with a brief outlook of future work.

  17. Experiments testing the abatement of radiation damage in D-xylose isomerase crystals with cryogenic helium.

    Science.gov (United States)

    Hanson, B Leif; Harp, Joel M; Kirschbaum, Kristin; Schall, Constance A; DeWitt, Ken; Howard, Andrew; Pinkerton, A Alan; Bunick, Gerard J

    2002-11-01

    Helium is a more efficient cryogen than nitrogen, and for macromolecular data collection at high-flux beamlines will deliver lower temperatures. An open-flow helium cryostat developed at the University of Toledo (the Pinkerton Device) has been used for macromolecular data collection. This device differs from standard commercial He cryostats by having a much narrower aperture providing a high velocity stream of He around the crystal that maximizes convective and conductive heat exchange between the crystal and the cryogen. This paper details a series of experiments conducted at the IMCA-CAT 17ID beamline using one crystal for each experimental condition to examine whether helium at 16 K provided better radiation-damage abatement compared with nitrogen at 100 K. These studies used matched high-quality crystals (0.94 A diffraction resolution) of D-xylose isomerase derived from the commercial material Gensweet SGI. Comparisons show that helium indeed abates the indicators of radiation damage, in this case resulting in longer crystal diffractive lifetimes. The overall trend suggests that crystals maintain order and that high-resolution data are less affected by increased radiation load when crystals are cooled with He rather than N(2). This is probably the result of a lower effective temperature at the crystal with concomitant reduction in free-radical diffusion. Other features, such as an apparent phase transition in macromolecular crystals at lower temperatures, require investigation to broaden the utility of He use.

  18. CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity

    Science.gov (United States)

    Grayson, Gary; Lopez, Alfredo; Chandler, Frank; Hastings, Leon; Hedayat, Ali; Brethour, James

    2007-01-01

    A recently developed computational fluid dynamics modeling capability for cryogenic tanks is used to simulate both self-pressurization from external heating and also depressurization from thermodynamic vent operation. Axisymmetric models using a modified version of the commercially available FLOW-3D software are used to simulate actual physical tests. The models assume an incompressible liquid phase with density that is a function of temperature only. A fully compressible formulation is used for the ullage gas mixture that contains both condensable vapor and a noncondensable gas component. The tests, conducted at the NASA Marshall Space Flight Center, include both liquid hydrogen and nitrogen in tanks with ullage gas mixtures of each liquid's vapor and helium. Pressure and temperature predictions from the model are compared to sensor measurements from the tests and a good agreement is achieved. This further establishes the accuracy of the developed FLOW-3D based modeling approach for cryogenic systems.

  19. Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures. [transonic flow in cryogenic wind tunnels

    Science.gov (United States)

    Hall, R. M.; Adcock, J. B.

    1981-01-01

    The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.

  20. Helium mass flow measurement in the International Fusion Superconducting Magnet Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, L.R.

    1986-08-01

    The measurement of helium mass flow in the International Fusion Superconducting Magnet Test Facility (IFSMTF) is an important aspect in the operation of the facility's cryogenic system. Data interpretation methods that lead to inaccurate results can cause severe difficulty in controlling the experimental superconducting coils being tested in the facility. This technical memorandum documents the methods of helium mass flow measurement used in the IFSMTF for all participants of the Large Coil Program and for other cryogenic experimentalists needing information on mass flow measurements. Examples of experimental data taken and calculations made are included to illustrate the applicability of the methods used.

  1. Cryogenic spray vaporization in high-velocity helium, argon and nitrogen gasflows

    Science.gov (United States)

    Ingebo, Robert D.

    1993-01-01

    Effects of gas properties on cryogenic liquid-jet atomization in high-velocity helium, nitrogen, and argon gas flows were investigated. Volume median diameter, D(sub v.5e), data were obtained with a scattered-light scanning instrument. By calculating the change in spray drop size, -Delta D(sub v.5)(exp 2), due to droplet vaporization, it was possible to calculate D(sub v.5C). D(sub v.5C) is the unvaporized characteristic drop size formed at the fuel-nozzle orifice. This drop size was normalized with respect to liquid-jet diameter, D(sub O). It was then correlated with several dimensionless groups to give an expression for the volume median diameter of cryogenic LN2 sprays. This expression correlates drop size D(sub v.5c) with aerodynamic and liquid-surface forces so that it can be readily determined in the design of multiphase-flow propellant injectors for rocket combustors.

  2. Helium Recovery in the LHC Cryogenic System following Magnet Resistive Transitions

    CERN Document Server

    Chorowski, M; Serio, L; Tavian, L; Wagner, U; Van Weelderen, R

    1998-01-01

    A resistive transition (quench) of the Large Hadron Collider magnets provokes the expulsion of helium from the magnet cryostats to the helium recovery system. A high-volume, vacuum-insulated recovery line connected to several uninsulated medium-pressure gas storage tanks, forms the main constituents of the system. Besides a dedicated hardware configuration, helium recovery also implies specific procedures that should follow a quench, in order to conserve the discharged helium and possibly make use of its refrigeration capability. The amount of energy transferred after a quench from the magnets to the helium leaving the cold mass has been estimated on the basis of experimental data. Based on these data, the helium thermodynamic state in the recovery system is calculated using a lumped parameter approach. The LHC magnet quenches are classified ina parametric way from their cryogenic consequences and procedures that should follow the quench are proposed.

  3. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    Energy Technology Data Exchange (ETDEWEB)

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  4. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    Science.gov (United States)

    Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.

    2014-01-01

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.

  5. Experimental investigation of the heat transfer characteristics of a helium cryogenic thermosyphon

    Science.gov (United States)

    Long, Z. Q.; Zhang, P.

    2013-10-01

    The heat transfer performance of a cryogenic thermosyphon filled with helium as the working fluid is investigated experimentally with a G-M cryocooler as the heat sink in this study. The cryogenic thermosyphon acts as a thermal link between the cryocooler and the cooled target (the copper evaporator with a large mass). Helium is charged in different filling ratios, and the cooling down process and the heat transfer characteristics of the cryogenic thermosyphon are investigated. The cooling down process of the cooled target can be significantly accelerated by the presence of helium in the cryogenic thermosyphon and the cooling down period can be further shortened by the increase of filling ratio. The heat transfer mode changes from the liquid-vapor phase change to natural convection as the increase of the heating power applied on the evaporator. The heat transfer limit and thermal resistance are discussed for the liquid-vapor phase change heat transfer, and they can be estimated by empirical correlations. For the natural convection heat transfer, it can be enhanced by increasing the filling ratio, and the natural convection of supercritical helium is much stronger than that of gaseous helium.

  6. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, P., E-mail: pasquale.arpaia@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Girone, M., E-mail: mario.girone@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Department of Engineering, University of Sannio, Benevento (Italy); Liccardo, A., E-mail: annalisa.liccardo@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Pezzetti, M., E-mail: marco.pezzetti@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Piccinelli, F., E-mail: fabio.piccinelli@cern.ch [Department of Mechanical Engineering, University of Brescia, Brescia (Italy)

    2015-12-15

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sources most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.

  7. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium.

    Science.gov (United States)

    Arpaia, P; Girone, M; Liccardo, A; Pezzetti, M; Piccinelli, F

    2015-12-01

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sources most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.

  8. Cryogenic infrastructure for superfluid helium testing of LHC prototype superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Benda, V.; Duraffour, G.; Guiard-Marigny, A.; Lebrun, Ph.; Momal, F.; Saban, R.; Sergo, V.; Tavian, L.; Vullierme, B. [CERN, Geneva (Switzerland)

    1994-12-31

    The Large Hadron Collider (LHC) project at CERN will require about 1800 high-field superconducting magnets, operating below 1.9 K in pressurized helium II. All magnets will be reception-tested before their installation in the 26.7 km circumference ring tunnel. For this purpose, the authors have installed large-capacity cryogenic facilities, beginning to operate for tests of full-scale prototype magnets produced by European industry. Based around a 6 kW@4.5 K helium refrigerator and a 25 m{sup 3} liquid helium storage, the system includes a low-pressure, 6 to 18 g/s helium pumping unit for 1.8 K refrigeration, a set of magnet cooldown and warmup units delivering each up to 120 kW of refrigeration at precisely controlled temperature, and a network of cryogenic lines for transferring liquid nitrogen, liquid helium and cold gaseous helium. All components are controlled by embedded PLCs, connected to a general supervision system for operator interface. The authors present the system layout and describe the design and performance of the main components.

  9. A Cryogen Recycler with Pulse Tube Cryocooler for Recondensing Helium and Nitrogen

    Science.gov (United States)

    Wang, C.; Lichtenwalter, B.

    2015-12-01

    We have developed a cryogen recycler using a 4 K pulse tube cryocooler for recondensing helium and nitrogen in a NMR magnet. The liquid helium cooled NMR magnet has a liquid nitrogen cooled radiation shield. The magnet boils off 0.84 L/day of liquid helium and 6 L/day of liquid nitrogen. The recycler is designed with both a liquid helium return tube and a liquid nitrogen return tube, which are inserted into the fill ports of liquid helium and nitrogen. Therefore the recycler forms closed loops for helium and nitrogen. A two-stage 4 K pulse tube cryocooler, Cryomech model PT407 (0.7W at 4.2 K), is selected for the recycler. The recycler was first tested with a Cryomech's test cryostat and resulted in the capacities of recondensing 8.2 L/day of nitrogen and liquefying 4 L/day of helium from room temperature gas. The recycler has been installed in the NMR magnet at University of Sydney since August, 2014 and continuously maintains a zero boil off for helium and nitrogen.

  10. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    Science.gov (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  11. Liquid helium-free cryostat and hermetically sealed cryogenic microwave cavity for hyperfine spectroscopy of antiprotonic helium.

    Science.gov (United States)

    Massiczek, O; Friedreich, S; Juhász, B; Widmann, E; Zmeskal, J

    2011-12-11

    The design and properties of a new cryogenic set-up for laser-microwave-laser hyperfine structure spectroscopy of antiprotonic helium - an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland - are described. Similar experiments for (4)He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised (3)He gas volume and different dimensions of the microwave resonator for measuring the (3)He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD.

  12. Liquid helium-free cryostat and hermetically sealed cryogenic microwave cavity for hyperfine spectroscopy of antiprotonic helium

    Energy Technology Data Exchange (ETDEWEB)

    Massiczek, O., E-mail: oswald.massiczek@cern.ch [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Friedreich, S.; Juhasz, B.; Widmann, E.; Zmeskal, J. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria)

    2011-12-11

    The design and properties of a new cryogenic set-up for laser-microwave-laser hyperfine structure spectroscopy of antiprotonic helium - an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland - are described. Similar experiments for {sup 4}He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised {sup 3}He gas volume and different dimensions of the microwave resonator for measuring the {sup 3}He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD.

  13. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (lhc)

    Science.gov (United States)

    Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.

    2010-04-01

    The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.

  14. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (LHC)

    CERN Document Server

    Claudet, S; Tavian, L; Wagner, U

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world’s largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility..

  15. Cryogenic and thermal design for the Superfluid Helium On-Orbit Transfer (SHOOT) experiment

    Science.gov (United States)

    Lee, J. H.; Maa, S.; Brooks, W. F.; Ng, Y. S.

    1988-01-01

    The analysis and trade-offs of the external thermal design of the two 200-liter dewars required in the SHOOT experiment to extend space mission life by superfluid helium replenishment are discussed. Also considered are the support electronics and the optimization and prediction of the performance of the dewar and cryostat assemblies. Particular attention is given to the ground-hold and standby performance of the dewars, along with the temperature of the helium bath during high-flow-rate helium transfers.

  16. Stability and Control of Supercritical Helium Flow in the LHC Circuits

    CERN Document Server

    Hatchadourian, E

    1999-01-01

    The circulating particle beams of the Large Hadron Collider (LHC) will induce dynamic heat loads into the cryogenic system. Beam screens, maintained at a temperature between 5 K and 20 K by weakly supercritical helium -in order to avoid-two phase flow- are inserted inside the magnet cold bore to intercept most of these heat loads. Evidence has been presented in experimental and theoretical work that the main type of dynamic instability in long channels is that caused by the propagation of density waves due to multiple regenerative feedback. Oscillations are typically observed in circuits operating with low flow rate and/or high energy input. The study of the system behaviour under different operating cases permits assessment of the time constant of the system as well as its temperature-control parameters. A part of this work also concerns the study of flow stability in the other LHC cryogenic circuits working with supercritical helium.

  17. Economics of Large Helium Cryogenic Systems experience from Recent Projects at CERN

    CERN Document Server

    Claudet, S; Lebrun, P; Tavian, L; Wagner, U

    1999-01-01

    Large projects based on applied superconductivity, such as particle accelerators, tokamaks or SMES, require powerful and complex helium cryogenic systems, the cost of which represents a significant, if not dominant fraction of the total capital and operational expenditure. It is therefore important to establish guidelines and scaling laws for costing such systems, based on synthetic estimators of their size and performance. Although such data has already been published for many years, the experience recently gathered at CERN with the LEP and LHC projects, which have de facto turned the laboratory into a major world cryogenic center, can be exploited to update this information and broaden the range of application of the scaling laws. We report on the economics of 4.5 K and 1.8 K refrigeration, cryogen distribution and storage systems, and indicate paths towards their cost-to-performance optimisation.

  18. 大型超流氦低温冷却系统的研究进展%DEVELOPMENT OF LARGE SCALE CRYOGENIC SUPERFLUID HELIUM REFRIGERATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    何超峰; 郁欢强; 孙兴中; 陈耀锋; 武义锋; 周家屹; 张华标

    2016-01-01

    低温超导技术在基础科学研究中的广泛应用,极大的带动了低温工程的技术发展。通过介绍超流氦在大型低温系统中的应用优势,国内外几个典型超流氦低温冷却系统的流程、性能指标以及运行情况。分析了大型超流氦低温冷却系统的主要设备构成、热力循环方案以及关键设备、关键技术突破方向。%While the applications of low temperature superconducting technology in basic scientific research spread widely,the development of cryogenic engineering was greatly accelerated,and lots of large helium cryogenic systems were established successively. The processes,performances and operating conditions of several typical superfluid helium cryogenic systems were described in detail. The advantages of the application of the super flow helium in the large-scale cryogenic system are introduced and the main equipment composition,the thermodynamic cycle scheme and the key equipment,the key technology breakthrough direction are analyzed in this paper.

  19. The helium cryogenic plant for the CMS superconducting magnet

    CERN Document Server

    Perinic, G; Dagut, F; Dauguet, P; Hirel, P

    2002-01-01

    A new helium refrigeration plant with a cooling capacity of 800 W at 4.45 K, 4500 W between 60 K and 80 K, and 4 g/s liquefaction simultaneously has been designed and is presently being constructed by Air Liquide for CERN. The refrigeration plant will provide the cooling power for the cool down and the operation of the CMS (Compact Muon Solenoid) superconducting coil whose cold mass weighs 225 t. The refrigeration plant will at first be installed in a surface building for the tests of the superconducting magnet. On completion of the tests the cold box will be moved to its final underground position next to the CMS experimental cavern. This paper presents the process design, describes the main components and explains their selection. (4 refs).

  20. Spectroscopic studies of cryogenic fluids: Benzene in argon and helium

    Science.gov (United States)

    Nowak, R.; Bernstein, E. R.

    1987-09-01

    Energy shifts and bandwidths of the 610 vibronic feature of the 1B2u←1A1g optical absorption spectrum of benzene dissolved in supercritical argon and helium, and in liquid argon are reported as a function of pressure, temperature, and density. Benzene/Ar solutions display red shifts of the 610 transition with increasing density but the dependence is found to be nonlinear at high densities. Benzene/He solutions evidence blue shifts of the 610 transition as a function of increasing density which also becomes nonlinear at high densities. Only small spectral shifts are recorded if the density is kept constant and pressure and temperature are varied simultaneously. In addition, a small density independent temperature effect on the transition energy shift is identified. Experimental results are compared to dielectric (Onsager-Böttcher and Wertheim) and quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute absorption energy. Reasonably good agreement between experiment and theory is found only for the benzene/Ar system at relatively low densities. The theory fails to predict energy shifts for both the benzene/He and high density benzene/Ar systems. This result is different from the findings for the benzene/N2 and benzene/C3H8 solutions and can be interpreted qualitatively in terms of competition between dispersive attractive and repulsive interactions as a function of density. The failure of the theory to describe these transition energy shifts is attributed to the omission of explicit repulsive interactions terms in the theoretical models employed.

  1. Shock compression of liquid helium and helium-hydrogen mixtures : development of a cryogenic capability for shock compression of liquid helium on Z, final report for LDRD Project 141536.

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Andrew J.; Knudson, Marcus D.; Shelton, Keegan P.; Hanson, David Lester

    2010-10-01

    This final report on SNL/NM LDRD Project 141536 summarizes progress made toward the development of a cryogenic capability to generate liquid helium (LHe) samples for high accuracy equation-of-state (EOS) measurements on the Z current drive. Accurate data on He properties at Mbar pressures are critical to understanding giant planetary interiors and for validating first principles density functional simulations, but it is difficult to condense LHe samples at very low temperatures (<3.5 K) for experimental studies on gas guns, magnetic and explosive compression devices, and lasers. We have developed a conceptual design for a cryogenic LHe sample system to generate quiescent superfluid LHe samples at 1.5-1.8 K. This cryogenic system adapts the basic elements of a continuously operating, self-regulating {sup 4}He evaporation refrigerator to the constraints of shock compression experiments on Z. To minimize heat load, the sample holder is surrounded by a double layer of thermal radiation shields cooled with LHe to 5 K. Delivery of LHe to the pumped-He evaporator bath is controlled by a flow impedance. The LHe sample holder assembly features modular components and simplified fabrication techniques to reduce cost and complexity to levels required of an expendable device. Prototypes have been fabricated, assembled, and instrumented for initial testing.

  2. Development of a Cryogenic Capability for Shock Compression of Liquid Helium on the Z machine

    Science.gov (United States)

    Lopez, Andrew; Root, Seth; Shelton, Keegan; Villalva, Jose; Hanson, David

    2015-06-01

    A cryogenic system has been developed to generate liquid helium (LHe) samples at 2.1 K for high precision equation-of-state (EOS) and isentropic compression measurements using the Z machine. Accurate data on He properties at Mbar pressures are critical to understanding gas giant planetary interiors and for validating first principles density functional simulations; however, limited high pressure He EOS data exist due to difficulty in condensing LHe samples (Administration under Contract No. DE-AC04-94AL85000.

  3. Vibration Measurements to Study the Effect of Cryogen Flow in Superconducting Quadrupole.

    Energy Technology Data Exchange (ETDEWEB)

    He,P.; Anerella, M.; aydin, S.; Ganetis, G. Harrison, M.; Jain, A.; Parker, B.

    2007-06-25

    The conceptual design of compact superconducting magnets for the International Linear Collider final focus is presently under development. A primary concern in using superconducting quadrupoles is the potential for inducing additional vibrations from cryogenic operation. We have employed a Laser Doppler Vibrometer system to measure the vibrations in a spare RHIC quadrupole magnet under cryogenic conditions. Some preliminary results of these studies were limited in resolution due to a rather large motion of the laser head as well as the magnet. As a first step towards improving the measurement quality, a new set up was used that reduces the motion of the laser holder. The improved setup is described, and vibration spectra measured at cryogenic temperatures, both with and without helium flow, are presented.

  4. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    CERN Document Server

    Parente, C; Munday, A; Wiggins, P

    2006-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

  5. Cryogenic Systems

    Science.gov (United States)

    Hosoyama, Kenji

    2002-02-01

    In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

  6. Analysis of thermo-mechanical pipe-strength for the LHC helium relief system and corresponding helium flows following a resistive transition of the magnets.

    CERN Document Server

    Chorowski, M; Riddone, G

    2005-01-01

    The LHC cryogenic system will contain of about 100 tons of helium mostly located in underground elements of the machine. The amount of helium stored in the magnet cold masses located in one sector of the LHC machine will be of about 6400 kg. In case of a simultaneous resistive transition (quench) of the magnets of a full sector of the accelerator, the helium will be relieved to a dedicated relief system. The system will comprise header D, quench lines connected to medium pressure tanks, vent line open to environment and accessories. We analyse a dynamic behaviour of the system with respect to its thermo-mechanical properties and overall capacity. Spatial and time distribution of pressure, temperature, velocity, density and flow rates in the system elements are presented. Thermo-mechanical stresses in the critical pipe sections have been calculated.

  7. The Orsay polarized electron source from a flowing helium afterglow

    Science.gov (United States)

    Arianer, J.; Brissaud, I.; Essabaa, S.; Humblot, H.; Zerhouni, W.

    1993-12-01

    A polarized electron source was designed at Orsay. We have chosen to adapt the flowing helium afterglow source working at Rice University because it provides a very high polarization. We have investigated a new way for the optical pumping of the helium metastables. An 85% electron polarization was reached.

  8. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    Science.gov (United States)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  9. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    Science.gov (United States)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  10. Cryogenic performance and numerical modeling of a helium refrigerator for the JT-60SA coil test facility

    Science.gov (United States)

    Serrand, Alexandre; Abdel-Maksoud, Walid; Genini, Laurent; Juster, François-Paul

    2014-01-01

    In the framework of the JT-60SA project, a cryogenic loop, dedicated to the tests of the JT-60SA Toroidal Field Coils, is planned to be installed at CEA Saclay. To analyze the dynamic thermal behavior of the cryogenic loop and to optimize the cryogenic process control of the coil test facility, dynamic simulations will be carried out with the software EcosimPro. This paper deals with the validation of the software. Experimental power measurements in pure refrigeration on a helium refrigerator have been compared to computations. Results are close and allow validating the software. The modeling of the JT-60SA CTF cryogenic test loop is also described in order to give an overview of the next computations.

  11. Comparative study of high voltage bushing designs suitable for apparatus containing cryogenic helium gas

    Science.gov (United States)

    Rodrigo, H.; Graber, L.; Kwag, D. S.; Crook, D. G.; Trociewitz, B.

    2013-10-01

    The high voltage bushing forms a critical part of any termination on cables, transformers and other power system devices. Cryogenic entities such as superconducting cables or fault current limiters add more complexity to the design of the bushing. Even more complex are bushings designed for superconducting devices which are cooled by high pressure helium gas. When looking for a bushing suitable for dielectric cable tests in a helium gas cryostat no appropriate device could be found that fulfilled the criterion regarding partial discharge inception voltage level. Therefore we decided to design and manufacture a bushing in-house. In the present work we describe the dielectric tests and operational experience on three types of bushings: One was a modified commercially available ceramics feed through which we adopted for our special need. The second bushing was made of an epoxy resin, with an embedded copper squirrel cage arrangement at the flange, extending down about 30 cm into the cold end of the bushing. This feature reduced the electric field on the surface of the bushing to a negligible value. The third bushing was based on a hollow body consisting of glass fiber reinforced polymer and stainless steel filled with liquid nitrogen. The measurements showed that the dielectric quality of all three bushings exceeded the requirements for the intended purpose. The partial discharge (PD) data from these studies will be used for the design and fabrication of a cable termination for a specialized application on board a US Navy ship.

  12. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    CERN Document Server

    Delruelle, N; Leclercq, Y; Pirotte, O; Williams, L

    2015-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for eac...

  13. Optical density measurements in a multiphase cryogenic fluid flow system

    Science.gov (United States)

    Korman, Valentin; Wiley, John; Gregory, Don A.

    2006-05-01

    An accurate determination of fluid flow in a cryogenic propulsion environment is difficult under the best of circumstances. The extreme thermal environment increases the mechanical constraints, and variable density conditions create havoc with traditional flow measurement schemes. Presented here are secondary results of cryogenic testing of an all-optical sensor capable of a mass flow measurement by directly interrogating the fluid's density state and a determination of the fluid's velocity. The sensor's measurement basis does not rely on any inherent assumptions as to the state of the fluid flow (density or otherwise). The fluid sensing interaction model will be discussed. Current test and evaluation data and future development work will be presented.

  14. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T. [Fusion and Materials for Nuclear System Division, Oak Ridge National Laboratory, Oak Ridge (United States); Rasmussen, David A.; Hechler, Michael P. [U.S. ITER Project Office, Oak Ridge National Laboratory, Oak Ridge (United States); Pearce, Robert J. H.; Dremel, Mattias [ITER Organization, 13115 St. Paul-lez-Durance (France); Boissin, J.-C. [Consultant, Grenoble (France)

    2014-01-29

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  15. Evaluation of Static Mixer Flow Enhancements for Cryogenic Viscous Compressor Prototype for ITER Vacuum System

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; Baylor, Larry R [ORNL; Meitner, Steven J [ORNL; Combs, Stephen Kirk [ORNL; Ha, Tam T [ORNL; Morrow, Michael [ORNL; Biewer, Theodore M [ORNL; Rasmussen, David A [ORNL; Hechler, Michael P [ORNL; Pearce, R.J.H. [ITER Organization, Cadarache, France; Dremel, M. [ITER Organization, Cadarache, France; Boissin, Jean Claude [Consultant

    2014-01-01

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (50 to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype

  16. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  17. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  18. Design and optimisation of low heat load liquid helium cryostat to house cryogenic current comparator in antiproton decelerator at CERN

    Science.gov (United States)

    Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.

    2017-02-01

    The Cryogenic Current Comparator (CCC) is installed in the low-energy Antiproton Decelerator (AD) at CERN to make an absolute measurement of the beam intensity. Operating below 4.2 K, it is based on a superconducting quantum interference device (SQUID) and employs a superconducting niobium shield to supress magnetic field components not linked to the beam current. The AD contains no permanent cryogenic infrastructure so the local continuous liquefaction of helium using a pulse-tube is required; limiting the available cooling power to 0.69 W at 4.2K. Due to the sensitivity of the SQUID to variations in magnetic fields, the CCC is highly sensitive to mechanical vibration which is limited to a minimum by the support systems of the cryostat. This article presents the cooling system of the cryostat and discusses the design challenges overcome to minimise the transmission of vibration to the CCC while operating within the cryogenic limits imposed by the cooling system.

  19. Characteristics of a liquid-helium-free calibration apparatus for cryogenic thermometers

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, T. [National Metrology Institute of Japan, AIST, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563 (Japan)

    2013-09-11

    Closed-cycle Joule-Thomson (JT) cryocoolers have been developed at National Metrology Institute of Japan (NMIJ)/National Institute of Advanced Industrial Science and Technology (AIST) with the aim of realizing a liquid-helium-free calibration apparatus for cryogenic thermometers between 0.65 K and 25 K. The latest JT cryocooler at NMIJ/AIST consists of a {sup 3}He JT cooling circuit and a pulse tube mechanical refrigerator. The characteristics of the apparatus including a residual gas analysis of the JT cooling circuit are presented in this paper. Currently the initial cool-down is performed using a heat-exchange gas. It normally takes about 30 h to reduce the temperature from room temperature to 5 K at the thermometer comparison block of the apparatus. The correct timing of the removal of the heatexchange gas is important for the efficient operation of the apparatus. Incomplete removal of the heat-exchange gas induces excess heat load on the apparatus and thermal disturbances. Some examples of abrupt temperature bursts are discussed in this paper. Mechanical refrigerators generate cyclic mechanical vibrations, and precision resistance thermometers are usually very sensitive to a mechanical vibration. The measured vibration level of the developed apparatus is reported. The damage to the apparatus due to the magnitude 9.0 earthquake on March 11, 2011, and possible countermeasures in the case of future earthquakes are also discussed.

  20. Characteristics of a liquid-helium-free calibration apparatus for cryogenic thermometers

    Science.gov (United States)

    Shimazaki, T.

    2013-09-01

    Closed-cycle Joule-Thomson (JT) cryocoolers have been developed at National Metrology Institute of Japan (NMIJ)/National Institute of Advanced Industrial Science and Technology (AIST) with the aim of realizing a liquid-helium-free calibration apparatus for cryogenic thermometers between 0.65 K and 25 K. The latest JT cryocooler at NMIJ/AIST consists of a 3He JT cooling circuit and a pulse tube mechanical refrigerator. The characteristics of the apparatus including a residual gas analysis of the JT cooling circuit are presented in this paper. Currently the initial cool-down is performed using a heat-exchange gas. It normally takes about 30 h to reduce the temperature from room temperature to 5 K at the thermometer comparison block of the apparatus. The correct timing of the removal of the heatexchange gas is important for the efficient operation of the apparatus. Incomplete removal of the heat-exchange gas induces excess heat load on the apparatus and thermal disturbances. Some examples of abrupt temperature bursts are discussed in this paper. Mechanical refrigerators generate cyclic mechanical vibrations, and precision resistance thermometers are usually very sensitive to a mechanical vibration. The measured vibration level of the developed apparatus is reported. The damage to the apparatus due to the magnitude 9.0 earthquake on March 11, 2011, and possible countermeasures in the case of future earthquakes are also discussed.

  1. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    Science.gov (United States)

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-01

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  2. Analytical network model on the flow and thermal characteristics of cyclic flow cryogenic regenerators

    Science.gov (United States)

    Hua, Xiao Jia; Zhong, Guo Fang

    1988-11-01

    The flow and thermal characteristics of rapid cyclic flow cryogenic regenerators and their interrelationship have been analysed using the linear network theory and perturbation method. The effect of flow resistance, gas storage in void volume, temperature distribution, interaction of pressure wave and cyclic mass flow, and the factor of real gas were considered. A computer simulation program, CFCRX, was developed and the numerical results obtained are presented. This theory provides a better understanding of the working mechanism of cryogenic regenerators.

  3. Hot-wire anemometry in hypersonic helium flow

    Science.gov (United States)

    Wagner, R. D.; Weinstein, L. M.

    1974-01-01

    Hot-wire anemometry techniques are described that have been developed and used for hypersonic-helium-flow studies. The short run time available dictated certain innovations in applying conventional hot-wire techniques. Some examples are given to show the application of the techniques used. Modifications to conventional equipment are described, including probe modifications and probe heating controls.

  4. Thermo - hydraulic analysis of a cryogenic jet: application to helium recovery following resistive transitions in the LHC

    CERN Document Server

    Chorowski, M; Konopka, G

    1999-01-01

    A resistive transition (quench) of the LHC sector magnets will be followed by cold helium venting to a quench buffer volume of 2000 m3 at ambient temperature. The volume will be composed of eight medium-pressure (2 MPa) gas storage tanks made of carbon steel, which constrains the temperature of the wall to be higher than -50 oC (223 K). Possible spot cooling intensity and thermo-mechanical stresses in the tank wall following helium injection have been analysed previously and the aim of the present study is experimental verification of basic assumptions concerning cryogenic jet parameters and heat transfer between jet crown and tank wall. For this purpose jet diameter, velocity profile and convective heat transfer between jet and steel plate have been measured. A simple jet model description based on momentum conservation has been proposed. Then, the lowest possible temperature of the tank wall which may occur has been assessed.

  5. Numerical Investigation of Thermal Distribution and Pressurization Behavior in Helium Pressurized Cryogenic Tank by Introducing a Multi-component Model

    Science.gov (United States)

    Lei, Wang; Yanzhong, Li; Zhan, Liu; Kang, Zhu

    An improved CFD model involving a multi-component gas mixturein the ullage is constructed to predict the pressurization behavior of a cryogenic tank considering the existence of pressurizing helium.A temperature difference between the local fluid and its saturation temperature corresponding to the vapor partial pressure is taken as the phase change driving force. As practical application of the model, hydrogen and oxygen tanks with helium pressurization arenumerically simulated by using themulti-component gas model. The results presentthat the improved model produce higher ullage temperature and pressure and lower wall temperaturethan those without multi-component consideration. The phase change has a slight influence on thepressurization performance due to the small quantities involved.

  6. Managing parallel cryogenic flows to the thermal intercepts in the Cornell ERL

    Science.gov (United States)

    Eichhorn, R.; Holmes, A.; Markham, S.; Sabol, D.; Smith, E.

    2014-01-01

    The proposed Cornell Energy Recovery Linac (ERL) is based on superconducting 1.3 GHz cavities operated in continuous wave mode. It presents a number of interesting cryogenic challenges, as approximately 30 cryomodules share a common vacuum space and common cryogenic distribution lines forming two 300 meter long half-linacs. Within each module, are a number of concentrated heat loads which must be intercepted at 80K and 6.5K. It is necessary to provide convective cooling by helium gas via many parallel channels to intercept these large individual loads (average up to 200W at 80K, but some as high as 400W), and we discuss the design choices made to ensure no flow instabilities. We limit the control complexity by using a single control valve for each coolant stream within each cryomodule. These streams are subdivided into parallel paths using a length of smaller diameter tubing in the cold part to limit the variation in mass flow with heat load for each path. A model describing these flows at 80 K and 5 K under different operation regimes will be derived and presented and parameters for stability will be discussed.

  7. A Novel Flow Measurement System for Cryogenic Two-Phase Flow Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flow rate measurements for cryogenic propellants are required for spacecraft and space exploration systems. Such a requirement has been hampered by lack of fast and...

  8. Computational Analyses of Cavitating Flows in Cryogenic Liquid Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Tiezhi Sun; Yingjie Wei; Cong Wang∗

    2016-01-01

    The objective of this study is to analyze the fundamental characteristics and the thermodynamic effects of cavitating flows in liquid hydrogen. For this purpose, numerical simulation of cavitating flows are conducted over a three dimensional hydrofoil in liquid hydrogen. Firstly, the efficiency of this computational methodology is validated through comparing the simulation results with the experimental measurements of pressure and temperature. Secondly, after analysing the cavitating flows in liquid hydrogen and water, the characteristics under cryogenic conditions are highlighted. The results show that the thermodynamic effects play a significant role in the cavity structure and the mass transfer, the dimensionless mass transfer rate of liquid hydrogen is much larger, and the peak value is about ninety times as high as water at room temperature. Furthermore, a parametric study of cavitating flows on hydrofoil is conducted by considering different cavitation number and dimensionless thermodynamic coefficient. The obtained results provide an insight into the thermodynamic effect on the cavitating flows.

  9. 冷冻靶制备用低温氦气循环系统%Cycling helium system for cryogenic target handling system

    Institute of Scientific and Technical Information of China (English)

    丁先庚; 丁怀况; 施锦

    2012-01-01

    The cryogenic target which is treated by high - pressure permeation charge at room temperature and after cryogenic cooling, needs cryogenic cycling helium with temperature below 20K to cool the high - pressure permeation cell and cryostat. Adopting GM crybcooler as the cold source and dedicated helium compressor as the cycling pump, with the design of high - efficiency regenerative heat interchanger, the system can obtain cryogenic helium with temperature below 20K through which the end fittings are cooled down, and thereby to achieve cryogenic and homothermal environment and cooling of permeation cell%常温高压渗透充气、低温冷却的冷冻靶球,需要20K以下的低温循环氦气,用于冷却高压渗透室和低温恒温腔.本套系统采用GM制冷机为冷源,采用专用氦压缩机为循环泵,设计高效率的回热式换热器,实现末端的20K以下低温氦气,通过低温氦气冷却终端部件,实现了20K的低温恒温环境和渗透室的冷却.

  10. Cryogenic system for X-ray Compton scattering measurements of superfluid helium below 2 K

    Science.gov (United States)

    Tanaka, Hiroyuki; Yamaguchi, Akira; Koizumi, Akihisa; Kawasaki, Ikuto; Sumiyama, Akihiko; Itou, Masayoshi; Sakurai, Yoshiharu

    2017-07-01

    A cryostat was constructed for high-resolution X-ray Compton scattering measurements at temperature down to 1.7 K, in order to investigate superfluid helium-4. Compton profiles of helium were measured using synchrotron X-rays for gas and liquid phases, respectively. In the measurement of the liquid phase, we succeeded in measuring the Compton profile of the superfluid helium at 1.7 K. Comparison of the results with theoretical calculation reveals importance of many-body effects beyond the mean-field treatment of electron systems.

  11. A new method for flow measurement in cryogenic systems

    Science.gov (United States)

    Grohmann, S.

    2014-03-01

    A new method for mass flow measurement of fluids in pipes is presented; its novelty lies in the capability for intrinsic calibration. The method is founded on a concept, where two independent analytic expressions for the flow rate are formed from the same direct measurement readings (input parameters). If the input parameters were error-free, the two expressions would yield identical results, by definition. This fact can be used as goal function in a minimization routine that removes systematic errors of the inherently error-prone input parameters. The uncertainty of the mass flow measurement is then only influenced by statistical effects and is typically less than 1% with regard to the measured value. The new method is explained by a proof-of-principle that is based on measurements in a large-scale cryogenic system. The intrinsic calibrations can be executed in situ at any moment during operation of a plant, and with no need for a reference standard. While the new method is applicable in any system involving single-phase fluid flow, it offers particular advantages in cryogenic application.

  12. Flow visualization in superfluid helium-4 using a thin line of He2 excimer tracers

    Science.gov (United States)

    Marakov, Alex; Gao, Jian; Guo, Wei; van Sciver, Steven; Ihas, Gary; McKinsey, Daniel; Vinen, William

    2014-03-01

    Cryogenic flow visualization techniques have been proven in recent years to be a very powerful experimental method to study turbulence in superfluid helium-4 (He II). In order to extract quantitative information of the flow field, we developed a new technique based on the generation of a thin line of He2 excimer tracers via femtosecond-laser field ionization. These tracers move solely with the normal-fluid component in He II and can be imaged using a laser-induce fluorescence technique. Studying the drift and distortion of the tracer line in a turbulent flow shall allow us to measure the instantaneous flow velocity field and hence determine the structure functions and the energy spectrum of the turbulence. We discuss the preliminary results obtained that for the first time visually reveal the existence of a laminar-to-turbulent transition in the normal fluid in thermal counterflow. W.G. acknowledges the startup support from Florida State University and the National High Magnetic Field Laboratory.

  13. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    Science.gov (United States)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  14. Heat flux to the helium cryogenic system elements in the case of incidental vacuum vessel ventilation with atmospheric air

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The selection process for size in safety equipment for cold vessels or process pipes in cryogenic systems should take into consideration the incidental ventilation of the vacuum vessel with atmospheric air. In this case, a significant heat input toward the cold elements of the system can be expected. A number of experimental investigations have been done for the elements at liquid helium temperature which have been covered with 10 layers of MLI. The typical values of the heat flux were measured in a range of 3.7 to 5.0 kW/m2 of the element surface. The helium temperature parts are typically surrounded by thermal shields that are kept in a temperature range of 50-80K. On the external side, the thermal shields are covered with 30-40 layers of MLI while on the internal side, the shields are bare. The theoretical calculations of heat flux to the thermal shield, with respect to the possibility of air condensation and freezing on the bare side of the thermal shield, show that the heat flux to the thermal shield can...

  15. Beating liquid helium: the technologies of cryogen-free superconducting magnets

    Science.gov (United States)

    Burgoyne, John

    2015-03-01

    Cryogen-free superconducting magnets have been available now for almost 15 years, but have only become standard commercial products in more recent years. In this review we will consider the pros and cons of ``dry'' design including superconducting wire development and selection, thermal budgeting, and the alternative methods for achieving magnet cooling.

  16. Neoclassical flows in deuterium-helium plasma density pedestals

    CERN Document Server

    Buller, Stefan; Newton, Sarah; Omotani, John

    2016-01-01

    In tokamak transport barriers, the radial scale of profile variations can be comparable to a typical ion orbit width, which makes the coupling of the distribution function across flux surfaces important in the collisional dynamics. We use the radially global steady-state neoclassical {\\delta}f code Perfect to calculate poloidal and toroidal flows, and radial fluxes, in the pedestal. In particular, we have studied the changes in these quantities as the plasma composition is changed from a deuterium bulk species with a helium impurity to a helium bulk with a deuterium impurity, under specific profile similarity assumptions. The poloidally resolved radial fluxes are not divergence-free in isolation in the presence of sharp radial profile variations, which leads to the appearance of poloidal return-flows. These flows exhibit a complex radial-poloidal structure that extends several orbit widths into the core and is sensitive to abrupt radial changes in the ion temperature gradient. We find that a sizable neoclassi...

  17. Constitutive model of discontinuous plastic flow at cryogenic temperatures

    CERN Document Server

    Skoczen, B; Bielski, J; Marcinek, D

    2010-01-01

    FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...

  18. Internal Acoustics of a Pintle Valve with Supercritical Helium Flow

    Science.gov (United States)

    Fishbach, Sean R.; Davis, R. Benjamin

    2010-01-01

    Large amplitude flow unsteadiness is a common phenomenon within the high flow rate ducts and valves associated with propulsion systems. Boundary layer noise, shear layers and vortex shedding are a few of the many sources of flow oscillations. The presence of lightly damped acoustic modes can organize and amplify these sources of flow perturbation, causing undesirable loading of internal parts. The present study investigates the self-induced acoustic environment within a pintle valve subject to high Reynolds Number flow of helium gas. Experiments were conducted to measure the internal pressure oscillations of the Ares I Launch Abort System (LAS) Attitude Control Motor (ACM) valve. The AGM consists of a solid propellant gas generator with eight pintle valves attached to the aft end. The pintle valve is designed to deliver variable upstream conditions to an attache( converging diverging nozzle. In order to investigate the full range of operating conditions 28 separate tests were conducted with varying pintle position and upstream pressure. Helium gas was utilized in order to closely mimic the speed of sound of the gas generator exhaust, minimizing required scaling during data analysis. The recordec pressure measurements were interrogated to multiple ends. The development of root mean square (RMS) value! versus Reynolds Number and Pintle position are important to creating bounding unsteady load curves for valve internal parts. Spectral analysis was also performed, helping to identify power spectral densities (PSD) of acoustic natural frequencies and boundary layer noise. An interesting and unexpected result was the identification of an acoustic mode within the valve which does not respond until the valve was over 60% open. Further, the response amplitude around this mode can be as large or larger than those associated with lower frequency modes.

  19. Aerodynamic testing in cryogenic nitrogen gas - A precursor to testing in superfluid helium

    Science.gov (United States)

    Lawing, Pierce L.

    1989-01-01

    Testing techniques for transonic cryogenic tunnels using nitrogen as the test fluid are presented. The measurement of static aerodynamic coefficients used to determine component efficiency is discussed, focusing on tests of two-dimensional airfoils at transonic Mach numbers. Also, three-dimensional tests of complete configurations and sidewall mounted wings are examined. Consideration is given to time-dependent phenomena, fluid mechanics, nonintrusive laser techniques, the detection of transition and separation, and testing for flutter, buffet, and oscillating airfoil characteristics.

  20. Numerical modeling of the flow in a cryogenic fuel tank

    Science.gov (United States)

    Greer, Donald Steven

    Developing reusable flight weight cryogenic fuel tanks is one of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft. As an aid in the design of these aircraft, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. The model simulates the transient, two dimensional draining of a fuel tank cross section. The interface between the ullage gas and liquid fuel is modeled as a free surface to enable the calculation of slosh wave dynamics. The drain rate of the liquid fuel is specified as a boundary condition to the model. The ullage gas enters the model to replace the volume of drained liquid. The rate of ullage gas entering the model is calculated from boundary conditions of constant pressure and temperature for the ullage gas. The model employs the full set of Navier-Stokes equations with the exception that viscous dissipation is neglected in the energy equation. The method of solution is an explicit finite difference technique in two dimensional generalized coordinates approximated to second order accuracy in both space and time. The stiffness due to the low Mach number is handled by the method of artificial compressibility. Model comparisons are made to experimental data for free convection to a vertical plate and to free convection inside a horizontal cylinder. Slosh wave dynamics are compared to potential flow calculations for waves inside a square tank. Sample calculations are also performed on a rectangular tank and an eight sided polygon tank to demonstrate the capability of the model.

  1. Assessment and study of existing concepts and methods of cryogenic refrigeration for superconducting transmission cables. Progress report, 1 September 1975--31 October 1975. [Operation of helium liquefiers

    Energy Technology Data Exchange (ETDEWEB)

    Kadi, F J; Longsworth, R C

    1975-01-01

    Progress made in a six task program on methods for cryogenic refrigeration for superconducting transmission cables is reported. The current report period included a review of equipment versus requirements, development of an optimization criteria, and evaluation of component reliability and efficiency. The results and findings of the helium refrigerator user visits, system and component manufacturers responses to questionnaires, telephone calls and visits, and the information obtained from a review of APCI standard N/sub 2/ plant experience are presented.

  2. Performance Characterization of the Production Facility Prototype Helium Flow System

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.

  3. Proposal to negotiate, without competitive tendering, a contract for the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for the LHC

    CERN Document Server

    2001-01-01

    This document concerns the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for the LHC. Following a market survey (MS-2602/LHC/LHC) carried out amoung 37 firms in twelve Member States and six firms in two non-Member States, a price enquiry for qualifying prototypes was sent on 20 November 1998 to nine selected firms and the received prototypes were evaluated. As a result of this process a request for quotation was sent to one firm The Finance Committee is invited to agree to the negotiation of a contract with the firm EMERSON PROCESS MANAGEMENT/FISHER-ROSEMOUNT (CH), without competitive tendering, for the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for an amount of 1 804 840 Swiss francs, not subject to revision, with options for up to 10 additional cryogenic helium mass flowmeters and an extension of the guarantee period to five years for all units for an amount of 219 090 Swiss francs, not subject to revision, bringing the total amount to 2 023 930 Swi...

