WorldWideScience

Sample records for cryogenic helium flow

  1. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  2. Cryogenic recovery analysis of forced flow supercritical helium cooled superconductors

    International Nuclear Information System (INIS)

    Lee, A.Y.

    1977-08-01

    A coupled heat conduction and fluid flow method of solution was presented for cryogenic stability analysis of cabled composite superconductors of large scale magnetic coils. The coils are cooled by forced flow supercritical helium in parallel flow channels. The coolant flow reduction in one of the channels during the spontaneous recovery transient, after the conductor undergoes a transition from superconducting to resistive, necessitates a parallel channel analysis. A way to simulate the parallel channel analysis is described to calculate the initial channel inlet flow rate required for recovery after a given amount of heat is deposited. The recovery capability of a NbTi plus copper composite superconductor design is analyzed and the results presented. If the hydraulics of the coolant flow is neglected in the recovery analysis, the recovery capability of the superconductor will be over-predicted

  3. Dynamics of cold helium flow inside a cryoline used for large cryogenic distribution system

    International Nuclear Information System (INIS)

    Kumar, Uday; Jadon, Mohit; Choukekar, Ketan; Shukla, Vinit; Patel, Pratik; Kapoor, Himanshu; Shah, Nitin; Muralidhara, Srinivasa; Sarkar, Biswanath

    2015-01-01

    The Cryolines, which by definition transfers cryogens from the source, normally a cryogenic plant, to several systems requiring cooling at cryogenic temperature to the level of 4 K and 80 K. The operations of cryolines are normally assumed to be steady state following a cool down from room temperature to the cryogenic temperature. It is to be noted that in a distributed cryogenic system, especially in a nuclear facility such as ITER having confinement definition due to the regulatory requirements, do also attract the attention in the system design that the release from safety valves cannot be allowed inside a building. Therefore, all safety valves need to be discharged inside a confined space, which is a specific space requiring fulfillment of definition for a cryogenic line. The specificity in such cases is that such cryogenic lines will realize dynamic conditions for each release of safety valves or a combination of safety valves in terms of pressure, temperature and flow, leading to unexpected failures. Such operating scenarios also lead to serious impact on fatigue with a question mark on the reliability. Therefore, one can define such cryolines as Relief Collection Header (RCH) which collects discharged helium and transport it to the appropriate place as defined in the system design. The discharges of cold helium from safety relief discharge ports of equipment can result into significantly unsteady and compressible flow in RCH. The proper design of the RCH has to be supported by detailed dynamic of expected flow phenomena for specific cases. The paper presents the dynamics of cold helium flow inside the typical RCH that has been performed to investigate the variation in flow parameters (pressure, temperature, velocity and density) along the axis of RCH and predictions on its reliability. (author)

  4. Test of a cryogenic helium pump

    International Nuclear Information System (INIS)

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  5. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Anindya [Fermilab; Rane, Tejas [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  6. Design concept of cryogenic falling liquid film helium separator

    International Nuclear Information System (INIS)

    Kinoshita, M.; Yamanishi, T.; Bartlit, J.R.; Sherman, R.H.

    1986-01-01

    A design concept is developed for a cryogenic falling liquid film helium separator by clarifying the differences between this process and a cryogenic distillation column. The process characteristics are greatly improved by the idea of adding an H 2 gas flow to a point near the upper end of the packed section. The flow rate of tritium lost from the top is kept extremely low with an adequately short packed section, and the column pressure is reduced to 1 atm. The addition causes no appreciable increase in the protium percentage (approx. =1%) in the bottom liquid flow. A design procedure applying the Colburn-Hougen method is proposed for determining specifications of the refrigerated section. It is shown that the presence of noncondensible helium requires a significantly larger heat transfer area mainly because the mass transfer resistance increases enormously as the condensation of hydrogen isotopes proceeds. Control schemes are also proposed: The tritium concentration in the top gas is controlled by the H 2 gas flow rate. The pressure rise caused by an increase of the helium percentage within the refrigerated section, which cannot readily be eliminated by changing input specifications of the refrigerant gas, is avoided by increasing the top gas flow rate to release more helium from the top

  7. Cryogenic helium gas convection research

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1994-10-01

    This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so

  8. Helium Inventory Management For LHC Cryogenics

    CERN Document Server

    Pyarali, Maisam

    2017-01-01

    The LHC is a 26.7 km circumference ring lined with superconducting magnets that operate at 1.9 K. These magnets are used to control the trajectory of beams of protons traveling in opposite directions and collide them at various experimental sites across the LHC where their debris is analyzed. The focus of this paper is the cryogenic system that allows the magnets to operate in their superconducting states. It aims to highlight the operating principles of helium refrigeration and liquefaction, with and without nitrogen pre-cooling; discuss the various refrigerators and liquefiers used at CERN for both LHC and Non-LHC applications, with their liquefaction capacities and purposes; and finally to deliberate the management of the LHC inventory and how it contributes to the strategic decision CERN makes regarding the inventory management during the Year-End Technical Stop (YETS), Extended Year-End Technical Stop (EYETS) and long shutdowns.

  9. Helium-flow measurement using ultrasonic technique

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL

  10. High Reynolds number flows using liquid and gaseous helium

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1991-01-01

    Consideration is given to liquid and gaseous helium as test fluids, high Reynolds number test requirements in low speed aerodynamics, the measurement of subsonic flow around an appended body of revolution at cryogenic conditions in the NTF, water tunnels, flow visualization, the six component magnetic suspension system for wind tunnel testing, and recent aerodynamic measurements with magnetic suspension systems. Attention is also given to application of a flow visualization technique to a superflow experiment, experimental investigations of He II flows at high Reynolds numbers, a study of homogeneous turbulence in superfluid helium, and thermal convection in liquid helium

  11. A cryogenic axial-centrifugal compressor for superfluid helium refrigeration

    CERN Document Server

    Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L

    1997-01-01

    CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.

  12. The cryogenic helium cooling system for the Tokamak physics experiment

    International Nuclear Information System (INIS)

    Felker, B.; Slack, D.S.; Wendland, C.R.

    1995-01-01

    The Tokamak Physics Experiment (TPX) will use supercritical helium to cool all the magnets and supply helium to the Vacuum cryopumping subsystem. The heat loads will come from the standard steady state conduction and thermal radiation sources and from the pulsed loads of the nuclear and eddy currents caused by the Central Solenoid Coils and the plasma positioning coils. The operations of the TPX will begin with pulses of up to 1000 seconds in duration every 75 minutes. The helium system utilizes a pulse load leveling scheme to buffer out the effects of the pulse load and maintain a constant cryogenic plant operation. The pulse load leveling scheme utilizes the thermal mass of liquid and gaseous helium stored in a remote dewar to absorb the pulses of the tokamak loads. The mass of the stored helium will buffer out the temperature pulses allowing 5 K helium to be delivered to the magnets throughout the length of the pulse. The temperature of the dewar will remain below 5 K with all the energy of the pulse absorbed. This paper will present the details of the heat load sources, of the pulse load leveling scheme operations, a partial helium schematic, dewar temperature as a function of time, the heat load sources as a function of time and the helium temperature as a function of length along the various components that will be cooled

  13. Thermal analysis of a coaxial helium panel of a cryogenic vacuum pump for advanced divertor of DIII-D tokamak

    International Nuclear Information System (INIS)

    Baxi, C.B.; Langhorn, A.; Schaubel, K.; Smith, J.

    1991-08-01

    It is planned to install a 50,000 1/s cryogenic pump for particle removal in the D3-D tokamak. A critical component of this cryogenic pump will be a helium panel which has to be maintained at a liquid helium temperature. The outer surface area of the helium panel has an area of 1 m 2 and consists of a 2.5 cm diameter, 10 m long tube. From design considerations, a coaxial geometry is preferable since it requires a minimum number of welds. However, the coaxial geometry also results in a counter flow heat exchanger arrangement, where the outgoing warm fluid will exchange heat with incoming cold fluid. This is of concern since the helium panel must be cooled from liquid nitrogen temperature to liquid helium temperature in less than 5 minutes for successful operation of the cryogenic pump. In order to analyze the thermal performance of the coaxial helium panel, a finite difference computer model of the geometry was prepared. The governing equations took into account axial as well as radial conduction through the tube walls. The variation of thermal properties was modeled. The results of the analysis showed that although the coaxial geometry behaves like a counter flow heat exchanger, within the operating range of the cryogenic pump a rapid cooldown of the helium panel from liquid nitrogen temperature to the operating temperature is feasible. A prototypical experiment was also performed at General Atomics (GA) which verified the concept and the analysis. 4 refs., 8 figs

  14. Online helium inventory monitoring of JLab cryogenic systems

    Science.gov (United States)

    Hasan, N.; Knudsen, P.; Wright, M.

    2017-12-01

    There are five cryogenic plants at Jefferson Lab which support the LINAC, experiment hall end-stations and test facility. The majority of JLab’s helium inventory, which is around 15 tons, is allocated in the LINAC cryo-modules, with the majority of the balance of helium distributed at the cryogenic-plant level mainly as stored gas and liquid for stable operation. Due to the organic evolution of the five plants and independent actions within the experiment halls, the traditional inventory management strategy suffers from rapid identification of potential leaks. This can easily result in losses many times higher than the normally accepted (average) loss rate. A real-time program to quickly identify potential excessive leakage was developed and tested. This program was written in MATLAB© for portability, easy diagnostics and modification. It interfaces directly with EPICS to access the cryogenic system state, and with and NIST REFPROP© for real fluid properties. This program was validated against the actual helium offloaded into the system. The present paper outlines the details of the inventory monitoring program, its validation and a sample of the achieved results.

  15. Operational experience with double acting piston pumps for cryogenic helium and nitrogen

    International Nuclear Information System (INIS)

    Vosswinkel, F.

    1978-01-01

    The design of a high efficiency double acting piston pump suitable for pumping liquefied gases at cryogenic temperatures for cable cooling, is reported. The pump has proved flexible, reliable and efficient in operation. The plunger-type pumps can be used for filling cryostats or dewars with liquid helium or nitrogen from a pressure free or pressurized storage vessel, or as circulators for subcooled, saturated and/or supercritical helium in large scale cooling experiments. Flow rates of up to 17 g/s, maximum operating pressure of 600 kPa absolute and maximum differential pressure of approximately 100 kPa are obtained. (UK)

  16. Operating experience using venturi flow meters at liquid helium temperature

    International Nuclear Information System (INIS)

    Wu, K.C.

    1992-01-01

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench

  17. Cryogenics

    International Nuclear Information System (INIS)

    Shukla, R.K.

    1990-01-01

    Cryogenics refers to the coldest area known in nature. This temperature range has an upper limit arbitrarily defined as -100 degrees C (-250 degrees C by some) and a lower limit of absolute zero. These limits separate it from the temperature range generally used in refrigerating engineering. One important application of cryogenics is the separation ad purification of air into its various components (oxygen, nitrogen, argon, and the rare gases). Other important developments have been the large-scale production of liquid hydrogen; helium extraction from natural gas; storage and transport of liquefied gases such as oxygen, argon, nitrogen, helium, neon, xenon, and hydrogen; liquefaction of natural gas for ocean transport and peak shaving; and many new types of cryogenic refrigeration devices. This paper introduces the topic of cryogenic engineering. Cryogenic processes generally range from ambient conditions to the boiling point of the cryogenic fluid. Cryogenic cycles also incorporate two or more pressure levels. These properties must also cover the vapor, vapor-liquid, and sometimes the solid regions. Therefore, the physical properties of fluids over a great range of temperatures and pressures must be known. Solubility of contaminants must be known in order to design for their removal. The main physical properties for design purposes are those usually used in unit operations, such as fluid flow, heat transfer, and the like, in addition to those directly related to the Joule-Thomson effect and expansion work. Properties such as density, viscosity, thermal conductivity, heat capacity, enthalpy, entropy, vapor pressure, and vapor-liquid equilibriums are generally obtained in graphical, tabular, or equation form, as a function of temperature and pressure

  18. A High Reliability Gas-driven Helium Cryogenic Centrifugal Compressor

    CERN Document Server

    Bonneton, M; Gistau-Baguer, Guy M; Turcat, F; Viennot, P

    1998-01-01

    A helium cryogenic compressor was developed and tested in real conditions in 1996. The achieved objective was to compress 0.018 kg/s Helium at 4 K @ 1000 Pa (10 mbar) up to 3000 Pa (30 mbar). This project was an opportunity to develop and test an interesting new concept in view of future needs. The main features of this new specific technology are described. Particular attention is paid to the gas bearing supported rotor and to the pneumatic driver. Trade off between existing technologies and the present work are presented with special stress on the bearing system and the driver. The advantages are discussed, essentially focused on life time and high reliability without maintenance as well as non pollution characteristic. Practical operational modes are also described together with the experimental performances of the compressor. The article concludes with a brief outlook of future work.

  19. Numerical investigation of potential stratification caused by a cryogenic helium spill inside a tunnel

    Science.gov (United States)

    Sinclair, Cameron; Malecha, Ziemowit; Jedrusyna, Artur

    2018-04-01

    The sudden release of cryogenic fluid into an accelerator tunnel can pose a significant health and safety risk. For this reason, it is important to evaluate the consequences of such a spill. Previous publications concentrated on either Oxygen Deficiency Hazard or the evaluation of mathematical models using experimental data. No studies to date have focussed on the influence of cryogen inlet conditions on flow development. In this paper, the stratification behaviour of low-temperature helium released into an air-filled accelerator tunnel is investigated for varying helium inlet diameters. A numerical model was constructed using the OpenFOAM Toolbox of a generalised 3D geometry, with similar hydraulic characteristics to the CERN and SLAC tunnels. This model has been validated against published experimental and numerical data. A dimensionless parameter, based on Bakke number, was then determined for the onset of stratification, taking into account the helium inlet diameter; a dimensionless parameter for the degree of stratification was also employed. The simulated flow behaviour is described in terms of these dimensionless parameters, as well as the temperature and oxygen concentration at various heights throughout the tunnel.

  20. Revision of the design model for a cryogenic falling liquid film helium separator

    International Nuclear Information System (INIS)

    Kinoshita, Masahiro; Bartlit, J.R.; Sherman, R.H.

    1983-05-01

    The present paper reports revision of the design model previously developed by the authors for the cryogenic falling liquid film helium separator. The revised design procedure is composed of three steps : 1) calculation of distributions of phase flow rates, temperature and phase compositions within the refrigerated section and the packed section ; 2) calculation of more detailed distributions of these variables within the refrigerated section ; and 3) estimation of column dimensions and determination of operating conditions. It is assumed that the vacant refrigerated section has two theoretical stages for hydrogen isotope separation. The mixture within the refrigerated section is considered in step 2) as two component system of He-HD. (author)

  1. Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures. [transonic flow in cryogenic wind tunnels

    Science.gov (United States)

    Hall, R. M.; Adcock, J. B.

    1981-01-01

    The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.

  2. Cryogenics

    International Nuclear Information System (INIS)

    Fradkov, A.B.

    1991-01-01

    The application of cryogenics in various areas of science and technology is related in a popular way. Utilization of cryogenics in the following production processes is described: separation of air, gas mixtures; production of helium; separation of hydrogen isotopes; production of deuterium. Applications of cryogenics in refrigerating engineering, superconductivity and high-energy physics, controlled thermonuclear fusion, superconducting electric motors and electric energy storages are considered

  3. Gaseous Helium storage and management in the cryogenic system for the LHC

    CERN Document Server

    Barranco-Luque, M

    2000-01-01

    The Large Hadron Collider (LHC) is presently under construction at CERN. Its main components are superconducting magnets which will operate in superfluid helium requiring cryogenics on a length of about 24 km around the machine ring with a total helium inventory of about 100 tonnes. As no permanent liquid helium storage is foreseen and for reasons of investment costs, only half of the total helium content can be stored in gaseous form in medium pressure vessels. During the LHC operation part of these vessels will be used as helium buffer in the case of multiple magnet quenches. This paper describes the storage, distribution and management of the helium, the layout and the connection to the surface and underground equipment of the cryogenic system.

  4. Cryogenic filter method produces super-pure helium and helium isotopes

    Science.gov (United States)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  5. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    Energy Technology Data Exchange (ETDEWEB)

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 (China); Zhang, M. M.; Xu, D. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China)

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  6. Cryogenic tunable microwave cavity at 13GHz for hyperfine spectroscopy of antiprotonic helium

    International Nuclear Information System (INIS)

    Sakaguchi, J.; Gilg, H.; Hayano, R.S.; Ishikawa, T.; Suzuki, K.; Widmann, E.; Yamaguchi, H.; Caspers, F.; Eades, J.; Hori, M.; Barna, D.; Horvath, D.; Juhasz, B.; Torii, H.A.; Yamazaki, T.

    2004-01-01

    For the precise measurement of the hyperfine structure of antiprotonic helium, microwave radiation of 12.9GHz frequency is needed, tunable over +/-100MHz. A cylindrical microwave cavity is used whose front and rear faces are meshed to allow the antiprotons and laser beams to enter. The cavity is embedded in a cryogenic helium gas target. Frequency tuning of ∼300MHz with Q values of 2700-3000 was achieved using over-coupling and an external triple stub tuner. We also present Monte-Carlo simulations of the stopping distribution of antiprotons in the low-density helium gas using the GEANT4 package with modified energy loss routines

  7. Metrological analysis of a virtual flowmeter-based transducer for cryogenic helium

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, P., E-mail: pasquale.arpaia@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Girone, M., E-mail: mario.girone@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Department of Engineering, University of Sannio, Benevento (Italy); Liccardo, A., E-mail: annalisa.liccardo@unina.it [Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples (Italy); Pezzetti, M., E-mail: marco.pezzetti@cern.ch [Technology Department, European Organization for Nuclear Research (CERN), Geneva (Switzerland); Piccinelli, F., E-mail: fabio.piccinelli@cern.ch [Department of Mechanical Engineering, University of Brescia, Brescia (Italy)

    2015-12-15

    The metrological performance of a virtual flowmeter-based transducer for monitoring helium under cryogenic conditions is assessed. At this aim, an uncertainty model of the transducer, mainly based on a valve model, exploiting finite-element approach, and a virtual flowmeter model, based on the Sereg-Schlumberger method, are presented. The models are validated experimentally on a case study for helium monitoring in cryogenic systems at the European Organization for Nuclear Research (CERN). The impact of uncertainty sources on the transducer metrological performance is assessed by a sensitivity analysis, based on statistical experiment design and analysis of variance. In this way, the uncertainty sources most influencing metrological performance of the transducer are singled out over the input range as a whole, at varying operating and setting conditions. This analysis turns out to be important for CERN cryogenics operation because the metrological design of the transducer is validated, and its components and working conditions with critical specifications for future improvements are identified.

  8. ELECTRON ENERGY DECAY IN HELIUM AFTERGLOW PLASMAS AT CRYOGENIC TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Goldan, P. D.; Cahn, J. H.; Goldstein, L.

    1963-10-15

    Studies of decaying afterglow plasmas in helium were ined near 4 deg K by immersion in a liquid helium bath. By means of a Maser Radiometer System, the electron temperature was followed below 200 deg K. Guided microwave propagation and wave interaction techniques premit determination of election number density and collision frequencies for momentum transfer. Electron temperature decay rates of the order of 150 mu sec/p(mm Hg alpha 4.2 deg K) were found. Since thermal relaxation by elastic collisions should be some two orders of magnitude faster than this, the electrons appear to be in quasiequilibrium with a slowly decaying internal heating source. Correlation of the expected decay rates of singlet metastable helium atoms with the electron temperature decay gives good agreement with the present experiment. (auth)

  9. EXERGY ANALYSIS OF THE CRYOGENIC HELIUM DISTRIBUTION SYSTEM FOR THE LARGE HADRON COLLIDER (LHC)

    International Nuclear Information System (INIS)

    Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.

  10. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (LHC)

    CERN Document Server

    Claudet, S; Tavian, L; Wagner, U

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world’s largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility..

  11. Economics of Large Helium Cryogenic Systems experience from Recent Projects at CERN

    CERN Document Server

    Claudet, S; Lebrun, P; Tavian, L; Wagner, U

    1999-01-01

    Large projects based on applied superconductivity, such as particle accelerators, tokamaks or SMES, require powerful and complex helium cryogenic systems, the cost of which represents a significant, if not dominant fraction of the total capital and operational expenditure. It is therefore important to establish guidelines and scaling laws for costing such systems, based on synthetic estimators of their size and performance. Although such data has already been published for many years, the experience recently gathered at CERN with the LEP and LHC projects, which have de facto turned the laboratory into a major world cryogenic center, can be exploited to update this information and broaden the range of application of the scaling laws. We report on the economics of 4.5 K and 1.8 K refrigeration, cryogen distribution and storage systems, and indicate paths towards their cost-to-performance optimisation.

  12. Experimental Characterization of Cryogenic Helium Pulsating Heat Pipes

    Science.gov (United States)

    Fonseca Flores, Luis Diego

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets in MRI systems. In addition, the same approach can be used for exploring other low temperature applications such as cooling space instrumentation. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K at 1 W via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, the thermal performance for the presented design remained unchanged when increasing the adiabatic length from 300 mm to 1000 mm. Finally a spring mass damper model has been developed and proven to predict well the experimental data, such models should be used as tool to design and manufacturer PHP prototypes.

  13. Low flow velocity, fine-screen heat exchangers and vapor-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Steyert, W.A.; Stone, N.J.

    1978-09-01

    The design, construction, and testing of three compact, low temperature heat exchangers are reported. A method is given for the construction of a small (approximately = 20-cm 3 volume) exchanger that can handle 6 g/s helium flow with low pressure drops (ΔP/P = 10 percent) and adequate heat transfer (N/sub tu/ = 3). The use of screen for simple, vapor-cooled current leads into cryogenic systems is also discussed

  14. Dynamic modeling and simulation of the superconducting super collider cryogenic helium system

    International Nuclear Information System (INIS)

    Hartzog, D.G.; Fox, V.G.; Mathias, P.M.; Nahmias, D.; McAshan, M.; Carcagno, R.

    1989-01-01

    To study the operation of the Superconducting Super Collider (SSC) cryogenic system during transient operating conditions, they have developed and programmed in FORTRAN, a time-dependent, nonlinear, homogeneous, lumped-parameter simulation model of the SSC cryogenic system. This dynamic simulator has a modular structure so that process flowsheet modifications can be easily accommodated with minimal recoding. It uses the LSODES integration package to advance the solution in time. For helium properties it uses Air Products implementation of the standard thermodynamic model developed by the NBS. Two additional simplified helium thermodynamic models developed by Air Products are available as options to reduce computation time. To facilitate the interpretation of output, they have linked the simulator to the speakeasy conversational language. The authors present a flowsheet of the process simulated, and the material and energy balances used in the engineering models. They then show simulation results for three transient operating scenarios: startup of the refrigeration system from standby to full load; the loss of 4K refrigeration caused by the tripping of one of two parallel compressors in a sector; and a full-field quench of a single magnet half-cell. They discuss the response of the fluid within the cryogenic circuits during these scenarios. 14 refs., 19 figs., 2 tabs

  15. Experimental evidence of the statistical intermittency in a cryogenic turbulent jet of normal and superfluid Helium

    International Nuclear Information System (INIS)

    Duri, D.

    2012-01-01

    This experimental work is focused on the statistical study of the high Reynolds number turbulent velocity field in an inertially driven liquid helium axis-symmetric round jet at temperatures above and below the lambda transition (between 2.3 K and 1.78 K) in a cryogenic wind tunnel. The possibility to finely tune the fluid temperature allows us to perform a comparative study of the quantum He II turbulence within the classical framework of the Kolmogorov turbulent cascade in order to have a better understanding of the energy cascade process in a superfluid. In particular we focused our attention on the intermittency phenomena, in both He I and He II phases, by measuring the high order statistics of the longitudinal velocity increments by means of the flatness and the skewness statistical estimators. A first phase consisted in developing the cryogenic facility, a closed loop pressurized and temperature regulated wind tunnel, and adapting the classic hot-wire anemometry technique in order to be able to work in such a challenging low temperature environment. A detailed calibration procedure of the fully developed turbulent flow was the carried out at 2.3 K at Reynolds numbers based on the Taylor length scale up to 2600 in order to qualify our testing set-up and to identify possible facility-related spurious phenomena. This procedure showed that the statistical properties of the longitudinal velocity increments are in good agreement with respect to previous results. By further reducing the temperature of the working fluid (at a constant pressure) below the lambda point down to 1.78 K local velocity measurements were performed at different superfluid density fractions. The results show a classic behaviour of the He II energy cascade at large scales while, at smaller scales, a deviation has been observed. The occurrence of this phenomenon, which requires further investigation and modelling, is highlighted by the observed changing sign of the third order structure

  16. Cryogenic thermometer calibration system using a helium cooling loop and a temperature controller [for LHC magnets

    CERN Document Server

    Chanzy, E; Thermeau, J P; Bühler, S; Joly, C; Casas-Cubillos, J; Balle, C

    1998-01-01

    The IPN-Orsay and CERN are designing in close collaboration a fully automated cryogenic thermometer calibration facility which will calibrate in 3 years 10,000 cryogenic thermometers required for the Large Hadron Collider (LHC) operation. A reduced-scale model of the calibration facility has been developed, which enables the calibration of ten thermometers by comparison with two rhodium-iron standard thermometers in the 1.8 K to 300 K temperature range under vacuum conditions. The particular design, based on a helium cooling loop and an electrical temperature controller, gives good dynamic performances. This paper describes the experimental set-up and the data acquisition system. Results of experimental runs are also presented along with the estimated global accuracy for the calibration. (3 refs).

  17. Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures

    Science.gov (United States)

    Perrella, M. D.; Ghiaasiaan, S. M.

    2017-12-01

    The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.

  18. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    CERN Document Server

    Parente, C; Munday, A; Wiggins, P

    2006-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

  19. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    International Nuclear Information System (INIS)

    Delruelle, N; Inglese, V; Leclercq, Y; Pirotte, O; Williams, L

    2015-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for each cryo-module. This paper describes the whole cryogenic system and presents the commissioning results including the preliminary operation at 4.5 K of the first cryo- module in the experimental hall. (paper)

  20. Experimental Validation of the LHC Helium Relief System Flow Modeling

    CERN Document Server

    Fydrych, J; Riddone, G

    2006-01-01

    In case of simultaneous resistive transitions in a whole sector of magnets in the Large Hadron Collider, the helium would be vented from the cold masses to a dedicated recovery system. During the discharge the cold helium will eventually enter a pipe at room temperature. During the first period of the flow the helium will be heated intensely due to the pipe heat capacity. To study the changes of the helium thermodynamic and flow parameters we have simulated numerically the most critical flow cases. To verify and validate numerical results, a dedicated laboratory test rig representing the helium relief system has been designed and commissioned. Both numerical and experimental results allow us to determine the distributions of the helium parameters along the pipes as well as mechanical strains and stresses.

  1. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  2. Performance evaluation of cryogenic counter-flow heat exchangers with longitudinal conduction, heat in-leak and property variations

    Science.gov (United States)

    Jiang, Q. F.; Zhuang, M.; Zhu, Z. G.; Y Zhang, Q.; Sheng, L. H.

    2017-12-01

    Counter-flow plate-fin heat exchangers are commonly utilized in cryogenic applications due to their high effectiveness and compact size. For cryogenic heat exchangers in helium liquefaction/refrigeration systems, conventional design theory is no longer applicable and they are usually sensitive to longitudinal heat conduction, heat in-leak from surroundings and variable fluid properties. Governing equations based on distributed parameter method are developed to evaluate performance deterioration caused by these effects. The numerical model could also be applied in many other recuperators with different structures and, hence, available experimental data are used to validate it. For a specific case of the multi-stream heat exchanger in the EAST helium refrigerator, quantitative effects of these heat losses are further discussed, in comparison with design results obtained by the common commercial software. The numerical model could be useful to evaluate and rate the heat exchanger performance under the actual cryogenic environment.

  3. The use of cryogenic helium for classical turbulence: Promises and hurdles

    International Nuclear Information System (INIS)

    Niemela, J.J.; Sreenivasan, K.R.

    2006-12-01

    Fluid turbulence is a paradigm for non-linear systems with many degrees of freedom and important in numerous applications. Because the analytical understanding of the equations of motion is poor, experiments and, lately, direct numerical simulations of the equations of motion, have been fundamental to making progress. In this vein, a concerted experimental effort has been made to take advantage of the unique properties of liquid and gaseous helium at low temperatures near or below the critical point. We discuss the promise and impact of results from recent helium experiments and identify the current technical barriers which can perhaps be removed by low temperature researchers. We focus mainly on classical flows that utilize helium above the lambda line, but touch on those aspects below that exhibit quasi-classical behavior. (author)

  4. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    CERN Document Server

    Delruelle, N; Leclercq, Y; Pirotte, O; Williams, L

    2015-01-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for eac...

  5. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    Science.gov (United States)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  6. A 6 kW at 4.5 K helium refrigerator for CERN's Cryogenic Test Station

    International Nuclear Information System (INIS)

    Gistau, G.M.; Bonneton, M.

    1994-01-01

    For purposes of testing the present LEP superconducting resonant cavities and the future LHC magnets, CERN built a test station the cryogenic power of which is presently supplied by a dedicated 6 kW at 4.5 K helium refrigerator. The thermodynamic cycle is discussed and special emphasis is put on a new cryogenic expansion turbine operating in the liquid phase. Information is given about: the cycle screw compressors' performances, the general performance of the refrigerator, the expected efficiency enhancement due to the liquid turbine, an off-design turn down operation

  7. An efficient continuous flow helium cooling unit for Moessbauer experiments

    International Nuclear Information System (INIS)

    Herbert, I.R.; Campbell, S.J.

    1976-01-01

    A Moessbauer continuous flow cooling unit for use with liquid helium over the temperature range 4.2 to 300K is described. The cooling unit can be used for either absorber or source studies in the horizontal plane and it is positioned directly on top of a helium storage vessel. The helium transfer line forms an integral part of the cooling unit and feeds directly into the storage vessel so that helium losses are kept to the minimum. The helium consumption is 0.12 l h -1 at 4.2 K decreasing to 0.055 l h -1 at 40 K. The unit is top loading and the exchange gas cooled samples can be changed easily and quickly. (author)

  8. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  9. Heat transfer in two-phase flow of helium

    International Nuclear Information System (INIS)

    Subbotin, V.I.; Deev, V.I.; Solodovnikov, V.V.; Arkhipov, V.V.

    1986-01-01

    The results of experimental study of heat transfer in two-phase helium flow are presented. The effect of operating parameters (pressure, mass velocity, heat flux and quality) on boiling heat transfer intensity was investigated. A significant influence of boiling process prehistory on heat transfer coefficients was demonstrated. On the basis of experimental data obtained three typical regimes of flow boiling heat transfer were found. Analogy of heat transfer in flow boiling and pool boiling of helium and noncryogenic liquids was established. Correlations were developed which are in close agreement with available heat transfer data

  10. Successful vitrification of bovine immature oocyte using liquid helium instead of liquid nitrogen as cryogenic liquid.

    Science.gov (United States)

    Yu, Xue-Li; Xu, Ya-Kun; Wu, Hua; Guo, Xian-Fei; Li, Xiao-Xia; Han, Wen-Xia; Li, Ying-Hua

    2016-04-01

    The objectives of this study were to compare the effectiveness of liquid helium (LHe) and liquid nitrogen (LN2) as cryogenic liquid for vitrification of bovine immature oocytes with open-pulled straw (OPS) system and determine the optimal cryoprotectant concentration of LHe vitrification. Cumulus oocyte complexes were divided into three groups, namely, untreated group (control), LN2 vitrified with OPS group, and LHe vitrified with OPS group. Oocyte survival was assessed by morphology, nuclear maturation, and developmental capability. Results indicated that the rates of normal morphology, maturation, cleavage, and blastocyst (89.3%, 52.8%, 42.7%, and 10.1%, respectively) in the LHe-vitrified group were all higher than those (79.3%, 43.4%, 34.1%, and 4.7%) in the LN2-vitrified group (P 0.05). The maturation rate of the EDS35 group (65.0%) was higher than those of the EDS30 (51.3%), EDS40 (50.1%), EDS45 (52.1%), and EDS50 groups (36.9%; P liquid for vitrification of bovine immature oocytes, and it is more efficient than LN2-vitrified oocytes in terms of blastocyst production. EDS35 was the optimal cryoprotectant agent combination for LHe vitrification in this study. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A reciprocating liquid helium pump used for forced flow of supercritical helium

    International Nuclear Information System (INIS)

    Krafft, G.; Zahn, G.

    1978-01-01

    The performance of a small double acting piston pump for circulating helium in a closed heat transfer loop is described. The pump was manufactured by LINDE AG, Munich, West Germany. The measured flow rate of supercritical helium was about 17 gs -1 (500 lhr -1 ) with a differential pressure of Δp = 0.5 x 10 5 Nm -2 at a working pressure of p = 6 x 10 5 Nm -2 . At differential pressures beyond 0.5 x 10 5 Nm -2 the volumetric efficiency decreases. (author)

  12. Hot helium flow test facility summary report

    International Nuclear Information System (INIS)

    1980-06-01

    This report summarizes the results of a study conducted to assess the feasibility and cost of modifying an existing circulator test facility (CTF) at General Atomic Company (GA). The CTF originally was built to test the Delmarva Power and Light Co. steam-driven circulator. This circulator, as modified, could provide a source of hot, pressurized helium for high-temperature gas-cooled reactor (HTGR) and gas-cooled fast breeder reactor (GCFR) component testing. To achieve this purpose, a high-temperature impeller would be installed on the existing machine. The projected range of tests which could be conducted for the project is also presented, along with corresponding cost considerations

  13. Cryogenic flow rate measurement with a laser Doppler velocimetry standard

    Science.gov (United States)

    Maury, R.; Strzelecki, A.; Auclercq, C.; Lehot, Y.; Loubat, S.; Chevalier, J.; Ben Rayana, F.

    2018-03-01

    A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame-Exadebit is involved in various research and development programs. Within the framework of the first (2010-2013) and second (2014-2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame-Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame-Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).

  14. Observation of helium flow induced beam orbit oscillations at RHIC

    International Nuclear Information System (INIS)

    Montag, C.; Bonati, R.; Brennan, J.M.; Butler, J.; Cameron, P.; Ganetis, G.; He, P.; Hirzel, W.; Jia, L.X.; Koello, P.; Louie, W.; McIntyre, G.; Nicoletti, A.; Rank, J.; Roser, T.; Satogata, T.; Schmalzle, J.; Sidi-Yekhlef, A.; Sondericker, J.; Tallerico, T.

    2006-01-01

    Horizontal beam orbit jitter at frequencies around 10 Hz has been observed at RHIC for several years. The distinct frequencies of this jitter have been found at superconducting low-beta quadrupole triplet magnets around the ring, where they coincide with mechanical vibration modes of the cold masses. Recently, we have identified liquid helium flow as the driving force of these oscillations

  15. The dissipative flow of superfluid helium-3 through capillaries

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1986-01-01

    The equations are obtained which describe the behaviour of the chemical potential (pressure) of the superfluid helium-3 flowing through a narrow capillary, diffusively scattering boundaries being taken into consideration. The possibility is discussed whether the dissipation experimentally observed by Manninen and Pekola can be understood in terms of the phase-slip process

  16. Study on cryogenic adsorption capability of trace nitrogen and methane by activated carbon for cooIant helium purification

    International Nuclear Information System (INIS)

    Chang Hua; Wu Zongxin

    2014-01-01

    A fixed-bed apparatus with dynamic two-route proportional gas mixing system was designed to investigate the cryogenic adsorption behavior of nitrogen and methane on activated carbon for designing the helium purification system of high-temperature gas-cooled reactors (HTGR). With helium as carrier gas and at the impurity partial pressure of tens Pa, experiments were performed at near atmospheric pressure and by dynamic column breakthrough method at -196°C. The breakthrough curves and desorption curves were measured. By analyzing the breakthrough curve, both the equilibrium adsorption capacity and the kinetic adsorption capacity at breakthrough point were determined. Based on mass-transfer zone model, the experimental breakthrough curves were analyzed. (author)

  17. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    International Nuclear Information System (INIS)

    Willms, R.S.; Taylor, D.J.; Enoeda, Mikio; Okuno, Kenji

    1994-01-01

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB's) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H 2 and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is an practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier

  18. A solution for the helium problem. Cryogen-free cooling systems for low temperatures; Eine Loesung fuer das Heliumproblem. Kryogenfreie Kuehlsysteme fuer tiefe Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Good, Jeremy [Cryogenic Limited, London (United Kingdom)

    2014-09-15

    Pulse tube or Gifford-McMahon coolers are related to Stirling engines. Extremely low temperatures - 1 K can be reached with these devices. As a cryogen-free system the devices need only small amounts of helium as working gas. This fact reduces the gaseous and liquid helium consumption of research labs considerably and allows new applications. The cost-efficiency of this alternative technique is important for research facilities that use superconducting magnets.

  19. Measurement and control system for cryogenic helium gas bearing turbo-expander experimental platform based on Siemens PLC S7-300

    Science.gov (United States)

    Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Wang, P.; Liu, L. Q.

    2014-01-01

    An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.

  20. Measurement and control system for cryogenic helium gas bearing turbo-expander experimental platform based on Siemens PLC S7-300

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Liu, L. Q. [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190 (China); Wang, P. [Beijing Sciample Technology Co., Ltd., Beijing, 100190 (China)

    2014-01-29

    An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.

  1. Heat transfer in cryogenic helium gas by turbulent Rayleigh-Bénard convection in a cylindrical cell of aspect ratio 1

    Czech Academy of Sciences Publication Activity Database

    Urban, Pavel; Hanzelka, Pavel; Musilová, Věra; Králík, Tomáš; La Mantia, M.; Srnka, Aleš; Skrbek, L.

    2014-01-01

    Roč. 16, č. 5 (2014), 053042: 1-40 ISSN 1367-2630 R&D Projects: GA ČR GPP203/12/P897 Institutional support: RVO:68081731 Keywords : Rayleigh-Bénard convection * heat transfer efficiency * cryogenic helium Subject RIV: BK - Fluid Dynamics Impact factor: 3.558, year: 2014

  2. Cryogenic parallel, single phase flows: an analytical approach

    Science.gov (United States)

    Eichhorn, R.

    2017-02-01

    Managing the cryogenic flows inside a state-of-the-art accelerator cryomodule has become a demanding endeavour: In order to build highly efficient modules, all heat transfers are usually intercepted at various temperatures. For a multi-cavity module, operated at 1.8 K, this requires intercepts at 4 K and at 80 K at different locations with sometimes strongly varying heat loads which for simplicity reasons are operated in parallel. This contribution will describe an analytical approach, based on optimization theories.

  3. Measured Performance of Four New 18 kW@4.5 K Helium Refrigerators for the LHC Cryogenic System

    CERN Document Server

    Gruehagen, Henning

    2005-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include four new 4.5 K-helium refrigerators, to cover part of the cooling needs of the LHC at the 4.5-20 K and 50-75 K levels. Two refrigerators are delivered by Air Liquide, France, and two by Linde Kryotechnik, Switzerland. During the last three years, all four refrigerators have been installed and commissioned at four different points along the LHC. The specified requirements of the refrigerators are presented, with special focus on the capacities at the various temperature levels. The capacities of the refrigerators were measured using a dedicated test cryostat, and the measured performance for all four installations is presented, and compared to the guaranteed performance in the original proposal of the suppliers. Finally, the process design of the two supplies is compared, and their differences and similarities briefly analysed.

  4. Helium-air counter flow in rectangular channels

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Tanaka, Gaku; Zhao, Hong; Hishida, Makoto; Shiina, Yasuaki

    2004-01-01

    This paper deals with numerical analysis of helium-air counter flow in a rectangular channel with an aspect ratio of 10. The channel has a cross sectional area of 5-50 mm and a length of 200 mm. The inclination angle was varied from 0 to 90 degree. The velocity profiles and concentration profiles were analyzed with a computer program [FLUENT]. Following main features of the counter flow are discussed based on the calculated results. (1) Time required for establishing a quasi-steady state counter flow. (2) The relationship between the inclination angle and the flow patterns of the counter flow. (3) The developing process of velocity profiles and concentration profiles. (4) The relationship between the inclination angle of the channel and the velocity profiles of upward flow and the downward flow. (5) The relationship between the concentration profile and the inclination angle. (6) The relationship between the net in-flow rate and the inclination angle. We compared the computed velocity profile and the net in-flow rate with experimental data. A good agreement was obtained between the calculation results and the experimental results. (author)

  5. Beating liquid helium: the technologies of cryogen-free superconducting magnets

    Science.gov (United States)

    Burgoyne, John

    2015-03-01

    Cryogen-free superconducting magnets have been available now for almost 15 years, but have only become standard commercial products in more recent years. In this review we will consider the pros and cons of ``dry'' design including superconducting wire development and selection, thermal budgeting, and the alternative methods for achieving magnet cooling.

  6. Heat flux to the helium cryogenic system elements in the case of incidental vacuum vessel ventilation with atmospheric air

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The selection process for size in safety equipment for cold vessels or process pipes in cryogenic systems should take into consideration the incidental ventilation of the vacuum vessel with atmospheric air. In this case, a significant heat input toward the cold elements of the system can be expected. A number of experimental investigations have been done for the elements at liquid helium temperature which have been covered with 10 layers of MLI. The typical values of the heat flux were measured in a range of 3.7 to 5.0 kW/m2 of the element surface. The helium temperature parts are typically surrounded by thermal shields that are kept in a temperature range of 50-80K. On the external side, the thermal shields are covered with 30-40 layers of MLI while on the internal side, the shields are bare. The theoretical calculations of heat flux to the thermal shield, with respect to the possibility of air condensation and freezing on the bare side of the thermal shield, show that the heat flux to the thermal shield can...

  7. Constitutive model of discontinuous plastic flow at cryogenic temperatures

    CERN Document Server

    Skoczen, B; Bielski, J; Marcinek, D

    2010-01-01

    FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...

  8. TPC magnet cryogenic system

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system

  9. Experimental study on cryogenic adsorption of methane by activated carbon for helium coolant purification of High-Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Chang, Hua; Wu, Zong-Xin; Jia, Hai-Jun

    2017-01-01

    Highlights: • The cryogenic CH 4 adsorption on activated carbon was studied for design of HTGR. • The breakthrough curves at different conditions were analyzed by the MTZ model. • The CH 4 adsorption isotherm was fitted well by the Toth model and the D-R model. • The work provides valuable reference data for helium coolant purification of HTGR. - Abstract: The cryogenic adsorption behavior of methane on activated carbon was investigated for helium coolant purification of high-temperature gas-cooled reactor by using dynamic column breakthrough method. With helium as carrier gas, experiments were performed at −196 °C and low methane partial pressure range of 0–120 Pa. The breakthrough curves at different superficial velocities and different feed concentrations were measured and analyzed by the mass-transfer zone model. The methane single-component adsorption isotherm was obtained and fitted well by the Toth model and the Dubinin-Radushkevich model. The adsorption heat of methane on activated carbon was estimated. The cryogenic adsorption process of methane on activated carbon has been verified to be effective for helium coolant purification of high-temperature gas-cooled reactor.

  10. Cryogenics

    International Nuclear Information System (INIS)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V.

    1997-01-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  11. Combined measurements on stationary flow of helium II

    International Nuclear Information System (INIS)

    Ijsselstein, R.R.

    1979-01-01

    Transport phenomena in helium II can in principle be described by a two fluid model. One of the fluids, the superfluid component, carries no entropy and has no viscosity while its velocity field is curl free. The other, the normal component, behaves like an ordinary fluid and carries the entropy of the whole liquid. In measuring flow two different methods are required because of the two independent velocity fields. This thesis describes an experiment where both techniques are applied to flow through a capillary of 0.62 mm, enabling direct comparison. The apparatus is described, and details of the measuring techniques are reported. An extended treatment of second-sound phenomena in a Helmholtz resonator is given. The results of the measurements are reported and discussed. (Auth.)

  12. Transient heat transfer for forced convection flow of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu

    1999-01-01

    Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)

  13. Helium leak testing of superconducting magnets, thermal shields and cryogenic lines of SST -1

    International Nuclear Information System (INIS)

    Thankey, P.L.; Joshi, K.S.; Semwal, P.; Pathan, F.S.; Raval, D.C.; Khan, Z.; Patel, R.J.; Pathak, H.A.

    2005-01-01

    Tokamak SST - 1 is under commissioning at Institute for Plasma Research. It comprises of a toroidal doughnut shaped plasma chamber, surrounded by liquid helium cooled superconducting magnets, housed in a cryostat chamber. The cryostat has two cooling circuits, (1) liquid nitrogen cooling circuit operating at 80 K to minimize the radiation heat load on the magnets, and (2) liquid helium cooling circuit to cool magnets and cold mass support structure to 4.5 K. In this paper we describe (a) the leak testing of copper - SS joints, brazing joints, interconnecting joints of the superconducting magnets, and (b) the leak testing of the liquid nitrogen cooling circuit, comprising of the main supply header, the thermal shields, interconnecting pipes, main return header and electrical isolators. All these tests were carried out using both vacuum and sniffer methods. (author)

  14. An entropy flow optimization technique for helium liquefaction cycles

    International Nuclear Information System (INIS)

    Minta, M.; Smith, J.L.

    1984-01-01

    This chapter proposes a new method of analyzing thermodynamic cycles based on a continuous distribution of precooling over the temperature range of the cycle. The method gives the optimum distribution of precooling over the temperature range of the cycle by specifying the mass flow to be expanded at each temperature. The result is used to select a cycle configuration with discrete expansions and to initialize the independent variables for final optimization. Topics considered include the continuous precooling model, the results for ideal gas, the results for real gas, and the application to the design of a saturated vapor compression (SVC) cycle. The optimization technique for helium liquefaction cycles starts with the minimization of the generated entropy in a cycle model with continuous precooling. The pressure ratio, the pressure level and the distribution of the heat exchange are selected based on the results of the continuous precooling analysis. It is concluded that the technique incorporates the non-ideal behavior of helium in the procedure and allows the trade-off between heat exchange area and losses to be determined

  15. Proposal to negotiate, without competitive tendering, a contract for the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for the LHC

    CERN Document Server

    2001-01-01

    This document concerns the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for the LHC. Following a market survey (MS-2602/LHC/LHC) carried out amoung 37 firms in twelve Member States and six firms in two non-Member States, a price enquiry for qualifying prototypes was sent on 20 November 1998 to nine selected firms and the received prototypes were evaluated. As a result of this process a request for quotation was sent to one firm The Finance Committee is invited to agree to the negotiation of a contract with the firm EMERSON PROCESS MANAGEMENT/FISHER-ROSEMOUNT (CH), without competitive tendering, for the manufacture, testing and delivery of 320 cryogenic helium mass flowmeters for an amount of 1 804 840 Swiss francs, not subject to revision, with options for up to 10 additional cryogenic helium mass flowmeters and an extension of the guarantee period to five years for all units for an amount of 219 090 Swiss francs, not subject to revision, bringing the total amount to 2 023 930 Swi...

  16. Proposal for the award of an industrial services contract for the operation and maintenance of liquid helium cryogenic plants

    CERN Document Server

    2000-01-01

    This document concerns the award of an Industrial Services contract for the operation and maintenance of liquid helium cryogenic plants. Following a market survey carried out among 54 firms in twelve Member States, a call for tenders (IT-2719/LHC) was sent on 18 August 2000 to two firms and four consortia, two consisting of two firms and two consisting of three firms, in five Member States. By the closing date, CERN had received tenders from one firm and three consortia, in four Member States. The Finance Committee is invited to agree to the negotiation of a contract with the consortium AIR LIQUIDE (FR) - LINDE KRYOTECHNIK (CH) - SERCO (DE), the lowest bidder, for an initial period of four years from 17 July 2001 for a total amount of 19 804 400 Swiss francs, not subject to revision until 16 July 2005. The contract will include options for two one-year extensions beyond the initial four-year period. The consortium has indicated the following distribution by country of the contract value covered by this adjudi...

  17. Skin blood flow from gas transport: helium xenon and laser Doppler compared

    International Nuclear Information System (INIS)

    Neufeld, G.R.; Galante, S.R.; Whang, J.M.; DeVries, D.; Baumgardner, J.E.; Graves, D.J.; Quinn, J.A.

    1988-01-01

    A study was designed to compare three independent measures of cutaneous blood flow in normal healthy volunteers: xenon-133 washout, helium flux, and laser velocimetry. All measurements were confined to the volar aspect of the forearm. In a large group of subjects we found that helium flux through intact skin changes nonlinearly with the controlled local skin temperature whereas helium flux through stripped skin, which is directly proportional to skin blood flow, changes linearly with cutaneous temperature over the range 33 degrees to 42 degrees. In a second group of six volunteers we compared helium flux through stripped skin to xenon-133 washout (intact skin) at a skin temperature of 33 degrees, and we found an essentially linear relationship between helium flux and xenon measured blood flow. In a third group of subjects we compared helium flux blood flow (stripped skin) to laser doppler velocimetric (LDV) measurements (intact skin) at adjacent skin sites and found a nonlinear increase in the LDV skin blood flow compared to that determined by helium over the same temperature range. A possible explanation for the nonlinear increases of helium flux through intact skin and of LDV output with increasing local skin temperature is that they reflect more than a change in blood flow. They may also reflect physical changes in the stratum corneum, which alters its diffusional resistance to gas flux and its optical characteristics

  18. Skin blood flow from gas transport: helium xenon and laser Doppler compared

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, G.R.; Galante, S.R.; Whang, J.M.; DeVries, D.; Baumgardner, J.E.; Graves, D.J.; Quinn, J.A.

    1988-03-01

    A study was designed to compare three independent measures of cutaneous blood flow in normal healthy volunteers: xenon-133 washout, helium flux, and laser velocimetry. All measurements were confined to the volar aspect of the forearm. In a large group of subjects we found that helium flux through intact skin changes nonlinearly with the controlled local skin temperature whereas helium flux through stripped skin, which is directly proportional to skin blood flow, changes linearly with cutaneous temperature over the range 33 degrees to 42 degrees. In a second group of six volunteers we compared helium flux through stripped skin to xenon-133 washout (intact skin) at a skin temperature of 33 degrees, and we found an essentially linear relationship between helium flux and xenon measured blood flow. In a third group of subjects we compared helium flux blood flow (stripped skin) to laser doppler velocimetric (LDV) measurements (intact skin) at adjacent skin sites and found a nonlinear increase in the LDV skin blood flow compared to that determined by helium over the same temperature range. A possible explanation for the nonlinear increases of helium flux through intact skin and of LDV output with increasing local skin temperature is that they reflect more than a change in blood flow. They may also reflect physical changes in the stratum corneum, which alters its diffusional resistance to gas flux and its optical characteristics.

  19. Three electrode atmospheric pressure plasma jet in helium flow

    Science.gov (United States)

    Maletic, Dejan; Puac, Nevena; Malovic, Gordana; Petrovic, Zoran Lj.

    2015-09-01

    Plasma jets are widely used in various types of applications and lately more and more in the field of plasma medicine. However, it is not only their applicability that distinguishes them from other atmospheric plasma sources, but also the behavior of the plasma. It was shown that plasma plume is not continuous, but discrete set of plasma packages. Here we present iCCD images and current voltage characteristics of a three electrode plasma jet. Our plasma jet has a simple design with body made of glass tube and two transparent electrodes wrapped around it. The additional third metal tip electrode was positioned at 10 and 25 mm in front of the jet nozzle and connected to the same potential as the powered electrode. Power transmitted to the plasma was from 0.5 W to 4.0 W and the helium flow rate was kept constant at 4 slm. For the 10 mm configuration plasma is ignited on the metal tip in the whole period of the excitation signal and in the positive half cycle plasma ``bullet'' is propagating beyond the metal tip. In contrast to that, for the 25 mm configuration at the tip electrode plasma can be seen only in the minimum and maximum of the excitation signal, and there is no plasma ``bullet'' formation. This research has been supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, under projects ON171037 and III41011.

  20. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  1. SAFE AND FAST QUENCH RECOVERY OF LARGE SUPERCONDUCTING SOLENOIDS COOLED BY FORCED TWO-PHASE HELIUM FLOW

    International Nuclear Information System (INIS)

    Jia, L.X.

    1999-01-01

    The cryogenic characteristics in energy extraction of the four fifteen-meter-diameter superconducting solenoids of the g-2 magnet are reported in this paper. The energy extraction tests at full-current and half-current of its operating value were deliberately carried out for the quench analyses and evaluation of the cryogenic system. The temperature profiles of each coil mandrel and pressure profiles in its helium cooling tube during the energy extraction are discussed. The low peak temperature and pressure as well as the short recovery time indicated the desirable characteristics of the cryogenic system

  2. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    International Nuclear Information System (INIS)

    He, Qingyun; Feng, Jingchao; Chen, Hongli

    2016-01-01

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  3. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  4. Proposal for the award of a contract for the supply and installation of the cryogenic helium refrigeration system for the CMS experiment

    CERN Document Server

    1999-01-01

    This document concerns the award of a contract for the supply and installation of the cryogenic helium refrigeration system for the CMS Experiment. Following a market survey carried out among 22 firms in seven Member States and seven firms in two non-Member States, a call for tenders (IT-2576/EP/CMS) was sent on 17 February 1999 to two firms in two Member States and one firm in one non-Member State. By the closing date, CERN had received two tenders. The Finance Committee is invited to agree to the negotiation of a contract with AIR LIQUIDE (FR), the lowest bidder, for the supply and installation of a cryogenic helium refrigeration system for an amount of 4 552 500 euros, subject to revision, with an option for one liquid nitrogen dewar and a one-year extension of the warranty period, for an amount of 205 000 euros, subject to revision, bringing the total amount to 4 757 500 euros. At the rate of exchange given in the tender, this amount is equal to 7 612 000 Swiss francs. This procurement will be financed by...

  5. Study on flow rate measurement and visualization of helium-air exchange flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1992-01-01

    This paper deals with an experimental investigation on buoyancy-driven exchange flows through horizontal and inclined openings. The method of the mass increment was developed to measure the flow rate in helium-air system and a displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the flow. As the result, the followings were obtained: Flow visualization results indicate that the upward and downward plumes of helium and air break through the opening intermittently, and they swing in the lateral direction through the horizontal opening. It is clearly visualized that the exchange flows through the inclined openings take place smoothly and stably in the separated passages. The inclination angle for the maximum Froude number decreases with increasing length-to-diameter ratio in the helium-air system, on the contrary to Mercer's experimental results in the water-brine system indicating that the angle remains almost constant. (author)

  6. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    Science.gov (United States)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  7. Helium-air exchange flows through partitioned opening and two-opening

    International Nuclear Information System (INIS)

    Kang, T. I.

    1997-01-01

    This paper describes experimental investigations of helium-air exchange flows through partitioned opening and two-opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature engineering test reactor. A test vessel with the two types of small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed to measure the exchange flow rate. Upward flow of the helium and downward flow of the air in partitioned opening system interact out of entrance and exit of the opening. Therefore, an experiment with two-opening system is made to investigate effect of the fluids interaction of partitioned opening system. As a result of comparison of the exchange flow rates between two types of the opening system, it is demonstrated that the exchange flow rate of the two-opening system is larger than that of the partitioned opening system because of absence of the effect of fluids interaction. (author)

  8. Liquid helium target

    International Nuclear Information System (INIS)

    Fujii, Y.; Kitami, T.; Torikoshi, M.

    1984-12-01

    A liquid helium target system has been built and used for the experiment on the reaction 4 He(γ, p). The target system has worked satisfactorily; the consumption rate of liquid helium is 360 ml/h and the cryogenic system retains liquid helium for about ten hours. The structure, operation and performance of the target system are reported. (author)

  9. Tritium recovery from helium purge stream of solid breeder blanket by cryogenic molecular sieve bed. 2. Regeneration operation of cryogenic molecular sieve bed

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori; Enoeda, Mikio; Nishi, Masataka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Regeneration operation is a very important operation, because it is the most influential factor for deciding the net operation cycle time and the minimum dimension of Cryogenic Molecular Sieve Bed (CMSB). However, the experimental data of CMSB regeneration operation was not so sufficient that even the optimum regeneration procedure could not be decided yet. This work was focused on getting the primary information about various regeneration procedures. (author)

  10. StructUre and test results of the Tokamak-7 device cryogenic system

    International Nuclear Information System (INIS)

    Babaev, I.V.; VolobUev, A.N.; Zhul'kin, V.F.

    1982-01-01

    A cryogenic system (CS) of the Tokamak-7 (T-7) installation with the longitudinal field superconducting magnetic system (SMS) is described. The CS is designed for cool-down, cryostatic cooling and heating of the T-7 cryogenic objects and consists of a helium system (HS) and a nitrogen cryogenic system (NCS). The HS consists of:a a heliUm delivery system intended for distributing and controlling the helium flows in the SMS; cryogenic helium units; a 1.25 m 3 volume for storing liquid helium; a compressor compartment using piston compressors at the 3 MPa operating pressure and 140 g/s total capacity; gaseous helium storages (3600 m 3 under normal conditions); helium cleaning and drying systems; a gas holder of 20 m 3 operating volume; cryogenic pipelines and pipe fittings. The NCS operates on delivered nitrogen and includes a 120 m 3 liquid nitrogen storage, evaporators and electric heaters producing up to 230 g/s of gaseous nitrogen at 300 K, a separator, cryogenic pipelines and fittings. It is found that the CS has the necessary cold production reserve, ensures reliable operation of the Tokamak-7 device and permits to carry out practically continuous plasma experiments

  11. A numerical model for the design of a mixed flow cryogenic turbine ...

    African Journals Online (AJOL)

    Present day cryogenic gas turbines are in more popular as they meet the growing need for low pressure cycles. This calls for improved methods of turbine wheel design. The present study is aimed at the design of the turbine wheel of mixed flow impellers with radial entry and axial discharge. In this paper, a computer code ...

  12. Low cryogen inventory, forced flow Ne cooling system with room temperature compression stage and heat recuperation

    CERN Document Server

    Shornikov, A; Wolf, A

    2014-01-01

    We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.

  13. Josephson effect in superfluid helium 3 during flow through small hole

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1986-01-01

    The Josephson current flowing in helium 3 through a small hole near the critical temperature is calculated. In diffusion particle reflection from vessel walls the critical current is proportional to (T c -T) 2 , and in mirror reflection it is proportional to (T c -T)

  14. Numerical Study on the Helium Flow Characteristics for Steam Generator Subsystem of HTR

    International Nuclear Information System (INIS)

    Ha, Jung Hoon; Ham, Jin Ki; Ki, Min-Hwan; Lee, Won Jae

    2014-01-01

    The High Temperature Reactor (HTR), one of the 4th generation reactors, utilizes helium as the primary coolant. A Steam Generator Subsystem (SGS) is installed to transfer heat from the primary coolant to feed water and subsequently produce steam so that it supplies electricity as well as process heat over a wide range. The SGS is composed of a helical heat exchanger, shrouds directing the flow of the shell side helium and support systems, which are located within the steam generator vessel. In this study, helium flow characteristics in the SGS were investigated at various operating conditions using Computational Fluid Dynamics (CFD). A full-scale 3-D model of the SGS was developed and the reynolds stress model with standard wall treatment was used as a turbulence model. The CFD result was compared to that of the concept design of the steam cycle modular helium reactor for the design verification of the SGS. From the CFD analysis, it was found that the primary coolant flow had non-uniform distribution while it passed the inlet in the helical heat exchanger. In order to make the uniform primary coolant flow uniform, a special type of screen was suggested in front of the helical heat exchanger. As a result, the overall design adequacy of the SGS has been evaluated. (author)

  15. Morphology of Cryogenic Flows and Channels on Dwarf Planet Ceres

    Science.gov (United States)

    Krohn, Katrin; Jaumann, Ralf; Otto, Katharina A.; von der Gathen, Isabel; Matz, Klaus-Dieter; Buczkowski, Debra L.; Williams, David A.; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; Stephan, Katrin; Wagner, Roland J.; Russell, Christopher T.; Raymond, Carol A.

    2016-04-01

    Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the

  16. Flow visualization in superfluid helium-4 using He2 molecular tracers

    Science.gov (United States)

    Guo, Wei

    Flow visualization in superfluid helium is challenging, yet crucial for attaining a detailed understanding of quantum turbulence. Two problems have impeded progress: finding and introducing suitable tracers that are small yet visible; and unambiguous interpretation of the tracer motion. We show that metastable He2 triplet molecules are outstanding tracers compared with other particles used in helium. These molecular tracers have small size and relatively simple behavior in superfluid helium: they follow the normal fluid motion at above 1 K and will bind to quantized vortex lines below about 0.6 K. A laser-induced fluorescence technique has been developed for imaging the He2 tracers. We will present our recent experimental work on studying the normal-fluid motion by tracking thin lines of He2 tracers created via femtosecond laser-field ionization in helium. We will also discuss a newly launched experiment on visualizing vortex lines in a magnetically levitated superfluid helium drop by imaging the He2 tracers trapped on the vortex cores. This experiment will enable unprecedented insight into the behavior of a rotating superfluid drop and will untangle several key issues in quantum turbulence research. We acknowledge the support from the National Science Foundation under Grant No. DMR-1507386 and the US Department of Energy under Grant No. DE-FG02 96ER40952.

  17. Fluid dynamics of cryogenic two-phase flows

    International Nuclear Information System (INIS)

    Verfondern, K.; Jahn, W.

    2004-01-01

    The objective of this study was to examine the flow behavior of a methane hydrate/methane-liquid hydrogen dispersed two-phase fluid through a given design of a moderator chamber for the ESS target system. The calculations under simplified conditions, e.g., taking no account of heat input from outside, have shown that the computer code used, CFX, was able to simulate the behavior of the two-phase flow through the moderator chamber, producing reasonable results up to a certain level of the solid phase fraction, that allowed a continuous flow process through the chamber. Inlet flows with larger solid phase fractions than 40 vol% were found to be a ''problem'' for the computer code. From the computer runs based on fractions between 20 and 40 vol%, it was observed that with increasing solid phase fraction at the inlet, the resulting flow pattern revealed a strong tendency for blockage within the chamber, supported by the ''heavy weight'' of the pellets compared to the carrying liquid. Locations which are prone to the development of such uneven flow behavior are the areas around the turning points in the semispheres and near the exit of the moderator. The considered moderator chamber with horizontal inlet and outlet flow for a solid-liquid two-phase fluid does not seem to be an appropriate design. (orig.)

  18. Mathematical model for a novel cryogenic flow sensor using fibre Bragg gratings

    OpenAIRE

    Thekkethil, S.R.; Reby Roy, K.E.; Thomas, R.J.; Neumann, H.; Ramalingam, R.

    2016-01-01

    In this work, a mathematical model is presented for a newly developed cryogenic flow meter which is based on fibre Bragg grating (FBG) principle. The principle of operation is to use the viscous drag force induced by a flowing fluid on an optical fibre placed transverse to the flow. An optical fibre will have a 5 mm long grating element inscribed in it and will be placed so that the sensor is at the centre of the pipe. The fibre will act as the bluff body, while the FBG sensor will pick up th...

  19. Visualization study of helium-air counter flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    2007-01-01

    Buoyancy-driven counter flows of helium-air were investigated through horizontal and inclined small openings. Counter flows may occur following a window opening as ventilation, fire in the room as well as a pipe rupture accident in a high temperature gas-cooled nuclear reactor. The experiment has carried out by a test chamber filled with helium and flow was visualized by the smoke wire method. The flow behavior has recorded by a high-speed camera with a computer system. The image of the flow was transferred to the digital data, thus the flow velocity was measured by PTV software. The mass fraction in the test chamber was measured by electronic balance. The detected data was arranged by the densimetric Floude number of the counter flow rate that derived from the dimensional analysis. The method of mass increment was developed and applied to measure the counter flow rate. By removing the cover plate placed on the top of the opening, the counter flow initiated. Air enters the test chamber and the mass of the gas mixture in the test chamber increased. The volumetric counter flow rate was evaluated from the mass increment data. In the case of inclination openings, the results of both methods were compared. The inclination angle for maximum densimetric Floude number decreased with increasing length-to-diameter ratio of the opening. For a horizontal opening, the results from the method of mass increment agreed with those obtained by other authors for a water-brine system. (author)

  20. Dynamics of superfluid helium-3 in flow channels with restricted geometries

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1986-01-01

    The dynamics of superfluid helium-3 in flow channels with transverse sizes smaller than the mean free path of quasiparticles with respect to collisions with each other is considered, taking into account the diffusive reflection of quasiparticles from the walls. For quasiclassical Green functions the boundary conditions obtained by Ovchinnikov for the similar problem in superconductors have been used. Equations are derived defining the behavior of the difference between chemical potentials of normal and superfluid components of helium-3. These equations describe a phenomenon similar to the branch imbalance (or charge imbalance) in superconductors, and determine the relaxation depth of the pressure gradient in superfluid helium-3. The time-dependent GinzburgLandau equations are also obtained for the order parameter in the case when the transverse size of the channel is close to the critical value when the superfluid transition temperature goes to zero. The approach makes it possible to study theoretically effects related to the overcritical flows of superfluid helium-3 through narrow channels under pressure

  1. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    Science.gov (United States)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  2. A helium regenerative compressor

    International Nuclear Information System (INIS)

    Swift, W.L.; Nutt, W.E.; Sixsmith, H.

    1994-01-01

    This paper discusses the design and performance of a regenerative compressor that was developed primarily for use in cryogenic helium systems. The objectives for the development were to achieve acceptable efficiency in the machine using conventional motor and bearing technology while reducing the complexity of the system required to control contamination from the lubricants. A single stage compressor was built and tested. The compressor incorporates aerodynamically shaped blades on a 218 mm (8.6 inches) diameter impeller to achieve high efficiency. A gas-buffered non-contact shaft seal is used to oppose the diffusion of lubricant from the motor bearings into the cryogenic circuit. Since it is a rotating machine, the flow is continuous and steady, and the machine is very quiet. During performance testing with helium, the single stage machine has demonstrated a pressure ratio of 1.5 at a flow rate of 12 g/s with measured isothermal efficiencies in excess of 30%. This performance compares favorably with efficiencies generally achieved in oil flooded screw compressors

  3. Thermohydraulics of a horizontal diphasic flow of superfluid helium; Thermo-hydraulique d'un ecoulement horizontal d'helium superfluide diphasique

    Energy Technology Data Exchange (ETDEWEB)

    Perraud, S

    2007-12-15

    This study aims at characterizing helium two phase flows, and to identify the dependence of their characteristics on various thermo-hydraulic parameters: vapour velocity, liquid height, vapour density, specificities of superfluidity. Both the engineer and the physicist's points of view are taken into consideration: the first one in terms of optimization of a particular cooling scheme based on a two-phase flow, and these second one in terms of more fundamental atomization-related questions. It has been shown that for velocities around 3 to 4 m/s, the liquid phase that was initially stratified undergoes an atomization through the presence of a drop haze carried by the vapor phase.This happens for superfluid helium as well as for normal helium without main differences on atomization.

  4. A PISO-like algorithm to simulate superfluid helium flow with the two-fluid model

    CERN Document Server

    Soulaine, Cyprien; Allain, Hervé; Baudouy, Bertrand; Van Weelderen, Rob

    2015-01-01

    This paper presents a segregated algorithm to solve numerically the superfluid helium (He II) equations using the two-fluid model. In order to validate the resulting code and illustrate its potential, different simulations have been performed. First, the flow through a capillary filled with He II with a heated area on one side is simulated and results are compared to analytical solutions in both Landau and Gorter–Mellink flow regimes. Then, transient heat transfer of a forced flow of He II is investigated. Finally, some two-dimensional simulations in a porous medium model are carried out.

  5. Contribution to the study of helium two-phase vertical flow

    International Nuclear Information System (INIS)

    Augyrond, L.

    1998-04-01

    This work aims at a better understanding of the dynamics of helium two-phase flow in a vertical duct. The case of bubble flow is particularly investigated. The most descriptive parameter of two-phase flow is the void fraction. A sensor to measure this parameter was specially designed and calibrated, it is made of a radioactive source and a semiconductor detector. Sensors based on light attenuation were used to study the behaviour of this two-phase flow. The experimental set-up is described. The different flow types were photographed and video filmed. This visualization has allowed to measure the diameter of bubbles and to study their movements in the fluid. Bubble flow then churn and annular flows were observed but slug flow seems not to exist with helium. A modelling based on a Zuber model matches better the experimental results than a Levy type model. The detailed analysis of the signals given by the optical sensors has allowed to highlight a bubble appearance frequency directly linked to the flowrate. (A.C.)

  6. Real-Gas Correction Factors for Hypersonic Flow Parameters in Helium

    Science.gov (United States)

    Erickson, Wayne D.

    1960-01-01

    The real-gas hypersonic flow parameters for helium have been calculated for stagnation temperatures from 0 F to 600 F and stagnation pressures up to 6,000 pounds per square inch absolute. The results of these calculations are presented in the form of simple correction factors which must be applied to the tabulated ideal-gas parameters. It has been shown that the deviations from the ideal-gas law which exist at high pressures may cause a corresponding significant error in the hypersonic flow parameters when calculated as an ideal gas. For example the ratio of the free-stream static to stagnation pressure as calculated from the thermodynamic properties of helium for a stagnation temperature of 80 F and pressure of 4,000 pounds per square inch absolute was found to be approximately 13 percent greater than that determined from the ideal-gas tabulation with a specific heat ratio of 5/3.

  7. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    Directory of Open Access Journals (Sweden)

    Erinc Erdem

    2014-12-01

    Full Text Available An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield.

  8. Computer automation of a dilution cryogenic system

    International Nuclear Information System (INIS)

    Nogues, C.

    1992-09-01

    This study has been realized in the framework of studies on developing new technic for low temperature detectors for neutrinos and dark matter. The principles of low temperature physics and helium 4 and dilution cryostats, are first reviewed. The cryogenic system used and the technic for low temperature thermometry and regulation systems are then described. The computer automation of the dilution cryogenic system involves: numerical measurement of the parameter set (pressure, temperature, flow rate); computer assisted operating of the cryostat and the pump bench; numerical regulation of pressure and temperature; operation sequence full automation allowing the system to evolve from a state to another (temperature descent for example)

  9. MOSFET's for Cryogenic Amplifiers

    Science.gov (United States)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  10. Two-phase flow in the cooling circuit of a cryogenic rocket engine

    Science.gov (United States)

    Preclik, D.

    1992-07-01

    Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.

  11. KSTAR Helium Refrigeration System Design and Manufacturing

    International Nuclear Information System (INIS)

    Dauguet, P.; Briend, P.; Abe, I.; Fauve, E.; Bernhardt, J.-M.; Andrieu, F.; Beauvisage, J.

    2006-01-01

    The tokamak developed in the KSTAR (Korean Superconducting Tokamak Advanced Research) project makes intensive use of superconducting magnets operated at 4.5 K. The cold components of the KSTAR tokamak require forced flow of supercritical helium for magnets/structure, boiling liquid helium for current leads, and gaseous helium for thermal shields. The cryogenic system will provide stable operation and full automatic control. A three-pressure helium cycle composed of six turbines has been customised design for this project. The '' design '' operating mode results with a system composed of a 9 kW refrigerator (including safety margin) and using gas and liquid storages for mass balancing. During Shot/Standby mode, the heat loads are highly time-dependent. A thermal damper is used to smooth these variations and will allow stable operation. (author)

  12. Steady state heat transfer experimental studies of LHC superconducting cables operating in cryogenic environment of superfluid helium

    CERN Document Server

    Santandrea, Dario; Tuccillo, Raffaele; Granieri, Pier Paolo

    The heat management is a basic and fundamental aspect of the superconducting magnets used in the CERN Large Hadron Collider. Indeed, the coil temperature must be kept below the critical value, despite the heat which can be generated or deposited in the magnet during the normal operations. Therefore, this thesis work aims at determining the heating power which can be extracted from the superconducting cables of the LHC, specially through their electrical insulation which represents the main thermal barrier. An experimental measurement campaign in superfluid helium bath was performed on several samples reproducting the main LHC magnets. The heating power was generated in the sample by Joule heating and the temperature increase was measured by means of Cernox bare chip and thermocouples. An innovative instrumentation technique which also includes the in-situ calibration of the thermocouples was developed. A thorough uncertainty analysis on the overall measurement chain concluded the experimental setup. The prese...

  13. Cooling with Superfluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, P; Tavian, L [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics.

  14. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    International Nuclear Information System (INIS)

    Pinchuk, M; Kurakina, N; Spodobin, V; Stepanova, O

    2017-01-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow. (paper)

  15. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  16. Advances in cryogenic engineering. Volume 27 - Proceedings of the Cryogenic Engineering Conference, San Diego, CA, August 11-14, 1981

    Science.gov (United States)

    Fast, R. W.

    Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250

  17. Full Cryogenic Test of 600 A HTS Hybrid Current Leads for the LHC

    CERN Document Server

    Al-Mosawi, MK; Beduz, C; Ballarino, A; Yang, Y

    2007-01-01

    For full cryogenic test of CERN 600 A High Temperature Superconducting (HTS) current leads prior to integration into the Large Hadron Collider (LHC), a ded. facility has been designed, constructed and operated at the University of Southampton. The facility consists of purpose-built test cryostats, 20 K helium gas supply, helium gas flow and temperature control systems and quench protection system. Over 400 such leads have already been successfully tested and qualified for installation at CERN. This paper describes various design and operation aspects of the test facility and presents the detailed cryogenic test results of the CERN 600 A current leads, including steady state 20 K flow rates.

  18. Cool Down Experiences with the SST-1 Helium Cryogenics System before and after Current Feeders System Modification

    Science.gov (United States)

    Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Mahesuriya, G.; Sonara, D.; Srikanth, G. L. N.; Garg, A.; Bairagi, N.; Christian, D.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Gupta, N. C.; Prasad, U.; Sharma, A. N.; Tanna, V. L.; Pradhan, S.

    The SST-1 machine comprises a superconducting magnet system (SCMS), which includes TF and PF magnets. In order to charge the SCMS, we need superconducting current feeders consisting of SC feeders and vapor cooled current leads (VCCLs). We have installed all 10 (+/-) pairs of VCCLs for the TF and PF systems. While conducting initial engineering validation of the SST-1 machine, our prime objective was to produce circular plasma using only the TF system. During the SST-1 campaign I to VI, we have to stop the PF magnets cooling in order to get the cryo- stable conditions for current charging of the TF magnets system. In that case, the cooling of the PF current leads is not essential. It has been also observed that after aborting the PF system cooling, there was a limited experimental window of TF operation. Therefore, in the recent SST-1 campaign-VII, we removed the PF current leads (9 pairs) and kept only single (+/-) pair of the 10,000 A rated VCCLs to realize the charging of the TF system for the extended window of operation. We have observed a better cryogenic stability in the TF magnets after modifications in the CFS. In this paper, we report the comparison of the cool down performance for the SST-1 machine operation before and after modifications of the current feeders system.

  19. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  20. Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach

    Science.gov (United States)

    Watkins, A. Neal; Goad, William K.; Obara, Clifford J.; Sprinkle, Danny R.; Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Bell, James H.; Ingram, JoAnne L.; Oglesby, Donald M.

    2005-01-01

    A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts.

  1. Functional Analysis of the Distribution Box of the KSTAR Helium Refrigerator

    International Nuclear Information System (INIS)

    Chang, H. S.; Kim, Y. S.; Bak, J. S.

    2005-01-01

    KSTAR (Korea Superconducting Tokamak Advanced Research) is a tokamak device with 30 superconducting (SC) magnet coils. The main duty of the KSTAR helium refrigerator is to keep all cold components of KSTAR (SC magnet coils, magnet structures, SC bus-lines, current lead system, and thermal shields) at suitable temperatures in order to operate the SC magnet coils consistent with the operation scenario of KSTAR. A distribution box (D/B) which is equipped with helium-property-measuring sensors, cryogenic valves (CV's), cryogenic circulators, and heat exchangers (HX's) submerged in a huge liquid helium (LHe) bath (thermal damper), intervenes the cryogenic helium via cryogenic transfer lines (TL's) between the refrigerator cold box (C/B) and the KSTAR cold components. The major functions of the D/B can be classified as listed below: i) Supplying the proper cryogen to the respective cold components of KSTAR during various operation modes (including the idle mode). ii) Cool/re-cool down of the KSTAR cold components from any temperature down to their operating cryogenic temperature within the constraints of time and temperature difference between the components. iii) Protection of the KSTAR cold components and refrigerator from damaging in case of probable abnormal events. iv) Simulation of the temporal variation of the thermal load and pressure drops occurring in the KSTAR cold components to pre-commission the refrigerator and test the cryogenic circulators. v) SC coil/bus-line cable-in-conduit conductor (CICC) cleaning. Since the helium flow in the thermal shields (TS's) is rather routine and the current lead (CL) system has its own helium distribution system, in this proceeding mainly the supercritical helium (SHe) circuits of the SC magnets and bus-lines will be discussed

  2. Cryogenic laboratory (80 K - 4 K)

    International Nuclear Information System (INIS)

    Brad, Sebastian; Steflea, Dumitru

    2002-01-01

    The technology of low temperature at the beginning of this century, developed for the production of oxygen, nitrogen and rare gases, was the basis for setting up the cryogenic technology in all the companies with these activity fields. The cryogenics section of today comprises engineering and construction of cryogenic plants for science, research and development, space technology, nuclear power techniques. Linde has designed and built a reliable small scale Helium liquefier. This fully automatic cryoliquefier operates for purification, liquefaction as well as re-liquefaction of Helium-gas, evaporated in cryostat systems. The basic equipment of the Linde L5 are the liquefier apparatus, transfer line, medium pressure buffer vessel, automatic purifier, compressor with mechanical oil separation unit, oil adsorber, electrical control unit. The accessories of the Linde L5 are the liquid helium storage tank, high-pressure gas supply, helium recovery unit, and cryocomponents. The cycle compressor C 101 designed as a single stage screw compressor supplies the liquefaction process with approx. 10 g/s of helium at a pressure of 10 to 12 bar and a temperature of approx. 300 K. In the first plate heat exchanger E 201 the gas is cooled down to approx. 70 K. Then the He high-pressure flow is divided: about 7 g/s reach the turbine X 201 via valve 203 (turbine entry) and are expanded there to approx. 4.6 bar, the gas cooling down to 64 K. After further cooling in the heat exchanger E 203 to about 16 K, another power-consuming expansion to 1.2 bar takes place. The implied cooling of the gas results in a temperature of 12 K at the outlet of the turbine X 202. This gas is then transferred to the low-pressure side of the heat exchanger E 204. The smaller part of the He high-pressure gas flow (approx. 3 g/s) is cooled down in the heat exchanger E 202 - E 205 to about 7 K. One part of the cold helium gas (approx. 0.17 g/s) is used in the purifier to cool down the feed gas to air

  3. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    Science.gov (United States)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass

  4. Studies on MHD pressure drop and heat transfer of helium-lithium annular-mist flow in a transverse magnetic field

    International Nuclear Information System (INIS)

    Inoue, Akira; Aritomi, Masanori; Takahashi, Minoru; Matsuzaki, Mitsuo; Narita, Yoshihito; Yano, Toshikazu.

    1987-01-01

    Pressure drop and heat transfer coefficient of helium-lithium annular-mist flow in a rectangular duct were investigated experimentally under a transverse magnetic field at system pressure of 0.2 MPa. A ratio of MHD pressure drop to that of non-magnetic field increases with magnetic flux density and a mass flow rate ratio of lithium to helium in low helium velocity region. However, as increasing the helium velocity, the increment of MHD pressure drop with the magnetic flux density is much reduced and then becomes almost zero. At this condition, the MHD pressure drop of the annular-mist flow becomes much smaller than that of lithium single phase flow with the same lithium mass flow at the high magnetic flux density. Heat transfer coefficient ratio of the helium-lithium annular-mist flow to helium single phase in the non-magnetic field is well correlated by a ratio of the mass flow rate of lithium to helium. The heat transfer coefficient in the magnetic field increases with the magnetic flux density and then terminates at a certain value depending on the mass flow rate ratio and the helium velocity. These characteristics of the MHD pressure drop and the heat transfer in the magnetic field suggest that the helium-lithium annular-mist flow is effectively applicable to cooling of the high heat flux wall in a strong magnetic field like a first wall of a magnetic confinement fusion reactors. (author)

  5. Helium exhaust and forced flow effects with both-leg pumping in W-shaped divertor of JT-60U

    International Nuclear Information System (INIS)

    Sakasai, A.; Takenaga, H.; Higashijima, S.; Kubo, H.; Nakano, T.; Tamai, H.; Sakurai, S.; Akino, N.; Fujita, T.; Asakura, N.; Itami, K.; Shimizu, K.

    2001-01-01

    The W-shaped divertor of JT-60U was modified from inner-leg pumping to both-leg pumping. After the modification, the pumping rate was improved from 3% with inner-leg pumping to 5% with both-leg pumping in a divertor-closure configuration, which means both separatrixes close to the divertor slots. Efficient helium exhaust was realized in the divertor-closure configuration with both-leg pumping. A global particle confinement time of τ* He =0.4s and τ* He /τ E =3 was achieved in attached ELMy H-mode plasmas. The helium exhaust efficiency with both-leg pumping was extended by 45% as compared with inner-leg pumping. By using central helium fueling with He-beam injection, the helium removal from the core plasma inside the internal transport barrier (ITB) in reversed shear plasmas in the divertor-closure configuration was investigated for the first time. The helium density profiles inside the ITB were peaked as compared with those in ELMy H-mode plasmas. In the case of low recycling divertor, it was difficult to achieve good helium exhaust capability in reversed shear plasmas with ITB. However, the helium exhaust efficiency was improved with high recycling divertor. Carbon impurity reduction was observed by the forced flow with gas puff and effective divertor pumping. (author)

  6. Cryogenic system of the nuclotron - a new superconducting synchrotron

    International Nuclear Information System (INIS)

    Baldin, A.M.; Agapov, N.N.; Belushkin, V.A.; D'yachkov, E.I.; Khodzhibagiyan, H.G.; Kovalenko, A.D.; Makarov, L.G.; Matyushevsky, E.A.; Smirnov, A.A.

    1994-01-01

    The superconducting relativistic heavy ion accelerator was commissioned the last week of March in Dubna, and the first deuteron beam was circulated in the ring. The total cold mass of the magnetic system is about 80 tons. The magnet with a open-quotes coldclose quotes iron yoke and a hollow superconductor winding is refrigerated by a two-phase helium flow. All 160 magnets are connected in parallel with supply and return helium headers about 250 meters long. The cryogenic supply system is based on three helium refrigerators with a total capacity of 4.8 kW at 4.5 K. The results on the commissioning of the cryogenic system are presented

  7. Cryogenic system of the nuclotron - a new superconducting synchrotron

    International Nuclear Information System (INIS)

    Baldin, A.M.; Agapov, N.N.; Belushkin, V.A.

    1993-01-01

    The superconducting relativistic heavy ion accelerator was commissioned the last week of March in Dubna, and the first deuteron beam was circulated in the ring. The total cold mass of the magnetic system is about 80 tons. The magnet with a 'cold' iron yoke and a hollow superconductor winding is refrigerated by a two-phase helium flow. All 160 magnets are connected in parallel with supply and return helium headers about 250 meters long. The cryogenic supply system is based on three helium refrigerators with a total capacity of 4.8 kW at 4.5 K. The results on the commissioning of the cryogenic system are presented. 11 refs.; 5 figs.; 1 tab

  8. Numerical simulations of helium flow through prismatic fuel elements of very high temperature reactors

    International Nuclear Information System (INIS)

    Ribeiro, Felipe Lopes; Pinto, Joao Pedro C.T.A.

    2013-01-01

    The 4 th generation Very High Temperature Reactor (VHTR) most popular concept uses a graphite-moderated and helium cooled core with an outlet gas temperature of approximately 1000 deg C. The high output temperature allows the use of the process heat and the production of hydrogen through the thermochemical iodine-sulfur process as well as highly efficient electricity generation. There are two concepts of VHTR core: the prismatic block and the pebble bed core. The prismatic block core has two popular concepts for the fuel element: multihole and annular. In the multi-hole fuel element, prismatic graphite blocks contain cylindrical flow channels where the helium coolant flows removing heat from cylindrical fuel rods positioned in the graphite. In the other hand, the annular type fuel element has annular channels around the fuel. This paper shows the numerical evaluations of prismatic multi-hole and annular VHTR fuel elements and does a comparison between the results of these assembly reactors. In this study the analysis were performed using the CFD code ANSYS CFX 14.0. The simulations were made in 1/12 fuel element models. A numerical validation was performed through the energy balance, where the theoretical and the numerical generated heat were compared for each model. (author)

  9. Peculiarities of void fraction measurement applied to physical installation channels cooled by forced helium flow

    International Nuclear Information System (INIS)

    Danilov, V.V.; Filippov, Yu.P.; Mamedov, I.S.