  4. Thermal hydraulic analysis of the annular flow helium heater design

    Science.gov (United States)

    Chen, N. C.; Sanders, J. P.

    1982-05-01

    Core support performance test (CSPT) by use of an existing facility, components flow test loop (CFTL), as part of the high temperature gas cooled reactor (HTGR) application program were conducted. A major objective of the CSPT is to study accelerated corrosion of the core graphite support structure in helium at reactor conditions. Concentration of impurities will be adjusted so that a 6 month test represents the 30 year reactor life. Thermal hydraulic and structural integrity of the graphite specimen, will be studied at high pressure of 7.24 MPa (1050 psi) and high temperature of 1000 deg C in a test vessel. To achieve the required high temperature at the test section, a heater bundle has to be specially designed and properly manufactured. Performance characteristics of the heater which were determined from an analysis based on this design are presented.

  5. Proposal for the award of an industrial services contract for the operation and maintenance of liquid helium cryogenic plants

    CERN Document Server

    2000-01-01

    This document concerns the award of an Industrial Services contract for the operation and maintenance of liquid helium cryogenic plants. Following a market survey carried out among 54 firms in twelve Member States, a call for tenders (IT-2719/LHC) was sent on 18 August 2000 to two firms and four consortia, two consisting of two firms and two consisting of three firms, in five Member States. By the closing date, CERN had received tenders from one firm and three consortia, in four Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium AIR LIQUIDE (FR) - LINDE KRYOTECHNIK (CH) - SERCO (DE), the lowest bidder, for an initial period of four years from 17 July 2001 for a total amount of 19 804 400 Swiss francs, not subject to revision until 16 July 2005. The contract will include options for two one-year extensions beyond the initial four-year period. The consortium has indicated the following distribution by country of the contract value covered by this adjudi...

  6. Gemini helium closed cycle cooling system

    Science.gov (United States)

    Lazo, Manuel; Galvez, Ramon; Rogers, Rolando; Solis, Hernan; Tapia, Eduardo; Maltes, Diego; Collins, Paul; White, John; Cavedoni, Chas; Yamasaki, Chris; Sheehan, Michael P.; Walls, Brian

    2008-07-01

    The Gemini Observatory presents the Helium Closed Cycle Cooling System that provides cooling capacity at cryogenic temperatures for instruments and detectors. It is implemented by running three independent helium closed cycle cooling circuits with several banks of compressors in parallel to continuously supply high purity helium gas to cryocoolers located about 100-120 meters apart. This poster describes how the system has been implemented, the required helium pressures and gas flow to reach cryogenic temperature, the performance it has achieved, the helium compressors and cryocoolers in use and the level of vibration the cryocoolers produce in the telescope environment. The poster also describes the new technology for cryocoolers that Gemini is considering in the development of new instruments.

  7. High-Speed Thermal Characterization of Cryogenic Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  8. Similarity and cascade flow characteristics of a highly loaded helium compressor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bin, E-mail: jiangbin_hrbeu@163.com [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China); Chen, Zhongliang [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China); Chen, Hang [AVIG Shenyang Engine Design and Research Institute, Shenyang 110015 (China); Zhang, Hai; Zheng, Qun [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China)

    2015-05-15

    Highlights: • The deviation of different similarity criteria is analyzed theoretically. • Flow difference between helium and air compressor cascades is analyzed numerically. • The analysis of calculated results validates the theoretical derivation. • Flow characteristics of highly loaded helium compressor blade profile are computed. - Abstract: Helium compressor is a major component of the Power Conversion Unit (PCU) used in a High Temperature Gas Cooled Reactor (HTGR). Because the high cost of closed cycle test and leakage problem of helium gas, air could be used as working fluid instead of helium in compressor performance tests. However, the properties of Helium are largely different from those of air, e.g. the adiabatic exponent of Helium is 1.6, while the adiabatic exponent itself is a criterion of similarity between the two compressors. The characteristics of compressor will be different due to the effect of the adiabatic exponent of working fluid, especially for highly loaded compressor working at higher inlet Mach number. In this paper, a theoretical study on the similarity between air compressor and a highly loaded helium compressor is carried out and the deviation of similarity is analyzed. Numerical simulations are then used to confirm the theoretical analysis. The results indicate that the similarity deviation could not be neglected for highly loaded compressor cascade, which means the experience and experimental results of those conventional air compressor cannot be applied directly to the design of highly loaded helium compressor. The flow characteristics of a highly loaded helium compressor at different Reynolds numbers, attack angles, Mach numbers and cascade geometries are then investigated.

  9. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  10. SNS Cryogenic Systems Commissioning

    Science.gov (United States)

    Hatfield, D.; Casagrande, F.; Campisi, I.; Gurd, P.; Howell, M.; Stout, D.; Strong, H.; Arenius, D.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2006-04-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  11. SNS Cryogenic Systems Commissioning

    Energy Technology Data Exchange (ETDEWEB)

    D. Hatfield; F. Casagrande; I. Campisi; P. Gurd; M. Howell; D. Stout; H. Strong; D. Arenius; J. Creel; K. Dixon; V. Ganni; and P. Knudsen

    2005-08-29

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning and future plans will be presented.

  12. Flight Performance of the AKARI Cryogenic System

    CERN Document Server

    Nakagawa, Takao; Hirabayashi, Masayuki; Kaneda, Hidehiro; Kii, Tsuneo; Kimura, Yoshiyuki; Matsumoto, Toshio; Murakami, Hiroshi; Murakami, Masahide; Narasaki, Katsuhiro; Narita, Masanao; Ohnishi, Akira; Tsunematsu, Shoji; Yoshida, Seiji

    2007-01-01

    We describe the flight performance of the cryogenic system of the infrared astronomical satellite AKARI, which was successfully launched on 2006 February 21 (UT). AKARI carries a 68.5 cm telescope together with two focal plane instruments, Infrared Cameras (IRC) and Far Infrared Surveyor (FIS), all of which are cooled down to cryogenic temperature to achieve superior sensitivity. The AKARI cryogenic system is a unique hybrid system, which consists of cryogen (liquid helium) and mechanical coolers (2-stage Stirling coolers). With the help of the mechanical coolers, 179 L (26.0 kg) of super-fluid liquid helium can keep the instruments cryogenically cooled for more than 500 days. The on-orbit performance of the AKARI cryogenics is consistent with the design and pre-flight test, and the boil-off gas flow rate is as small as 0.32 mg/s. We observed the increase of the major axis of the AKARI orbit, which can be explained by the thrust due to thermal pressure of vented helium gas.

  13. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    Science.gov (United States)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  14. Computer program for calculating flow parameters and power requirements for cryogenic wind tunnels

    Science.gov (United States)

    Dress, D. A.

    1985-01-01

    A computer program has been written that performs the flow parameter calculations for cryogenic wind tunnels which use nitrogen as a test gas. The flow parameters calculated include static pressure, static temperature, compressibility factor, ratio of specific heats, dynamic viscosity, total and static density, velocity, dynamic pressure, mass-flow rate, and Reynolds number. Simplifying assumptions have been made so that the calculations of Reynolds number, as well as the other flow parameters can be made on relatively small desktop digital computers. The program, which also includes various power calculations, has been developed to the point where it has become a very useful tool for the users and possible future designers of fan-driven continuous-flow cryogenic wind tunnels.

  15. Tritium recovery from helium purge stream of solid breeder blanket by cryogenic molecular sieve bed. 2. Regeneration operation of cryogenic molecular sieve bed

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori; Enoeda, Mikio; Nishi, Masataka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Regeneration operation is a very important operation, because it is the most influential factor for deciding the net operation cycle time and the minimum dimension of Cryogenic Molecular Sieve Bed (CMSB). However, the experimental data of CMSB regeneration operation was not so sufficient that even the optimum regeneration procedure could not be decided yet. This work was focused on getting the primary information about various regeneration procedures. (author)

  16. 169 Kelvin cryogenic microcooler employing a condenser, evaporator, flow restriction and counterflow heat exchangers

    NARCIS (Netherlands)

    Burger, Johannes Faas; Holland, Herman J.; Berenschot, Johan W.; Seppenwolde, Jan-Henry; ter Brake, Hermanus J.M.; Gardeniers, Johannes G.E.; Elwenspoek, Michael Curt

    2001-01-01

    This paper presents the first cryogenic micromachined cooler that is suitable to cool from ambient temperature to 169 kelvin and below. The cooler operates with the vapor compression cycle. It consists of a silicon micromachined condenser, a flow restriction/evaporator and two miniature glass-tube c

  17. 169 Kelvin cryogenic microcooler employing a condenser, evaporator, flow restriction and counterflow heat exchangers

    NARCIS (Netherlands)

    Burger, Johannes Faas; Holland, Herman J.; Berenschot, Johan W.; Seppenwolde, Jan-Henry; ter Brake, Hermanus J.M.; Gardeniers, Johannes G.E.; Elwenspoek, Michael Curt

    2001-01-01

    This paper presents the first cryogenic micromachined cooler that is suitable to cool from ambient temperature to 169 kelvin and below. The cooler operates with the vapor compression cycle. It consists of a silicon micromachined condenser, a flow restriction/evaporator and two miniature glass-tube

  18. Low cryogen inventory, forced flow Ne cooling system with room temperature compression stage and heat recuperation

    CERN Document Server

    Shornikov, A; Wolf, A

    2014-01-01

    We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.

  19. Propulsive jet simulation with air and helium in launcher wake flows

    Science.gov (United States)

    Stephan, Sören; Radespiel, Rolf

    2016-12-01

    The influence on the turbulent wake of a generic space launcher model due to the presence of an under-expanded jet is investigated experimentally. Wake flow phenomena represent a significant source of uncertainties in the design of a space launcher. Especially critical are dynamic loads on the structure. The wake flow is investigated at supersonic (M=2.9 ) and hypersonic (M=5.9 ) flow regimes. The jet flow is simulated using air and helium as working gas. Due to the lower molar mass of helium, higher jet velocities are realized, and therefore, velocity ratios similar to space launchers can be simulated. The degree of under-expansion of the jet is moderate for the supersonic case (p_e/p_∞ ≈ 5 ) and high for the hypersonic case (p_e/p_∞ ≈ 90 ). The flow topology is described by Schlieren visualization and mean-pressure measurements. Unsteady pressure measurements are performed to describe the dynamic wake flow. The influences of the under-expanded jet and different jet velocities are reported. On the base fluctuations at a Strouhal number, around St_D ≈ 0.25 dominate for supersonic free-stream flows. With air jet, a fluctuation-level increase on the base is observed for Strouhal numbers above St_D ≈ 0.75 in hypersonic flow regime. With helium jet, distinct peaks at higher frequencies are found. This is attributed to the interactions of wake flow and jet.

  20. Heat transfer enhancement on thin wires in superfluid helium forced flows

    CERN Document Server

    Duri, Davide; Moro, Jean-Paul; Roche, Philippe-Emmanuel; Diribarne, Pantxo

    2014-01-01

    In this paper, we report the first evidence of an enhancement of the heat transfer from a heated wire by an external turbulent flow of superfluid helium. We used a standard Pt-Rh hot-wire anemometer and overheat it up to 21 K in a pressurized liquid helium turbulent round jet at temperatures between 1.9 K and 2.12 K. The null-velocity response of the sensor can be satisfactorily modeled by the counter flow mechanism while the extra cooling produced by the forced convection is found to scale similarly as the corresponding extra cooling in classical fluids. We propose a preliminary analysis of the response of the sensor and show that -contrary to a common assumption- such sensor can be used to probe local velocity in turbulent superfluid helium.

  1. Evaluation of the cryogenic helium recovery process from natural gas based on flash separation by advanced exergy cost method - Linde modified process

    Science.gov (United States)

    Ansarinasab, Hojat; Mehrpooya, Mehdi; Parivazh, Mohammad Mehdi

    2017-10-01

    In this paper, exergy cost analysis method is used to evaluate a new cryogenic Helium recovery process from natural gas based on flash separation. Also advanced exergoeconomic analysis was made to determine the amount of avoidable exergy destruction cost of the process component. This proposed process can extract Helium from a feed gas stream with better efficiency than other existing processes. The results indicate that according to the avoidable endogenous exergy destruction cost C-4 (287.2/hr), C-5 (257.3/hr) and C-6 (181.6/hr) compressors should be modified first, respectively. According to the endogenous investment and exergy destruction cost, the interactions between the process components are not strong. In compressors, a high proportion of the cost of exergy destruction is avoidable while in these components, investment costs are unavoidable. In heat exchangers and air coolers, a high proportion of the exergy destruction cost is unavoidable while in these components, investment costs are avoidable. Finally, three different strategies are suggested to improve performance of each component, and the sensitivity of exergoeconomic factor and cost of exergy destruction to operating variables of the process are studied.

  2. Morphology of Cryogenic Flows and Channels on Dwarf Planet Ceres

    Science.gov (United States)

    Krohn, Katrin; Jaumann, Ralf; Otto, Katharina A.; von der Gathen, Isabel; Matz, Klaus-Dieter; Buczkowski, Debra L.; Williams, David A.; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; Stephan, Katrin; Wagner, Roland J.; Russell, Christopher T.; Raymond, Carol A.

    2016-04-01

    Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the

  3. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling

    Energy Technology Data Exchange (ETDEWEB)

    Karapetian, Emil [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Aguilar, Guillermo [Department of Biomedical Engineering, University of California, Irvine, CA (United States); Kimel, Sol [Beckman Laser Institute, University of California, Irvine, CA (United States); Lavernia, Enrique J [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Nelson, J Stuart [Department of Biomedical Engineering, University of California, Irvine, CA (United States)

    2003-01-07

    Cryogen spray cooling (CSC) is used to protect the epidermis during dermatologic laser surgery. To date, the relative influence of the fundamental spray parameters on surface cooling remains incompletely understood. This study explores the effects of mass flow rate and average droplet velocity on the surface heat flux during CSC. It is shown that the effect of mass flow rate on the surface heat flux is much more important compared to that of droplet velocity. However, for fully atomized sprays with small flow rates, droplet velocity can make a substantial difference in the surface heat flux. (note)

  4. Measurement of cryogenic regenerator characteristics under oscillating flow and pulsating pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kwanwoo Nam; Sangkwon Jeong [Korea Advanced Institute of Science and Technology, Daejon (Korea). Department of Mechanical Engineering, Cryogenic Engineering Laboratory

    2003-11-01

    This paper describes an experimental apparatus developed to investigate detailed thermal and hydrodynamic characteristics of a regenerator at cryogenic temperature under oscillating flow and pulsating pressure conditions. Cold-end of the regenerator is maintained at approximately 85 K for G-M cryocooler type and 100 K for Stirling cryocooler type operations by means of two cryogenic heat exchangers. At both ends of the regenerator, fine hot wire probes are installed to measure the fast oscillating gas temperature and mass flow rate. The gas temperature sensors installed very close to the ends of the regenerator matrix assure precise gas temperature measurement in the regenerator. In this study, thermal and hydrodynamic behaviors of the well-defined wire-screen regenerator are fully characterized. First, pressure drop characteristics are discussed for different frequencies under room temperature. Second, ineffectiveness of the regenerator is obtained for different cold-end temperatures. (author)

  5. Measurement of cryogenic regenerator characteristics under oscillating flow and pulsating pressure

    Science.gov (United States)

    Nam, Kwanwoo; Jeong, Sangkwon

    2003-10-01

    This paper describes an experimental apparatus developed to investigate detailed thermal and hydrodynamic characteristics of a regenerator at cryogenic temperature under oscillating flow and pulsating pressure conditions. Cold-end of the regenerator is maintained at approximately 85 K for G-M cryocooler type and 100 K for Stirling cryocooler type operations by means of two cryogenic heat exchangers. At both ends of the regenerator, fine hot wire probes are installed to measure the fast oscillating gas temperature and mass flow rate. The gas temperature sensors installed very close to the ends of the regenerator matrix assure precise gas temperature measurement in the regenerator. In this study, thermal and hydrodynamic behaviors of the well-defined wire-screen regenerator are fully characterized. First, pressure drop characteristics are discussed for different frequencies under room temperature. Second, ineffectiveness of the regenerator is obtained for different cold-end temperatures.

  6. Thermohydraulics of a horizontal diphasic flow of superfluid helium; Thermo-hydraulique d'un ecoulement horizontal d'helium superfluide diphasique

    Energy Technology Data Exchange (ETDEWEB)

    Perraud, S

    2007-12-15

    This study aims at characterizing helium two phase flows, and to identify the dependence of their characteristics on various thermo-hydraulic parameters: vapour velocity, liquid height, vapour density, specificities of superfluidity. Both the engineer and the physicist's points of view are taken into consideration: the first one in terms of optimization of a particular cooling scheme based on a two-phase flow, and these second one in terms of more fundamental atomization-related questions. It has been shown that for velocities around 3 to 4 m/s, the liquid phase that was initially stratified undergoes an atomization through the presence of a drop haze carried by the vapor phase.This happens for superfluid helium as well as for normal helium without main differences on atomization.

  7. A PISO-like algorithm to simulate superfluid helium flow with the two-fluid model

    CERN Document Server

    Soulaine, Cyprien; Allain, Hervé; Baudouy, Bertrand; Van Weelderen, Rob

    2015-01-01

    This paper presents a segregated algorithm to solve numerically the superfluid helium (He II) equations using the two-fluid model. In order to validate the resulting code and illustrate its potential, different simulations have been performed. First, the flow through a capillary filled with He II with a heated area on one side is simulated and results are compared to analytical solutions in both Landau and Gorter–Mellink flow regimes. Then, transient heat transfer of a forced flow of He II is investigated. Finally, some two-dimensional simulations in a porous medium model are carried out.

  8. The performance of a cryogenic pump for the two-phase flow condition

    OpenAIRE

    YAMADA, HITOSHI; WATANABE, Mitsuo; Hasegawa, Satoshi; Kamijo, Kenjiro; 山田, 仁; 渡辺, 光男; 長谷川, 敏; 上條, 謙二郎

    1985-01-01

    An experimental investigation was carried out in order to obtain the performance characteristics of a cryogenic pump under a two-phase flow condition. The experiment used an oxygen pump with an inducer and liquid nitrogen as the test fluid. The vapor volumetric fraction at the pump inlet was calculated with an assumption of a constant enthalpy process across an orifice which was used to generate the two-phase flow at the pump inlet. The results showed that the pump head rise did hardly decrea...

  9. Cooling with Superfluid Helium

    CERN Document Server

    Lebrun, P

    2014-01-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics

  10. Cryogenic heat loads analysis from SST-1 plasma experiments

    Science.gov (United States)

    Bairagi, N.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Cryogenic heat load analysis is an important aspect for stable operation of Tokamaks employing large scale superconducting magnets. Steady State Superconducting Tokamak (SST-1) at IPR is equipped with superconducting magnets system (SCMS) comprising sixteen numbers of modified ‘D’ shaped toroidal field (TF) and nine poloidal field (PF) superconducting coils which are wound using NbTi/Cu based cable-in conduit conductor (CICC). SST-1 magnets operation has flexibility to cool either in two-phase with sub-cooling, two-phase without sub-cooling or single phase (supercritical) helium using a dedicated 1.3 kW helium refrigerator cum liquefier (HRL). Here, we report gross heat losses for integrated TF superconducting magnets of SST-1 during the plasma campaign using cryogenic helium supply/return thermodynamic data from cryoplant. Heat loads mainly comprising of steady state as well as transient loads are smoothly absorbed by SST-1 cryogenic helium plant during plasma experiments. The corresponding heat produced in the coils is totally released to the helium flowing through the TF coils, which in turn is dumped into liquid helium stored in main control Dewar. These results are very useful reference for heat loss analysis for TF as well as PF coils and provides database for future operation of SST-1 machine.

  11. Steady state heat transfer experimental studies of LHC superconducting cables operating in cryogenic environment of superfluid helium

    CERN Document Server

    Santandrea, Dario; Tuccillo, Raffaele; Granieri, Pier Paolo

    The heat management is a basic and fundamental aspect of the superconducting magnets used in the CERN Large Hadron Collider. Indeed, the coil temperature must be kept below the critical value, despite the heat which can be generated or deposited in the magnet during the normal operations. Therefore, this thesis work aims at determining the heating power which can be extracted from the superconducting cables of the LHC, specially through their electrical insulation which represents the main thermal barrier. An experimental measurement campaign in superfluid helium bath was performed on several samples reproducting the main LHC magnets. The heating power was generated in the sample by Joule heating and the temperature increase was measured by means of Cernox bare chip and thermocouples. An innovative instrumentation technique which also includes the in-situ calibration of the thermocouples was developed. A thorough uncertainty analysis on the overall measurement chain concluded the experimental setup. The prese...

  12. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  13. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  14. Contribution to the study of helium two-phase vertical flow; Contribution a l`etude des ecoulements verticaux d`helium diphasique

    Energy Technology Data Exchange (ETDEWEB)

    Augyrond, L

    1998-04-01

    This work aims at a better understanding of the dynamics of helium two-phase flow in a vertical duct. The case of bubble flow is particularly investigated. The most descriptive parameter of two-phase flow is the void fraction. A sensor to measure this parameter was specially designed and calibrated, it is made of a radioactive source and a semiconductor detector. Sensors based on light attenuation were used to study the behaviour of this two-phase flow. The experimental set-up is described. The different flow types were photographed and video filmed. This visualization has allowed to measure the diameter of bubbles and to study their movements in the fluid. Bubble flow then churn and annular flows were observed but slug flow seems not to exist with helium. A modelling based on a Zuber model matches better the experimental results than a Levy type model. The detailed analysis of the signals given by the optical sensors has allowed to highlight a bubble appearance frequency directly linked to the flowrate. (A.C.) 83 refs.

  15. Series Supply of Cryogenic Venturi Flowmeters for the ITER Project

    Science.gov (United States)

    André, J.; Poncet, J. M.; Ercolani, E.; Clayton, N.; Journeaux, J. Y.

    2015-12-01

    In the framework of the ITER project, the CEA-SBT has been contracted to supply 277 venturi tube flowmeters to measure the distribution of helium in the superconducting magnets of the ITER tokamak. Six sizes of venturi tube have been designed so as to span a measurable helium flowrate range from 0.1 g/s to 400g/s. They operate, in nominal conditions, either at 4K or at 300K, and in a nuclear and magnetic environment. Due to the cryogenic conditions and the large number of venturi tubes to be supplied, an individual calibration of each venturi tube would be too expensive and time consuming. Studies have been performed to produce a design which will offer high repeatability in manufacture, reduce the geometrical uncertainties and improve the final helium flowrate measurement accuracy. On the instrumentation side, technologies for differential and absolute pressure transducers able to operate in applied magnetic fields need to be identified and validated. The complete helium mass flow measurement chain will be qualified in four test benches: - A helium loop at room temperature to insure the qualification of a statistically relevant number of venturi tubes operating at 300K.- A supercritical helium loop for the qualification of venturi tubes operating at cryogenic temperature (a modification to the HELIOS test bench). - A dedicated vacuum vessel to check the helium leak tightness of all the venturi tubes. - A magnetic test bench to qualify different technologies of pressure transducer in applied magnetic fields up to 100mT.

  16. The SHOOT cryogenic components - Testing and applicability to other flight programs

    Science.gov (United States)

    Dipirro, Michael J.; Schein, Michael E.; Boyle, Robert F.; Figueroa, Orlando; Lindauer, David A.; Mchugh, Daniel C.; Shirron, P. J.

    1990-01-01

    Cryogenic components and techniques for the superfluid helium on-orbit transfer (SHOOT) flight demonstration are described. Instrumentation for measuring liquid quantity, position, flow rate, temperature, and pressure has been developed using the data obtained from the IRAS, Cosmic Background Explorer, and Spacelab 2 helium dewars. Topics discussed include valves and burst disks, fluid management devices, structural/thermal components, instrumentation, and ground support equipment and performance test apparatus.

  17. The optimization on flow scheme of helium liquefier with genetic algorithm

    Science.gov (United States)

    Wang, H. R.; Xiong, L. Y.; Peng, N.; Liu, L. Q.

    2017-01-01

    There are several ways to organize the flow scheme of the helium liquefiers, such as arranging the expanders in parallel (reverse Brayton stage) or in series (modified Brayton stages). In this paper, the inlet mass flow and temperatures of expanders in Collins cycle are optimized using genetic algorithm (GA). Results show that maximum liquefaction rate can be obtained when the system is working at the optimal parameters. However, the reliability of the system is not well due to high wheel speed of the first turbine. Study shows that the scheme in which expanders are arranged in series with heat exchangers between them has higher operation reliability but lower plant efficiency when working at the same situation. Considering both liquefaction rate and system stability, another flow scheme is put forward hoping to solve the dilemma. The three configurations are compared from different aspects, they are respectively economic cost, heat exchanger size, system reliability and exergy efficiency. In addition, the effect of heat capacity ratio on heat transfer efficiency is discussed. A conclusion of choosing liquefier configuration is given in the end, which is meaningful for the optimal design of helium liquefier.

  18. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  19. Mass flow facilitates tungsten blistering under 60 keV helium ion implantation

    Science.gov (United States)

    Han, Wenjia; Yu, Jiangang; Chen, Zhe; Lu, Guanghong; Zhu, Kaigui

    2017-07-01

    Gaseous ion implantation induces displacement damage and gaseous atom uptake in the target material and is widely adopted to simulate plasma-material interaction in fusion devices. Here we report an observation of tungsten blistering with large plastic deformation under 60 keV helium ion implantation at room temperature. The near-surface morphology and microstructure analyses suggest more than 50% plastic elongation and breakdown of lattice periodicity in the blister caps. We propose that collision cascades and high-concentration helium atoms not only greatly modify the tungsten microstructure, but also enhance mass flow in terms of point defect diffusion in blister caps. The mass flow ultimately aggravates the relaxation of stresses in the tungsten surface and facilitates tungsten blistering during high-energy gaseous ion implantation. We sketch out the blistering process and stress the vital importance of dynamic processes in the response of plasma-facing materials subjected to low-energy plasma penetration and high-energy neutron bombardment in fusion devices.

  20. Main components and performances of the IMGC calibration facilities for liquid helium flow rate measurements

    Science.gov (United States)

    Rivetti, A.; Martini, G.; Goria, R.; Lorefice, S.

    Within the framework of a National Project on superconductivity two facilities have been designed and built at the Istituto di Metrologia 'G. Colonnetti' (IMGC) with the purpose of studying and calibrating liquid helium flowmeters in the range 1-20 g s -1 of liquid helium (LHe). After a brief description of these set-ups, this Paper examines in detail the solutions adopted in the design of the main calibration facility, particularly with regard to the circulating pump and the submerged driving motor. The latter has been devised for working only at LHe temperature, having an a.c. three-phase stator winding made of thin superconducting wire. The construction characteristics and operation conditions are discussed. As a flow rate reference, a new turbine flowmeter with its rotor magnetically suspended by the Meissner effect (described in another paper presented at the workshop), is used. A LHe flow rate transducer, based upon the measurement of the transit time of short thermal pulses, has been designed and tested with these facilities: the good results obtained using commercial low cost diodes as ΔT sensors are reported.

  1. Periodical shedding of cloud cavitation from a single hydrofoil in high-speed cryogenic channel flow

    Institute of Scientific and Technical Information of China (English)

    Yutaka ITO; Koichi SETO; Takao NAGASAKI

    2009-01-01

    In order to explain criteria for periodical shedding of the cloud cavitation, flow patterns of cavitation around a piano-convex hydrofoil were observed using a cryogenic cavitation tunnel of a blowdown type. Two hydrofoils of similarity of 20 and 60 mm in chord length with two test sections of 20 and 60 mm in width were prepared. Working fluids were water at ambient temperature, hot water and liquid nitrogen. The parameter range was varied between 0.3 and 1.4 for cavitation number, 9 and 17 m/sec for inlet flow velocity, and -8° and 8° for the flow in-cidence angle, respectively. At incidence angle 8°, that is, the convex surface being suction surface, periodical shedding of the whole cloud cavitation was observed on the convex surface under the specific condition with cavitation number and inlet flow velocity, respectively, 0.5, 9 m/sec for liquid nitrogen at 192℃ and 1.4, 11 m/sec for water at 88℃, whereas under the supercavitation condition, it was not observable. Periodical shedding of cloud cavitation occurs only in the case that there are both the adverse pressure gradient and the slow flow region on the hydrofoil.

  2. Superfluid helium orbital resupply - The status of the SHOOT flight experiment and preliminary user requirements. [Superfluid Helium On-Orbit Transfer

    Science.gov (United States)

    Dipirro, Michael J.; Kittel, Peter

    1989-01-01

    The Superfluid Helium On-Orbit Transfer (SHOOT) flight experiment is designed to demonstrate the components and techniques necessary to resupply superfluid helium to satellites or Space Station based facilities. A top level description as well as the development status of the critical components to be used in SHOOT are discussed. Some of these components include the thermomechanical pump, the fluid acquisition system, the normal helium and superfluid helium phase separators, Venturi flow meter, cryogenic valves, burst disks, and astronaut-compatible EVA coupler and transfer line. The requirements for the control electronics and software are given. A preliminary description of the requirements that must be met by a satellite requiring superfluid helium servicing is given. In particular, minimum and optimum plumbing arrangements are shown, transfer line flow impedance and heat input impacts are assessed, instrumentation is described, and performance parameters are considered.

  3. New Neutral Interstellar Helium Flow Parameters Based on IBEX-Lo Observations

    Science.gov (United States)

    Bzowski, M.; Kubiak, M. A.; Moebius, E.; Bochsler, P. A.; Leonard, T.; Heirtzler, D.; Kucharek, H.; Crew, G. B.; Sokol, J. M.; Hlond, M.; Schwadron, N. A.; Fuselier, S. A.; McComas, D. J.

    2011-12-01

    Because of its high ionization potential and weak interaction with hydrogen, Neutral Interstellar Helium (NISHe) is almost unaffected at the heliospheric interface with the interstellar medium and freely enters the solar system. This second most abundant species provides some of the best information on the characteristics of the interstellar gas in the Local Interstellar Cloud (LIC). The Interstellar Boundary Explorer is the second mission to directly detect NISHe (after Ulysses) and the first to directly detect other interstellar neutrals. We present a comparison between recent IBEX NISHe observations and simulations carried out using a well-tested quantitative simulation code. This code includes motion of the spacecraft and the Earth relative to the incident NISHe in the inner heliosphere and accounts for both major and minor interactions between NISHe and its surrounding medium. The interactions include gravitational attraction by the Sun and losses by solar photoionization, electron impact ionization, and charge exchange with solar wind protons and alphas. Simulation and observation results compare well for times when measured fluxes are dominated by NISHe (and contributions from other species are small). Differences between simulations and observations indicate previously undetected secondary population of neutral helium, likely produced by interaction of helium with plasma in the outer heliosheath. Interstellar neutral parameters are statistically different from previous results: the newly-established flow direction is ecliptic longitude 79.2°, latitude -5.1°, velocity 22.8 km/s. These new results imply a markedly lower absolute velocity of the gas and thus significantly lower dynamic pressure on the boundaries of the heliosphere and different orientation of the Hydrogen Deflection Plane (the plane that contains the inflow vectors of hydrogen and helium in the inner heliosphere) compared to prior results from Ulysses. A different orientation of this plane

  4. Turnkey Helium Purification and Liquefaction Plant for DARWIN, Australia

    Science.gov (United States)

    Lindemann, U.; Boeck, S.; Blum, L.; Kurtcuoglu, K.

    2010-04-01

    The Linde Group, through its Australian subsidiary BOC Limited, has signed an agreement with Darwin LNG Pty Ltd for the supply of feed-gas to Linde's new helium refining and liquefaction facility in Darwin, Australia. Linde Kryotechnik AG, located in Switzerland, has carried out the engineering and fabrication of the equipment for the turn key helium plant. The raw feed gas flow of 20'730 Nm3/h contains up to of 3 mol% helium. The purification process of the feed gas consists of partial condensation of nitrogen in two stages, cryogenic adsorption and finally catalytic oxidation of hydrogen followed by a dryer system. Downstream of the purification the refined helium is liquefied using a modified Bryton process and stored in a 30'000 gal LHe tank. For further distribution and export of the liquid helium there are two stations available for filling of truck trailers and containers. The liquid nitrogen, required for refrigeration capacity to the nitrogen removal stages in the purification process as well as for the pre-cooling of the pure helium in the liquefaction process, is generated on site during the feed gas purification process. The optimized process provides low power consumption, maximum helium recovery and a minimum helium loss.

  5. 空间低温光学试验深低温背景环境的实现%ACHIEVING THE DEEP CRYOGENIC BACKGROUND ENVIRONMENT OF SPACE CRYOGENIC OPTICAL EXPERIMENT

    Institute of Scientific and Technical Information of China (English)

    徐冰; 马龙

    2012-01-01

    In order to get the deep cryogenic background conditions of space cryogenic optical test, it discussed achieving deep cryogenic environment simulation technology and helium cooling system. It's analysed that 20K stable deep cryogenic cold and black background established by helium circulating is the most suitable cryogenic optical test Environment. The system is a closed circulatory system, which is composed of the helium liquefaction system with corresponding cold helium assigned device and the terminal cold cabin. Helium liquefaction system is based on the Claude cycle, that is composed of Brayton cycle and Joule-Thomson effect. It can continuously provide the liquid helium with a certain flow and pressure or cold helium as cycle refrigerant, and supply a stable deep cryogenic environment for the experiment.%为了实现空间低温光学试验的深低温背景条件,对实现深低温环模技术以及氦冷却系统进行了探讨.通过分析得到以氦循环方式建立的20 K稳定深低温冷黑背景是最为合适的低温光学试验背景环境.该系统是由氦液化系统配合相应冷氦分配装置以及终端冷舱组成密闭循环系统.氦液化系统是基于由布雷顿循环和焦耳-汤姆逊作用组合而成的克劳德循环,它能持续提供一定流量和压力的液氦或冷氦气作为循环系统中制冷工质,从而为试验提供稳定的深低温环境.

  6. Solid deposition in the ITER cryogenic viscous compressor

    Science.gov (United States)

    Zhang, Dongsheng; Miller, Franklin K.; Pfotenhauer, John M.

    2016-09-01

    A transient model for the ITER cryogenic viscous compressor (CVC) is presented. The CVC is designed to separate hydrogen isotopes from helium in the gas-mixture exhaust from the ITER torus. During their residence in the CVC, hydrogen isotopes are captured along the pump wall while helium flows through. The CVC thereby provides the first stage of helium compression. The transient model characterizes the transport phenomena (species, momentum, and energy) that occur in the CVC. The numerical results are compared with experimental data from a scaled down test of the ITER CVC using pure hydrogen. Although the model has been developed for a hydrogen-helium mixture, it is simplified here in order to compare with the experimental data. The transient model, along with other numerical models we have developed, provide guidance for the design and optimization of the ITER CVC. The model can also be a useful tool or a reference for similar analyses, such as those for cryogenic carbon capture and air ingress in vacuum isolated cryogenic vessels.

  7. Experimental investigation on chill-down process of cryogenic flow line

    Science.gov (United States)

    Jin, Lingxue; Park, Changgi; Cho, Hyokjin; Lee, Cheonkyu; Jeong, Sangkwon

    2016-10-01

    This paper describes the cryogenic chill-down experiments that are conducted on a 12.7 mm outer diameter, 1.25 mm wall thickness and 7 m long stainless steel horizontal pipe with liquid nitrogen (LN2). The pipe is vacuum insulated during the experiment to minimize the heat leak from room temperature and to enable one to numerically simulate the process easily. The temperature and the pressure profiles of the chill-down line are obtained at the location which is 5.5 m in a distance from the pipe inlet. The mass flux range is approximately from 19 kg/m2 s to 49 kg/m2 s, which corresponds to the Reynolds numbers range from 1469 to 5240. The transient histories of temperature, pressure and mass flow rate during the line chill-down process are monitored, and the heat transfer coefficient and the heat flux are computed by an inverse problem solving method. The amplitude of the pressure oscillation and the oscillating period become larger and longer at higher pressure conditions. In the low mass flux conditions, the critical heat flux in horizontal pipes is not sensitive to mass flux, and is higher than that in vertical pipes. Kutateladze's correlation with the constant coefficient, B = 0.029 , well matches the experimental data in the current work. In nucleate flow boiling regime, heat transfer coefficient, h , is proportional to (q″)n , and n is equal to 0.7.

  8. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  9. The cryogenic storage ring project

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Robert von; Blaum, Klaus; Becker, Arno; Fellenberger, Florian; George, Sebastian; Grieser, Manfred; Grussie, Florian; Herwig, Philipp; Krantz, Claude; Kreckel, Holger; Lange, Michael; Menk, Sebastian; Repnow, Roland; Vogel, Stephen; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Spruck, Kaija [Justus-Liebig-Universitaet, Giessen (Germany)

    2014-07-01

    At MPIK the electrostatic cryogenic storage ring CSR is nearing completion. At beam energies of 20 to 300 keV per charge unit and 35 m circumference the CSR will allow experiments in a cryogenic environment providing conditions of extremely low vacuum and heat radiation. By using liquid helium at 2 K for cryopumping, the projected vacuum (confirmed at a prototype) lies at 1E-13 mbar or below, ensuring long storage times for slow singly charged and highly charged ions, molecules and clusters. Moreover, phase space cooling by electrons will be implemented. The internal quantum states of molecular and cluster ions can be cooled to low temperature, yielding well defined vibrational and for smaller systems also rotational structures. In the CSR construction, the cryogenic ion beam vacuum system has been set up. Extensive tests confirming the criteria on heat flow, alignment and high-voltage stability were successfully completed on the first quadrant. In addition beam diagnostic units for electric pickup signals and spatial profiles, detectors for neutral and charged fragments, the injection beam line, and an electron cooling device are under construction.

  10. Design and development of a helium injection system to improve external leakage detection during liquid nitrogen immersion tests

    Science.gov (United States)

    Townsend, Andrew; Mishra, Rakesh

    2016-10-01

    The testing of assemblies for use in cryogenic systems commonly includes evaluation at or near operating (therefore cryogenic) temperature. Typical assemblies include valves and pumps for use in liquid oxygen-liquid hydrogen rocket engines. One frequently specified method of cryogenic external leakage testing requires the assembly, pressurized with gaseous helium (GHe), be immersed in a bath of liquid nitrogen (LN2) and allowed to thermally stabilize. Component interfaces are then visually inspected for leakage (bubbles). Unfortunately the liquid nitrogen will be boiling under normal, bench-top, test conditions. This boiling tends to mask even significant leakage. One little known and perhaps under-utilized property of helium is the seemingly counter-intuitive thermodynamic property that when ambient temperature helium is bubbled through boiling LN2 at a temperature of -195.8 °C, the temperature of the liquid nitrogen will reduce. This paper reports on the design and testing of a novel proof-of-concept helium injection control system confirming that it is possible to reduce the temperature of an LN2 bath below boiling point through the controlled injection of ambient temperature gaseous helium and then to efficiently maintain a reduced helium flow rate to maintain a stabilized liquid temperature, enabling clear visual observation of components immersed within the LN2. Helium saturation testing is performed and injection system sizing is discussed.

  11. Cryogenic Risk Assessments before Works in the LHC Tunnel

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Tests conducted in 2013/4 demonstrated that a small, residual risk to expose personnel to a helium spill exists in the LHC. Helium spills with a mass flow of less than 100 g s^-1 could be caused by workers accidentally damaging sensitive equipment in the cryogenic distribution system, such as instrumentation feedthroughs. In order to control this risk, a cryogenic risk assessment for all works taking place in the vicinity of such sensitive equipment is mandatory. The risk assessment and its recommendations are approved by the hierarchy and the complex manager before work can start. After introducing the risk assessment procedure, I will give some feedback on its implementation and present status.

  12. CRYOGENIC DEWAR

    Science.gov (United States)

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  13. A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    Energy Technology Data Exchange (ETDEWEB)

    Vagin, N. P.; Ionin, A. A., E-mail: aion@sci.lebedev.ru; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V., E-mail: dsinit@sci.lebedev.ru; Yuryshev, N. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O{sub 2}: He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.

  14. Design and thermodynamic performance analysis of multichannel cryogenic transfer line for XFEL AMTF

    Science.gov (United States)

    Duda, P.; Chorowski, M.; Polinski, J.

    2017-02-01

    The XATL1 cryogenic transfer line for XFEL/AMTF is dedicated for transferring cryogenic cooling power from helium refrigerators to a cryogenic test facility by means of the continuous flows of cold helium in supercritical and gaseous state. The external envelope of the transfer line contains 4 cold process lines and a common radiation shield, as well as the system of supports and thermal contraction compensators. The XATL1 was designed and manufactured within the Polish in-kind contribution to the XFEL project. The line has been under operation since year 2012. The paper presents a design, including supporting and thermal compensation systems, of the XATL1 line. The line performance analysis based on the Second Law of Thermodynamics has been done, and the output has been compared with the design assumptions.

  15. Fluid flow and heat transfer in a helium gas spring. Computational fluid dynamics and experiments

    NARCIS (Netherlands)

    Lekic, U.

    2011-01-01

    The employment of piston compression machines is today extremely wide and versatile. Examples span from common household refrigerators, or internal combustion engines, to highly efficient cryogenic compressors of all sizes and constructions for medical, military and space applications. It is

  16. Status Of Superconducting Radiofrequency Separator Cryogenic System

    CERN Document Server

    Ageyev, A; Kashtanov, E; Kozub, S; Muraviev, M; Orlov, A; Pimenov, P; Polkovnikov, K; Slabodchikov, P; Sytnik, V V; Zintchenko, S

    2004-01-01

    The OKA experimental complex proposing to use the technique of RF beam separation to produce a Kaon beam is under construction at IHEP. Two deflecting superconducting niobium cavities operating at 1.8 K are the basic elements of the separator. To provide cooling at this temperature commercially available 500 W, 4.5 K helium refrigerator is used to cool liquid helium bath of the satellite refrigerator. The last one is actually a big warm up heat exchanger with flow imbalance and very low pressure drop. Vacuum group consists of two stages of roots blowers and one stage of rotary slide valve pumps. Pump stages are separated by intermediate gas coolers. The schematic, thermodynamics, design capacity and current construction status of the cryogenic system are presented.

  17. A Cryogenic High-Reynolds Turbulence Experiment at CERN

    CERN Document Server

    Bézaguet, Alain-Arthur; Knoops, S; Lebrun, P; Pezzetti, M; Pirotte, O; Bret, J L; Chabaud, B; Garde, G; Guttin, C; Hébral, B; Pietropinto, S; Roche, P; Barbier-Neyret, J P; Baudet, C; Gagne, Y; Poulain, C; Castaing, B; Ladam, Y; Vittoz, F

    2002-01-01

    The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively ...

  18. A Blowdown Cryogenic Cavitation Tunnel and CFD Treatment for Flow Visualization around a Foil

    Institute of Scientific and Technical Information of China (English)

    Yutaka ITO; Kazuya SAWASAKI; Naoki TANI; Takao NAGASAKI; Toshio NAGASHIMA

    2005-01-01

    Cavitation is one of the major problems in the development of rocket engines. There have been few experimental studies to visualize cryogenic foil cavitation. Therefore a new cryogenic cavitation tunnel of blowdown type was built. The foil shape is "plano-convex". This profile was chosen because of simplicity, but also of being similar to the one for a rocket inducer impeller. Working fluids were water at room temperature,hot water and liquid nitrogen. In case of Angle of Attack (AOA)=8°, periodical cavity departure was observed in the experiments of both water at 90℃ and nitrogen at -190℃ under the same velocity 10 m/sec and the same cavitation number 0.7. The frequencies were observed to be 110 and 90 Hz, respectively, and almost coincided with those of vortex shedding from the foil. Temperature depression due to the thermodynamic effect was confirmed in both experiment and simulation especially in the cryogenic cavitation.

  19. Cryogenics for the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    1999-01-01

    The Large Hadron Collider (LHC), a 26.7 km circumference superconducting accelerator equipped with high-field magnets operating in superfluid helium below 1.9 K, has now fully entered construction at CERN, the European Laboratory for Particle Physics. The heart of the LHC cryogenic system is the quasi-isothermal magnet cooling scheme, in which flowing two-phase saturated superfluid helium removes the heat load from the 36'000 ton cold mass, immersed in some 400 m3 static pressurised superfluid helium. The LHC also makes use of supercritical helium for non-isothermal cooling of the beam screens which intercept most of the dynamic heat loads at higher temperature. Although not used in normal operation, liquid nitrogen will provide the source of refrigeration for precooling the machine. Refrigeration for the LHC is produced in eight large refrigerators, each with an equivalent capacity of about 18 kW at 4.5 K, completed by 1.8 K refrigeration units making use of several stages of hydrodynamic cold compressors. T...