    1989-01-01

    The methods of optimizing the transducers designed for measurements of the void fraction of two-phase flows in the channels of round and annular cross section are presented. On the basis of the analysis performed concrete solution of relatively high technical characteristics are proposed. Rated and actual characteristics of signal ranges and measurement errors are given for both sensors. Influence of the mass velocity on the void fraction of adiabatic two-phase flows is theoretically analyzed. Effects of friction and of liquid-into-vapour entrainment are shown. Calculation results are compared with the obtained experimental data for helium. Special attention is given to the specific features of the processes in channels with different cross section. 17 refs.; 5 figs.; 1 tab

  10. A Low Heat Inleak Cryogenic Station for Testing HTS Current Leads for the Large Hadron Collider

    CERN Document Server

    Ballarino, A; Gomes, P; Métral, L; Serio, L; Suraci, A

    1999-01-01

    The LHC will be equipped with about 8000 superconducting magnets of all types. The total current to be transported into the cryogenic enclosure amounts to some 3360 kA. In order to reduce the heat load into the liquid helium, CERN intends to use High Temperature Superconducting (HTS) material for leads having current ratings up to 13 kA. The resistive part of the leads is cooled by forced flow of gaseous helium between 20 K and 300 K. The HTS part of the lead is immersed in a 4.5 K liquid helium bath, operates in self cooling conditions and is hydraulically separated from the resistive part. A cryogenic test station has been designed and built in order to assess the thermal and electrical performances of 13 kA prototype current leads. We report on the design, commissioning and operation of the cryogenic test station and illustrate its performance by typical test results of HTS current leads.

  11. Preliminary experiments on surface flow visualization in the cryogenic wind tunnel by use of condensing or freezing gases

    Science.gov (United States)

    Goodyer, M. J.

    1988-01-01

    Cryogenic wind tunnel users must have available surface flow visualization techniques to satisfy a variety of needs. While the ideal from an aerodynamic stand would be non-intrusive, until an economical technique is developed there will be occasions when the user will be prepared to resort to an intrusive method. One such method is proposed, followed by preliminary evaluation experiments carried out in environments representative of the cryogenic nitrogen tunnel. The technique uses substances which are gases at normal temperature and pressure but liquid or solid at cryogenic temperatures. These are deposited on the model in localized regions, the patterns of the deposits and their subsequent melting or evaporation revealing details of the surface flow. The gases were chosen because of the likelihood that they will not permanently contaminate the model or tunnel. Twenty-four gases were identified as possibly suitable and four of these were tested from which it was concluded that surface flow direction can be shown by the method. Other flow details might also be detectable. The cryogenic wind tunnel used was insulated on the outside and did not show signs of contamination.

  12. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    Brindza, P.; Rode, C.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. These accelerating cavities are arranged in pairs in a cryounit. The ensemble of four cryounits (8 cavities) together with their end caps makes up a complete cryostat called a cryogenic module. The four cryounit helium vessels are cross connected to each other and share a common cryogen supply, radiation shield and insulating vacuum. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2 K and the 4.5 K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0 K at .031 ATM and 4.4 K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  13. Cryogenic system of steady state superconducting Tokamak SST-1: Operational experience and controls

    International Nuclear Information System (INIS)

    Sarkar, B.; Tank, Jignesh; Panchal, Pradip; Sahu, A.K.; Bhattacharya, Ritendra; Phadke, Gaurang; Gupta, N.C.; Gupta, Girish; Shah, Nitin; Shukla, Pawan; Singh, Manoj; Sonara, Dasarath; Sharma, Rajiv; Saradha, S.; Patel, J.C.; Saxena, Y.C.

    2006-01-01

    The cryogenic system of SST-1 consists of the helium cryogenic system and the nitrogen cryogenic system. The main components of the helium cryogenic system are (a) 1.3 kW helium refrigerator/liquefier (HRL) and (b) warm gas management system (WGM), where as, the nitrogen cryogenic system called as liquid nitrogen (LN 2 ) management system consists of storage tanks and a distribution system. The helium flow distribution and control to different sub-systems is achieved by the integrated flow distribution and control (IFDC) system. The HRL has been commissioned and operated for performing a single toroidal field coil test as well as for the first commissioning of SST-1 superconducting-magnets up to 68 K. Analysis of the results shows that the compressor and turbine parameters of the HRL, namely, the speed and pressure are very stable during operation of the HRL, confirming to the reliability in control of thermo-dynamic parameters of the system. The thermal shield of the SST-1 cryostat consists of ten different types of panels, which have been cooled down to the minimum temperature of 80 K and maintained during the first commissioning of SST-1. The operation and controls of the LN2 management system have been found to be as per the design consideration

  14. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  15. Helium-air exchange flow through an opening with a partition

    International Nuclear Information System (INIS)

    Kang, Tae-il; Okamoto, Koji; Madarame, Haruki; Fumizawa, Motoo.

    1993-01-01

    The helium-air exchange flow through a small vertical opening with a partition was experimentally investigated. The vertical partition was aligned with the center line of the small opening to evaluate the effects of the multiple openings. The dimensionless exchange flow rates, i.e., Froude numbers, were experimentally obtained with several opening ratios (H 1 /D f ), i.e., the ratio of the height to the effective diameter of the opening. In the case of low opening ratios (H 1 /D f 1 /D f ≥ 0.75), the measured Froude numbers for the multiple openings were larger than those for the single opening, because the upward and downward flows were separated by the vertical partition. Based on the balance between the pressure losses in the openings and the driving force due to density difference, the exchange flow rate was calculated, and found to agree qualitatively with the measured Froude numbers. The effect of the upward and downward flow interaction at the exit of the opening was found to play an important role in the prediction of the Froude number. (author)

  16. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  17. Operating Manual of Helium Refrigerator (Rev. 2)

    Energy Technology Data Exchange (ETDEWEB)

    Song, K.M.; Son, S.H.; Kim, K.S.; Lee, S.K.; Kim, M.S. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    A helium refrigerator was installed as a supplier of 20K cold helium to the cryogenic distillation system of WTRF pilot plant. The operating procedures of the helium refrigerator, helium compressor and auxiliary apparatus are described for the safety and efficient operation in this manual. The function of the helium refrigerator is to remove the impurities from the compressed helium of about 250psig, to cool down the helium from ambient temperature to 20K through the heat exchanger and expansion engine and to transfer the cold helium to the cryogenic distillation system. For the smoothly operation of helium refrigerator, the preparation, the start-up, the cool-down and the shut-down of the helium refrigerator are described in this operating manual. (author). 3 refs., 14 tabs.

  18. Cryogenic system for TRISTAN superconducting RF cavity

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Yuuji; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Ishimaru, Y.

    1990-01-01

    A cryogenic system consisting of a helium refrigerator (4 kW at 4.4 K) and a liquid helium distribution transfer system for TRISTAN 508 MHz 32 x 5-cell superconducting RF cavities was designed and constructed. After the performance test of the cryogenic system, 16 x 5-cell superconducting RF cavities in 8 cryostats were installed in underground TRISTAN electron-positron collider and connected to the helium refrigerator on the ground level through the transfer line (total length about 330 m) and cooled by liquid helium pool boiling in parallel. The cryogenic system and its operation experience are described. (author)

  19. Transient heat transfer for helium gas flowing over a horizontal cylinder with exponentially increasing heat input

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya

    2003-01-01

    The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured under wide experimental conditions. The platinum cylinder with a diameter of 1.0 mm was used as test heater and heated by electric current with an exponentially increasing heat input of Q 0 exp(t/τ). The gas flow velocities ranged from 5 to 35 m/s, the gas temperatures ranged from 25 to 80degC, and the periods of heat generation rate, τ, ranged from 40 ms to 20 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. Semi-empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data. The ratios of transient Nusselt number Nu tr to quasi-steady-state Nusselt number Nu st at various periods, flow velocities, and gas temperatures were obtained. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. Empirical correlation for transient heat transfer was also obtained based on the experimental data. (author)

  20. Cryogenics will cool LHC

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Results of the investigation into the cryogenic regulating line (QRL) performed by the LHC laboratory are presented. It is projected that eight cryogenic units located in five places around the LHC ring will provide superconducting magnets by liquid helium through eight cryogenic regulating lines of 3.2 km each. All QRL zones remain to be independent. CERN uses three test units with the aim of the certification of chosen constructions and verification of their thermal and mechanical efficiency before starting full-scale production [ru

  1. Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects

    Science.gov (United States)

    Zhang, Shaofeng; Li, Xiaojun; Zhu, Zuchao

    2018-06-01

    Thermodynamic effects on cryogenic cavitating flow is important to the accuracy of numerical simulations mainly because cryogenic fluids are thermo-sensitive, and the vapour saturation pressure is strongly dependent on the local temperature. The present study analyses the thermal cavitating flows in liquid nitrogen around a 2D hydrofoil. Thermal effects were considered using the RNG k-ε turbulence model with a modified turbulent eddy viscosity and the mass transfer homogenous cavitation model coupled with energy equation. In the cavitation model process, the saturated vapour pressure is modified based on the Clausius-Clapron equation. The convection heat transfer approach is also considered to extend the Zwart-Gerber-Belamri model. The predicted pressure and temperature inside the cavity under cryogenic conditions show that the modified Zwart-Gerber-Belamri model is in agreement with the experimental data of Hord et al. in NASA, especially in the thermal field. The thermal effect significantly affects the cavitation dynamics during phase-change process, which could delay or suppress the occurrence and development of cavitation behaviour. Based on the modified Zwart-Gerber-Belamri model proposed in this paper, better prediction of the cryogenic cavitation is attainable.

  2. Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps

    Science.gov (United States)

    SanAndres, Luis

    1998-01-01

    A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs

  3. Forced two phase helium cooling of large superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.

    1979-08-01

    A major problem shared by all large superconducting magnets is the cryogenic cooling system. Most large magnets are cooled by some variation of the helium bath. Helium bath cooling becomes more and more troublesome as the size of the magnet grows and as geometric constraints come into play. An alternative approach to cooling large magnet systems is the forced flow, two phase helium system. The advantages of two phase cooling in many magnet systems are shown. The design of a two phase helium system, with its control dewar, is presented. The paper discusses pressure drop of a two phase system, stability of a two phase system and the method of cool down of a two phase system. The results of experimental measurements at LBL are discussed. Included are the results of cool down and operation of superconducting solenoids

  4. Fracture detection and groundwater flow characterization in poorly exposed ground using helium and radon in soil gases

    International Nuclear Information System (INIS)

    Gascoyne, M.; Wuschke, D.M.

    1991-05-01

    Radon and helium in soil gases have been used to identify locations of groundwater discharge and the presence of fractures outcropping beneath overburden in two areas near the Underground Research Laboratory (URL), Lac du Bonnet, Manitoba, Canada. In particular, groundwater discharge from a known, inclined fracture zone at the URL was clearly identified by a helium excess in overlying soil gases. A model was developed to describe gas phase flow in bedrock and overburden at this location, from gas injection in an adjacent borehole. Predictions were made of gas transport pathway and breakthrough time at the surface, in preparation for a gas injection test

  5. First operation of the XFEL linac with the 2 K cryogenic system

    Science.gov (United States)

    Paetzold, T.; Petersen, B.; Schnautz, T.; Ueresin, C.; Zajac, J.

    2017-12-01

    The RF operation of the about 800 superconducting 1.3 GHz 9-cell cavities of the XFEL linac requires helium II bath cooling at 2 K, corresponding to a vapor pressure of 3100 Pa. After the first cool-down of the XFEL linac to 4 K in December, 27th 2016 the operation of the 2 K cryogenic system was started in January, 2nd 2017. The 2 K cryogenic system consist of a 4-stage set of cold compressors to compress helium vapor at a mass flow of up to 100 g/s from 2400 Pa to about 110 kPa and a full flow bypass with an arrangement of heat exchangers and control valves. This paper describes the XFEL refrigerating plant, especially the 2 K cryogenic system, the tuning of the cold compressor regulation to adapt to the XFEL linac static and dynamic heat loads and experience of about 6 months of operation.

  6. Helium flow dynamics and heat transfer in a cable in conduit conductor of superconducting magnets: a review

    International Nuclear Information System (INIS)

    Vaghela, Hitensinh; Sarkar, Biswanath; Lakhera, Vikas

    2016-01-01

    Superconducting (SC) magnets with Cable in Conduit Conductor (CICC) winding, cooled by helium at 4 K temperature are employed for many applications which require high magnetic field and high current densities. The construction of CICC aims to maintain superconductivity state by optimization of various parameters, i.e., thermal stability, ratio of normal conductor to superconductor material, mechanical strength, low hydraulic impedance, current density, magnetic field, etc. The cryogenic thermal stability of the CICC is of prime importance for the safe, stable and reliable operation of SC magnets. The prediction of thermal and hydraulic behaviour of CICC in large SC magnets is difficult due to the complex geometry, variation of fluid properties, various heat in-flux incidences over the long length of CICC and a complex heat transport phenomenon. A systematic review of the thermal and hydraulic studies of CICC has been presented in the paper highlighting the challenges and opportunities for further improvement in its design and performance. (author)

  7. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  8. Flow characteristics of helium gas going through a 90°elbow for flow measurement

    International Nuclear Information System (INIS)

    Feng Beibei; Wang Shiming; Yang Xingtuan; Jiang Shengyao

    2014-01-01

    Numerical simulation is performed to investigate the pressure distribution of He-gas under high pressure and high temperature for 10MW High Temperature Gas-cooled Reactor (HTGR-10). Experimental measurements of wall pressure through a self-built test system are carried out to validate the credibility of the computational approach. We present a study for complex flow structure of He-gas using the case of an structurally 90°elbow that is reconstructed from the steam generator of HTGR-10. Pressure measurement of inner wall and outer wall is used to compare with the numerical results. Distribution of wall pressure of He-gas flowing through 90° elbow based on the numerical and experimental approaches show good agreement. Wall pressure distribution of eight cross sections of the elbow is given in detail to represent the entire region of elbow. (author)

  9. Characterizing Dissolved Gases in Cryogenic Liquid Fuels

    Science.gov (United States)

    Richardson, Ian A.

    Pressure-Density-Temperature-Composition (PrhoT-x) measurements of cryogenic fuel mixtures are a historical challenge due to the difficulties of maintaining cryogenic temperatures and precision isolation of a mixture sample. For decades NASA has used helium to pressurize liquid hydrogen propellant tanks to maintain tank pressure and reduce boil off. This process causes helium gas to dissolve into liquid hydrogen creating a cryogenic mixture with thermodynamic properties that vary from pure liquid hydrogen. This can lead to inefficiencies in fuel storage and instabilities in fluid flow. As NASA plans for longer missions to Mars and beyond, small inefficiencies such as dissolved helium in liquid propellant become significant. Traditional NASA models are unable to account for dissolved helium due to a lack of fundamental property measurements necessary for the development of a mixture Equation Of State (EOS). The first PrhoT-x measurements of helium-hydrogen mixtures using a retrofitted single-sinker densimeter, magnetic suspension microbalance, and calibrated gas chromatograph are presented in this research. These measurements were used to develop the first multi-phase EOS for helium-hydrogen mixtures which was implemented into NASA's Generalized Fluid System Simulation Program (GFSSP) to determine the significance of mixture non-idealities. It was revealed that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate but does affect the rate at which the propellant temperature rises. PrhoT-x measurements are conducted on methane-ethane mixtures with dissolved nitrogen gas to simulate the conditions of the hydrocarbon seas of Saturn's moon Titan. Titan is the only known celestial body in the solar system besides Earth with stable liquid seas accessible on the surface. The PrhoT-x measurements are used to develop solubility models to aid in the design of the Titan Submarine. NASA is currently designing the submarine

  10. Cryogenic Risk Assessments before Works in the LHC Tunnel

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Tests conducted in 2013/4 demonstrated that a small, residual risk to expose personnel to a helium spill exists in the LHC. Helium spills with a mass flow of less than 100 g s^-1 could be caused by workers accidentally damaging sensitive equipment in the cryogenic distribution system, such as instrumentation feedthroughs. In order to control this risk, a cryogenic risk assessment for all works taking place in the vicinity of such sensitive equipment is mandatory. The risk assessment and its recommendations are approved by the hierarchy and the complex manager before work can start. After introducing the risk assessment procedure, I will give some feedback on its implementation and present status.

  11. A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    International Nuclear Information System (INIS)

    Vagin, N. P.; Ionin, A. A.; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V.; Yuryshev, N. N.

    2017-01-01

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O 2 : He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.

  12. A prototype of an electric-discharge gas flow oxygen−iodine laser: I. Modeling of the processes of singlet oxygen generation in a transverse cryogenic slab RF discharge

    Energy Technology Data Exchange (ETDEWEB)

    Vagin, N. P.; Ionin, A. A., E-mail: aion@sci.lebedev.ru; Kochetov, I. V.; Napartovich, A. P.; Sinitsyn, D. V., E-mail: dsinit@sci.lebedev.ru; Yuryshev, N. N. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    The existing kinetic model describing self-sustained and electroionization discharges in mixtures enriched with singlet oxygen has been modified to calculate the characteristics of a flow RF discharge in molecular oxygen and its mixtures with helium. The simulations were performed in the gas plug-flow approximation, i.e., the evolution of the plasma components during their motion along the channel was represented as their evolution in time. The calculations were carried out for the O{sub 2}: He = 1: 0, 1: 1, 1: 2, and 1: 3 mixtures at an oxygen partial pressure of 7.5 Torr. It is shown that, under these conditions, volumetric gas heating in a discharge in pure molecular oxygen prevails over gas cooling via heat conduction even at an electrode temperature as low as ~100 K. When molecular oxygen is diluted with helium, the behavior of the gas temperature changes substantially: heat removal begins to prevail over volumetric gas heating, and the gas temperature at the outlet of the discharge zone drops to ~220–230 K at room gas temperature at the inlet, which is very important in the context of achieving the generation threshold in an electric-discharge oxygen−iodine laser based on a slab cryogenic RF discharge.

  13. Dynamic simulations of the cryogenic system of a tokamak

    International Nuclear Information System (INIS)

    Cirillo, R.; Hoa, C.; Michel, F.; Rousset, B.; Poncet, J.M.

    2015-01-01

    In a tokamak plasma confinement is achieved through high magnetic fields generated by superconductive coils that need to be cooled down to 4.4 K with a forced flow of supercritical Helium. Tokamak's coil system works cyclically and so it is subject to pulsed heat loads which have to be handled by the refrigerator. This latter has to be sized on the average power value and not according to the peak to limit investment and operation costs and hence the heat load needs to be smoothed. CEA Grenoble is in charge of providing the cryogenic system for the Japanese tokamak JT60-SA, currently under construction in Naka (Japan). Hence, in order to model and study the smoothing strategies, an experimental set up: HELIOS (Helium Loop for high load smoothing) has been built. This is a scaled down model (1:20) of the helium distribution system whose main components are a saturated helium bath and a supercritical helium loop. This large installation can reproduce conditions of pressure, temperature and transport times, similar to those expected in the cooling circuits of the central solenoid superconducting magnets of JT-60SA. The peak loads representative of the tokamak operation have been reproduced and smoothed before they arrive in the refrigerator, by means of a saturated helium bath (thermal reservoir). A dynamic modelling of the cryogenic system is presented, with results on the pulsed load scenarios. All the simulations have been performed with EcosimPro software developed and the cryogenic library: CRYOLIB. This document is made up of an abstract and the slides of the presentation

  14. Installation and Commissioning of the Helium Refrigeration System for the HANARO-CNS

    International Nuclear Information System (INIS)

    Choi, Jung Woon; Kim, Young Ki; Wu, Sang Ik; Son, Woo Jung

    2009-11-01

    The cold neutron source (CNS), which will be installed in the vertical CN hole of the reflector tank at HANARO, makes thermal neutrons to moderate into the cold neutrons with the ranges of 0.1 ∼ 10 meV passing through a moderator at about 22K. A moderator to produce cold neutrons is liquid hydrogen, which liquefies by the heat transfer with cryogenic helium flowing from the helium refrigeration system. For the maintenance of liquid hydrogen in the IPA, the CNS system is mainly consisted of the hydrogen system to supply the hydrogen to the IPA, the vacuum system to keep the cryogenic liquid hydrogen in the IPA, and the helium refrigeration system to liquefy the hydrogen gas. The helium refrigeration system can be divided into two sections: one is the helium compression part from the low pressure gas to the high pressure gas and the other is the helium expansion part from the high temperature gas and pressure to low temperature and pressure gas by the expansion turbine. The helium refrigeration system except the warm helium pipe and the helium buffer tank has been manufactured by Linde Kryotechnik, AG in Switzerland and installed in the research reactor hall, HANARO. Other components have been manufactured in the domestic company. This technical report deals with the issues, its solutions, and other particular points while the helium refrigeration system was installed at site, verified its performance, and conducted its commissioning along the reactor operation. Furthermore, the operation procedure of the helium refrigeration system is included in here for the normal operation of the CNS

  15. The cryogenic system for the superconducting solenoid magnet of the CMS experiment

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Lottin, J C; Lottin, J P; Lyraud, C

    1998-01-01

    The design concept of the CMS experiment, foreseen for the Large Hadron Collider (LHC) project at CERN, is based on a superconducting solenoid magnet. The large coil will be made of a four layers winding generating the 4 T uniform magnetic induction required by the detector. The length of the solenoid is 13 m with an inner diameter of 5.9 m. The mass kept at liquid helium temperature totals 220 t and the electromagnetic stored energy is 2.7 GJ. The windings are indirectly cooled with a liquid helium flow driven by a thermosyphon effect. The external cryogenic system consists of a 1.5 kW at 4.5 K (entropy equivalent) cryoplant including an additional liquid nitrogen precooling unit and a 5000 litre liquid helium buffer. The whole magnet and cryogenic system will be tested at the surface by 2003 before final installation in the underground area of LHC.

  16. A Cryogenic High-Reynolds Turbulence Experiment at CERN

    CERN Document Server

    Bézaguet, Alain-Arthur; Knoops, S; Lebrun, P; Pezzetti, M; Pirotte, O; Bret, J L; Chabaud, B; Garde, G; Guttin, C; Hébral, B; Pietropinto, S; Roche, P; Barbier-Neyret, J P; Baudet, C; Gagne, Y; Poulain, C; Castaing, B; Ladam, Y; Vittoz, F

    2002-01-01

    The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively ...

  17. Breakdown voltage at the electric terminals of GCFR-core flow test loop fuel rod simulators in helium and air

    International Nuclear Information System (INIS)

    Huntley, W.R.; Conley, T.B.

    1979-12-01

    Tests were performed to determine the ac and dc breakdown voltage at the terminal ends of a fuel rod simulator (FRS) in helium and air atmospheres. The tests were performed at low pressures (1 to 2 atm) and at temperatures from 20 to 350 0 C (68 to 660 0 F). The area of concern was the 0.64-mm (0.025-in.) gap between the coaxial conductor of the FRS and the sheaths of the four internal thermocouples as they exit the FRS. The tests were prformed to ensure a sufficient safety margin during Core Flow Test Loop (CFTL) operations that require potentials up to 350 V ac at the FRS terminals. The primary conclusion from the test results is that the CFTL cannot be operated safely if the terminal ends of the FRSs are surrounded by a helium atmosphere but can be operated safely in air

  18. Compressive flow behavior of Cu thin films and Cu/Nb multilayers containing nanometer-scale helium bubbles

    International Nuclear Information System (INIS)

    Li, N.; Mara, N.A.; Wang, Y.Q.; Nastasi, M.; Misra, A.

    2011-01-01

    Research highlights: → Firstly micro-pillar compression technique has been used to measure the implanted metal films. → The magnitude of radiation hardening decreased with decreasing layer thickness. → When thickness decreases to 2.5 nm, no hardening and no loss in deformability after implantation. -- Focused-ion-beam machined compression specimens were used to investigate the effect of nanometer-scale helium bubbles on the strength and deformability of sputter-deposited Cu and Cu/Nb multilayers with different layer thickness. The flow strength of Cu films increased by more than a factor of 2 due to helium bubbles but in multilayers, the magnitude of radiation hardening decreased with decreasing layer thickness. When the layer thickness decreases to 2.5 nm, insignificant hardening and no measurable loss in deformability is observed after implantation.

  19. Series Supply of Cryogenic Venturi Flowmeters for the ITER Project

    International Nuclear Information System (INIS)

    André, J; Poncet, J M; Ercolani, E; Clayton, N; Journeaux, J Y

    2015-01-01

    In the framework of the ITER project, the CEA-SBT has been contracted to supply 277 venturi tube flowmeters to measure the distribution of helium in the superconducting magnets of the ITER tokamak. Six sizes of venturi tube have been designed so as to span a measurable helium flowrate range from 0.1 g/s to 400g/s. They operate, in nominal conditions, either at 4K or at 300K, and in a nuclear and magnetic environment. Due to the cryogenic conditions and the large number of venturi tubes to be supplied, an individual calibration of each venturi tube would be too expensive and time consuming. Studies have been performed to produce a design which will offer high repeatability in manufacture, reduce the geometrical uncertainties and improve the final helium flowrate measurement accuracy. On the instrumentation side, technologies for differential and absolute pressure transducers able to operate in applied magnetic fields need to be identified and validated. The complete helium mass flow measurement chain will be qualified in four test benches: - A helium loop at room temperature to insure the qualification of a statistically relevant number of venturi tubes operating at 300K.- A supercritical helium loop for the qualification of venturi tubes operating at cryogenic temperature (a modification to the HELIOS test bench). - A dedicated vacuum vessel to check the helium leak tightness of all the venturi tubes. - A magnetic test bench to qualify different technologies of pressure transducer in applied magnetic fields up to 100mT. (paper)

  20. Self-sustained large-scale flow in turbulent cryogenic convection

    Czech Academy of Sciences Publication Activity Database

    Niemela, J. J.; Skrbek, Ladislav; Sreenivasan, K. R.; Donnelly, R. J.

    2002-01-01

    Roč. 126, 1/2 (2002), s. 297-302 ISSN 0022-2291 Institutional research plan: CEZ:AV0Z1010914 Keywords : thermal convection * turbulence * cryogenic Subject RIV: BK - Fluid Dynamics Impact factor: 1.139, year: 2002

  1. Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables

    Science.gov (United States)

    Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.

    2015-12-01

    This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.

  2. Cryogenics for the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    2000-01-01

    The Large Hadron Collider (LHC), a 26.7 km circumference superconducting accelerator equipped with high-field magnets operating in superfluid helium below 1.9 K, has now fully entered construction at CERN, the European Laboratory for Particle Physics. The heart of the LHC cryogenic system is the quasi-isothermal magnet cooling scheme, in which flowing two-phase saturated superfluid helium removes the heat load from the 36000 ton cold mass, immersed in some 400 m/sup 3/ static pressurised superfluid helium. The LHC also makes use of supercritical helium for nonisothermal cooling of the beam screens which intercept most of the dynamic heat loads at higher temperature. Although not used in normal operation, liquid nitrogen will provide the source of refrigeration for precooling the machine. Refrigeration for the LHC is produced in eight large refrigerators, each with an equivalent capacity of about 18 kW at 4.5 K, completed by 1.8 K refrigeration units making use of several stages of hydrodynamic cold compressor...

  3. Improvement of In-Flight Alumina Spheroidization Process Using a Small Power Argon DC-RF Hybrid Plasma Flow System by Helium Mixture

    Science.gov (United States)

    Takana, Hidemasa; Jang, Juyong; Igawa, Junji; Nakajima, Tomoki; Solonenko, Oleg P.; Nishiyama, Hideya

    2011-03-01

    For the further improvement of in-flight alumina spheroidization process with a low-power direct-current radiofrequency (DC-RF) hybrid plasma flow system, the effect of a small amount of helium gas mixture in argon main gas and also the effect of increasing DC nozzle diameter on powder spheroidization ratio have been experimentally clarified with correlating helium gas mixture percentage, plasma enthalpy, powder in-flight velocity, and temperature. The alumina spheroidization ratio increases by helium gas mixture as a result of enhancement of plasma enthalpy. The highest spheroidization ratio is obtained by 4% mixture of helium in central gas with enlarging nozzle diameter from 3 to 4 mm, even under the constant low input electric power given to a DC-RF hybrid plasma flow system.

  4. Design of the advanced divertor pump cryogenic system for DIII-D

    International Nuclear Information System (INIS)

    Schaubel, K.M.; Baxi, C.B.; Campbell, G.L.; Gootgeld, A.M.; Langhorn, A.R.; Laughon, G.J.; Smith, J.P.; Anderson, P.M.; Menon, M.M.

    1991-11-01

    The design of the cryogenic system for the D3-D advanced divertor cryocondensation pump is presented. The advanced divertor incorporates a baffle chamber and bias ring located near the bottom of the D3-D vacuum vessel. A 50,000 l/s cryocondensation pump will be installed underneath the baffle for plasma particle exhaust. The pump consists of a liquid helium cooled tube operating at 4.3 degrees K and a liquid nitrogen cooled radiation shield. Liquid helium is fed by forced flow through the cryopump. Compressed helium gas flowing through the high pressure side of a heat exchanger is regeneratively cooled by the two-phase helium leaving the pump. The cooled high pressure gaseous helium is than liquefied by a Joule-Thomson expansion valve. The liquid is returned to a storage dewar. The liquid nitrogen for the radiation shield is supplied by forced flow from a bulk storage system. Control of the cryogenic system is accomplished by a programmable logic controller

  5. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  6. Healing and relaxation in flows of helium II. Part II. First, second, and fourth sound

    International Nuclear Information System (INIS)

    Hills, R.N.; Roberts, P.H.

    1978-01-01

    In Part I of this series, a theory of helium II incorporating the effects of quantum healing and relaxation was developed. In this paper, the propagation of first, second, and fourth sound is discussed. Particular attention is paid to sound propagation in the vicinity of the lambda point where the effects of relaxation and quantum healing become important

  7. Status of the Cryogenic System Commissioning at SNS

    CERN Document Server

    Casagrande, Fabio; Campisi, Isidoro E; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Gurd, Pamela; Hatfield, Daniel; Howell, Matthew; Knudsen, Peter; Stout, Daniel; Strong, William

    2005-01-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

  8. A cryogenic system for TIBER II [Tokamak Ignition/Burn Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.

    1987-01-01

    Phase II of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) study describes one option for a small, economical, next-generation tokamak [1,2]. Because of its small size, minimum shielding is used between the plasma and the toroidal-field (TF) coils. Consequently, a large cryogenic system (approximately 70 kW at 4.5 K) capable of delivering forced-flow helium is required. This paper describes a cryogenic system that meets this requirement and includes TIBER-II requirements. 3 refs

  9. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    1995-01-01

    The CEBAF cryogenic system consists of 3 refrigeration systems: Cryogenic Test Facility (CTF), Central Helium Liquefier (CHL), and End Station Refrigerator (ESR). CHL is the main cryogenic system for CEBAF, consisting of a 4.8 kW, 2.0 K refrigerator and transfer line system to supply 2.0 K and 12 kW of 50 K shield refrigeration for the Linac cavity cryostats and 10 g/s of liquid for the end stations. This paper describes the 9-year effort to commission these systems, concentrating on CHL with the cold compressors. The cold compressors are a cold vacuum pump with an inlet temperature of 3 K which use magnetic bearings, thereby eliminating the possibility of air leaks into the subatmospheric He

  10. Verification test for helium panel of cryopump for DIII-D advanced divertor

    International Nuclear Information System (INIS)

    Baxi, C.B.; Laughon, G.J.; Langhorn, A.R.; Schaubel, K.M.; Smith, J.P.; Gootgeld, A.M.; Campbell, G.L.; Menon, M.M.

    1992-01-01

    It is planned to install a cryogenic pump in the lower divertor portion of the DIII-D tokamak with a pumping speed of 50000 ell/s and an exhaust of 2670 Pa-ell/s (20 Torr-ell/s). A coaxial counter flow configuration has been chosen for the helium panel of this cryogenic pump. This paper evaluates cool-down rates and fluid stability of this configuration. A prototypic test was performed at General Atomics (GA) to increase confidence in the design. It was concluded that the helium panel cooldown rate agreed quite well with analytical prediction and was within acceptable limits. The design flow rate proved stable and two-phase pressure drop can be predicted quite accurately

  11. Verification test for helium panel of cryopump for DIII-D advanced divertor

    International Nuclear Information System (INIS)

    Baxi, C.B.; Laughon, G.J.; Langhorn, A.R.; Schaubel, K.M.; Smith, J.P.; Gootgeld, A.M.; Campbell, G.L.; Menon, M.M.

    1991-10-01

    It is planned to install a cryogenic pump in the lower divertor portion of the D3-D tokamak with a pumping speed of 50000 ell/s and an exhaust of 2670 Pa-ell/s (20 Torr-ell s). A coaxial counter flow configuration has been chosen for the helium panel of this cryogenic pump. This paper evaluates cooldown rates and fluid stability of this configuration. A prototypic test was performed at General Atomics (GA) to increase confidence in the design. It was concluded that the helium panel cooldown rate agreed quite well with analytical prediction and was within acceptable limits. The design flow rate proved stable and two-phase pressure drop can be predicted quite accurately. 8 refs., 5 figs., 1 tab

  12. Characterization of a cryogenic ion guide at IGISOL

    NARCIS (Netherlands)

    Saastamoinen, A.; Moore, I. D.; Ranjan, M.; Dendooven, P.; Penttila, H.; Perajarvi, K.; Popov, A.; Aysto, J.

    2012-01-01

    A small volume cryogenic ion guide has been characterized at the IGISOL facility, Jyvaskyla, as a prototype to verify whether there are any major obstacles to the use of high-density cryogenic helium gas for the stopping and extraction of high-energy ions from a large volume cryogenic ion catcher.

  13. Tests of cold helium compressors at Fermilab

    International Nuclear Information System (INIS)

    Peterson, T.J.; Fuerst, J.D.

    1987-10-01

    Fermilab has tested two cold helium compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Operating conditions required to obtain an overall Tevatron energy upgrade from 900 to 1000 GeV are (for each of 24 machines): 52 g/s mass flow rate, 0.7 atm inlet pressure, 1.4 atm exhaust pressure. Acceptable efficiency is in the 60% range. Both Creare, Inc., and Cryogenic Consultants, Inc. (CCI), have supplied units for evaluation. The Creare machine is a high speed centrifugal pump/compressor which yielded 60% adiabatic efficiency (including an approximately 20 watt heat leak) with a 1.0 atm inlet pressure and 55 g/s flow rate. Certain mechanical difficulties were present, chiefly the device's inability to withstand two-phase flow. CCI supplied a reciprocating unit which, after initial testing and modification, achieved 59% efficiency with an approximate 35 watt heat leak at a 0.7 atm inlet pressure and 48 g/s flow rate. Although the device lacks the smooth, quiet operating characteristics of a turbomachine, it has endured mechanically throughout testing and is entirely insensitive to two-phase flow

  14. Cryogenics in CEBAF HMS dipole

    International Nuclear Information System (INIS)

    Bogensberger, P.; Ramsauer, F.; Brindza, P.; Wines, R.; Koefler, H.

    1994-01-01

    The paper will report upon the final design, manufacturing and tests of CEBAF's HMS Dipole cryogenic equipment. The liquid nitrogen circuits, the helium circuits and thermal insulation of the magnet will be addressed. The cryogenic reservoir and control module as an integral part of the HMS Dipole magnet will be presented. The construction, manufacturing, tests and final performance of the HMS Dipole cryogenic system will be reported. The LN 2 circuit and the He circuit are tied together by the control system for cool down, normal operation and standby. This system monitors proper temperature differences between both circuits and controls the cryogenic supply to meet the constraints. Implementation of the control features for the cryogenic system into the control system will be reported

  15. Commissioning of cryogen delivery system for superconducting cyclotron magnet

    International Nuclear Information System (INIS)

    Pal, G.; Nandi, C.; Bhattacharyya, T.K.; Chaudhuri, J.; Bhandari, R.K.

    2005-01-01

    A K-500 superconducting cyclotron is being constructed at VECC Kolkata. The cryogen delivery system distributes liquid helium and liquid nitrogen to the superconducting cyclotron. Liquid helium is required to cool the cyclotron magnet and cryopanels. Liquid nitrogen is used to reduce the capacity of the helium liquefier. This paper describes the system, the current status and the commissioning experiences of cryogen delivery system for cyclotron magnet. (author)

  16. Testing of a cryogenic recooler heat exchanger at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Nicoletti, A.; Wu, K.C.

    1993-01-01

    Brookhaven National Laboratory has tested a recooler heat exchanger intended to be used in the cryogenic system of the Relativistic Heavy Ion Collider. The unit is required to transfer 225 Watts from a supercritical helium stream flowing at 100 g/s to a helium bath boiling at 4.25 K. Measurements made with heat loads of 50 to over 450 Watts on the unit indicate its cooling capacity is greater than 400 Watts, as expected, and it will be suitable for use in the RHIC ring. Presented are the modifications made to BNL's MAGCOOL test facility that were necessary for testing, test procedure, and recooler performance

  17. CEBAF cryogenic system design

    International Nuclear Information System (INIS)

    Rode, C.; Brindza, P.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. There is one recirculating arc for each energy beam that is circulating and any three of the four correlated energies may be supplied to any of the three experimental halls. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2K and the 4.5K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0K at .031 ATM and 4.4K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  18. Experimental investigations of flow distribution in coolant system of Helium-Cooled-Pebble-Bed Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Ilić, M.; Schlindwein, G., E-mail: georg.schlindwein@kit.edu; Meyder, R.; Kuhn, T.; Albrecht, O.; Zinn, K.

    2016-02-15

    Highlights: • Experimental investigations of flow distribution in HCPB TBM are presented. • Flow rates in channels close to the first wall are lower than nominal ones. • Flow distribution in central chambers of manifold 2 is close to the nominal one. • Flow distribution in the whole manifold 3 agrees well with the nominal one. - Abstract: This paper deals with investigations of flow distribution in the coolant system of the Helium-Cooled-Pebble-Bed Test Blanket Module (HCPB TBM) for ITER. The investigations have been performed by manufacturing and testing of an experimental facility named GRICAMAN. The facility involves the upper poloidal half of HCPB TBM bounded at outlets of the first wall channels, at outlet of by-pass pipe and at outlets of cooling channels in breeding units. In this way, the focus is placed on the flow distribution in two mid manifolds of the 4-manifold system: (i) manifold 2 to which outlets of the first wall channels and inlet of by-pass pipe are attached and (ii) manifold 3 which supplies channels in breeding units with helium coolant. These two manifolds are connected with cooling channels in vertical/horizontal grids and caps. The experimental facility has been built keeping the internal structure of manifold 2 and manifold 3 exactly as designed in HCPB TBM. The cooling channels in stiffening grids, caps and breeding units are substituted by so-called equivalent channels which provide the same hydraulic resistance and inlet/outlet conditions, but have significantly simpler geometry than the real channels. Using the conditions of flow similarity, the air pressurized at 0.3 MPa and at ambient temperature has been used as working fluid instead of HCPB TBM helium coolant at 8 MPa and an average temperature of 370 °C. The flow distribution has been determined by flow rate measurements at each of 28 equivalent channels, while the pressure distribution has been obtained measuring differential pressure at more than 250 positions. The

  19. A liquid helium saver

    International Nuclear Information System (INIS)

    Avenel, O.; Der Nigohossian, G.; Roubeau, P.

    1976-01-01

    A cryostat equipped with a 'liquid helium saver' is described. A mass flow rate M of helium gas at high pressure is injected in a counter-flow heat exchanger extending from room to liquid helium temperature. After isenthalpic expansion through a calibrated flow impedance this helium gas returns via the low pressure side of the heat exchanger. The helium boil-off of the cryostat represents a mass flow rate m, which provides additional precooling of the incoming helium gas. Two operating regimes appear possible giving nearly the same efficiency: (1) high pressure (20 to 25 atm) and minimum flow (M . L/W approximately = 1.5) which would be used in an open circuit with helium taken from a high pressure cylinder; and (2) low pressure (approximately = 3 atm), high flow (M . L/W > 10) which would be used in a closed circuit with a rubber diaphragm pumping-compressing unit; both provide a minimum theoretical boil-off factor of about 8%. Experimental results are reported. (U.K.)

  20. A cryogenic test stand for full length SSC magnets with superfluid capability

    International Nuclear Information System (INIS)

    Peterson, T.J.; Mazur, P.O.

    1989-02-01

    The Fermilab Magnet Test Facility performs testing of the full scale SSC magnets on test stands capable of simulating the cryogenic environment of the SSC main ring. One of these test stands, Stand 5, also has the ability to operate the magnet under test at temperatures from 1.8K to 4.5K with either supercritical helium or subcooled liquid, providing at least 25 Watts of refrigeration. At least 50 g/s flow is available from 2.3K to 4.5K, whereas superfluid operation occurs with zero flow. Cooldown time from 4.5K to 1.8K is 1.5 hours. A maximum current capability of 10,000 amps is provided, as is instrumentation to monitor and control the cryogenic conditions. This paper describes the cryogenic design of this test stand. 8 refs., 6 figs

  1. Operation of large cryogenic systems

    International Nuclear Information System (INIS)

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab

  2. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  3. Temperature Stratification in a Cryogenic Fuel Tank

    Science.gov (United States)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  4. Experimental and numerical study on transient heat transfer for helium gas flowing over a twisted plate with different length

    International Nuclear Information System (INIS)

    Wang, Li; Liu, Qiusheng; Fukuda, Katsuya

    2015-01-01

    This study was conducted to investigate the transient heat transfer process between the solid surface and the coolant (helium gas) in Very High Temperature Reactor (VHTR). Forced convection transient heat transfer for helium gas flowing over a twisted plate with different length was experimentally and theoretically studied. The heat generation rate of the twisted plate was increased with a function of Q = Q_0exp(t/τ)(where t is time, τ is period). Experiment was carried out at various periods ranged from 35 ms to 14 s and gas temperature of 303 K under 500 kPa. The flow velocities ranged from 4 m/s to 10 m/s. Platinum plates with a thickness of 0.1 mm and width of 4 mm were used as the test heaters. The plates were twisted with the same helical pitch of 20 mm, and length of 26.8 mm, 67.8 mm and 106.4 mm (pitch numbers of 1, 3 and 5), respectively. Based on the experimental data, it was found that the average heat transfer coefficient approaches the quasi-steady-state value when the dimensionless period τ* (τ* = τU/L, U is flow velocity, and L is effective length) is larger than about 100 and it becomes higher when τ* is small. The heat transfer coefficient decreases with the increase of twisted plate length under the same period of heat generation rate. According to the experimental data, the distribution for heat transfer coefficient along the heater is nonlinear. Numerical simulation results were obtained for average surface temperature difference, heat flux and heat transfer coefficient of the twisted plates with different length and showed reasonable agreement with experimental data. Based on the numerical simulation, mechanism of local heat transfer coefficient distribution was clarified. (author)

  5. Visualization in cryogenic environment: Application to two-phase studies

    Science.gov (United States)

    Rousset, Bernard; Chatain, Denis; Puech, Laurent; Thibault, Pierre; Viargues, François; Wolf, Pierre-Etienne

    2009-10-01

    This paper reviews recent technical developments devoted to the study of cryogenic two-phase fluids. These techniques span from simple flow visualization to quantitative measurements of light scattering. It is shown that simple flow pattern configurations are obtained using classical optical tools (CCD cameras, endoscopes), even in most severe environments (high vacuum, high magnetic field). Quantitative measurements include laser velocimetry, particle sizing, and light scattering analysis. In the case of magnetically compensated gravity boiling oxygen, optical access is used to control the poistioning of a bubble subject to buoyancy forces in an experimental cell. Flow visualization on a two-phase superfluid helium pipe-flow, performed as a support of LHC cooldown studies, leads to flow pattern characterization. Visualization includes stratified and atomized flows. Thanks to the low refractive index contrast between the liquid and its vapor, quantitative results on droplet densities can be obtained even in a multiple scattering regime.

  6. Operational and troubleshooting experiences in the SST-1 cryogenic system

    Science.gov (United States)

    Mahesuria, G.; Panchal, P.; Panchal, R.; Patel, R.; Sonara, D.; Gupta, N. C.; Srikanth, G. L. N.; Christian, D.; Garg, A.; Bairagi, N.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Tank, J.; Tanna, V. L.; Pradhan, S.

    2014-01-01

    Recently, the cooldown and current charging campaign have been carried out towards the demonstration of the first successful plasma discharge in the steady state superconducting Tokomak (SST-1). The SST-1 machine consists of cable-in-conduit wound superconducting toroidal as well as poloidal coils, cooled using 1.3 kW at 4.5 K helium refrigerator -cum- liquefier (HRL) system. The cryo system provides the two-phase helium at 0.13 MPa at 4.5 K as well as forced-flow pressurized helium at 0.4 MPa and in addition to 7 g-s-1 liquefaction capacity required for the current leads and other cold mass at 4.5 K. The entire integrated cold masses having different thermo hydraulic resistances cooled with the SST-1 HRL in optimised process parameters. In order to maintain different levels of temperatures and to facilitate smooth and reliable cooldown, warm-up, normal operations as well as to handle abnormal events such as, quench or utilities failures etc., exergy efficient process are adopted for the helium refrigerator-cum-liquefier (HRL) with an installed equivalent capacity of 1.3 kW at 4.5 K. Using the HRL, the cold mass of about 40 tons is being routinely cooled down from ambient temperature to 4.5 K with an average cooldown rate of 0.75 - 1 K-h-1. Long-term cryogenic stable conditions were obtained within 15 days in the superconducting coils and their connecting feeders. Afterwards, all of the cold mass is warmed-up in a controlled manner to ambient temperature. In this paper, we report the recent operational results of the cryogenic system during the first plasma discharge in SST-1 as well as the troubleshooting experiences of the cryogenic plant related hardware.

  7. Integrated cryogenic sensors

    International Nuclear Information System (INIS)

    Juanarena, D.B.; Rao, M.G.

    1991-01-01

    Integrated cryogenic pressure-temperature, level-temperature, and flow-temperature sensors have several advantages over the conventional single parameter sensors. Such integrated sensors were not available until recently. Pressure Systems, Inc. (PSI) of Hampton, Virginia, has introduced precalibrated precision cryogenic pressure sensors at the Los Angeles Cryogenic Engineering Conference in 1989. Recently, PSI has successfully completed the development of integrated pressure-temperature and level-temperature sensors for use in the temperature range 1.5-375K. In this paper, performance characteristics of these integrated sensors are presented. Further, the effects of irradiation and magnetic fields on these integrated sensors are also reviewed

  8. Theoretical and experimental studies on transient heat transfer for forced convection flow of helium gas over a horizontal cylinder

    International Nuclear Information System (INIS)

    Liu Qiusheng; Katsuya Fukuda; Zhang Zheng

    2005-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder (heater) was theoretically and experimentally studied. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. It was clarified that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The temperature distribution near the cylinder becomes larger as the surface temperature increases. The values of numerical solution for surface temperature and heat flux agree well with the experimental data for the cylinder diameter of 1 mm. However, the heat flux shows difference from the experimental values for the cylinder diameters of 0.7 mm and 2.0 mm. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over horizontal cylinders under wide experimental conditions. The platinum cylinders with diameters of 1.0 mm, 0.7 mm, and 2.0 mm were used as test heaters and heated by electric current with an exponential increase of Q 0exp (t/τ) . The gas flow velocities ranged from 2 to 10 m/s, the gas temperatures ranged from 303 to 353 K, and the periods ranged from 50 ms to 20 s. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. The transient heat transfer coefficients show significant dependence on

  9. High-efficiency pump for space helium transfer. Final Technical Report

    International Nuclear Information System (INIS)

    Hasenbein, R.; Izenson, M.G.; Swift, W.L.; Sixsmith, H.

    1991-12-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space

  10. Cryogenics safety

    International Nuclear Information System (INIS)

    Reider, R.

    1977-01-01

    The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described

  11. A breath of fresh air for cryogenics training

    CERN Multimedia

    HSE Unit

    2014-01-01

    Whether you work full-time in a cryogenic installation or are required to handle cryogenic substances temporarily, you need to have followed the appropriate safety training.   Photo: Christoph Balle. Two new training courses are now available in English and French at CERN: “Cryogenic Safety – Fundamentals” (at the Prévessin Training Centre) and “Cryogenic Safety – Helium Transfer” (at the Cryolab). The first covers the content of levels 1 and 2 of the old “Cryogenic Safety” course. The second is a completely new course for CERN: it covers specific aspects of the transfer of liquid helium, such as the evaporation process of helium and the associated risks to human health (asphyxia due to displacement of oxygen), the colour code for gas bottles, etc. These training modules have been rewritten in response to the increase in the number of projects involving cryogenics and following various related incident...

  12. Overview of different control strategies for a typical cryogenic warm compressor station at CERN

    Science.gov (United States)

    Pezzetti, M.; Garcia, C. V. M.; Bradu, B.; Rogez, E.

    2017-12-01

    Helium cryogenic systems are extensively used at CERN under several configurations for accelerators and detectors. The Warm Compressor Station (WCS) is the primary component of the helium cryogenic systems. The basic controls structure mainly depends on the bypass, charge and discharge valves configuration ensuring the nominal flow and compression ratio. This paper presents three studied methods for the WCS process control systems covering all transient and operational requirements: the proportional-integral-derivative (PID) control approach, the Fuzzy Logic Control approach (FLC) and the Internal Model Control approach (IMC). The paper emphasizes on simulation results of the different control strategies using Ecosimpro software associated to the CERN CryoLib library. Advantages and limitations of each method are presented.

  13. Investigation of two and three parameter equations of state for cryogenic fluids

    International Nuclear Information System (INIS)

    Jenkins, S.L.; Majumdar, A.K.; Hendricks, R.C.

    1990-01-01

    Two-phase flows are a common occurrence in cryogenic engines and an accurate evaluation of the heat-transfer coefficient in two-phase flow is of significant importance in their analysis and design. The thermodynamic equation of state plays a key role in calculating the heat transfer coefficient which is a function of thermodynamic and thermophysical properties. An investigation has been performed to study the performance of two- and three-parameter equations of state to calculate the compressibility factor of cryogenic fluids along the saturation loci. The two-parameter equations considered here are van der Waals and Redlich-Kwong equations of state. The three-parameter equation represented here is the generalized Benedict-Webb-Rubin (BWR) equation of Lee and Kesler. Results have been compared with the modified BWR equation of Bender and the extended BWR equations of Stewart. Seven cryogenic fluids have been tested; oxygen, hydrogen, helium, nitrogen, argon, neon, and air. The performance of the generalized BWR equation is poor for hydrogen and helium. The van der Waals equation is found to be inaccurate for air near the critical point. For helium, all three equations of state become inaccurate near the critical point. 13 refs

  14. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  15. Direct implementation of an axial-flow helium gas turbine tool in a system analysis tool for HTGRs

    International Nuclear Information System (INIS)

    Kim, Ji Hwan; No, Hee Cheon; Kim, Hyeun Min; Lim, Hong Sik

    2008-01-01

    This study concerns the development of dynamic models for a high-temperature gas-cooled reactor (HTGR) through direct implementation of a gas turbine analysis code with a transient analysis code. We have developed a streamline curvature analysis code based on the Newton-Raphson numerical application (SANA) to analyze the off-design performance of helium gas turbines under conditions of normal operation. The SANA code performs a detailed two-dimensional analysis by means of throughflow calculation with allowances for losses in axial-flow multistage compressors and turbines. To evaluate the performance in the steady-state and load transient of HTGRs, we developed GAMMA-T by implementing SANA in the transient system code, GAMMA, which is a multidimensional, multicomponent analysis tool for HTGRs. The reactor, heat exchangers, and connecting pipes were designed with a one-dimensional thermal-hydraulic model that uses the GAMMA code. We assessed GAMMA-T by comparing its results with the steady-state results of the GTHTR300 of JAEA. We concluded that the results are in good agreement, including the results of the vessel cooling bypass flow and the turbine cooling flow

  16. Modeling Results For the ITER Cryogenic Fore Pump. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, John M. [University of Wisconsin, Madison, WI (United States); Zhang, Dongsheng [University of Wisconsin, Madison, WI (United States)

    2014-03-31

    A numerical model characterizing the operation of a cryogenic fore-pump (CFP) for ITER has been developed at the University of Wisconsin – Madison during the period from March 15, 2011 through June 30, 2014. The purpose of the ITER-CFP is to separate hydrogen isotopes from helium gas, both making up the exhaust components from the ITER reactor. The model explicitly determines the amount of hydrogen that is captured by the supercritical-helium-cooled pump as a function of the inlet temperature of the supercritical helium, its flow rate, and the inlet conditions of the hydrogen gas flow. Furthermore the model computes the location and amount of hydrogen captured in the pump as a function of time. Throughout the model’s development, and as a calibration check for its results, it has been extensively compared with the measurements of a CFP prototype tested at Oak Ridge National Lab. The results of the model demonstrate that the quantity of captured hydrogen is very sensitive to the inlet temperature of the helium coolant on the outside of the cryopump. Furthermore, the model can be utilized to refine those tests, and suggests methods that could be incorporated in the testing to enhance the usefulness of the measured data.

  17. Criterion for burn-up conditions in gas-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Bejan, A.; Cluss, E.M. Jr.

    1976-01-01

    Superconducting magnets are energized through helium vapour-cooled cryogenic current leads operating at high ratios of current to mass flow. The high current operation where lead temperature, runaway, and eventual burn-up are likely to occur is investigated. A simple criterion for estimating the burn-up operation conditions (current, mass flow) for a given lead geometry (cross-sectional area, length, heat exchanger area) is presented. This article stresses the role played by the available heat exchanger area in avoiding burn-up at high ratios of current to mass flow. (author)

  18. Formation of Pyrylium from Aromatic Systems with a Helium:Oxygen Flowing Atmospheric Pressure Afterglow (FAPA) Plasma Source

    Science.gov (United States)

    Badal, Sunil P.; Ratcliff, Tyree D.; You, Yi; Breneman, Curt M.; Shelley, Jacob T.

    2017-06-01

    The effects of oxygen addition on a helium-based flowing atmospheric pressure afterglow (FAPA) ionization source are explored. Small amounts of oxygen doped into the helium discharge gas resulted in an increase in abundance of protonated water clusters by at least three times. A corresponding increase in protonated analyte signal was also observed for small polar analytes, such as methanol and acetone. Meanwhile, most other reagent ions (e.g., O2 +·, NO+, etc.) significantly decrease in abundance with even 0.1% v/v oxygen in the discharge gas. Interestingly, when analytes that contained aromatic constituents were subjected to a He:O2-FAPA, a unique (M + 3)+ ion resulted, while molecular or protonated molecular ions were rarely detected. Exact-mass measurements revealed that these (M + 3)+ ions correspond to (M - CH + O)+, with the most likely structure being pyrylium. Presence of pyrylium-based ions was further confirmed by tandem mass spectrometry of the (M + 3)+ ion compared with that of a commercially available salt. Lastly, rapid and efficient production of pyrylium in the gas phase was used to convert benzene into pyridine. Though this pyrylium-formation reaction has not been shown before, the reaction is rapid and efficient. Potential reactant species, which could lead to pyrylium formation, were determined from reagent-ion mass spectra. Thermodynamic evaluation of reaction pathways was aided by calculation of the formation enthalpy for pyrylium, which was found to be 689.8 kJ/mol. Based on these results, we propose that this reaction is initiated by ionized ozone (O3 +·), proceeds similarly to ozonolysis, and results in the neutral loss of the stable CHO2 · radical. [Figure not available: see fulltext.

  19. Helium Extraction from LNG End Flash

    OpenAIRE

    Kim, Donghoi

    2014-01-01

    Helium is an invaluable element as it is widely used in industry such as cryo-genics and welding due to its unique properties. However, helium shortage is expected in near future because of increasing demand and the anxiety of sup-ply. Consequently, helium production has attracted the attention of industry. The main source of He is natural gas and extracting it from LNG end-flash is considered as the most promising way of producing crude helium. Thus, many process suppliers have proposed proc...

  20. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Heidt, C.; Grohmann, S. [Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany and Karlsruhe Institute of Technology, Institute for Technical Thermodynamics and Refrigeration, Engler-Bunte (Germany); Süßer, M. [Karlsruhe Institute of Technology, Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-01-29

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  1. The liquid helium system of ATLAS

    International Nuclear Information System (INIS)

    Nixon, J.M.; Bollinger, L.M.

    1989-01-01

    Starting in 1978 with one small refrigerator and distribution line, the LHe system of ATLAS has gradually grown into a complex network, as required by several enlargements of the superconducting linac. The cryogenic system now comprises 3 refrigerators, 11 helium compressors, /approximately/340 ft. of coaxial LHe transfer line, 3 1000-l dewars, and /approximately/76 LHe valves that deliver steady-state flowing LHe to 16 beam-line cryostats. In normal operation, the 3 refrigerators are linked so as to provide cooling where needed. LHe heat exchangers in distribution lines play an important role. This paper discusses design features of the system, including the logic of the controls that permit the coupled refrigerators to operate stably in the presence of large and sudden changes in heat load. 8 refs., 3 figs

  2. Fiber Optic Mass Flow Gauge for Liquid Cryogenic Fuel Facilities Monitoring and Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a fiber optic mass flow gauge that will aid in managing liquid hydrogen and oxygen fuel storage and transport. The increasing...

  3. Krohne Flow Indicator and High Flow Alarm - Local Indicator and High Flow Alarm of Helium Flow from the SCHe Purge Lines C and D to the Process Vent

    International Nuclear Information System (INIS)

    MISKA, C.R.

    2000-01-01

    Flow Indicators/alarms FI/FSH-5*52 and -5*72 are located in the process vent lines connected to the 2 psig SCHe purge lines C and D. They monitor the flow from the 2 psig SCHe purge going to the process vent. The switch/alarm is non-safety class GS

  4. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings, phase 2

    Science.gov (United States)

    Sanandres, Luis

    1994-01-01

    The Phase 2 (1994) Annual Progress Report presents two major report sections describing the thermal analysis of tilting- and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings. A literature review on the subject of two-phase flow in fluid film bearings and part of the proposed work for 1995 are also included. The programs delivered at the end of 1994 are named hydroflext and hydrotran. Both codes are fully compatible with the hydrosealt (1993) program. The new programs retain the same calculating options of hydrosealt plus the added bearing geometries, and unsteady flow and transient forced response. Refer to the hydroflext & hydrotran User's Manual and Tutorial for basic information on the analysis and instructions to run the programs. The Examples Handbook contains the test bearing cases along with comparisons with experimental data or published analytical values. The following major tasks were completed in 1994 (Phase 2): (1) extension of the thermohydrodynamic analysis and development of computer program hydroflext to model various bearing geometries, namely, tilting-pad hydrodynamic journal bearings, flexure-pad cylindrical bearings (hydrostatic and hydrodynamic), and cylindrical pad bearings with a simple elastic matrix (ideal foil bearings); (2) improved thermal model including radial heat transfer through the bearing stator; (3) calculation of the unsteady bulk-flow field in fluid film bearings and the transient response of a point mass rotor supported on bearings; and (4) a literature review on the subject of two-phase flows and homogeneous-mixture flows in thin-film geometries.

  5. RELAP/SCDAPSIM/MOD4.0 modification for transient accident scenario of Test Blanket Modules in ITER involving helium flows into heavy liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J.; Pérez, M.; Mas de les Valls, E.; Batet, L.; Sandeep, T.; Chaudhari, V.; Reventós, F.

    2015-07-01

    The Institute for Plasma Research (IPR), India, is currently involved in the design and development of its Test Blanket Module (TBM) for testing in ITER (International Thermo nuclear Experimental Reactor). The Indian TBM concept is a Lead-Lithium cooled Ceramic Breeder (LLCB), which utilizes lead-lithium eutectic alloy (LLE) as tritium breeder, neutron multiplier and coolant. The first wall facing the plasma is cooled by helium gas. In preparation of the regulatory safety files of ITER-TBM, a number of off-normal event sequences have been postulated. Thermal hydraulic safety analyses of the TBM system will be carried out with the system code RELAP/SCDAPSIM/MOD4.0 which was initially designed to predict the behavior of light water reactor systems during normal and accidental conditions. In order to analyze some of the postulated off-normal events, there is the need to simulate the mixing of Helium and Lead-Lithium fluids. The Technical University of Catalonia is cooperating with IPR to implement the necessary changes in the code to allow for the mixing of helium and liquid metal. In the present study, the RELAP/SCDAPSIM/MOD4 two-phase flow 6-equations structure has been modified to allow for the mixture of LLE in the liquid phase with dry Helium in the gas phase. Practically obtaining a two-fluid 6-equation model where each fluid is simulated with a set of energy, mass and momentum balance equations. A preliminary flow regime map for LLE and helium flow has been developed on the basis of numerical simulations with the OpenFOAM CFD toolkit. The new code modifications have been verified for vertical and horizontal configurations. (Author)

  6. DEPOSITION OF FISSION PRODUCTS FROM HELIUM GAS FLOWING AT HIGH VELOCITIES

    Energy Technology Data Exchange (ETDEWEB)

    Abriss, A.; Ewing, R. A.; Sunderman, D. N.

    1963-11-15

    From American Nuclear Society Meeting, New York, Nov. 1963. Out-of- pile experiments simulating gas cooled reactor flow and temperature conditions were made to correlate by both empirical and theoretical considerations such parameters as Reynolds numbers, velocity, surface conditions, materials of construction, geometry, particulate matter, and fission product diffusion coefficients. It was concluded that all regions of flow disturbance are areas of buildup of activity. No selectivity in deposition among the elements studied, with the exception of I, Te, and Cs, was found. Relative abundances to each other of less volatile isotopes remained constant throughout any particular experiment. Data are tabulated. (P.C.H.)

  7. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  8. The Management of Cryogens at CERN

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Serio, L; Tavian, L

    2005-01-01

    CERN is a large user of industrially procured cryogens essentially liquid helium and nitrogen. Recent contracts have been placed by the Organization for the delivery of quantities up to 280 tons of liquid helium over four years and up to 50000 tons of liquid nitrogen over three years. Main users are the very large cryogenic system of the LHC accelerator complex, the physics experiments using superconducting magnets and liquefied gases and all the related test facilities whether industrial or laboratory scale. With the commissioning of LHC, the need of cryogens at CERN will considerably increase and the procurement policy must be adapted accordingly. In this paper, we discuss procurement strategy for liquid helium and nitrogen, including delivery rates, distribution methods and adopted safety standards. Global turnover, on site re-liquefaction capacity, operational consumption, accidental losses, purification means and storage capacity will be described. Finally, the short to medium term evolution of the Orga...

  9. Cryogenics of the new superconducting accelerator Nuclotron. The first year under operation

    International Nuclear Information System (INIS)

    Baldin, A.M.; Agapov, N.N.; Belushkin, V.A.; D'yachkov, E.I.; Khodzhibagiyan, G.G.; Kovalenko, A.D.; Kuznetsov, G.L.; Matyushevskij, E.A.; Smirnov, A.A.; Sukhanova, A.K.

    1995-01-01

    The 6 GeV superconducting synchrotron was commissioned in March 1993 at the Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna. Four runs of the total duration about 1000 hours were provided from March 1993 to March 1994. The cooling of the accelerator magnetic system of 250 meters long was performed by two helium refrigerators with a capacity of 1.6 kw at 4.5 K each. The magnets were refrigerated by a two-phase helium flow. All 160 magnets are connected in parallel to the supply and return helium headers. The description and operational characteristics of the Nuclotron cryogenic system are presented. 7 refs., 5 figs., 1 tab

  10. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    Science.gov (United States)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  11. Artificial dissipation models applied to Navier-Stokes equations for analysis of supersonic flow of helium gas around a geometric configuration ramp type

    International Nuclear Information System (INIS)

    Rocha, Jussie Soares da; Maciel, Edisson Savio de G.; Lira, Carlos A.B. de O.

    2015-01-01

    Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added safety. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in solving the Navier-Stokes equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic laminar flow of helium gas along a ramp configuration is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipations models linear and nonlinear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is to study the cited dissipation models and describe their characteristics in relation to the overall quality of the solution, aiming preliminary results for the development of computational tools of dynamic analysis of helium flow for the VHTGR core. (author)

  12. Preliminary evaluation of cryogenic two-phase flow imaging using electrical capacitance tomography

    Science.gov (United States)

    Xie, Huangjun; Yu, Liu; Zhou, Rui; Qiu, Limin; Zhang, Xiaobin

    2017-09-01

    The potential application of the 2-D eight-electrode electrical capacitance tomography (ECT) to the inversion imaging of the liquid nitrogen-vaporous nitrogen (LN2-VN2) flow in the tube is theoretically evaluated. The phase distribution of the computational domain is obtained using the simultaneous iterative reconstruction technique with variable iterative step size. The detailed mathematical derivations for the calculations are presented. The calculated phase distribution for the two detached LN2 column case shows the comparable results with the water-air case, regardless of the much reduced dielectric permittivity of LN2 compared with water. The inversion images of total eight different LN2-VN2 flow patterns are presented and quantitatively evaluated by calculating the relative void fraction error and the correlation coefficient. The results demonstrate that the developed reconstruction technique for ECT has the capacity to reconstruct the phase distribution of the complex LN2-VN2 flow, while the accuracy of the inversion images is significantly influenced by the size of the discrete phase. The influence of the measurement noise on the image quality is also considered in the calculations.

  13. A study on nuclear heat load tolerable for NET/TF coils cooled by internal flow of helium II

    International Nuclear Information System (INIS)

    Hofmann, A.

    1988-02-01

    NbTi cables cooled by internal flow of superfluid helium are considered an option for the design of NET/TF coils with about 11 T peak fields. Starting from an available winding cross section of 0.61x0.61 m 2 for a 8 MA turns coil made of a 16 kA conductor it is shown that sufficient hydraulic cross section can be provided within such cables to remove the expected thermal load resulting from nuclear heating with exponential decay from inboard to outboard side of the winding. The concept is a pancake type coil with 1.8 K helium fed-in the high field region of each pancake. The temperature distribution within such coils is calculated, and the local safety margin is determined from temperature and field. The calculation takes account of nuclear and a.c. heating, and of thermal conductance between the individual layers and the coil casing. It is shown that operation with 1.8 K inlet and about 3 K outlet temperature is possible. The electrical insulation with about 0.5 mm thickness proves to provide sufficient thermal insulation. No additional thermal shield is required between the coil casing and the winding package. Two different types of conductors are being considered: a) POLO type cable with quadratic cross section and a central circular coolant duct, and b) an LCT type cable with two conductors wound in hand. Both concepts with about 500 m length of the cooland channels are shown to meet the requirements resulting from a peak nuclear heat load of 0.3 mW/cm 3 in the inboard turns. The hydraulic diameters are sufficient to operate each coils with self-sustained fountain effect pumps. Even appreciably higher heat loads with up to 3 mW/cm 3 of nuclear heating can be tolerated for the POLO type cable when the hydraulic diameter is enlarged to its maximum of 17 mm. (orig.) [de

  14. Liquid helium

    CERN Document Server

    Atkins, K R

    1959-01-01

    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  15. Crygenic performance of a superfluid helium relief valve for the LHC superconducting magnets

    International Nuclear Information System (INIS)

    Danielsson, H.; Ferlin, G.; Luguet, C.

    1996-01-01

    The high-field superconducting magnets of the Large Hadron Collider (LHC) project at CERN will operate below 1.9 K in static baths of pressurized helium II. In case of resistive transition (open-quotes quenchclose quotes), the resulting pressure rise in the cryostats must be limited to below their 2 MPa design pressure. This is achieved by discharging helium at high flow-rates into a cold recovery header, normally maintained at 20 K. For this purpose, the authors have designed, built and tested a cryogenic quench relief valve with a nominal diameter of 50 mm and an opening time of below 0.1 s. The valve, which can be opened on an external trigger, also acts as a relief device actuated by the upstream pressure when it exceeds 0.4 MPa. In normal operation, the closed poppet must be helium-tight, for hydraulic and thermal separation of the magnet baths from the recovery header. Following mechanical qualification tests under vacuum, the authors have mounted the relief valve in a dedicated cryogenic measuring bench, in order to perform precision thermal measurements with pressurized helium II

  16. Process instrumentation and control for cryogenic system of VECC

    International Nuclear Information System (INIS)

    Pal, Sandip

    2017-01-01

    Superconducting Cyclotron, which comprises of superconducting main magnet and cryopanels operating at 4.3 K, are operational at VECC in three phases starting from 2005; finally without interruption from July, 2010 to November, 2016. Cryogenic loads of the Cyclotron are catered by any of the two helium liquefiers/refrigerators (250W and 415W @ 4.5K) and associated cryogen distribution system with extensive helium gas management system. The system also consists of 31 K liters of liquid Nitrogen (LN_2) storage and delivery system, necessary of radiation shield. EPICS (Experimental Physics and Industrial Control System) architecture is open source, flexible and has unlimited tags as compared to the commercial Supervisory control and data acquisition (SCADA) packages. Hence, it has been adopted to design the SCADA module. The EPICS Input Output Controller (IOC) communicates with four PLCs over Ethernet based control LAN to control/monitor 618 numbers of field Inputs/ Outputs (I/O). The control system is fully automated and does not require any human intervention for routine operation. Since these two liquefiers share the same high pressure (HP) and low pressure (LP) pipelines, any pressure fluctuation due to rapid change in flow sometimes causes trip of the liquefiers. Few modifications are made in the control scheme in HP and LP zones to avoid liquefier trip. The plant is running very reliably round the clock and the historical data of important parameters during plant operation are archived for plant maintenance, easy diagnosis and future modifications. Total pure helium cycle gas inventory is monitored through EPICS for early detection of helium loss from its trend

  17. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  18. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  19. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  20. The LHC cryogenic system and operational experience from the first three years run

    International Nuclear Information System (INIS)

    Delikaris, Dimitri; Tavian, Laurent

    2014-01-01

    The LHC (Large Hadron Collider) accelerator helium cryogenic system consists of eight cryogenically independent sectors, each 3.3 km long, all cooled and operated at 1.9 K. The overall, entropy equivalent, installed cryogenic capacity totalizes 144 kW (a) 4.5 K including 19.2 kW (a) 1.8 K with an associated helium inventory of 130 ton. The LHC cryogenic system is considered among the most complex and powerful in the world allowing the cooling down to superfluid helium temperature of 1.9 K. of the accelerators' high field superconducting magnets distributed over the 26.7 km underground ring. The present article describes the LHC cryogenic system and its associated cryogen infrastructure. Operational experience, including cryogen management, acquired from the first three years of LHC operation is finally presented. (author)

  1. Capacity enhancement of indigenous expansion engine based helium liquefier

    Science.gov (United States)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.

    2017-02-01

    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  2. The cryogenic control system of EAST

    International Nuclear Information System (INIS)

    Zhuang, M.; Hu, L.B.; Zhow, Z.W.; Xia, G.H.

    2012-01-01

    Highlights: ► A reliable and flexible duplex control system is required for cryogenic system. ► The cryogenic control system is based on Delta-V DCS. ► It has been proved to be an effective way to control cryogenic process. ► It will provide useful experience and inspiration for the development in the cryogenic control engineering. - Abstract: A large scale helium cryogenic system is one of the key components for the EAST tokamak device for the cooling of PF and TF coils, structures, thermal shields, buslines, current leads and cryopumps. Since the cooling scheme of the EAST cryogenic system is fairly complicated, a reliable and flexible control system is required for cryogenic system. The cryogenic control system is based on DeltaV DCS which is the process control software developed by Emerson Company. The EAST cryogenic system has been in operation for four years and has been proved to be safe, stable and energy saving by the past 7 experiments. This paper describes the redundant control network, hardware configuration, software structure, auxiliary system and the new development in the future.

  3. Artificial dissipation models applied to Euler equations for analysis of supersonic flow of helium gas around a geometric configurations ramp and diffusor type

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Jussiê S., E-mail: jussie.soares@ifpi.edu.br [Instituto Federal do Piauí (IFPI), Valença, PI (Brazil); Maciel, Edisson Sávio de Góes, E-mail: edissonsavio@yahoo.com.br [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Lira, Carlos A.B.O., E-mail: cabol@ufpe.edu.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Sousa, Pedro A.S.; Neto, Raimundo N.C., E-mail: augusto.96pedro@gmail.com, E-mail: r.correia17@hotmail.com [Instituto Federal do Piauí (IFPI), Teresina, PI (Brazil)

    2017-07-01

    Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added security. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in using the DISSIPA2D{sub E}ULER code, to solve the Euler equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic flow along a ramp and diffusor configurations is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipation model linear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is obtain computational tools for flow analysis through the study the cited dissipation model and describe their characteristics in relation to the overall quality of the solution, as well as obtain preliminary results for the development of computational tools of dynamic analysis of helium gas flow in gas-cooled reactors. (author)

  4. Artificial dissipation models applied to Euler equations for analysis of supersonic flow of helium gas around a geometric configurations ramp and diffusor type

    International Nuclear Information System (INIS)

    Rocha, Jussiê S.; Maciel, Edisson Sávio de Góes; Lira, Carlos A.B.O.; Sousa, Pedro A.S.; Neto, Raimundo N.C.

    2017-01-01

    Very High Temperature Gas Cooled Reactors - VHTGRs are studied by several research groups for the development of advanced reactors that can meet the world's growing energy demand. The analysis of the flow of helium coolant around the various geometries at the core of these reactors through computational fluid dynamics techniques is an essential tool in the development of conceptual designs of nuclear power plants that provide added security. This analysis suggests a close analogy with aeronautical cases widely studied using computational numerical techniques to solve systems of governing equations for the flow involved. The present work consists in using the DISSIPA2D E ULER code, to solve the Euler equations in a conservative form, in two-dimensional space employing a finite difference formulation for spatial discretization using the Euler method for explicit marching in time. The physical problem of supersonic flow along a ramp and diffusor configurations is considered. For this, the Jameson and Mavriplis algorithm and the artificial dissipation model linear of Pulliam was implemented. A spatially variable time step is employed aiming to accelerate the convergence to the steady state solution. The main purpose of this work is obtain computational tools for flow analysis through the study the cited dissipation model and describe their characteristics in relation to the overall quality of the solution, as well as obtain preliminary results for the development of computational tools of dynamic analysis of helium gas flow in gas-cooled reactors. (author)

  5. A heat exchanger between forced flow helium gas at 14 to 18 K and liquid hydrogen at 20 K circulated by natural convection

    International Nuclear Information System (INIS)

    Green, M.A.; Ishimoto, S.; Lau, W.; Yang, S.

    2003-01-01

    The Muon Ionization Cooling Experiment (MICE) has three 350-mm long liquid hydrogen absorbers to reduce the momentum of 200 MeV muons in all directions. The muons are then re-accelerated in the longitudinal direction by 200 MHz RF cavities. The result is cooled muons with a reduced emittance. The energy from the muons is taken up by the liquid hydrogen in the absorber. The hydrogen in the MICE absorbers is cooled by natural convection to the walls of the absorber that are in turn cooled by helium gas that enters at 14 K. This report describes the MICE liquid hydrogen absorber and the heat exchanger between the liquid hydrogen and the helium gas that flows through passages in the absorber wall

  6. Superfluid helium at subcritical active core

    International Nuclear Information System (INIS)

    Vasil'ev, V.V.; Lopatkin, A.V.; Muratov, V.G.; Rakhno, I.L.

    2002-01-01

    Power range and neutron flux wherein super thermal source was realized at high volume of superfluid helium were investigated. MCU, BRAND, MCNP codes were used for the calculation of reactors. It is shown that the availability of full-size diameter for cryogenic source of ultracold neutrons, as the source with superfluid helium is considered, is possible in the reflector of subcritical assembly. Results obtained from the MCNP-4B code application demonstrated that the density of thermal neutron flux in helium must be not higher than 2.3 x 10 11 s -1 cm -2 [ru

  7. Construction program for a large superconducting MHD magnet system at the coal-fired flow facility

    International Nuclear Information System (INIS)

    Wang, S.T.; Genens, L.; Gonczy, J.; Ludwig, H.; Lieberg, M.; Kraft, E.; Gacek, D.; Huang, Y.C.; Chen, C.J.

    1980-01-01

    The Argonne National Laboratory has designed and is constructing a 6 T large aperture superconducting MHD magnet for use in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute (UTSI) at Tullahoma, Tennessee. The magnet system consists of the superconducting magnet, a magnet power supply, an integrated instrumentation for operation, control and protection, and a complete cryogenic facility including a CTI Model 2800 helium refrigerator/liquefier with two compressors, helium gas handling system and a 7500 liter liquid helium dewar. The complete system will be tested at Argonne, IL in 1981. The magnet design is reviewed, and the coil fabrication programs are described in detail

  8. Helium refrigeration system for hydrogen liquefaction applications

    Science.gov (United States)

    Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.

    2017-02-01

    Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.

  9. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; Fermilab

    2006-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  10. CRYOGENIC INFRASTRUCTURE FOR FERMILAB'S ILC VERTICAL CAVITY TEST FACILITY

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  11. Booster cryogenics

    International Nuclear Information System (INIS)

    Storm, D.W.; Weitkamp, W.G.; Will, D.I.

    1984-01-01

    During this past year the authors have ordered a helium refrigerator, developed cryostat specifications and come to understand better some of the potential problems to avoid in helium distribution systems. The helium refrigerator consists of a Koch Process Systems 2800HR with three type RS screw compressors. The 2800HR has two dry expansion engines, each with two 3'' diameter pistons, and one wet expansion engine with a single 2'' diameter piston. It has guaranteed capacities at 4.5 0 K of 440 W without liquid nitrogen precool and of 510 W with liquid nitrogen precool which compare favorably with the estimated need of 300 W. At present the authors have nearly completed material, technique and performance specifications for their cryostats, pending a decision on bayonet design, and the authors are beginning preliminary specifications for their liquid helium distribution manifold and transfer siphons

  12. Cryogenics '88

    International Nuclear Information System (INIS)

    1988-04-01

    The proceedings has four chapters: Processes and apparatus of low-temperature installations, Superconductors and magnets, Gas separators, Helium liquefiers and cryostats. It contains a total of 56 papers of which 4 belong in the INIS scope. (J.B.)

  13. A generic pump/compressor design for circulation of cryogenic fluids

    International Nuclear Information System (INIS)

    Jasinski, T.; Honkonen, S.C.; Sixsmith, H.; Stacy, W.D.

    1986-01-01

    This paper describes the development of a second-generation centrifugal circulator for cryogenic fluids. The circulator is designed to operate over a wide range of flow rate and pressure rise and can be used for the pumping of liquid and compression of vapor at temperatures down to liquid helium (4 K). The machine incorporates self-acting gas journal bearings, a permanent magnet axial thrust bearing, and a variable speed induction motor drive to provide for reliable, maintenance-free operation. The paper provides design details of the pump. Calculated performance characteristics are also presented along with a general discussion regarding limitations of the present system

  14. Photoionization of helium dimers

    International Nuclear Information System (INIS)

    Havermeier, Tilo

    2010-01-01

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  15. Development of helium transfer coupling of 1 MW-class HTS motor for podded ship propulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Kosuge, Eiji; Gocho, Yoshitsugu; Okumura, Kagao; Yamaguchi, Mitsugi [JapaneseSuperconductivity Organization, 135-8533, Tokyo (Japan); Umemoto, Katsuya; Aizawa, Kiyoshi; Yokoyama, Minoru; Takao, Satoru, E-mail: gocho@jso--new-scm.co.j [Kawasaki Heavy Industries LTD., 673-8666, Hyogo (Japan)

    2010-06-01

    Research and development of 1 MW superconducting motor are being made aiming at the efficiency improvement for the podded type ship propulsion. The basic machine configuration is similar to steam turbine generators, having a rotating horizontal shaft. As for the motor composed of rotating superconducting field, one of the most critical issues is to provide a technically viable helium transfer coupling (HTC). The field winding of 1 MW motor is cooled with cryogenic helium gas. The HTC needs to supply the cryogenic helium gas with an appropriate flow rate from the stationary part to the rotating field winding region through a hollowed shaft in order not to lose superconducting state of the winding. A full size prototype of HTC was developed prior to the actual one to demonstrate its technical acceptability. The fundamental data with regard to the supply of the refrigerated helium gas were successfully obtained at the rated speed. This work has been supported by New Energy, and Industrial Technology Development Organization (NEDO).

  16. Thermal Stabilization of Cryogenic System in Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun

    2011-01-01

    Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program

  17. Flow boiling heat transfer coefficients at cryogenic temperatures for multi-component refrigerant mixtures of nitrogen-hydrocarbons

    Science.gov (United States)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    The recuperative heat exchanger governs the overall performance of the mixed refrigerant Joule-Thomson cryocooler. In these heat exchangers, the non-azeotropic refrigerant mixture of nitrogen-hydrocarbons undergoes boiling and condensation simultaneously at cryogenic temperature. Hence, the design of such heat exchanger is crucial. However, due to lack of empirical correlations to predict two-phase heat transfer coefficients of multi-component mixtures at low temperature, the design of such heat exchanger is difficult.

  18. Cryogenic analysis of forced-cooled, superconducting TF magnets for compact tokamak reactors

    International Nuclear Information System (INIS)

    Kerns, J.A.; Slack, D.S.; Miller, J.R.

    1988-01-01

    Current designs for compact tokamak reactors require the toroidal- field (TF) superconducting magnets to produce fields from 10 to 15 T at the winding pack, using high-current densities to high nuclear heat loads (greater than 1 kW/coil in some instances), which are significantly greater than the conduction and radiation heat loads for which cryogenic systems are usually designed. A cryogenic system for the TF winding pack for two such tokamak designs has been verified by performing a detailed, steady-state heat-removal analysis. Helium properties along the forced-cooled conductor flow path for a range of nuclear heat loads have been calculated. The results and implications of this analysis are presented. 12 refs., 6 figs

  19. Model-based minimization algorithm of a supercritical helium loop consumption subject to operational constraints

    Science.gov (United States)

    Bonne, F.; Bonnay, P.; Girard, A.; Hoa, C.; Lacroix, B.; Le Coz, Q.; Nicollet, S.; Poncet, J.-M.; Zani, L.

    2017-12-01

    Supercritical helium loops at 4.2 K are the baseline cooling strategy of tokamaks superconducting magnets (JT-60SA, ITER, DEMO, etc.). This loops work with cryogenic circulators that force a supercritical helium flow through the superconducting magnets in order that the temperature stay below the working range all along their length. This paper shows that a supercritical helium loop associated with a saturated liquid helium bath can satisfy temperature constraints in different ways (playing on bath temperature and on the supercritical flow), but that only one is optimal from an energy point of view (every Watt consumed at 4.2 K consumes at least 220 W of electrical power). To find the optimal operational conditions, an algorithm capable of minimizing an objective function (energy consumption at 5 bar, 5 K) subject to constraints has been written. This algorithm works with a supercritical loop model realized with the Simcryogenics [2] library. This article describes the model used and the results of constrained optimization. It will be possible to see that the changes in operating point on the temperature of the magnet (e.g. in case of a change in the plasma configuration) involves large changes on the cryodistribution optimal operating point. Recommendations will be made to ensure that the energetic consumption is kept as low as possible despite the changing operating point. This work is partially supported by EUROfusion Consortium through the Euratom Research and Training Program 20142018 under Grant 633053.

  20. The Cryogenic Storage Ring CSR

    OpenAIRE

    von Hahn, Robert; Becker, Arno; Berg, Felix; Blaum, Klaus; Breitenfeldt, Christian; Fadil, Hisham; Fellenberger, Florian; Froese, Michael; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth A.; Heber, Oded; Herwig, Philipp

    2016-01-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion a...

  1. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C; Jimenez D, J; Cejudo A, J; Hernandez M, V [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  2. Cryogenic regenerators

    International Nuclear Information System (INIS)

    Kush, P.; Joshi, S.C.; Thirumaleshwar, M.

    1986-01-01

    Importance of regenerators in cryogenic refrigerators is highlighted. Design aspects of regenerator are reviewed and the factors involved in the selection of regenerator material are enumerated. Various methods used to calculate the heat transfer coefficient and regenerator effectiveness are mentioned. Variation of effectiveness with various parameters is calculated by a computer programme using the ideal, Ackermann and Tipler formulae. Results are presented in graphical form. Listing of the computer programme is given in the Appendix. (author)

  3. Cryogenic test facility at VECC, Kolkata

    International Nuclear Information System (INIS)

    Sarkar, Amit; Bhunia, Uttam; Pradhan, J.; Sur, A.; Bhandari, R.K.; Ranganathan, R.

    2003-01-01

    In view of proposed K-500 superconducting cyclotron project, cryogenic test facility has been set up at the centre. The facility can broadly be categorized into two- a small scale test facility and a large scale test facility. This facility has been utilized for the calibration of liquid helium level probe, cryogenic temperature probe, and I-B plot for a 7 T superconducting magnet. Spiral-shaped superconducting short sample with specific dimension and specially designed stainless steel sample holder has already been developed for the electrical characterisation. The 1/5 th model superconducting coil along with its quench detection circuit and dump resistor has also been developed

  4. Measurements of Heat-Transfer and Friction Coefficients for Helium Flowing in a Tube at Surface Temperatures up to 5900 Deg R

    Science.gov (United States)

    Taylor, Maynard F.; Kirchgessner, Thomas A.

    1959-01-01

    Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line.

  5. Cryogenic system for the HERA magnet measurement facility

    International Nuclear Information System (INIS)

    Barton, H.R. Jr.; Clausen, M.; Kebler, G.