  20. Cryogenics for the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    2000-01-01

    The Large Hadron Collider (LHC), a 26.7 km circumference superconducting accelerator equipped with high-field magnets operating in superfluid helium below 1.9 K, has now fully entered construction at CERN, the European Laboratory for Particle Physics. The heart of the LHC cryogenic system is the quasi-isothermal magnet cooling scheme, in which flowing two-phase saturated superfluid helium removes the heat load from the 36000 ton cold mass, immersed in some 400 m/sup 3/ static pressurised superfluid helium. The LHC also makes use of supercritical helium for nonisothermal cooling of the beam screens which intercept most of the dynamic heat loads at higher temperature. Although not used in normal operation, liquid nitrogen will provide the source of refrigeration for precooling the machine. Refrigeration for the LHC is produced in eight large refrigerators, each with an equivalent capacity of about 18 kW at 4.5 K, completed by 1.8 K refrigeration units making use of several stages of hydrodynamic cold compressor...

  1. Driving Perpendicular Heat Flow: (p×n)-Type Transverse Thermoelectrics for Microscale and Cryogenic Peltier Cooling

    Science.gov (United States)

    Zhou, Chuanle; Birner, S.; Tang, Yang; Heinselman, K.; Grayson, M.

    2013-05-01

    Whereas thermoelectric performance is normally limited by the figure of merit ZT, transverse thermoelectrics can achieve arbitrarily large temperature differences in a single leg even with inferior ZT by being geometrically tapered. We introduce a band-engineered transverse thermoelectric with p-type Seebeck in one direction and n-type orthogonal, resulting in off-diagonal terms that drive heat flow transverse to electrical current. Such materials are advantageous for microscale devices and cryogenic temperatures—exactly the regimes where standard longitudinal thermoelectrics fail. InAs/GaSb type II superlattices are shown to have the appropriate band structure for use as a transverse thermoelectric.

  2. Status of the Cryogenic System Commissioning at SNS

    CERN Document Server

    Casagrande, Fabio; Campisi, Isidoro E; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Gurd, Pamela; Hatfield, Daniel; Howell, Matthew; Knudsen, Peter; Stout, Daniel; Strong, William

    2005-01-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

  3. Status of the Cryogenic System Commissioning at SNS

    Energy Technology Data Exchange (ETDEWEB)

    F. Casagrande; I.E. Campisi; P.A. Gurd; D.R. Hatfield; M.P. Howell; D. Stout; W.H. Strong; D. Arenius; J.C. Creel; K. Dixon; V. Ganni; P.K. Knudsen

    2005-05-16

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

  4. Fluid flow and heat transfer in a helium gas spring -computational fluid dynamics and experiments-

    NARCIS (Netherlands)

    Lekic, Uros

    2011-01-01

    The employment of piston compression machines is today extremely wide and versatile. Examples span from common household refrigerators, or internal combustion engines, to highly efficient cryogenic compressors of all sizes and constructions for medical, military and space applications. It is therefo

  5. Cryogenic engineering fifty years of progress

    CERN Document Server

    Reed, Richard

    2007-01-01

    Cryogenic Engineering: Fifty Years of Progress is a benchmark reference work which chronicles the major developments in the field. Starting with an historical background dating to the 1850s, this book reviews the development of data resources now available for cryogenic fields and properties of materials. The advances in cryogenic fundamentals are covered by reviews of cryogenic principles, cryogenic insulation, low-loss storage systems, modern liquefaction processes, helium cryogenics and low-temperature thermometry. Several well-established applications resulting from cryogenic advances include aerospace cryocoolers and refrigerators, use of LTS and HTS systems in electrical applications, and recent changes in cryopreservation. Extensive references are provided for the readers interested in the details of these cryogenic engineering advances.

  6. Characterization of a cryogenic ion guide at IGISOL

    NARCIS (Netherlands)

    Saastamoinen, A.; Moore, I. D.; Ranjan, M.; Dendooven, P.; Penttila, H.; Perajarvi, K.; Popov, A.; Aysto, J.

    2012-01-01

    A small volume cryogenic ion guide has been characterized at the IGISOL facility, Jyvaskyla, as a prototype to verify whether there are any major obstacles to the use of high-density cryogenic helium gas for the stopping and extraction of high-energy ions from a large volume cryogenic ion catcher.

  7. 49 CFR 173.320 - Cryogenic liquids; exceptions.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids; exceptions. 173.320 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.320 Cryogenic liquids; exceptions. (a) Atmospheric gases and helium, cryogenic liquids, in Dewar flasks, insulated cylinders...

  8. Characterization of a cryogenic ion guide at IGISOL

    NARCIS (Netherlands)

    Saastamoinen, A.; Moore, I. D.; Ranjan, M.; Dendooven, P.; Penttila, H.; Perajarvi, K.; Popov, A.; Aysto, J.

    2012-01-01

    A small volume cryogenic ion guide has been characterized at the IGISOL facility, Jyvaskyla, as a prototype to verify whether there are any major obstacles to the use of high-density cryogenic helium gas for the stopping and extraction of high-energy ions from a large volume cryogenic ion catcher. T

  9. Luminescence studies of trace gases through metastable transfer in cold helium jets

    Science.gov (United States)

    Wilde, Scott Colton

    Among the elements, Helium has the largest steps among its internal energy structure that can keep for long periods of time, hence the metastable helium moniker. It is referred to as a "nano-grenade" in some circles because of how much energy it can deliver to a space roughly the size of an atom. This work demonstrates a method to create metastable helium abundantly and it is used to excite trace amounts of oxygen to the point where the signal received from the oxygen was larger than the signal received from the helium in a cold atomized jet. Further cooling of the jet and turbulence added by a liquid helium surface worked to increase the oxygen signal and decrease the helium signal. This work investigates the possibility of forming a strong metastable helium source from a flowing helium gas jet excited by passing through ring electrodes introduced into a cryogenic environment using evaporated helium as a buffer gas. Prior study of luminescence from trace gases at cold helium temperatures is virtually absent and so it is the motivation for this work to blaze the trail in this subject. The absence of ionic oxygen spectral lines from the transfer of energy that was well over the first ionization potential of oxygen made for a deeper understanding of collision dynamics with multiple collision partners. This opened the possibility of using the high energy states of oxygen after metastable transfer as a lasing transition previously unavailable and a preliminary analysis suggested that the threshold for lasing action should be easily overcome if feedback were introduced by an optical cavity. To better understand the thermodynamics of the jet it was proposed to use diatomic nitrogen as an in situ thermometer, investigating whether the rotational degrees of freedom of the nitrogen molecule were in thermal equilibrium with the surrounding environment. If the gas was truly in thermodynamic equilibrium then the temperature given by the method of using collisions of a buffer

  10. A cryogenic test stand for full length SSC magnets with superfluid capability

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, T.J.; Mazur, P.O.

    1989-02-01

    The Fermilab Magnet Test Facility performs testing of the full scale SSC magnets on test stands capable of simulating the cryogenic environment of the SSC main ring. One of these test stands, Stand 5, also has the ability to operate the magnet under test at temperatures from 1.8K to 4.5K with either supercritical helium or subcooled liquid, providing at least 25 Watts of refrigeration. At least 50 g/s flow is available from 2.3K to 4.5K, whereas superfluid operation occurs with zero flow. Cooldown time from 4.5K to 1.8K is 1.5 hours. A maximum current capability of 10,000 amps is provided, as is instrumentation to monitor and control the cryogenic conditions. This paper describes the cryogenic design of this test stand. 8 refs., 6 figs.

  11. Experimental studies on pressure drop characteristics of cryogenic cross-counter flow coiled finned tube heat exchangers

    Science.gov (United States)

    Gupta, Prabhat Kumar; Kush, P. K.; Tiwari, Ashesh

    2010-04-01

    Cross-counter flow coiled finned tube heat exchangers used in medium capacity helium liquefiers/refrigerators were developed in our lab. These heat exchangers were developed using integrated low finned tubes. Experimental studies have been performed to know the pressure drop characteristics of tube side and shell side flow of these heat exchangers. All experiments were performed at room temperature in the Reynolds number range of 3000-30,000 for tube side and 25-155 for shell side. The results of present experiments indicate that available correlations for tube side can not be used for prediction of tube side pressure drop data due to complex surface formation at inner side of tube during formation of fins over the outer surface. Results also indicate that surface roughness effect becomes more pronounced as the value of di/ D m increases. New correlations based on present experimental data are proposed for predicting the friction factors for tube side and shell side.

  12. Cryogenic Operation Methodology and Cryogen Management at CERN over the last 15 Years

    CERN Document Server

    Delikaris, D; Claudet, S; Gayet, Ph; Passardi, Giorgio; Serio, L; Tavian, L

    2009-01-01

    CERN, the European Organization for Nuclear Research has progressively implemented and brought into operation an impressive number of cryogenic units (34). The paper will present the evolution of CERN’s cryogenic infrastructure and summarize results from cryogenic operation cumulating 590’000 running hours over the last fifteen years. The implemented methodology allowing reaching a high level of plant reliability will be described. CERN also becomes an intensive user of cryogens. Contracts for the delivery of 320 t of liquid helium and 70’000 t of liquid nitrogen have been adjudicated. The paper will describe the procurement strategy, the storage infrastructure and cryogen inventory.

  13. Experimental investigations of flow distribution in coolant system of Helium-Cooled-Pebble-Bed Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Ilić, M.; Schlindwein, G., E-mail: georg.schlindwein@kit.edu; Meyder, R.; Kuhn, T.; Albrecht, O.; Zinn, K.

    2016-02-15

    Highlights: • Experimental investigations of flow distribution in HCPB TBM are presented. • Flow rates in channels close to the first wall are lower than nominal ones. • Flow distribution in central chambers of manifold 2 is close to the nominal one. • Flow distribution in the whole manifold 3 agrees well with the nominal one. - Abstract: This paper deals with investigations of flow distribution in the coolant system of the Helium-Cooled-Pebble-Bed Test Blanket Module (HCPB TBM) for ITER. The investigations have been performed by manufacturing and testing of an experimental facility named GRICAMAN. The facility involves the upper poloidal half of HCPB TBM bounded at outlets of the first wall channels, at outlet of by-pass pipe and at outlets of cooling channels in breeding units. In this way, the focus is placed on the flow distribution in two mid manifolds of the 4-manifold system: (i) manifold 2 to which outlets of the first wall channels and inlet of by-pass pipe are attached and (ii) manifold 3 which supplies channels in breeding units with helium coolant. These two manifolds are connected with cooling channels in vertical/horizontal grids and caps. The experimental facility has been built keeping the internal structure of manifold 2 and manifold 3 exactly as designed in HCPB TBM. The cooling channels in stiffening grids, caps and breeding units are substituted by so-called equivalent channels which provide the same hydraulic resistance and inlet/outlet conditions, but have significantly simpler geometry than the real channels. Using the conditions of flow similarity, the air pressurized at 0.3 MPa and at ambient temperature has been used as working fluid instead of HCPB TBM helium coolant at 8 MPa and an average temperature of 370 °C. The flow distribution has been determined by flow rate measurements at each of 28 equivalent channels, while the pressure distribution has been obtained measuring differential pressure at more than 250 positions. The

  14. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  15. Heat transfer in cryogenic helium gas by turbulent Rayleigh-Bénard convection in a cylindrical cell of aspect ratio 1

    Science.gov (United States)

    Urban, Pavel; Hanzelka, Pavel; Musilová, Věra; Králík, Tomáš; La Mantia, Marco; Srnka, Aleš; Skrbek, Ladislav

    2014-05-01

    We present experimental results on the heat transfer efficiency of cryogenic turbulent Rayleigh-Bénard convection (RBC) in a cylindrical cell 0.3 m in both diameter and height which has improvements with respect to various corrections connected with finite thermal conductivity of sidewalls and plates. The heat transfer efficiency described by the Nusselt number {\\rm{Nu}}={\\rm{Nu}}({\\rm{Ra}},Pr ) is investigated for the range of Rayleigh number {{10}^{6}}account. In contrast, if the mean temperature is determined as an arithmetic mean of the bottom and top plate temperatures, {\\rm{Nu}}({\\rm{Ra}})\\propto {\\rm{R}}{{{\\rm{a}}}^{\\gamma }} displays spurious crossover to higher γ that might be misinterpreted as a transition to the ultimate Kraichnan regime. The second step of our analysis, reported here for the first time, is to ignore the NOB effects affecting the top half of the RBC cell. We replace it by the inverted nearly OB bottom half in order to eliminate the boundary layer asymmetry. This leads to the effective temperature difference \\Delta {{T}_{{\\rm{eff}}}}=2({{T}_{{\\rm{b}}}}-{{T}_{{\\rm{c}}}}), where {{T}_{{\\rm{b}}}} denotes the bottom plate temperature, and to effective {\\rm{N}}{{{\\rm{u}}}_{{\\rm{eff}}}} and {\\rm{R}}{{{\\rm{a}}}_{{\\rm{eff}}}} values. The effective heat transfer efficiency obtained, showing no tendency of crossover to the ultimate regime up to 2\\times {{10}^{15}} in {\\rm{R}}{{{\\rm{a}}}_{{\\rm{eff}}}}, is reported and discussed.

  16. A breath of fresh air for cryogenics training

    CERN Multimedia

    HSE Unit

    2014-01-01

    Whether you work full-time in a cryogenic installation or are required to handle cryogenic substances temporarily, you need to have followed the appropriate safety training.   Photo: Christoph Balle. Two new training courses are now available in English and French at CERN: “Cryogenic Safety – Fundamentals” (at the Prévessin Training Centre) and “Cryogenic Safety – Helium Transfer” (at the Cryolab). The first covers the content of levels 1 and 2 of the old “Cryogenic Safety” course. The second is a completely new course for CERN: it covers specific aspects of the transfer of liquid helium, such as the evaporation process of helium and the associated risks to human health (asphyxia due to displacement of oxygen), the colour code for gas bottles, etc. These training modules have been rewritten in response to the increase in the number of projects involving cryogenics and following various related incident...

  17. Cryogenic flat-panel gas-gap heat switch

    Science.gov (United States)

    Vanapalli, S.; Keijzer, R.; Buitelaar, P.; ter Brake, H. J. M.

    2016-09-01

    A compact additive manufactured flat-panel gas-gap heat switch operating at cryogenic temperature is reported in this paper. A guarded-hot-plate apparatus has been developed to measure the thermal conductance of the heat switch with the heat sink temperature in the range of 100-180 K. The apparatus is cooled by a two-stage GM cooler and the temperature is controlled with a heater and a braided copper wire connection. A thermal guard is mounted on the hot side of the device to confine the heat flow axially through the sample. A gas handling system allows testing the device with different gas pressures in the heat switch. Experiments are performed at various heat sink temperatures, by varying gas pressure in the gas-gap and with helium, hydrogen and nitrogen gas. The measured off-conductance with a heat sink temperature of 115 K and the hot plate at 120 K is 0.134 W/K, the on-conductance with helium and hydrogen gases at the same temperatures is 4.80 W/K and 4.71 W/K, respectively. This results in an on/off conductance ratio of 37 ± 7 and 35 ± 6 for helium and hydrogen respectively. The experimental results matches fairly well with the predicted heat conductance at cryogenic temperatures.

  18. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  19. Modeling Results For the ITER Cryogenic Fore Pump. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, John M. [University of Wisconsin, Madison, WI (United States); Zhang, Dongsheng [University of Wisconsin, Madison, WI (United States)

    2014-03-31

    A numerical model characterizing the operation of a cryogenic fore-pump (CFP) for ITER has been developed at the University of Wisconsin – Madison during the period from March 15, 2011 through June 30, 2014. The purpose of the ITER-CFP is to separate hydrogen isotopes from helium gas, both making up the exhaust components from the ITER reactor. The model explicitly determines the amount of hydrogen that is captured by the supercritical-helium-cooled pump as a function of the inlet temperature of the supercritical helium, its flow rate, and the inlet conditions of the hydrogen gas flow. Furthermore the model computes the location and amount of hydrogen captured in the pump as a function of time. Throughout the model’s development, and as a calibration check for its results, it has been extensively compared with the measurements of a CFP prototype tested at Oak Ridge National Lab. The results of the model demonstrate that the quantity of captured hydrogen is very sensitive to the inlet temperature of the helium coolant on the outside of the cryopump. Furthermore, the model can be utilized to refine those tests, and suggests methods that could be incorporated in the testing to enhance the usefulness of the measured data.

  20. Education in Helium Refrigeration

    Science.gov (United States)

    Gistau Baguer, G. M.

    2004-06-01

    On the one hand, at the end of the time I was active in helium refrigeration, I noticed that cryogenics was stepping into places where it was not yet used. For example, a conventional accelerator, operating at room temperature, was to be upgraded to reach higher particle energy. On the other hand, I was a little bit worried to let what I had so passionately learned during these years to be lost. Retirement made time available, and I came gradually to the idea to teach about what was my basic job. I thought also about other kinds of people who could be interested in such lessons: operators of refrigerators or liquefiers who, often by lack of time, did not get a proper introduction to their job when they started, young engineers who begin to work in cryogenics… and so on. Consequently, I have assembled a series of lessons about helium refrigeration. As the audiences have different levels of knowledge in the field of cryogenics, I looked for a way of teaching that is acceptable for all of them. The course is split into theory of heat exchangers, refrigeration cycles, technology and operation of main components, process control, and helium purity.

  1. Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction

    Science.gov (United States)

    Baek, Seungwhan; Kim, Jin-Hyuck; Jeong, Sangkwon; Jung, Jeheon

    2012-07-01

    This paper presents the results of an experimental investigation of the thermal and hydraulic performance of a printed circuit heat exchanger (PCHE) for use in the cryogenic temperature region. Compact PCHEs with multiple corrugated, longitudinal flow microchannels were fabricated using chemical etching and diffusion bonding to evaluate their thermal and hydraulic performance. The testing of the PCHEs was conducted with helium gas at cryogenic temperatures. The pressure drop and thermal effectiveness values obtained from the measured pressures and temperatures are discussed. The thermal performance was predominantly affected by the axial conduction heat transfer in the low Reynolds number ranges of theses experiments. A simple performance calculation model is presented, and the effectiveness calculated from the model is compared with the experimental data. The design of the cryogenic PCHE was then modified to reduce axial conduction losses.

  2. First concept for the E-ELT cryogenic infrastructure

    Science.gov (United States)

    Lizon, J. L.; Gonzalez, J. C.; Monroe, C.; Bryson, I.; Montgomery, D.

    2010-07-01

    The start of the new generation of giant telescopes opens a good opportunity to re-assess the cryogenic cooling of the instruments and detectors. An analysis has been carried out comparing three different technologies: Mechanical cryocoolers, helium forced flow and open liquid nitrogen cooling. The most different aspects from the running cost to the reliability and technology readiness have been compared in order to establish a fair ranking. The first part of the paper will present in detail the result of this analysis. Based on this study and the various experiences collected over more than 25 years and a large number of cryogenic instruments, a strategy is elaborated for the cryogenic cooling of the E-ELT (European Extremely Large Telescope) instrument suite. The challenge consists in providing various cryogenic temperatures (from 10 K to 240 K) at various locations. This should be done in the most efficient way with the minimum of disturbances (low vibration, low thermal dissipation...). A discussion presents the advantages of the selected solution.

  3. Positional Repeatability Measurements Of Stepper Motors At Cryogenic Temperatures

    Science.gov (United States)

    Pompea, Stephen M.; Hall, Michael S.; Bartko, Frank; Houck, James R.

    1983-08-01

    Stepper motors operating at liquid helium temperature have multiple applications in cryogenically-cooled telescopes such as the Shuttle Infrared Telescope Facility (SIRTF). These SIRTF applications include driving cryogen flow valves, operating the Multiple Instrument Chamber (MIC) beam splitter mechanism, and operating filters and grating wheel mechanisms in the scientific instruments. The positional repeatability of the beam splitter drive mechanism is especially critical since it feeds the optical beam to the scien-tific instruments. Despite these important applications, no significant data on the positional repeatability of stepper motors at cryogenic temperatures has been available. Therefore, we conducted a series of measurements to determine the positional repeatability of a modified, off-the-shelf Berger/Lahr stepper motor (model RDM 253/25, step angle 3.6°) which had demonstrated excellent performance in previous endurance testing at LHe temperature. These test results indicated that the positional repeatability of the motor was excellent at all temperatures, with somewhat better performance at cryogenic temperatures. Another important result was that the motor could be repeatedly turned off and on while still accurately retaining its rotor position.

  4. Computation of Space Shuttle high-pressure cryogenic turbopump ball bearing two-phase coolant flow

    Science.gov (United States)

    Chen, Yen-Sen

    1990-01-01

    A homogeneous two-phase fluid flow model, implemented in a three-dimensional Navier-Stokes solver using computational fluid dynamics methodology is described. The application of the model to the analysis of the pump-end bearing coolant flow of the high-pressure oxygen turbopump of the Space Shuttle main engine is studied. Results indicate large boiling zones and hot spots near the ball/race contact points. The extent of the phase change of the liquid oxygen coolant flow due to the frictional and viscous heat fluxes near the contact areas has been investigated for the given inlet conditions of the coolant.

  5. Convective heat flow in space cryogenics plugs - Critical and moderate He II heat flux densities

    Science.gov (United States)

    Yuan, S. W. K.; Frederking, T. H. K.

    1990-01-01

    Plug flow rates of entropy, heat and normal fluid in phase separators and in zero net mass flow systems are, to some extent, quite similar. A simplified analysis of critical conditions is presented in agreement with data trends. A critical temperature gradient arises on the basis of the He II two-fluid model at the stability limit constraining the thermohydrodynamics of the system. Thus, the question of critical thermodynamic fluctuations associated with nucleation versus the possibility of critical gradients in externally imposed parameters is answered in favor of the latter route toward turbulence. Furthermore, a similarity equation is presented which incorporates size dependent rates for moderate heat flow densities observed in experiments.

  6. Fiber Optic Mass Flow Gauge for Liquid Cryogenic Fuel Facilities Monitoring and Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a fiber optic mass flow gauge that will aid in managing liquid hydrogen and oxygen fuel storage and transport. The increasing...

  7. Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter

    Science.gov (United States)

    Korman, Valentin

    2007-01-01

    Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.

  8. Heat Load Estimator for Smoothing Pulsed Heat Loads on Supercritical Helium Loops

    Science.gov (United States)

    Hoa, C.; Lagier, B.; Rousset, B.; Bonnay, P.; Michel, F.

    Superconducting magnets for fusion are subjected to large variations of heat loads due to cycling operation of tokamaks. The cryogenic system shall operate smoothly to extract the pulsed heat loads by circulating supercritical helium into the coils and structures. However the value of the total heat loads and its temporal variation are not known before the plasma scenario starts. A real-time heat load estimator is of interest for the process control of the cryogenic system in order to anticipate the arrival of pulsed heat loads to the refrigerator and finally to optimize the operation of the cryogenic system. The large variation of the thermal loads affects the physical parameters of the supercritical helium loop (pressure, temperature, mass flow) so those signals can be used for calculating instantaneously the loads deposited into the loop. The methodology and algorithm are addressed in the article for estimating the heat load deposition before it reaches the refrigerator. The CEA patented process control has been implemented in a Programmable Logic Controller (PLC) and has been successfully validated on the HELIOS test facility at CEA Grenoble. This heat load estimator is complementary to pulsed load smoothing strategies providing an estimation of the optimized refrigeration power. It can also effectively improve the process control during the transient between different operating modes by adjusting the refrigeration power to the need. This way, the heat load estimator participates to the safe operation of the cryogenic system.

  9. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  10. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    Science.gov (United States)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  11. Artificial dissipation models applied to Navier-Stokes equations for analysis of supersonic flow of helium gas around a geometric configuration ramp type

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Jussie Soares da, E-mail: jussie.soares@ifpi.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Piaui (IFPI), Valenca, PI (Brazil); Maciel, Edisson Savio de G., E-mail: edissonsavio@yahoo.com.br [Instituto Tecnologico de Aeronautica (ITA), Sao Paulo, SP (Brazil); Lira, Carlos A.B. de O., E-mail: cabol@ufpe.edu.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2015-07-01

    Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added safety. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in solving the Navier-Stokes equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic laminar flow of helium gas along a ramp configuration is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipations models linear and nonlinear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is to study the cited dissipation models and describe their characteristics in relation to the overall quality of the solution, aiming preliminary results for the development of computational tools of dynamic analysis of helium flow for the VHTGR core. (author)

  12. Preliminary results of flow fluctuation measurements in the cryogenic transonic wind tunnel

    Science.gov (United States)

    Zinovyev, V. N.; Lebiga, V. A.; Pak, A. Yu.; Quest, J.

    2012-01-01

    The detailed information about flow fluctuations structure inside the test section of Pilot of European Transonic Windtunnel (PETW) obtained by means of hot-wire anemometer and fluctuation diagram (FD) method within broad and narrow frequency band is presented. Fluctuation diagrams were derived from an array of hot wire output data measured at different overheating ratio of the probe (not less than 8) at freestream Mach numbers M = 0.2, 0.4, 0.6, 0.7, and 0.8, total temperature T0 = 118 . . . 294.7 K and unit Reynolds numbers Re1 = (5.54 . . . 108.6) · 106 1/m, respectively. Time series of these output signal data were used to obtain information of statistical and correlation features, mode, and spectral composition of flow fluctuations.

  13. Preliminary evaluation of cryogenic two-phase flow imaging using electrical capacitance tomography

    Science.gov (United States)

    Xie, Huangjun; Yu, Liu; Zhou, Rui; Qiu, Limin; Zhang, Xiaobin

    2017-09-01

    The potential application of the 2-D eight-electrode electrical capacitance tomography (ECT) to the inversion imaging of the liquid nitrogen-vaporous nitrogen (LN2-VN2) flow in the tube is theoretically evaluated. The phase distribution of the computational domain is obtained using the simultaneous iterative reconstruction technique with variable iterative step size. The detailed mathematical derivations for the calculations are presented. The calculated phase distribution for the two detached LN2 column case shows the comparable results with the water-air case, regardless of the much reduced dielectric permittivity of LN2 compared with water. The inversion images of total eight different LN2-VN2 flow patterns are presented and quantitatively evaluated by calculating the relative void fraction error and the correlation coefficient. The results demonstrate that the developed reconstruction technique for ECT has the capacity to reconstruct the phase distribution of the complex LN2-VN2 flow, while the accuracy of the inversion images is significantly influenced by the size of the discrete phase. The influence of the measurement noise on the image quality is also considered in the calculations.

  14. VIBRATION MEASUREMENTS IN A RHIC QUADRUPOLE AT CRYOGENIC TEMPERATURES.

    Energy Technology Data Exchange (ETDEWEB)

    JAIN, A.; AYDIN, S.; HE, P.; ANERELLA, M.; GANETIS, G.; HARRISON, M.; PARKER, B.; PLATE, S.

    2005-10-17

    One of the concerns in using compact superconducting magnets in the final focus region of the ILC is the influence of the cryogen flow on the vibration characteristics. As a first step towards characterizing such motion at nanometer levels, a project was undertaken at BNL to measure the vibrations in a spare RHIC quadrupole under cryogenic conditions. Given the constraints of cryogenic operation, and limited space available, it was decided to use a dual head laser Doppler vibrometer for this work. The performance of the laser vibrometer was tested in a series of room temperature tests and compared with results from Mark L4 geophones. The laser system was then used to measure the vibration of the cold mass of the quadrupole with respect to the outside warm enclosure. These measurements were carried out both with and without the flow of cold helium through the magnet. The results indicate only a minor increase in motion in the horizontal direction (where the cold mass is relatively free to move).

  15. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  16. Experimental and numerical investigation of the emergency helium release into the LHC tunnel

    Science.gov (United States)

    Malecha, Ziemowit M.; Jedrusyna, Artur; Grabowski, Maciej; Chorowski, Maciej; van Weelderen, Rob

    2016-12-01

    An unexpected ejection of cryogen into large confined spaces can result in hazardous consequences. This paper presents the experimental results of the controlled release of liquid helium into the LHC tunnel at CERN. The experiment was designed to measure the oxygen concentration, temperature, and propagation of the helium-air mixture cloud in the LHC tunnel. This required the usage of novel, in-house manufactured, ultrasonic helium detectors. The experimental results showed an advantage of the ultrasonic sensors over traditional electrochemical sensors. Next, a minimal mathematical model was presented and implemented numerically. The experimental results contributed to the validation of the numerical model. A number of numerical calculations were performed in order to examine the consequences of a helium spill with different mass flows. This assisted in the evaluation of the critical helium mass flow, above which the oxygen concentration could drop below the safety limit. A satisfactory comparison of the experimental results and numerical calculations showed the accuracy of the assumptions of the proposed mathematical model.

  17. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  18. Seals For Cryogenic Turbomachines

    Science.gov (United States)

    Hendricks, Robert C.; Tam, L. T.; Braun, M. J.; Vlcek, B. L.

    1988-01-01

    Analysis considers effects of seals on stability. Report presents method of calculation of flows of cryogenic fluids through shaft seals. Key to stability is local average velocity in seal. Local average velocity strongly influenced by effects of inlet and outlet and injection of fluid.

  19. Capacity enhancement of indigenous expansion engine based helium liquefier

    Science.gov (United States)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.

    2017-02-01

    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  20. Cryogenic pellet production developments for long-pulse plasma operation

    Energy Technology Data Exchange (ETDEWEB)

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A. [Oak Ridge National Laboratory, 1Bethel Valley Rd Oak Ridge, TN 37831 (United States)

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  1. Flow regimes of the superfluid helium caused by oscillating quartz tuning fork

    Energy Technology Data Exchange (ETDEWEB)

    Chagovets, V; Gritsenko, I; Rudavskii, E; Sheshin, G; Zadorozhko, A; Verkin, B [Institute for Low Temperature Physics and Engineering 47 Lenin Ave., Kharkov 61103 (Ukraine)], E-mail: sheshin@ilt.kharkov.ua

    2009-02-01

    The laminar-turbulent flow transition in HeII was studied with an oscillating quartz tuning fork. At temperatures from 200 mK to 3.0 K a current-voltage characteristic were recorded with varying driving voltage from 10{sup -5} to 10 V. A resonance frequency and a width of the resonance curve were also registered. It is found that at temperatures below {approx} 0.8 K the laminar-turbulent transition proceeds through an intermediate region clearly seen in the current - voltage characteristic curves. In this case the resonance curve changes in its shape - there appears a plateau near the maximum. An increase in the resonance curve width suggests the existence of excess dissipation related to the generation of quantized vortices in HeII in the vicinity of the oscillating surface. Estimation of the possible size of the vortices may suggest that these are generated on the oscillating surface roughness.

  2. Advances in cryogenic engineering. Vols. 35A & 35B - Proceedings of the 1989 Cryogenic Engineering Conference, University of California, Los Angeles, July 24-28, 1989

    Science.gov (United States)

    Fast, R. W.

    The book presents a review of literature on superfluid helium, together with papers under the topics on heat and mass transfer in He II; applications of He II for cooling superconducting devices in space; heat transfer to liquid helium and liquid nitrogen; multilayer insulation; applications of superconductivity, including topics on magnets and other devices, magnet stability and coil protection, and cryogenic techniques; and refrigeration for electronics. Other topics discussed include refrigeration of superconducting systems; the expanders, cold compressors, and pumps for liquid helium; dilution refrigerators; magnetic refrigerators; pulse tube refrigerators; cryocoolers for space applications; properties of cryogenic fluids; cryogenic instrumentation; hyperconducting devices (cryogenic magnets); cryogenic applications in space science and technology and in transportation; and miscellaneous cryogenic techniques and applications.

  3. Cryogenic System for the Spallation Neutron Source

    Science.gov (United States)

    Arenius, D.; Chronis, W.; Creel, J.; Dixon, K.; Ganni, V.; Knudsen, P.

    2004-06-01

    The Spallation Neutron Source (SNS) is a neutron-scattering facility being built at Oak Ridge, TN for the US Department of Energy. The SNS accelerator linac consists of superconducting radio-frequency (SRF) cavities in cryostats (cryomodules). The linac cryomodules are cooled to 2.1 K by a 2300 watt cryogenic refrigeration system. As an SNS partner laboratory, Jefferson Lab is responsible for the installed integrated cryogenic system design for the SNS linac accelerator consisting of major subsystem equipment engineered and procured from industry. Jefferson Lab's work included developing the major vendor subsystem equipment procurement specifications, equipment procurement, and the integrated system engineering support of the field installation and commissioning. The major cryogenic system components include liquid nitrogen storage, gaseous helium storage, cryogen distribution transfer line system, 2.1-K cold box consisting of four stages of cold compressors, 4.5-K cold box, warm helium compressors with its associated oil removal, gas management, helium purification, gas impurity monitoring systems, and the supportive utilities of electrical power, cooling water and instrument air. The system overview, project organization, the important aspects, and the capabilities of the cryogenic system are described.

  4. Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain

    Science.gov (United States)

    Szabo, Z.; Rice, D.E.; Plummer, L.N.; Busenberg, E.; Drenkard, S.; Schlosser, P.

    1996-01-01

    Groundwater age dating through the combination of transient tracer methods (chlorofluorocarbons (CFCs) and tritium/helium 3 (3H/3He)) and groundwater flow path analysis is useful for investigating groundwater travel times, flow patterns, and recharge rates, as demonstrated by this study of the homogeneous shallow, unconfined Kirkwood-Cohansey aquifer system in the southern New Jersey coastal plain. Water samples for age dating were collected from three sets of nested observation wells (10 wells) with 1.5-m-long screens located near groundwater divides. Three steady state finite difference groundwater flow models were calibrated by adjusting horizontal and vertical hydraulic conductivities to match measured heads and head differences (range, 0.002-0.23 m) among the nested wells, with a uniform recharge rate of 0.46 m per year and porosities of 0.35 (sand) and 0.45 (silt) that were assumed constant for all model simulations and travel time calculations. The simulated groundwater travel times increase with depth in the aquifer, ranging from about 1.5 to 6.5 years for the shallow wells (screen bottoms 3-4 m below the water table), from about 10 to 25 years for the medium-depth wells (screen bottoms 8-19 m below the water table), and from about 30 to more than 40 years for the deep wells (screen bottoms 24-26 m below the water table). Apparent groundwater ages based on CFC- and 3H/3He-dating techniques and model-based travel times could not be statistically differentiated, and all were strongly correlated with depth. Confinement of 3He was high because of the rapid vertical flow velocity (of the order of 1 m/yr), resulting in clear delineation of groundwater travel times based on the 3H/3He-dating technique. The correspondence between the 3H/3He and CFC ages indicates that dispersion has had a minimal effect on the tracer-based ages of water in this aquifer. Differences between the tracer-based apparent ages for seven of the 10 samples were smaller than the error values

  5. Cryogenics '88

    Science.gov (United States)

    1988-04-01

    The proceedings has 4 chapters: processes and apparatus of low temperature installations; superconductors and magnets; gas separators; helium liquefiers and cryostats. A total of 56 paper were presented of which 4 belong in the INIS scope.

  6. Electron density change of atmospheric-pressure plasmas in helium flow depending on the oxygen/nitrogen ratio of the surrounding atmosphere

    Science.gov (United States)

    Tomita, Kentaro; Urabe, Keiichiro; Shirai, Naoki; Sato, Yuta; Hassaballa, Safwat; Bolouki, Nima; Yoneda, Munehiro; Shimizu, Takahiro; Uchino, Kiichiro

    2016-06-01

    Laser Thomson scattering was applied to an atmospheric-pressure plasma produced in a helium (He) gas flow for measuring the spatial profiles of electron density (n e) and electron temperature (T e). Aside from the He core flow, the shielding gas flow of N2 or synthesized air (\\text{N}2:\\text{O}2 = 4:1) surrounding the He flow was introduced to evaluate the effect of ambient gas components on the plasma parameters, eliminating the effect of ambient humidity. The n e at the discharge center was 2.7 × 1021 m-3 for plasma generated with N2/O2 shielding gas, 50% higher than that generated with N2 shielding.

  7. Antiprotonic helium

    CERN Multimedia

    Eades, John

    2005-01-01

    An exotic atom in w hich an electron and an antiproton orbit a helium nucleus could reveal if there are any differences between matter and antimatter. The author describes this unusual mirror on the antiworld (5 pages)

  8. Development of helium transfer coupling of 1 MW-class HTS motor for podded ship propulsion system

    Science.gov (United States)

    Kosuge, Eiji; Gocho, Yoshitsugu; Okumura, Kagao; Yamaguchi, Mitsugi; Umemoto, Katsuya; Aizawa, Kiyoshi; Yokoyama, Minoru; Takao, Satoru

    2010-06-01

    Research and development of 1 MW superconducting motor are being made aiming at the efficiency improvement for the podded type ship propulsion. The basic machine configuration is similar to steam turbine generators, having a rotating horizontal shaft. As for the motor composed of rotating superconducting field, one of the most critical issues is to provide a technically viable helium transfer coupling (HTC). The field winding of 1 MW motor is cooled with cryogenic helium gas. The HTC needs to supply the cryogenic helium gas with an appropriate flow rate from the stationary part to the rotating field winding region through a hollowed shaft in order not to lose superconducting state of the winding. A full size prototype of HTC was developed prior to the actual one to demonstrate its technical acceptability. The fundamental data with regard to the supply of the refrigerated helium gas were successfully obtained at the rated speed. This work has been supported by New Energy, and Industrial Technology Development Organization (NEDO).

  9. Advances in cryogenic engineering. Volume 41, Part A & B

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, P. [ed.

    1996-12-31

    This proceedings is of the 1995 Cryogenic Engineering Conference. It consists of 252 published papers covering the latest developments in all aspects of cryogenic engineering research. Contributions touch on fields including: cryobiology; heat and mass transfer (including data on boiling and superfluid helium); magnet technology; large-scale cryogenic systems, such as the large hadron collider and the TeV Electron Superconducting Linear Accelerator; cryofuels; minesweeping applications; space cryocooler applications; research on miscellaneous cryogenic machinery, techniques, and safety concerns. Separate abstracts have been submitted for contributions from this proceedings.

  10. Dual Cryogenic Capacitive Density Sensor

    Science.gov (United States)

    Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

    2009-01-01

    A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

  11. Study on cooling process of cryogenic system for superconducting magnets of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    ZONG Zhan-Guo; LIU Li-Qiang; XIONG Lian-You; LI Shao-Peng; XU Qing-Jin; HE Kun; ZHANG Liang; GAO Jie

    2008-01-01

    In the upgrade project of the Beijing Electron Positron Collider(BEPCⅡ),three superconducting magnets are employed to realize the goal of two orders of magnitude higher luminosity.A cryogenic system with a total capacity of 0.5 kW at 4.5 K was built at the Institute of High Energy Physics(IHEP)to support the operations of these superconducting devices.For preparing the commissioning of the system,the refrigeration process Was simulated and analyrzed numerically.The numerical model Was based on the latest engineering progress and focused on the normal operation mode.The pressure and temperature profiles of the cryogenic system are achieved with the simulation.The influence of the helium mass flow rates to cool superconducting magnets on the thermodynamic parameters of their normal operation is also studied and discussed in this paper.

  12. The refrigeration and cryogenic distribution system for the shortpulse x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.; Corlett, John N.

    2002-10-20

    This report describes the essential elements of the cryogenic system. The cryogenic distribution system starts at the level of the linac superconducting RF cavities [1] and moves out through the cryogenic piping to the liquid helium refrigeration plant that will be used to cool the RF cavities and the undulator magnets. For this report, the cryogenic distribution system and cryogenic refrigerator includes the following elements: (1) The piping within the linac cryogenic modules will influence the heat transfer through the super-fluid helium from the outer surface of the TESLA niobium cavity and the liquid to gas interface within the horizontal header pipe where the superfluid helium boils. This piping determines the final design of the linac cryogenic module. (2) The acceptable pressure drops determine the supply and return piping dimensions. (3) The helium distribution system is determined by the need to cool down and warm up the various elements in the light source. (4) The size of the cryogenic plant is determined by the heat loads and the probable margin of error on those heat loads. Since the final heat loads are determined by the acceleration gradient in the cavities, a linac with five cryogenic modules will be compared to a linac with only four cryogenic modules. The design assumes that all cryogenic elements in the facility will be cooled using a common cryogenic plant. To minimize vibration effects on the beam lines, this plant is assumed to be located some distance from the synchrotron light beam lines. All of the cryogenic elements in the facility will be attached to the helium refrigeration system through cryogenic transfer lines. The largest single cryogenic load is the main linac, which consists of four or five cryogenic modules depending on the design gradient for the cavities in the linac section. The second largest heat load comes from the cryogenic modules that contain the transverse deflecting RF cavities. The injector linac is the third largest

  13. Helium extraction and nitrogen removal from LNG boil-off gas

    Science.gov (United States)

    Xiong, L.; Peng, N.; Liu, L.; Gong, L.

    2017-02-01

    The helium bearing boil off gas (BOG) from liquid natural gas (LNG) storage tank in LNG plant, which has a helium concentration of about 1%, has attracted the attention in China as a new helium source. As the BOG is usually reused by re-condensing to recover methane, it is likely to cause continuous accumulation of nitrogen in the unit, thus a nitrogen removal process must be integrated. This paper describes a conceptional cryogenic separation system aiming at recovering methane, helium and nitrogen from BOG based on cryogenic distillation and condensation process.

  14. Voltage and Pressure Scaling of Streamer Dynamics in a Helium Plasma Jet With N2 CO-Flow (Postprint)

    Science.gov (United States)

    2014-08-14

    increased applied voltage. These observed differences in the 2-D scaling properties of ionization wave sustained cathode directed streamer propagation in...streamer propagation in helium versus air16,17 are responsible for the observed differences in the propagation of ionization wave sustained streamer...increase quadratically with increased applied voltage. These observed differences in the 2-D scaling properties of ionization wave sustained cathode

  15. Experimental and CFD analyses of a thermal radiation shield dimple plate for cryogenic pump application

    Science.gov (United States)

    Scannapiego, M.; Day, C.

    2015-12-01

    Large customized cryogenic pumps are used in fusion reactors to evacuate the plasma exhaust from the torus. Cryopumps usually consist of an active pumping surface area cooled below 5 K and shielded from direct outer thermal radiation by plates cooled at 80K. In nuclear fusion applications, cryopumps are exposed to excessively high heat fluxes during pumping operation, and follow-up regeneration cycles with rapid warm-up and cool-down phases. Therefore, high cryogenic operational mass flows are required and thus pressure drop and heat transfer characteristics become key issues for the design of the pump cryogenic circuits. Actively cooled dimple plates are a preferred design solution for the thermal radiation shield. A test plate with a rhomb pattern of dimples has been manufactured and tested in terms of pressure drop with a dedicated test facility using water. In the present work, computational fluid dynamics (CFD) models of the test dimple plate have been performed, and computed pressure drops have been compared to experimental results. Despite the complexity of the geometry, a good agreement with the experimental results was found. Then, the validated CFD approach has been further extended to relevant operation conditions, using gaseous helium at cryogenic temperature as working fluid. The resulting pressure drop and heat transfer characteristics are finally presented.

  16. Advances in cryogenic engineering. Volume 29 - Proceedings of the Cryogenic Engineering Conference, Colorado Springs, CO, August 15-17, 1983

    Science.gov (United States)

    Fast, R. W.

    Applications of superconductivity are discussed, taking into account the thermal performance of the MFTF magnets, the design and testing of a large bore superconducting magnet test facility, the development of a 12-tesla multifilamentary Nb3Sn magnet, a superconducting magnet for solid NMR studies, advanced applications of superconductors, transition and recovery of a cryogenically stable superconductor, and finite-difference modeling of the cryostability of helium II cooled conductor packs. Other topics explored are related to resource availability, heat exchangers, heat transfer to He I, liquid nitrogen, heat transfer in He II, refrigeration for superconducting and cryopump systems, refrigeration of cryogenic systems, refrigeration and liquefaction, dilution and magnetic refrigeration, cryocoolers, refrigeration for space applications, cryogenic applications, cryogenic instrumentation and data acquisition, and properties of fluids. Attention is given to biomedical applications of cryogenics in China, long-term cryogen storage in space, and a passive orbital disconnect strut.

  17. Helium II level measurement techniques

    Science.gov (United States)

    Celik, D.; Hilton, D. K.; Zhang, T.; Van Sciver, S. W.

    2001-05-01

    In this paper, a survey of cryogenic liquid level measurement techniques applicable to superfluid helium (He II) is given. The survey includes both continuous and discrete measurement techniques. A number of different probes and controlling circuits for this purpose have been described in the literature. They fall into one of the following categories: capacitive liquid level gauges, superconducting wire liquid level gauges, thermodynamic (heat transfer-based) liquid level gauges, resistive gauges, ultrasound and transmission line-based level detectors. The present paper reviews these techniques and their suitability for He II service. In addition to these methods, techniques for measuring the total liquid volume and mass gauging are also discussed.