    1986-01-01

    This paper describes the design for a helium, cryogenic distribution system that allows independent operation and testing of superconducting magnets of the HERA project before they are installed in the 6-km ring tunnel. The 820-GeV proton storage ring of HERA will contain approximately 650 magnets having superconducting coils which are clamped by aluminum/stainless-steel collars and surrounded by a yoke of magnetic iron at liquid helium temperature. When the magnets arive at DESY from the manufacture, each magnet will be individually tested at helium operating conditions in the magnet measurement facility to insure the quality of the magnetic characteristics and the cryogenic performance. The capabilities of the cryogenic system and the schedule for magnet testing are discussed

  6. PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field

    Science.gov (United States)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.

    2017-06-01

    This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.

  7. Cryogenic equipment

    International Nuclear Information System (INIS)

    Leger, L.; Javellaud, J.; Caro, C.; Gilguy, R.; Testard, O.

    1966-06-01

    The cryostats presented here were built from standard parts; this makes it possible to construct a great variety of apparatus at minimum cost. The liquid nitrogen and helium reservoirs were designed so as to reduce losses to a minimum, and so as to make the cryostats as autonomous as possible. The experimental enclosure which is generally placed in the lower part of the apparatus requires a separate study in every case. Furthermore, complete assemblies such as transfer rods, isolated traps and high vacuum valves, were designed with a similar regard for the economic aspects and for the need for standardization. This equipment thus satisfies a great variety of experimental needs; it is readily adaptable and the consumptions of helium and liquid nitrogen are very low. (authors) [fr

  8. Cryogen free low temperature sample environment for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kirichek, O; Evans, B E; Down, R B E; Bowden, Z A

    2009-01-01

    Recent increase in liquid helium cost caused by global helium supply problems rose significant concern about affordability of conventional cryogenic equipment. Luckily the progress in cryo-cooler technology offers a new generation of cryogenic systems with significantly reduced consumption and in some cases nearly complete elimination of cryogens. These cryogen-free systems also offer the advantage of operational simplicity and require less space than conventional cryogen-cooled systems. The ISIS facility carries on an internal development program intended to substitute gradually all conventional cryogenic systems with cryogen free systems preferably based on pulse tube refrigerators. A unique feature of this cryo-cooler is the absence of cold moving parts. This considerably reduces vibrations and increases the reliability of the cold head. The program includes few development projects which are aiming to deliver range of cryogen free equipment including top-loading cryostat, superconducting magnets and dilution refrigerators. Here we are going to describe the design of these systems and discuss the results of prototypes testing.

  9. Cryogenic turbulence

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    2005-01-01

    Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.

  10. The European Graduate Course in Cryogenics hosted at CERN.

    CERN Multimedia

    Laurent Tavian

    2010-01-01

    The “liquid helium” week of the European Graduate Course in Cryogenics was held at CERN from 30 August to 3 September 2010. This course scheduled annually since 2008 is a common teaching project of the Universities of Technology of Dresden, Wroclaw and Trondheim. It is focused on liquid natural gas, hydrogen and helium cryogenics. Attending students were carefully selected, and will take an examination giving ECTS credits for their academic curriculum.   This year, as Wroclaw University of Technology was already heavily involved in organising the International Cryogenic Engineering Conference (ICEC), it requested that the “liquid helium” week to be exceptionally held at CERN. While this is certainly a good choice from the point of view of large cryogenic helium systems, with the large cryoplants cooling the Large Hadron Collider (LHC) and its experiments, CERN has only acted as host laboratory organizing the course classes and visits, and the teaching and i...

  11. Experimental study of discontinuous plastic flow, phase transformation and micro-damage evolution in ductile materials at cryogenic temperatures

    CERN Document Server

    Marcinek, Dawid Jarosław; Sgobba, S

    2009-01-01

    The present Thesis deals with three low temperature phenomena occurring in ductile materials subjected to mechanical loads: serrated yielding, plastic strain induced γ-α’ phase transformation and evolution of micro-damage: - the Thesis explains the physical mechanisms governing each phenomenon at the micro and macroscopic levels; - the document describes in detail the advanced laboratory equipment needed for cryogenic experiments; - the results of tests carried out with unique precision and focused on serrated yielding and evolution of micro-damage (the observations were made with different strain rates and with the use of different materials) are presented; - validation of suitable kinetic laws and identification of parameters for tested materials is carried out.

  12. Renovation of the Sissi cryogenic system

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    SISSI (high current superconductor secondary ion source) involved a cryo-generator operating in a close circuit when the whole system was put in service in 1994. Since then the cryo-generator has proved to be insufficiently reliable. A new cryogenic system based on an external liquid helium supply has been designed. The helium transfer lines are surrounded by a shield at liquid nitrogen temperature and numerous layers of super-insulators in order to have minimum thermal losses. The installation was integrated to SISSI in summer 1998 and after the first operating period some improvements concerning the cooling procedure have to be considered. (A.C.)

  13. Cryogenic instrumentation for ITER magnets

    Science.gov (United States)

    Poncet, J.-M.; Manzagol, J.; Attard, A.; André, J.; Bizel-Bizellot, L.; Bonnay, P.; Ercolani, E.; Luchier, N.; Girard, A.; Clayton, N.; Devred, A.; Huygen, S.; Journeaux, J.-Y.

    2017-02-01

    Accurate measurements of the helium flowrate and of the temperature of the ITER magnets is of fundamental importance to make sure that the magnets operate under well controlled and reliable conditions, and to allow suitable helium flow distribution in the magnets through the helium piping. Therefore, the temperature and flow rate measurements shall be reliable and accurate. In this paper, we present the thermometric chains as well as the venturi flow meters installed in the ITER magnets and their helium piping. The presented thermometric block design is based on the design developed by CERN for the LHC, which has been further optimized via thermal simulations carried out by CEA. The electronic part of the thermometric chain was entirely developed by the CEA and will be presented in detail: it is based on a lock-in measurement and small signal amplification, and also provides a web interface and software to an industrial PLC. This measuring device provides a reliable, accurate, electromagnetically immune, and fast (up to 100 Hz bandwidth) system for resistive temperature sensors between a few ohms to 100 kΩ. The flowmeters (venturi type) which make up part of the helium mass flow measurement chain have been completely designed, and manufacturing is on-going. The behaviour of the helium gas has been studied in detailed thanks to ANSYS CFX software in order to obtain the same differential pressure for all types of flowmeters. Measurement uncertainties have been estimated and the influence of input parameters has been studied. Mechanical calculations have been performed to guarantee the mechanical strength of the venturis required for pressure equipment operating in nuclear environment. In order to complete the helium mass flow measurement chain, different technologies of absolute and differential pressure sensors have been tested in an applied magnetic field to identify equipment compatible with the ITER environment.

  14. Cryogenic photodetectors

    Science.gov (United States)

    Chardin, G.

    2000-03-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  15. Cryogenic photodetectors

    CERN Document Server

    Chardin, G

    2000-01-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  16. Cryogenic aspects of the mirror fusion test facility

    International Nuclear Information System (INIS)

    Sterbentz, W.H.; Nelson, R.L.

    1979-01-01

    This paper covers the design and construction of the MFTF cryogenic system and a description of the operating procedures throughout the many functional modes. The coils and the cryopanels for maintaining the high vacuum environment weigh 417,000 kg (920,000 lb) and must be cooled from room temperature to 4.5 k. The cryogenic system for MFTF consists of a closed-loop helium system with a 3000-W helium refrigerator that uses gas-bearing expansion turbines and oil-flooded screw compressors. In addition, liquid helium storage facilities have adequate capacity for standby operation, and a complete helium-purification plant is capable of processing 17 m 3 /min (600 scfm). An open-loop liquid nitrogen system (with provision for later addition of a nitrogen recondenser) provides the required refrigeration for the radiation shields that must be maintained at 85 K

  17. PERMCAT experiments with tritium at high helium flow rates relevant for the tritium extraction systems using the CAPER facility at TLK

    Energy Technology Data Exchange (ETDEWEB)

    Bükki-Deme, András, E-mail: andras.buekki-deme@kit.edu; Demange, David; Le, Thanh-Long; Fanghänel, Eleonore; Simon, Karl-Heinz

    2016-11-01

    Highlights: • We examined PERMCAT reactor efficiency processing tritiated water at high Helium carrier flow rates. • We have found that – as expected from previous studies – that the swamping ratio (ratio between the impurity and purge side flow rates) has a key effect on the decontamination factors. • On the other hand, some rather unexpected effects tend to show that the limiting phenomena of such specific operation of PERMCAT reactors (at high impurity flow rates, thus short residence time) lies on the kinetics of the isotope exchange reactions. - Abstract: Experiments are still necessary to consolidate the processes retained for the Tritium Extraction Systems of the European ITER Test Blanket Modules (TBM). A PERMCAT reactor combines a catalyst promoting isotope exchange reactions and a Pd/Ag membrane allowing tritium recovery from complex gaseous mixtures containing tritium in different chemical forms. Originally developed for the Tokamak Exhaust Processing, the PERMCAT process is also candidate to detritiate the water arising from an adsorption column installed in the TBM ancillary systems. We discuss the results of an extensive experimental campaign using a PERMCAT reactor to process Q{sub 2}O containing impurity gas mixtures at high flow rates. Two different experimental configurations were studied, namely PERMCAT stand-alone, and PERMCAT in combination with a zeolite molecular sieve bed (MSB, previously loaded with Q{sub 2}O) under regeneration. On the one hand, many expected behaviors were observed, such as the key influence of the swamping ratio (ratio between the impurity and purge side flow rates) on the decontamination factors. On the other hand, some rather unexpected effects tend to show that the limiting phenomena of such specific operation of PERMCAT reactors (at high flow rates, thus short residence time) lies on the kinetics of the isotope exchange reactions.

  18. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Nelson, R.L.; Chronis, W.C.

    1985-08-01

    This paper includes an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem discussed to present a basic composite of the entire facility. The following subsystems are included: 500kW nitrogen reliquefier, subcoolers, and distribution system; 15kW helium refrigerator/liquefier and distribution system; helium recovery and storage system; rough vacuum and high vacuum systems

  19. Effect of helium plasma gas flow rate on the properties of WC-12 wt.%Co coatings sprayed by atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Mihailo R. Mrdak

    2014-06-01

    Full Text Available The cermet coatings of WC-12wt.%Co are extensively used to improve the wear resistance of a wide range of technical components. This paper analyses the influence of the plasma gas flow of helium on the microstructure and mechanical properties of WC-12wt.%Co coatings deposited by plasma spraying at atmospheric pressure (APS. In order to obtain homogeneous and denser coatings, three different flows of He ( 8 l/min., 16 l/min. and 32 l/min were used in the research. With the application of He, coatings achieved higher values of hardness due to less degradation of the primary WC carbides. The main goal was to deposit dense and homogeneous layers of WC-12wt.%Co coatings with improved wear resistance for different applications. The test results of the microstructure of the layers were evaluated under a light microscope. The analysis of the microstructure and the mechanical properties of the deposited layers was made in accordance with the standard of Pratt-Whitney. The morphology of the powder particles and the microstructure of the best coating was examined on the SEM (scanning electron microscope. The evaluation of the mechanical properties of the layers was done by applying the HV0.3 method for microhardness testing and by applying tensile testing to test the bond strength. The research has shown that the flow of He plasma gas significantly affects the microstructure, the mechanical properties and the structure of WC-12 wt.%Co coatings.

  20. Helium crystals

    International Nuclear Information System (INIS)

    Lipson, S.G.

    1987-01-01

    Hexagonal close-packed helium crystals in equilibrium with superfluid have been found to be one of the few systems in which an anisotropic solid comes into true thermodynamic equilibrium with its melt. The discovery of roughening transitions at the liquid-solid interface have shown this system to be ideal for the study of the statistical mechanics of interface structures. We describe the effect of roughening on the shape and growth of macroscopic crystals from both the theoretical and experimental points of view. (author)

  1. Cryogenic system for TRISTAN superconducting RF cavities

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Y.; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Matsumoto, K.

    1993-01-01

    A large cryogenic system has been designed, constructed and operated in the TRISTAN electron-positron collider at KEK for 508 MHz, 32x5-cell superconducting RF cavities. A 6.5 kW, 4.4 K helium refrigerator with 5 turbo-expanders on the ground level supplies liquid helium in parallel to the 16 cryostats in the TRISTAN tunnel through about 250 m long multichannel transfer line. Two 5-cell cavities are coupled together, enclosed in a cryostat and cooled by about 830 L pool boiling liquid helium. A liquid nitrogen circulation system with a turbo-expander has been adopted for 80 K radiation shields in the multichannel transfer line and the cryostats to reduce liquid nitrogen consumption and to increase the operation stability of the system. The cryogenic system has a total of about 18 000 hours of operating time from the first cool down test in August 1988 to November 1991. The design principle and outline of the cryogenic system and the operational experience are presented. (orig.)

  2. Room temperature cryogenic test interface

    International Nuclear Information System (INIS)

    Faris, S. M.; Davidson, A.; Moskowitz, P. A.; Sai-Halasz, G. A.

    1985-01-01

    This interface permits the testing of high speed semiconductor devices (room-temperature chips) by a Josephson junction sampling device (cryogenic chip) without intolerable loss of resolution. The interface comprises a quartz pass-through plug which includes a planar transmission line interconnecting a first chip station, where the cryogenic chip is mounted, and a second chip station, where the semiconductor chip to be tested is temporarily mounted. The pass-through plug has a cemented long half-cylindrical portion and short half-cylindrical portion. The long portion carries the planar transmission line, the ends of which form the first and second chip mounting stations. The short portion completes the cylinder with the long portion for part of its length, where a seal can be achieved, but does not extend over the chip mounting stations. Sealing is by epoxy cement. The pass-through plug is sealed in place in a flange mounted to the chamber wall. The first chip station, with the cryogenic chip attached, extends into the liquid helium reservoir. The second chip station is in the room temperature environment required for semiconductor operation. Proper semiconductor operating temperature is achieved by a heater wire and control thermocouple in the vicinity of each other and the second chip mounting station. Thermal isolation is maintained by vacuum and seals. Connections for power and control, for test result signals, for temperature control and heating, and for vacuum complete the test apparatus

  3. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  4. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    Science.gov (United States)

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  5. Tests of cold helium compressors at Fermilab

    International Nuclear Information System (INIS)

    Peterson, T.J.; Fuerst, J.D.

    1988-01-01

    Fermilab has tested two compressors for possible installation in the satellite refrigerator buildings of the Tevatron cryogenic system. Both Creare Inc. and Cryogenic Consultants Inc. have supplied units for evaluation. The Creare machine, a high speed centrifugal pump/compressor, yielded 60% adiabatic efficiency but had difficulty withstanding two-phase flow. Cryogenic Consultants provided a reciprocating unit which achieved 59% efficiency and, although lacking the operating characteristics of the turbomachine, endured throughout testing and was insensitive to two-phase flow. Test results are discussed

  6. Thermal optimization of the helium-cooled power leads for the SSC

    International Nuclear Information System (INIS)

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.; McConeghy, R.

    1992-01-01

    The optimum thermal design of the power leads for the Superconducting Super Collider (SSC) will minimize the amount of Carnot work (which is a combination of refrigeration and liquefaction work) required. This optimization can be accomplished by the judicious selection of lead length and diameter. Even though an optimum set of dimensions is found, the final design must satisfy other physical constraints such as maximum allowable heat leak and helium vapor mass flow rate. A set of corresponding lengths and diameters has been determined that meets these requirements for the helium vapor-cooled, spiral-fin power lead design of the SSC. Early efforts by McFee and Mallon investigated optimizing power leads for cryogenic applications with no convection cooling. Later designs utilized the boiled-off helium vapor to cool the lead. One notable design for currents up to several thousand amps is presented by Efferson based on a series of recommendations discussed by Deiness. Buyanov presents many theoretical models and design formulae but does not demonstrate an approach to thermally optimizing the design of a vapor-cooled lead. In this study, a detailed numerical thermal model of a power lead design for the SSC has been developed. It was adapted from the dynamic model developed by Schiesser. This model was used to determine the optimum dimensions that minimize the Carnot refrigeration and liquefaction work due to the leads. Since the SSC leads will be cooled by supercritical helium, the flow of vapor is regulated by a control valve. These leads include a superconducting portion at the cold end. All of the material properties in the model are functions of temperature, and for the helium are functions of pressure and temperature. No pressure drop calculations were performed as part of this analysis. The diameter that minimizes the Carnot work was determined for four different lengths at a design current of 6600 amps

  7. Thermal optimization of the helium-cooled power leads for the SSC

    International Nuclear Information System (INIS)

    Demko, J.A.; Schiesser, W.E.; Carcagno, R.; McAshan, M.; McConeghy, R.

    1992-03-01

    The optimum thermal design of the power leads for the Superconducting Super Collider (SSC) will minimize the amount of Carnot work (which is a combination of refrigeration and liquefaction work) required. This optimization can be accomplished by the judicious selection of lead length and diameter. Even though an optimum set of dimensions is found, the final design must satisfy other physical constraints such as maximum allowable heat leak and helium vapor mass flow rate. A set of corresponding lengths and diameters has been determined that meets these requirements for the helium vapor-cooled, spiral-fin power lead design of the SSC. Early efforts by McFee and Mallon investigated optimizing power leads for cryogenic applications with no convection cooling. Later designs utilized the boiled-off helium vapor to cool the lead. One notable design for currents up to several thousand amps is presented by Efferson based on a series of recommendations discussed by Deiness. Buyanov presents many theoretical models and design formulate but does not demonstrate an approach to thermally optimizing the design of a vapor-cooled lead. A method for optimizing superconducting magnet current leads is described by Maehata et al. The approach assumes that the helium boil-off caused by heat conduction along with power lead into the low-temperature helium is used to cool the lead. The optimum solution is found when the heat flow at the cold end is minimized.. In this study, a detailed numerical thermal model of a power lead design for the SSC has been developed. It was adapted from the dynamic model developed by Schiesser. This model was used to determine the optimum dimensions that minimize the Carnot refrigeration and liquefaction work due to the leads

  8. Commissioning of the Cryogenic System for the ATLAS Superconducting Magnets

    CERN Document Server

    Delruelle, N; Bradshaw, T; Haug, F; ten Kate, H H J; Passardi, Giorgio; Pengo, R; Pezzetti, M; Pirotte, O; Rochford, J

    2006-01-01

    The paper describes the test results of the helium cryoplant for the superconducting magnets of the ATLAS particle detector at CERN. It consists of two refrigerators used in common by all the magnets and of two proximity cryogenic systems (PCS) interfacing respectively the toroids and the central solenoid. Emphasis is given to the commissioning of the refrigerators: the main unit of 6 kW equivalent capacity at 4.5 K and the thermal shield refrigerator providing 20 kW between 40 K and 80 K. The first unit is used for refrigeration at 4.5 K and for the cooling of three sets of 20 kA current leads, while the second one provides, in addition to the 20 kW refrigeration of the thermal shields, 60 kW for the cool-down to 100 K of the 660 ton cold mass of the magnets. The tests, carried out with the equipment in the final underground configuration, are extended to the PCS that includes the large liquid helium centrifugal pumps (each providing 1.2 kg/s) for forced-flow cooling of the magnets and the complex distributi...

  9. LDR cryogenics

    Science.gov (United States)

    Nast, T.

    1988-01-01

    A brief summary from the 1985 Large Deployable Reflector (LDR) Asilomar 2 workshop of the requirements for LDR cryogenic cooling is presented. The heat rates are simply the sum of the individual heat rates from the instruments. Consideration of duty cycle will have a dramatic effect on cooling requirements. There are many possible combinations of cooling techniques for each of the three temperatures zones. It is clear that much further system study is needed to determine what type of cooling system is required (He-2, hybrid or mechanical) and what size and power is required. As the instruments, along with their duty cycles and heat rates, become better defined it will be possible to better determine the optimum cooling systems.

  10. Operational tests of the BNL 24.8 kW, 3.80K helium refrigerator

    International Nuclear Information System (INIS)

    Brown, D.P.; Farah, Y.; Gibbs, R.J.; Schlafke, A.P.; Sondericker, J.H.

    1986-01-01

    The BNL 24.8 kW refrigeration system is completely installed and major portions of the acceptance tests have been completed. So far, the equipment tested has performed at or above design levels. The room temperature helium compressor station has been completely tested and accepted. The two-stage oil injected screw compressor system exhibited an isothermal efficiency of 57% while delivering a helium flow in excess of 4400 g/s. Data on the performance of the make-up gas cryogenic purifier is also given. The refrigerator turbomachinery, 13 expanders and three cold compressors, has been tested at room temperature for mechanical integrity and control stability. The first cooldown to operating temperature will be attempted in late August, 1985

  11. Operational tests of the BNL 24.8 kW, 3.8 K helium refrigerator

    International Nuclear Information System (INIS)

    Brown, D.P.; Farah, Y.; Gibbs, R.J.

    1985-01-01

    The BNL 24.8 kW refrigeration system is completely installed and major portions of the acceptance tests have been completed. So far, the equipment tested has performed at or above design levels. The room temperature helium compressor station has been completely tested and accepted. The two-stage oil injected screw compressor system exhibited an isothermal efficiency of 57% while delivering a helium flow in excess of 4400 g/s. Data on the performance of the make-up gas cryogenic purifier is given. The refrigerator turbomachinery, 13 expanders and three cold compressors, has been tested at room temperature for mechanical integrity and control stability. The first cooldown to operating temperature will be attempted in late August, 1985. 2 refs., 5 figs

  12. Design of the fill/transfer station cryostat for the OMEGA cryogenic target system

    International Nuclear Information System (INIS)

    Gibson, C.R.; Charmin, C.M.; Del Bene, J.V.; Hoffmann, E.H.; Besenbruch, G.E.; Anteby, I.

    1997-09-01

    General Atomics is designing, testing and fabricating a system for supplying cryogenic targets for the University of Rochester's OMEGA laser system. A prototype system has demonstrated the filling of 1 mm diameter, 3 microm wall plastic spheres to 111 MPa (1,100 atm) with deuterium and then cooling to 18 K to condense the fuel. The production design must be capable of routinely filling and cooling targets with a 50/50 mix of deuterium and tritium and transferring them to a device which places the targets into the focus of 60 laser beams. This paper discusses the design and analysis of the production Fill/Transfer Station cryostat. The cryostat has two major components, a fixed base and a removable dome. The joint between the base and the dome is similar to a bayonet fitting and is sealed by a room temperature elastomeric o-ring. Since the cryostat must be housed in a glovebox, its design is driven strongly by maintenance requirements. To reach the equipment inside the cryostat, the dome is simply unbolted and lifted. The inside of the cryostat is maintained at 16 K by a closed loop helium flow system. Gaseous helium at about 1.4 MPa (200 psi) flows through tubes which are brazed to the inner walls. Cooling is provided by several cryocoolers which are located external to the cryostat. Liquid nitrogen is used as a heat intercept and to precool the helium gas

  13. Sonic Helium Detectors in the Fermilab Tevatron

    Science.gov (United States)

    Bossert, R. J.

    2006-04-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  14. Sonic helium detectors in the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Bossert, R.J.; Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years

  15. Separation of compressor oil from helium

    International Nuclear Information System (INIS)

    Strauss, R.; Perrotta, K.A.

    1982-01-01

    Compression of helium by an oil-sealed rorary screw compressor entrains as much as 4000 parts per million by weight of liquid and vapor oil impurities in the gas. The reduction below about 0.1 ppm for cryogenic applications is discussed. Oil seperation equipment designed for compressed air must be modified significantly to produce the desired results with helium. The main differences between air and helium filtration are described. A description of the coalescers is given with the continuous coalescing of liquid mist from air or other gas illustrated. Oil vapor in helium is discussed in terms of typical compressor oils, experimental procedure for measuring oil vapor concentration, measured volatile hydrocarbons in the lubricants, and calculated concentration of oil vapor in Helium. Liquid oil contamination in helium gas can be reduced well below 0.1 ppm by a properly designed multiple state coalescing filter system containing graded efficiency filter elements. The oil vapor problem is best attached by efficiently treating the oil to remove most of the colatiles before charging the compressor

  16. Evaluation of a novel helium ionization detector within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Franchina, Flavio A; Maimone, Mariarosa; Sciarrone, Danilo; Purcaro, Giorgia; Tranchida, Peter Q; Mondello, Luigi

    2015-07-10

    The present research is focused on the use and evaluation of a novel helium ionization detector, defined as barrier discharge ionization detector (BID), within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography (FM GC×GC). The performance of the BID device was compared to that of a flame ionization detector (FID), under similar FM GC×GC conditions. Following development and optimization of the FM GC×GC method, the BID was subjected to fine tuning in relation to acquisition frequency and discharge flow. Moreover, the BID performance was measured and compared to that of the FID, in terms of extra-column band broadening, sensitivity and dynamic range. The comparative study was carried out by using standard compounds belonging to different chemical classes, along with a sample of diesel fuel. Advantages and disadvantages of the BID system, also within the context of FM GC×GC, are critically discussed. In general, the BID system was characterized by a more limited dynamic range and increased sensitivity, compared to the FID. Additionally, BID and FID contribution to band broadening was found to be similar under the operational conditions applied. Particular attention was devoted to the behaviour of the FM GC×GC-BID system toward saturated and aromatic hydrocarbons, for a possible future use in the field of mineral-oil food contamination research. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Applicability of ASST-A helium refrigeration system for JLab End Station Refrigerator

    Science.gov (United States)

    Hasan, N.; Knudsen, P.; Ganni, V.

    2017-12-01

    The MØLLER experiment at Jefferson Lab (JLab) is a high power (5 kW) liquid hydrogen target scheduled to be operational in the 12 GeV-era. At present, cryogenic loads and targets at three of JLab’s four experimental halls are supported by the End Station Refrigerator (ESR) - a CTI/Helix 1.5 kW 4.5 K refrigerator. It is not capable of supporting the high power target load and a capacity upgrade of the ESR cryogenic system is essential. The ASST-A helium refrigeration system is a 4 kW 4.5 K refrigerator. It was designed and used for the Superconducting Super Collider Lab (SSCL) magnet string test and later obtained by JLab after the cancellation of that project. The modified ASST-A refrigeration system, which will be called ESR-II along with a support flow from JLab’s Central Helium Liquefier (CHL) is considered as an option for the End Station Refrigerator capacity upgrade. The applicability of this system for ESR-II under varying load conditions is investigated. The present paper outlines the findings of this process study.

  18. The Future with Cryogenic Fluid Dynamics

    Science.gov (United States)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  19. Re-Condensation and Liquefaction of Helium and Hydrogen Using Coolers

    International Nuclear Information System (INIS)

    Green, Michael A.

    2009-01-01

    Coolers are used to cool cryogen free devices at temperatures from 5 to 30 K. Cryogen free cooling involves a temperature drop within the device being cooled and between the device and the cooler cold heads. Liquid cooling with a liquid cryogen distributed over the surface of a device combined with re-condensation can result in a much lower temperature drop between the cooler and the device being cooled. The next logical step beyond simple re-condensation is using a cooler to liquefy the liquid cryogen in the device. A number of tests of helium liquefaction and re-condensation of helium have been run using a pulse tube cooler in the drop-in mode. This report discusses the parameter space over which re-condensation and liquefaction for helium and hydrogen can occur.

  20. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  1. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  2. Numerical study of emergency cryogenics gas relief into confined spaces

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The presented work focuses on the risk analysis and the consequences of the unexpected leak to the tunnel of cryogenics gases. Formation of the gas mixture and its propagation along tunnels is an important issue for the safe operation of cryogenic machines, including superconducting accelerators or free electron lasers. As the cryogenics gas the helium and argon will be considered. A minimal numerical model will be presented and discussed. Series of numerical results related to emergency helium relief to the CERN tunnel and related to unexpected leak of the argon to an underground tunnel, will be shown. The numerical results will show temperature distribution, oxygen deficiency and gas cloud propagation in function of intensity of the leak and intensity of the ventilation.

  3. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  4. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  5. Cryogenic system for VECC K500 superconducting cyclotron

    CERN Document Server

    Pal, G; Bhattacharyya, T K; Bhandari, R K

    2009-01-01

    VEC Centre, Kolkata in India is at an advanced stage of commissioning a K500 superconducting cyclotron. The superconducting coil of the magnet for cyclotron is cooled by liquid helium. Three liquid helium cooled cryopanels, placed inside the Dees of the radiofrequency system, maintain the vacuum in the acceleration region of the superconducting cyclotron. The cryogenic system for magnet for cyclotron has been tested by cooling the coil and energizing the magnet. The cryogenic system for cryopanels has also been tested. Heater and temperature sensor were placed on the liquid helium cold head for cryopanel. The temperature of the cold head was observed to be below 20 K upto a heat load of 11.7 watt.

  6. Helium turbo-expander with an alternator

    International Nuclear Information System (INIS)

    Akiyama, Yoshitane

    1980-01-01

    Study was made on a helium turbo-expander, the heart of helium refrigerator systems, in order to develop a system which satisfies the required conditions. A helium turbo-expander with externally pressurized helium gas bearings at the temperature of liquid nitrogen and an alternator as a brake have been employed. The essential difference between a helium turbo-expander and a nitrogen turbo-expander was clarified. The gas bearing lubricated with nitrogen at room temperature and the gas bearing lubricated with helium at low temperature were tested. The flow rate of helium in a helium refrigerator for a large superconducting magnet is comparatively small, therefore a helium turbine must be small, but the standard for large turbine design can be applied to such small turbine. Using the alternator as a brake, the turbo-expander was easily controllable electrically. The prototype turbo-expander was made, and the liquefaction test with it and MHD power generation test were carried out. (Kako, I.)

  7. Leak testing of cryogenic components — problems and solutions

    Science.gov (United States)

    Srivastava, S. P.; Pandarkar, S. P.; Unni, T. G.; Sinha, A. K.; Mahajan, K.; Suthar, R. L.

    2008-05-01

    A prototype of Cold Neutron Source (CNS) for Dhruva Reactor is being manufactured at Centre for Design and Manufacture (CDM), BARC, Mumbai for validating the mechanical and thermal engineering design aspects, besides checking the integrity of all joints and components at low temperature, 77K. Task of a Cold Neutron Source is to generate cold neutrons by cooling down the thermal neutrons, which are originally produced in a nuclear research reactor. The complete Cold Neutron Source system comprises a complex arrangement of moderator pot, transfer line (piping), pumps, refrigerators, storage tanks, a heat exchanger and associated controls and instrumentation. The heart of the system is moderator pot in which water (moderator) is cooled down by Liquid Nitrogen (LN2) being circulated through an annular cavity machined on the walls of the pot. Transfer lines for LN2 basically consist of two concentric Stainless Steel flexible pipes, which are joined to the inlet and outlet Aluminium tubes of the moderator pot through transition joints. Leak in any component may result in loss of liquid Nitrogen, degradation of vacuum, which in turn may affect the heat removal efficiency of the source. Hence, leak testing was considered a very important quality control tool and all joints and components were subjected to helium leak test using mass spectrometer leak detector (MSLD) at cryogenic temperature. During one of the earlier experiments, flow of LN2 through inner flexible pipe of the transfer line resulted in rise of pressure in the vacuum annulus and sweating on the outer flexible pipe. After investigations it was found that large thermal stress compounded with mechanical stress resulted in cracks in the inner pipe. Accordingly design was modified to get leak proof transfer line assembly. Further, during leak testing of thin wall moderator pot, gross leak was observed on the outer jacket welded joint. Leak was so large that even a small amount of Helium gas in the vicinity of the

  8. Impact of large beam-induced heat loads on the transient operation of the beam screens and the cryogenic plants of the Future Circular Collider (FCC)

    Science.gov (United States)

    Correia Rodrigues, H.; Tavian, L.

    2017-12-01

    The Future Circular Collider (FCC) under study at CERN will produce 50-TeV high-energy proton beams. The high-energy particle beams are bent by 16-T superconducting dipole magnets operating at 1.9 K and distributed over a circumference of 80 km. The circulating beams induce 5 MW of dynamic heat loads by several processes such as synchrotron radiation, resistive dissipation of beam image currents and electron clouds. These beam-induced heat loads will be intercepted by beam screens operating between 40 and 60 K and induce transients during beam injection. Energy ramp-up and beam dumping on the distributed beam-screen cooling loops, the sector cryogenic plants and the dedicated circulators. Based on the current baseline parameters, numerical simulations of the fluid flow in the cryogenic distribution system during a beam operation cycle were performed. The effects of the thermal inertia of the headers on the helium flow temperature at the cryogenic plant inlet as well as the temperature gradient experienced by the beam screen has been assessed. Additionally, this work enabled a thorough exergetic analysis of different cryogenic plant configurations and laid the building-block for establishing design specification of cold and warm circulators.

  9. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  10. RECENT PROGRESS IN DYNAMIC PROCESS SIMULATION OF CRYOGENIC REFRIGERATORS

    International Nuclear Information System (INIS)

    Kuendig, A.

    2008-01-01

    At the CEC 2005 a paper with the title ''Helium refrigerator design for pulsed heat load in Tokamaks'' was presented. That paper highlighted the control requirements for cryogenic refrigerators to cope with the expected load variations of future nuclear fusion reactors. First dynamic computer simulations have been presented.In the mean time, the computer program is enhanced and a new series of process simulations are available. The new program considers not only the heat flows and the temperature variations within the heat exchangers, but also the variation of mass flows and pressure drops. The heat transfer numbers now are calculated in dependence of the flow speed and the gas properties. PI-controllers calculate the necessary position of specific valves for maintaining pressures, temperatures and the rotation speed of turbines.Still unsatisfactory is the fact, that changes in the process arrangement usually are attended by adjustments in the program code. It is the main objective of the next step of development a more flexible code which enables that any user defined process arrangements can be assembled by input data

  11. Helium hammer in superfluid transfer

    Science.gov (United States)

    Tward, E.; Mason, P. V.

    1984-01-01

    Large transient pressure pulses, referred to as a helium hammer, which occurred in the transfer line of the main cryogenic tank during the development tests of the Infrared Astronomical Satellite, launched on January 25, 1983, are analyzed, and the measures taken to prevent a failure described. The modifications include an installation of a 2.3-liter surge tank upstream, and a back-up relief valve downstream, of a burst disk. The surge tank is designed to attenuate a 0.33-MPa pressure pulse at the inlet down to 0.092 MPa at the outlet. A mechanism of the pulse generation is suggested, which involves flashing and rapid recondensation of the small amount of liquid entering the warm section of a transition to room temperature.

  12. Cryogenic refrigeration requirements for superconducting insertion devices in a light source

    International Nuclear Information System (INIS)

    Green, Michael A.; Green, Michael A.; Green, Michael A.

    2003-01-01

    This report discusses cryogenic cooling superconducting insertion devices for modern light sources. The introductory part of the report discusses the difference between wiggler and undulators and how the bore temperature may affect the performance of the magnets. The steps one would take to reduce the gap between the cold magnet pole are discussed. One section of the report is devoted to showing how one would calculate the heat that enters the device. Source of heat include, heat entering through the vacuum chamber, heating due to stray electrons and synchrotron radiation, heating due to image current on the bore, heat flow by conduction and radiation, and heat transfer into the cryostat through the magnet leads. A section of the report is devoted to cooling options such as small cryo-cooler and larger conventional helium refrigerators. This section contains a discussion as to when it is appropriate to use small coolers that do not have J-T circuits. Candidate small cryo-coolers are discussed in this section of the report. Cooling circuits for cooling with a conventional refrigerator are also discussed. A section of the report is devoted to vibration isolation and how this may affect how the cooling is attached to the device. Vibration isolation using straps is compared to vibration isolation using helium heat pipes. The vibration isolation of a conventional refrigeration system is also discussed. Finally, the cool down of an insertion device is discussed. The device can either be cooled down using liquid cryogenic nitrogen and liquid helium or by using the cooler used to keep the devices cold over the long haul

  13. Use of Tritium and Helium to Define Groundwater Flow Conditions in a Coastal Aquifer Influenced by Seawater Intrusion: Everglades National Park

    Science.gov (United States)

    Price, R. M.; Top, Z.; Happell, J. D.; Swart, P. K.

    2002-05-01

    The concentrations of tritium (3H) and helium isotopes (3He, 4He) were used as tracers of groundwater flow in Everglades National Park, South Florida (USA). Both fresh and brackish groundwaters were collected from 47 wells completed at depths ranging from 2 m to 73 m within the Surficial Aquifer System (SAS). Ages as determined by 3H/3He techniques indicate that groundwater within the upper 28 m originated after the nuclear era (within the last 42 yr) and below 28 m before then with evidence of some mixing at the interface. Inter-annual variation of the 3H/3He ages within the upper 28 m was significant throughout the three year investigation, suggesting varying hydrologic conditions. The age of the shallow groundwater in the southern regions of ENP (Rocky Glades and Taylor Slough) tended to be younger following times of high water level when the dominant direction of groundwater flow water was to the southeast. In the same region, significantly older groundwater was observed following times of low water levels and a shift in the groundwater flow direction toward the southwest. Near the canals, the reverse occurred with the ages of shallow groundwater tending to be younger following times of low water levels, suggesting a greater influence of recharge water from the canals to the surrounding aquifer. Although water levels and the direction of hydrologic gradients vary greatly within a 3-month time period, the average age of the shallow (Aquifer suggesting a preferential flow path to the deeper formation. An increase in 4He with depth suggests that radiogenic 4He produced in the underlying Hawthorn Group is dispersed into the SAS. Higher Δ 4He values in brackish groundwaters compared to fresh waters from similar depths indicate an enhanced vertical transport of 4He in the seawater mixing zone. Seawater intrudes at distances of 6 to 28 km at shallow depths (Florida Bay and the Gulf of Mexico over an approximately 6 to 28 km wide strip that parallels the coastline.

  14. The DIII-D cryogenic system upgrade

    International Nuclear Information System (INIS)

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 ell/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed

  15. The DIII-D cryogenic system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

  16. Helium leak testing the Westinghouse LCP coil

    International Nuclear Information System (INIS)

    Merritt, P.A.; Attaar, M.H.; Hordubay, T.D.

    1983-01-01

    The tests, equipment, and techniques used to check the Westinghouse LCP coil for coolant flow path integrity and helium leakage are unique in terms of test sensitivity and application. This paper will discuss the various types of helium leak testing done on the LCP coil as it enters different stages of manufacture. The emphasis will be on the degree of test sensitivity achieved under shop conditions, and what equipment, techniques and tooling are required to achieve this sensitivity (5.9 x 10 -8 scc/sec). Other topics that will be discussed are helium flow and pressure drop testing which is used to detect any restrictions in the flow paths, and the LCP final acceptance test which is the final leak test performed on the coil prior to its being sent for testing. The overall allowable leak rate for this coil is 5 x 10 -6 scc/sec. A general evaluation of helium leak testing experience are included

  17. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  18. The cryogenic storage ring CSR

    Science.gov (United States)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  19. The cryogenic storage ring CSR.

    Science.gov (United States)

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  20. The cryogenic storage ring CSR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. von; Becker, A.; Berg, F.; Blaum, K.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); and others

    2016-06-15

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm{sup −3} is derived, equivalent to a room-temperature pressure below 10{sup −14} mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  1. submitter Superconducting instrumentation for high Reynolds turbulence experiments with low temperature gaseous helium

    CERN Document Server

    Pietropinto, S; Baudet, C; Castaing, B; Chabaud, B; Gagne, Y; Hébral, B; Ladam, Y; Lebrun, P; Pirotte, O; Roche, P

    2003-01-01

    Turbulence is of common experience and of high interest for industrial applications, despite its physical grounds is still not understood. Cryogenic gaseous helium gives access to extremely high Reynolds numbers (Re). We describe an instrumentation hosted in CERN, which provides a 6 kW @ 4.5 K helium refrigerator directly connected to the experiment. The flow is a round jet; the flow rates range from 20 g/s up to 260 g/s at 4.8 K and about 1.2 bar, giving access to the highest controlled Re flow ever developed. The experimental challenge lies in the range of scales which have to be investigated: from the smallest viscous scale η, typically 1 μm at Re=107 to the largest L∼10 cm. The corresponding frequencies: f=v/η can be as large as 1 MHz. The development of an original micrometric superconducting anemometer using a hot spot and its characteristics will be discussed together with its operation and the perspectives associated with superconducting anemometry.

  2. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  3. THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) CRYOGENIC SYSTEM AT BNL: REVIEW OF THE MODIFICATIONS AND UPGRADES SINCE 2002 AND PLANNED IMPROVEMENTS

    International Nuclear Information System (INIS)

    THAN, Y.R.; TUOZZOLO, J.; SIDI-YAKHLEF, A.; GANNI, V.; KNUDSEN, P.; ARENIUS, D.

    2007-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system which also resulted in improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases by balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid helium storage tanks, insulation of the third liquid helium storage tank, compressor bypass flow reduction and the addition of a load turbine (Joule-Thompson expander) with associated heat exchangers at the cold end of the plant. Also, liquid helium pumps used for forced circulation of the sub-cooled helium through the magnet loops were eliminated by an accelerator supply flow reconfiguration. Planned future upgrades include the resizing of expanders 5 and 6 to increase their efficiencies

  4. Simplicity works for superfluid helium

    International Nuclear Information System (INIS)

    Bowley, Roger

    2000-01-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  5. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)

    2000-02-01

    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  6. The Relativistic Heavy Ion Collider (RHIC) cryogenic system at Brookhaven National Laboratory: Review of the modifications and upgrades since 2002 and planned improvements

    International Nuclear Information System (INIS)

    Than, R.; Tuozzolo, Joseph; Sidi-Yekhlef, Ahmed; Ganni, Venkatarao; Knudsen, Peter; Arenius, Dana

    2008-01-01

    Brookhaven National Laboratory continues its multi-year program to improve the operational efficiency, reliability, and stability of the cryogenic system, which also resulted in an improved beam availability of the Relativistic Heavy Ion Collider (RHIC). This paper summarizes the work and changes made after each phase over the past four years to the present, as well as proposed future improvements. Power usage dropped from an initial 9.4 MW to the present 5.1 MW and is expected to drop below 5 MW after the completion of the remaining proposed improvements. The work proceeded in phases, balancing the Collider's schedule of operation, time required for the modifications and budget constraints. The main changes include process control, compressor oil removal and management, elimination of the use of cold compressors and two liquid-helium storage tanks, insulation of the third liquid-helium storage tank, compressor-bypass flow reduction and the addition of a load turbine (Joule-Thomson)

  7. Thermal-hydraulic optimization of flexible transfer lines for liquid helium; Thermohydraulische Optimierung flexibler Transferleitungen fuer Fluessighelium

    Energy Technology Data Exchange (ETDEWEB)

    Dittmar, Nico; Haberstroh, Christoph; Hesse, U. [Technische Univ. Dresden (Germany). Bitzer-Stiftungsprofessur fuer Kaelte-, Kryo- und Kompressorentechnik; Wolfram, M.; Krzyzowski, M.; Raccanelli, A. [CryoVac Gesellschaft fuer Tieftemperaturtechnik mbH und Co. KG, Troisdorf (Germany)

    2014-07-01

    Cooling systems and applications at very low temperatures are based on the use of liquid helium as cryogenic agent; the normal boiling temperature of helium-4 is 4.2 K. Due to the restricted economic production possibilities and the high energetic expenditure for helium liquefaction an efficient and sustainable handling with the resources is recommended. In university facilities the liquid helium is usually stored in containers and filled into smaller containers for transport using cryogenic transfer lines. This procedure can cause 20% loss by evaporation due to heat input and friction pressure losses. The gaseous helium has to be collected for re-liquefaction. The contribution shows that using systematic measurements an increase of the transfer rate and the efficiency of the helium filling system can be reached by a modified transfer line design.