  18. Concept of a Cryogenic System for a Cryogen-Free 25 T Superconducting Magnet

    Science.gov (United States)

    Iwai, Sadanori; Takahashi, Masahiko; Miyazaki, Hiroshi; Tosaka, Taizo; Tasaki, Kenji; Hanai, Satoshi; Ioka, Shigeru; Watanabe, Kazuo; Awaji, Satoshi; Oguro, Hidetoshi

    A cryogen-free 25 T superconducting magnet using a ReBCO insert coil that generates 11.5 T in a 14 T background field of outer low-temperature superconducting (LTS) coils is currently under development. The AC loss of the insert coil during field ramping is approximately 8.8 W, which is difficult to dissipate at the operating temperature of the LTS coils (4 K). However, since a ReBCO coil can operate at a temperature above 4 K, the ReBCO insert coil is cooled to about 10 K by two GM cryocoolers, and the LTS coils are independently cooled by two GM/JT cryocoolers. Two GM cryocoolers cool a circulating helium gas through heat exchangers, and the gas is transported over a long distance to the cold stage located on the ReBCO insert coil, in order to protect the cryocoolers from the leakage field of high magnetic fields. The temperature difference of the 2nd cold stage of the GM cryocoolers and the insert coil can be reduced by increasing the gas flow rate. However, at the same time, the heat loss of the heat exchangers increases, and the temperature of the second cold stage is raised. Therefore, the gas flow rate is optimized to minimize the operating temperature of the ReBCO insert coil by using a flow controller and a bypass circuit connected to a buffer tank.

  19. CRYOGENIC MAGNETS

    Science.gov (United States)

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  20. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  1. Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration

    Science.gov (United States)

    Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Shah, N.

    2014-01-01

    Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described.

  2. The European Graduate Course in Cryogenics hosted at CERN.

    CERN Multimedia

    Laurent Tavian

    2010-01-01

    The “liquid helium” week of the European Graduate Course in Cryogenics was held at CERN from 30 August to 3 September 2010. This course scheduled annually since 2008 is a common teaching project of the Universities of Technology of Dresden, Wroclaw and Trondheim. It is focused on liquid natural gas, hydrogen and helium cryogenics. Attending students were carefully selected, and will take an examination giving ECTS credits for their academic curriculum.   This year, as Wroclaw University of Technology was already heavily involved in organising the International Cryogenic Engineering Conference (ICEC), it requested that the “liquid helium” week to be exceptionally held at CERN. While this is certainly a good choice from the point of view of large cryogenic helium systems, with the large cryoplants cooling the Large Hadron Collider (LHC) and its experiments, CERN has only acted as host laboratory organizing the course classes and visits, and the teaching and i...

  3. Purge Monitoring Technology for Gaseous Helium (GHe) Conservation

    Science.gov (United States)

    Dickey, Jonathan; Lansaw, John

    2010-01-01

    John C. Stennis Space Center provides rocket engine propulsion testing for the NASA space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has gone through acceptance testing before going to Kennedy Space Center for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that used Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) as propellants. Due to the extremely cold cryogenic conditions of this environment, an inert gas, helium, is used as a purge for the engine and propellant lines since it can be used without freezing in the cryogenic environment. As NASA moves forward with the development of the new ARES V launch system, the main engines as well as the upper stage engine will use cryogenic propellants and will require gaseous helium during the development testing of each of these engines. The main engine for the ARES V will be similar in size to the SSME.

  4. Cryogenic instrumentation for ITER magnets

    Science.gov (United States)

    Poncet, J.-M.; Manzagol, J.; Attard, A.; André, J.; Bizel-Bizellot, L.; Bonnay, P.; Ercolani, E.; Luchier, N.; Girard, A.; Clayton, N.; Devred, A.; Huygen, S.; Journeaux, J.-Y.

    2017-02-01

    Accurate measurements of the helium flowrate and of the temperature of the ITER magnets is of fundamental importance to make sure that the magnets operate under well controlled and reliable conditions, and to allow suitable helium flow distribution in the magnets through the helium piping. Therefore, the temperature and flow rate measurements shall be reliable and accurate. In this paper, we present the thermometric chains as well as the venturi flow meters installed in the ITER magnets and their helium piping. The presented thermometric block design is based on the design developed by CERN for the LHC, which has been further optimized via thermal simulations carried out by CEA. The electronic part of the thermometric chain was entirely developed by the CEA and will be presented in detail: it is based on a lock-in measurement and small signal amplification, and also provides a web interface and software to an industrial PLC. This measuring device provides a reliable, accurate, electromagnetically immune, and fast (up to 100 Hz bandwidth) system for resistive temperature sensors between a few ohms to 100 kΩ. The flowmeters (venturi type) which make up part of the helium mass flow measurement chain have been completely designed, and manufacturing is on-going. The behaviour of the helium gas has been studied in detailed thanks to ANSYS CFX software in order to obtain the same differential pressure for all types of flowmeters. Measurement uncertainties have been estimated and the influence of input parameters has been studied. Mechanical calculations have been performed to guarantee the mechanical strength of the venturis required for pressure equipment operating in nuclear environment. In order to complete the helium mass flow measurement chain, different technologies of absolute and differential pressure sensors have been tested in an applied magnetic field to identify equipment compatible with the ITER environment.

  5. Installation of a new cryogenic infrastructure at SM18

    CERN Multimedia

    MS18

    2013-01-01

    Part of the SM18 Hall is devoted to tests on radiofrequency (RF) cavities and cryomodules used for beam acceleration in various CERN experiments and accelerators. This movie presents the installation of the new cryogenic infrastructure in this area. It consists of a cryogenic line and six service modules, which will supply each of the six test stations. Almost 50 m of line, from the helium tank to the last test station, have been replaced.

  6. THERMAL UNIFORMITY OF LIQUID HELIUM IN ELECTRON BUBBLE CHAMBER.

    Energy Technology Data Exchange (ETDEWEB)

    WANG,L.; JIA,L.

    2002-07-22

    A CRYOGENIC RESEARCH APPARATUS TO MEASURE THE MOVEMENT OF ELECTRONS UNDER A HIGH ELECTRIC FIELD IN A LIQUID HELIUM BATH WAS DESIGNED AND BUILT AT THE BROOKHAVEN NATIONAL LABORATORY AND THE NEVIS LABORATORY OF COLUMBIA UNIVERSITY. THE LIQUID HELIUM CHAMBER IS A DOUBLE WALLED CYLINDRICAL CONTAINER EQUIPPED WITH 5 OPTICS WINDOWS AND 10 HIGH VOLTAGE CABLES. TO SHIELD THE LIQUID HELIUM CHAMBER AGAINST THE EXTERNAL HEAT LOADS AND TO PROVIDE THE THERMAL UNIFORMITY IN THE LIQUID HELIUM CHAMBER, THE DOUBLE WALLED JACKET WAS COOLED BY A PUMPED HELIUM BATH. THE HELIUM CHAMBER WAS BUILT INTO A COMMERICAL LN2 / LHE CRYOSTAT. THIS PAPER PRESENTS THE DESIGN AND THE NUMERICAL SIMULATION ANALYSIS ON THERMAL UNIFORMITY OF THE ELECTRON BUBBLE CHAMBER.

  7. PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field

    Science.gov (United States)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.

    2017-06-01

    This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.

  8. Methods of Helium Injection and Removal for Heat Transfer Augmentation

    Science.gov (United States)

    Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan

    2008-01-01

    While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.

  9. Analysis of the cryogenic system behavior for pulsed heat load in EAST

    Science.gov (United States)

    Hu, L. B.; Zhuang, M.; Zhou, Z. W.; Xia, G. H.

    2014-01-01

    EAST is the first full superconducting fusion device. The plasma is confined by the magnetic fields generated from a large set of superconducting magnets which are made of cable in-conduit conductor (CICC). In operation, these magnets suffer heat loads from thermal and nuclear radiation from the surrounding components and plasma as well as the eddy currents and the AC losses generated within the magnets, together with the heat conduction through supports and the resistive heat generated at the current lead transiting to room temperature. The cryogenic system of our EAST consists of a 2kW/4K helium refrigerator and a distribution system for the cooling of poloidal field (PF) and toroidal field (TF) coils, structures, thermal shields, buslines and current leads. Pulsed heat load is the main difference between the cryogenic system of a full superconducting Tokamak system and other large scale cryogenic systems. The cryogenic system operates in a pulsed heat loads mode requiring the helium refrigerator to remove periodically large heat loads in time. At the same time, the cryogenic system parameters such as helium cooling superconducting magnets, helium refrigerator and helium distribution system are changing. In this paper, the variation range of the parameters of superconducting magnets and refrigerator has been analyzed in the typical plasma discharge mode. The control scheme for the pulsed loads characteristics of the cryogenic system has been proposed, the implementation of which helps to smooth the pulse loads and to improve the stability of the operation of the cryogenic system.

  10. Cryogenic supply for accelerators and experiments at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kauschke, M.; Xiang, Y.; Schroeder, C. H.; Streicher, B.; Kollmus, H. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1,64291 Darmstadt (Germany)

    2014-01-29

    In the coming years the new international accelerator facility FAIR (Facility for Antiproton and Ion Research), one of the largest research projects worldwide, will be built at GSI. In the final construction FAIR consists of synchrotrons and storage rings with up to 1,100 meters in circumference, two linear accelerators and about 3.5 kilometers beam transfer lines. The existing GSI accelerators serve as pre-accelerators. Partly the new machines will consist of superconducting magnets and therefore require a reliable supply with liquid helium. As the requirements for the magnets is depending on the machine and have a high variety, the cooling system is different for each machine; two phase cooling, forced flow cooling and bath cooling respectively. In addition the cold mass of the individual magnets varies between less than 1t up to 80t and some magnets will cause a dynamic heat load due to ramping that is higher than the static loads. The full cryogenic system will be operated above atmospheric pressure. The refrigeration and liquefaction power will be provided by two main cryogenic plants of 8 and 25 kW at 4K and two smaller plants next to the experiments.

  11. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  12. PERMCAT experiments with tritium at high helium flow rates relevant for the tritium extraction systems using the CAPER facility at TLK

    Energy Technology Data Exchange (ETDEWEB)

    Bükki-Deme, András, E-mail: andras.buekki-deme@kit.edu; Demange, David; Le, Thanh-Long; Fanghänel, Eleonore; Simon, Karl-Heinz

    2016-11-01

    Highlights: • We examined PERMCAT reactor efficiency processing tritiated water at high Helium carrier flow rates. • We have found that – as expected from previous studies – that the swamping ratio (ratio between the impurity and purge side flow rates) has a key effect on the decontamination factors. • On the other hand, some rather unexpected effects tend to show that the limiting phenomena of such specific operation of PERMCAT reactors (at high impurity flow rates, thus short residence time) lies on the kinetics of the isotope exchange reactions. - Abstract: Experiments are still necessary to consolidate the processes retained for the Tritium Extraction Systems of the European ITER Test Blanket Modules (TBM). A PERMCAT reactor combines a catalyst promoting isotope exchange reactions and a Pd/Ag membrane allowing tritium recovery from complex gaseous mixtures containing tritium in different chemical forms. Originally developed for the Tokamak Exhaust Processing, the PERMCAT process is also candidate to detritiate the water arising from an adsorption column installed in the TBM ancillary systems. We discuss the results of an extensive experimental campaign using a PERMCAT reactor to process Q{sub 2}O containing impurity gas mixtures at high flow rates. Two different experimental configurations were studied, namely PERMCAT stand-alone, and PERMCAT in combination with a zeolite molecular sieve bed (MSB, previously loaded with Q{sub 2}O) under regeneration. On the one hand, many expected behaviors were observed, such as the key influence of the swamping ratio (ratio between the impurity and purge side flow rates) on the decontamination factors. On the other hand, some rather unexpected effects tend to show that the limiting phenomena of such specific operation of PERMCAT reactors (at high flow rates, thus short residence time) lies on the kinetics of the isotope exchange reactions.

  13. Research activities at liquid helium temperatures in India

    Science.gov (United States)

    Chopra, V.; Chaudhuri, K. D.

    The number of laboratories in India equipped with a liquid helium facility has steadily increased to about twelve, and more liquifiers are expected to be installed in the near future. In this article the cryogenic research works being carried out at various institutions are reviewed. Although the output of the work is rather nominal, one expects a reasonable growth in the near future in both developmental and fundamental work. The slow rate of progress may be attributed to the non-existence of any cryogenic industry, which is very much needed to assist the cryogenic personnel engaged in this field of research.

  14. Commissioning of the Cryogenic System for the ATLAS Superconducting Magnets

    CERN Document Server

    Delruelle, N; Bradshaw, T; Haug, F; ten Kate, H H J; Passardi, Giorgio; Pengo, R; Pezzetti, M; Pirotte, O; Rochford, J

    2006-01-01

    The paper describes the test results of the helium cryoplant for the superconducting magnets of the ATLAS particle detector at CERN. It consists of two refrigerators used in common by all the magnets and of two proximity cryogenic systems (PCS) interfacing respectively the toroids and the central solenoid. Emphasis is given to the commissioning of the refrigerators: the main unit of 6 kW equivalent capacity at 4.5 K and the thermal shield refrigerator providing 20 kW between 40 K and 80 K. The first unit is used for refrigeration at 4.5 K and for the cooling of three sets of 20 kA current leads, while the second one provides, in addition to the 20 kW refrigeration of the thermal shields, 60 kW for the cool-down to 100 K of the 660 ton cold mass of the magnets. The tests, carried out with the equipment in the final underground configuration, are extended to the PCS that includes the large liquid helium centrifugal pumps (each providing 1.2 kg/s) for forced-flow cooling of the magnets and the complex distributi...

  15. Effect of helium plasma gas flow rate on the properties of WC-12 wt.%Co coatings sprayed by atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-06-01

    Full Text Available The cermet coatings of WC-12wt.%Co are extensively used to improve the wear resistance of a wide range of technical components. This paper analyses the influence of the plasma gas flow of helium on the microstructure and mechanical properties of WC-12wt.%Co coatings deposited by plasma spraying at atmospheric pressure (APS. In order to obtain homogeneous and denser coatings, three different flows of He ( 8 l/min., 16 l/min. and 32 l/min were used in the research. With the application of He, coatings achieved higher values of hardness due to less degradation of the primary WC carbides. The main goal was to deposit dense and homogeneous layers of WC-12wt.%Co coatings with improved wear resistance for different applications. The test results of the microstructure of the layers were evaluated under a light microscope. The analysis of the microstructure and the mechanical properties of the deposited layers was made in accordance with the standard of Pratt-Whitney. The morphology of the powder particles and the microstructure of the best coating was examined on the SEM (scanning electron microscope. The evaluation of the mechanical properties of the layers was done by applying the HV0.3 method for microhardness testing and by applying tensile testing to test the bond strength. The research has shown that the flow of He plasma gas significantly affects the microstructure, the mechanical properties and the structure of WC-12 wt.%Co coatings.

  16. Operational tests of the BNL 24.8 kW, 3.8 K helium refrigerator

    Science.gov (United States)

    Brown, D. P.; Farah, Y.; Gibbs, R. J.; Schlafke, A. P.; Sondericker, J. H.; Wu, K. C.; Freeman, M.; Ganni, V.; Kowalski, R.; McWilliams, R.

    1985-06-01

    The BNL 24.8 kW refrigeration system is completely installed and major portions of the acceptance tests have been completed. So far, the equipment tested has performed at or above design levels. The room temperature helium compressor station has been completely tested and accepted. The two-stage oil injected screw compressor system exhibited an isothermal efficiency of 57% while delivering a helium flow in excess of 4400 g/s. Data on the performance of the make-up gas cryogenic purifier is given. The refrigerator turbomachinery, 13 expanders and three cold compressors, has been tested at room temperature for mechanical integrity and control stability. The first cooldown to operating temperature will be attempted in late August, 1985.

  17. Incorporating Artificial Neural Networks in the dynamic thermal-hydraulic model of a controlled cryogenic circuit

    Science.gov (United States)

    Carli, S.; Bonifetto, R.; Savoldi, L.; Zanino, R.

    2015-09-01

    A model based on Artificial Neural Networks (ANNs) is developed for the heated line portion of a cryogenic circuit, where supercritical helium (SHe) flows and that also includes a cold circulator, valves, pipes/cryolines and heat exchangers between the main loop and a saturated liquid helium (LHe) bath. The heated line mimics the heat load coming from the superconducting magnets to their cryogenic cooling circuits during the operation of a tokamak fusion reactor. An ANN is trained, using the output from simulations of the circuit performed with the 4C thermal-hydraulic (TH) code, to reproduce the dynamic behavior of the heated line, including for the first time also scenarios where different types of controls act on the circuit. The ANN is then implemented in the 4C circuit model as a new component, which substitutes the original 4C heated line model. For different operational scenarios and control strategies, a good agreement is shown between the simplified ANN model results and the original 4C results, as well as with experimental data from the HELIOS facility confirming the suitability of this new approach which, extended to an entire magnet systems, can lead to real-time control of the cooling loops and fast assessment of control strategies for heat load smoothing to the cryoplant.

  18. Roles and expectations of cold compressor for helium refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Nobuyoshi; Asakura, Hiroshi; Yoshinaga, Seiichiro; Ishizawa, Takehiko [Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama, Kanagawa (Japan)

    2002-12-01

    Since around 1970, cryogenic systems have required the use of cold compressors. The requirement appeared for two reasons. The first was reduce the pressure of liquid helium with the intention of realizing the stable operation of large superconducting magnets with the best superconducting ability by decreasing operating temperature. The other was to improve the reliability of helium refrigerator compressors by introducing a turbo-compressor with oil-free bearings. This paper describes the circumstances and particular development of cold compressors, requirements related to helium refrigeration systems and cold compressors and future prospects. (author)

  19. Cryogenic needs for future tokamaks

    Science.gov (United States)

    Katheder, H.

    The ITER tokamak is a machine using superconducting magnets. The windings of these magnets will be subjected to high heat loads resulting from a combination of nuclear energy absorption and AC-losses. It is estimated that about 100 kW at 4.5 K are needed. The total cooling mass flow rate will be around 10 - 15 kg/s. In addition to the large cryogenic power required for the superconducting magnets cryogenic power is also needed for refrigerated radiation shield, various cryopumps, fuel processing and test beds. A general description of the overall layout and the envisaged refrigerator cycle, necessary cold pumps and ancillary equipment is given. The basic cryogenic layout for the ITER tokakmak design, as developed during the conceptual design phase and a short overview about existing tokamak designs using superconducting magnets is given.

  20. Is there any relation between helium isotope composition of underground fluids and heat flow in continental areas?

    Institute of Scientific and Technical Information of China (English)

    汪洋

    2001-01-01

    The regression formula between 3He/4He ratio of underground fluids and terrestrial heat flow in continental areas is tested by data sets from the former Soviet Union and the mainland of China. The results show that there is no close relation between the two values. The heat-He relation might estimate the regional heat flow value with ±25% accuracy at best. We propose that the ratio of crust/mantle component of continental heat flow (qc/qm) be inversely related to the 3He/4He ratio of underground fluids. Based on data sets of 3He/4He ratio and qc/qm in the Eurasia and Canadian Shield, we obtain the regression relation between qc/qm and 3He/4He: qc/qm = 0.815-0.300*loge(3He/4He), in which the unit of 3He/4He is Ra (atmospheric 3He/4He ratio). The crust and mantle heat flow components can be taken from surface heat flow and qc/qm ratio. Based on this formula and heat flow data in major basins of China, the crustal, mantle heat flow values and the average crustal heat production rates were estimated. The es

  1. Shock Compression of Liquid Helium to 56 GPa (560) Kbar

    Science.gov (United States)

    Nellis, W. J.; Holmes, N. C.; Mitchell, A. C.; Trainor, R. J.; Governo, G. K.; Ross, M.; Young, D. A.

    1985-01-01

    Shock-wave data are presented for liquid helium which has been compressed to densities up to five times greater than the normal liquid. The helium was heated to temperatures up to 21,000 K, while the maximum pressure attained was 56 GPa. The properties of helium and hydrogen are important for modeling the giant planets Saturn and Jupiter where these elements are the major constituents. Conditions on Saturn are of particular interest because studies have suggested that this planet has an internal energy source which is associated with unmixing and gravitational separation the hydrogen-helium fluid at pressures below 1 TPa. The existence of this phase transition depends very sensitively on the hydrogen and helium equation of state. In the experiments, strong shock waves were generated by the impact of planar projectiles into cryogenic specimen holders.

  2. Shock compression of liquid helium to 56 GPa (560 kbar)

    Science.gov (United States)

    Nellis, W. J.; Holmes, N. C.; Mitchell, A. C.; Governo, G. K.; Ross, M.; Young, D. A.; Trainor, R. J.

    1984-01-01

    Shock-wave data are presented for liquid helium which has been compressed to densities up to five times greater than the normal liquid. The helium was heated to temperatures up to 21,000 K, while the maximum pressure attained was 56 GPa. The properties of helium and hydrogen are important for modeling the giant planets Saturn and Jupiter where these elements are the major constituents. Conditions on Saturn are of particular interest because studies have suggested that this planet has an internal energy source which is associated with unmixing and gravitational separation of the hydrogen-helium fluid at pressures below 1 TPa. The existence of this phase transition depends very sensitively on the hydrogen and helium equation of state. In the experiments, strong shock waves were generated by the impact of planar projectiles into cryogenic specimen holders.

  3. Cryogenic Applications of Commercial Electronic Components

    Science.gov (United States)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.

    2012-01-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  4. Numerical study of emergency cryogenics gas relief into confined spaces

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The presented work focuses on the risk analysis and the consequences of the unexpected leak to the tunnel of cryogenics gases. Formation of the gas mixture and its propagation along tunnels is an important issue for the safe operation of cryogenic machines, including superconducting accelerators or free electron lasers. As the cryogenics gas the helium and argon will be considered. A minimal numerical model will be presented and discussed. Series of numerical results related to emergency helium relief to the CERN tunnel and related to unexpected leak of the argon to an underground tunnel, will be shown. The numerical results will show temperature distribution, oxygen deficiency and gas cloud propagation in function of intensity of the leak and intensity of the ventilation.

  5. Large Cryogenics Systems at 1.8 K

    CERN Document Server

    Tavian, L

    2000-01-01

    Cryogenics is now widely present in large accelerator projects using applied superconductivity. Economical considerations permanently require an increase of the performance of superconducting devices. One way to do this consists to lower their operating temperature and to cool them with superfluid helium. For this purpose, large cryogenic systems at 1.8 K producing refrigeration capacity in the kW range have to be developed and implemented. These cryogenic systems require large pumping capacity at very low pressure based on integral cold compression or mixed cold-warm compression. This paper describes and compares the different cooling methods with saturated or pressurised superfluid helium, gives the present status of the available process machinery with their practical performance, and reviews the different thermodynamical cycles for producing refrigeration below 2 K, with emphasis on their operational compliance.

  6. Helium process cycle

    Science.gov (United States)

    Ganni, Venkatarao

    2007-10-09

    A unique process cycle and apparatus design separates the consumer (cryogenic) load return flow from most of the recycle return flow of a refrigerator and/or liquefier process cycle. The refrigerator and/or liquefier process recycle return flow is recompressed by a multi-stage compressor set and the consumer load return flow is recompressed by an independent consumer load compressor set that maintains a desirable constant suction pressure using a consumer load bypass control valve and the consumer load return pressure control valve that controls the consumer load compressor's suction pressure. The discharge pressure of this consumer load compressor is thereby allowed to float at the intermediate pressure in between the first and second stage recycle compressor sets. Utilizing the unique gas management valve regulation, the unique process cycle and apparatus design in which the consumer load return flow is separate from the recycle return flow, the pressure ratios of each recycle compressor stage and all main pressures associated with the recycle return flow are allowed to vary naturally, thus providing a naturally regulated and balanced floating pressure process cycle that maintains optimal efficiency at design and off-design process cycle capacity and conditions automatically.

  7. Simulation of Thermo-fluid Interactions in Cryogenic Stage Turbine Startup System Using AUSM+-UP-based Higher-order Accurate Flow Solver

    Directory of Open Access Journals (Sweden)

    Praveen Nair

    2009-05-01

    Full Text Available High-speed turbines are used in upper stage liquid engines of launch vehicles and the most common ones include LH2 and LOX turbines used in the cryogenic stages. The main constraints in the design of turbine system for a liquid engine are thermal loads, mass flow and pressure drops in various systems ahead of the turbine inlet. The temperature of the combustion products/gases reaching the turbine blades must be well below the melting point of the turbine blade material and the mass flow rate must be sufficient to generate the required power. Turbine can be started in two ways, by generating gases using a solid propellant-based spinner motor, and using compressed gases stored in gas bottles. The first method involves design challenges but requires less space and weight. On the other hand, second method is simple but requires more space. Because of the space and weight constraints associated with the upper stages, first method is preferred and discussed in this paper. It consists of a solid propellant-based spinner motor with a convergent-divergent nozzle, a guiding duct connecting nozzle exit, and the turbine inlet manifold in the form of a torroid with nozzle block having 39 guiding nozzles. The combustion products generated by the spinner motor are guided to the manifold through the guiding duct. Inlet manifold acts as a reservoir and supplies hot gases uniformly to the turbine through 39 nozzles. This study addresses the role of  computational fluid dynamics in the design of turbine startup system using unstructured cell-centered AUSM+-UP-based finite volume solver with the twoequation turbulence model. The flow and the thermal characteristics of the solid motor with a convergentdivergent nozzle were studied to evaluate the gas temperature, operating pressure, and flow velocities. The guiding duct along with the inlet manifold was analysed separately to find the drop in temperature and pressure within the system. From the simulation

  8. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  9. Leak testing of cryogenic components - problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S P; Pandarkar, S P; Unni, T G; Sinha, A K; Mahajan, K; Suthar, R L [Centre for Design and Manufacture, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: sushils@barc.gov.in

    2008-05-01

    A prototype of Cold Neutron Source (CNS) for Dhruva Reactor is being manufactured at Centre for Design and Manufacture (CDM), BARC, Mumbai for validating the mechanical and thermal engineering design aspects, besides checking the integrity of all joints and components at low temperature, 77K. Task of a Cold Neutron Source is to generate cold neutrons by cooling down the thermal neutrons, which are originally produced in a nuclear research reactor. The complete Cold Neutron Source system comprises a complex arrangement of moderator pot, transfer line (piping), pumps, refrigerators, storage tanks, a heat exchanger and associated controls and instrumentation. The heart of the system is moderator pot in which water (moderator) is cooled down by Liquid Nitrogen (LN{sub 2}) being circulated through an annular cavity machined on the walls of the pot. Transfer lines for LN{sub 2} basically consist of two concentric Stainless Steel flexible pipes, which are joined to the inlet and outlet Aluminium tubes of the moderator pot through transition joints. Leak in any component may result in loss of liquid Nitrogen, degradation of vacuum, which in turn may affect the heat removal efficiency of the source. Hence, leak testing was considered a very important quality control tool and all joints and components were subjected to helium leak test using mass spectrometer leak detector (MSLD) at cryogenic temperature. During one of the earlier experiments, flow of LN{sub 2} through inner flexible pipe of the transfer line resulted in rise of pressure in the vacuum annulus and sweating on the outer flexible pipe. After investigations it was found that large thermal stress compounded with mechanical stress resulted in cracks in the inner pipe. Accordingly design was modified to get leak proof transfer line assembly. Further, during leak testing of thin wall moderator pot, gross leak was observed on the outer jacket welded joint. Leak was so large that even a small amount of Helium gas in

  10. Leak testing of cryogenic components — problems and solutions

    Science.gov (United States)

    Srivastava, S. P.; Pandarkar, S. P.; Unni, T. G.; Sinha, A. K.; Mahajan, K.; Suthar, R. L.

    2008-05-01

    A prototype of Cold Neutron Source (CNS) for Dhruva Reactor is being manufactured at Centre for Design and Manufacture (CDM), BARC, Mumbai for validating the mechanical and thermal engineering design aspects, besides checking the integrity of all joints and components at low temperature, 77K. Task of a Cold Neutron Source is to generate cold neutrons by cooling down the thermal neutrons, which are originally produced in a nuclear research reactor. The complete Cold Neutron Source system comprises a complex arrangement of moderator pot, transfer line (piping), pumps, refrigerators, storage tanks, a heat exchanger and associated controls and instrumentation. The heart of the system is moderator pot in which water (moderator) is cooled down by Liquid Nitrogen (LN2) being circulated through an annular cavity machined on the walls of the pot. Transfer lines for LN2 basically consist of two concentric Stainless Steel flexible pipes, which are joined to the inlet and outlet Aluminium tubes of the moderator pot through transition joints. Leak in any component may result in loss of liquid Nitrogen, degradation of vacuum, which in turn may affect the heat removal efficiency of the source. Hence, leak testing was considered a very important quality control tool and all joints and components were subjected to helium leak test using mass spectrometer leak detector (MSLD) at cryogenic temperature. During one of the earlier experiments, flow of LN2 through inner flexible pipe of the transfer line resulted in rise of pressure in the vacuum annulus and sweating on the outer flexible pipe. After investigations it was found that large thermal stress compounded with mechanical stress resulted in cracks in the inner pipe. Accordingly design was modified to get leak proof transfer line assembly. Further, during leak testing of thin wall moderator pot, gross leak was observed on the outer jacket welded joint. Leak was so large that even a small amount of Helium gas in the vicinity of the

  11. Modeling results for the ITER cryogenic fore pump

    Science.gov (United States)

    Zhang, D. S.; Miller, F. K.; Pfotenhauer, J. M.

    2014-01-01

    The cryogenic fore pump (CFP) is designed for ITER to collect and compress hydrogen isotopes during the regeneration process of torus cryopumps. Different from common cryopumps, the ITER-CFP works in the viscous flow regime. As a result, both adsorption boundary conditions and transport phenomena contribute unique features to the pump performance. In this report, the physical mechanisms of cryopumping are studied, especially the diffusion-adsorption process and these are coupled with standard equations of species, momentum and energy balance, as well as the equation of state. Numerical models are developed, which include highly coupled non-linear conservation equations of species, momentum and energy and equation of state. Thermal and kinetic properties are treated as functions of temperature, pressure, and composition. To solve such a set of equations, a novel numerical technique, identified as the Group-Member numerical technique is proposed. It is presented here a 1D numerical model. The results include comparison with the experimental data of pure hydrogen flow and a prediction for hydrogen flow with trace helium. An advanced 2D model and detailed explanation of the Group-Member technique are to be presented in following papers.

  12. Laser Doppler flowmetry for bone blood flow measurements: helium-neon laser light attenuation and depth of perfusion assessment.

    Science.gov (United States)

    Nötzli, H P; Swiontkowski, M F; Thaxter, S T; Carpenter, G K; Wyatt, R

    1989-01-01

    Laser Doppler flowmetry (LDF) has been successfully used in clinical and experimental settings to evaluate bone perfusion but unanswered questions regarding its capabilities and limitations still remain. This study was undertaken to determine absorption of He-Ne laser light (632.8 nm) and maximum depth for flow assessment (threshold thickness) under optimal conditions in bone. Light transmittance in bovine bone samples of femora and tibia was measured after each step of grinding and depth of penetration calculated. The threshold thickness was obtained by placing the same samples in a flow chamber where a solution of 2% latex circulated beneath; flow was detected by a laser Doppler probe resting on top of the sample. The results showed a significantly higher depth of penetration for trabecular than for cortical bone. A regression analysis showed a high correlation between the inorganic fraction of the bone and the depth of penetration. The maximum depth at which the laser Doppler probe can evaluate flow in bone conditions was found to be 2.9 +/- 0.2 mm in cortical bone, 3.5 +/- 0.3 mm in bone covered by 1 mm cartilage and 3.5 +/- 0.2 mm in trabecular bone. The study showed the limitations of LDF in bone and their correlations to various bone properties.

  13. Cryogenic refrigeration requirements for superconducting insertion devices in a light source

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.; Green, Michael A.; Green, Michael A.

    2003-08-15

    This report discusses cryogenic cooling superconducting insertion devices for modern light sources. The introductory part of the report discusses the difference between wiggler and undulators and how the bore temperature may affect the performance of the magnets. The steps one would take to reduce the gap between the cold magnet pole are discussed. One section of the report is devoted to showing how one would calculate the heat that enters the device. Source of heat include, heat entering through the vacuum chamber, heating due to stray electrons and synchrotron radiation, heating due to image current on the bore, heat flow by conduction and radiation, and heat transfer into the cryostat through the magnet leads. A section of the report is devoted to cooling options such as small cryo-cooler and larger conventional helium refrigerators. This section contains a discussion as to when it is appropriate to use small coolers that do not have J-T circuits. Candidate small cryo-coolers are discussed in this section of the report. Cooling circuits for cooling with a conventional refrigerator are also discussed. A section of the report is devoted to vibration isolation and how this may affect how the cooling is attached to the device. Vibration isolation using straps is compared to vibration isolation using helium heat pipes. The vibration isolation of a conventional refrigeration system is also discussed. Finally, the cool down of an insertion device is discussed. The device can either be cooled down using liquid cryogenic nitrogen and liquid helium or by using the cooler used to keep the devices cold over the long haul.

  14. Cryogenic Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The storage of cryogenic propellants is challenging because heat leaks into the cryogenic storage tanks no matter how good the insulation, resulting in a necessity...

  15. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  16. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  17. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  18. Interstellar neutral helium in the heliosphere from IBEX observations. III. Mach number of the flow, velocity vector, and temperature from the first six years of measurements

    CERN Document Server

    Bzowski, M; Kubiak, M A; Sokol, J M; Fuselier, S A; Galli, A; Heirtzler, D; Kucharek, H; Leonard, T W; McComas, D J; Moebius, E; Schwadron, N A; Wurz, P

    2015-01-01

    We analyzed observations of interstellar neutral helium (ISN~He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN~He simulation model, presented in the companion paper by Sokol_et al. 2015, and a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al 2015. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN~He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of ~6 degree, with the other parameters varying accordingly along the parameter tube, and the minimum chi-square value is larger than expected. We found, however, that the Mach number of the ISN~He flow shows very little scatter an...

  19. Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem

    Science.gov (United States)

    Tianwei, LAI; Bao, FU; Shuangtao, CHEN; Qiyong, ZHANG; Yu, HOU

    2017-02-01

    The EAST superconducting tokamak, an advanced steady-state plasma physics experimental device, has been built at the Institute of Plasma Physics, Chinese Academy of Sciences. All the toroidal field magnets and poloidal field magnets, made of NbTi/Cu cable-in-conduit conductor, are cooled with forced flow supercritical helium at 3.8 K. The cryogenic system of EAST consists of a 2 kW/4 K helium refrigerator and a helium distribution system for the cooling of coils, structures, thermal shields, bus-lines, etc. The high-speed turbo-expander is an important refrigerating component of the EAST cryogenic system. In the turbo-expander, the axial supporting technology is critical for the smooth operation of the rotor bearing system. In this paper, hydrostatic thrust bearings are designed based on the axial load of the turbo-expander. Thereafter, a computational fluid dynamics-based numerical model of the aerostatic thrust bearing is set up to evaluate the bearing performance. Tilting effect on the pressure distribution and bearing load is analyzed for the thrust bearing. Bearing load and stiffness are compared with different static supply pressures. The net force from the thrust bearings can be calculated for different combinations of bearing clearance and supply pressure.

  20. Visual-Inspection Probe For Cryogenic Chamber

    Science.gov (United States)

    Friend, Steve; Valenzuela, James; Yoshinaga, Jay

    1990-01-01

    Visual-inspection probe that resembles borescope enables observer at ambient temperature to view objects immersed in turbulent flow of liquid oxygen, liquid nitrogen, or other cryogenic fluid. Design of probe fairly conventional, except special consideration given to selection of materials and to thermal expansion to provide for expected range of operating temperatures. Penetrates wall of cryogenic chamber to provide view of interior. Similar probe illuminates scene. View displayed on video monitor.

  1. James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing

    Science.gov (United States)

    Comber, Brian; Glazer, Stuart

    2012-01-01

    The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a

  2. The Relativistic Heavy Ion Collider (rhic) Cryogenic System at Brookhaven National Laboratory: Review of the Modifications and Upgrades Since 2002 and Planned Improvements

    Science.gov (United States)

    Than, R.; Tuozzolo, J.; Sidi-Yekhlef, A.; Ganni, V.; Knudsen, P.; Arenius, D.

    2008-03-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system, which also resulted in an improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases, balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid-helium storage tanks, insulation of the third liquid-helium storage tank, compressor-bypass flow reduction and the addition of a load turbine (Joule-Thomson expander) with associated heat exchangers at the cold end of the plant. Also, liquid helium pumps used for forced circulation of the sub-cooled helium through the magnet loops were eliminated by an accelerator supply flow reconfiguration. Planned future upgrades include the resizing of expanders 5 and 6 to increase their efficiencies.

  3. Multipurpose closed-cycle cryocooler for liquefying hydrogen, helium-4 or helium-3

    Science.gov (United States)

    Winter, Calvin

    1990-08-01

    A cryogenic refrigerator utilizing helium-4 gas in closed-cycle Gifford-McMahon and Joule-Thomson cooling loops was built and achieves continuous operating temperatures of 2.8R. The object cooled is a thin walled (0.1mm) seamless electroformed nickel target sample cell with a volume of 160m1. Room temperature hydrogen, helium-4 or helium-3 gas, supplied at a pressure slightly above atmospheric, is liquefied by the cryocooler and fills the cell. Unusual features include: horizontal operation; a long narrow extension on the vacuum shroud (900mm long, 76mm diameter) and special valves to select an operating temperature appropriate to the sample gas and maximize the cooling power available at that temperature.

  4. The cryogenic storage ring CSR.

    Science.gov (United States)

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  5. The cryogenic storage ring CSR

    Science.gov (United States)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  6. Active Co-Storage of Cryogenic Propellants for Lunar Explortation

    Science.gov (United States)

    Mustafi, S.; Canavan, E. R.; Boyle, R. F.; Panek, J. S.; Riall, S. M.; Miller, F. K.

    2008-01-01

    Departure Stage. The paper also reports on a subscale test of this active co-storage configuration. The test tank is 0.7 m in diameter, approximately one-third the dimension of tanks that would be needed in a lunar ascent module. A thin-walled fiberglass skirt supports and isolates the tank from a 100 K stage. A similar thin-walled skirt supports the lOOK stage from the ambient temperature structure. An aluminum shield with a heavy MLI blanket surrounds the tank and is attached at the 100 K stage. In this initial phase of the project, there is no tank on the 100 K stage, but it is actively cooled by a single-stage cryocooler similar in design to the one used on the RHESSI mission. The test configuration includes a number of innovative elements, including a helical support heat exchanger and an external thermodynamic vent/heat interception system. To avoid the complexity of an explosive gas handling system, testing will be done with liquid helium and liquid neon as simulant fluids. The properties of these fluids bracket the properties of liquid hydrogen. Instrumentation allows tank temperature and shield temperature profiles, tank liquid levels, and pressure drops through the flow lines, to be measured.

  7. submitter Superconducting instrumentation for high Reynolds turbulence experiments with low temperature gaseous helium

    CERN Document Server

    Pietropinto, S; Baudet, C; Castaing, B; Chabaud, B; Gagne, Y; Hébral, B; Ladam, Y; Lebrun, P; Pirotte, O; Roche, P

    2003-01-01

    Turbulence is of common experience and of high interest for industrial applications, despite its physical grounds is still not understood. Cryogenic gaseous helium gives access to extremely high Reynolds numbers (Re). We describe an instrumentation hosted in CERN, which provides a 6 kW @ 4.5 K helium refrigerator directly connected to the experiment. The flow is a round jet; the flow rates range from 20 g/s up to 260 g/s at 4.8 K and about 1.2 bar, giving access to the highest controlled Re flow ever developed. The experimental challenge lies in the range of scales which have to be investigated: from the smallest viscous scale η, typically 1 μm at Re=107 to the largest L∼10 cm. The corresponding frequencies: f=v/η can be as large as 1 MHz. The development of an original micrometric superconducting anemometer using a hot spot and its characteristics will be discussed together with its operation and the perspectives associated with superconducting anemometry.

  8. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  9. Heat and Momentum Transfer to Internal Turbulent Flow of Helium-Argon Mixtures in Circular Tubes. Revision

    Science.gov (United States)

    1978-01-03

    values of von Ubisch repeated by Gandhi and Saxena [25]. In an attempt to get better agreement between predicted and measured values, force constants...72.8 F TOUT a 5q4.4 V MASS FLO4 RATE a 25.1 LB/R. I = 112.7 AMPS, 5 a 8.520 ’L2S P9,13 - .14,~ sa/REsQ a 6E-01. ItACECl . 2014 , MW9 (16) x .3140, T...IN = 73.2 ? Tour - 514.7 ?, MASS FLOW DATE 3 14.0 LB/HR, = 75.1 AHPS , S = .320 OL!N PR.3 z .4a, SR/RES = .106E-02, HACU(2) .083, MACH(16) = .113. ,$UB

  10. Thermal-hydraulic optimization of flexible transfer lines for liquid helium; Thermohydraulische Optimierung flexibler Transferleitungen fuer Fluessighelium

    Energy Technology Data Exchange (ETDEWEB)

    Dittmar, Nico; Haberstroh, Christoph; Hesse, U. [Technische Univ. Dresden (Germany). Bitzer-Stiftungsprofessur fuer Kaelte-, Kryo- und Kompressorentechnik; Wolfram, M.; Krzyzowski, M.; Raccanelli, A. [CryoVac Gesellschaft fuer Tieftemperaturtechnik mbH und Co. KG, Troisdorf (Germany)

    2014-07-01

    Cooling systems and applications at very low temperatures are based on the use of liquid helium as cryogenic agent; the normal boiling temperature of helium-4 is 4.2 K. Due to the restricted economic production possibilities and the high energetic expenditure for helium liquefaction an efficient and sustainable handling with the resources is recommended. In university facilities the liquid helium is usually stored in containers and filled into smaller containers for transport using cryogenic transfer lines. This procedure can cause 20% loss by evaporation due to heat input and friction pressure losses. The gaseous helium has to be collected for re-liquefaction. The contribution shows that using systematic measurements an increase of the transfer rate and the efficiency of the helium filling system can be reached by a modified transfer line design.

  11. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)

    2000-02-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  12. Solid helium, a superfluid?; L'helium solide, un superfluide?

    Energy Technology Data Exchange (ETDEWEB)

    Balibar, S. [Centre National de la Recherche Scientifique (CNRS), Lab. de Physique Statistique de l' Ecole Normale Superieure, 75 - Paris (France)

    2007-06-15

    At very low temperature, liquid helium becomes superfluid, meaning that it can flow practically without any friction. But what about solid helium? A recent experiment carried out at the Ecole Normale Superieure of Paris (France) has given amazing results: in some conditions some matter can flow through helium without friction. This article makes a synthesis of the experiments carried out on solid helium since the end of the 1960's and which have tried to explain this 'super-solidity' effect. The recent results indicate that the super-solidity of solid helium is linked to its disorder and probably localized at the grain joints, but is not a fundamental property of its crystalline state. (J.S.)

  13. A cryogenic valve for spacecraft applications

    Science.gov (United States)

    Salerno, L. J.; Spivak, A. L.

    1982-01-01

    Space-compatible cryogenic valves are now required to operate between room and liquid helium temperatures. A remotely controllable cryogenic valve is described, which is made of bellows-type stainless steel and is operated by a miniature dc motor with integral gearset (485:1) at a nominal voltage of 28 Vdc. The power transmission provides a further reduction of 7.2:1 to give an overall gear ratio of nearly 3500:1, assuring reliability of operation at low temperatures. Valve performance (leak rate) data are presented at LN2, LHe, and SfHe temperatures at delivered torques of 18, 27, 31, and 35 N-m. At a closing torque of 31 N-m, a leak rate of 0.028 scc/sec was achieved at 2 K, while at a torque of 18 N-m the leak rate at 300 K was less than 3 x 10 to the -9th scc/sec.

  14. The Cryogenic Supervision System in NSRRC

    CERN Document Server

    Li, Hsing-Chieh; Chiou, Wen-Song; Hsiao, Feng-Zone; Tsai, Zong-Da

    2005-01-01

    The helium cryogenic system in NSRRC is a fully automatic PLC system using the Siemens SIMATIC 300 controller. Modularization in both hardware and software makes it easy in the program reading, the system modification and the problem debug. Based on the Laview program we had developed a supervision system taking advantage of the Internet technology to get system's real-time information in any place. The functions of this supervision system include the real-time data accessing with more than 300 digital/analog signals, the data restore, the history trend display, and the human machine interface. The data is accessed via a Profibus line connecting the PLC system and the supervision system with a maximum baud rate 1.5 Mbit/s. Due to this supervision system, it is easy to master the status of the cryogenic system within a short time and diagnose the problem.

  15. Cryogenic Propellant Boil-Off Reduction System

    Science.gov (United States)

    Plachta, D. W.; Christie, R. J.; Carlberg, E.; Feller, J. R.

    2008-03-01

    Lunar missions under consideration would benefit from incorporation of high specific impulse propellants such as LH2 and LO2, even with their accompanying boil-off losses necessary to maintain a steady tank pressure. This paper addresses a cryogenic propellant boil-off reduction system to minimize or eliminate boil-off. Concepts to do so were considered under the In-Space Cryogenic Propellant Depot Project. Specific to that was an investigation of cryocooler integration concepts for relatively large depot sized propellant tanks. One concept proved promising—it served to efficiently move heat to the cryocooler even over long distances via a compressed helium loop. The analyses and designs for this were incorporated into NASA Glenn Research Center's Cryogenic Analysis Tool. That design approach is explained and shown herein. Analysis shows that, when compared to passive only cryogenic storage, the boil-off reduction system begins to reduce system mass if durations are as low as 40 days for LH2, and 14 days for LO2. In addition, a method of cooling LH2 tanks is presented that precludes development issues associated with LH2 temperature cryocoolers.

  16. Analysis of Continuous Heat Exchangers for Cryogenic Boil-Off Reduction

    Science.gov (United States)

    Feller, J. R.; Kashani, A.; Helvensteign, B. P. M.; Salerno, L. J.; Kittel, P.; Plachta, D.; Christie, R.; Carlberg, E.

    2008-03-01

    Cryogenic boil-off reduction systems (CBRS) employing continuous heat exchangers in pressurized helium distributed cooling networks for active thermal control of large surfaces such as propellant tank walls and light-weight radiation shields have been studied for some time. Usually, very simple and intuitive relations are used to derive such quantities as the pressure drop across the network and the required flow rate for a given heat load. Here, detailed thermal-fluid and heat transfer relations for such systems are formulated and then studied term by term in order to determine the conditions under which various approximations to them may reasonably be made. It is found that in most applications of interest, use of the simplified relations is justifiable.

  17. The cryogenic control system of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    LI Gang; WANG Ke-Xiang; ZHAO Ji-Jiu; YUE Ke-Juan; DAI Ming-Sui; HUANG Yi-Ling; JIANG Bo

    2008-01-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron-Positron Collider Upgrade Project(BEPCⅡ).The system consists of a Siemens PLC(ST-PLC,Programmable Logic Controller)for the compressor control,an Allen Bradley(AB)PLC for the cryogenic equipments,and the Experimental Physics and Industrial Control System(EPICS)that integrates the PLCs.The system fully automates the superconducting cryogenic control with process control,PID(Proportional-Integral-Differential)control loops,real-time data access and data storage,alarm handler and human machine interface.It is capable of automatic recovery as well.This paper describes the BEPCⅡ cryogenic control system,data communication between ST-PLC and EPICS Input/Output Controllers(IOCs),and the integration of the flow control,the low level interlock,the AB-PLC,and EPICS.

  18. The cryogenic control system of BEPCII

    Science.gov (United States)

    Li, Gang; Wang, Ke-Xiang; Zhao, Ji-Jiu; Yue, Ke-Juan; Dai, Ming-Hui; Huang, Yi-Ling; Jiang, Bo

    2008-04-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron- Positron Collider Upgrade Project (BEPCII). The system consists of a Siemens PLC (S7-PLC, Programmable Logic Controller) for the compressor control, an Allen Bradley (AB) PLC for the cryogenic equipments, and the Experimental Physics and Industrial Control System (EPICS) that integrates the PLCs. The system fully automates the superconducting cryogenic control with process control, PID (Proportional-Integral-Differential) control loops, real-time data access and data storage, alarm handler and human machine interface. It is capable of automatic recovery as well. This paper describes the BEPCII cryogenic control system, data communication between S7-PLC and EPICS Input/Output Controllers (IOCs), and the integration of the flow control, the low level interlock, the AB-PLC, and EPICS.

  19. Development of helium refrigeration/ liquefaction system at BARC, India

    Science.gov (United States)

    Ansari, N. A.; Goyal, M.; Chakravarty, A.; Menon, Rajendran S.; Jadhav, M.; Rane Nair, T., Sr.; Kumar, J.; Kumar, N.; Bharti, SK; Chakravarty, Abhilash; Jain, A.; Joemon, V.

    2017-02-01

    An experimental helium refrigerator/liquefier, using ultra high speed cryogenic turboexpanders, is designed and developed at Cryo-Technology Division, BARC. The developed system is based on the modified Claude cycle. The developed system is presently fully functional consisting of process compressor with gas management system, coldbox, helium receiver Dewar, tri-axial transfer line and helium recovery system. Extended trial runs are conducted to evaluate the performance of the developed system. During these trials, liquefaction rate of around 32 l/hr and refrigeration capacity of around 190W is achieved. The paper addresses design, development and commissioning aspects of the developed helium liquefier along with results of performance evaluation trial runs.

  20. Cryogenic Active Magnetic Regenerator Test Apparatus

    Science.gov (United States)

    Tura, A.; Roszmann, J.; Dikeos, J.; Rowe, A.

    2006-04-01

    An AMR Test Apparatus (AMRTA) used in experiments near room-temperature required a number of modifications to allow for testing at cryogenic temperatures and with a 5 T magnetic field. The impacts of parasitic heat leaks, frictional heat generation, and eddy current heating in the AMRTA are analyzed. A low temperature gas circulation (LTGC) system to control the operating temperature was developed. The LTGC consists of a GM cryocooler coupled to a compressor and helium circuit which circulates fluid through a set of heat exchangers and flexible transfer lines connected to the AMRTA. Design features are discussed as is some initial test data.

  1. Design of the cryogenic hydrogen release laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Ethan S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zimmerman, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); LaFleur, Angela Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ciotti, Michael [H< sub> 2< /sub> Fueling Engineering Linde, LLC, Murray Hill, NJ (United States)

    2015-09-01

    A cooperative research and development agreement was made between Linde, LLC and Sandia to develop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. A three-stage heat exchanger will be used to cool gaseous hydrogen using liquid nitrogen, gaseous helium, and liquid helium. A cryogenic line from the heat exchanger into the lab will allow high-fidelity diagnostics already in place in the lab to be applied to cold hydrogen jets. Data from these experiments will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  2. Coldness generation and heat revalorization: cryogenic machines; Production de froid et revalorisation de la chaleur: machines cryogeniques

    Energy Technology Data Exchange (ETDEWEB)

    Feidt, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    2005-12-01

    This study treats more particularly of the generation and use of very low temperatures (typically below -100 deg. C). Such temperatures involve different techniques and new physical principles which are examined in this document. The high temperature re-valorization of heat remains poorly explored and is just evoked in this document. Content: 1 - temperature range of cryogenics; 2 - cascade cycles; 3 - gases liquefaction: liquid air, liquid helium, particular properties of helium and refrigeration (Pomaranchuk effect, helium refrigerators); 4 - thermomagnetic effects: basic principles, magnetic refrigerating machine; 5 - conclusions and perspectives about cryogenics. (J.S.)

  3. A Magnetically Coupled Cryogenic Pump

    Science.gov (United States)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  4. NSLS-II RF Cryogenic System

    Energy Technology Data Exchange (ETDEWEB)

    Rose, J.; Dilgen, T.; Gash, B.; Gosman, J.; Mortazavi, P.; Papu, J.; Ravindranath, V.; Sikora, R.; Sitnikov, A.; Wilhelm, H.; Jia, Y.; Monroe, C.

    2015-05-03

    The National Synchrotron Light Source II is a 3 GeV X-ray user facility commissioned in 2014. A new helium refrigerator system has been installed and commissioned to support the superconducting RF cavities in the storage ring. Special care was taken to provide very stable helium and LN2 pressures and flow rates to minimize microphonics and thermal effects at the cavities. Details of the system design along with commissioning and early operations data will be presented.

  5. CRYOGENIC SYSTEM FOR PRECISE CALIBRATION OF TEMPERATURE SENSORS

    Directory of Open Access Journals (Sweden)

    A. N. Solovyev

    2016-09-01

    Full Text Available A calibration technique for cryogenic temperature sensors is proposed and implemented. The experimental setup is based on the helium cryogenerator, providing calibration of the temperature sensors of various types in wide temperature range, including cryogenic band (25-100K. A condensation thermometer with hydrogen, neon, argon and xenon as working gases is used as a reference sensor. The experimental setup was successfully used for precise (0.1K precision calibration of platinum resistive temperature detectors (Pt-100 for international nuclear physics experiments MuSun and PolFusion. The setup can also be used for calibration of temperature sensors of the other types.

  6. Rapidly pulsed helium droplet source

    Energy Technology Data Exchange (ETDEWEB)

    Pentlehner, Dominik; Riechers, Ricarda; Dick, Bernhard; Slenczka, Alkwin [Institute for Physical and Theoretical Chemistry, University of Regensburg, 93053 Regensburg (Germany); Even, Uzi; Lavie, Nachum; Brown, Raviv; Luria, Kfir [Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv (Israel)

    2009-04-15

    A pulsed valve connected to a closed-cycle cryostat was optimized for producing helium droplets. The pulsed droplet beam appeared with a bimodal size distribution. The leading part of the pulse consists of droplets suitable for doping with molecules. The average size of this part can be varied between 10{sup 4} and 10{sup 6} helium atoms, and the width of the distribution is smaller as compared to a continuous-flow droplet source. The system has been tested in a single pulse mode and at repetition rates of up to 500 Hz with almost constant intensity. The droplet density was found to be increased by more than an order of magnitude as compared to a continuous-flow droplet source.

  7. A cryogenic test facility

    Science.gov (United States)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  8. Cryogenic mechanical property testing system directly cooled by G-M cryocooler

    Science.gov (United States)

    Huang, R. J.; Liu, Q.; Li, L. F.; Gong, L. H.; Liu, H. M.; Xu, D.

    2014-01-01

    Cryogenic mechanical properties are generally considered to be some of the most important parameters in cryogenic engineering. Therefore, it is very important to test and investigate mechanical properties at low temperatures. Most systems for cryogenic mechanical property testing are cooled using liquid nitrogen (300 K-77 K) or liquid helium (77 K-4.2 K). As we know, liquid helium is relatively rare and thus expensive. In this study, to attain accurate and stable intermediate temperatures and reduce testing cost, a cryogenic mechanical property testing system cooled by a G-M cryocooler was studied and developed. In this system, the sample can be cooled down to 10.5 K after about 10 hours of running. The tension, bending and compression testing (load range up to 50 kN) can be carried out.

  9. Cryogenic capability for equation-of-state measurements on the Sandia Z pulsed radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-02-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. The authors are developing a general purpose cryogenic target system for precision radiation driven EOS and shock physics experiments at liquid helium temperatures on the Sandia Z pulsed radiation source. Cryogenic sample cooling in the range of 6--30 K is provided by a liquid helium cryostat and an active temperature control system. The cryogenic target assembly is capable of condensing liquid deuterium samples from the gas phase at about 20 K, as well as cooling solid samples such as beryllium and CH ablators for ICF. The target assembly will also include the capability to use various shock diagnostics, such as VISAR interferometry and fiber-optic-coupled shock breakout diagnostics. They are characterizing the thermal and optical performance of the system components in an off-line cryogenic test facility and have designed an interface to introduce the cryogenic transfer lines, gas lines, and sensor cables into the Z vacuum section. Survivability of high-value cryogenic components in the destructive post-implosion environment of Z is a major issue driving the design of this cryogenic target system.

  10. Introduction to cryogenic engineering

    CERN Document Server

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  11. Superfluid helium-4 in one dimensional channel

    Science.gov (United States)

    Kim, Duk Y.; Banavar, Samhita; Chan, Moses H. W.; Hayes, John; Sazio, Pier

    2013-03-01

    Superfluidity, as superconductivity, cannot exist in a strict one-dimensional system. However, the experiments employing porous media showed that superfluid helium can flow through the pores of nanometer size. Here we report a study of the flow of liquid helium through a single hollow glass fiber of 4 cm in length with an open id of 150 nm between 1.6 and 2.3 K. We found the superfluid transition temperature was suppressed in the hollow cylinder and that there is no flow above the transition. Critical velocity at temperature below the transition temperature was determined. Our results bear some similarity to that found by Savard et. al. studying the flow of helium through a nanohole in a silicon nitrite membrane. Experimental study at Penn State is supported by NSF Grants No. DMR 1103159.

  12. Operation of an opamp at liquid helium temperature.

    Science.gov (United States)

    Ng, K.-W.

    1994-02-01

    The stray capacitance between long wires in a cryogenics systems will slow down measurement rate, and also introduce unnecessary noise pick up. It is necessary to install the preamplifier as close to the signal source as possible to diminish the capacitive coupling effects. The most commonly used semiconducting device for this purpose is the MOSFET, which can function at liquid helium temperatures. Under special operation procedures, an all MOSFET operational amplifier can also be operated at liquid helium temperature. The use of opamp will simplify the construction of more complicated circuitry for low temperature applications.

  13. Experimental investigation on mass flow rate measurements using fibre Bragg grating sensors

    Science.gov (United States)

    Thekkethil, S. R.; Thomas, R. J.; Neumann, H.; Ramalingam, R.

    2017-02-01

    Flow measurement and control of cryogens is one of the major requirements of systems such as superconductor magnets for fusion reactors, MRI magnets etc. They can act as an early diagnostic tool for detection of any faults and ensure correct distribution of cooling load while also accessing thermal performance of the devices. Fibre Bragg Grating (FBG) sensors provide compact and accurate measurement systems which have added advantages such as immunity towards electrical and magnetic interference, low attenuation losses and remote sensing. This paper summarizes the initial experimental investigations and calibration of a novel FBG based mass flow meter. This design utilizes the viscous drag due to the flow to induce a bending strain on the fibre. The strain experienced by the fibre will be proportional to the flowrate and can be measured in terms of Bragg wavelength shift. The flowmeter is initially tested at atmospheric conditions using helium. The results are summarized and the performance parameters of the sensor are estimated. The results were also compared to a numerical model and further results for liquid helium is also reported. An overall sensitivity of 29 pm.(g.s-1)-1 was obtained for a helium flow, with a resolution of 0.2 g.s-1. A hysteresis error of 8 pm was also observed during load-unload cycles. The sensor is suitable for further tests using cryogens.

  14. The numerical evaluation of the minimal outlet area of the safety valve in the pipelines of cryogenic installations

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The flow of cold helium in pipes is a fundamental issue of any cryogenic installation. Pipelines for helium transportation can reach lengths of hundreds of meters. The proper selection of size for individual pipelines and safety valves is a crucial part in the consideration of costs for the entire installation and its safe operation. The size of the safety valve must be properly designed in order to avoid a dangerous pressure buildup during normal operation, as well as in the case of emergency. The most commonly occurring dangerous situation is an undesired heat flux in the helium as a result of a broken insulation. In this case, the heat flux can be very intense and the buildup of the pressure in the pipe can be very rapid. In the present work, numerical calculations were used to evaluate the buildup of pressure and temperature in the pipe, in the case of a sudden and intense heat flux. The main goal of the applied numerical procedure was to evaluate the proper sizes of the safety valves in order to avoid a...

  15. Advances in Cryogenics at the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    1998-01-01

    After a decade of intensive R&D in the key technologies of high-field superconducting accelerator magnets and superfluid helium cryogenics, the Large Hadron Collider (LHC) has now fully entered its co nstruction phase, with the adjudication of major procurement contracts to industry. As concerns cryogenic engineering, this R&D program has resulted in significant developments in several fields, amon g which thermo-hydraulics of two-phase saturated superfluid helium, efficient cycles and machinery for large-capacity refrigeration at 1.8 K, insulation techniques for series-produced cryostats and mu lti-kilometre long distribution lines, large-current leads using high-temperature superconductors, industrial precision thermometry below 4 K, and novel control techniques applied to strongly non-line ar processes. We review the most salient advances in these domains.

  16. Cryogenic Adsorption of Low-concentration Hydrogen on 5A Molecular Sieve Bed

    Institute of Scientific and Technical Information of China (English)

    LIU; Zhen-xing; YANG; Hong-guang; XIA; Ti-rui; ZHAN; Qin; YANG; Li-ling

    2013-01-01

    The separation of low-concentration hydrogen isotopes from helium is a processing step that is required for ceramic lithium breeding blanket processing.In this study,the adsorption of low-concentration hydrogen from helium carrier was measured using 5A molecular sieve fixed bed in the cryogenic condition.The adsorption performances of hydrogen on 5A molecular sieve were discussed.The effect of the different

  17. Some of the QRL team in UJ22 of the LHC tunnel, where the last sector of the cryogenic distribution line was installed.

    CERN Multimedia

    Viviane Li

    2006-01-01

    The cryogenic distribution line "the QRL" is a circle built in 8 sectors, each approximately 3 km in length. It will circulate helium in liquid and gas phases, at different temperatures and pressures, to provide the cryogenic conditions for the superconducting magnets in the LHC tunnel.

  18. A cold ejector for closed-cycle helium refrigerators

    Science.gov (United States)

    Johnson, D. L.; Daggett, D. L.

    1987-11-01

    The test results are presented of an initial cold helium ejector design that can be installed on a closed cycle refrigerator to provide refrigeration at temperatures below 4.2 K. The ejector, test apparatus, instrumentation, and test results are described. Tests were conducted both at room temperature and at cryogenic temperatures to provide operational experience with the ejector as well as for future use in the subsequent design of an ejector that will provide refrigeration at temperatures below 3 K.

  19. A cold ejector for closed-cycle helium refrigerators

    Science.gov (United States)

    Johnson, D. L.; Daggett, D. L.

    1987-01-01

    The test results are presented of an initial cold helium ejector design that can be installed on a closed cycle refrigerator to provide refrigeration at temperatures below 4.2 K. The ejector, test apparatus, instrumentation, and test results are described. Tests were conducted both at room temperature and at cryogenic temperatures to provide operational experience with the ejector as well as for future use in the subsequent design of an ejector that will provide refrigeration at temperatures below 3 K.

  20. The common cryogenic test facility for the ATLAS barrel and end-cap toroid magnets

    CERN Document Server

    Delruelle, N; Junker, S; Passardi, Giorgio; Pengo, R; Pirotte, O

    2004-01-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific requ...

  1. The Common Cryogenic Test Facility for the Atlas Barrel and End-Cap Toroid Magnet

    CERN Document Server

    Delruelle, N; Junker, S; Passardi, Giorgio; Pengo, R; Pirotte, O

    2004-01-01

    The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having a 160 tons cold mass. The integrated system mainly comprises a 1.2 kW@4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific re...

  2. A Novel Pre-cooling System for a Cryogenic Pulsating Heat Pipe

    Science.gov (United States)

    Xu, Dong; Liu, Huiming; Gong, Linghui; Xu, Xiangdong; Li, Laifeng

    To reduce the influence of the pipe material on the measurement of effective thermal conductivity, the pipe of a cryogenic pulsating heat pipe is generally made of stainless steel. Because of the low thermal conductivity of stainless steel, the pre-cooling of the evaporator in cryogenic pulsating heat pipe using helium as working fluid at 4.2 K is a problem. We designed a mechanical-thermal switch between the cryocooler and the evaporator, which was on during the pre-cooling process and off during the test process. By using the pre-cooling system, the cool down time of the cryogenic pulsating heat pipe was reduced significantly.

  3. Advanced monitoring, fault diagnostics, and maintenance of cryogenic systems

    CERN Document Server

    Girone, Mario; Pezzetti, Marco

    In this Thesis, advanced methods and techniques of monitoring, fault diagnostics, and predictive maintenance for cryogenic processes and systems are described. In particular, in Chapter 1, mainstreams in research on measurement systems for cryogenic processes are reviewed with the aim of dening key current trends and possible future evolutions. Then, in Chapter 2, several innovative methods are proposed. A transducer based on a virtual ow meter is presented for monitoring helium distribution and consumption in cryogenic systems for particle accelerators [1]. Furthermore, a comprehensive metrological analysis of the proposed transducer for verifying the metrological performance and pointing out most critical uncertainty sources is described [2]. A model-based method for fault detection and early-stage isolation, able to work with few records of Frequency Response Function (FRF) on an unfaulty compressor, is then proposed [3]. To enrich the proposal, a distributed diagnostic procedure, based on a micro-genetic...

  4. Trace Detection of Metastable Helium Molecules in Superfluid Helium by Laser-Induced Fluorescence

    CERN Document Server

    McKinsey, D N; Nikkel, J A; Rellergert, W

    2005-01-01

    We describe an approach to detecting ionizing radiation that combines the special properties of superfluid helium with the sensitivity of quantum optics techniques. Ionization in liquid helium results in the copious production of metastable helium molecules, which can be detected by laser-induced fluorescence. Each molecule can be probed many times using a cycling transition, resulting in the detection of individual molecules with high signal to noise. This technique could be used to detect neutrinos, weakly interacting massive particles, and ultracold neutrons, and to image superfluid flow in liquid He-4.

  5. Spiral 2 Cryogenic System for The Superconducting LINAC

    Science.gov (United States)

    Ghribi, A.; Bernaudin, P.-E.; Bert, Y.; Commeaux, C.; Houeto, M.; Lescalié, G.

    2017-02-01

    SPIRAL 21 is a rare isotope accelerator dedicated to the production of high intensity beams (E = 40 MeV, I = 5 mA). The driver is a linear accelerator (LINAC) that uses bulk Niobium made quarter wave RF cavities. 19 cryomodules inclose one or two cavities respectively for the low and the high energy sections. To supply the 1300 W at 4.2 K required to cool down the LINAC, a cryogenic system has been set up. The heart of the latter is a 3 turbines geared HELIAL®LF (ALAT2) cold box that delivers both the liquid helium for the cavities and the 60 K Helium gaz for the thermal screens. 19 valve-boxes insure cryogenic fluid distribution and management. Key issues like cool down speed or cavity RF frequency stability are closely linked to the cryogenic system management. To overcome these issues, modelling and simulation efforts are being undertaken prior to the first cool down trials. In this paper, we present a status update of the Spiral 2 cryogenic system and the cool down strategy considered for its commissioning.

  6. Study on mitigation of pulsed heat load for ITER cryogenic system

    Science.gov (United States)

    Peng, N.; Xiong, L. Y.; Jiang, Y. C.; Tang, J. C.; Liu, L. Q.

    2015-03-01

    One of the key requirements for ITER cryogenic system is the mitigation of the pulsed heat load deposited in the magnet system due to magnetic field variation and pulsed DT neutron production. As one of the control strategies, bypass valves of Toroidal Field (TF) case helium loop would be adjusted to mitigate the pulsed heat load to the LHe plant. A quasi-3D time-dependent thermal-hydraulic analysis of the TF winding packs and TF case has been performed to study the behaviors of TF magnets during the reference plasma scenario with the pulses of 400 s burn and repetition time of 1800 s. The model is based on a 1D helium flow and quasi-3D solid heat conduction model. The whole TF magnet is simulated taking into account thermal conduction between winding pack and case which are cooled separately. The heat loads are given as input information, which include AC losses in the conductor, eddy current losses in the structure, thermal radiation, thermal conduction and nuclear heating. The simulation results indicate that the temperature variation of TF magnet stays within the allowable range when the smooth control strategy is active.

  7. The CERN cryogenic test facility for the ATLAS barrel toroid magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    2000-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m/sup 2/ experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and i...

  8. The CERN Cryogenic Test Facility for the Atlas Barrel Toroid Magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    1999-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m2 experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and its ins...

  9. Quality Testing of Gaseous Helium Pressure Vessels by Acoustic Emission

    CERN Document Server

    Barranco-Luque, M; Hervé, C; Margaroli, C; Sergo, V

    1998-01-01

    The resistance of pressure equipment is currently tested, before commissioning or at periodic maintenance, by means of normal pressure tests. Defects occurring inside materials during the execution of these tests or not seen by usual non-destructive techniques can remain as undetected potential sources of failure . The acoustic emission (AE) technique can detect and monitor the evolution of such failures. Industrial-size helium cryogenic systems employ cryogens often stored in gaseous form under pressure at ambient temperature. Standard initial and periodic pressure testing imposes operational constraints which other complementary testing methods, such as AE, could significantly alleviate. Recent reception testing of 250 m3 GHe storage vessels with a design pressure of 2.2 MPa for the LEP and LHC cryogenic systems has implemented AE with the above-mentioned aims.

  10. Simulations of Cavitating Cryogenic Inducers

    Science.gov (United States)

    Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

    2004-01-01

    Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.

  11. Characterisation and optimisation of flexible transfer lines for liquid helium. Part II: Thermohydraulic modelling

    Science.gov (United States)

    Dittmar, N.; Haberstroh, Ch.; Hesse, U.; Krzyzowski, M.

    2016-10-01

    In part one of this publication experimental results for a single-channel transfer line used at liquid helium (LHe) decant stations are presented. The transfer of LHe into mobile dewars is an unavoidable process since the places of storage and usage are generally located apart from each other. The experimental results have shown that reasonable amounts of LHe evaporate due to heat leak and pressure drop. Thus, generated helium cold gas has to be collected and reliquefied, demanding a huge amount of electrical energy. Although this transfer process is common in cryogenic laboratories, no existing code could be found to model it. Therefore, a thermohydraulic model has been developed to model the LHe flow at operating conditions using published heat transfer and pressure drop correlations. This paper covers the basic equations used to calculate heat transfer and pressure drop, as well as the validation of the thermohydraulic code, and its application within the optimisation process. The final transfer line design features reduced heat leak and pressure drop values based on a combined measurement and modelling campaign in the range of 0.112 < pin < 0.148 MPa, 190 < G < 450 kg/(m2 s), and 0.04 < xout < 0.12.

  12. Optimal Design and Operation of Helium Refrigeration Systems Using the Ganni Cycle

    Science.gov (United States)

    Ganni, V.; Knudsen, P.

    2010-04-01

    The constant pressure ratio process, as implemented in the floating pressure—Ganni cycle, is a new variation to prior cryogenic refrigeration and liquefaction cycle designs that allows for optimal operation and design of helium refrigeration systems. This cycle is based upon the traditional equipment used for helium refrigeration system designs, i.e., constant volume displacement compression and critical flow expansion devices. It takes advantage of the fact that for a given load, the expander sets the compressor discharge pressure and the compressor sets its own suction pressure. This cycle not only provides an essentially constant system Carnot efficiency over a wide load range, but invalidates the traditional philosophy that the (`TS') design condition is the optimal operating condition for a given load using the as-built hardware. As such, the Floating Pressure-Ganni Cycle is a solution to reduce the energy consumption while increasing the reliability, flexibility and stability of these systems over a wide operating range and different operating modes and is applicable to most of the existing plants. This paper explains the basic theory behind this cycle operation and contrasts it to the traditional operational philosophies presently used.

  13. OPTIMAL DESIGN AND OPERATION OF HELIUM REFRIGERATION SYSTEMS USING THE GANNI CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Venkatarao Ganni, Peter Knudsen

    2010-04-01

    The constant pressure ratio process, as implemented in the floating pressure - Ganni cycle, is a new variation to prior cryogenic refrigeration and liquefaction cycle designs that allows for optimal operation and design of helium refrigeration systems. This cycle is based upon the traditional equipment used for helium refrigeration system designs, i.e., constant volume displacement compression and critical flow expansion devices. It takes advantage of the fact that for a given load, the expander sets the compressor discharge pressure and the compressor sets its own suction pressure. This cycle not only provides an essentially constant system Carnot efficiency over a wide load range, but invalidates the traditional philosophy that the (‘TS’) design condition is the optimal operating condition for a given load using the as-built hardware. As such, the Floating Pressure- Ganni Cycle is a solution to reduce the energy consumption while increasing the reliability, flexibility and stability of these systems over a wide operating range and different operating modes and is applicable to most of the existing plants. This paper explains the basic theory behind this cycle operation and contrasts it to the traditional operational philosophies presently used.

  14. Heat Exchanger Can Assembly for Provision of Helium Coolant Streams for Cryomodule Testing below 2K

    Science.gov (United States)

    Smith, E. N.; Eichhorn, R.; Quigley, P.; Sabol, D.; Shore, C.; Widger, D.

    2017-02-01

    A series of heat exchanger can (HXC) assemblies have been designed, constructed and built to utilize existing 4.2 K liquefaction and compressor capabilities to provide helium gas coolant streams of 80 K, 4.5 K, and liquid from 1.6 to 2.0 K for operating cryomodules containing from one to six superconducting RF cavities built for an energy recovery linear accelerator. Designs for the largest assemblies required up to 100 W of cooling at 1.8 K with precise temperature control, especially during cool-down, and up to 2000 W at 80 K (with a 40 K temperature rise). A novel feature of these assemblies was the use of relatively inexpensive brazed stainless steel plate heat exchangers intended for room-temperature operation with water or oil, but which in practice worked well at cryogenic temperatures. The choice of operating temperatures/pressures were to provide single-phase helium flow for better control of coolant distribution in the 80 K and 4.5 K streams, to take advantage of locally elevated heat capacity near the critical point for the 4.5 K stream, and in the region below 2 K to get the best possible Q from the niobium cavities under test.

  15. Full Scale Thermo-hydraulic Simulation of a Helium-Helium Printed Circuit Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Injun; Hong, Sungyull; Bai, Cheolho; Shim, Jaesool [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kim, Chansoo; Hong, Sungdeok; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, the thermo-hydraulic full scale simulation is performed to study the temperature distributions, thermal stress, pressure drop and outlet temperature in a Helium-Helium printed circuit heat exchanger (PCHE) in a VHTR simulate helium loop. The entire PCHE is composed of 40 stacks of rectangular shaped micro-channels for helium gas [type A] (inlet temperature, 400 .deg. C) and 40 stacks of semi-ellipse shaped micro-channels for helium [type B] (inlet temperature, 300 .deg. C). The experimental result is compared to that of computer simulation, COMSOL multi-physics software. The Helium-Helium PCHE is considered a prototype of the newly developed PCHE by Korea Atomic Energy Research Institute (KAERI). The full scale thermo-hydraulic simulation was successfully performed to obtain temperature distribution, pressure drop and thermal stress in 40 sets of flow channel stacks in a helium-helium printed circuit heat exchanger in a VHTR simulate helium loop. We obtained a quite similar temperature distribution with the 3D measured infrared temperature distribution. To our knowledge, this is the first full scale numerical study on the PCHE, which considers all microchannels, that the convection effect on the outside surfaces of the PCHE is applied. The very high-temperature reactor (VHTR) or high-temperature gas-cooled reactor(HTGR) is a fourth-generation nuclear power reactor that uses the ceramic coated fuel, TRISO, in which the fission gas does not leak even at temperatures higher than 1600 .deg. C. The VHTR necessarily requires an intermediate loop composed of a hot gas duct (HGD), an intermediate heat exchanger (IHX) and a process heat exchanger (PHE). The IHX is one of the important components of VHTR system because the IHX transfers the 950 .deg. C of high temperature massive heat to a hydrogen production plant or power conversion unit at high system pressure.

  16. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  17. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  18. Fundamentals of cryogenic engineering

    CERN Document Server

    Mukhopadhyay, Mamata

    2014-01-01

    The author, with her vast and varied experience in teaching and allied fields, clearly enunciates the behaviour and various properties of common cryogenic fluids, methods of liquefaction, and separation and applications of cryogens with thermodynamic analysis for process selection. This profusely illustrated study with clear-cut diagrams and process charts, should serve not only as a textbook for students but also as an excellent reference for researchers and practising engineers on design of cryogenic refrigeration, and liquefaction and separation process plants for various applications.

  19. The XRS Low Temperature Cryogenic System: Ground Performance Test Results

    Science.gov (United States)

    Breon, Susan; Sirron, Peter; Boyle, Robert; Canavan, Ed; DiPirro, Michael; Serlemitsos, Aristides; Tuttle, James; Whitehouse, Paul

    1998-01-01

    The X-Ray Spectrometer (XRS) instrument is part of the Astro-E mission scheduled to launch early in 2000. Its cryogenic system is required to cool a 32-element square array of x-ray microcalorimeters to 60-65 mK over a mission lifetime of at least 2 years. This is accomplished using an adiabatic demagnetization refrigerator (ADR) contained within a two-stage superfluid helium/solid neon cooler. Goddard Space Flight Center is providing the ADR and helium dewar. The flight system was assembled in Sept. 1997 and subjected to extensive thermal performance tests. This paper presents test results at both the system and component levels. In addition, results of the low temperature topoff performed in Japan with the engineering unit neon and helium dewars are discussed.

  20. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  1. Scanning SQUID microscopy in a cryogen-free refrigerator

    Science.gov (United States)

    Schaefer, Brian T.; Low, David; Prawiroatmodjo, Guenevere E. D. K.; Nangoi, J. Kevin; Kim, Jihoon; Nowack, Katja C.

    With helium prices rising and supply becoming increasingly uncertain, it has become attractive to use dry cryostats with cryocoolers rather than liquid helium to reach low temperatures. However, a cryocooler introduces vibrations at the sample stage, making scanning probe experiments more challenging. Here, we report our progress on a superconducting quantum interference device (SQUID) microscope implemented for the first time in a compact, cryogen-free 5 K system. Our microscope is designed to reach submicron spatial resolution and a flux sensitivity of approximately 1 μΦ0 /√{ Hz} , where Φ0 is the magnetic flux quantum. To enable height feedback while approaching and scanning samples, we mount the SQUID on a quartz tuning fork. Our system promises to meet the capabilities of similar systems implemented in helium cryostats.

  2. Upgrade of the cryogenic CERN RF test facility

    Science.gov (United States)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Koettig, T.; Maesen, P.; Vullierme, B.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990's in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  3. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  4. The Cryogenic Storage Ring CSR

    CERN Document Server

    von Hahn, Robert; Berg, Felix; Blaum, Klaus; Breitenfeldt, Christian; Fadil, Hisham; Fellenberger, Florian; Froese, Michael; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth A; Heber, Oded; Herwig, Philipp; Karthein, Jonas; Krantz, Claude; Kreckel, Holger; Lange, Michael; Laux, Felix; Lohmann, Svenja; Menk, Sebastian; Meyer, Christian; Mishra, Preeti M; Novotný, Oldřich; Connor, Aodh P O; Orlov, Dmitry A; Rappaport, Michael L; Repnow, Roland; Saurabh, Sunny; Schippers, Stefan; Schröter, Claus Dieter; Schwalm, Dirk; Schweikhard, Lutz; Sieber, Thomas; Shornikov, Andrey; Spruck, Kaija; Kumar, Sudhakaran Sunil; Ullrich, Joachim; Urbain, Xavier; Vogel, Stephen; Wilhelm, Patrick; Wolf, Andreas; Zajfman, Daniel

    2016-01-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 $\\pm$ 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion) and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas den...

  5. Experience with Dry Running Vacuum Pumps in Helium Service

    Science.gov (United States)

    Arztmann, R.

    2008-03-01

    A process vacuum system for helium using dry running vacuum pumps only was shop tested and installed in a refrigeration plant to serve cavities operating at 2K for a cryogenic storage ring. The paper explains the joint development steps of Busch AG and Linde Kryotechnik AG to use dry running vacuum pumps for helium service at ambient temperature. A roots type booster pump followed by a non lube rotary screw pump provides very good performance in a helium vacuum pump system. Variable frequency drives on both pumps allow to adjust the pump characteristics to a wide range of operating parameters. Operation without friction of sealing elements in the compression space also of the screw pump promises extended maintenance intervals and virtually no wear on the rotors. The current plant operation at Max Plank Institute in Heidelberg, Germany Laboratory will provide additional experience for further applications.

  6. Development of a Mass Flowmeter based on the Coriolis Acceleration for Liquid, Supercritical and Superfluid Helium

    CERN Document Server

    De Jonge, T; Rivetti, A; Serio, L

    2002-01-01

    Beginning in the 1980's, Coriolis meters have gained generalised acceptance in liquid applications with a worldwide installed base of over 300,000 units. To meet the demands of cryogenic applications below 20 K, off-the-shelf Coriolis meters have been used, with minor design modifications and operational changes. The meters were originally calibrated on water and tested on liquid helium at 4.5 K, supercritical helium around 5 K and superfluid helium below 2 K. The meters maintain their intrinsic robustness and accuracy of better than 1% of measured value; accuracy is independent of density and temperature.

  7. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  8. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  9. A word from the DG: A cryogenic success

    CERN Multimedia

    2007-01-01

    The beginning of this month saw the start of a new phase in the LHC project, with its first inauguration, for the LHC cryogenics. This was marked with a symposium in the Globe attended by 178 representatives of the industrial partners and research institutes involved. It also coincided with stable low-temperature operation of the cryogenic plant for sector 7-8, the first sector of the LHC to be cooled down. A look at the LHC web site (http://lhc.web.cern.ch/lhc/) shows this steady operation. The cryogenic system for the LHC is the largest and most complex ever built, involving many large devices on an industrial scale, where reliability is of paramount importance. The LHC’s energy of 7 TeV required a high magnetic field provided by niobium-titanium coils operating at 1.9 K. This is a new temperature regime for large-scale cryogenics, chosen to make use of the excellent heat-transfer properties of helium in its superfluid state. The final design for the LHC cryogenics had to incorporate both newly ordered ...

  10. Ricor's anniversary of 50 innovative years in cryogenic technology

    Science.gov (United States)

    Filis, Avishai; Segal, Victor; Pundak, Nachman; Bar Haim, Zvi; Danziger, Menachem

    2017-05-01

    Ricor cryogenics was founded in 1967 and since then it has focused on innovative technologies in the cryogenic field. The paper reviews the initial research and development efforts invested in various technologies that have yielded products such as Cryostats for Mossbauer Effect measurement, Liquid gas Dewar containers, Liquid helium vacuum transfer tubes, Cryosurgery and other innovative products. The major registered patents that matured to products such as a magnetic vacuum valve operator, pumped out safety valve and other innovations are reviewed here. As a result of continuous R and D investment, over the years a new generation of innovative Stirling cryogenic products has developed. This development began with massive split slip-on coolers and has progressed as far as miniature IDDCA coolers mainly for IR applications. The accumulated experience in Stirling technology is used also as a platform for developing self-contained water vapor pumps known as MicroStar and NanoStar. These products are also used in collaboration with a research institute in the field of High Temperature Superconductors. The continuous growth in the cryogenic products range and the need to meet market demands have motivated the expansion, of Ricor's manufacturing facility enabling it to become a world leader in the cryocooler field. To date Ricor has manufactured more than 120,000 cryocoolers. The actual cryogenic development efforts and challenges are also reviewed, mainly in the field of long life cryocoolers, ruggedized products, miniaturization and products for space applications.

  11. Gas gap heat switch for a cryogen-free magnet system

    Science.gov (United States)

    Barreto, J.; Borges de Sousa, P.; Martins, D.; Kar, S.; Bonfait, G.; Catarino, I.

    2015-12-01

    Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported.

  12. Giants for cryogenics

    CERN Multimedia

    2009-01-01

    It takes 130 tonnes of liquid helium to cool down the LHC. In some situations—during a shutdown, for instance—this enormous volume of helium has to be removed from the machine and stored elsewhere. While this is a straightforward operation from the technical point of view, in logistical terms storing such a huge amount of the special element that is helium is far from trivial. Until recently, CERN had the capacity for storing up to 52 tonnes of helium in gas form, i.e. 40% of the total needed by the LHC, using the storage tanks that can be seen in the vicinity of some of the experiment sites. As of the middle of June, two new storage tanks, among the largest in the world, are now located at Point 18. Each holding up to 128 000 litres of liquid helium, for a total of 28 tonnes between the two of them, the new tanks have increased CERN’s helium storage capacity by 20%, to reach 60%. The goal is to have storage capacity at 100% by 2010, with the arrival of four mor...

  13. Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable

    Science.gov (United States)

    Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John

    2014-01-01

    The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.

  14. Cryogenic system configuration for the International Linear Collider (ILC) at mountainous site

    Science.gov (United States)

    Nakai, H.; Okamura, T.; Delikaris, D.; Peterson, T.; Yamamoto, A.

    2017-02-01

    The International Linear Collider (ILC) plans to make use of ten cryoplants for its main linacs, each providing 19 kW at 4.5 K equivalent and among of it 3.6 kW at 2 K. Each cryoplant will consist of various cryogenic components such as a 4.5 K refrigerator cold box, a 2 K refrigerator cold box, and helium compressors and so on. In the technical design report (TDR) of the ILC, due to the mountainous topology, almost all cryogenic components would be installed in underground cryogenic caverns next to the main linac tunnels and only cooling towers on surface area. However, we would like to find a more effective and sophisticated configuration of the cryoplant components (cryogenic configuration). Under several constraints of technical, geographical, and environmental points of view, the cryogenic configuration should be considered carefully to satisfy such various conditions. After discussions on this topic conducted at various workshops and conferences, an updated cryogenic configuration is suggested. The proposed updated configuration may affect the total construction cost of the ILC and the entire structure of the ILC conventional facilities. The updated cryogenic configuration is presented and the on-going discussions with the conventional facilities and siting (CFS) colleagues for further improvement of the cryogenic configuration is introduced.

  15. Fluent simulations for the cryogenic stopping cell for the low energy branch at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Morherr, Frank [JLU Giessen (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2014-07-01

    A cryogenic stopping cell (CSC) has been developed for the low-energy branch of the Super-FRS at FAIR, GSI, Germany. The stopping cell technique is based on the stopping of in-flight separated high energetic ions in a noble gas, Helium in our case. The system design is based on the Super-FRS beam properties. By SIMION simulations the flow of the Ions in the DC-field along the stopping cell length and the ion trajectories along the DC-field of the CSC and the behavior of the RF carpet have been simulated using SIMION code in our group. Until now simulations of the gas flow are missed. Especially the design of the nozzle, where the Ions leave the stopping cell has not been investigated in detail. In the current design a straight extraction nozzle is used. With a laval-nozzle there exists a convergent solution. The goal is, to design an extraction nozzle such, that the gas flow through the nozzle becomes stable for high densities to lead the Ions. So they can be catch by the extraction RFQs. For low densities far away the gas must escape sideward so it is possible to pump it away. The gas dynamics at the extraction nozzle have been simulated using ASNYS Fluent Calculations, they will be combined with ion optics simulations, first results will be presented and allow understanding the behavior of the ions.

  16. Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander

    Science.gov (United States)

    Joshi, D. M.; Patel, H. K.; Shah, D. K.

    2015-04-01

    Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the

  17. On a cryogenic noble gas ion catcher

    CERN Document Server

    Dendooven, P; Purushothaman, S

    2006-01-01

    In-situ purification of the gas used as stopping medium in a noble gas ion catcher by operating the device at low temperatures of 60 to 150 K was investigated. Alpha-decay recoil ions from a 223Ra source served as energetic probes. The combined ion survival and transport efficiencies for 219Rn ions saturated below about 90 K, reaching 28.7(17) % in helium, 22.1(13) % in neon, and 17.0(10) % in argon. These values may well reflect the charge exchange and stripping cross sections during the slowing down of the ions, and thus represent a fundamental upper limit for the efficiency of noble gas ion catcher devices. We suggest the cryogenic noble gas ion catcher as a technically simpler alternative to the ultra-high purity noble gas ion catcher operating at room temperature.

  18. Cryogenic system for a superconducting spectrometer

    Science.gov (United States)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. The cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy are described. The system normally operates with a 4 K heat load of 150 watts; the LN2 circuits absorb an additional 4000 watts. The 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations.

  19. Spectra of Cold Molecular Ions from Hot Helium Nanodroplets

    Science.gov (United States)

    Drabbels, Marcel

    2012-06-01

    The function of a molecule is intimately related to its structure. Accordingly, in the quest for a better understanding of molecular function, the development of spectroscopic methods to elucidate molecular structures increasingly takes central stage. The amount of detail that can be derived from spectra depends on the experimental conditions, most notably on the temperature of the sample and the intermolecular interactions a molecule experiences. Helium nanodroplets provide in this respect an almost ideal matrix [1, 2]. For neutral molecules, helium nanodroplet spectroscopy thus has led to important discoveries related to the structure of key molecular systems and has provided insight into the mechanisms underlying chemical reactions. Compared to the level of sophistication that has been reached for neutrals, the spectroscopic exploration of ions is still in its infancy. The use of helium droplets as a cryogenic matrix could potentially solve many of the technical challenges associated with recording high-resolution spectra of cold molecular ions. Here, we will present a method to record spectra of ion containing helium nanodroplets that finds its roots in the nonthermal cooling dynamics of excited molecular ions. In addition, spectra of several molecular ions will be present and the influence of the helium environment on these spectra will be discussed. [1] G. Scoles, and K. K. Lehmann, Science 287, 2429 (2000). [2] J. P. Toennies, and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

  20. Evaluation of Stirling cooler system for cryogenic CO2 capture

    OpenAIRE

    Song, Chun Feng; Kitamura, Yutaka; Li, Shu Hong

    2012-01-01

    In previous research, a cryogenic system based on Stirling coolers has been developed. In this work, the novel system was applied on CO2 capture from post-combustion flue gas and different process parameters (i.e. flow rate of feed gas, temperature of Stirling cooler and operating condition) were investigated to obtain the optimal performance (CO2 recovery and energy consumption). From the extensive experiments, it was concluded that the cryogenic system could realize CO2 capture without solv...