  8. The Cryogenic Supervision System in NSRRC

    CERN Document Server

    Li, Hsing-Chieh; Chiou, Wen-Song; Hsiao, Feng-Zone; Tsai, Zong-Da

    2005-01-01

    The helium cryogenic system in NSRRC is a fully automatic PLC system using the Siemens SIMATIC 300 controller. Modularization in both hardware and software makes it easy in the program reading, the system modification and the problem debug. Based on the Laview program we had developed a supervision system taking advantage of the Internet technology to get system's real-time information in any place. The functions of this supervision system include the real-time data accessing with more than 300 digital/analog signals, the data restore, the history trend display, and the human machine interface. The data is accessed via a Profibus line connecting the PLC system and the supervision system with a maximum baud rate 1.5 Mbit/s. Due to this supervision system, it is easy to master the status of the cryogenic system within a short time and diagnose the problem.

  9. Characterization of titanium alloys for cryogenic applications

    International Nuclear Information System (INIS)

    Reytier, M.; Kircher, F.; Levesy, B.

    2002-01-01

    Titanium alloys are employed in the design of superconducting magnet support systems for their high mechanical strength associated with their low thermal conductivity. But their use requires a careful attention to their crack tolerance at cryogenic temperature. Measurements have been performed on two extra low interstitial materials (Ti-5Al-2.5Sn ELI and Ti-6Al-4V ELI) with different thickness and manufacturing process. The investigation includes the tensile properties at room and liquid helium temperatures using smooth and notched samples. Moreover, the fracture toughness has been determined at 4.2 K using Compact Tension specimens. The microstructure of the different alloys and the various fracture surfaces have also been studied. After a detailed description of the experimental procedures, practical engineering characteristics are given and a comparison of the different titanium alloys is proposed for cryogenic applications

  10. The cryogenic control system of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    LI Gang; WANG Ke-Xiang; ZHAO Ji-Jiu; YUE Ke-Juan; DAI Ming-Sui; HUANG Yi-Ling; JIANG Bo

    2008-01-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron-Positron Collider Upgrade Project(BEPCⅡ).The system consists of a Siemens PLC(ST-PLC,Programmable Logic Controller)for the compressor control,an Allen Bradley(AB)PLC for the cryogenic equipments,and the Experimental Physics and Industrial Control System(EPICS)that integrates the PLCs.The system fully automates the superconducting cryogenic control with process control,PID(Proportional-Integral-Differential)control loops,real-time data access and data storage,alarm handler and human machine interface.It is capable of automatic recovery as well.This paper describes the BEPCⅡ cryogenic control system,data communication between ST-PLC and EPICS Input/Output Controllers(IOCs),and the integration of the flow control,the low level interlock,the AB-PLC,and EPICS.

  11. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  12. Low-temperature centrifugal helium compressor

    International Nuclear Information System (INIS)

    Kawada, M.; Togo, S.; Akiyama, Y.; Wada, R.

    1974-01-01

    A centrifugal helium compressor with gas bearings, which can be operated at the temperature of liquid nitrogen, has been investigated. This compressor has the advantages that the compression ratio should be higher than the room temperature operation and that the contamination of helium could be eliminated. The outer diameter of the rotor is 112 mm. The experimental result for helium gas at low temperature shows a flow rate of 47 g/s and a compression ratio of 1.2 when the inlet pressure was 1 ata and the rotational speed 550 rev/s. The investigation is now focused on obtaining a compression ratio of 1.5. (author)

  13. Dynamic Simulation of AN Helium Refrigerator

    Science.gov (United States)

    Deschildre, C.; Barraud, A.; Bonnay, P.; Briend, P.; Girard, A.; Poncet, J. M.; Roussel, P.; Sequeira, S. E.

    2008-03-01

    A dynamic simulation of a large scale existing refrigerator has been performed using the software Aspen Hysys®. The model comprises the typical equipments of a cryogenic system: heat exchangers, expanders, helium phase separators and cold compressors. It represents the 400 W @ 1.8 K Test Facility located at CEA—Grenoble. This paper describes the model development and shows the possibilities and limitations of the dynamic module of Aspen Hysys®. Then, comparison between simulation results and experimental data are presented; the simulation of cooldown process was also performed.

  14. Acquisition/expulsion system for earth orbital propulsion system study. Volume 1: Summary report. [cryogenic storage and fuel flow regulation system for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    Design, construction, and quality control tests on a dual screen liner device for the space shuttle orbiter cryogenic fuel tank and feedliner system are summarized. The dual stainless steel mesh of the device encloses eight liquid fuel channels and provides the liquid/vapor interface stability required for low gravity orbits.

  15. Coldness generation and heat revalorization: cryogenic machines; Production de froid et revalorisation de la chaleur: machines cryogeniques

    Energy Technology Data Exchange (ETDEWEB)

    Feidt, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    2005-12-01

    This study treats more particularly of the generation and use of very low temperatures (typically below -100 deg. C). Such temperatures involve different techniques and new physical principles which are examined in this document. The high temperature re-valorization of heat remains poorly explored and is just evoked in this document. Content: 1 - temperature range of cryogenics; 2 - cascade cycles; 3 - gases liquefaction: liquid air, liquid helium, particular properties of helium and refrigeration (Pomaranchuk effect, helium refrigerators); 4 - thermomagnetic effects: basic principles, magnetic refrigerating machine; 5 - conclusions and perspectives about cryogenics. (J.S.)

  16. Mixed helium-3 - helium-4 calorimeter. Very low temperature calorimetry; Calorimetre mixte a helium-3 et helium-4. Calorimetrie a tres basse temperature

    Energy Technology Data Exchange (ETDEWEB)

    Testard, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    A description is given of a double-racket calorimeter using helium-4 and helium-3 as the cryogenic fluids and making it possible to vary the temperature continuously from 0.35 K to 4.2 K. By using an electric thermal regulator together with liquid hydrogen it is possible to extend this range up to about 30 K. In the second part, a review is made of the various, methods available for measuring specific heats. The method actually used in the apparatus previously described is described in detail. The difficulties arising from the use of an exchange gas for the thermal contact have been solved by the use of adsorption pumps. (author) [French] On decrit un calorimetre a double enceinte utilisant comme fluide cryogenique l'helium-4 et l'helium-3 et permettant de varier continuement la temperature de 0,35 K a 4,2 K. L'utilisation d'un regulateur thermique electrique ainsi que celle d'hydrogene, liquide permettent d'etendre cette gamme jusqu'a 30 K environ. Dans une deuxieme partie, on passe en revue les diverses methodes de mesure des chaleurs specifiques. La methode concrete utilisee dans l'appareil precedemment decrit est exposee en detail. Les difficultes inherentes a l'utilisation de gaz d'echange comme agent de contact thermique ont ete levees par la mise en oeuvre de pompes a adsorbant. (auteur)

  17. Coupled Cryogenic Thermal and Electrical Models for Transient Analysis of Superconducting Power Devices with Integrated Cryogenic Systems

    Science.gov (United States)

    Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.

    2017-12-01

    Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.

  18. Determination of helium in beryl minerals

    International Nuclear Information System (INIS)

    Souza Barcellos, E. de.

    1985-08-01

    In order to obtain the diffusion coefficients of helium in beryl and phenacite samples at various temperatures, helium leak rates were measured in these minerals at these temperatures. Mass spectrometry (MS) was used to obtain helium leak rates and the gas flow was plotted against time. The gas quantity determined by MS was first obtained at various temperatures until no helium leak rate was detected. After that, these samples were irradiated with fast neutrons to produce helium which was measured again. This procedure was used to estimate the experimental error. The quantity of helium produced by interaction of gamma radiation with beryl minerals was theoretically calculated from the amount of thorium-232 at the neighbourhood of the samples. The quantity of helium produced in the minerals due to uranium and thorium decay was calculated using the amount of these heavy elements, and the results were compared with the amounts determined by MS. The amount of potassium-40 was determined in order to derive the quantity of argonium-40, since some workers found argonium in excess in these minerals. The quantity of helium in the beryl samples (s) was determined in the center and in the surface of the samples in order to obtain informations about the effectiveness of the Be(α, η) He reaction. Beryl and phenacite minerals were choosen in this research since they are opposite each other with respect to the helium contents. Both have beryllium in their compositon but beryl hold a large amount of helium while phenacite, in spite of having about three times more beryllium than beryl, do not hold the gas. (author) [pt

  19. On-board cryogenic system for magnetic levitation of trains

    Energy Technology Data Exchange (ETDEWEB)

    Baldus, S A.W.; Kneuer, R; Stephan, A

    1975-02-01

    An experimental car based on electrodynamic levitation with superconducting magnets was developed and manufactured with an on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. Processes and components are discussed, and a brief description of the first results for the whole system under simulation conditions is given.

  20. On-board cryogenic system for magnetic levitation of trains

    International Nuclear Information System (INIS)

    Asztalos, St.; Baldus, W.; Kneuer, R.; Stephan, A.

    1974-01-01

    An experimental car based on electrodynamic levitation with superconducting magnets has been developed and manufactured by AEG, BBC, Siemens and other partners, together with Linde AG as the firm responsible for the on-board cryogenic system. This system has to cope with new conditions and cryogenic tasks. It can be characterized in principle by liquid helium heat exchanger units, compressors, transfer lines, rotatable and movable couplings and junctions. All transfer lines and couplings consist of three coaxial ducts for three different streams. This paper reports on processes and components. A brief description of the first results for the whole system under simulation conditions is given. (author)

  1. Cryogenic System for the Cryomodule Test Stand at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    White, Michael J. [Fermilab; Hansen, Benjamin [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-10-09

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description of the heat load measurement plan.

  2. Introduction to cryogenic engineering

    CERN Multimedia

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  3. Cryogenics for LDR

    Science.gov (United States)

    Kittel, Peter

    1988-01-01

    Three cryogenic questions of importance to Large Deployable Reflector (LDR) are discussed: the primary cooling requirement, the secondary cooling requirement, and the instrument changeout requirement.

  4. Analysis of the flow imbalance in the KSTAR PF cryo-circuit

    International Nuclear Information System (INIS)

    Lee, Hyun-Jung; Park, Dong-Seong; Kwag, Sang-Woo; Joo, Jae-Jun; Moon, Kyung-Mo; Kim, Nam-Won; Lee, Young-Joo; Park, Young-Min; Yang, Hyung-Lyeol

    2015-01-01

    Highlights: • Investigate of flow imbalance trend for the KSTAR PF superconducting magnet. • Flow imbalance is compared with individual magnet test and integration magnet test. • Intensifying of flow imbalance is proven from the flow monitoring in the KSTAR PF circuit. • Flow behavior is analyzed during magnet charging in the circulator circuit. • Variation of magnet outlet temperature is analyzed due to flow imbalance. - Abstract: The KSTAR PF cryo-circuit is a quasi-closed circulation system in which more than 370 g/s of supercritical helium (SHe) is circulated using a SHe circulator. The heated helium from superconducting magnet is cooled through sub cooler (4.3 K). The circulator is operated at 4.5 K and 6.5 bar, and the pressure drop of the circuit is kept at 2 bar in order to maintain the supercritical state and circulator stability. The circuit is connected with helium refrigerator system, distribution system, and supercritical magnet system. It has a hundred branches to supply supercritical helium to the poloidal field superconducting magnet. The branch was designed to optimize the operation conditions and they are grouped for one cryogenic valve has the same length within the cardinal principle of the optimization. Five cryogenic valves are installed to control the mass flow rate, and seven orifice mass flow meters, differential pressure gauges and temperature sensors were installed in front of the magnet in the distribution because upper magnet and lower magnet is symmetric theoretically. The cryogenic pipe line was manufactured with elevation about 10 m between upper magnet and lower magnet. The inlet and outlet helium feed-through were installed at the coil inside in case of KSTAR PF1–PF5 upper magnet and lower magnet. The flow imbalance is caused by void fraction and it could be changed due to manufacturing process even if it has the same length of cooling channel. This creates an imbalance among cooling channels and temperatures are

  5. New Cryogenic Optical Test Capability at Marshall Space Flight Center's Space Optics Manufacturing Technology Center

    Science.gov (United States)

    Kegley, Jeff; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    A new cryogenic optical testing capability exists at Marshall Space Flight Center's Space Optics Manufacturing Technology Center (SOMTC). SOMTC has been performing optical wavefront testing at cryogenic temperatures since 1999 in the X-ray Cryogenic Test Facility's (XRCF's) large vacuum chamber. Recently the cryogenic optical testing capability has been extended to a smaller vacuum chamber. This smaller horizontal cylindrical vacuum chamber has been outfitted with a helium-cooled liner that can be connected to the facility's helium refrigeration system bringing the existing kilowatt of refrigeration capacity to bear on a 1 meter diameter x 2 meter long test envelope. Cryogenic environments to less than 20 Kelvin are now possible in only a few hours. SOMTC's existing instruments (the Instantaneous Phase-shifting Interferometer (IPI) from ADE Phase-Shift Technologies and the PhaseCam from 4D Vision Technologies) view the optic under test through a 150 mm clear aperture BK-7 window. Since activation and chamber characterization tests in September 2001, the new chamber has been used to perform a cryogenic (less than 30 Kelvin) optical test of a 22.5 cm diameter x 127 cm radius of curvature Si02 mirror, a cryogenic survival (less than 30 Kelvin) test of an adhesive, and a cryogenic cycle (less than 20 Kelvin) test of a ULE mirror. A vibration survey has also been performed on the test chamber. Chamber specifications and performance data, vibration environment data, and limited test results will be presented.

  6. Cryogenic systems for the HEB accelerator of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Abramovich, S.; Yuecel, A.

    1994-07-01

    This report discusses the following topics related to the Superconducting Super Collider: Cryogenic system -- general requirements; cryogenic system components; heat load budgets and refrigeration plant capacities; flow and thermal characteristics; process descriptions; cryogenic control instrumentation and value engineering trade-offs

  7. The assessment of helium purification system of small power HTGR

    International Nuclear Information System (INIS)

    Siti Alimah; Sriyono

    2016-01-01

    The helium purification system (HPS) is one of safety system of High Temperature Gas-cooled Reactor. HPS removes impurities in the primary coolant, so that the impact on structure, system and component (SSC) is minimized. The two impurity types are particulates (carbon dust, fission products (Kr, Xe, Cs etc.) and the gases (O_2, N_2, H_2O, CH_4, CO, CO_2 and H_2). Every reactor has a different impurity limit during normal operation, depends on the reactor power, energy conversion system and fuel type. This paper discusses the HPS on HTR-10, HTTR and Indonesian RDE conceptual design. The purpose of this assessment is to determine the optimum HPS design as a role model for Indonesian RDE. The utilized methodology is a literature study based on the operating experiences of both HTR-10 and HTTR as well as the evaluation of RDE conceptual design. This study focuses on the impurities limit during normal operation, the main components of HPS, mass flow-rate and regeneration process. The main component that used in HPS for HTR-10, HTTR and RDE are similar i.e. filter, CuO column, water cooler, molecular sieve bed and cryogenic activated carbon bed. Refer to the HTR-10 and HTTR operational experiences, both of those reactors have a purification systems that capable to maintain the helium purity, even though the impurities limit are different. The HPS of HTTR Japan has a stricter impurities limit that N_2, CH_4, and O_2 should not be contained at all during normal operation and the pre-charcoal trap is used to adsorb the fine dust below 0.1 micron. Both of these parameters can be adopted to the RDE's HPS design to minimize the effect of impurities to SSC. (author)

  8. The design of the helium refrigerator for TORE SUPRA

    International Nuclear Information System (INIS)

    Gistau, G.M.; Claudet, G.

    1984-01-01

    The special cryogenic requirements of TORE SUPRA have called for novel solutions. Pumping the 1,75 K (13 mb) helium bath is achieved by the use of a pair of centrifugal pumps operating at very low temperature, backed up by liquid rings pumps at room temperature. Four oil-lubricated screw compressors mounted in series-parallel form the main cycle helium compression set. The Joule-Thomson expansion valve is replaced by a mechanical expansion engine working with a bi-phase exhaust. The control of the refrigeration system is entirely automatic

  9. Homogeneous Reactor Experiment (HRE) Pond cryogenic barrier technology demonstration: Pre-barrier subsurface hydrology and contaminant transport investigation

    International Nuclear Information System (INIS)

    Moline, G.R.

    1998-03-01

    The Homogeneous Reactor Experiment (HRE) Pond is the site of a former impoundment for radioactive wastes that has since been drained, filled with soil, and covered with an asphalt cap. The site is bordered to the east and south by a tributary that empties into Melton Branch Creek and that contains significant concentrations of radioactive contaminants, primarily 90 Sr. Because of the proximity of the tributary to the HRE disposal site and the probable flow of groundwater from the site to the tributary, it is hypothesized that the HRE Pond is a source of contamination to he creek. As a means for temporary containment of contaminants within the impoundment, a cryogenic barrier technology demonstration was initiated in FY96 with a background hydrologic investigation that continued through FY97. Cryogenic equipment installation was completed in FY97, and freezing was initiated in September of 1997. This report documents the results of a hydrologic and geologic investigation of the HRE Pond/cryogenic barrier site. The purpose of this investigation is to evaluate the hydrologic conditions within and around the impoundment in order to meet the following objectives: (1) to provide a pre-barrier subsurface hydrologic baseline for post-barrier performance assessment; (2) to confirm that the impoundment is hydraulically connected to the surrounding sediments; and (3) to determine the likely contaminant exit pathways from the impoundment. The methods of investigation included water level and temperature monitoring in a network of wells and standpipes in and surrounding the impoundment, a helium tracer test conducted under ambient flow conditions, and geologic logging during the drilling of boreholes for installation of cryogenic probes and temperature monitoring wells

  10. Cryogenic system of the prototype of the superconducting magnet for a deuteron cyclotron-1

    International Nuclear Information System (INIS)

    Alenitskij, Yu.G.; Buzdavin, A.P.; Vasilenko, A.T.

    1987-01-01

    The results achieved in developing a cryogenic system for the superconducting magnet of the deuteron cyclotron are described. The cryogenic system consists of a liquefier-refrigerator with the output 40 l.h, or 150 W of power taken off at 4.5 K, a satellite refrigerator, a cryostat of the superconductiong magnet coil and vessels for liquid nitrogen and helium. Now auxiliary equipment is being mounted and the main parts of the magnet are being manufatured

  11. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R. (China)

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  12. Cryogenics for a vertical test stand facility for testing superconducting radio frequency cavities at RRCAT

    International Nuclear Information System (INIS)

    Gupta, Prabhat Kumar; Kumar, Manoj; Kush, P.K.

    2015-01-01

    Vertical Test Stand (VTS) Facility is located in a newly constructed building of Cryo-Engineering and Cryo-Module Development Division (CCDD). This test facility is one of the important facilities to develop SCRF technologies for superconducting accelerators like Indian Spallation Neutron Source. VTS has to be used for regular testing of the Superconducting Radio Frequency (SRF) Niobium cavities at nominal frequency of 1.3 GHz/ 650 MHz at 4 K / 2 K liquid helium (LHe) bath temperatures. Testing of these cavities at 2 K evaluates cavity processing methods, procedures and would also serve as a pre-qualification test for cavity to test it in horizontal cryostat, called horizontal test stand, with other cavity components such as tuner and helium vessel. Cryogenic technologies play a major role in these cavity testing facilities. Achieving and maintaining a stable temperature of 2 K in these test stands on regular and reliable basis is a challenging task and require broad range of cryogenic expertise, large scale system level understanding and many in-house technological and process developments. Furthermore this test stand will handle large amount of liquid helium. Therefore, an appropriately designed infrastructure is required to handle such large amount of helium gas generated during the operation of VTS .This paper describes the different cryogenic design aspects, initial cryogenic operation results and different cryogenic safety aspects. (author)

  13. MFTF magnet cryogenics

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1981-07-01

    The prime requirement of the cryogenics of the magnets is to assure a superconducting state for the magnet coils, a large task considering their enormous size. The following presentation addresses the principal topics that have been considered in this cryogenic design

  14. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-10-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  15. Commercial helium reserves, continental rifting and volcanism

    Science.gov (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.

    2017-12-01

    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  16. The numerical evaluation of the minimal outlet area of the safety valve in the pipelines of cryogenic installations

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The flow of cold helium in pipes is a fundamental issue of any cryogenic installation. Pipelines for helium transportation can reach lengths of hundreds of meters. The proper selection of size for individual pipelines and safety valves is a crucial part in the consideration of costs for the entire installation and its safe operation. The size of the safety valve must be properly designed in order to avoid a dangerous pressure buildup during normal operation, as well as in the case of emergency. The most commonly occurring dangerous situation is an undesired heat flux in the helium as a result of a broken insulation. In this case, the heat flux can be very intense and the buildup of the pressure in the pipe can be very rapid. In the present work, numerical calculations were used to evaluate the buildup of pressure and temperature in the pipe, in the case of a sudden and intense heat flux. The main goal of the applied numerical procedure was to evaluate the proper sizes of the safety valves in order to avoid a...

  17. Cryogenic instrumentation needs in the controlled thermonuclear research program

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    1976-01-01

    The magnet development effort for the controlled thermonuclear research program will require extensive testing of superconducting coils at various sizes from small-scale models to full-size prototypes. Extensive use of diagnostic instrumentation will be required and to make detailed comparisons of predicted and actual performance in magnet tests and to monitor the test facility for incipient failure modes. At later stages of the program, cryogenic instrumentation will be required to monitor magnet system performance in fusion power reactors. Measured quantities may include temperature, strain, deflection, coil resistance, helium coolant pressure and flow, current, voltages, etc. The test environment, which includes high magnetic fields (up to 8-10 T) and low temperature, makes many commercial measuring devices inoperative or at least inaccurate. In order to ensure reliable measurements, careful screening of commercial devices for performance in the test environment will be required. A survey of potentially applicable instrumentation is presented along with available information on operation in the test environment based on experimental data or on analysis of the physical characteristics of the device. Areas where further development work is needed are delineated

  18. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet

    International Nuclear Information System (INIS)

    Yonemori, Seiya; Ono, Ryo; Nakagawa, Yusuke; Oda, Tetsuji

    2012-01-01

    The absolute density of OH radicals in an atmospheric-pressure helium plasma jet is measured using laser-induced fluorescence (LIF). The plasma jet is generated in room air by applying a pulsed high voltage onto a quartz tube with helium gas flow. The time-averaged OH density is 0.10 ppm near the quartz tube nozzle, decreasing away from the nozzle. OH radicals are produced from water vapour in the helium flow, which is humidified by water adsorbed on the inner surface of the helium line and the quartz tube. When helium is artificially humidified using a water bubbler, the OH density increases with humidity and reaches 2.5 ppm when the water vapour content is 200 ppm. Two-dimensional distribution of air-helium mixture ratio in the plasma jet is also measured using the decay rate of the LIF signal waveform which is determined by the quenching rate of laser-excited OH radicals. (paper)

  19. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  20. Compact cryogenic attachment for Moessbauer spectroscopy with microwave excitation

    International Nuclear Information System (INIS)

    Didenko, N.P.; Amelin, G.P.; Zelentsov, V.I.; Kaminskii, V.L.; Fedorov, N.P.; Fal'kovich, V.M.

    1989-01-01

    A compact cryogenic attachment is described that is placed on a standard helium Dewar flask and permits recording of Moessbauer spectra with excitation by millimeter-band radiation in the temperature range of 4.3-300 K. The design of the attachment allows operation with various gamma-radiation detectors in both horizontal and vertical Moessbauer measurement geometries and its placement in superconducting magnets with a large warm zone

  1. Large Cryogenic Infrastructure for LHC Superconducting Magnet and Cryogenic Component Tests: Layout, Commissioning and Operational Experience

    International Nuclear Information System (INIS)

    Calzas, C.; Chanat, D.; Knoops, S.; Sanmarti, M.; Serio, L.

    2004-01-01

    The largest cryogenic test facility at CERN, located at Zone 18, is used to validate and to test all main components working at cryogenic temperature in the LHC (Large Hadron Collider) before final installation in the machine tunnel. In total about 1300 main dipoles, 400 main quadrupoles, 5 RF-modules, eight 1.8 K refrigeration units will be tested in the coming years.The test facility has been improved and upgraded over the last few years and the first 18 kW refrigerator for the LHC machine has been added to boost the cryogenic capacity for the area via a 25,000 liter liquid helium dewar. The existing 6 kW refrigerator, used for the LHC Test String experiments, will also be employed to commission LHC cryogenic components.We report on the design and layout of the test facility as well as the commissioning and the first 10,000 hours operational experience of the test facility and the 18 kW LHC refrigerator

  2. Some of the QRL team in UJ22 of the LHC tunnel, where the last sector of the cryogenic distribution line was installed.

    CERN Multimedia

    Viviane Li

    2006-01-01

    The cryogenic distribution line "the QRL" is a circle built in 8 sectors, each approximately 3 km in length. It will circulate helium in liquid and gas phases, at different temperatures and pressures, to provide the cryogenic conditions for the superconducting magnets in the LHC tunnel.

  3. Gas Flow Validation with Panda Tests from the OECD SETH Benchmark Covering Steam/Air and Steam/Helium/Air Mixtures

    International Nuclear Information System (INIS)

    Royl, P.; Travis, J.R.; Breitung, W.; Kim, J.; Kim, S.B.

    2009-01-01

    The CFD code GASFLOW solves the time-dependent compressible Navier-Stokes Equations with multiple gas species. GASFLOW was developed for nonnuclear and nuclear applications. The major nuclear applications of GASFLOW are 3D analyses of steam/hydrogen distributions in complex PWR containment buildings to simulate scenarios of beyond design basis accidents. Validation of GASFLOW has been a continuously ongoing process together with the development of this code. This contribution reports the results from the open posttest GASFLOW calculations that have been performed for new experiments from the OECD SETH Benchmark. Discussed are the steam distribution tests 9 and 9 bis, 21 and 21 bis involving comparable sequences with and without steam condensation and the last SETH test 25 with steam/helium release and condensation. The latter one involves lighter gas mixture sources like they can result in real accidents. The helium is taken as simulant for hydrogen

  4. Cryogenic techniques for large superconducting magnets in space

    International Nuclear Information System (INIS)

    Green, M.A.

    1988-12-01

    A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points. Both of these methods will extend the ASTROMAG cryogenic operating life from 2 years to almost 4 years. 14 refs., 8 figs., 4 tabs

  5. A vibrating quartz fork - a tool for cryogenic helium research

    Czech Academy of Sciences Publication Activity Database

    Blažková, Michaela; Člověčko, M.; Eltsov, V. B.; Gažo, E.; de Graaf, R.; Hosio, J.J.; Krusius, M.; Schmoranzer, D.; Schoepe, W.; Skrbek, Ladislav; Skyba, P.; Solntsev, R.E.; Vinen, W. F.

    2008-01-01

    Roč. 150, - (2008), s. 525-535 ISSN 0022-2291 R&D Projects: GA ČR GA202/05/0218 Grant - others:GAUK(CZ) 7953/2007; Transnational Access Programme(XE) RITA -CT-2003-505313 Institutional research plan: CEZ:AV0Z10100520 Keywords : normal 3He * superfluid 3He * superfluid 4He * turbulence, * cavitation * quartz tuning fork Subject RIV: BK - Fluid Dynamics Impact factor: 1.034, year: 2008

  6. Anomalous heat transport and condensation in convection of cryogenic helium

    Czech Academy of Sciences Publication Activity Database

    Urban, Pavel; Schmoranzer, D.; Hanzelka, Pavel; Sreenivasan, K. R.; Skrbek, L.

    2013-01-01

    Roč. 110, č. 20 (2013), s. 8036-8039 ISSN 0027-8424 R&D Projects: GA ČR GPP203/12/P897 Institutional support: RVO:68081731 Keywords : two-phase convection * temperature inversion * condensation * rain formation Subject RIV: BK - Fluid Dynamics Impact factor: 9.809, year: 2013

  7. Properties of strain gages at cryogenic temperature

    International Nuclear Information System (INIS)

    Shibata, Nobuo; Fujiyoshi, Toshimitsu.

    1978-01-01

    At the time of developing superconduction generators, the stress measurement for rotor parts is required to grasp the safety and performance of the rotor at cryogenic temperature, which is cooled with liquid helium. In case of carrying out the stress measurement with strain gages, the problems are as follows. The strain gages and lead wires are exposed to cryogenic temperature from 4 to 10 K and strong magnetic field of about 3T, and subjected to high centrifugal acceleration of about 500G. In order to establish the techniques of the stress measurement under such conditions, the adhesives and damp-proof coatings for strain gages and strain gages themselves in Japan and foreign countries were examined on the properties at cryogenic temperature. As for the properties of strain gages, mainly the apparent strain owing to temperature change was investigated, and the change of the gage factors was studies only at liquid nitrogen temperature. The stress measurement with strain gages at low temperature had been studied in detail down to liquid nitrogen temperature concerning LNG tanks. The experimental apparatus, the samples, the testing methods and the test results of cooling tests on adhesives and damp-proof coatings, and the temperature characteristics of strain gages are reported. The usable adhesives and coatings were found, and correction by accurate temperature measurement is required for apparent strain. (Kako, I.)

  8. Advanced monitoring, fault diagnostics, and maintenance of cryogenic systems

    CERN Document Server

    Girone, Mario; Pezzetti, Marco

    In this Thesis, advanced methods and techniques of monitoring, fault diagnostics, and predictive maintenance for cryogenic processes and systems are described. In particular, in Chapter 1, mainstreams in research on measurement systems for cryogenic processes are reviewed with the aim of dening key current trends and possible future evolutions. Then, in Chapter 2, several innovative methods are proposed. A transducer based on a virtual ow meter is presented for monitoring helium distribution and consumption in cryogenic systems for particle accelerators [1]. Furthermore, a comprehensive metrological analysis of the proposed transducer for verifying the metrological performance and pointing out most critical uncertainty sources is described [2]. A model-based method for fault detection and early-stage isolation, able to work with few records of Frequency Response Function (FRF) on an unfaulty compressor, is then proposed [3]. To enrich the proposal, a distributed diagnostic procedure, based on a micro-genetic...

  9. Helium storage and control system for the PBMR

    International Nuclear Information System (INIS)

    Verkerk, E.C.

    1997-01-01

    The power conversion unit will convert the heat energy in the reactor core to electrical power. The direct-closed cycle recuperated Brayton Cycle employed for this concept consists of a primary helium cycle with helium powered turbo compressors and a power turbine. The helium is actively cooled with water before the compression stages. A recuperator is used to preheat the helium before entering the core. The start of the direct cycle is initiated by a mass flow from the helium inventory and control system via a jet pump. When the PBMR is connected to the grid, changes in power demand can be followed by changing the helium flow and pressure inside the primary loop. Small rapid adjustments can be performed without changing the helium inventory of the primary loop. The stator blade settings on the turbines and compressors are adjustable and it is possible to bypass reactor and turbine. This temporarily reduces the efficiency at which the power conversion unit is operating. Larger or long term adjustments require storage or addition of helium in order to maintain a sufficient level of efficiency in the power conversion unit. The helium will be temporarily stored in high pressure tanks. After a rise in power demand it will be injected back into the system. Some possibilities how to store the helium are presented in this paper. The change of helium inventory will cause transients in the primary helium loop in order to acquire the desired power level. At this stage, it seems that the change of helium inventory does not strongly effect the stability of the power conversion unit. (author)

  10. Analysis for liquid cryogen spillage in the superconducting cyclotron building at VECC

    CERN Document Server

    Roy S ,; Pal, G; Bhandari, R K

    2009-01-01

    The cryogenic system uses liquid helium and liquid nitrogen to cool the superconducting cyclotron magnet and its cryopanels. In order to assess safety scenarios subsequent to an unusual leakage of cryogens from the system, a deterministic analysis has been carried out to estimate the variation of oxygen concentration with time at several locations of superconducting cyclotron building. The entire process is simulated assuming evaporated cryogens mixes instantaneously with air in the confined space, the ventilation system of the cyclotron building is operational, fresh air continuously enters the confined volume and mixes instantaneously with air in the confined space.

  11. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M

    2015-01-01

    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  12. Helium dilution refrigerator

    International Nuclear Information System (INIS)

    1973-01-01

    A new system of continuous heat exchange for a helium dilution refrigerator is proposed. The 3 He effluent tube is concurrent with the affluent mixed helium tube in a vertical downward direction. Heat exchange efficiency is enhanced by placing in series a number of elements with an enlarged surface area

  13. Helium localisation in tritides

    International Nuclear Information System (INIS)

    Flament, J.L.; Lozes, G.

    1982-06-01

    Study of titanium and LaNi 5 type alloys tritides lattice parameters evolution revealed that helium created by tritium decay remains in interstitial sites up to a limit material dependant concentration. Beyond this one exceeding helium precipites in voids [fr

  14. Fundamentals of cryogenic engineering

    CERN Document Server

    Mukhopadhyay, Mamata

    2014-01-01

    The author, with her vast and varied experience in teaching and allied fields, clearly enunciates the behaviour and various properties of common cryogenic fluids, methods of liquefaction, and separation and applications of cryogens with thermodynamic analysis for process selection. This profusely illustrated study with clear-cut diagrams and process charts, should serve not only as a textbook for students but also as an excellent reference for researchers and practising engineers on design of cryogenic refrigeration, and liquefaction and separation process plants for various applications.

  15. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  16. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  17. Cryogenics theory, processes and applications

    CERN Document Server

    Hayes, Allyson E

    2011-01-01

    Cryogenics is the study of the production of very low temperature (below -150 -C, -238 -F or 123 K) and the behaviour of materials at those temperatures. This book presents current research from across the globe in the study of cryogenics, including the effect of cryogenic treatment on microstructure and mechanical properties of light weight alloys; the application of Fiber Bragg grating sensors at cryogenic temperatures; cryogenic grinding; liquid oxygen magnetohydrodynamics; and, genetic engineering techniques used to improve tolerance to cryopreservation.

  18. Cooling performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Takada, Shoji; Hayashi, Haruyoshi; Kobayashi, Toshiaki; Ohta, Yukimaru; Shimomura, Hiroaki; Miyamoto, Yoshiaki

    1994-01-01

    The helium engineering demonstration loop (HENDEL) has four helium-gas/water coolers where the cooling water flows in the tubes and helium gas on the shell side. Their cooling performance was studied using the operational data from 1982 to 1991. The heat transfer of helium gas on the shell was obtained for segmental and step-up baffle type coolers. Also, the change with operation time was investigated. The cooling performance was lowered by the graphite powder released from the graphite components for several thousand hours and thereafter recovered because the graphite powder from the components was reduced and the powder in the cooler shell was blown off during the operation. (orig.)

  19. A Cryogenic Test Set-Up for the Qualification of Pre-Series Test Cells for the LHC Cryogenic Distribution Line

    CERN Document Server

    Livran, J; Parente, C; Riddone, G; Rybkowski, D; Veillet, N

    2000-01-01

    Three pre-series Test Cells of the LHC Cryogenic Distribution Line (QRL) [1], manufactured by three European industrial companies, will be tested in the year 2000 to qualify the design chosen and verify the thermal and mechanical performances. A dedicated test stand (170 m x 13 m) has been built for extensive testing and performance assessment of the pre-series units in parallel. They will be fed with saturated liquid helium at 4.2 K supplied by a mobile helium dewar. In addition, LN2 cooled helium will be used for cool-down and thermal shielding. For each of the three pre-series units, a set of end boxes has been designed and manufactured at CERN. This paper presents the layout of the cryogenic system for the pre-series units, the calorimetric methods as well as the results of the thermal calculation of the end box test.

  20. Tables of thermodynamic properties of helium magnet coolant

    International Nuclear Information System (INIS)

    McAshan, M.

    1992-07-01

    The most complete treatment of the thermodynamic properties of helium at the present time is the monograph by McCarty: ''Thermodynamic Properties of Helium 4 from 2 to 1500 K at Pressures to 10 8 Pa'', Robert D. McCarty, Journal of Physical and Chemical Reference Data, Vol. 2, page 923--1040 (1973). In this work the complete range of data on helium is examined and the P-V-T surface is described by an equation of state consisting of three functions P(r,T) covering different regions together with rules for making the transition from one region to another. From this thermodynamic compilation together with correlations of the transport properties of helium was published the well-known NBS Technical Note: ''Thermophysical Properties of Helium 4 from 2 to 1500 K with pressures to 1000 Atmospheres'', Robert D. McCarty, US Department of Commerce, National Bureau of Standards Technical Note 631 (1972). This is the standard reference for helium cryogenics. The NBS 631 tables cover a wide range of temperature and pressure, and as a consequence, the number of points tabulated in the region of the single phase coolant for the SSC magnets are relatively few. The present work sets out to cover the range of interest in more detail in a way that is consistent with NBS 631. This new table is essentially identical to the older one and can be used as an auxiliary to it

  1. Cryogenic infrastructure at BESSY II. Inventory and outlook

    International Nuclear Information System (INIS)

    Heling, Svenja; Anders, Wolfgang; Heinrich, Jochen; Hellwig, Axel; Janke, Karsten; Molder, Benjamin; Rotterdam, Stefan

    2017-01-01

    The Helmholtz Centre Berlin operates the BESSY II electron storage ring at the Adlershof site. A helium condenser is installed to supply the superconducting wavelength shifter installed in the storage ring with liquid helium. Another liquefier, including a comprehensive cryogenic infrastructure, supplies helium at 1.8 K to several test stands, especially for superconducting cavity resonators. In addition to the operation of the existing plants, a new type of accelerator is currently being set up as part of the bERLinPro project. In order to ensure the required supply of liquid helium, one of the existing helium condensers will be relocated and the plant will be extended by a 10,000 l dewar, three valve boxes, a cold compressor box, a warm pumping station and an 80 K helium system. In addition, the future project BESSY VSR, a further development of the BESSY II storage ring, will see the procurement of a third refrigeration system. A challenge here will be the year-round continuous operation. This paper explains the structure of the plants described above in more detail and provides an insight into the challenges of plant design. Finally, the planned future expansions will be outlined. [de

  2. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  3. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  4. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  5. Upgrade of the cryogenic CERN RF test facility

    International Nuclear Information System (INIS)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented

  6. Development of a Mass Flowmeter based on the Coriolis Acceleration for Liquid, Supercritical and Superfluid Helium

    CERN Document Server

    De Jonge, T; Rivetti, A; Serio, L

    2002-01-01

    Beginning in the 1980's, Coriolis meters have gained generalised acceptance in liquid applications with a worldwide installed base of over 300,000 units. To meet the demands of cryogenic applications below 20 K, off-the-shelf Coriolis meters have been used, with minor design modifications and operational changes. The meters were originally calibrated on water and tested on liquid helium at 4.5 K, supercritical helium around 5 K and superfluid helium below 2 K. The meters maintain their intrinsic robustness and accuracy of better than 1% of measured value; accuracy is independent of density and temperature.

  7. A cryogenic pump with a long continuous run without filling intended for a particle accelerator

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Fois, M.; Duthil, R.; Gelebart, J.C.; Lottin, J.C.

    1977-06-01

    A cryogenic pump is described, specially designed to be used in an electrostatic particle accelerator. The same tubular liquid helium bath provides pumping in the accelerating tube and around the beam. The temperature of the bath can be adjusted between 2.2 and 4.2 deg K, the liquid helium level, in the low pressure bath, is keeped constant through a feeding system made of an heat exchanger and an expansion valve. An auxiliary container for liquid nitrogen and liquid helium, at atmospheric pressure, allows a several days continuous run without filling. This system allows refilling of the container without changing the pressure on the bath [fr

  8. Study on the flow reduction of forced flow superconducting magnet and its stable operation condition

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Makoto [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-03-01

    The forced flow superconducting coil especially made from a Cable-in-Conduit Conductor (CICC) is applied for large-scale devices such as fusion magnets and superconducting magnet energy storage (SMES) because it has high mechanical and electrical performance potential. The flow reduction phenomena caused by AC loss generation due to the pulsed operation was found based on the experimental results of three forced flow superconducting coils. And relation between the AC loss generation and flow reduction was defined from viewpoint of the engineering design and operation of the coils. Also the mechanism of flow reduction was investigated and stable operation condition under the flow reduction was clarified for forced flow superconducting coils. First, experiments of three different large-scale superconducting coils were carried out and experimental database of the flow reduction by AC loss generation was established. It was found experimentally that the flow reduction depends on the AC loss generation (W/m{sup 3}) in all of coils. It means the stable operation condition is defined not only the electro magnetism of superconducting coil but also flow condition. Mechanism of the flow reduction was investigated based on the experimental database. Hydraulics was applied to supercritical helium as a coolant. Also performances of the cryogenic pump by which coolant are supplied to the coil and friction of the superconductor as cooling path is considered for hydraulic estimation. The flow reduction of the coil is clarified and predictable by the equations of continuity, momentum and energy balance. Also total mass flow rate of coolant was discussed. The estimation method in the design phase was developed for total mass flow rate which are required under the flow reduction by AC losses. The friction of the superconductor and performance of cryogenic pump should be required for precise prediction of flow reduction. These values were obtained by the experiment data of coil and

  9. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Varmora, P., E-mail: pvamora@ipr.res.in; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-11-15

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  10. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    International Nuclear Information System (INIS)

    Varmora, P.; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-01-01

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  11. Construction and testing of a double acting bellows liquid helium pump

    International Nuclear Information System (INIS)

    Burns, W.A.; Green, M.A.; Ross, R.R.; Van Slyke, H.