  1. Photoionization of helium dimers; Photoionisation von Heliumdimeren

    Energy Technology Data Exchange (ETDEWEB)

    Havermeier, Tilo

    2010-06-09

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  2. Cryogenic Hybrid Magnetic Bearing

    Science.gov (United States)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  3. Cryogenic regenerative heat exchangers

    CERN Document Server

    Ackermann, Robert A

    1997-01-01

    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  4. 低温透平膨胀机内平衡凝结两相流动的数值模拟%Numerical Simulation of Equilibrium Condensation Two-Phase Flow in Cryogenic Turboexpander

    Institute of Scientific and Technical Information of China (English)

    孙皖; 马斌; 牛璐; 侯予

    2013-01-01

    The binary mixture properties of cryogenic air were fitted by the PR equations and the zero pressure polynomial.The single-phase flow under the design conditions and the equilibrium condensation of two-phase flow at higher pressure and lower temperature were numerically simulated by ANSYS CFX.For a cryogenic turboexpander in air separation process,the temperature field,pressure field,streamlines and liquid mass fraction in the nozzle and impeller were obtained.The isentropic efficiency of the turboexpander was calculated.The results show that the eddy occurring on the suction side of the impeller would delay the phase-change condensation,and the wake at the trailing edge of the blade would lead to the decrease in the local liquid mass fraction.The simulation results agree well with the experimental data,confirming that the model of the equilibrium condensation can be applied to the simulation of the two-phase flow turboexpander having a small liquid mass fraction.%采用Peng-Robinson方程及零压多项式拟合了低温空气二元混合物的物性,利用商业软件ANSYS CFX对设计工况下的单相流动及进口升压降温后平衡凝结两相流动进行了数值模拟,得到了全低压空气分离流程中的低温两相透平膨胀机喷嘴和工作轮的温度场、压力场、流线及带液量云图,同时推导了该工况下膨胀机的等熵效率.结果表明,工作轮流道内吸力面壁面处的涡流会延迟凝结相变发生,叶片后缘处的尾迹使得吸力面壁面处的带液量有所减小.最后,通过实验验证了模拟结果,表明利用平衡凝结相变模型能够模拟小带液量透平膨胀机流道内的两相流动.该结果可为低温两相膨胀机研究提供参考.

  5. Installation and commissioning of a cryogen distribution system for the TPS project

    Science.gov (United States)

    Tsai, H. H.; Hsiao, F. Z.; Li, H. C.; Lin, M. C.; Wang, C.; Liao, W. R.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Chuang, P. S. D.

    2016-07-01

    A cryogen distribution system was installed and commissioned to transfer liquid nitrogen (LN2) and liquid helium (LHe) from storage dewars to superconducting radio-frequency (SRF) cavities for the 3-GeV Taiwan Photon Source (TPS) project. The cryogen distribution system comprises one distribution valve box (DVB), four control valve boxes (CVB) and seven sections of multichannel transfer line (MCL). The DVB distributes the LHe and LN2 to the CVB, and then to the SRF cavities through independent vacuum-jacketed transfer lines. The vaporized GHe and GN2 from the cryomodules are collected via the MCL. The cryogen distribution system was installed and commissioned from October 2014 to the end of March 2015. This paper presents the installation, pre-commissioning and commissioning of the cryogen distribution system, and describes the heat load test. Thermal acoustic oscillation (TAO) was found in the GHe process line; this phenomenon and its solution are also presented and discussed.

  6. The cryogenic gas stopping cell of SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Droese, C., E-mail: christian.droese1@uni-greifswald.de [Ernst-Moritz-Arndt-Universität, Felix-Hausdorff-Straße 6, 17489 Greifswald (Germany); Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Eliseev, S.; Blaum, K. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Block, M.; Herfurth, F. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany); Laatiaoui, M. [Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Lautenschläger, F. [Technische Universität Darmstadt, Pankratiusstraße 2, 64289 Darmstadt (Germany); Minaya Ramirez, E. [Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Schweikhard, L. [Ernst-Moritz-Arndt-Universität, Felix-Hausdorff-Straße 6, 17489 Greifswald (Germany); Simon, V.V. [Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Thirolf, P.G. [Ludwig Maximilians-Universität München, Am Coulombwall 1, 85748 Garching (Germany)

    2014-11-01

    The overall efficiency of the Penning-trap mass spectrometer SHIPTRAP at GSI Darmstadt, employed for high-precision mass measurements of exotic nuclei in the mass region above fermium, is presently mostly limited by the stopping and extraction of fusion-evaporation products in the SHIPTRAP gas cell. To overcome this limitation a second-generation gas cell with increased stopping volume was designed. In addition, its operation at cryogenic temperatures leads to a higher gas density at a given pressure and an improved cleanliness of the helium buffer gas. Here, the results of experiments with a {sup 219}Rn recoil ion source are presented. An extraction efficiency of 74(3)% was obtained, a significant increase compared to the extraction efficiency of 30% of the present gas stopping cell operated at room temperature. The optimization of electric fields and other operating parameters at room as well as cryogenic temperatures is described in detail. Furthermore, the extraction time of {sup 219}Rn ions was determined for several operating parameters.

  7. Cryogenics Research and Engineering Experience

    Science.gov (United States)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  8. Evolvable Cryogenics (ECRYO) Pressure Transducer Calibration Test

    Science.gov (United States)

    Diaz, Carlos E., Jr.

    2015-01-01

    This paper provides a summary of the findings of recent activities conducted by Marshall Space Flight Center's (MSFC) In-Space Propulsion Branch and MSFC's Metrology and Calibration Lab to assess the performance of current "state of the art" pressure transducers for use in long duration storage and transfer of cryogenic propellants. A brief historical narrative in this paper describes the Evolvable Cryogenics program and the relevance of these activities to the program. This paper also provides a review of three separate test activities performed throughout this effort, including: (1) the calibration of several pressure transducer designs in a liquid nitrogen cryogenic environmental chamber, (2) the calibration of a pressure transducer in a liquid helium Dewar, and (3) the calibration of several pressure transducers at temperatures ranging from 20 to 70 degrees Kelvin (K) using a "cryostat" environmental chamber. These three separate test activities allowed for study of the sensors along a temperature range from 4 to 300 K. The combined data shows that both the slope and intercept of the sensor's calibration curve vary as a function of temperature. This homogeneous function is contrary to the linearly decreasing relationship assumed at the start of this investigation. Consequently, the data demonstrates the need for lookup tables to change the slope and intercept used by any data acquisition system. This ultimately would allow for more accurate pressure measurements at the desired temperature range. This paper concludes with a review of a request for information (RFI) survey conducted amongst different suppliers to determine the availability of current "state of the art" flight-qualified pressure transducers. The survey identifies requirements that are most difficult for the suppliers to meet, most notably the capability to validate the sensor's performance at temperatures below 70 K.

  9. Cosmic Ray Helium Hardening

    CERN Document Server

    Ohira, Yutaka

    2010-01-01

    Recent observations by CREAM, ATIC-2 and PAMELA experiments suggest that (1) the spectrum of cosmic ray (CR) helium is harder than that of CR proton below the knee $10^15 eV$ and (2) all CR spectra become hard at $\\gtrsim 10^{11} eV/n$. We propose a new picture that higher energy CRs are generated in more helium-rich region to explain the hardening (1) without introducing different sources for CR helium. The helium to proton ratio at $\\sim 100$ TeV exceeds the Big Bang abundance $Y=0.25$ by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in the chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium when escaping from the supernova remnant (SNR) shock. We provide a simple analytical spectrum that also fits well the hardening (2) because of the decreasing Mach number in the hot superbubble with $\\sim 10^6$ K. Our model predicts hard and con...

  10. High Power Cryogenic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  11. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  12. Cosmological experiments in superfluid helium?

    Science.gov (United States)

    Zurek, W. H.

    1985-10-01

    Symmetry breaking phase transitions occurring in the early Universe are expected to leave behind long-lived topologically stabel structures such as monopoles, strings or domain walls. The author discusses the analogy between cosmological strings and vortex lines in the superfluid, and suggests a cryogenic experiment which tests key elements of the cosmological scenario for string formation. In a superfluid obtained through a rapid pressure quench, the phase of the Bose condensate wavefunction - the 4He analogue of the broken symmetry of the field-theoretic vacuum - will be chosen randomly in domains of some characteristic size d. When the quench is performed in an annulus of circumference C the typical value of the phase mismatch around the loop will be ≡(C/d)1/2. The resulting phase gradient can be sufficiently large to cause the superfluid to flow with a measurable, randomly directed velocity.

  13. Cryogen-free operation of the Soft X-ray Spectrometer instrument

    Science.gov (United States)

    Sneiderman, Gary A.; Shirron, Peter J.; Fujimoto, Ryuichi; Bialas, Thomas G.; Boyce, Kevin R.; Chiao, Meng P.; DiPirro, Michael J.; Eckart, Megan E.; Hartz, Leslie; Ishisaki, Yoshitaka; Kelley, Richard L.; Kilbourne, Caroline A.; Masters, Candace; McCammon, Dan; Mitsuda, Kazuhisa; Noda, Hirofumi; Porter, Frederick S.; Szymkowiak, Andrew E.; Takei, Yoh; Tsujimoto, Masahiro; Yoshida, Seiji

    2016-07-01

    The Soft X-ray Spectrometer (SXS) is the first space-based instrument to implement redundancy in the operation of a sub-Kelvin refrigerator. The SXS cryogenic system consists of a superfluid helium tank and a combination of Stirling and Joule-Thompson (JT) cryocoolers that support the operation of a 3-stage adiabatic demagnetization refrigerator (ADR). When liquid helium is present, the x-ray microcalorimeter detectors are cooled to their 50 mK operating temperature by two ADR stages, which reject their heat directly to the liquid at 1.1 K. When the helium is depleted, all three ADR stages are used to accomplish detector cooling while rejecting heat to the JT cooler operating at 4.5 K. Compared to the simpler helium mode operation, the cryogen-free mode achieves the same instrument performance by controlling the active cooling devices within the cooling system differently. These include the three ADR stages and four active heat switches, provided by NASA, and five cryocoolers, provided by JAXA. Development and verification details of this capability are presented within this paper and offer valuable insights into the challenges, successes, and lessons that can benefit other missions, particularly those employing cryogen-free cooling systems.

  14. Numerical study of cryogenic micro-slush particle production using a two-fluid nozzle

    Science.gov (United States)

    Ishimoto, Jun

    2009-01-01

    The fundamental characteristics of the atomization behavior of micro-slush nitrogen ( SN) jet flow through a two-fluid nozzle was numerically investigated and visualized by a new type of integrated simulation technique. Computational fluid dynamics (CFD) analysis is focused on the production mechanism of micro-slush nitrogen particles in a two-fluid nozzle and on the consecutive atomizing spray flow characteristics of the micro-slush jet. Based on the numerically predicted nozzle atomization performance, a new type of superadiabatic two-fluid ejector nozzle is developed. This nozzle is capable of generating and atomizing micro-slush nitrogen by means of liquid-gas impingement of a pressurized subcooled liquid nitrogen ( LN) flow and a low-temperature, high-speed gaseous helium (GHe) flow. The application of micro-slush as a refrigerant for long-distance high-temperature superconducting cables (HTS) is anticipated, and its production technology is expected to result in an extensive improvement in the effective cooling performance of superconducting systems. Computation indicates that the cryogenic micro-slush atomization rate and the multiphase spraying flow characteristics are affected by rapid LN-GHe mixing and turbulence perturbation upstream of the two-fluid nozzle, hydrodynamic instabilities at the gas-liquid interface, and shear stress between the liquid core and periphery of the LN jet. Calculation of the effect of micro-slush atomization on the jet thermal field revealed that high-speed mixing of LN-GHe swirling flow extensively enhances the heat transfer between the LN 2-phase and the GHe-phase. Furthermore, the performance of the micro-slush production nozzle was experimentally investigated by particle image velocimetry (PIV), which confirmed that the measurement results were in reasonable agreement with the numerical results.

  15. Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing

    Science.gov (United States)

    Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.

    2017-01-01

    In support of a facility characterization test, the Integrated Cryogenic Propulsion Test Article (ICPTA) was hotfire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). The ICPTA utilizes liquid oxygen and liquid methane propellants for its main engine and four reaction control engines, and uses a cold helium system for tank pressurization. The hotfire test series included high altitude, high vacuum, ambient temperature, and deep cryogenic environments, and several hundred sensors on the vehicle collected a range of system level data useful to characterize the operation of an integrated LOX/Methane spacecraft in the space environment - a unique data set for this propellant combination.

  16. Operational Experience with a Cryogenic Axial-Centrifugal Compressor

    CERN Document Server

    Decker, L; Löhlein, K; Purtschert, W; Ziegler, B L; Lebrun, P; Tavian, L; Brunovsky, I; Tucek, L

    1998-01-01

    The Large Hadron Collider (LHC), presently under construction at CERN, requires large refrigeration capacity at 1.8 K. Compression of gaseous helium at cryogenic temperatures is therefore inevitable. Together with subcontractors, Linde Kryotechnik has developed a prototype machine. This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating at ambient temperature. Integrated in a test facility for superconducting magnets the machine has been commissioned without major problems and successfully gone through the acceptance test in autumn 1995. Subsequent steps were initiated to improve efficiency of this prototype. This paper describes operating experience gained so far and reports on measured performance prior to and after constructional modifications.

  17. Local Cryogenics for the SIS100 at FAIR

    Science.gov (United States)

    Eisel, T.; Chorowski, M.; Iluk, A.; Kauschke, M.; Kollmus, H.; Malcher, K.; Polinski, J.; Streicher, B.

    2015-12-01

    In the coming years a new international accelerator Facility for Antiproton and Ion Research (FAIR), one of the largest research projects worldwide, will be build close to Darmstadt in Germany. FAIR will provide antiproton and ion beams with unprecedented intensity and quality. One of its major accelerators will be a synchrotron called SIS100 having a circumference of about 1100 meters. The SIS100 tunnel will house a complex cryogenic system supplying up to 20 kW cooling capacity @ 4.5 K to about 300 superconducting fast ramped magnets and other physics equipment. The planned SIS100 local cryogenic system can be principally divided into three sections each fed from a separate Feed Box. Every Feed Box supplies 4.5 K helium for magnet, vacuum chamber, cryo collimator, current lead and bus-bar cooling as well as 50 K helium for the current lead and thermal shield cooling, independently to two sixth of the ring. Each sixth of the ring, so called sextant, consists of a cold arc and a straight warm section. By-pass Lines circumvent the straight warm sections of the sextants, where warm equipment (e.g. normal conducting cavities and magnets) is located. Between the warm equipment, are superconducting magnets located which also need to be supplied from the By-pass Lines with helium and cold electrical connections. The By-pass Lines are Polish in-kind contribution, coordinated by the Jagiellonian University of Krakow and will be designed, manufactured and commissioned by the Wroclaw University of Technology. In this paper the SIS100 local cryogenic system will be described with focus on the By-pass Lines and on magnet cooling including the balancing of differences between dipole and quadrupole circuits and the coping with dynamic loads.

  18. Research and development of a helium-4 based solar neutrino detector

    Energy Technology Data Exchange (ETDEWEB)

    Lanou, R.E.; Maris, H.J.; Seidel, G.M.

    1990-12-01

    We report on work accomplished in the first 30 months of a research and development program to investigate the feasibility of a new technique to detect solar neutrinos in superfluid helium. Accomplishments include the successful completion of design, construction and operation of the entire cryogenic, mechanical and electronic apparatus. During the last several months we have begun a series of experiments in superfluid helium to test the method. Experimental results include the first observation of the combined physical processes essential to the detection technique: ballistic roton generation by energetic charged particles, quantum evaporation of helium at a free surface and bolometric detection of the evaporated helium by physisorption on a cold silicon wafer. Additional results are also presented.

  19. The commissioning of the instrumentation for the LHC tunnel cryogenics

    CERN Document Server

    Avramidou, R; Bamis, C; Casas-Cubillos, J; Dragoneas, A; Fampris, X; Fernandez-Penacoba, G; Gomes, P; Gousiou, E; Jeanmonod, N; Karagiannis, F; Koumparos, A; Leontsinis, S; Lopez-Lorente, A; Patsouli, A; Polychroniadis, I; Suraci, A; Theodoropoulos, G; Vauthier, N; Vottis, C

    2007-01-01

    The Large Hadron Collider (LHC) at CERN is a superconducting accelerator and proton-proton collider of circumference of 27 km, lying about 100 m underground. Its operation relies on 1232 superconducting dipoles with a field of 8.3 T and 392 superconducting quadrupoles with a field gradient of 223 T/m powered at 11.8 kA and operating in superfluid helium at 1.9 K. This paper describes the cryogenic instrumentation commissioning, the challenges and the project organization based on our 2.5 years experience.

  20. The Conduction of Heat through Cryogenic Regenerative Heat Exchangers

    Science.gov (United States)

    Superczynski, W. F.; Green, G. F.

    2006-04-01

    The need for improved regenerative cryocooler efficiency may require the replacement of conventional matrices with ducts. The ducts can not be continuous in the direction of temperature gradient when using conventional materials to prevent unacceptable conduction losses. However, this discontinuity creates a complex geometry to model and determine conduction losses. Chesapeake Cryogenics, Inc. has designed, fabricated and tested an apparatus for measuring the heat conduction through regenerative heat exchangers implementing different matrices. Data is presented for stainless steel photo etched disk, phophorus-bronze embossed ribbon coils and screens made of both stainless steel and phosphorus-bronze. The heat conduction was measured with the regenerators evacuated and pressurized with helium gas. In this test apparatus, helium gas presence increased the heat leak significantly. A description of the test apparatus, instrumentation, experimental methods and data analysis are presented.

  1. Superfluid Helium On-Orbit Transfer (SHOOT) operations

    Science.gov (United States)

    Kittel, P.; Dipirro, M. J.

    1989-01-01

    The in-flight tests and the operational sequences of the Superfluid Helium On-Orbit Transfer (SHOOT) experiment are outlined. These tests include the transfer of superfluid helium at a variety of rates, the transfer into cold and warm receivers, the operation of an extravehicular activity coupling, and tests of a liquid acquisition device. A variety of different types of instrumentation will be required for these tests. These include pressure sensors and liquid flow meters that must operate in liquid helium, accurate thermometry, two types of quantity gauges, and liquid-vapor sensors.

  2. VOST Flow-Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two cryogenic flow-control valves of diameters 1/2" and 2" will be built and tested. Based on cryogenically-proven Venturi Off-Set Technology (VOST) they have no...

  3. Turbine flowmeter for liquid helium with the rotor magnetically levitated

    Science.gov (United States)

    Rivetti, A.; Martini, G.; Goria, R.; Lorefice, S.

    A turbine flowmeter with no mechanical contact between rotor and body is described, to be used as a reference standard in our liquid helium flow rate calibration facility. The absence of contact, zeroing the bearings friction factor, ensures a good measurement repeatability, even at very low liquid helium flow rate values. The rotor is magnetically suspended by the Meissner effect: at liquid helium temperatures two magnetic fields generate sustaining forces against the surface of the two rotor ends, which are made of niobium. Due to the repulsive nature of the acting forces, the rotor equilibrium is intrinsically stable and no external electronics are required for its levitation. A particular configuration of the superconducting windings and of the rotor ends allow the rotor to levitate and hold good axial and radial stability. A detailed description of the solutions adopted for the realization of the prototype and the operation conditions are reported. The first results, made with the absolute liquid helium calibration facility, are shown.

  4. Design of the Helium Purifier for IHEP-ADS Helium Purification System

    CERN Document Server

    Jianqin, Zhang; Zhuo, Zhang; Rui, Ge

    2015-01-01

    Helium Purification System is an important sub-system in the Accelerator Driven Subcritical System of the Institute of High Energy Physics(IHEP ADS). The purifier is designed to work at the temperature of 77K. The purifier will work in a flow rate of 5g/s at 20MPa in continuous operation of 12 hours. The oil and moisture are removed by coalescing filters and a dryer, while nitrogen and oxygen are condensed by a phase separator and then adsorbed in several activated carbon adsorption cylinders. After purification, the purified helium has an impurity content of less than 5ppm.

  5. Cavitation instabilities of an inducer in a cryogenic pump

    Science.gov (United States)

    Kim, Dae-Jin; Sung, Hyung Jin; Choi, Chang-Ho; Kim, Jin-Sun

    2017-03-01

    Inducers assist cryogenic pumps to operate safely under cavitation conditions by increasing the pressure of the impeller inlet, but create cavitation instabilities. The use of cryogenic fluids requires special attention because of safety and handling concerns. To examine the cavitation instabilities of a cryogenic pump, two kinds of working fluids, water and liquid oxygen, were employed. The cavitation instabilities were measured with an accelerometer installed on the pump casing. The flow coefficient and the head slightly decrease with decreases in the cavitation number before the cavitation breakdown. These trends are true of both fluids. Several cavitation instabilities were identified with the accelerometer. At lower flow coefficients, super-synchronous rotating cavitation was found in a similar cavitation number range for both fluids. At higher flow coefficients, the cavitation numbers of the cavitation instabilities in the liquid oxygen test are smaller than those of the water test.

  6. Broken symmetry makes helium

    CERN Multimedia

    Gray, P L

    2003-01-01

    "The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).

  7. Limitations of superfluid helium droplets as host system revealed by electronic spectroscopy of embedded molecules

    Energy Technology Data Exchange (ETDEWEB)

    Premke, Tobias

    2016-02-19

    Superfluid helium nanodroplets serve a unique cryogenic host system ideal to prepare cold molecules and clusters. Structures as well as dynamic processes can be examined by means of high resolution spectroscopy. Dopant spectra are accompanied by helium-induced spectroscopic features which reveal information on the dopant to helium interaction. For this reason the experimental research focuses on the investigation of such helium-induced effects in order to provide new information on the microsolvation inside the droplets. Since the quantitative understanding of helium-induced spectral features is essential to interpret molecular spectra recorded in helium droplets, this study contributes further experimental details on microsolvation in superfluid helium droplets. For this purpose two contrary systems were examined by means of high resolution electronic spectroscopy. The first one, phthalocyanine (Pc), is a planar organic molecule offering a huge and planar surface to the helium atoms and thus, the non-superfluid helium solvation layer can form different structures. The second system is iodine and in contrast to Pc it is of simple molecular shape. That means that in this case different complex structures of the non-superfluid helium solvation layer and the dopant can be expected to be avoided. Thus, both molecules should show clear differences in their microsolvation behavior. In this work a detailed examination of different spectroscopic properties of phthalocyanine is given by means of fluorescence excitation and dispersed emission spectroscopy. It raises legitimate doubts about the assignment of experimentally observed signals to features predicted by the model of the microsolvation. Even though there are no experimental observations which disprove the empirical model for the solvation in helium droplets, an unambiguous assignment of the helium-induced spectroscopic structures is often not possible. In the second part of this work, the investigation of the

  8. Cryogenic treatment of gas

    Science.gov (United States)

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  9. Cryogenic Control System

    Energy Technology Data Exchange (ETDEWEB)

    Goloborod' ko, S.; /Fermilab

    1989-02-27

    The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

  10. Cryogenic treatment of gas

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  11. A Focus on Cryogenic Engineering for the Primordial Inflation Polarization Explorer (PIPER) Mission

    Science.gov (United States)

    Rosas, Rogelio; Weston, Amy

    2011-01-01

    Cryogenic engineering involves design and modification of equipment that is used under boiling point of nitrogen which is 77 K. The focus of this paper will be on the design of hardware for cryogenic use and a retrofit that was done to the main laboratory cryostat used to test flight components for the Primordial Inflation Polarization Explorer balloon-borne mission. Data from prior tests showed that there was a superfluid helium leak and a total disassemble of the cryostat was conducted in order to localize and fix the leak. To improve efficiency new fill tubes and clamps with modifications were added to the helium tank. Upon removal of the tank, corrosion was found on the flange face that connects to the helium cold plate and therefore had to be fully replaced and copper plated to prevent future corrosion. Indium seals were also replaced for the four fill tubes, a helium level sensor, and the nitrogen and helium tanks. Four additional shielded twisted pairs of cryogenic wire and a wire harness for the Superconducting Quantum Interference Devices (SQUIDs) were added. Finally, there was also design work done for multiple pieces that went inside the cryostat and a separate probe used to test the SQUIDs. Upon successful completion of the cryostat upgrade, tests were run to check the effectiveness and stability of the upgrades. The post-retrofit tests showed minor leaks were still present and due to this, superfluidity has still not been attained. As such there could still be a possibility of a superfluid leak appearing in the future. Regardless, the copper plating on the helium tank has elongated the need to service it by three to five years.

  12. Long Term Stability of Coriolis Flow Meters: DESY experience

    Science.gov (United States)

    Boeckmann, T.; Bozhko, Y.; Escherich, K.; Petersen, B.; Putselyk, S.; Schnautz, T.; Sellmann, D.; Zhirnov, A.

    2017-02-01

    The measurement of coolant flow is important operational parameter for reliable operation of cryogenic system with superconducting magnets or cavities as well as for the system diagnostics in case of non-steady-state operation, e.g. during cool-down/warm-up or other transients. Proper flowmeter is chosen according to the different parameters, e.g. turn-down, operating temperature range, leak-tightness, pressure losses, long-term stability, etc. For helium cryogenics, the Venturi tube or Orifice, as well as Coriolis flow meters are often applied. For the present time, the orifices are usually used due to their simplicity and low costs, however, low turn-down range, large pressure drop, restriction of flow area, susceptibility to thermoacoustic oscillations limit their useful operation range. Operational characteristics of Venturi tubes is substantially improved in comparison to orifices, however, relative high costs and susceptibility to thermoacoustic oscillations still limit their application to special cases. The Coriolis flow meters do not have typical drawbacks of Venturi tube and orifices, however long-term stability over many years was not demonstrated yet. This paper describes the long-term behaviour of Coriolis flow meters after many years of operation at AMTF and XMTS facilities.

  13. Cryogenic Selective Surfaces

    Science.gov (United States)

    Youngquist, Robert; Nurge, Mark; Gibson, Tracy; Johnson, Wesley

    2017-01-01

    The NASA Innovative Advanced Concept (NIAC) program has been funding work at KSC on a novel coating that should allow cryogenic materials to be stored in deep space. The NIAC Symposium will be the last week of September and it is a requirement that the funded material be presented both orally and at a poster session. This DAA submission is requesting approval to go public with both the presentation and the poster.

  14. Cryogenic Test Technology 1984.

    Science.gov (United States)

    1985-04-01

    aircraft configuration Pathfinder II (Figure 16) made of Vascomax 200, a set of six bodies of revolution (Figure 17) made from 6061 aluminium alloy, a...iron and aluminium alloys appear to be viable candidates. AS loads increase the number of avail- able alloys is severely constrained by toughness...using A-286 screws in four steels and one aluminium alloy. In the absence of loads cryogenic cycling gene- rally produced decreases in breakaway

  15. Field Ionization detection of supersonic helium atom beams

    Science.gov (United States)

    Doak, R. B.

    2003-10-01

    Field ionization detectors (FID) may offer near-unity detection efficiency and nanoscale spatial resolution. To date, FID detection of molecular beams has been limited to effusive beams of broad Maxwellian velocity distributions. We report FID measurements on monoenergetic helium beams, including intensity measurements and time-of-flight measurements. The FID tips were carefully prepared and characterized in a field ionization microscope prior to use. With the supersonic helium beam we find a much smaller effective detection area ( 50 sq. nm) than was reported in the effusive helium beam experiments ( 200,000 sq. nm). This suggests that the FID ionization yield depends strongly on energy loss by the impinging atom during its initial collision with the FID surface: Our thermal energy, monoenergetic helium beam atoms likely lose little or no energy upon scattering from the clean tungsten FID surface, allowing the scattered atoms to escape the FID polarization field and therby reducing the ionization yield. To improve signal levels, inelastic scattering might be enhanced by use of lower beam velocities (present in the tails of a Maxwellian) or by adsorbing an overlayer on the FID tip (present at cryogenic tip temperatures). These factors likely explain the higher detection yields measured in the effusive beam experiments.

  16. Simulations of the new cryogenic gas filled stopping cell for the low energy branch of the Super-FRS at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Moritz Pascal; Schaefer, Daniel [Justus-Liebig-Universitaet Giessen (Germany); Dickel, Timo; Plass, Wolfgang; Geissel, Hans; Scheidenberger, Christoph [Justus-Liebig-Universitaet Giessen (Germany); GSI, Darmstadt (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2012-07-01

    At the low energy branch of the Super-FRS at FAIR exotic nuclei will be produced at relativistic energies, slowed down, thermalized and provided as a low energy beam to high precision experiments. The ions are stopped in a cryogenic stopping cell in high density helium gas. In order to guide the development of the new cryogenic stopping cell and to study the performance of the new techniques used, numerical simulations of the stopping cell have been performed. A parameter study of the RF carpet has been done and optimized working parameters for the stopping cell have been found. The simulation results show good agreement with the first offline and online experiments of the cryogenic stopping cell obtained at the FRS Ion Catcher at GSI. For the first time cryogenic operation of a stopping cell with a radio frequency carpet and hitherto unreached helium densities have been demonstrated.

  17. Design of a scanning gate microscope in a cryogen-free dilution refrigerator

    Science.gov (United States)

    Pelliccione, Matthew; Sciambi, Adam; Goldhaber-Gordon, David

    2011-03-01

    We report on our design of an ultra-low temperature scanning gate microscope housed in a system with no liquid helium bath. The recent increase in efficiency of pulse-tube cryocoolers and pending scarcity of liquid helium have made ``cryogen-free'' dewars popular in recent years. However, this new style of dewar presents challenges for performing scanning measurements, most notably the increased vibrations introduced by the cryocooler. We will highlight the tradeoffs made in choosing such a system to house a scanner, and describe our efforts to achieve a stability suitable for measurements on mesoscopic systems.

  18. Autonomous cryogenic sapphire oscillators employing low vibration pulse-tube cryocoolers at NMIJ

    Science.gov (United States)

    Ikegami, Takeshi; Watabe, Ken-ichi; Yanagimachi, Shinya; Takamizawa, Akifumi; Hartnett, John G.

    2016-06-01

    Two liquid-helium-cooled cryogenic sapphire-resonator oscillators (CSOs), have been modified to operate using cryo-refrigerators and low-vibration cryostats. The Allan deviation of the first CSO was evaluated to be better than 2 x 10-15 for averaging times of 1 s to 30 000 s, which is better than that of the original liquid helium cooled CSO. The Allan deviation of the second CSO is better than 4 x 10-15 from 1 s to 6 000 s averaging time.

  19. Design and performance of a cryogenic apparatus for magnetically trapping ultracold neutrons

    Science.gov (United States)

    Huffman, P. R.; Coakley, K. J.; Doyle, J. M.; Huffer, C. R.; Mumm, H. P.; O'Shaughnessy, C. M.; Schelhammer, K. W.; Seo, P.-N.; Yang, L.

    2014-11-01

    The cryogenic design and performance of an apparatus used to magnetically confine ultracold neutrons (UCN) is presented. The apparatus is part of an effort to measure the beta-decay lifetime of the free neutron and is comprised of a high-current superconducting magnetic trap that surrounds ∼21 l of isotopically pure 4He cooled to approximately 250 mK. A 0.89 nm neutron beam can enter the apparatus from one end of the magnetic trap and a light collection system allows visible light generated within the helium by decays to be transported to detectors at room temperature. Two cryocoolers are incorporated to reduce liquid helium consumption.

  20. Top loading cryogen-free apparatus for low temperature thermophysical properties measurement

    Science.gov (United States)

    Liu, Huiming; Gong, Linghui; Xu, Dong; Huang, Chuanjun; Zhang, Meimei; Xu, Peng; Li, Laifeng

    2014-07-01

    The thermophysical properties of matter, especially properties at low temperature, are extremely important for engineering and materials science. Traditional liquid helium based cryostats are in many cases no longer affordable to operate due to the high liquid helium cost. This paper describes the design and test results of a cryogen-free cryostat, based on a GM cryocooler, with 50 mm diameter top loading sample facilities for thermophysical properties measurement at low temperature. The sample temperature range is tuned between 2.6 K and 300 K and it can be continuously controlled with a high resolution. Moreover, the modular sample holder can be adapted to multiple properties measurement.

  1. Ultra high vacuum pumping system and high sensitivity helium leak detector

    Science.gov (United States)

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  2. Length scales in cryogenic injection at supercritical pressure

    Energy Technology Data Exchange (ETDEWEB)

    Branam, R.; Mayer, W. [German Aerospace Center, DLR Lampoldshausen, 74239 Hardthausen (Germany)

    2002-09-01

    Length scales provide some understanding of the injection of cryogenic propellants in rocket chambers on mixing efficiency, which translates to burning efficiency and performance. This project uses supercritical cryogenic nitrogen to look at high-density core flows such as those of coaxial injectors used in rocket engines. The investigation considers test conditions from 4.0 to 6.0 MPa chamber pressure at two injection velocities and temperatures. Experimental data taken by using shadowgraph images provides a means of characterizing turbulent flow structures using a two-point correlation method to determine length scales and structure shapes. The experimental results are compared to computational models. (orig.)

  3. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams

    Energy Technology Data Exchange (ETDEWEB)

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-08-15

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  4. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams.

    Science.gov (United States)

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M; Kong, Wei

    2015-08-01

    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He2(+) and He4(+), which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl4 doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He)(n)C(+), (He)(n)Cl(+), and (He)(n)CCl(+). Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  5. Aerogel Insulation to Support Cryogenic Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking a high performance thermal insulation material for cryogenic applications in space launch development. Many of the components in cryogenic...

  6. Cryogenic Propellant Storage and Transfer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cryogenic Propellant Storage and Transfer project will demonstrate the capability to safely and efficiently store, transfer and measure cryogenic propellants,...

  7. Manufacturing and Installation of the Compound Cryogenic Distribution Line for the Large Hadron Collider

    CERN Document Server

    Riddone,, G; Bouillot, A; Brodzinski, K; Dupont, M; Fathallah, M; Fournel, JL; Gitton, E; Junker, S; Moussavi, H; Parente, C; Riddone, G

    2007-01-01

    The Large Hadron Collider (LHC) [1] currently under construction at CERN will make use of superconducting magnets operating in superfluid helium below 2 K. A compound cryogenic distribution line (QRL) will feed with helium at different temperatures and pressures the local elementary cooling loops in the cryomagnet strings. Low heat inleak to all temperature levels is essential for the overall LHC cryogenic performance. Following a competitive tendering, CERN adjudicated in 2001 the contract for the series line to Air Liquide (France). This paper recalls the main features of the technical specification and shows the project status. The basic choices and achievements for the industrialization phase of the series production are also presented, as well as the installation issues and status.

  8. Flow separation characteristics of rectangular cascade for a highly-loaded helium compressor%高负荷氦气压气机矩形叶栅流动分离特性

    Institute of Scientific and Technical Information of China (English)

    陈忠良; 郑群; 姜斌; 陈航

    2015-01-01

    针对高负荷氦气压气机叶栅流动分离问题,以某高负荷氦气矩形叶栅为研究对象,采用SST湍流模型加γ⁃Reθ转捩模型进行了数值模拟。分析了不同负荷、弯角及弯高的高负荷氦气压气机矩形叶栅的流动分离结构和特性。研究结果表明,马蹄涡压力面分支是矩形叶栅角区集中脱落涡和壁角涡形成的主要原因;随着攻角和负荷的增加,叶栅吸力面的分离形式由开式分离向闭式分离转化;而采用恰当的弯高和弯角可以有效抑制流动分离,改善高负荷氦气压气机端部流动状况,减小流动损失。%Flow separation has great influence on high⁃loaded helium compressors. In this paper, high⁃loaded heli⁃um compressor rectangular cascades with different loads, bowed angles and bowed heights were studied to under⁃stand the flow separation structure in the cascades. The SST turbulence model andγ⁃Reθtransition model were used in numerical simulation. The results showed that the pressure⁃side leg of horseshoe vortex results in the generation of concentrated shed vortex and corner vortex at the corner of the rectangular cascade. Open separated flow will trans⁃form into closed separated flow with the increase of attack angles and loads. Flow separation will be suppressed in the cascade as well as the pressure loss will drop by using proper bowed angle and height.

  9. Development of a test rig for a helium twin-screw compressor

    Science.gov (United States)

    Wang, B. M.; Hu, Z. J.; Zhang, P.; Li, Q.

    2014-01-01

    A large helium cryogenic system is being developed for use in great science projects, such as the International Thermonuclear Experimental Reactor (ITER), Large Helical Device (LHD), and the Experimental Advanced Superconducting Tokamak (EAST). In this cryogenic system, a twin-screw compressor is a key component. Therefore, it is necessary to obtain the compressor performance. To obtain the performance characteristics, a test rig for the compressor has been built. All the important performance parameters, including adiabatic efficiency, volumetric efficiency, oil injection characteristic, and noise characteristic can be acquired with the rig when sensors are installed in the test system. With the test performance, the helium twin-screw compressor can be evaluated. Using these results, the design of the compressor can be improved.

  10. Vacuum sorption pumping at cryogenic temperatures of argon and oxygen on molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Perona, J.J.; Gibson, M.R.; Byers, C.H.

    1988-01-01

    Cryosorption pumping is a method of excavating enclosed volumes by adsorbing gas on a deep bed of solid sorbent (typically a zeolite) at cryogenic temperatures. Modeling the dynamic behavior of these systems for air pumping requires information on two major constituents of air, oxygen and argon, which had not been previously studied, as well as data on a nonadsorbing specie, helium. Deep beds of Davison 4A molecular sieves were subjected to a metered flow of pure gas and the pressure history of the experiment was monitored, using computer data acquisition techniques. Particle size variations is the major variable in determining the mechanism of the process. The data acquired in the current study compare favorably with previous experiments. Previously developed models for the dynamic sorption behavior of deep beds under vacuum for two extreme conditions, micropore and micropore control were tested in this study. The sorption behavior of argon clearly fit into the category of macropore controlled sorption, indicating that these species are adsorbed primarily on the surface of the zeolite crystals, much like the theoretical and experimental results for N/sub 2/ cryosorption on the same sieves of Crabb. On the other hand oxygen sorption is most likely micropore controlled, and may be molded by the method of Praznick. 11 refs., 7 figs., 1 tab.

  11. Construction of a 2 kW/4 K Helium Refrigerator for HT-7U

    Institute of Scientific and Technical Information of China (English)

    白红宇; 毕延芳; 王金荣; 庄明; 朱平; 张启勇; 盛林海

    2002-01-01

    Superconducting magnets of toroidal field (TF) and poloidal field (PF) of HT-7U tokamak are all made of NbTi/Cu Cable-in-Conduit Conductor (CICC), and cooled with a forced flow supercritical helium of 3.8 K. A helium refrigerator with an equivalent capacity of 2 kW/4 K will be constructed. This paper presents the design of the helium refrigerator process, the thermodynamics of the refrigeration cycle and the refrigerator equipments.

  12. Helium anion formation inside helium droplets

    Science.gov (United States)

    Maalouf, Elias Jabbour Al; Reitshammer, Julia; Ribar, Anita; Scheier, Paul; Denifl, Stephan

    2016-07-01

    The formation of He∗- is examined with improved electron energy resolution of about 100 meV utilizing a hemispherical electron monochromator. The work presented provides a precise determination of the three previously determined resonance peak positions that significantly contribute to the formation of He∗- inside helium nanodroplets in the energy range from 20 eV to 29.5 eV. In addition, a new feature is identified located at 27.69 ± 0.18 eV that we assign to the presence of O2 as a dopant inside the droplet. With increasing droplet size a small blue shift of the resonance positions is observed. Also for the relatively low electron currents used in the present study (i.e., 15-70 nA) a quadratic dependence of the He∗- ion yield on the electron current is observed. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  13. Fatigue Crack Growth Rate of Inconel 718 Sheet at Cryogenic Temperatures

    Science.gov (United States)

    Wells, Douglas; Wright, Jonathan; Hastings, Keith

    2005-01-01

    Inconel 718 sheet material was tested to determine fatigue crack growth rate (FCGR) at cryogenic conditions representative of a liquid hydrogen (LH2) environment at -423 degree F. Tests utilized M(T) and ESE(T) specimen geometries and environments were either cold gaseous helium or submersion in LH2. The test results support a significant improvement in the fatigue crack growth threshold at -423 degree F compared to -320 degree F or 70 degree F.

  14. Expandable Purge Chambers Would Protect Cryogenic Fittings

    Science.gov (United States)

    Townsend, Ivan I., III

    2004-01-01

    Expandable ice-prevention and cleanliness-preservation (EIP-CP) chambers have been proposed to prevent the accumulation of ice or airborne particles on quick-disconnect (QD) fittings, or on ducts or tubes that contain cryogenic fluids. In the original application for which the EIP-CP chambers were conceived, there is a requirement to be able to disconnect and reconnect the QD fittings in rapid succession. If ice were to form on the fittings by condensation and freezing of airborne water vapor on the cold fitting surfaces, the ice could interfere with proper mating of the fittings, making it necessary to wait an unacceptably long time for the ice to thaw before attempting reconnection. By keeping water vapor away from the cold fitting surfaces, the EIP-CP chambers would prevent accumulation of ice, preserving the ability to reconnect as soon as required. Basically, the role of an EIP-CP chamber would be to serve as an enclosure for a flow of dry nitrogen gas that would keep ambient air away from QD cryogenic fittings. An EIP-CP chamber would be an inflatable device made of a fabriclike material. The chamber would be attached to an umbilical plate holding a cryogenic QD fitting.

  15. FLOWRATE MEASUREMENT OF SUPERFLUID HELIUM%超流氦流量测量

    Institute of Scientific and Technical Information of China (English)

    张敏; 王如竹

    2000-01-01

    Superfluid helium is a unique cryogenic fluid,whose flowrate measurement is different from others.Classical flowmeters like turbine,venturi and ultrasonic flowmeters can all be used with HeⅡ to some extent,while there are still some special ones like fluidic and second sound flowmeters.But temperature-pulse flowmeter and hot-wire or hot-film flowmeter are considered not very suitable for HeⅡ flow measurement.%超流氦是一种性质特殊的低温流体,其流量测量与一般流体有所不同。涡轮流量计、文丘利流量计和超声波流量计在一定条件下均能正常使用,较为特殊的还有射流流量计和第二声流量计。热脉冲流量计、热丝或热膜型流量计在超流氦流量测量中均不宜采用。

  16. Comparison of two electro-hydrodynamic force models for the interaction between helium jet flow and an atmospheric-pressure "plasma jet"

    Science.gov (United States)

    Logothetis, D.; Papadopoulos, P. K.; Svarnas, P.; Vafeas, P.

    2016-12-01

    In this work, two simple phenomenological models of the electro-hydrodynamic force that arises in an atmospheric-pressure "plasma jet" are presented. The models are distinguished by the different boundary conditions applied for the consideration of the plasma propagation length. The comparison is based on numerical simulations, which are combined with experimental data, in order to determine the magnitude of the electro-hydrodynamic force and assess the ability of the two models to evaluate the visible plasma length. The results reveal that the gas flow characteristics depend on the spatial range of the force action and the force magnitude, and vice versa.

  17. Interactive remote control for an STS-based superfluid helium transfer demonstration

    Science.gov (United States)

    Shapiro, Jeff C.; Robinson, Frank A.

    1989-01-01

    NASA's superfluid helium on-orbit transfer (SHOOT) experiment, which is a Shuttle-based demonstration of the technology required to service cryogenically cooled satellites in space, is described. The SHOOT Command and Monitoring System software, developed on Macintosh II, will provide a near-real-time highly interactive interface making it possible to control the experiment and to analyze and display its telemetry. User interface is discussed as well as conversion functions, and hardware.

  18. A Simulation Study for the Virtual Commissioning of the CERN Central Helium Liquefier

    CERN Document Server

    Rogez, E; Moraux, A; Pezzetti, M; Gayet, P; Coppier, H

    2009-01-01

    This paper describes the implication of dynamic simulation in cryogenics processes. The simulation aims to prepare plant commissioning and operation, and to validate the efficiency of the new process control logic. PLC programs have been tested on a process simulator integrating physical models of valves, heat exchangers, turbines, phase separator, and helium data. The model has shown the capacity to reproduce cold-box dynamic behaviour, from 300 K to 4.5 K.

  19. Helium in Earth's early core

    Science.gov (United States)

    Bouhifd, M. A.; Jephcoat, Andrew P.; Heber, Veronika S.; Kelley, Simon P.

    2013-11-01

    The observed escape of the primordial helium isotope, 3He, from the Earth's interior indicates that primordial helium survived the energetic process of planetary accretion and has been trapped within the Earth to the present day. Two distinct reservoirs in the Earth's interior have been invoked to account for variations in the 3He/4He ratio observed at the surface in ocean basalts: a conventional depleted mantle source and a deep, still enigmatic, source that must have been isolated from processing throughout Earth history. The Earth's iron-based core has not been considered a potential helium source because partitioning of helium into metal liquid has been assumed to be negligible. Here we determine helium partitioning in experiments between molten silicates and iron-rich metal liquids at conditions up to 16GPa and 3,000K. Analyses of the samples by ultraviolet laser ablation mass spectrometry yield metal-silicate helium partition coefficients that range between 4.7×10-3 and 1.7×10-2 and suggest that significant quantities of helium may reside in the core. Based on estimated concentrations of primordial helium, we conclude that the early core could have incorporated enough helium to supply deep-rooted plumes enriched in 3He throughout the age of the Earth.