    1980-05-01

    The double acting reciprocating bellows liquid helium pump built and tested at the Lawrence Berkeley Laboratory is described. The pump is capable of delivering 50 gs -1 of liquid helium to supply the two-phase cooling sytem for a large superconducting magnet. The pump is driven by a torque motor at room temperature; the reciprocating motion is transmitted to the pump through a shaft which operates between room temperature and 4 0 K. The design details of this liquid helium pump are presented. The helium pump has operated in a helium bath and in pumped forced flow helium circuits. The results of these experimental tests are presented in this report

  12. Development of monitoring system using acoustic emission for detection of helium gas leakage for primary cooling system and flow-induced vibration for heat transfer tube of heat exchangers for the High Temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Tachibana, Yukio; Kunitomi, Kazuhiko; Furusawa, Takayuki; Shinozaki, Masayuki; Satoh, Yoshiyuki; Yanagibashi, Minoru

    1998-10-01

    The High Temperature Engineering Test Reactor (HTTR) uses helium gas for its primary coolant, whose leakage inside reactor containment vessel is considered in design of the HTTR. It is necessary to detect leakage of helium gas at an early stage so that total amount of the leakage should be as small as possible. On the other hand, heat transfer tubes of heat exchangers of the HTTR are designed not to vibrate at normal operation, but the flow-induced vibration is to be monitored to provide against an emergency. Thus monitoring system of acoustic emission for detection of primary coolant leakage and vibration of heat transfer tubes was developed and applied to the HTTR. Before the application to the HTTR, leakage detection test was performed using 1/4 scaled model of outer tube of primary concentric hot gas duct. Result of the test covers detectable minimum leakage rate and effect of difference in gas, pressure, shape of leakage path and distance from the leaking point. Detectable minimum leakage rate was about 5 Ncc/sec. The monitoring system is promising in leakage detection, though countermeasure to noise is to be needed after the HTTR starts operating. (author)

  13. Method and apparatus for replenishing the helium bath in the rotor of a superconducting generator

    International Nuclear Information System (INIS)

    Hofmann, A.; Schnapper, C.

    1980-01-01

    In order to replenish a helium bath in the super-conducting rotor of an electrical machine, in which bath liquid helium boils at subatmospheric pressure, with liquid helium from a helium reservoir, the liquid helium in the reservoir being at ambient pressure and a part of the liquid helium changing to the vapor phase during flow from the reservoir to the bath, liquid helium is introduced into the bath at a distance from the rotor axis of rotation, the liquid and vapor phases of the helium flowing from the reservoir to the bath are separated from one another in a phase separator fixed to the rotor, and the separated vapor phase is extracted from the separator. (MM) [de

  14. Ricor's anniversary of 50 innovative years in cryogenic technology

    Science.gov (United States)

    Filis, Avishai; Segal, Victor; Pundak, Nachman; Bar Haim, Zvi; Danziger, Menachem

    2017-05-01

    Ricor cryogenics was founded in 1967 and since then it has focused on innovative technologies in the cryogenic field. The paper reviews the initial research and development efforts invested in various technologies that have yielded products such as Cryostats for Mossbauer Effect measurement, Liquid gas Dewar containers, Liquid helium vacuum transfer tubes, Cryosurgery and other innovative products. The major registered patents that matured to products such as a magnetic vacuum valve operator, pumped out safety valve and other innovations are reviewed here. As a result of continuous R and D investment, over the years a new generation of innovative Stirling cryogenic products has developed. This development began with massive split slip-on coolers and has progressed as far as miniature IDDCA coolers mainly for IR applications. The accumulated experience in Stirling technology is used also as a platform for developing self-contained water vapor pumps known as MicroStar and NanoStar. These products are also used in collaboration with a research institute in the field of High Temperature Superconductors. The continuous growth in the cryogenic products range and the need to meet market demands have motivated the expansion, of Ricor's manufacturing facility enabling it to become a world leader in the cryocooler field. To date Ricor has manufactured more than 120,000 cryocoolers. The actual cryogenic development efforts and challenges are also reviewed, mainly in the field of long life cryocoolers, ruggedized products, miniaturization and products for space applications.

  15. A word from the DG: A cryogenic success

    CERN Multimedia

    2007-01-01

    The beginning of this month saw the start of a new phase in the LHC project, with its first inauguration, for the LHC cryogenics. This was marked with a symposium in the Globe attended by 178 representatives of the industrial partners and research institutes involved. It also coincided with stable low-temperature operation of the cryogenic plant for sector 7-8, the first sector of the LHC to be cooled down. A look at the LHC web site (http://lhc.web.cern.ch/lhc/) shows this steady operation. The cryogenic system for the LHC is the largest and most complex ever built, involving many large devices on an industrial scale, where reliability is of paramount importance. The LHC’s energy of 7 TeV required a high magnetic field provided by niobium-titanium coils operating at 1.9 K. This is a new temperature regime for large-scale cryogenics, chosen to make use of the excellent heat-transfer properties of helium in its superfluid state. The final design for the LHC cryogenics had to incorporate both newly ordered ...

  16. Cryogenic Fuel Tank Draining Analysis Model

    Science.gov (United States)

    Greer, Donald

    1999-01-01

    One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

  17. Design, Construction, Installation and First Commissioning Results of the LHC Cryogenic System

    CERN Document Server

    Claudet, S

    2006-01-01

    The cryogenic system of the Large Hadron Collider (LHC) will be, upon its completion in 2006, the largest in the world in terms of refrigeration capacity with an equivalent to 144 kW at 4.5 K, about 400'000 litres of superfluid helium with 25 km of superconducting magnets below 2 K leading to a cryogen inventory of 100 tons of helium. The challenges involved in the design, construction and installation, as well as the first commissioning results will be addressed in this talk. Particular mention will be made of the problems encountered and how they were or are being solved. Perspectives for LHC will be presented. General considerations for future large cryogenic systems will be briefly proposed.

  18. Gas gap heat switch for a cryogen-free magnet system

    International Nuclear Information System (INIS)

    Barreto, J; De Sousa, P Borges; Martins, D; Bonfait, G; Catarino, I; Kar, S

    2015-01-01

    Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported. (paper)

  19. Giants for cryogenics

    CERN Multimedia

    2009-01-01

    It takes 130 tonnes of liquid helium to cool down the LHC. In some situations—during a shutdown, for instance—this enormous volume of helium has to be removed from the machine and stored elsewhere. While this is a straightforward operation from the technical point of view, in logistical terms storing such a huge amount of the special element that is helium is far from trivial. Until recently, CERN had the capacity for storing up to 52 tonnes of helium in gas form, i.e. 40% of the total needed by the LHC, using the storage tanks that can be seen in the vicinity of some of the experiment sites. As of the middle of June, two new storage tanks, among the largest in the world, are now located at Point 18. Each holding up to 128 000 litres of liquid helium, for a total of 28 tonnes between the two of them, the new tanks have increased CERN’s helium storage capacity by 20%, to reach 60%. The goal is to have storage capacity at 100% by 2010, with the arrival of four mor...

  20. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  1. Cryogen therapy of skin cancer

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors studied the cure of skin cancer in particular cryogen therapy of skin cancer. They noted that cryogen therapy of skin cancer carried new possibilities and improved results of neoplasms treatment

  2. Five second helium neutral beam injection using argon-frost cryopumping techniques

    International Nuclear Information System (INIS)

    Phillips, J.C.; Kellman, D.H.; Hong, R.; Kim, J.; Laughon, G.M.

    1995-01-01

    High power helium neutral beams for the heating of tokamak discharges can now be provided for 5 s by using argon cryopumping (of the helium gas) in the beamlines. The DIII-D neutral beam system has routinely provided up to 20 MW of deuterium neutral beam heating in support of experiments on the DIII-D tokamak. Operation of neutral beams with helium has historically presented a problem in that pulse lengths have been limited to 500 ms due to reliance solely on volume pumping of the helium gas. Helium is not condensed on the cryopanels. A system has now been installed to deposit a layer of argon frost on the DIII-D neutral beam cryopanels, between tokamak injection pulses. The layer serves to trap helium on the cryopanels providing sufficient pumping speed for 5 s helium beam extraction. The argon frosting hardware is now present on two of four DIII-D neutral beamlines, allowing injection of up to 6 MW of helium neutral beams per discharge, with pulse lengths of up to 5 s. The argon frosting system is described, along with experimental results demonstrating its effectiveness as a method of economically extending the capabilities of cryogenic pumping panels to allow multi-second helium neutral beam injection

  3. Liquid helium cooling of the MFTF superconducting magnets

    International Nuclear Information System (INIS)

    VanSant, J.H.; Zbasnik, J.P.

    1986-09-01

    During acceptance testing of the Mirror Fusion Test Facility (MFTF), we measured these tests: liquid helium heat loads and flow rates in selected magnets. We used the data from these tests to estimate helium vapor quality in the magnets so that we could determine if adequate conductor cooling conditions had occurred. We compared the measured quality and flow with estimates from a theoretical model developed for the MFTF magnets. The comparison is reasonably good, considering influences that can greatly affect these values. This paper describes the methods employed in making the measurements and developing the theoretical estimates. It also describes the helium system that maintained the magnets at required operating conditions

  4. Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL

    International Nuclear Information System (INIS)

    Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

    2011-01-01

    A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m 3 storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

  5. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  6. Conceptual design of helium experimental loop

    International Nuclear Information System (INIS)

    Yu Xingfu; Feng Kaiming

    2007-01-01

    In a future demonstration fusion power station (DEMO), helium is envisaged as coolant for plasma facing components, such as blanket and dive,or. All these components have a very complex geometry, with many parallel cooling channels, involving a complex helium flow distribution. Test blanket modules (TBM) of this concept will under go various tests in the experimental reactor ITER. For the qualification of TBM, it is indispensable to test mock-ups in a helium loop under realistic pressure and temperature profiles, in order to validate design codes, especially regarding mass flow and heat transition processes in narrow cooling channels. Similar testing must be performed for DEMO blanket, currently under development. A Helium Experimental Loop (HELOOP) is planed to be built for TBM tests. The design parameter of temperature, pressure, flow rate is 550 degree C, 10 MPa, l kg/s respectively. In particular, HELOOP is able to: perform full-scale tests of TBM under realistic conditions; test other components of the He-cooling system in ITER; qualify the purification circuit; obtain information for the design of the ITER cooling system. The main requirements and characteristics of the HELOOP facility and a preliminary conceptual design are described in the paper. (authors)

  7. Cryogenic process simulation

    International Nuclear Information System (INIS)

    Panek, J.; Johnson, S.

    1994-01-01

    Combining accurate fluid property databases with a commercial equation-solving software package running on a desktop computer allows simulation of cryogenic processes without extensive computer programming. Computer simulation can be a powerful tool for process development or optimization. Most engineering simulations to date have required extensive programming skills in languages such as Fortran, Pascal, etc. Authors of simulation code have also usually been responsible for choosing and writing the particular solution algorithm. This paper describes a method of simulating cryogenic processes with a commercial software package on a desktop personal computer that does not require these traditional programming tasks. Applications include modeling of cryogenic refrigerators, heat exchangers, vapor-cooled power leads, vapor pressure thermometers, and various other engineering problems

  8. Cryogenic adsorption of low-concentration hydrogen on charcoal, 5A molecular sieve, sodalite, ZSM-5 and Wessalith DAY

    International Nuclear Information System (INIS)

    Willms, R.S.

    1993-01-01

    The separation of low-concentration hydrogen isotopes from helium is a processing step that is required for ceramic lithium breeding blanket processing. Cryogenic adsorption is one method of effecting this separation. In this study live adsorbents were considered for this purpose: charcoal, 5A molecular sieve, UOP S-115, ZSM-5 and Wessalith DAY. The first two adsorbents exhibit good equilibrium loadings and are shown to be quite effective at adsorbing low-concentration hydrogen isotopes. The latter three adsorbents display considerably lower equilibrium loadings. This study concludes that by using either charcoal or 5A molecular sieve, cryogenic adsorption would be an effective means of separating hydrogen isotopes from helium

  9. Photoionization of helium dimers; Photoionisation von Heliumdimeren

    Energy Technology Data Exchange (ETDEWEB)

    Havermeier, Tilo

    2010-06-09

    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  10. Cryogenic system for a superconducting spectrometer

    International Nuclear Information System (INIS)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN 2 circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations

  11. Flow visualization

    International Nuclear Information System (INIS)

    Weinstein, L.M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities. 8 refs

  12. Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander

    International Nuclear Information System (INIS)

    Joshi, D.M.; Patel, H.K.; Shah, D.K.

    2015-01-01

    Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the

  13. Cryogenic support member

    International Nuclear Information System (INIS)

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1987-01-01

    A cryogenic support member is described for restraining a cryogenic system comprising; a rod having a depression at a first end. The rod is made of non-metallic material. The non-metallic material has an effectively low thermal conductivity; a metallic plug; and a metallic sleeve. The plug and the sleeve are shrink-fitted to the depression in the rod and assembled thereto such that the plug is disposed inside the depression of the rod. The sleeve is disposed over the depression in the rod and the rod is clamped therebetween. The shrink-fit clamping the rod is generated between the metallic plug and the metallic sleeve

  14. Spiral 2 cryogenic system overview: Design, construction and performance test

    Energy Technology Data Exchange (ETDEWEB)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S. [Air Liquide Advanced Technologies, Sassenage (France); Souli, M. [GANIL, Caen (France); Commeaux, C. [IPN, Orsay (France)

    2014-01-29

    The new particle accelerator project Spiral 2 at GANIL (“Grand Accélérateur d’Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  15. Cryogenic techniques for large superconducting magnets in space

    Science.gov (United States)

    Green, M. A.

    1989-01-01

    A large superconducting magnet is proposed for use in a particle astrophysics experiment, ASTROMAG, which is to be mounted on the United States Space Station. This experiment will have a two-coil superconducting magnet with coils which are 1.3 to 1.7 meters in diameter. The two-coil magnet will have zero net magnetic dipole moment. The field 15 meters from the magnet will approach earth's field in low earth orbit. The issue of high Tc superconductor will be discussed in the paper. The reasons for using conventional niobium-titanium superconductor cooled with superfluid helium will be presented. Since the purpose of the magnet is to do particle astrophysics, the superconducting coils must be located close to the charged particle detectors. The trade off between the particle physics possible and the cryogenic insulation around the coils is discussed. As a result, the ASTROMAG magnet coils will be operated outside of the superfluid helium storage tank. The fountain effect pumping system which will be used to cool the coil is described in the report. Two methods for extending the operating life of the superfluid helium dewar are discussed. These include: operation with a third shield cooled to 90 K with a sterling cycle cryocooler, and a hybrid cryogenic system where there are three hydrogen-cooled shields and cryostat support heat intercept points.

  16. SiPM properties at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Biroth, Maik; Achenbach, Patrick; Thomas, Andreas [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Mainz (Germany); Downie, Evangeline [George Washington University, DC (United States); Collaboration: A2-Collaboration

    2015-07-01

    At the electron accelerator Mainzer Mikrotron (MAMI) an active target build of polarizable scintillators will be operated at approximately 25 mK. To read out the scintillation light, the photodetectors have to withstand cryogenic temperatures of 4 K and high count rates. Therefore the properties of different types of silicon photomultipliers (SiPMs) were studied at cryogenic temperatures. In liquid nitrogen at 77 K, problems with quenching in Hamamatsu SiPMs and with the protective epoxy layer covering Zecotek SiPMs were observed. Tests with one Zecotek SiPM were successful after removal of the epoxy layer in liquid helium at 4 K and no after-pulses could be observed. Fundamental parameters like break-down voltage, single-pixel gain, crosstalk probability and the dark-count rate were measured and compared to room temperature. The photon detection efficiency was estimated by SiPMs response to short LED pulses. All these parameters were extracted by curve-fitting of SiPM charge spectra with a new analytical function.

  17. Cryogenic vacuum pump design

    International Nuclear Information System (INIS)

    Bartlett, A.J.; Lessard, P.A.

    1984-01-01

    This paper is a review of the problems and tradeoffs involved in cryogenic vacuum pump analysis, design and manufacture. Particular attention is paid to the several issues unique to cryopumps, e.g., radiation loading, adsorption of noncondensible gases, and regeneration. A general algorithm for cryopump design is also proposed. 12 references

  18. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  19. Installation and commissioning of a cryogen distribution system for the TPS project

    Science.gov (United States)

    Tsai, H. H.; Hsiao, F. Z.; Li, H. C.; Lin, M. C.; Wang, C.; Liao, W. R.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Chuang, P. S. D.

    2016-07-01

    A cryogen distribution system was installed and commissioned to transfer liquid nitrogen (LN2) and liquid helium (LHe) from storage dewars to superconducting radio-frequency (SRF) cavities for the 3-GeV Taiwan Photon Source (TPS) project. The cryogen distribution system comprises one distribution valve box (DVB), four control valve boxes (CVB) and seven sections of multichannel transfer line (MCL). The DVB distributes the LHe and LN2 to the CVB, and then to the SRF cavities through independent vacuum-jacketed transfer lines. The vaporized GHe and GN2 from the cryomodules are collected via the MCL. The cryogen distribution system was installed and commissioned from October 2014 to the end of March 2015. This paper presents the installation, pre-commissioning and commissioning of the cryogen distribution system, and describes the heat load test. Thermal acoustic oscillation (TAO) was found in the GHe process line; this phenomenon and its solution are also presented and discussed.

  20. A VME based cryogenic data acquisition and control system (CRYO-DACS)

    International Nuclear Information System (INIS)

    Antony, Joby; Rajkumar; Datta, T.S.

    2005-01-01

    This report describes a newly developed VME based data acquisition and control system named CRYO-DACS for acquiring and controlling various analog and digital cryogenic parameters from equipment's like beam-line cryostats, Helium compressors, liquefier, cryogenic distribution line etc. A new central control room has been set-up for the remote controls and monitoring. The system monitors various analog parameters like temperature, pressure, vacuum and cryogenic fluid levels inside the cryostats and performs closed loop controls of cryogen valves. The hardware architecture of CRYO-DACS is multi-crate distributed VME, all linked by workstation clients in 100 Mb/s LAN for distributed logging, historical trending, analysis, alarm management and control GUIs. (author)

  1. D0 Silicon Upgrade: Commissioning Test Results for D-Zero's Helium Refrigerator

    International Nuclear Information System (INIS)

    Rucinski, Russ

    1997-01-01

    The test objectives are: (1) Make liquid helium and measure refrigerator capacity; (2) Measure liquid helium dewar heat leak, transfer line heat leak, and liquid nitrogen consumption rates; (3) Operate all cryogenic transfer lines; (4) Get some running time on all components; (5) Debug mechanical components, instrumentation, DMACs user interface, tune loops, and otherwise shake out any problems; (6) Get some operating time in to get familiar with system behavior; (7) Revise and/or improve operating procedures to actual practice; and (8) Identify areas for future improvement. D-Zero's stand alone helium refrigerator (STAR) liquified helium at a rate of 114 L/hr. This is consistent with other STAR installations. Refrigeration capacity was not measured due to lack of a calibrated heat load. Measured heat leaks were within design values. The helium dewar loss was measured at 2 to 4 watts or 9% per day, the solenoid and VLPC helium transfer lines had a heat leak of about 20 watts each. The liquid nitrogen consumption rates of the mobile purifier, STAR, and LN2 subcooler were measured at 20 gph, 20 to 64 gph, and 3 gph respectively. All cryogenic transfer lines including the solenoid and visible light photon counter (VLPC) transfer lines were cooled to their cryogenic operating temperatures. This included independent cooling of nitrogen shields and liquid helium components. No major problems were observed. The system ran quite well. Many problems were identified and corrected as they came up. Areas for improvement were noted and will be implemented in the future. The instrumentation and control system operated commendably during the test. The commissioning test run was a worthwhile and successful venture.

  2. Submersible fans and pumps for cryogenic fluids

    International Nuclear Information System (INIS)

    Mark, J.W.

    1986-01-01

    Submersible electric motor driven fans of three sizes have been designed, built and operated at 21 0 K at the Stanford Linear Accelerator Center. The largest is a 100-mm diameter, 2 stage vaneaxial fan with a nominal capacity of 6 L/s at 2 m head. It is driven by a 4 pole, 3 phase induction motor that runs at 1750 rpm. The next smaller one is an 85-mm diameter centrifugal pump. It pumps 3 L/s at a head of 5 m. The third is a 75-mm single stage vaneaxial fan with a nominal capacity is 3 L/s at a head of 2 m. The 85-mm pump and the 75-mm fan are driven by 2 pole, 3 phase induction motors running at 3550 rpm. The motors were modified to operate submerged in the cryogenic fluid. The pumps have been operated in liquid hydrogen, liquid deuterium, and pressurized helium gas at 21 0 K. They can also operate with denser fluids such as liquid nitrogen, but rotational speed, capacity, and head will be reduced. They have been operated while submerged in liquid helium

  3. Development of a cryogenic EOS capability for the Z Pulsed Radiation Source: Goals and accomplishments of FY97 LDRD project

    International Nuclear Information System (INIS)

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-03-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. This report describes progress during the period 2/97-11/97 on the FY97 LDRD project ''Cryogenic EOS Capabilities on Pulsed Radiation Sources (Z Pinch)''. The goal of this project is the development of a general purpose cryogenic target system for precision EOS and shock physics measurements at liquid helium temperatures on the Z accelerator Z-pinch pulsed radiation source. Activity during the FY97 LDRD phase of this project has focused on development of a conceptual design for the cryogenic target system based on consideration of physics, operational, and safety issues, design and fabrication of principal system components, construction and instrumentation of a cryogenic test facility for off-line thermal and optical testing at liquid helium temperatures, initial thermal testing of a cryogenic target assembly, and the design of a cryogenic system interface to the Z pulsed radiation source facility. The authors discuss these accomplishments as well as elements of the project that require further work

  4. Performance evaluation approach for the supercritical helium cold circulators of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Vaghela, H.; Sarkar, B.; Bhattacharya, R.; Kapoor, H. [ITER-India, Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar-382428 (India); Chalifour, M.; Chang, H.-S.; Serio, L. [ITER Organization, Route de Vinon sur Verdon - 13115 St Paul Lez Durance (France)

    2014-01-29

    The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe cold circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.

  5. Cryogenics for the MuCool Test Area (MTA)

    International Nuclear Information System (INIS)

    Darve, Christine; Norris, Barry; Pei, Liujin

    2006-01-01

    MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner

  6. Cryogenic technology review of cold neutron source facility for localization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hun Cheol; Park, D. S.; Moon, H. M.; Soon, Y. P. [Daesung Cryogenic Research Institute, Ansan (Korea); Kim, J. H. [United Pacific Technology, Inc., Ansan (Korea)

    1998-02-01

    This Research is performed to localize the cold neutron source(CNS) facility in HANARO and the report consists of two parts. In PART I, the local and foreign technology for CNS facility is investigated and examined. In PART II, safety and licensing are investigated. CNS facility consists of cryogenic and warm part. Cryogenic part includes a helium refrigerator, vacuum insulated pipes, condenser, cryogenic fluid tube and moderator cell. Warm part includes moderator gas control, vacuum equipment, process monitoring system. Warm part is at high level as a result of the development of semiconductor industries and can be localized. However, even though cryogenic technology is expected to play a important role in developing the 21st century's cutting technology, it lacks of specialists and the research facility since the domestic market is small and the research institutes and government do not recognize the importance. Therefore, it takes a long research time in order to localize the facility. The safety standard of reactor for hydrogen gas in domestic nuclear power regulations is compared with that of the foreign countries, and the licensing method for installation of CNS facility is examined. The system failure and its influence are also analyzed. 23 refs., 59 figs., 26 tabs. (Author)

  7. The Fermilab CMTF cryogenic distribution remote control system

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R. [Fermi National Accelerator Laboratory Batavia, IL, 60510 (United States)

    2014-01-29

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  8. Cryogenic distribution system for ITER proto-type cryoline test

    International Nuclear Information System (INIS)

    Bhattacharya, R.; Shah, N.; Badgujar, S.; Sarkar, B.

    2012-01-01

    Design validation for ITER cryoline will be carried out by proto-type test on cryoline. The major objectives of the test will be to ensure the mechanical integrity, reliability, thermal stress and heat load as well as checking of assembly and fabrication procedures. The cryogenics system has to satisfy the functional operating scenario of the cryoline. Cryoplant, distribution box (DB) including liquid helium (LHe) tank constitute the cryogenic system for the test. Conceptual system architecture is proposed with a commercially available refrigerator/liquefier and custom designed DB housing cold compressor, cold circulator as well as phase separator with sub-merged heat exchanger. System level optimization, mainly with DB and LHe tank with options, has been studied to minimize the cold power required for the system. Aspen HYSYS is used for the purpose of process simulation. The paper describes the system architecture and the optimized design as well as process simulation with associated results. (author)

  9. The development of the advanced cryogenic radiometer facility at NRC

    Science.gov (United States)

    Gamouras, A.; Todd, A. D. W.; Côté, É.; Rowell, N. L.

    2018-02-01

    The National Research Council (NRC) of Canada has established a next generation facility for the primary realization of optical radiant power. The main feature of this facility is a new cryogenic electrical substitution radiometer with a closed-cycle helium cryocooler. A monochromator-based approach allows for detector calibrations at any desired wavelength. A custom-designed motion apparatus includes two transfer standard radiometer mounting ports which has increased our measurement capability by allowing the calibration of two photodetectors in one measurement cycle. Measurement uncertainties have been improved through several upgrades, including newly designed and constructed transimpedance amplifiers for the transfer standard radiometers, and a higher power broadband light source. The most significant improvements in uncertainty arise from the enhanced characteristics of the new cryogenic radiometer including its higher cavity absorptance and reduced non-equivalence effects.

  10. Operational Experience with a Cryogenic Axial-Centrifugal Compressor

    CERN Document Server

    Decker, L; Löhlein, K; Purtschert, W; Ziegler, B L; Lebrun, P; Tavian, L; Brunovsky, I; Tucek, L

    1998-01-01

    The Large Hadron Collider (LHC), presently under construction at CERN, requires large refrigeration capacity at 1.8 K. Compression of gaseous helium at cryogenic temperatures is therefore inevitable. Together with subcontractors, Linde Kryotechnik has developed a prototype machine. This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating at ambient temperature. Integrated in a test facility for superconducting magnets the machine has been commissioned without major problems and successfully gone through the acceptance test in autumn 1995. Subsequent steps were initiated to improve efficiency of this prototype. This paper describes operating experience gained so far and reports on measured performance prior to and after constructional modifications.

  11. Helium refrigerator for 'SULTAN'

    International Nuclear Information System (INIS)

    Arpagaus, M.; Erlach, H.; Quack, H.

    1984-01-01

    The authors describe the helium refrigerator designed for the SULTAN test facility. SULTAN (Supraleiter-Testanlage) is intended to serve for the developments and testing of high field superconducting magnets. These magnets are needed mainly for future applications in nuclear fusion. (Auth.)

  12. Cosmological helium production simplified

    International Nuclear Information System (INIS)

    Bernstein, J.; Brown, L.S.; Feinberg, G.

    1988-01-01

    We present a simplified model of helium synthesis in the early universe. The purpose of the model is to explain clearly the physical ideas relevant to the cosmological helium synthesis, in a manner that does not overlay these ideas with complex computer calculations. The model closely follows the standard calculation, except that it neglects the small effect of Fermi-Dirac statistics for the leptons. We also neglect the temperature difference between photons and neutrinos during the period in which neutrons and protons interconvert. These approximations allow us to express the neutron-proton conversion rates in a closed form, which agrees to 10% accuracy or better with the exact rates. Using these analytic expressions for the rates, we reduce the calculation of the neutron-proton ratio as a function of temperature to a simple numerical integral. We also estimate the effect of neutron decay on the helium abundance. Our result for this quantity agrees well with precise computer calculations. We use our semi-analytic formulas to determine how the predicted helium abundance varies with such parameters as the neutron life-time, the baryon to photon ratio, the number of neutrino species, and a possible electron-neutrino chemical potential. 19 refs., 1 fig., 1 tab

  13. Local Cryogenics for the SIS100 at FAIR

    International Nuclear Information System (INIS)

    Eisel, T; Kauschke, M; Kollmus, H; Streicher, B; Chorowski, M; Iluk, A; Malcher, K; Polinski, J

    2015-01-01

    In the coming years a new international accelerator Facility for Antiproton and Ion Research (FAIR), one of the largest research projects worldwide, will be build close to Darmstadt in Germany. FAIR will provide antiproton and ion beams with unprecedented intensity and quality. One of its major accelerators will be a synchrotron called SIS100 having a circumference of about 1100 meters. The SIS100 tunnel will house a complex cryogenic system supplying up to 20 kW cooling capacity @ 4.5 K to about 300 superconducting fast ramped magnets and other physics equipment. The planned SIS100 local cryogenic system can be principally divided into three sections each fed from a separate Feed Box. Every Feed Box supplies 4.5 K helium for magnet, vacuum chamber, cryo collimator, current lead and bus-bar cooling as well as 50 K helium for the current lead and thermal shield cooling, independently to two sixth of the ring. Each sixth of the ring, so called sextant, consists of a cold arc and a straight warm section. By-pass Lines circumvent the straight warm sections of the sextants, where warm equipment (e.g. normal conducting cavities and magnets) is located. Between the warm equipment, are superconducting magnets located which also need to be supplied from the By-pass Lines with helium and cold electrical connections. The By-pass Lines are Polish in-kind contribution, coordinated by the Jagiellonian University of Krakow and will be designed, manufactured and commissioned by the Wroclaw University of Technology. In this paper the SIS100 local cryogenic system will be described with focus on the By-pass Lines and on magnet cooling including the balancing of differences between dipole and quadrupole circuits and the coping with dynamic loads. (paper)

  14. ARIEL E-linac Cryogenic System: Commissioning and First Operational Experience

    International Nuclear Information System (INIS)

    Koveshnikov, A; Bylinskii, I; Hodgson, G; Kishi, D; Laxdal, R; Ma, Y; Nagimov, R; Yosifov, D

    2015-01-01

    The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separator and Accelerator (ISAC) facility at TRIUMF. A key part of the ARIEL project is a 10 mA 50 MeV continuous-wave superconducting radiofrequency (SRF) electron linear accelerator (e-linac). The 1.3 GHz SRF cavities are operated at 2 K. HELIAL LL helium liquefier by Air Liquide Advanced Technologies (ALAT) with a tuneable liquid helium (LHe) production was installed and commissioned in Q4’2013 [1]. It provides 4 K liquid helium to one injector and one accelerator cryomodules that were installed and tested in 2014. The 4 K to 2 K liquid helium transition is achieved on-board of each cryomodule. The cryoplant, LHe and LN2 distributions, sub-atmospheric (S/A) system and cryomodules were successfully commissioned and integrated into the e-linac cryogenic system. Required pressure regulation for both 4 K cryoplant in the Dewar and 2 K with the S/A system was achieved under simulated load. Final integration tests confirmed overall stable performance of the cryogenic system with two cryomodules installed. The paper presents details of the cryogenic system commissioning tests as well as highlights of the initial operational experience. (paper)

  15. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  16. Weldability of thermally grain-refined Fe-12Ni-0.25Ti for cryogenic structural applications

    International Nuclear Information System (INIS)

    Williams, D.E.

    1980-02-01

    The weldability of a research alloy designed for structural use in liquid helium temperature, cryogenic environments was investigated. Plates of iron-12 weight percent nickel-0.25 weight percent titanium were grain refined by the four-step, grain refining thermal treatment developed for this alloy and welded with Inconel Number 92 weld wire using the Gas Metal Arc (GMA) welding process with argon-15% helium gas shielding. Both a single pass and a double-sided, 2 pass electron beam (EB) weld were also made without filler metal addition. Weldments were radiographed and sectioned and the charpy V-notch specimens removed were tested at liquid nitrogen and helium temperatures

  17. Research and development of a helium-4 based solar neutrino detector

    International Nuclear Information System (INIS)

    Lanou, R.E.; Maris, H.J.; Seidel, G.M.

    1990-12-01

    We report on work accomplished in the first 30 months of a research and development program to investigate the feasibility of a new technique to detect solar neutrinos in superfluid helium. Accomplishments include the successful completion of design, construction and operation of the entire cryogenic, mechanical and electronic apparatus. During the last several months we have begun a series of experiments in superfluid helium to test the method. Experimental results include the first observation of the combined physical processes essential to the detection technique: ballistic roton generation by energetic charged particles, quantum evaporation of helium at a free surface and bolometric detection of the evaporated helium by physisorption on a cold silicon wafer. Additional results are also presented

  18. A superconducting linear motor drive for a positive displacement bellows pump for use in the g-2 cryogenics system

    International Nuclear Information System (INIS)

    Green, M.A.

    1994-10-01

    Forced two-phase cooling of indirectly cooled magnets requires circulation of liquid helium through the magnet cooling channel. A bellows helium pump is one possible way of providing helium flow to a magnet cooling system. Since the bellows type of helium pump is immersed in liquid helium, a superconducting linear motor drive appears to be an attractive option. This report describes a linear motor drive that employs oriented permanent magnet materials such as samarium-cobalt as the stator magnet system and a superconducting loud speaker voice coil type of drive as the armature of the linear motor. This report examines drive motor requirements for a helium pump

  19. The commissioning of the instrumentation for the LHC tunnel cryogenics

    CERN Document Server

    Avramidou, R; Bamis, C; Casas-Cubillos, J; Dragoneas, A; Fampris, X; Fernandez-Penacoba, G; Gomes, P; Gousiou, E; Jeanmonod, N; Karagiannis, F; Koumparos, A; Leontsinis, S; Lopez-Lorente, A; Patsouli, A; Polychroniadis, I; Suraci, A; Theodoropoulos, G; Vauthier, N; Vottis, C

    2007-01-01

    The Large Hadron Collider (LHC) at CERN is a superconducting accelerator and proton-proton collider of circumference of 27 km, lying about 100 m underground. Its operation relies on 1232 superconducting dipoles with a field of 8.3 T and 392 superconducting quadrupoles with a field gradient of 223 T/m powered at 11.8 kA and operating in superfluid helium at 1.9 K. This paper describes the cryogenic instrumentation commissioning, the challenges and the project organization based on our 2.5 years experience.

  20. Cryogenic vacuum pumping at the LBL 88-inch cyclotron

    International Nuclear Information System (INIS)

    Elo, D.; Morris, D.; Clark, D.J.; Gough, R.A.

    1978-09-01

    A cryogenic vacuum pumping panel has been in operation at the 88-inch cyclotron since 1974. The nude pumping panel is located in the acceleration chamber. The pumping surface consists of tubing cooled to 20 0 K by a closed loop helium refrigeration system. The pumping surfaces are shielded from radiation heat loads and water vapors by liquid nitrogen cooled baffles. The panel was designed for an average pumping speed of 14,000 liters/sec. for air. This approximately tripled the total effective pumping on the acceleration chamber from the existing diffusion pumped system, significantly reducing charge exchange losses of heavy ions during acceleration. Design, installation and performance characteristics are described

  1. Cryogenic propellant management: Integration of design, performance and operational requirements

    Science.gov (United States)

    Worlund, A. L.; Jamieson, J. R., Jr.; Cole, T. W.; Lak, T. I.

    1985-01-01

    The integration of the design features of the Shuttle elements into a cryogenic propellant management system is described. The implementation and verification of the design/operational changes resulting from design deficiencies and/or element incompatibilities encountered subsequent to the critical design reviews are emphasized. Major topics include: subsystem designs to provide liquid oxygen (LO2) tank pressure stabilization, LO2 facility vent for ice prevention, liquid hydrogen (LH2) feedline high point bleed, pogo suppression on the Space Shuttle Main Engine (SSME), LO2 low level cutoff, Orbiter/engine propellant dump, and LO2 main feedline helium injection for geyser prevention.

  2. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  3. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  4. Cryogenics for SMES

    International Nuclear Information System (INIS)

    McIntosh, G.E.

    1981-01-01

    A wide-ranging study of superconducting magnetic energy storage (SMES) structural and cryogenic requirements was made. Concepts and computational methods have been developed for all of the major problems in these areas. Design analyses have been made to provide more detailed information on some items and experimental work has been performed to create data bases in the areas of superfluid heat transfer, superfluid dielectric properties, heat transfer from conductors, and in the thermal and mechanical properties of materials at low temperatures. In most cases optimum solutions have not been made because of the developing nature of the overall study but methodology for optimization has been worked out for essentially all SMES cryogenic and structural elements. The selection of 1.8 K cooling and all aluminum systems in bedrock continues to be the best choice

  5. Cryogenic treatment of gas

    Science.gov (United States)

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  6. Chemiluminescence in cryogenic matrices

    Science.gov (United States)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  7. SNS Central Helium Liquefier spare Carbon Bed installation and commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Degraff, Brian D. [ORNL; Howell, Matthew P. [ORNL; Kim, Sang-Ho [ORNL; Neustadt, Thomas S. [ORNL

    2017-07-01

    The Spallation Neutron Source (SNS) Central Helium Liquefier (CHL) at Oak Ridge National Laboratory (ORNL) has been without major operations downtime since operations were started back in 2006. This system utilizes a vessel filled with activated carbon as the final major component to remove oil vapor from the compressed helium circuit prior to insertion into the system's cryogenic cold box. The need for a spare carbon bed at SNS due to the variability of carbon media lifetime calculation to adsorption efficiency will be discussed. The fabrication, installation and commissioning of this spare carbon vessel will be presented. The novel plan for connecting the spare carbon vessel piping to the existing infrastructure will be presented.

  8. EPICS based control system for cryogenic plant at VECC

    International Nuclear Information System (INIS)

    Panda, Umashankar; Pal, Sandip; Mandal, Anupam; Dey, Ranadhir

    2012-01-01

    Cryogenic Plant of Variable Energy Cyclotron Centre consists of two Helium refrigerators (250W and 415W at the rate 4.5K), valve box with sub-cooler and associated sub systems like pure gas storage, helium purifier and impure gas recovery etc. The system also consists of 3.1K liters of liquid Nitrogen (LN 2 ) storage and delivery system. Many of the systems are procured from different suppliers and some are also developed in house. Due to the variety of systems and suppliers the control philosophy, communication protocols and component is also different. So the Supervisory control and data acquisition (SCADA) module has to be such that it can take care of the variance and bring everything into a common control platform. To solve this purpose EPICS (Experimental Physics and Industrial Control System) architecture has been adopted. EPICS is having the advantage of being open source, flexible and unlimited as compared to the commercial SCADA packages. (author)

  9. Control and operation cost optimization of the HISS cryogenic system

    International Nuclear Information System (INIS)

    Porter, J.; Anderson, D.; Bieser, F.

    1984-01-01

    This chapter describes a control strategy for the Heavy Ion Spectrometer System (HISS), which relies upon superconducting coils of cryostable design to provide a particle bending field of 3 tesla. The control strategy has allowed full time unattended operation and significant operating cost reductions. Microprocessor control of flash boiling style LIN circuits has been successful. It is determined that the overall operating cost of most cryogenic systems using closed loop helium systems can be minimized by properly balancing the total heat load between the helium and nitrogen circuits to take advantage of the non-linearity which exists in the power input to 4K refrigeration characteristic. Variable throughput compressors have the advantage of turndown capability at steady state. It is concluded that a hybrid system using digital and analog input for control, data display and alarms enables full time unattended operation

  10. Operational present status and reliability analysis of the upgraded EAST cryogenic system

    Science.gov (United States)

    Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.

    2017-12-01

    Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.

  11. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    International Nuclear Information System (INIS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-01

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN 2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014

  12. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D. [TRIUMF, Vancouver, BC, V6T 2A3 (Canada)

    2014-01-29

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN{sub 2} storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  13. Cryogenic cooler thermal coupler

    International Nuclear Information System (INIS)

    Green, K.E.; Talbourdet, J.A.

    1984-01-01

    A thermal coupler assembly mounted to the coldfinger of a cryogenic cooler which provides improved thermal transfer between the coldfinger and the detector assembly mounted on the dewar endwell. The thermal coupler design comprises a stud and spring-loaded cap mounted on the coldfinger assembly. Thermal transfer is made primarily through the air space between the cap and coldwell walls along the radial surfaces. The cap is spring loaded to provide thermal contact between the cap and endwell end surfaces

  14. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  15. Limitations of superfluid helium droplets as host system revealed by electronic spectroscopy of embedded molecules

    Energy Technology Data Exchange (ETDEWEB)

    Premke, Tobias

    2016-02-19

    Superfluid helium nanodroplets serve a unique cryogenic host system ideal to prepare cold molecules and clusters. Structures as well as dynamic processes can be examined by means of high resolution spectroscopy. Dopant spectra are accompanied by helium-induced spectroscopic features which reveal information on the dopant to helium interaction. For this reason the experimental research focuses on the investigation of such helium-induced effects in order to provide new information on the microsolvation inside the droplets. Since the quantitative understanding of helium-induced spectral features is essential to interpret molecular spectra recorded in helium droplets, this study contributes further experimental details on microsolvation in superfluid helium droplets. For this purpose two contrary systems were examined by means of high resolution electronic spectroscopy. The first one, phthalocyanine (Pc), is a planar organic molecule offering a huge and planar surface to the helium atoms and thus, the non-superfluid helium solvation layer can form different structures. The second system is iodine and in contrast to Pc it is of simple molecular shape. That means that in this case different complex structures of the non-superfluid helium solvation layer and the dopant can be expected to be avoided. Thus, both molecules should show clear differences in their microsolvation behavior. In this work a detailed examination of different spectroscopic properties of phthalocyanine is given by means of fluorescence excitation and dispersed emission spectroscopy. It raises legitimate doubts about the assignment of experimentally observed signals to features predicted by the model of the microsolvation. Even though there are no experimental observations which disprove the empirical model for the solvation in helium droplets, an unambiguous assignment of the helium-induced spectroscopic structures is often not possible. In the second part of this work, the investigation of the

  16. Cryogenics in nuclear reactor technology

    International Nuclear Information System (INIS)

    Dharmadurai, G.

    1982-01-01

    The cryogenic technology has significantly contributed to the development of several proven techniques for use in the nuclear power industry. A noteworthy feature is the unique role of cryogenics in minimising the release of radioactive and some chemical pollutants to the environment during the operation of various plants associated with this industry. The salient technological features of several cryogenic processes relevant to the nuclear reactor technology are discussed. (author)

  17. Surface Tension Confines Cryogenic Liquid

    Science.gov (United States)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  18. Diffusion of helium in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Noerdlinger, P D [Michigan State Univ., East Lansing (USA). Dept. of Astronomy and Astrophysics; Amsterdam Univ. (Netherlands). Sterrenkundig Instituut)

    1977-05-01

    I have reduced the set of diffusion and flow equations developed by Burgers for a multi-component gas to a workable scheme for the actual evaluation of the relative diffusion of hydrogen and helium in stars. Previous analyses have used the Aller and Chapman equations, which apply only to trace constitutents and whose coefficients are not believed to be as accurate as Burgers'. Furthermore, the resulting equations have been combined consistently with Paczynski's stellar evolution code to demonstrate small but significant effects in the Sun, from the thermal and gravitational settling of Helium. The core helium content of a 1 M star goes up about 0.04 and the surface helium content down by about -0.03 in 4.5 10/sup 9/ years. The results are still somewhat uncertain because of uncertainties in the underlying plasma physics, and further research is suggested. In any case, the diffusion process speeds up with time, due to increased temperature gradient, and it will be of interest to follow the process in older stars and in later stellar evolution.

  19. Fuel and helium confinement in fusion reactors

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Attenberger, S.E.