  20. Cryogenic Piezoelectric Actuator

    Science.gov (United States)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  1. High-pressure cell for neutron diffraction with in situ pressure control at cryogenic temperatures.

    Science.gov (United States)

    Jacobsen, Matthew K; Ridley, Christopher J; Bocian, Artur; Kirichek, Oleg; Manuel, Pascal; Khalyavin, Dmitry; Azuma, Masaki; Attfield, J Paul; Kamenev, Konstantin V

    2014-04-01

    Pressure generation at cryogenic temperatures presents a problem for a wide array of experimental techniques, particularly neutron studies due to the volume of sample required. We present a novel, compact pressure cell with a large sample volume in which load is generated by a bellow. Using a supply of helium gas up to a pressure of 350 bar, a load of up to 78 kN is generated with leak-free operation. In addition, special fiber ports added to the cryogenic center stick allow for in situ pressure determination using the ruby pressure standard. Mechanical stability was assessed using finite element analysis and the dimensions of the cell have been optimized for use with standard cryogenic equipment. Load testing and on-line experiments using NaCl and BiNiO3 have been done at the WISH instrument of the ISIS pulsed neutron source to verify performance.

  2. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    Science.gov (United States)

    Lebrun, Ph

    2017-02-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices – magnets and high-frequency cavities – distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.

  3. High-pressure cell for neutron diffraction with in situ pressure control at cryogenic temperatures

    Science.gov (United States)

    Jacobsen, Matthew K.; Ridley, Christopher J.; Bocian, Artur; Kirichek, Oleg; Manuel, Pascal; Khalyavin, Dmitry; Azuma, Masaki; Attfield, J. Paul; Kamenev, Konstantin V.

    2014-04-01

    Pressure generation at cryogenic temperatures presents a problem for a wide array of experimental techniques, particularly neutron studies due to the volume of sample required. We present a novel, compact pressure cell with a large sample volume in which load is generated by a bellow. Using a supply of helium gas up to a pressure of 350 bar, a load of up to 78 kN is generated with leak-free operation. In addition, special fiber ports added to the cryogenic center stick allow for in situ pressure determination using the ruby pressure standard. Mechanical stability was assessed using finite element analysis and the dimensions of the cell have been optimized for use with standard cryogenic equipment. Load testing and on-line experiments using NaCl and BiNiO3 have been done at the WISH instrument of the ISIS pulsed neutron source to verify performance.

  4. An uncertainty analysis of the PVT gauging method applied to sub-critical cryogenic propellant tanks

    Energy Technology Data Exchange (ETDEWEB)

    Van Dresar, Neil T. [NASA Glenn Research Center, Cleveland, OH (United States)

    2004-08-01

    The PVT (pressure, volume, temperature) method of liquid quantity gauging in low-gravity is based on gas law calculations assuming conservation of pressurant gas within the propellant tank and the pressurant supply bottle. There is interest in applying this method to cryogenic propellant tanks since the method requires minimal additional hardware or instrumentation. To use PVT with cryogenic fluids, a non-condensable pressurant gas (helium) is required. With cryogens, there will be a significant amount of propellant vapor mixed with the pressurant gas in the tank ullage. This condition, along with the high sensitivity of propellant vapor pressure to temperature, makes the PVT method susceptible to substantially greater measurement uncertainty than is the case with less volatile propellants. A conventional uncertainty analysis is applied to example cases of liquid hydrogen and liquid oxygen tanks. It appears that the PVT method may be feasible for liquid oxygen. Acceptable accuracy will be more difficult to obtain with liquid hydrogen. (Author)

  5. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    CERN Document Server

    AUTHOR|(CDS)2067931

    2016-01-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices – magnets and high-frequency cavities – distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic flu...

  6. The electrostatic Cryogenic Storage Ring CSR - Mechanical concept and realization

    Science.gov (United States)

    von Hahn, R.; Berg, F.; Blaum, K.; Crespo Lopez-Urrutia, J. R.; Fellenberger, F.; Froese, M.; Grieser, M.; Krantz, C.; Kühnel, K.-U.; Lange, M.; Menk, S.; Laux, F.; Orlov, D. A.; Repnow, R.; Schröter, C. D.; Shornikov, A.; Sieber, T.; Ullrich, J.; Wolf, A.; Rappaport, M.; Zajfman, D.

    2011-12-01

    A new and technologically challenging project, the electrostatic Cryogenic Storage Ring CSR, is presently under construction at the Max-Planck-Institute for Nuclear Physics in Heidelberg. Applying liquid helium cooling, the CSR, with 35 m circumference, will provide a low temperature environment of only a few Kelvin and an extremely high vacuum of better than 10 -13 mbar. To realize these conditions the mechanical design has been completed and now the first quarter section is in the construction phase. For the onion skin structure of the cryogenic system we have at the outer shell the cryostat chambers, realized by welded rectangular stainless steel frames with aluminum plates. The next two shells are fabricated as aluminum shields kept at 80 and 40 K. The inner vacuum chambers for the experimental vacuum consist of stainless steel chambers cladded with external copper sheets connected to the LHe lines for optimized thermal equilibration and cryopumping. Additional large surface 2 K units are installed for cryogenic pumping of H 2. The mechanical concepts and the realization will be presented in detail.

  7. Evaluation of cryogenic liquids ZBO storage with different solutions

    Science.gov (United States)

    Zhang, Yangyang; Li, Jianguo; Luo, Baojun; Wang, Juan; Hong, Guotong

    2014-01-01

    Zero boil-off (ZBO) storage of cryogenic liquids can be used both for an integrated cold source combined with mechanical cryocoolers, and long-term lossless storage of cryogenic propellants such as liquid hydrogen and oxygen. A ZBO system for space application should be less weight and high efficiency. Pulse tube cryocoolers with linear compressors for space application are used as the cold source to compensate heat inputs to the ZBO dewar which have a variety of new insulation technologies. This paper describes an evaluation method for evaluating the systematic characteristics of the ZBO system. For different cryogenic liquids, different solutions comprised of the cryocooler with different cooling capacity and the dewar with different adiabatic means, are analyzed and evaluated from feasibility, average power consumption, working mode and fluctuations of the temperature and pressure. The results show that the solution of the ZBO dewar matched with a single-stage cryocooler is preferred for liquid oxygen and nitrogen storage, and the intermittent working mode is more power efficient than the continuous working mode, while its temperature and pressure fluctuations are a little larger. The solution of the ZBO dewar with a cryocooler cooled screen matched with a multi-stage cryocooler is preferred for liquid neon, hydrogen and helium storage, and the continuous working mode is more feasible.

  8. Dynamic simulations of the cryogenic system of a tokamak

    Science.gov (United States)

    Cirillo, R.; Hoa, C.; Michel, F.; Poncet, J. M.; Rousset, B.

    2015-12-01

    Power generation in the next decades could be provided by thermo-nuclear fusion reactors like tokamaks. There inside, the fusion reaction takes place thanks to the generation of plasmas at hundreds of millions of degrees that must be confined magnetically with superconductive coils, cooled down to 4.4K. The plasma works cyclically and the coil system is subjected to pulsed heat load which has to be handled by the refrigerator. By smoothing the variable loads, the refrigerator capacity can be set close to the average power; optimizing investment and operational costs. Within the “Broader Approach agreement” related to ITER project, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) is in charge of providing the cryogenic system for the Japanese tokamak (JT-60SA), that is currently under construction in Naka. The system has been designed to handle the pulsed heat loads. To prepare the acceptance tests of the cryogenic system foreseen in 2016, both dynamic modelling and experimental tests on a scaled down mock-up are of high interest for assessing pulsed load smoothing control. After explaining HELIOS (HElium Loop for hIgh lOad Smoothing) operating modes, a dynamic model is presented, with results on the pulsed heat load scenarios. All the simulations have been performed with EcosimPro® and the associated cryogenic library CRYOLIB.

  9. A cryogen-free variable temperature scanning tunneling microscope capable for inelastic electron tunneling spectroscopy

    Science.gov (United States)

    Zhang, Shuai; Huang, Di; Wu, Shiwei

    While low temperature scanning tunneling microscope (STM) has become an indispensable research tool in surface science, its versatility is yet limited by the shortage or high cost of liquid helium. The makeshifts include the use of alternative cryogen (such as liquid nitrogen) at higher temperature or the development of helium liquefier system usually at departmental or campus wide. The ultimate solution would be the direct integration of a cryogen-free cryocooler based on GM or pulse tube closed cycle in the STM itself. However, the nasty mechanical vibration at low frequency intrinsic to cryocoolers has set the biggest obstacle because of the known challenges in vibration isolation required to high performance of STM. In this talk, we will present the design and performance of our home-built cryogen-free variable temperature STM at Fudan University. This system can obtain atomically sharp STM images and high resolution dI/dV spectra comparable to state-of-the-art low temperature STMs, but with no limitation on running hours. Moreover, we demonstrated the inelastic tunneling spectroscopy (STM-IETS) on a single CO molecule with a cryogen-free STM for the first time.

  10. High Efficiency Regenerative Helium Compressor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  11. Cavitation in liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Finch, R. D.; Kagiwada, R.; Barmatz, M.; Rudnick, I.

    1963-11-15

    Ultrasonic cavitation was induced in liquid helium over the temperature range 1.2 to 2.3 deg K, using a pair of identical transducers. The transducers were calibrated using a reciprocity technique and the cavitation threshold was determined at 90 kc/s. It was found that this threshold has a sharp peak at the lambda point, but is, at all temperatures quite low, with an approximate range of 0.001 to 0.01 atm. The significance of the results is discussed. (auth)

  12. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto [Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  13. BASD: SIRTF Telescope Instrument Changeout and Cryogen Replenishment (STICCR) study

    Science.gov (United States)

    Mord, A. J.; Urbach, A. R.; Poyer, M. E.; Andreozzi, L. C.; Hermanson, L. A.; Snyder, H. A.; Blalock, W. R.; Haight, R. P.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a long-life cryogenically cooled space-based telescope for infrared astronomy from 2 micrometer to 700 miocrometers currently under study by NASA-ARC, and planned for launch in approximately the mid 90's. SIRTF will operate as a multi-user facility, initially carrying 3 instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and is currently baselined to be 2 years. The telescope changes required to allow in-space replenishment of the 2,000 liter superfluid helium tank are investigated. A preliminary design for the space services equipment is also developed. The impacts of basing the equipment and servicing on the space station are investigated. Space replenishment and changeout of instruments requires changes to the telescope design and preliminary concepts are presented.

  14. SIRTF Telescope Instrument Changeout and Cryogen Replenishment (STICCR) Study

    Science.gov (United States)

    Nast, T. C.; Frank, D.; Liu, C. K.; Parmley, R. T.; Jaekle, D.; Builteman, H.; Schmidt, J.; Frederking, T. H. K.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a long-life cryogenically cooled space-based telescope for infrared astronomy from 2 to 700 micrometers. SIRTF is currently under study by NASA-ARC (Reference AP) and planned for launch in approximately the mid 1990s. SIRTF will operate as a multiuser facility, initially carrying three instruments at the focal plane. It will be cooled to below 2 K by superfluid liquid helium to achieve radiometric sensitivity limited only by the statistical fluctuations in the natural infrared background radiation over most of its spectral range. The lifetime of the mission will be limited by the lifetime of the liquid helium supply, and baseline is currently to be 2 years. The telescope changes required to allow in-space replenishment of the 4,000-L superfluid helium tank was investigated. A preliminary design for the space services equipment was also developed. The impacts of basing the equipment and servicing on the space station were investigated. Space replenishment and changeout of instruments required changes to the telescope design. Preliminary concepts are presented.

  15. A current to voltage converter for cryogenics using a CMOS operational amplifier

    Science.gov (United States)

    Hayashi, K.; Saitoh, K.; Shibayama, Y.; Shirahama, K.

    2009-02-01

    We have constructed a versatile current to voltage (I-V) converter operating at liquid helium temperature, using a commercially available all-CMOS OPamp. It is valuable for cryogenic measurements of electrical current of nano-pico amperes, for example, in scanning probe microscopy. The I-V converter is thermally linked to liquid helium bath and self-heated up to 10.7 K. We have confirmed its capability of a transimpedance gain of 106 V/A and a bandwidth from DC to 200 kHz. In order to test the practical use for a frequency-modulation atomic force microscope, we have measured the resonance frequency shift of a quartz tuning fork at 32 kHz. In the operation of the I-V converter close to the sensor at liquid helium temperature, the signal-to-noise ratio has been improved to a factor of 13.6 compared to the operation at room temperature.

  16. Experimental investigation and optimization of small-scale helium liquefaction with multi-cryocoolers

    Science.gov (United States)

    Xu, Dong; Gong, Linghui; Li, Laifeng; Xu, Xiangdong; Liu, Huiming; Huang, Rongjin

    2015-07-01

    Small-scale helium liquefiers using regenerative cryocoolers with cooling power up to 1.5 W at 4.2 K could be used to re-liquefy evaporated helium gas of small- and medium-sized cryogenic devices such as MEG and PPMS. A serial-parallel-path helium liquefier with a liquefaction rate of 83 Litres per day (L/d) using five 4 K G-M cryocoolers is developed, and has been applied to the Wuhan National High Magnetic Field Center (WHMFC) in China. Different from parallel-path helium liquefier, the helium gas is effectively, stepwise precooled by heat exchangers on multi-cold flanges, and thus the additional purifier and precooling coil heat exchangers on the thinner part of the cold head cylinder containing the 2nd stage displacer could be removed to simplify the construction. Through theoretical calculation and conclusive analysis, an optimum configuration is proposed and makes a reference to the design of serial-parallel-path helium liquefier with multi-cryocoolers.

  17. Equilibrium Modeling for Hydrogen Isotope Separation by Cryogenic Adsorption%氢同位素低温吸附分离的平衡吸附模型

    Institute of Scientific and Technical Information of China (English)

    张东辉; 周理; 苏伟; 孙艳

    2006-01-01

    The separation of hydrogen and deuterium by cryogenic adsorption was conducted, using the molecular sieve 5A as adsorbent, helium as the carrier gas in a fixed column. The breakthrough curves of hydrogen, deuterium and the mixture of two components in helium carrier gas were measured, a separation factor, approximately 2, for the hydrogen-deuterium binary mixture was obtained. The equilibrium model was built for simulation of the concentration distribution for single hydrogen, deuterium and their mixture with helium carrier in the fixed column, and the simulation compared well with the experimental results.

  18. State of the Art Report for a Bearing for VHTR Helium Circulator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Seon; Song, Kee Nam; Kim, Yong Wan; Lee, Won Jae

    2008-10-15

    A helium circulator in a VHTR(Very High Temperature gas-cooled Reactor) plays a core role which translates thermal energy at high temperature from a nuclear core to a steam generator. Helium as a operating coolant circulates a primary circuit in high temperature and high pressure state, and controls thermal output of a nuclear core by controlling flow rate. A helium circulator is the only rotating machinery in a VHTR, and its reliability should be guaranteed for reliable operation of a reactor and stable production of hydrogen. Generally a main helium circulator is installed on the top of a steam generator vessel, and helium is circulated only by a main helium circulator in a normal operation state. An auxiliary or shutdown circulator is installed at the bottom of a reactor vessel, and it is an auxiliary circulator for shutting down a reactor in case of refueling or accelerating cooling down in case of fast cooling. Since a rotating shaft of a helium circulator is supported by bearings, bearings are the important machine elements which determines reliability of a helium circulator and a nuclear reactor. Various types of support bearings have been developed and applied for circulator bearings since 1960s, and it is still developing for developing VHTRs. So it is necessary to review and analyze the current technical state of helium circulator support bearings to develop bearings for Koran developing VHTR helium circulator.

  19. Nanodielectrics for Cryogenic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tuncer, Enis [ORNL; Sauers, Isidor [ORNL; James, David Randy [ORNL; Ellis, Alvin R [ORNL; Pace, Marshall O [ORNL; More, Karren [Oak Ridge National Laboratory (ORNL); Sathyamurthy, Srivatsan [University of Tennessee, Knoxville (UTK); Woodward, Jonathan [ORNL; Rondinone, Adam Justin [ORNL

    2009-01-01

    In this paper we report the recent advances in nanodielectrics that were developed and tested for cryogenic dielectric applications. The systems studied are composed of nanometer size particles. Particles were produced using either an ex-situ or in-situ technique. It is observed that there are clear differences in the structural properties of materials produced using these two approaches. Either no significant degradation or improvement in the electrical insulation properties were observed for ex-situ nano-particle samples processed with an ultrasonic processor and in-situ nano-particle samples. Nanodielectrics have the potential to be tailored with better thermal and mechanical properties without losing their electrical insulation characteristics.

  20. Cryogenic Cam Butterfly Valve

    Science.gov (United States)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  1. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  2. Regimes Of Helium Burning

    CERN Document Server

    Timmes, F X

    2000-01-01

    The burning regimes encountered by laminar deflagrations and ZND detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts which start with a thermonuclear runaway on the surface of a neutron star, and the thin shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial directions encounter a transition from the distributed regime to the flamlet regime at a density of 10^8 g cm^{-3}. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than 10^6 g cm^{-3}. Self-sustained laminar deflagrations travelling in the radial direction cannot exist below this density. Similarily, the planar ZND detonation width becomes larger than the pressure scale height at 10^7 g cm^{-3}, suggesting that a steady-state, self-sustained detonations cannot come into exista...

  3. 调用氦物性程序对透平膨胀机叶轮S2流面正问题分析%Analysis on direct problem of S2 surface of helium turbine impeller by calling helium properties program

    Institute of Scientific and Technical Information of China (English)

    刘晓东; 庄明; 付豹

    2012-01-01

    为了保证EAST大型低温系统的稳定运行,其核心部件氦透平膨胀机必须满足参数设计,利用流线曲率法对低温氦透平膨胀机T3叶轮流场进行计算.通过编程计算,得出T3叶轮子午面流场,分析得到进出口的参数压力和温度达到设计的要求.同时考虑到,T3叶轮进口参数处于高压、深低温区,此时工质氦不能看作理想气体,因此调用氦物性程序,使得结果更加符合实际情况.%To make the large cryogenic system of EAST work stably, as its core parts, the helium turbine expander must meet the requirement of parameter design. Therefore, It is necessary to make an analysis on the flow of turbine T3 impeller according to streamline curvature method. By programming, the whole flow distribution of meridian plane was obtained and pressure, temperature at inlet and outlet meet the design requirement respectively. Meanwhile, the inlet parameters of T3 impeller were at high pressure and low temperature, the helium could not be viewed as ideal gas. So helium properties program was called so that the output was consistent with the real condition.

  4. Helium POT System for Maintaining Sample Temperature after Cryocooler Deactivation

    Science.gov (United States)

    Haid, B. J.

    2006-04-01

    A system for maintaining a sample at a constant temperature below 10 K after deactivating the cooling source is demonstrated. In this system, the cooling source is a 4 K GM cryocooler that is joined with the sample through an extension that consists of a helium pot and a thermal resistance. Upon stopping the cryocooler, the power applied to a heater located on the sample side of the thermal resistance is decreased gradually to maintain an appropriate temperature rise across the thermal resistance as the helium pot warms. The sample temperature is held constant in this manner without the use of solid or liquid cryogens and without mechanically disconnecting the sample from the cooler. Shutting off the cryocooler significantly reduces sample motion that results from vibration and expansion/contraction of the cold-head housing. The reduction in motion permits certain procedures that are very sensitive to sample position stability, but are performed with limited duration. A proof-of-concept system was built and operated with the helium pot pressurized to the cryocooler's charge pressure. A sample with 200 mW of continuous heat dissipation was maintained at 7 K while the cryocooler operated intermittently with a duty cycle of 9.5 minutes off and 20 minutes on.

  5. Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium

    CERN Document Server

    Sun, Xiankai; Schuck, Carsten; Tang, Hong X

    2013-01-01

    Photonic nanocavities are a key component in many applications because of their capability of trapping and storing photons and enhancing interactions of light with various functional materials and structures. The maximal number of photons that can be stored in silicon photonic cavities is limited by the free-carrier and thermo-optic effects at room temperature. To reduce such effects, we performed the first experimental study of optical nonlinearities in ultrahigh-Q silicon disk nanocavities at cryogenic temperatures in a superfluid helium environment. At elevated input power, the cavity transmission spectra exhibit distinct blue-shifted bistability behavior when temperature crosses the liquid helium lambda point. At even lower temperatures, the spectra restore to symmetric Lorentzian shapes. Under this condition, we obtain a large stored intracavity photon number of about 40,000, which is limited ultimately by the local helium phase transition. These new discoveries are explained by theoretical calculations ...

  6. Putting in operation a full-scale ultracold-neutron source model with superfluid helium

    Science.gov (United States)

    Serebrov, A. P.; Lyamkin, V. A.; Prudnikov, D. V.; Keshishev, K. O.; Boldarev, S. T.; Vasil'ev, A. V.

    2017-02-01

    A project of the source of ultracold neutrons for the WWR-M reactor based on superfluid helium for ultracold-neutron production has been developed. The full-scale source model, including all required cryogenic and vacuum equipment, the cryostat, and the ultracold-neutron source model has been created. The superfluid helium temperature T = 1.08 K without a heat load and T = 1.371 K with a heat load on the simulator of P = 60 W has been achieved in experiments at a technological complex of the ultracold-neutron source. The result proves the feasibility of implementing the ultracold-neutron source at the WWR-M reactor and the possibility of applying superfluid helium in nuclear engineering.

  7. Helium diffusion in carbonates

    Science.gov (United States)

    Amidon, W. H.; Cherniak, D. J.; Watson, E. B.; Hobbs, D.

    2013-12-01

    The abundance and large grain size of carbonate minerals make them a potentially attractive target for 4He thermochronology and 3He cosmogenic dating, although the diffusive properties of helium in carbonates remain poorly understood. This work characterizes helium diffusion in calcite and dolomite to better understand the crystal-chemical factors controlling He transport and retentivity. Slabs of cleaved natural calcite and dolomite, and polished sections of calcite cut parallel or normal to c, were implanted with 3He at 3 MeV with a dose of 5x1015/cm2. Implanted carbonates were heated in 1-atm furnaces, and 3He distributions following diffusion anneals were profiled with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For 3He transport normal to cleavage surfaces in calcite, we obtain the following Arrhenius relation over the temperature range 78-300°C: Dcalcite = 9.0x10-9exp(-55 × 6 kJ mol-1/RT) m2sec-1. Diffusion in calcite exhibits marked anisotropy, with diffusion parallel to c about two orders of magnitude slower than diffusion normal to cleavage faces. He diffusivities for transport normal to the c-axis are similar in value to those normal to cleavage surfaces. Our findings are broadly consistent with helium diffusivities from step-heating measurements of calcite by Copeland et al. (2007); these bulk degassing data may reflect varying effects of diffusional anisotropy. Helium diffusion normal to cleavage surfaces in dolomite is significantly slower than diffusion in calcite, and has a much higher activation energy for diffusion. For dolomite, we obtain the following Arrhenius relation for He diffusion over the temperature range 150-400°C: Ddolomite = 9.0x10-8exp(-92 × 9 kJ mol-1/RT) m2sec-1. The role of crystallographic structure in influencing these differences among diffusivities was evaluated using the maximum aperture approach of Cherniak and Watson (2011), in which crystallographic structures are sectioned along possible diffusion

  8. Cryogenics on the stratospheric terahertz observatory (STO)

    Science.gov (United States)

    Mills, G.; Young, A.; Dominguez, R.; Duffy, B.; Kulesa, C.; Walker, C.

    2015-12-01

    The Stratospheric TeraHertz Observatory (STO) is a NASA funded, Long Duration Balloon experiment designed to address a key problem in modern astrophysics: understanding the Life Cycle of the Interstellar Medium. STO surveys a section of the Galactic plane in the dominant interstellar cooling line at 1.9 THz and the important star formation tracer at 1.46 THz, at ∼1 arc minute angular resolution, sufficient to spatially resolve atomic, ionic, and molecular clouds at 10 kpc. The STO instrument package uses a liquid helium cryostat to maintain the THz receiver at < 9 K and to cool the low noise amplifiers to < 20 K. The first STO mission (STO-1) flew in January of 2012 and the second mission (STO-2) is planned for December 2015. For the STO-2 flight a cryocooler will be added to extend the mission lifetime. This paper discusses the integration of the STO instrument into an existing cryostat and the cryogenic aspects of the launch and operation of the STO balloon mission in the challenging Antarctic environment.

  9. Helium in near Earth orbit

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Béné, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Cristinziani, M; Da Cunha, J P; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, Pierre; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kräber, M H; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu Hong Tao; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourão, A M; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Pohl, M; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schultz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Trümper, J E; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Van den Hirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Von Gunten, H P; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan Lu Guang; Yang, C G; Yang, M; Ye Shu Wei; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P

    2000-01-01

    The helium spectrum from 0.1 to 100 GeV/nucleon was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at altitudes near 380 km. Above the geomagnetic cutoff the spectrum is parameterized by a power law. Below the geomagnetic cutoff a second helium spectrum was observed. In the second helium spectra over the energy range 0.1 to 1.2 GeV/nucleon the flux was measured to be (6.3+or-0.9)*10/sup -3/ (m/sup 2/ sec sr)/sup -1/ and more than ninety percent of the helium was determined to be /sup 3/He (at the 90% CL). Tracing helium from the second spectrum shows that about half of the /sup 3/He travel for an extended period of time in the geomagnetic field and that they originate from restricted geographic regions similar to protons and positrons. (22 refs).

  10. On the shear strength of tungsten nano-structures with embedded helium

    Science.gov (United States)

    Smirnov, R. D.; Krasheninnikov, S. I.

    2013-08-01

    Modification of plastic properties of tungsten nano-structures under shear stress load due to embedded helium atoms is studied using molecular dynamics modelling. The modelling demonstrates that the yield strength of tungsten nano-structures reduces significantly with increasing embedded helium concentration. At high helium concentrations (>10 at%), the yield strength decreases to values characteristic to the pressure in helium nano-bubbles, which are formed in tungsten under such conditions and thought to be responsible for the formation of nano-fuzz on tungsten surfaces irradiated with helium plasma. It is also shown that tungsten plastic flow strongly facilitates coagulation of helium clusters to larger bubbles. The temperature dependencies of the yield strength are obtained.

  11. Numerical simulation of losses along a natural circulation helium loop

    Science.gov (United States)

    Knížat, Branislav; Urban, František; Mlkvik, Marek; RidzoÅ, František; Olšiak, Róbert

    2016-06-01

    A natural circulation helium loop appears to be a perspective passive method of a nuclear reactor cooling. When designing this device, it is important to analyze the mechanism of an internal flow. The flow of helium in the loop is set in motion due to a difference of hydrostatic pressures between cold and hot branch. Steady flow at a requested flow rate occurs when the buoyancy force is adjusted to resistances against the flow. Considering the fact that the buoyancy force is proportional to a difference of temperatures in both branches, it is important to estimate the losses correctly in the process of design. The paper deals with the calculation of losses in branches of the natural circulation helium loop by methods of CFD. The results of calculations are an important basis for the hydraulic design of both exchangers (heater and cooler). The analysis was carried out for the existing model of a helium loop of the height 10 m and nominal heat power 250 kW.

  12. Effects of helium on titanium films and the helium diffusion

    Institute of Scientific and Technical Information of China (English)

    SONG YingMin; LUO ShunZhong; LONG XingGui; AN Zhu; LIU Ning; PANG HongChao; WU XingChun; YANG BenFu; ZHENG SiXiao

    2008-01-01

    Using direct current-magnetron sputtering, Helium-trapped Ti films with a He/Ar mixture was studied. The relative helium content, helium depth profiles for the Ti films and crystallization capacity were analyzed by Enhanced Proton Backscattering Spectrometry (EPBS) and X-ray diffraction (XRD). It was found that helium diffusion enhanced as more helium trapping into Ti films, and the He holding ratios were 95.9%, 94.9%, 93.9%, 82.8% when the Ti films with the He/Ti of concentrations of 9.7 at.Q, 19.5 at.Q, 19.7 at.Q, 48.3 at.% were measured again 4 months later, respectively. The diffraction peaks be-came weak and wider, the peak of (002) plane was shifted to smaller diffraction angles and the relevant interplanar spacing d(hkl) increased gradually as more helium trapping into Ti films. The main peak was made trending to the (101) plane by both higher deposition temperature and more helium trapping.

  13. Cryogenic Acoustic Suppression Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will explore and test the feasibility and effectiveness of using a cryogenic fluid (liquid nitrogen) to facilitate acoustic suppression in a...

  14. Cryogenic MEMS Pressure Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A directly immersible cryogenic MEMS pressure sensor will be developed. Each silicon die will contain a vacuum-reference and a tent-like membrane. Offsetting thermal...

  15. Lightweight Inflatable Cryogenic Tank Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an inflatable and lightweight polymer-fabric structured pressure vessel designed for the containment of cryogenic fluids....

  16. Cryogenic Systems and Superconductive Power

    Science.gov (United States)

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  17. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  18. Photoionization rates for helium: update

    CERN Document Server

    Sokół, Justyna M

    2014-01-01

    The NIS He gas has been observed at a few AU to the Sun almost from the beginning of the space age. To model its flow an estimate of the loss rates due to ionization by solar extreme-ultraviolet (EUV) flux is needed. The EUV irradiance has been measured directly from mid 1990-ties, but with high temporal and spectral resolution only from 2002. Beforehand only EUV proxies are available. A new method of reconstruction of the Carrington rotation averaged photoionization rates for neutral interstellar helium (NIS He) in the ecliptic at 1 AU to the Sun before 2002 is presented. We investigate the relation between the solar rotation averaged time series of the ionization rates for NIS He at 1 AU derived from TIMED measurements of EUV irradiance and the solar 10.7 cm flux (F10.7) only. We perform a weighted iterative fit of a nonlinear model to data split into sectors. The obtained formula allows to reconstruct the solar rotation averages of photoionization rates for He between ~1947 and 2002 with an uncertainty ran...

  19. Comparison between Normal and HeII Two-phase Flows at High Vapor Velocities

    CERN Document Server

    Van Weelderen, R; Rousset, B; Thibault, P; Wolf, P E

    2006-01-01

    We present results on helium co-current two-phase flow experiments at high vapor velocity obtained with the use of the new CEA/SBT 400 W/1.8 K refrigerator [1]. For vapor velocities larger than typically 4 m/s, a mist of droplets develops from the bulk liquid interface accompanied by an increase in heat transfer at the wall. Experiments were conducted in a 10 m long, 40 mm I.D. straight pipe, both in helium II and in helium I to compare these two situations. The respective roles of vapor density, vapor velocity and liquid level on atomization were systematically investigated. Light scattering experiments were performed to measure sizes, velocities and interfacial areas of droplets in a complete cross section. In-house-made heat transfer sensors located in the mist allowed us to deduce an upper value of the extra cooling power of the dispersed phase. The practical interest of atomized flow for cooling large cryogenic facilities is discussed by considering the balance between increase in heat transfer and press...

  20. Analysis of a low-temperature magnetic helium pump

    Science.gov (United States)

    Prenger, Coyne; Stewart, Walter

    In an effort to improve reliability of cryocoolers, concepts involving no moving parts are being investigated. One concept utilizes an Active Magnetic Regenerator, AMR, to produce refrigeration. However, circulation of the helium working fluid is required for operation of the device. Currently available helium pumps have moving parts and; therefore, result in poor reliability. We propose a magnetically driven pump to provide the helium circulation for the AMR. The pump utilizes the magnetocaloric effect to produce an oscillatory helium flow and; has no moving parts. An analytical model has been developed to analyze the pump's performance in conjunction with an AMR operating between 7 and 20 K. At a frequency of 1 Hz a 0.5 liter pump can produce a 0.75 g/s flow rate at 20 K at an operating pressure of 5 atm. At the liquid helium temperature a two-phase version of this pump would perform substantially better than the single-phase version. A design concept has been developed and will be presented along with the model results.

  1. Leakage predictions for Rayleigh-step, helium-purge seals

    Science.gov (United States)

    Proctor, Margaret P.

    1988-01-01

    Rayleigh-step, helium purge, annular shaft seals, studied for use in liquid oxygen turbopumps, generate a hydrodynamic force that enables the seal to follow shaft perturbations. Hence, smaller clearances can be used to reduce seal leakage. FLOWCAL, a computer code developed by Mechanical Technology Incorporated, predicts gas flow rate through an annular seal with an axial pressure gradient. Analysis of a 50-mm Rayleigh-step, helium-purge, annular seal showed the flow rate increased axial pressure gradient, downstream pressure, and eccentricity ratio. Increased inlet temperature reduced leakage. Predictions made at maximum and minimum clearances (due to centrifugal and thermal growths, machining tolerances and + or - 2 percent uncertainty in the clearance measurement) placed wide boundaries on expected flow rates. The widest boundaries were set by thermal growth conditions. Predicted flow rates for a 50-mm Rayleigh-step, helium-purge, annular seal underestimated measured flow rates by three to seven times. However, the analysis did accurately predict flow rates for choked gas flow through annular seals when compared to flow rates measured in two other independent studies.

  2. Liquid uranium alloy-helium fission reactor

    Science.gov (United States)

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  3. A 3-D model of superfluid helium suitable for numerical analysis

    CERN Document Server

    Darve, C; Van Sciver, S W

    2009-01-01

    The two-fluid description is a very successful phenomenological representation of the properties of Helium II. A 3-D model suitable for numerical analysis based on the Landau-Khalatnikov description of Helium II is proposed. In this paper we introduce a system of partial differential equations that is both complete and consistent as well as practical, to be used for a 3-D solution of the flow of Helium II. The development of a 3-D numerical model for Helium II is motivated by the need to validate experimental results obtained by observing the normal component velocity distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique.

  4. Design and development of a device management platform for EAST cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei, E-mail: zzw@ipp.ac.cn; Lu, Xiaofei, E-mail: xiaofeilu@ipp.ac.cn; Zhuang, Ming, E-mail: zhm@ipp.ac.cn; Hu, Liangbing, E-mail: huliangbing@ipp.ac.cn; Xia, Genhai, E-mail: xgh@ipp.ac.cn

    2014-05-15

    Highlights: • A device management platform for EAST cryogenic system based on DCS is designed. • This platform enhances the integrity and continuity of system device information. • It can help predictive maintenance and device management decision. - Abstract: EAST cryogenic system is one of the critical sub-systems of the EAST tokamak device. It is a large scale helium cryoplant, which adopts distributed control system to realize monitoring and control of the cryogenic process and devices. However, the maintenance and management of most field devices are still in the corrective maintenance or traditional preventive maintenance stage. Under maintained or over maintained problems widely exist, which could cause devices fault and increase operation costs. Therefore, a device management platform is proposed for a safe and steady operation as well as fault diagnosis and predictive maintenance of EAST cryogenic system. This paper presents the function design and architecture design of the cryogenic device management platform. This platform is developed based on DeltaV DCS and acquires monitoring data through OPC protocol. It consists of three pillars, namely device information management, device condition management, and device performance monitoring. The development and implementation of every pillar are illustrated in detail in this paper. Test results and discussions are presented in the end.

  5. Alkali-helium snowball complexes formed on helium nanodroplets.

    Science.gov (United States)

    Müller, S; Mudrich, M; Stienkemeier, F

    2009-07-28

    We systematically investigate the formation and stability of snowballs formed by femtosecond photoionization of small alkali clusters bound to helium nanodroplets. For all studied alkali species Ak = (Na,K,Rb,Cs) we observe the formation of snowballs Ak(+)He(N) when multiply doping the droplets. Fragmentation of clusters Ak(N) upon ionization appears to enhance snowball formation. In the case of Na and Cs we also detect snowballs Ak(2) (+)He(N) formed around Ak dimer ions. While the snowball progression for Na and K is limited to less than 11 helium atoms, the heavier atoms Rb and Cs feature wide distributions at least up to Ak(+)He(41). Characteristic steps in the mass spectra of Cs-doped helium droplets are found at positions consistent with predictions on the closure of the first shell of helium atoms around the Ak(+) ion based on variational Monte Carlo simulations.

  6. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah

    2011-09-22

    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  7. Transferring superfluid helium in space

    Science.gov (United States)

    Kittel, Peter

    1986-01-01

    A simple thermodynamic model of a transfer system for resupplying liquid helium in space is presented, with application to NASA projects including the Space Infrared Telescope Facility, the Large Deployable Reflector, and the Hubble Space Telescope. The relations between different thermodynamic regimes that can be expected in the transfer line are used to study the relative efficiencies of various possible transfer techniques. Low heat leak into the transfer line, particularly at point sources such as the coupling, is necesssary for efficient transfer of liquid helium, and proper selection of supply tank temperature is important during helium resupply.

  8. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures thereof

  9. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures thereof

  10. Resistor monitors transfer of liquid helium

    Science.gov (United States)

    Hesketh, W. D.

    1966-01-01

    Large resistance change of a carbon resistor at the liquid helium temperature distinguishes between the transfer of liquid helium and gaseous helium into a closed Dewar. The resistor should be physically as small as possible to reduce the heat load to the helium.

  11. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.

    2005-01-01

    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures

  12. Experience with helium leak and thermal shocks test of SST-1 cryo components

    Science.gov (United States)

    Sharma, Rajiv; Nimavat, Hiren; Srikanth, G. L. N.; Bairagi, Nitin; Shah, Pankil; Tanna, V. L.; Pradhan, S.

    2012-11-01

    A steady state superconducting Tokamak SST-1 is presently under its assembly stage at the Institute for Plasma Research. The SST-1 machine is a family of Superconducting SC coils for both Toroidal field and Poloidal Field. An ultra high vacuum compatible vacuum vessel, placed in the bore of the TF coils, houses the plasma facing components. A high vacuum cryostat encloses all the SC coils and the vacuum vessel. Liquid Nitrogen (LN2) cooled thermal shield between the vacuum vessel & SC coils as well as between cryostat and the SC coils. There are number of crucial cryogenic components as Electrical isolators, 80 K thermal shield, Cryogenic flexible hose etc., which have to be passed the performance validation tests as part of fulfillment of the stringent QA/QC before incorporated in the main assembly. The individual leak tests of components at RT as well as after thermal cycle from 300 K to 77 K ensure us to make final overall leak proof system. These components include, Large numbers of Electrical Isolators for Helium as well as LN2 services, Flexible Bellows and Hoses for Helium as well as LN2 services, Thermal shock tests of large numbers of 80 K Bubble shields In order to validate the helium leak tightness of these components, we have used the calibrated mass spectrometer leak detector (MSLD) at 300 K, 77 K and 4.2. Since it is very difficult to locate the leaks, which are appearing at rather lower temperatures e.g. less than 20 K, We have invented different approaches to resolve the issue of such leaks. This paper, in general describes the design of cryogenic flexible hose, assembly, couplings for leak testing, test method and techniques of thermal cycles test at 77 K inflow conditions and leak testing aspects of different cryogenic components. The test results, the problems encountered and its solutions techniques are discussed.

  13. Transient analysis of chilldown in a cryogenic transfer line

    Science.gov (United States)

    Martin, T.

    1990-01-01

    A numerical model was developed, with the SINDA'85/FLUINT program, for calculating the thermal and hydrodynamic transients that occur during the chilldown of a cryogenic transfer line, using a well documented test case to validate the modeling process. Using this model, a total of ten cases were analyzed to evaluate the effects of variable inlet valve position, inlet pressures, and the use of an internal flow liner to promote nucleate boiling. It was found that an efficient transfer line cooldown can be achieved if the inlet flow is throttled, to reduce the flow rate and quality, and an internal flow liner such as Teflon is used.

  14. Cryogenic holographic distortion testing

    Science.gov (United States)

    Michel, David G.

    1994-06-01

    Hughes cryogenic holographic test facility allows for the rapid characterization of optical components and mechanical structures at elevated and reduced temperatures. The facility consists of a 1.6 meter diameter thermal vacuum chamber, vibration isolated experiment test platform, and a holographic camera assembly. Temperatures as low as 12 Kelvin and as high as 350 Kelvin have been demonstrated. Complex aspheric mirrors are tested without the need for auxiliary null lenses and may be tested in either the polished or unpolished state. Structural elements such as optical benches, solar array panels, and spacecraft antennas have been tested. Types of materials tested include beryllium, silicon carbide, aluminum, graphite epoxy, silicon/aluminum matrix material and injection molded plastics. Sizes have ranged from 7 cm X 15 cm to 825 cm X 1125 cm and have weighed as little as 0.2 Kg and as much as 130 Kg. Surface figure changes as little as (lambda) /10 peak-to-valley ((lambda) equals .514 micrometers ) are routinely measured.

  15. A study of the thermal conductivity of composite material Cu-epoxide resin at superfluid helium temperatures

    Science.gov (United States)

    Wang, H. L.; Wu, T. H.; Guo, F. Z.

    1994-02-01

    The influence of Kapitza thermal resistance of the composite material at superfluid helium temperatures is studied from the point of view of the heat transfer theory of cryogenics. A numerical model is developed for calculating the effective thermal conductivity coefficient of Cu-epoxide resin with the wires arranged in a square or crosswise. Experimental investigations have also been made at superfluid helium temperatures. The effective thermal conductivity coefficient of this kind of composite material measured by experiment is λ e=0.5929W/m·K.

  16. Numerical Study on Cryogenic Coflowing Jets under Transcritical Conditions

    Science.gov (United States)

    Tani, Hiroumi; Teramoto, Susumu; Okamoto, Koji; Yamanishi, Nobuhiro

    2012-11-01

    A numerical and experimental study is presented on cryogenic coflowing jets under transcritical conditions for a better understanding of the propellant mixing in supercritical-pressure rocket engines. The major concerns are dominant flow structures in the mixing of cryogenic coflowing jets under transcritical conditions. Experimentally, in advance of detailed numerical simulations, cryogenic nitrogen/gaseous nitrogen coaxial jets were visualized by the backlighting photography technique. It was observed that a dense nitrogen core has a shear-layer instability near the injector exit and eventually breaks up into large lumps which dissolve and fade away downstream. In numerical simulations, LES technique was employed for more detailed discussion on the flow structures. LES of a cryogenic nitrogen/gaseous nitrogen coflowing plane jet was conducted with the same density and velocity ratios of inner/outer jets as the experiments. As observed in the experiments, the shear-layer instability in the inner mixing layers is predominant near the injector exit. After roll-up and paring, the shear-layer instability waves become large-scale vortices. They cause coherent vortex structures which become dominant in the downstream and break the dense core into lumps. Strouhal numbers of the shear-layer instability and the dense lump shedding in the numerical simulations were comparable to those measured in the experiments, respectively.

  17. Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN

    CERN Document Server

    Dufay-Chanat, L; Casas-Cubillos, J; Chorowski, M; Grabowski, M; Jedrusyna, A; Lindell, G; Nonis, M; Koettig, T; Vauthier, N; van Weelderen, R; Winkler, T

    2015-01-01

    The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium wer...

  18. Cryogenics bringing the temperature down, underground

    CERN Multimedia

    2005-01-01

    The first 600m of the LHC cryogenic distribution line (QRL), which will feed the accelerator's superconducting magnets, has passed initial validating tests of its mechanical design at room and cryogenic temperatures.

  19. Performance of the Helium Circulation System on a Commercialized MEG

    Science.gov (United States)

    T, Takeda; M, Okamoto; T, Miyazaki; K, Katagiri

    2012-12-01

    We report the performance of a helium circulation system (HCS) mounted on a MEG (Magnetoencephalography) at Nagoya University, Japan. This instrument is the first commercialized version of an HCS. The HCS collects warm helium gas at approximately 300 K and then cools it to approximately 40 K. The gas is returned to the neck tube of a Dewar of the MEG to keep it cold. It also collects helium gas in the region just above the liquid helium surface while it is still cold, re-liquefies the gas and returns it to the Dewar. A special transfer tube (TT) of approximately 3 m length was developed to allow for dual helium streams. This tube separates the HCS using a MEG to reduce magnetic noise. A refiner was incorporated to effectively collect contaminating gases by freezing them. The refiner was equipped with an electric heater to remove the frozen contaminants as gases into the air. A gas flow controller was also developed, which automatically controlled the heater and electric valves to clean up contamination. The developed TT exhibited a very low heat inflow of less than 0.1 W/m to the liquid helium, ensuring efficient operation. The insert tube diameter, which was 1.5 in. was reduced to a standard 0.5 in. size. This dimensional change enabled the HCS to mount onto any commercialized MEG without any modifications to the MEG. The HCS can increase liquid helium in the Dewar by at least 3 liters/Day using two GM cryocoolers (SRDK-415D, Sumitomo Heavy Industries, Ltd.). The noise levels were virtually the same as before this installation.

  20. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  1. A review of film boiling at cryogenic temperatures.

    Science.gov (United States)

    Hsu, Y. Y.

    1972-01-01

    Film boiling occurs in the quenching of metals, the chilling of biological species, the regenerative cooling of rockets, and the cooling down of a cryogenic fuel tank. Occasionally film boiling is also found in a nuclear reactor or in a cryomagnet. Aspects of film boiling involving an unconstrained liquid mass are considered, giving attention to the evaporation time, the Leidenfrost temperature, solid-liquid contacts, the thermal properties of the solid, effects of coating or scale, wettability, the metastable condition, and the velocity effect on drops. Developments discussed with regard to pool boiling are related to vertical surfaces, film boiling from horizontal surfaces, film boiling from a horizontal cylinder, film boiling from a sphere, and film boiling of helium. Processes of film boiling in a channel are also analyzed.

  2. Control and operation cost optimization of the HISS cryogenic system

    Science.gov (United States)

    Porter, J.; Bieser, F.; Anderson, D.

    1983-08-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable design to provide a maximum particle bending field of 3 tesla. A previous paper describes the cryogenic facility including helium refrigeration and gas management. A control strategy which has allowed full time unattended operation, along with significant nitrogen and power cost reductions is discussed. Reduction of liquid nitrogen consumption was accomplished by using the sensible heat available in the cold exhaust gas. Measured nitrogen throughput agrees with calculations for sensible heat utilization of zero to 70%. Calculated consumption saving over this range is 40 liters per hour for conductive losses to the supports only. It is found that the measured throughput differential for the total system is higher.

  3. Control and operation cost optimization of the HISS cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Porter, J.; Bieser, F.; Anderson, D.

    1983-08-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable design to provide a maximum particle bending field of 3 tesla. A previous paper describes the cryogenic facility including helium refrigeration and gas management. This paper discusses a control strategy which has allowed full time unattended operation, along with significant nitrogen and power cost reductions. Reduction of liquid nitrogen consumption has been accomplished by making use of the sensible heat available in the cold exhaust gas. Measured nitrogen throughput agrees with calculations for sensible heat utilization of zero to 70%. Calculated consumption saving over this range is 40 liters per hour for conductive losses to the supports only. The measured throughput differential for the total system is higher.

  4. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.

    2016-01-01

    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  5. Long flexible transfer lines for gaseous and liquid helium

    CERN Document Server

    Laeger, H; Rohner, P

    1978-01-01

    Screened flexible four-fold coaxial transfer lines for gaseous and liquid helium with lengths of 5 to 50 m have been successfully built and tested. The lines for gaseous helium have to supply and return a mass flow of 5 to 10 g s−1 at temperatures ranging between 350 and 20 K for cooldown or warmup of superconducting magnets. The lines for liquid helium have to supply up to 100 ℓ h−1 for final cooldown or up to 25 ℓ h−1 for normal operation of superconducting magnets. The hydrodynamic and thermal performance characteristics of the lines have been measured. The results are encouraging and it can be envisaged to use this kind of lines for superconducting magnets in high energy accelerators.

  6. ITER helium ash accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. (Oak Ridge National Lab., TN (USA)); Dippel, K.H.; Finken, K.H. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. (Princeton Univ., NJ (USA). Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  7. Cryogenic safety organisation at CERN

    CERN Document Server

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  8. Interferometric measurements of silicon carbide mirrors at liquid helium temperature

    Science.gov (United States)

    Robb, Paul N.; Huff, Lynn W.; Forney, Paul B.; Petrovsky, Gury T.; Ljubarsky, Sergey V.; Khimitch, Yuri P.

    1995-10-01

    This paper presents the results of interferometric tests of two silicon carbide mirrors tested at room temperature and 6 K. The first mirror has a spherical f/1.73 surface, a diameter of 170 mm, and is of solid, plano-concave construction. The other mirror, a plano measuring 308 mm by 210 mm, is of lightweighted, closed-back construction. The mirrors were manufactured by the Vavilov State Optical Institute, St. Petersburg, Russia, and were loaned to Lockheed for these tests. Optical tests on both mirrors were performed using the Lockheed cryogenic optical test facility at liquid helium temperature and a Zygo Mark II interferometer. There was no change in the surface figure of the mirrors, within the test uncertainty of approximately plus or minus 0.02 waves at 0.6328-micrometer wavelength.

  9. Thermal conductance of pressed contacts at liquid helium temperatures

    Science.gov (United States)

    Salerno, L. J.; Kittel, P.; Spivak, A. L.

    1983-01-01

    It is pointed out that the optimum design of cryogenic instruments requires accurate thermal models. The present models are limited by a lack of knowledge of the low temperature thermal conductance of the bolted joints which are typically used in the instrument-to-system interface. In connection with studies of pressed contacts, it has been found that the thermal conductance does not obey the Wiedemann-Franz law. The present investigation is concerned with the characterization of the thermal conductance of pressed contacts at liquid helium-4 temperatures, taking into account the dependence of thermal contact conductance on applied force and temperature. It is shown that for the 0.4 micron OFHC copper pressed contact pair, the thermal conductance varies roughly as the second power of the temperature, and increases with increasing applied force.

  10. Validation of Helium Inlet Design for ITER Toroidal Field Coil

    CERN Document Server

    Boyer, C; Hamada, K; Foussat, A; Le Rest, M; Mitchell, N; Decool, P; Savary, F; Sgobba, S; Weiss, K-P

    2014-01-01

    The ITER organization has performed design and its validation tests on a helium inlet structure for the ITER Toroidal Field (TF) coil under collaboration with CERN, KIT, and CEA-Cadarache. Detailed structural analysis was performed in order to optimize the weld shape. A fatigue resistant design on the fillet weld between the shell covers and the jacket is an important point on the helium inlet structure. A weld filler material was selected based on tensile test at liquid helium temperature after Nb3Sn reaction heat treatment. To validate the design of the weld joint, fatigue tests at 7 K were performed using heat-treated butt weld samples. A pressure drop measurement of a helium inlet mock-up was performed by using nitrogen gas at room temperature in order to confirm uniform flow distribution and pressure drop characteristic. These tests have validated the helium inlet design. Based on the validation, Japanese and European Union domestic agencies, which have responsibilities of the TF coil procurement, are pr...

  11. A cryogenic tensile testing apparatus for micro-samples cooled by miniature pulse tube cryocooler

    Science.gov (United States)

    Chen, L. B.; Liu, S. X.; Gu, K. X.; Zhou, Y.; Wang, J. J.

    2015-12-01

    This paper introduces a cryogenic tensile testing apparatus for micro-samples cooled by a miniature pulse tube cryocooler. At present, tensile tests are widely applied to measure the mechanical properties of materials; most of the cryogenic tensile testing apparatus are designed for samples with standard sizes, while for non-standard size samples, especially for microsamples, the tensile testing cannot be conducted. The general approach to cool down the specimens for tensile testing is by using of liquid nitrogen or liquid helium, which is not convenient: it is difficult to keep the temperature of the specimens at an arbitrary set point precisely, besides, in some occasions, liquid nitrogen, especially liquid helium, is not easily available. To overcome these limitations, a cryogenic tensile testing apparatus cooled by a high frequency pulse tube cryocooler has been designed, built and tested. The operating temperatures of the developed tensile testing apparatus cover from 20 K to room temperature with a controlling precision of ±10 mK. The apparatus configurations, the methods of operation and some cooling performance will be described in this paper.

  12. The Cryogenic Distribution Line for the LHC Functional Specification and Conceptual Design

    CERN Document Server

    Erdt, W K; Trant, R

    1999-01-01

    The Large Hadron Collider (LHC) currently under construction at CERN will make use of superconducting magnets operating in superfluid helium below 2 K. The cryogenic distribution scheme for each of the eight sectors, individually served by a refrigeration plant, is based on a separate Cryogenic Distribution Line (QRL) feeding helium at different temperatures and pressures to the elementary cooling loops. The QRL comprises two supply headers and three return headers including a sub-atmospheric one. Low heat inleak to all temperature levels is essential for the overall LHC cryogenic performance. With an overall length of 25.6 km the QRL has a very critical cost-to-performance ratio. Therefore, following an in-house feasibility study, CERN adjudicated in autumn 1998 three industrial contracts in parallel for the supply of Pre-Series Test Cells (~ 112 m) of the QRL, which will be tested at CERN in 2000. Installation of the QRL for LHC is scheduled from 2002 to mid 2004. This paper will present the general layout,...

  13. Design, fabrication, commissioning, and testing of a 250 g/s, 2-K helium cold compressor system

    Energy Technology Data Exchange (ETDEWEB)

    V. Ganni; D. M. Arenius; B. S. Bevins; W. C. Chronis; J. D. Creel; J. D. Wilson Jr.

    2002-05-10

    In June 1999 the Thomas Jefferson National Accelerator Facility (TJNAF) Cryogenic Systems Group had completed the design, fabrication, and commissioning of a cold compressor system capable of pumping 250 g/s of 2-K helium vapor to a pressure above 1 bar. The 2-K cold box consists of five stages of centrifugal variable speed compressors with LN2 cooled drive motors and magnetic bearings, a plate fin heat exchanger, and an LN2 shield system. The new 2-K cold box (referred to as the SCN) was built as a redundant system to an existing four stage cold compressor SCM cold box that was commissioned in May 1994. The SCN has been in continuous service supporting the facility experiments since commissioning. This system has achieved a significant improvement in the total 2-K refrigeration system capacity and stability and has substantially increased the operating envelope both in cold compressor flow and operating pressure range. This paper describes the cold box configuration and the experience s in the design, fabrication, commissioning and performance evaluation. The capacity of the system for various operating pressures (0.040 to 0.025 bar at the load corresponding to a total compressor pressure ratio of 28 to 54) is presented. An effort is made to characterize the components and their operating data over the tested range. This includes the return side pressure drop in the distribution system, the heat exchanger, and the cold compressor characteristics. The system design parameters and their effects on performance are outlined.

  14. Magnetic bearings for cryogenic turbomachines

    Science.gov (United States)

    Iannello, Victor; Sixsmith, Herbert

    1991-01-01

    Magnetic bearings offer a number of advantages over gas bearings for the support of rotors in cryogenic turboexpanders and compressors. Their performance is relatively independent of the temperature or pressure of the process gas for a large range of conditions. Active magnetic bearing systems that use capacitive sensors have been developed for high speed compressors for use in cryogenic refrigerators. Here, the development of a magnetic bearing system for a miniature ultra high speed compressor is discussed. The magnetic bearing has demonstrated stability at rotational speeds exceeding 250,000 rpm. This paper describes the important features of the magnetic bearing and presents test results demonstrating its performance characteristics.

  15. Transient measurement of temperature oscillation during noisy film boiling in superfluid helium II

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Peng

    2001-01-01

    [1]Kobayashi, H.?Yasukochi, K., Maximum and minimum heat flux and temperature fluctuation in film-boiling states in superfluid helium, Adv. Cryog. Eng., 1980, 25: 372.[2]Kobayashi, H.?Yasukochi, K., A sample configuration effect on the heat transfer from metal surfaces to pressurized He II, Proc. ICEC, 1980, 8: 217.[3]Schwerdtner, M. V., Stamm, G., Tosi, A. N. et al. The boiling-up process in He II. Optical measurements and visualization, Cryogenics, 1992, 32: 775.[4]Schwerdtner, M. V., Poppes, W., Schmidt, D. W., Distortion of temperature signals in He II due to probe geometry, and a new improved probe, Cryogenics, 1989, 29: 132.[5]Shimazaki, T., Murakami, M.?Iida, T., Second sound wave heat transfer, thermal boundary layer formation and boiling: highly transient heat transport phenomena in He II, Cryogenics, 1995, 35: 645.[6]Zhang, P., Study of physical mechanism of film boiling in He II, Doctoral dissertation, Shanghai Jiaotong University, China, 1998.[7]Arp, V., State equation of liquid helium-4 from 0.8 to 2.5K, J. Low Temp. Phys., 1990, 79: 93.[8]Zhang, P., Kimura, S., Murakami, M. et al., Non-planar and non-linear second sound wave in He II, Chinese Physics Letters, 2000, 17: 43.

  16. Development of a cryogenic radiation detector for mapping radio frequency superconducting cavity field emissions

    Energy Technology Data Exchange (ETDEWEB)

    Danny Dotson; John Mammosser

    2005-05-01

    Field emissions in a super conducting helium cooled RF cavity and the production of radiation (mostly X-Rays) have been measured externally on cryomodules at Jefferson Lab since 1991. External measurements are limited to radiation energies above 100 keV due to shielding of the stainless steel cryogenic body. To measure the onset of and to map field emissions from a superconducting cavity requires the detecting instrument be inside the shield and within the liquid Helium. Two possible measurement systems are undergoing testing at JLab. A CsI detector array set on photodiodes and an X-Ray film camera with a fixed aperture. Several devices were tested in the cell with liquid Helium without success. The lone survivor, a CsI array, worked but saturated at high power levels due to backscatter. The array was encased in a lead shield with a slit opening set to measure the radiation emitted directly from the cell eliminating a large portion of the backscatter. This is a work in progress and te sting should be complete before the PAC 05. The second system being tested is passive. It is a shielded box with an aperture to expose radiation diagnostic film located inside to direct radiation from the cell. Developing a technique for mapping field emissions in cryogenic cells will assist scientists and engineers in pinpointing any surface imperfections for examination.

  17. Cold power plant based on the cryogenic refueling tank

    Directory of Open Access Journals (Sweden)

    A. I. Dovgjallo

    2014-01-01

    Full Text Available The paper evaluates the possibility to use a tank with cryogenic refueling as a part of the autonomous complex employing the liquefied natural gas. A cryogenic refueling tank-based installation to utilize a low-grade heat has been designed. During its use extra electric power is generated. To assess a performance capability, the proposed installation calculations have been made for different end pressures in cryogenic refueling tank. In all embodiments, the mass of cryogenic refilled is 866 kg. Depending on the pressure an amount of extra electric power is produced owing to utilizing a low temperature potential of LNG. New values, such as the specific amount of extra energy are introduced. These values allow objective assessment of the potential for extra energy when using the cryogenic products with their subsequent regasification in cryogenic refueling tank taking into consideration the operational constraints and the working fluid flow.A cold energy power plant has been also designed to refuel vehicles with the natural gas. In this paper the turbines with desirable expansion ratio to generate the maximum possible amount of power were selected in an optimal way. The optimum degree of expansion for the first turbine in the first loop will be т = 8.8; for the second turbine in the first loop т = 10; turbines for the second loop т = 3.9. The total amount of generated electric power will be 3725.22 kW•h for 225 min. The action time of cold energy power plant, including the time of methane gasification in cryogenic refueling tank, time of refueling vehicles, and time of electricity generation will be 24 hours. The economic assessment of cold energy power plant has shown that the payback period is 3.4 years.Thus, the performance evaluation by the temperature and pressure levels eliminates the possibility for forming the hydrates.So the calculations have shown that research in the development of power plants looks promising as well as allow you

  18. Mixed refrigerant cycle with neon, hydrogen, and helium for cooling sc power transmission lines

    Science.gov (United States)

    Kloeppel, S.; Dittmar, N.; Haberstroh, Ch; Quack, H.

    2017-02-01

    The use of superconductors in very long power transmission lines requires a reliable and effective cooling. Since the use of cryocoolers does not appear feasible for very long distances, a cryogenic refrigeration cycle needs to be developed. For cooling superconducting cables based on MgB2 (T c = 39 K), liquid hydrogen (LH2) is the obvious cooling agent. For recooling LH2, one would need a refrigeration cycle providing temperatures at around 20 K. For this purpose, one could propose the use of a helium refrigeration cycle. But the very low molecular weight of helium restricts the use of turbo compressors, which limits the overall efficiency. In order to increase the molecular weight of the refrigerant a mixture of cryogens could be used, allowing the use of a turbo compressor. Temperatures below the triple point of neon are achieved by phase separation. This paper presents a possible layout of a refrigeration cycle utilizing a three component mixture of neon, hydrogen, and helium.

  19. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    CERN Document Server

    Pei, L; Klebaner, A; Soyars, W; Bossert, R

    2015-01-01

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  20. Suggestion for a two-dimensional cryogenic complex plasma

    Science.gov (United States)

    Rosenberg, M.; Kalman, G. J.

    2006-10-01

    We propose and discuss theoretically a novel type of 2D complex (dusty) plasma formed by positioning charged dust grains on the surface of liquid helium (He). Liquid He provides a nearly ideal flat substrate, has very low polarizability and conductivity, and has been used previously to study 2D systems of electrons, ions, and charged clusters. The 2D cryogenic complex plasma system has several possible advantages compared with traditional 2D complex plasmas: (1) a more controlled environment; (2) the grains interact via an unscreened Coulomb interaction; (3) in addition to micron-size particles, nanoparticles might be used; (4) effects related to intrinsic magnetic dipole moments, as well as phenomena involving magnetized dust, may be more amenable to study; (5) binary mixtures of different charges and masses could be studied. At the same time, there are issues that invite further investigation: (a) the type of grain to use; (b) the possible choice of other, denser cryogenic liquids; (c) optimal methods for charging and discharging; (d) means of confinement; (e) possible diagnostic methods; (f) possible He transmitted damping mechanisms. Rosenberg, M. and Kalman, G. J., Europhys. Lett., submitted, 2006.

  1. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  2. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    Science.gov (United States)

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy.

  3. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  4. Cavitation in liquid cryogens. 2: Hydrofoil

    Science.gov (United States)

    Hord, J.

    1973-01-01

    Boundary layer principles, along with two-phase concepts, are used to improve existing correlative theory for developed cavity data. Details concerning cavity instrumentation, data analysis, correlative techniques, and experimental and theoretical aspects of a cavitating hydrofoil are given. Both desinent and thermodynamic data, using liquid hydrogen and liquid nitrogen, are reported. The thermodynamic data indicated that stable thermodynamic equilibrium exists throughout the vaporous cryogen cavities. The improved correlative formulas were used to evaluate these data. A new correlating parameter based on consideration of mass limiting two-phase flow flux across the cavity interface, is proposed. This correlating parameter appears attractive for future correlative and predictive applications. Agreement between theory and experiment is discussed, and directions for future analysis are suggested. The front half of the cavities, developed on the hydrofoil, may be considered as parabolically shaped.

  5. Progress towards the Advanced Cryogenic Gas Stopper at NSCL

    Science.gov (United States)

    Lund, Kasey; Bollen, Georg; Villiari, Antonio; Lawton, Don; Morrissey, Dave; Otterson, Jack; Ringle, Ryan; Schwarz, Stefan; Sumithrarachchi, Chandana; Yurkon, John; Advanced Cryogenic Gas Stopper Design Team

    2016-09-01

    Beam stopping is the key to performing experiments with low-energy beams of rare isotopes produced by projectile fragmentation. Linear gas stoppers filled with helium have become reliable tools to accomplish this task. Further developments are underway to maximize efficiency and beam rate capability in order to increase scientific reach. Improvements include increasing extraction efficiency, lowering decay losses due to slow transport time, reducing molecular combination of the isotope of interest with background impurity gases, and minimizing space charge effects. The ACGS under construction at NSCL is designed to increase performance by overcoming some of the more common issues. The use of a 4-phase RF wire carpet to generate an electrical traveling wave speeds up the ion transport times. Cryogenic cooling of the helium gas chamber reduces molecular ion information. A geometry that puts the RF carpet in the mid-plane of the gas stopper alleviates space charge effects. Prototype testing of important ACGS components has been completed, specifically ion transport tests of the newly designed RF wire carpets. Transport efficiencies up to 95% were demonstrated as well as transport speeds up to 100 m/s. RC104100.7301.

  6. Cryogenic technology for tracking detectors

    CERN Document Server

    Granata, V; Watts, S; Borer, K; Janos, S; Pretzl, Klaus P; Dezillie, B; Li, Z; Casagrande, L; Collins, P; Grohmann, S; Heijne, Erik H M; Lourenço, C; Niinikoski, T O; Palmieri, V G; Sonderegger, P; Borchi, E; Bruzzi, Mara; Pirollo, S; Chapuy, S; Dimcovski, Zlatomir; Grigoriev, E; Bell, W; Devine, S R H; O'Shea, V; Ruggiero, G; Smith, K; Berglund, P; de Boer, Wim; Hauler, F; Heising, S; Jungermann, L; Abreu, M C; Rato-Mendes, P; Sousa, P; Cindro, V; Mikuz, M; Zavrtanik, M; Esposito, A P; Konorov, I; Paul, S; Buontempo, S; D'Ambrosio, D; Pagano, S; Eremin, V V; Verbitskaya, E

    2001-01-01

    A low-mass cryogenic cooling technique for silicon sensor modules has been developed in the framework of the RD39 Collaboration at CERN. A prototype low-mass beam tracker cryostat has been designed, constructed and tested for applications in fixed target experiments. We shall report here briefly the main features and results of the system. (2 refs).

  7. USAF Space Sensing Cryogenic Considerations

    Science.gov (United States)

    2010-01-01

    capacitance dilatometer for measuring thermal expansion and magnetostriction Rev. Sci. Instrum. 83, 095102 (2012) Compact radio-frequency resonator...enhancing when the refrigeration system is considered as part of an overall optimization problem. INTRODUCTION The use of cryogenics in space sensing

  8. LHC Cryogenics on the mend

    CERN Multimedia

    2004-01-01

    On 29 September, repairs began on the LHC cryogenic distribution line, or QRL, to replace a faulty part that occurs in the hundreds of elements of the line that are already on-site. The Accelerator Technology Department is designing a work programme to finish the repairs as soon as possible and minimize delays to the rest of the LHC project.

  9. Champagne for the cryogenics teams

    CERN Multimedia

    2005-01-01

    Christmas has come early for the LHC as a complete sector of the cryogenic distribution line has been operating at 10 degrees Kelvin (-263°C) for the past two weeks, just a few degrees above the machine's nominal operating temperature.

  10. Background reduction in cryogenic detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Daniel A.; /Fermilab

    2005-04-01

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  11. Survey of cryogenic semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  12. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  13. Design of the Helium Purifier for IHEP-ADS Helium Purification System

    OpenAIRE

    2015-01-01

    Helium Purification System is an important sub-system in the Accelerator Driven Subcritical System of the Institute of High Energy Physics(IHEP ADS). The purifier is designed to work at the temperature of 77K. The purifier will work in a flow rate of 5g/s at 20MPa in continuous operation of 12 hours. The oil and moisture are removed by coalescing filters and a dryer, while nitrogen and oxygen are condensed by a phase separator and then adsorbed in several activated carbon adsorption cylinders...

  14. Rogue mantle helium and neon.

    Science.gov (United States)

    Albarède, Francis

    2008-02-15

    The canonical model of helium isotope geochemistry describes the lower mantle as undegassed, but this view conflicts with evidence of recycled material in the source of ocean island basalts. Because mantle helium is efficiently extracted by magmatic activity, it cannot remain in fertile mantle rocks for long periods of time. Here, I suggest that helium with high 3He/4He ratios, as well as neon rich in the solar component, diffused early in Earth's history from low-melting-point primordial material into residual refractory "reservoir" rocks, such as dunites. The difference in 3He/4He ratios of ocean-island and mid-ocean ridge basalts and the preservation of solar neon are ascribed to the reservoir rocks being stretched and tapped to different extents during melting.

  15. Pierre Gorce working on a helium pump.

    CERN Multimedia

    1975-01-01

    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  16. Helium release during shale deformation: Experimental validation

    Science.gov (United States)

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This work describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measured using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.

  17. The cosmic production of Helium

    CERN Document Server

    Jiménez, R; MacDonald, J; Gibson, B K; Jimenez, Raul; Flynn, Chris; Donald, James Mac; Gibson, Brad K.

    2003-01-01

    We estimate the cosmic production rate of helium relative to metals ($\\Delta Y/\\Delta Z$) using K dwarf stars in the Hipparcos catalog with accurate spectroscopic metallicities. The best fitting value is $\\Delta Y/\\Delta Z=2.1 \\pm 0.4$ at the 68% confidence level. Our derived value agrees with determinations from HII regions and with theoretical predictions from stellar yields with standard assumptions for the initial mass function. The amount of helium in stars determines how long they live and therefore how fast they will enrich the insterstellar medium with fresh material.

  18. Negative ions in liquid helium

    Science.gov (United States)

    Khrapak, A. G.; Schmidt, W. F.

    2011-05-01

    The structure of negative ions in liquid 4He is analyzed. The possibility of cluster or bubble formation around impurity ions of both signs is discussed. It is shown that in superfluid helium, bubbles form around negative alkaline earth metal ions and clusters form around halogen ions. The nature of "fast" and "exotic" negative ions is also discussed. It is assumed that "fast" ions are negative ions of helium excimer molecules localized inside bubbles. "Exotic" ions are stable negative impurity ions, which are always present in small amounts in gas discharge plasmas. Bubbles or clusters with radii smaller the radius of electron bubbles develop around these ions.

  19. Present activities of the Helium Supply System for ITER HCCR TBM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. H.; Kim, S. K.; Yoon, J. S.; Jin, H. G.; Lee, D. W. [Korea Atomic Energy Research Institute, Daejon (Korea, Republic of); Lee, Si Woo [Jinsol Turbo Machinery Co.,Ltd, Seoul (Korea, Republic of)

    2014-05-15

    The HCCR (Helium Cooled Ceramic Reflector) is designed cooling down by the helium cooling system (HCS) with high temperature and pressure (300-500 .deg. C, 8 MPa) helium gas and its mass flow rate is 1.5 kg/s during normal operation. The scaled-down helium supply system (HeSS) had been constructed and modified to obtain thermal-hydraulics test data, operational experience and to validate the HCS design in 2011-2013. The first HeSS was constructed in 2012, however more than 2 MW of heating power is required to heat up room temperature to 300 .deg. C for normal operation helium flow condition of the HCS (=1.5 kg/s). In 2013, a recuperator was installed in the HeSS facility to reduce the required heating power from 2 MW to 150 kW and to control helium mass flow rate and the temperature more effectively, yet the circulator was able up to 0.5 kg/s of helium mass flow which is only one third of normal operation condition of HCS. In present status, a full-scale helium circulator is developing in Jinsolturbo Co. and the real-scale circulator will be installed in the HeSS facility by end of 2014. To solve the revealed problems and to make full-scale mass flow rate, the full-scale circulator is developing by Jinsolturbo Co and it will be installed in the HeSS facility by 2014.

  20. Linear Model-Based Predictive Control of the LHC 1.8 K Cryogenic Loop

    CERN Document Server

    Blanco-Viñuela, E; De Prada-Moraga, C

    1999-01-01

    The LHC accelerator will employ 1800 superconducting magnets (for guidance and focusing of the particle beams) in a pressurized superfluid helium bath at 1.9 K. This temperature is a severely constrained control parameter in order to avoid the transition from the superconducting to the normal state. Cryogenic processes are difficult to regulate due to their highly non-linear physical parameters (heat capacity, thermal conductance, etc.) and undesirable peculiarities like non self-regulating process, inverse response and variable dead time. To reduce the requirements on either temperature sensor or cryogenic system performance, various control strategies have been investigated on a reduced-scale LHC prototype built at CERN (String Test). Model Based Predictive Control (MBPC) is a regulation algorithm based on the explicit use of a process model to forecast the plant output over a certain prediction horizon. This predicted controlled variable is used in an on-line optimization procedure that minimizes an approp...

  1. A cryogenic rotation stage with a large clear aperture for a half-wave plate

    CERN Document Server

    Bryan, Sean; Amiri, Mandana; Benton, Steven; Bihary, Richard; Bock, James; Bond, J Richard; Chiang, H Cynthia; Contaldi, Carlo; Crill, Brendan; Dore, Olivier; Elder, Benjamin; Filippini, Jeffrey; Fraisse, Aurelien; Gambrel, Anne; Gandilo, Natalie; Gudmundsson, Jon; Hasselfield, Matthew; Halpern, Mark; Hilton, Gene; Holmes, Warren; Hristov, Viktor; Irwin, Kent; Jones, William; Kermish, Zigmund; Lawrie, Craig; MacTavish, Carrie; Mason, Peter; Megerian, Krikor; Moncelsi, Lorenzo; Montroy, Thomas; Morford, Tracy; Nagy, Johanna; Netterfield, C Barth; Rahlin, Alexandra S; Reintsema, Carl; Riley, Daniel C; Ruhl, John; Runyan, Marcus; Saliwanchik, Benjamin; Shariff, Jamil; Soler, Juan; Trangsrud, Amy; Tucker, Carole; Tucker, Rebecca; Turner, Anthony; Wen, Shyang; Wiebe, Donald; Young, Edward

    2016-01-01

    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of 0.1 degrees. The system performed well in Spider during its successful 16 day flight.

  2. Development and testing of a passive check valve for cryogenic applications

    Science.gov (United States)

    Moore, B. D.; Maddocks, J. R.; Miller, F. K.

    2014-11-01

    Several cryogenic technologies use check valves, such as the Cold Cycle Dilution Refrigerator (CCDR) and the Hybrid Pulse-Tube/Reverse-Brayton Cryocooler. This paper details the development of a reed-style passive check valve with a PTFE seat for cryogenic applications. The experimental results of tests on the valve using helium gas at temperatures from 293 K down to 5.2 K, verify a scaling argument based on fundamental fluid dynamics that allows results from 78 K to be used in predicting valve performance at much lower temperatures. The scaling argument is then applied to a test conducted at the normal boiling point of Nitrogen to examine the results of improved fabrication methods.

  3. A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy.

    Science.gov (United States)

    Zhang, Shuai; Huang, Di; Wu, Shiwei

    2016-06-01

    The design and performance of a cryogen-free low temperature scanning tunneling microscope (STM) housed in ultrahigh vacuum (UHV) are reported. The cryogen-free design was done by directly integrating a Gifford-McMahon cycle cryocooler to a Besocke-type STM, and the vibration isolation was achieved by using a two-stage rubber bellow between the cryocooler and a UHV-STM interface with helium exchange gas cooling. A base temperature of 15 K at the STM was achieved, with a possibility to further decrease by using a cryocooler with higher cooling power and adding additional low temperature stage under the exchange gas interface. Atomically sharp STM images and high resolution dI/dV spectra on various samples were demonstrated. Furthermore, we reported the inelastic tunneling spectroscopy on a single carbon monoxide molecule adsorbed on Ag(110) surface with a cryogen-free STM for the first time. Being totally cryogen-free, the system not only saves the running cost significantly but also enables uninterrupted data acquisitions and variable temperature measurements with much ease. In addition, the system is capable of coupling light to the STM junction by a pair of lens inside the UHV chamber. We expect that these enhanced capabilities could further broaden our views to the atomic-scale world.

  4. Thermal and structural analysis of a cryogenic conduction cooling system for a HTS NMR magnet

    Energy Technology Data Exchange (ETDEWEB)

    In, Se Hwan; Hong, Yong Jun; Yeom, Han Kil; Ko, Hyo Bong; Park, Seong Je [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-03-15

    The superconducting NMR magnets have used cryogen such as liquid helium for their cooling. The conduction cooling method using cryocoolers, however, makes the cryogenic cooling system for NMR magnets more compact and user-friendly than the cryogen cooling method. This paper describes the thermal and structural analysis of a cryogenic conduction cooling system for a 400 MHz HTS NMR magnet, focusing on the magnet assembly. The highly thermo-conductive cooling plates between HTS double pancake coils are used to transfer the heat generated in coils, namely Joule heating at lap splice joints, to thermal link blocks and finally the cryocooler. The conduction cooling structure of the HTS magnet assembly preliminarily designed is verified by thermal and structural analysis. The orthotropic thermal properties of the HTS coil, thermal contact resistance and radiation heat load are considered in the thermal analysis. The thermal analysis confirms the uniform temperature distribution for the present thermal design of the NMR magnet within 0.2 K. The mechanical stress and the displacement by the electromagnetic force and the thermal contraction are checked to verify structural stability. The structural analysis indicates that the mechanical stress on each component of the magnet is less than its material yield strength and the displacement is acceptable in comparison with the magnet dimension.

  5. Cryogenic Hazard at ESS – strategy, safety studies and lessons learned

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The European Spallation Source (ESS) is building a linear accelerator (linac) aiming at delivering a 2 GeV proton beam on a tungsten target wheel at 5 MW nominal power. The entire accelerator will be housed in an underground tunnel and will be fully operational by 2023. The superconducting section of the linac is composed of 21 High Beta cryomodules, 9 Medium Beta cryomodules and 13 Spoke cryomodules, as well as a Cryogenic Distribution System (CDS) that will be provided with liquid helium. A total of 146 superconducting radio frequency (SRF) cavities operating at 2 K will be housed in those cryomodules. Additionally, cryogenic fluids will also be used for the cold hydrogen moderator surrounding the target as well as for several neutron instruments. In order to achieve a proper cooling, different facilities are being built to house the future cryogenic installation and therefore will be subject to Oxygen Deficiency Hazard (ODH). In order to address cryogenic safety issues ESS wide, a long-term strategy has ...

  6. Wide Variety of Experiments Using a Cryogen-Free 27.5 T Hybrid Magnet and a Cryogen-Free 18.1 T Superconducting Magnet

    Science.gov (United States)

    Watanabe, K.; Awaji, S.; Oguro, H.

    2013-03-01

    A cryogen-free hybrid magnet without liquid helium for operation, generating 27.5 T in a 32 mm room temperature bore of an 8 MW water-cooled resistive insert magnet in an 8.5 T background field of a cryogen-free superconducting outsert magnet, is being operated for basic research at low temperatures down to 17 mK in combination with a dilution refrigerator. In addition, we are developing functional materials using a differential thermal analysis DTA at high temperatures up to 1473 K in high fields up to 27 T. This cryogen-free hybrid magnet will be upgraded to generate 29 T by improving the outer superconducting magnet. A cryogen-free 18.1 T superconducting magnet with a 52 mm room temperature experimental bore, consisting of a Bi2Sr2Ca2Cu3O10 (Bi2223) insert coil, has been developed using a GM-JT cryocooler. Recently, bronze-tape-laminated Bi2223 has revealed excellent irreversible stress tolerance of 250 MPa at 77 K. In addition, the critical current properties for recent Bi2223 tapes are largely improved from 200 to 400 A/cm-width at 77 K in a self-field. Therefore, the stainless steel reinforcement tape incorporated for the previous Bi2223 insert coil is no longer needed for a new Bi2223 one. A new Bi2223 insert coil with almost the same size as the existing insert coil can generate two times higher fields at the elevated operation current from 162 to 191 A. An upgraded cryogen-free superconducting magnet can offer a long-term experiment at the constant magnetic field of 20 T for an in-field heat-treatment investigation.

  7. Impact of process parameters and design options on heat leaks of straight cryogenic distribution lines

    Directory of Open Access Journals (Sweden)

    P. Duda

    2017-03-01

    Full Text Available The Future Circular Collider (FCC accelerator will require a helium distribution system that will exceed the presently exploited transfer lines by almost 1 order of magnitude. The helium transfer line will contain five process pipes protected against heat leaks by a common thermal shield. The design pressure of the FCC process pipe with supercritical helium will be equal to 5.0 MPa, significantly exceeding the 2.0 MPa value in the present, state-of–art transfer lines. The increase of the design pressure requires construction changes to be introduced to the support system, the vacuum barriers and the compensation bellows. This will influence heat flows to the helium. The paper analyses the impact of the increased design pressure on the heat flow. The paper also offers a discussion of the design modifications to the compensation system, including the replacement of stainless steel with Invar®—aimed at mitigating the pressure increase.

  8. Impact of process parameters and design options on heat leaks of straight cryogenic distribution lines

    CERN Document Server

    Duda, Pawel; Chorowski, Maciej Pawel; Polinski, J

    2017-01-01

    The Future Circular Collider (FCC) accelerator will require a helium distribution system that will exceed the presently exploited transfer lines by almost 1 order of magnitude. The helium transfer line will contain five process pipes protected against heat leaks by a common thermal shield. The design pressure of the FCC process pipe with supercritical helium will be equal to 5.0 MPa, significantly exceeding the 2.0 MPa value in the present, state-of–art transfer lines. The increase of the design pressure requires construction changes to be introduced to the support system, the vacuum barriers and the compensation bellows. This will influence heat flows to the helium. The paper analyses the impact of the increased design pressure on the heat flow. The paper also offers a discussion of the design modifications to the compensation system, including the replacement of stainless steel with Invar—aimed at mitigating the pressure increase.

  9. Helium in atmospheres of binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Leushin, V.V. (Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Fiziki)

    The helium abundances were obtained for 25 bright components of binary stars by model atmosphere analysis. The helium abundance for binary stars that lie on the main sequence are larger in the average than in single normal stars. The stars on the Hertzsppung - russel diagram lie at a larger distance from the zero age line than those with normal helium abundance.

  10. Optical properties of the atmospheric pressure helium plasma jet generated by alternative current (a.c.) power supply

    Science.gov (United States)

    Ilik, Erkan; Akan, Tamer

    2016-05-01

    In this work, an atmospheric pressure plasma jet (APPJ) was produced to generate cold flowing post-discharge plasma of pure helium gas. The main aim of this study was to generate cold flowing APPJ of pure helium gas and to determine how their optical emission spectrum change influences varying different flow rates. Lengths of early, middle, and late post-discharge plasma (jet) regions and their fluctuations were determined, respectively. Then, ignition condition dependence of the post-discharge plasma for flow rate was specified at a constant voltage. Spectroscopic studies of an atmospheric pressure plasma jet of helium were presented via analyzing OH, N2, N2+, oxygen, and helium intensities for various flow rates.

  11. Tritium/Helium-3 Apparent Ages of Shallow Ground Water, Portland Basin, Oregon, 1997-98

    Science.gov (United States)

    Hinkle, Stephen R.

    2009-01-01

    Water samples for tritium/helium-3 age dating were collected from 12 shallow monitoring wells in the Portland basin, Oregon, in 1997, and again in 1998. Robust tritium/helium-3 apparent (piston-flow) ages were obtained for water samples from 10 of the 12 wells; apparent ages ranged from 1.1 to 21.2 years. Method precision was demonstrated by close agreement between data collected in 1997 and 1998. Tritium/helium-3 apparent ages generally increase with increasing depth below the water table, and agree well with age/depth relations based on assumptions of effects of recharge rate on vertical ground-water movement.

  12. Construction of a 2kW/4K Helium Refrigerator for HT—7U

    Institute of Scientific and Technical Information of China (English)

    白红宇; 毕延芳; 等

    2002-01-01

    Superconducting magnets of toroidal field (TF) and poloidal field(PF) of HT-7U tokamak are all made of NbTi/Cu Cable-in-Conduit Conductor (ClCC),and cooled with a forced flow supercritical helium of 3.8K.A helium refrigerator with an equivalent capacity of 2kW/r K will be constructed.This paper presents the design of the helium refrigerator process.The thermodynamics of the refrigeration cycle and the refrigerator equipments.

  13. On-line commissioning of the cryogenic stopping cell for the Super-FRS

    Energy Technology Data Exchange (ETDEWEB)

    Purushothaman, Sivaji; Estrade, Alfredo; Farinon, Fabio; Kurcewicz, Jan; Lang, Johannes; Nociforo, Chiara; Pietri, Stephane; Prochazka, Andrey; Reiter, Moritz Pascal; Takechi, Maya; Winfield, John; Weick, Helmut [GSI, Darmstadt (Germany); Dendooven, Peter; Kalantar-Nayestanaki, Nasser; Ranjan, Manisha [KVI, University of Groningen (Netherlands); Dickel, Timo; Geissel, Hans; Haettner, Emma; Knoebel, Ronja; Plass, Wolfgang; Scheidenberger, Christoph [GSI, Darmstadt (Germany); Justus-Liebig-Univ., Giessen (Germany); Ebert, Jens; Jesch, Christian [Justus-Liebig-Univ., Giessen (Germany); Moore, Iain; Rinta-Antila, Sami [University of Jyvaeskylae (Finland)

    2012-07-01

    A cryogenic stopping cell developed for the low-energy branch of the Super-FRS at FAIR has been successfully commissioned in combination with a multiple-reflection time-of-flight mass spectrometer at the FRS at GSI. The stopping cell has a stopping length of 1 m and is operated at 100 mbar helium at 100 K. The helium density used in this test is several times higher than the gas densities achieved in comparable room temperature stopping cells. In-flight separated and range-focussed {sup 223}Th fragments from the FRS have been slowed down, thermalized and extracted. Results of this test and the plans for future experiments are discussed.

  14. Cryogenics and the Human Exploration of Mars

    Science.gov (United States)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  15. Multi-Shock Compression of Dense Hydrogen-Helium Mixture Beyond 100GPa

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-Jian; LIU Fu-Sheng; TIAN Chun-Ling; SUN Yan-Yun

    2006-01-01

    @@ A cryogenic target system for preparing the dense gaseous samples is established on a two-stage light-gas gun and is applied to study the equation of state of hydrogen-helium mixture at higher pressures and at high temperatures by means of the multi-shock technique. The recorded optical radiation signal clearly indicates the beginning moments of the third-, fourth-, sixth-, eighth-, and tenth-shock processes, which are in good agreement with the predictions of the Mansoori-Canfield-Ross variational perturbation theory up to the observed ultimate state of 104 GPa.

  16. Experience with a Pre-Series Superfluid Helium Test Bench for LHC Magnets

    CERN Document Server

    Benda, V; Schouten, J A

    2000-01-01

    The Large Hadron Collider (LHC) under construction at CERN is based on the use of high-field superconducting magnets operating in superfluid helium. For the validation of the machine dipoles and quadrupoles, a magnet test plant is under construction requiring 12 so-called Cryogenic Feeder Units (CFU). Based on experience done at CERN, two pre-series CFUs were designed and built by industry and are currently in use prior to final series delivery. This presentation describes the features of a CFU, its typical characteristics and the experience acquired with the first units.

  17. Laser spectroscopy of the antiprotonic helium atom – its energy levels and state lifetimes

    CERN Document Server

    Hidetoshi, Yamaguchi

    2003-01-01

    The antiprotonic atom is a three-body exotic system consisting of an antiproton, an electron and a helium nucleus. Its surprising longevity was found and has been studied for more than 10 years. In this work, transition energies and lifetimes of this exotic atom were systematically studied by using the antiproton beam of AD(Antiproton Decelerator) facility at CERN, with an RFQ antiproton decelerator, a narrow-bandwidth laser, Cerenkov counters with fast-response photomultiplier tubes, and cryogenic helium target systems. Thirteen transition energies were determined with precisions of better than 200 ppb by a laser spectroscopy method, together with the elimination of the shift effect caused by collisions with surrounding atoms. Fifteen lifetimes (decay rates) of short-lived states were determined from the time distributions of the antiproton-annihilation signals and the resonance widths of the atomic spectral lines. The relation between the magnitude of the decay rates and the transition multipolarity was inv...

  18. Helium resources of Mare Tranquillitatis

    Science.gov (United States)

    Cameron, Eugene N.

    Wisconsin Center for Space Automation and Robotics, Univ. of Wisc., Madison, Wisc. Mare Tranquillitatis, about 300000 sq km in area, is currently the most promising lunar source of He-3 for fueling fusion power plants on Earth. About 60 pct. of the mare regolith consists of particles 100 microns or less in diameter. Helium and other gases derived from the solar wind are concentrated in the fine size fractions. Studies of very small craters indicate that the average regolith exceeds 3 m in areas away from larger craters and other mare features not amenable to mining. There is no evidence of decrease of helium content of regolith and depth. Helium is known to be enriched in regoliths that are high in TiO2 content. Remote sensing indicates that about 90 pct. of Mare Tranquillitatis is covered by regolith ranging from about 6 to +7.5 pct. TiO2; inferred He contents range from 20 to at least 45 wppm total helium (7 to 18 wppb He-3). Detailed studies of craters and inferred ejecta halos displayed on high resolution photographs of the Apollo 11 and Ranger 8 areas suggest that as much as 50 pct. of the mare regolith may be physically minable, on average, with appropriate mining equipment. Assuming that the average thickness of regolith is 3 m, and that 50 pct. of the mare area is minable, the He-3 content of minable regolith containing 20 to 45 wppm total He is estimated at about 94,000 tonnes.

  19. A GM cryocooler with cold helium circulation for remote cooling

    Science.gov (United States)

    Wang, Chao; Brown, Ethan

    2014-01-01

    A GM cryocooler with new cold helium circulation system has been developed at Cryomech. A set of check valves connects to the cold heat exchanger to convert a small portion of AC oscillating flow in the cold head to a DC gas flow for circulating cold helium in the remote loop. A cold finger, which is used for remote cooling, is connected to the check valves through a pair of 5 m long vacuum insulated flexible lines. The GM cryocooler, Cryomech model AL125 having 120 W at 80 K, is employed in the testing. The cold finger can provide 50 W at 81 K for the power input of 4.1 kW and 70.5 W at 81.8 K for the power input of 6 kW. This simple and low cost design is very attractive for some applications in the near future.

  20. Hot-wire anemometry for turbulence measurements in helium-air mixtures

    Science.gov (United States)

    Libby, P. A.; Larue, J. C.

    1979-01-01

    The use of extended hot-wire anemometry involving an interfering probe is shown to permit measurements of variable density turbulence such as arises in the mixing of helium and air. The methods of calibration and data reduction leading to time series in one or more velocity components, in the mass fraction of helium, and in the mixture density are described. Typical results in various flows to which the technique has been applied are discussed.