    1993-01-01

    An expanded macroscopic model for particle confinement is used to investigate both fuel and helium confinement in reactor plasmas. The authors illustrate the relative effects of external sources of fuel, divertor pumping, and wall and divertory recycle on core, edge and scrape-off layer densities by using separate particle confinement times for open-quote core close-quote fueling (deep pellet or beam penetration, τ c ), open-quote shallow close-quote fueling (shallow pellet penetration or neutral atoms that penetrate the scrape-off layer, τ s ) and fueling in the scrape-off layer (τ sol ). Because τ s is determined by the parallel flow velocity and characteristic distance to the divertor plate, it can be orders of magnitude lower than either τ c or τ sol . A dense scrape-off region, desirable for reduced divertor erosion, leads to a high fraction of the recycled neutrals being ionized in the scrape-off region and poor core fueling efficiency. The overall fueling efficiency can then be dramatically improved with either shallow or deep auxillary fueling. Helium recycle is nearly always coupled to the scrape-off region and does not lead to strong core accumulation unless the helium pumping efficiency is much less than the fuel pumping efficiency, or the plasma preferentially retains helium over hydrogenic ions. Differences between the results of this model, single-τ p macroscopic models, and 1-D and 2-D models are discussed in terms of assumptions and boundary conditions

  20. Use of helium in uranium exploration, Grants district

    International Nuclear Information System (INIS)

    DeVoto, R.H.; Mead, R.H.; Martin, J.P.; Bergquist, L.E.

    1980-01-01

    The continuous generation of inert helium gas from uranium and its daughter products provides a potentially useful means for remote detection of uranium deposits. The practicality of conducting helium surveys in the atmosphere, soil gas, and ground water to explore for buried uranium deposits has been tested in the Grants district and in the Powder River Basin of Wyoming. No detectable helium anomalies related to buried or surface uranium deposits were found in the atmosphere. However, reproducible helium-in-soil-gas anomalies were detected spatially related to uranium deposits buried from 50 to 800 ft deep. Diurnal and atmospheric effects can cause helium content variations (noise) in soil gas that are as great as the anomalies observed from instantaneous soil-gas samples. Cumulative soil-gas helium analyses, such as those obtained from collecting undisturbed soil samples and degassing them in the laboratory, may reveal anomalies from 5 to 100 percent above background. Ground water samples from the Grants district, New Mexico, and the Powder River Basin, Wyoming, have distinctly anomalous helium values spatially related to buried uranium deposits. In the southern Powder River Basin, helium values 20 to 200 percent above background occur 2 to 18 mile down the ground-water flow path from known uranium roll-front deposits. In the Grants district, helium contents 40 to 700 percent above background levels are present in ground waters from the host sandstone in the vicinity of uranium deposits and from aquifers up to 3,000 ft stratigraphically above the deep uranium deposits. The use of helium in soil and ground-water surveys, along with uranium and radon analyses of the same materials, is strongly recommended is expensive, deep, uranium-exploration programs such as those being conducted in the Grants district

  1. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Bianchi, A.J.; Barger, R.K.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-03-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and non-high current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  2. Use of microstructure control to toughen ferritic steels for cryogenic use. I. Fe--Ni steels

    International Nuclear Information System (INIS)

    Syn, C.K.; Jin, S.; Morris, J.W. Jr.

    1976-12-01

    Alternation of austenitization and austenite + ferrite two-phase decomposition treatment in a cyclic thermal treatment allows the achievement of ultra-fine grain size in steels containing 8-12% Ni. The grain refinement leads to a substantial improvement in cryogenic mechanical properties. The ductile-brittle transition temperature of a ferritic Fe-12Ni-0.25Ti alloy was suppressed to below liquid helium temperature by this grain refinement procedure; the transition temperature of commercial ''9Ni'' cryogenic steel was similarly reduced by combining the grain refinement with a final temper which introduces a small admixture of retained austenite

  3. Cryogenic system for production testing and measurement of Fermilab energy saver superconducting magnets

    International Nuclear Information System (INIS)

    Cooper, W.E.; Barger, R.K.; Bianchi, A.J.; Cooper, W.E.; Johnson, F.B.; McGuire, K.J.; Pinyan, K.D.; Wilson, F.R.

    1983-01-01

    The cryogenic system of the Fermilab Magnet Test Facility has been used to provide cooling for the testing of approximately 1200 Energy Saver superconducting magnets. The system provides liquid helium, liquid nitrogen, gas purification, and vacuum support for six magnet test stands. It provides for simultaneous high current testing of two superconducting magnets and nonhigh current cold testing of two additional magnets. The cryogenic system has been in operation for about 32000 hours. The 1200 magnets have taken slightly more than three years to test

  4. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Nanesa, Hadi; Jahazi, Mohammad, E-mail: mohammad.jahazi@etsmtl.ca

    2014-03-01

    In this research, the effect of cryogenic treatment on microstructural evolution and mechanical properties enhancement of AISI D2 tool steel was investigated. Cryogenic treatment down to liquid nitrogen temperature (77 K) was added to the conventional heat treatment between hardening and tempering steps. Electron microscopy investigation showed higher volume fraction of fine carbides with average diameter below 1 μm indicating effective retardation in carbide coarsening process as a results of cryogenic treatment. A modification in types of carbides was also observed after cryogenic treatment. X-ray diffraction diagrams revealed transformation of retained austenite to martensite at cryogenic temperature. Weakening or removal of carbides peak in the X-ray diagram was considered as evidence of carbides different behavior at cryogenic temperature. Mechanical testing results indicated higher ultimate tensile strength, better ductility, and higher elastic modulus after cryogenic treatment. Analysis of stress–strain diagrams revealed different strain hardening behavior for cryogenically treated alloy when compared to the conventionally heat treated one. Fractography results confirmed strain hardening behavior and showed cleavage fracture for conventionally treated alloy but mixed cleavage–ductile fracture mode for cryogenically treated alloy. The improved mechanical properties after cryogenic treatment are interpreted in terms of the influence of higher volume fraction and uniform distribution of fine carbides in reducing the average active dislocations length and enhancement of the flow stress at any given plastic strain.

  5. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel

    International Nuclear Information System (INIS)

    Ghasemi-Nanesa, Hadi; Jahazi, Mohammad

    2014-01-01

    In this research, the effect of cryogenic treatment on microstructural evolution and mechanical properties enhancement of AISI D2 tool steel was investigated. Cryogenic treatment down to liquid nitrogen temperature (77 K) was added to the conventional heat treatment between hardening and tempering steps. Electron microscopy investigation showed higher volume fraction of fine carbides with average diameter below 1 μm indicating effective retardation in carbide coarsening process as a results of cryogenic treatment. A modification in types of carbides was also observed after cryogenic treatment. X-ray diffraction diagrams revealed transformation of retained austenite to martensite at cryogenic temperature. Weakening or removal of carbides peak in the X-ray diagram was considered as evidence of carbides different behavior at cryogenic temperature. Mechanical testing results indicated higher ultimate tensile strength, better ductility, and higher elastic modulus after cryogenic treatment. Analysis of stress–strain diagrams revealed different strain hardening behavior for cryogenically treated alloy when compared to the conventionally heat treated one. Fractography results confirmed strain hardening behavior and showed cleavage fracture for conventionally treated alloy but mixed cleavage–ductile fracture mode for cryogenically treated alloy. The improved mechanical properties after cryogenic treatment are interpreted in terms of the influence of higher volume fraction and uniform distribution of fine carbides in reducing the average active dislocations length and enhancement of the flow stress at any given plastic strain

  6. Cryogenic beam loss monitoring for the LHC

    International Nuclear Information System (INIS)

    Kurfürst, C.

    2013-01-01

    A Beam Loss Monitoring (BLM) system was installed on the outside surface of the LHC magnet cryostats to protect the accelerator equipment from beam losses. The protection is achieved by extracting the beam from the ring in case thresholds imposed on measured radiation levels are exceeded. Close to the interaction regions of the LHC, the present BLM system is sensitive to particle showers generated in the interaction region of the two beams. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. The particle showers measured by the present BLM configuration are partly shielded by the cryostat and the iron yoke of the magnets. The system can hence be optimised by locating beam loss monitors as close as possible to the protected element, i. e. the superconducting coils, inside the cold mass of the magnets in superfluid helium at 1.9 K. The advantage is that the dose measured by the Cryogenic Beam Loss Monitor (CryoBLM) would more precisely correspond to the dose deposited in the superconducting coil. The main challenges of this placement are the low temperature of 1.9 K and the integrated dose of 2 MGy in 20 years. Furthermore the CryoBLM should work in a magnetic field of 2 T and at a pressure of 1.1 bar, withstanding a fast pressure rise up to 20 bar in case of a magnet quench. The detector response should be linear between 0.1 and 10 mGy/s and faster than 1 ms. Once the detectors are installed in the LHC magnets, no access will be possible. Hence the detectors need to be available, reliable and stable for 20 years. Following intense research it became clear that no existing technology was proven to work in such conditions. The candidates under investigation in this work are diamond and silicon detectors and an ionisation chamber, using the liquid helium itself as particle detection medium

  7. A Focus on Cryogenic Engineering for the Primordial Inflation Polarization Explorer (PIPER) Mission

    Science.gov (United States)

    Rosas, Rogelio; Weston, Amy

    2011-01-01

    Cryogenic engineering involves design and modification of equipment that is used under boiling point of nitrogen which is 77 K. The focus of this paper will be on the design of hardware for cryogenic use and a retrofit that was done to the main laboratory cryostat used to test flight components for the Primordial Inflation Polarization Explorer balloon-borne mission. Data from prior tests showed that there was a superfluid helium leak and a total disassemble of the cryostat was conducted in order to localize and fix the leak. To improve efficiency new fill tubes and clamps with modifications were added to the helium tank. Upon removal of the tank, corrosion was found on the flange face that connects to the helium cold plate and therefore had to be fully replaced and copper plated to prevent future corrosion. Indium seals were also replaced for the four fill tubes, a helium level sensor, and the nitrogen and helium tanks. Four additional shielded twisted pairs of cryogenic wire and a wire harness for the Superconducting Quantum Interference Devices (SQUIDs) were added. Finally, there was also design work done for multiple pieces that went inside the cryostat and a separate probe used to test the SQUIDs. Upon successful completion of the cryostat upgrade, tests were run to check the effectiveness and stability of the upgrades. The post-retrofit tests showed minor leaks were still present and due to this, superfluidity has still not been attained. As such there could still be a possibility of a superfluid leak appearing in the future. Regardless, the copper plating on the helium tank has elongated the need to service it by three to five years.

  8. Consideration of heat transfer performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Miyamoto, Yoshiaki

    1986-10-01

    The helium engineering loop (HENDEL) has four helium-gas/water coolers, where the cooling water flows in the tubes and the helium gas flows on the shell side. Their cooling performance depends on mainly the heat transfer of helium gas on the shell side. This report describes the operational data of the coolers and the consideration of the heat transfer performance which is important for the design of coolers. It becomes clear that Donohue's equation is close to the operational data and conservative for the segmental baffle type cooler and preduction by Fishenden-Saunders or Zukauskas' equation is conservation for the step-up baffle type cooler. (author)

  9. Cryogenic equipment; Materiel cryogenique

    Energy Technology Data Exchange (ETDEWEB)

    Leger, L; Javellaud, J; Caro, C; Gilguy, R; Testard, O

    1966-06-01

    The cryostats presented here were built from standard parts; this makes it possible to construct a great variety of apparatus at minimum cost. The liquid nitrogen and helium reservoirs were designed so as to reduce losses to a minimum, and so as to make the cryostats as autonomous as possible. The experimental enclosure which is generally placed in the lower part of the apparatus requires a separate study in every case. Furthermore, complete assemblies such as transfer rods, isolated traps and high vacuum valves, were designed with a similar regard for the economic aspects and for the need for standardization. This equipment thus satisfies a great variety of experimental needs; it is readily adaptable and the consumptions of helium and liquid nitrogen are very low. (authors) [French] De nombreuses experiences utilisant les basses temperatures, necessitent l'emploi d'un materiel cryogenique complexe n'existant pas dans le commerce. Les cryostats presentes ici ont ete realises a partir d'elements standard, ce qui permet, malgre la diversite des appareils, de realiser un ensemble a moindre frais. Les reservoirs d'azote et d'helium liquides ont ete concus de facon a limiter les pertes et a conferer au cryostat la plus grande autonomie possible. L'enceinte experimentale situee en general dans la partie inferieure de l'appareil necessite dans tous les cas une etude speciale. D'autre part des ensembles complets tels que les cannes de transfert, piege isole, robinet pour vide secondaire, ont ete concus dans le meme souci de rentabilite et de standardisation. Ce materiel peut donc repondre a un grand nombre d'exigences experimentales, il est facilement adaptable, et les consommations d'helium et d'azote liquide sont tres reduites. (auteurs)

  10. Thermal flow regulator of refrigerant

    International Nuclear Information System (INIS)

    Dubinskij, S.I.; Savchenko, A.G.; Suplin, V.Z.

    1988-01-01

    A thermal flow regulator of refrigerant for helium flow-type temperature-controlled cryostats based on controlling the channel hydraulic resistance due to variation of the flow density and viscosity during liquid helium transformation into the gaseous state. Behind the regulator both two-phase flow and a heated gas can be produced. The regulator resolution is (7-15)x10 -4 l/mW of liquid helium

  11. A review of helium gas turbine technology for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    No, Hee Cheon; Kim, Ji Hwan; Kim, Hyeun Min

    2007-01-01

    Current High-Temperature Gas-cooled Reactors (HTGRs) are based on a closed brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference

  12. Neutral helium beam probe

    Science.gov (United States)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  13. Antiprotonic helium atomcules

    Directory of Open Access Journals (Sweden)

    Sauge Sébastien

    2012-10-01

    Full Text Available About 3% of antiprotons ( stopped in helium are long-lived with microsecond lifetimes, against picoseconds in all other materials. This unusual longevity has been ascribed to the trapping of on metastable bound states in He+ helium atom-molecules thus named atomcules. Apart from their unique dual structure investigated by laser spectroscopy – a near-circular quasi-classical Rydberg atom with l ~ n – 1 ~ 37 or a special diatomic molecule with a negatively charged nucleus in high rotational state with J = l – the chemical physics aspects of their interaction with other atoms or molecules constitute an interesting topic for molecular physics. While atomcules may resist to million collisions in helium, molecular contaminants such as H2 are likely to destroy them in a single one, down to very low temperatures. In the Born-Oppenheimer framework, we interpret the molecular interaction obtained by ab initio quantum chemical calculations in terms of classical reactive channels, with activation barriers accounting for the experiments carried out in He and H2. From classical trajectory Monte Carlo simulations, we show that the thermalization stage strongly quenches initial populations, thus reduced to a recovered 3 % trapping fraction. This work illustrates the pertinence of chemical physics concepts to the study of exotic processes involving antimatter. New insights into the physico-chemistry of cold interstellar radicals are anticipated.

  14. Application of JLab 12GeV helium refrigeration system for the FRIB accelerator at MSU

    International Nuclear Information System (INIS)

    Ganni, V.; Knudsen, P.; Arenius, D.; Casagrande, F.

    2014-01-01

    The planned approach to have a turnkey helium refrigeration system for the MSU-FRIB accelerator system, encompassing the design, fabrication, installation and commissioning of the 4.5-K refrigerator cold box(es), cold compression system, warm compression system, gas management, oil removal and utility/ancillary systems, was found to be cost prohibitive. Following JLab’s suggestion, MSU-FRIB accelerator management made a formal request to evaluate the applicability of the recently designed 12GeV JLab cryogenic system for this application. The following paper will outline the findings and the planned approach for the FRIB helium refrigeration system

  15. Low-Z internal target from a cryogenically cooled liquid microjet source

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, M.; Petridis, N. [Institut fuer Kernphysik, J.W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany); Winters, D.F.A. [GSI, Planckstr. 1, 64291 (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet, Philosophenweg 12, 69120 Heidelberg (Germany); Popp, U. [GSI, Planckstr. 1, 64291 (Germany); Doerner, R. [Institut fuer Kernphysik, J.W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt a. M. (Germany); Stoehlker, Th. [GSI, Planckstr. 1, 64291 (Germany); Physikalisches Institut, Ruprecht-Karls-Universitaet, Philosophenweg 12, 69120 Heidelberg (Germany); Grisenti, R.E. [Institut fuer Kernphysik, J.W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany); GSI, Planckstr. 1, 64291 (Germany)], E-mail: grisenti@atom.uni-frankfurt.de

    2009-04-21

    We carried out an extensive investigation on the production of cryogenically cooled liquid hydrogen and helium droplet beams at the experimental storage ring at GSI with the goal to achieve high area densities for these low-Z internal targets. Our results show that an area density of up to 10{sup 14}cm{sup -2} is achieved for both light gases by expanding the liquid through sub-10 {mu}m diameter nozzles. The achieved area density is comparable with the previous results for the hydrogen internal target and represents an improvement by about four orders of magnitude for the helium target.

  16. Low-Z internal target from a cryogenically cooled liquid microjet source

    International Nuclear Information System (INIS)

    Kuehnel, M.; Petridis, N.; Winters, D.F.A.; Popp, U.; Doerner, R.; Stoehlker, Th.; Grisenti, R.E.

    2009-01-01

    We carried out an extensive investigation on the production of cryogenically cooled liquid hydrogen and helium droplet beams at the experimental storage ring at GSI with the goal to achieve high area densities for these low-Z internal targets. Our results show that an area density of up to 10 14 cm -2 is achieved for both light gases by expanding the liquid through sub-10 μm diameter nozzles. The achieved area density is comparable with the previous results for the hydrogen internal target and represents an improvement by about four orders of magnitude for the helium target.

  17. A confocal optical microscope for detection of single impurities in a bulk crystal at cryogenic temperatures.

    Science.gov (United States)

    Karlsson, Jenny; Rippe, Lars; Kröll, Stefan

    2016-03-01

    A compact sample-scanning confocal optical microscope for detection of single impurities below the surface of a bulk crystal at cryogenic temperatures is described. The sample, lens, and scanners are mounted inside a helium bath cryostat and have a footprint of only 19 × 19 mm. Wide field imaging and confocal imaging using a Blu-ray lens immersed in liquid helium are demonstrated with excitation at 370 nm. A spatial resolution of 300 nm and a detection efficiency of 1.6% were achieved.

  18. Magic angle spinning NMR below 6 K with a computational fluid dynamics analysis of fluid flow and temperature gradients

    Science.gov (United States)

    Sesti, Erika L.; Alaniva, Nicholas; Rand, Peter W.; Choi, Eric J.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Barnes, Alexander B.

    2018-01-01

    We report magic angle spinning (MAS) up to 8.5 kHz with a sample temperature below 6 K using liquid helium as a variable temperature fluid. Cross polarization 13C NMR spectra exhibit exquisite sensitivity with a single transient. Remarkably, 1H saturation recovery experiments show a 1H T1 of 21 s with MAS below 6 K in the presence of trityl radicals in a glassy matrix. Leveraging the thermal spin polarization available at 4.2 K versus 298 K should result in 71 times higher signal intensity. Taking the 1H longitudinal relaxation into account, signal averaging times are therefore predicted to be expedited by a factor of >500. Computer assisted design (CAD) and finite element analysis were employed in both the design and diagnostic stages of this cryogenic MAS technology development. Computational fluid dynamics (CFD) models describing temperature gradients and fluid flow are presented. The CFD models bearing and drive gas maintained at 100 K, while a colder helium variable temperature fluid stream cools the center of a zirconia rotor. Results from the CFD were used to optimize the helium exhaust path and determine the sample temperature. This novel cryogenic experimental platform will be integrated with pulsed dynamic nuclear polarization and electron decoupling to interrogate biomolecular structure within intact human cells.

  19. Ultralow temperature helium compressor for Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Asakura, Hiroshi

    1988-01-01

    Ishikawajima Harima Heavy Industries Co., Ltd. started the development of an ultralow temperature helium compressor for helium liquefaction in 1984 jointly with Japan Atomic Energy Research Institute, and has delivered the first practical machine to the Superconductive Magnet Laboratory of JAERI. For a large superconductive magnet to be used in the stable state for a fusion reactor, conventional superconductive materials (NbTi, NbTi 3 Sn, etc.) must be used, being cooled forcibly with supercritical helium. The supercritical helium which is compressed above the critical pressure of 228 kPa has a stable cooling effect since the thermal conductivity does not change due to the evaporation of liquid helium. In order to maintain the temperature of the supercritical helium below 4 K before it enters a magnet, a heat exchanger is used. The compressor that IHI has developed has the ability to reduce the vapor pressure of liquid helium from atmospheric pressure to 50.7 kPa, and can attain the temperature of 3.5 K. The specification of this single stage centrifugal compressor is: mass flow rate 25 - 64 g/s, speed 80,000 rpm, adiabatic efficiency 62 - 69 %. The structure and the performance are reported. (K.I.)

  20. Leak-tightness assessment of demountable joints for the super fluid helium system of the CERN Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Brunet, J.C.; Poncet, A.; Trilhe, P.

    1994-01-01

    The future high energy accelerator LHC presently considered at CERN, will make heavy use of demountable cryogenic joints operating at superfluid helium temperatures (1.8 K). These joints will be required for connecting the cryomagnets to their feeding lines, helium safety valves to cold masses, both on their measuring benches and eventually in their final installation set-up. The very large size of the future machine and, consequently, the large number of cryogenic joints imply that their reliability in leak tightness be very high, in particular after extreme loading conditions such as the high helium pressures resulting from superconducting magnet quenches. For these reasons, a test set-up has been especially built at CERN to reproduce these conditions, and to assess the leak tightness reliability of commercially available joints. A description of the facility is presented, together with the first test results

  1. Automatic control of cryogenic wind tunnels

    Science.gov (United States)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  2. Helium turbomachinery operating experience from gas turbine power plants and test facilities

    International Nuclear Information System (INIS)

    McDonald, Colin F.

    2012-01-01

    The closed-cycle gas turbine, pioneered and deployed in Europe, is not well known in the USA. Since nuclear power plant studies currently being conducted in several countries involve the coupling of a high temperature gas-cooled nuclear reactor with a helium closed-cycle gas turbine power conversion system, the experience gained from operated helium turbomachinery is the focus of this paper. A study done as early as 1945 foresaw the use of a helium closed-cycle gas turbine coupled with a high temperature gas-cooled nuclear reactor, and some two decades later this was investigated but not implemented because of lack of technology readiness. However, the first practical use of helium as a gas turbine working fluid was recognized for cryogenic processes, and the first two small fossil-fired helium gas turbines to operate were in the USA for air liquefaction and nitrogen production facilities. In the 1970's a larger helium gas turbine plant and helium test facilities were built and operated in Germany to establish technology bases for a projected future high efficiency large nuclear gas turbine power plant concept. This review paper covers the experience gained, and the lessons learned from the operation of helium gas turbine plants and related test facilities, and puts these into perspective since over three decades have passed since they were deployed. An understanding of the many unexpected events encountered, and how the problems, some of them serious, were resolved is important to avoid them being replicated in future helium turbomachines. The valuable lessons learned in the past, in many cases the hard way, particularly from the operation in Germany of the Oberhausen II 50 MWe helium gas turbine plant, and the technical know-how gained from the formidable HHV helium turbine test facility, are viewed as being germane in the context of current helium turbomachine design work being done for future high efficiency nuclear gas turbine plant concepts. - Highlights:

  3. Cryogenic implications for DT

    International Nuclear Information System (INIS)

    Souers, P.C.

    1977-10-01

    Cryogenic hydrogen data is being compiled for magnetic fusion engineering. Many physical properties of DT can be extrapolated from H 2 and D 2 values. The phase diagram properties of the D 2 -DT-T 2 mixture are being measured. Three properties which will be greatly affected by tritium should be measured. In order of their perceived importance, they are: (1) solid thermal conductivity, (2) solid mechanical strength, and (3) gaseous electrical conductivity. The most apparent need for DT data is in Tokomak fuel pellet injection. Cryopumping and distillation applications are also considered

  4. Kodak AMSD Cryogenic Test Plans

    Science.gov (United States)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  5. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  6. Development Status of the Helium Circulator for the HCS of HCCR-TBS

    International Nuclear Information System (INIS)

    Lee, Eo Hwak; Jin, Hyung Gon; Yoon, Jae Sung; Kim, Suk Kwon; Lee, Dong Won; Lee, Si Woo; Cho, Seung Yon

    2016-01-01

    The calculated eddy current loss on the stainless steel sealing cap of the magnetic coupling device is very high. To solve the eddy current loss problem of the sealing cap, a glass fiber composite, non-conductive and high strength material, is adapted as a material of the sealing cap. The HCCR TBM will be cooled down by HCS (Helium Cooling System), supply high pressure (8 MPa) and temperature (300 .deg. C) helium coolant with 1.15 kg/s of mass flow for nominal operation. The real-scale helium circulator, which is main component of the HCS, has been developed since 2014. In present study, design and manufacture progress of the helium circulator and its verification test plan are described. The real-scale circulator has been developed to provide high temperature and pressure of helium flow as a coolant of the HCCR TBM. To prevent helium leakage, magnetic coupling design was adapted between the shaft and the impeller

  7. Surface electrons of helium films

    International Nuclear Information System (INIS)

    Studart, N.; Hipolito, O.

    1986-01-01

    Theoretical calculations of some properties of two-dimensional electrons on a liquid helium film adsorbed on a solid substrate are reviewed. We describe the spectrum of electron bound states on bulk helium as well on helium films. The correlational properties, such as the structure factor and correlation energy, are determined as functions of the film thickness for different types of substrates in the framework of a Generalized Random-Phase Approximation. The collective excitations of this system are also described. The results for electrons on the surface of thin films and bulk helium are easily obtained. we examine the electron interaction with the excitations of the liquid helium surface resulting in a new polaron state, which was observed very recently. The ground state energy and the effective mass of this polaron are determined by using the path-integral formalism and unitary-transformation method. Recent speculations about the phase diagram of electrons on the helium film are also discussed. (Author) [pt

  8. Light induced cooling of a heated solid immersed in liquid helium I

    International Nuclear Information System (INIS)

    Lezak, D.; Brodie, L.C.; Semura, J.S.

    1984-01-01

    This chapter investigates the marked enhancement in the transient heat transfer from the heater-thermometer to the liquid helium immediately following the application of a flash of visible light. This ''light effect'' is associated with increased bubble activity, and it is possible that the light induces a rapid nucleation of bubbles in the superheated liquid at or near the heater surface. A summary of the light effect is presented and some potential uses to which this effect could be applied are suggested. Quantification of the light effect and properties of the light effect are discussed. It is determined that the light effect is an additional cooling due to a light induced enhancement of boiling in superheated liquid helium I. The effect could be applied in practical cryogenic engineering and for the acquisition of fundamental knowledge of boiling heat transfer and nucleation in cryogenic liquids

  9. Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)

    Science.gov (United States)

    Lee, J. H.; Brooks, W. F.

    1984-01-01

    The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.

  10. Manufacturing and Installation of the Compound Cryogenic Distribution Line for the Large Hadron Collider

    CERN Document Server

    Riddone,, G; Bouillot, A; Brodzinski, K; Dupont, M; Fathallah, M; Fournel, JL; Gitton, E; Junker, S; Moussavi, H; Parente, C; Riddone, G

    2007-01-01

    The Large Hadron Collider (LHC) [1] currently under construction at CERN will make use of superconducting magnets operating in superfluid helium below 2 K. A compound cryogenic distribution line (QRL) will feed with helium at different temperatures and pressures the local elementary cooling loops in the cryomagnet strings. Low heat inleak to all temperature levels is essential for the overall LHC cryogenic performance. Following a competitive tendering, CERN adjudicated in 2001 the contract for the series line to Air Liquide (France). This paper recalls the main features of the technical specification and shows the project status. The basic choices and achievements for the industrialization phase of the series production are also presented, as well as the installation issues and status.

  11. Electrostatic charging and levitation of helium II drops

    International Nuclear Information System (INIS)

    Niemela, J.J.

    1997-01-01

    Liquid Helium II drops, of diameter 1 mm or less, are charged with positive helium ions and subsequently levitated by static electric fields. Stable levitation was achieved for drops of order 100-150 micrometers in diameter. The suspended drops could be translated to arbitrary positions within the levitator using additional superimposed DC electric fields, and also could be made to oscillate stably about their average positions by means of an applied time-varying electric field. A weak corona discharge was used to produce the necessary ions for levitation. A novel superfluid film flow device, developed for the controlled deployment of large charged drops, is described. Also discussed is an adjustable electric fountain that requires only a field emission tip operating at modest potentials, and works in both Helium I and Helium II

  12. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  13. Canada's helium output rising fast

    Energy Technology Data Exchange (ETDEWEB)

    1966-12-01

    About 12 months from now, International Helium Limited will be almost ready to start up Canada's second helium extraction plant at Mankota, in Saskatchewan's Wood Mountain area about 100 miles southwest of Moose Jaw. Another 80 miles north is Saskatchewan's (and Canada's) first helium plant, operated by Canadian Helium and sitting on a gas deposit at Wilhelm, 9 miles north of Swift Current. It contains almost 2% helium, some COD2U, and the rest nitrogen. One year in production was apparently enough to convince Canadian Helium that the export market (it sells most of its helium in W. Europe) can take a lot more than it's getting. Construction began this summer on an addition to the Swift Current plant that will raise its capacity from 12 to 36MMcf per yr when it goes on stream next spring. Six months later, International Helium's 40 MMcf per yr plant to be located about 4 miles from its 2 Wood Mountain wells will double Canada's helium output again.

  14. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  15. A Simulation Study for the Virtual Commissioning of the CERN Central Helium Liquefier

    CERN Document Server

    Rogez, E; Moraux, A; Pezzetti, M; Gayet, P; Coppier, H

    2009-01-01

    This paper describes the implication of dynamic simulation in cryogenics processes. The simulation aims to prepare plant commissioning and operation, and to validate the efficiency of the new process control logic. PLC programs have been tested on a process simulator integrating physical models of valves, heat exchangers, turbines, phase separator, and helium data. The model has shown the capacity to reproduce cold-box dynamic behaviour, from 300 K to 4.5 K.

  16. Mirror fusion test facility cryogenic system - performance, management approach, and present equipment status

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.

    1988-01-01

    The cryogenic system for the MFTF is a helium refrigeration system that proved to be successful and cost effective. All operating objectives were met while remaining within a few percent of the initial cost and schedule plans. The management approach used at MFTF is assessed. Manpower levels, extent and type of industrial participation, and subcontractor specifications and interactions are reviewed along with highlights of system testing, documentation, and operation

  17. Orion A helium abundance

    International Nuclear Information System (INIS)

    Tsivilev, A.P.; Ershov, A.A.; Smirnov, G.T.; Sorochenko, R.L.

    1986-01-01

    The 22.4-GHz (H,He)66-alpha and 36.5-GHz (H,He)56-alpha radio recombination lines have been observed at several Jaffe-Pankonin positions in the central part of the Orion A source. The measured relative abundance of ionized helium increases with distance, averaging 11.6 percent at peripheral points. The observed behavior is interpreted by a blister-type model nebula, which implies that Orion A has a true He abundance of 12 percent, is moving with a radial velocity of 5 km/sec, and is expanding. 18 references

  18. Simulation of liquid helium

    International Nuclear Information System (INIS)

    Ceperley, D.M.

    1985-07-01

    The author discusses simulation methods for quantum mechanical systems at finite temperatures. Recently it has been shown that static properties of some quantum systems can be obtained by simulation in a straightforward manner using path integrals, albeit with an order of magnitude more computing effort needed than for the corresponding classical systems. Some dynamical information can be gleaned from these simulations as will be discussed below. But this is very limited - there is no quantum version of the molecular dynamics method. The path integral method is illustrated by discussing the application to liquid helium. 12 refs., 8 figs

  19. The Fast Alternative Cryogenic Experiment Testbed

    Science.gov (United States)

    Nash, Alfred; Holmes, Warren

    2000-01-01

    One of the challenges in the area of cryogenics for space exploration in the next millennium is providing the capability for inexpensive, frequent, access to space. Faced with this challenge during the International Space Station (ISS) build era, when other Space Shuttle manifesting opportunities are unavailable, a "proof of concept" cryostat has been developed to demonstrate the ability to accommodate low temperature science investigations within the constraints of the Hitchhiker siderail carrier. The Hitchhiker siderail carrier is available on a "mass available" basis during the ISS build era. In fact, several hitchhiker payloads flew with the deployment of the Unity module. Hitchhiker siderail carrier payloads have historically flown an average of about four times a year. A hybrid Solid Neon - Superfluid Helium cryostat has been developed with Janis Research Company to accommodate instruments of 16.5 cm diameter and 30 cm. length. This hybrid approach was taken in part to provide adequate on-orbit lifetime for instruments with high (conducted) heat loads from the instrumentation wiring. Mass, volume, lifetime and the launch hold scenario were all design drivers. In addition, with Ball Aerospace and Technologies Corporation, a multichannel VME architecture Germanium Resistance Thermometer (GRT) readout and heater control servo system has been developed. In a flight system, the cryostat and electronics payloads would be umbilically attached in a paired Hitchhiker siderail mount, and permit on-orbit command and telemetry capability. The results of performance tests of both the cryostat, and a helium sample instrument will be presented. The instrument features a self contained, miniaturized, nano-Kelvin resolution High Resolution Thermometer (HRT). This high level of thermal resolution is achieved through the utilization of a dc Superconducting Quantum Interference Device (SQUID). Although developed for the Low Temperature Microgravity Fundamental Physics

  20. Cryogenic test of the equivalence principle

    International Nuclear Information System (INIS)

    Worden, P.W. Jr.

    1976-01-01

    The weak equivalence principle is the hypothesis that the ratio of internal and passive gravitational mass is the same for all bodies. A greatly improved test of this principle is possible in an orbiting satellite. The most promising experiments for an orbital test are adaptations of the Galilean free-fall experiment and the Eotvos balance. Sensitivity to gravity gradient noise, both from the earth and from the spacecraft, defines a limit to the sensitivity in each case. This limit is generally much worse for an Eotvos balance than for a properly designed free-fall experiment. The difference is related to the difficulty of making a balance sufficiently isoinertial. Cryogenic technology is desirable to take full advantage of the potential sensitivity, but tides in the liquid helium refrigerant may produce a gravity gradient that seriously degrades the ultimate sensitivity. The Eotvos balance appears to have a limiting sensitivity to relative difference of rate of fall of about 2 x 10 -14 in orbit. The free-fall experiment is limited by helium tide to about 10 -15 ; if the tide can be controlled or eliminated the limit may approach 10 -18 . Other limitations to equivalence principle experiments are discussed. An experimental test of some of the concepts involved in the orbital free-fall experiment is continuing. The experiment consists in comparing the motions of test masses levitated in a superconducting magnetic bearing, and is itself a sensitive test of the equivalence principle. At present the levitation magnets, position monitors and control coils have been tested and major noise sources identified. A measurement of the equivalence principle is postponed pending development of a system for digitizing data. The experiment and preliminary results are described

  1. Evaluation of Losses Of Cold Energy of Cryogen Products in The Transport Systems

    Science.gov (United States)

    Uglanov, Dmitry; Sarmin, Dmitry; Tsapkova, Alexandra; Burdina, Yana

    2017-12-01

    At present, there are problems of energy saving in various areas of human life and in power complexes of industrial plants. One possible solution to the problem of increasing energy efficiency is the use of liquefied natural gas and its cold energy. Pipelines for fuel or gas supply in cryogen supply systems have different length depending on the mutual position of storage and cryogen consumption devices relatively to a start construction. Cryogen supply and transport systems include a lot of fittings of different assortment. Reservoirs can be installed on different elevation points. To reduce heat inleak and decrease cold energy of cryogen product different kinds of thermal insulation are used. Cryogen pipelines provide required operation conditions of storage and gasifying systems. The aim of the thermal calculation of cryogen transport and supply systems is to define the value of cryogen heat. In this paper it is shown values of cryogen temperature rise due to heat inleaks at cryogen’s transfer along transport systems for ethane, methane, oxygen and nitrogen were calculated. Heat inleaks also due to hydraulic losses were calculated. Specific losses of cold energy of cryogen product for laminar and turbulent flow were calculated. Correspondences of temperature rise, critical pipeline’s length and Reynolds number were defined for nitrogen, argon, methane and oxygen.

  2. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...

  3. 3D numerical simulation of fluid–solid coupled heat transfer with variable property in a LBE-helium heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei, E-mail: chenfei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); North China University of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou, Henan 450011 (China); Cai, Jun, E-mail: caijun@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Li, Xunfeng, E-mail: lixunfeng@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Huai, Xiulan, E-mail: hxl@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China); Wang, Yongwei, E-mail: wangyongwei@iet.cn [Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190 (China)

    2014-07-01

    Highlights: • Heat transfer in heat exchanger can be improved by increasing helium's flow rate. • The outlet temperature of helium decreases with increasing helium's flow rate. • Balance is necessary between good heat transfer and high helium outlet temperature. - Abstract: LBE-helium experimental loop of ADS (LELA) and LBE-helium heat exchanger have been designed and constructed with the supporting of the “ADS Transmutation System” project of Chinese Academy of Sciences. In order to investigate the flow and heat transfer characteristics between LBE and helium, 3D numerical simulation of fluid–solid coupled heat transfer with variable property in the LBE-helium heat exchanger is conducted in the present study. The effects of mass-flow-rates of helium and LBE in the shell-side and tube-side on the heat transfer performance are addressed. It is found that the heat transfer performance can be significantly improved by increasing helium mass-flow-rate in the shell-side. In order to easily and quickly obtain the outlet temperatures of helium and LBE, a concept of modified effectiveness is introduced and correlated as the function of tube-side to shell-side heat capacity rate ratio. The results show that the outlet temperature of helium decreases with increasing helium mass-flow-rate. Therefore, considering the utilization of high-temperature helium in the future, for example power generation, there should be a tradeoff between good heat transfer performance and high outlet helium temperature when confirming helium mass-flow-rate.

  4. High Efficiency Regenerative Helium Compressor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  5. Supercritical Helium Cooling of the LHC Beam Screens

    CERN Document Server

    Hatchadourian, E; Tavian, L

    1998-01-01

    The cold mass of the LHC superconducting magnets, operating in pressurised superfluid helium at 1.9 K, must be shielded from the dynamic heat loads induced by the circulating particle beams, by means of beam screens maintained at higher temperature. The beam screens are cooled between 5 and 20 K by forced flow of weakly supercritical helium, a solution which avoids two-phase flow in the long, narr ow cooling channels, but still presents a potential risk of thermohydraulic instabilities. This problem has been studied by theoretical modelling and experiments performed on a full-scale dedicated te st loop.

  6. IMPROVEMENTS TO THE CRYOGENIC CONTROL SYSTEM ON DIII-D

    International Nuclear Information System (INIS)

    HOLTROP, K.L; ANDERSON, P.M; MAUZEY, P.S.

    2004-03-01

    OAK-B135 The cryogenic facility that is part of the DIII-D tokamak system supplies liquid nitrogen and liquid helium to the superconducting magnets used for electron cyclotron heating, the D 2 pellet injection system, cryopumps in the DIII-D vessel, and cryopanels in the neutral beam injection system. The liquid helium is liquefied on site using a Sulzer liquefier that has a 150 l/h liquefaction rate. Control of the cryogenic facility at DIII-D was initially accomplished through the use of three different programmable logic controllers (PLCs). Recently, two of those three PLCs, a Sattcon PLC controlling the Sulzer liquefier and a Westinghouse PLC, were removed and all their control logic was merged into the remaining PLC, a Siemens T1555. This replacement was originally undertaken because the removed PLCs were obsolete and unsupported. However, there have been additional benefits from the replacement. The replacement of the RS-232 serial links between the graphical user interface and the PLCs with a high speed Ethernet link allows for real-time display and historical trending of nearly all the cryosystem's data. this has greatly increased the ability to troubleshoot problems with the system, and has permitted optimization of the cryogenic system's performance because of the increased system integration. To move the control logic of the Sattcon control loops into the T1555, an extensive modification of the basic PID control was required. These modifications allow for better control of the control loops and are now being incorporated in other control loops in the system

  7. Upgrade of the cryogenic infrastructure of SM18, CERN main test facility for superconducting magnets and RF cavities

    Science.gov (United States)

    Perin, A.; Dhalla, F.; Gayet, P.; Serio, L.

    2017-12-01

    SM18 is CERN main facility for testing superconducting accelerator magnets and superconducting RF cavities. Its cryogenic infrastructure will have to be significantly upgraded in the coming years, starting in 2019, to meet the testing requirements for the LHC High Luminosity project and for the R&D program for superconducting magnets and RF equipment until 2023 and beyond. This article presents the assessment of the cryogenic needs based on the foreseen test program and on past testing experience. The current configuration of the cryogenic infrastructure is presented and several possible upgrade scenarios are discussed. The chosen upgrade configuration is then described and the characteristics of the main newly required cryogenic equipment, in particular a new 35 g/s helium liquefier, are presented. The upgrade implementation strategy and plan to meet the required schedule are then described.

  8. Design and construction of the SSCL magnet test laboratory cryogenic systems

    International Nuclear Information System (INIS)

    Freeman, M.A.; Kobel, T.A.

    1992-01-01

    The intent of this document is to provide a brief summary of the execution, by Process Systems International, Inc. (PSI), of the Design and Construction of the SSCL Magnet Test Laboratory Cryogenic Systems. This $30 million project requires the expenditure of over 200,000 manhours and the procurement of $17 million in materials within a two year period. SSC magnets will be performance tested at the Magnet Test Laboratory (MTL) and the Accelerator System String Test (ASST) facility under conditions simulating the environment of the SSC main ring. The cryogenic system consists of test stands (five for MTL, one for ASST) and the associated equipment including cryogenic storage, purification, thermal conditioning, and helium refrigeration necessary to support the test program

  9. Cryogenic aluminum-wound generator rotor concept for nuclear power conversion

    International Nuclear Information System (INIS)

    Schlicher, R.L.; Oberly, C.E.

    1987-01-01

    This paper presents a design outline for a liquid hydrogen cooled generator rotor that could be used to fabricate a 20-megawatt cryogenic generator. The armature of an existing 20-megawatt superconducting generator could be utilized in this new cryogenic generator concept without electrical modification and with minimum modification to its housing. The acquisition and operating expense of liquid helium liquefiers, refrigeration requirements and the expense of fabricating a superconductor wound generator rotor make an aluminum-wound rotor a viable alternative. Ideally, the aluminum rotor could use the higher cryogenic temperatures of liquid hydrogen at 21 K as conductor coolant and not require the more difficult fabrication techniques of a superconducting generator rotor. A most likely conductor candidate is high purity aluminum which has 0.2% its room temperature resistance at liquid hydrogen temperatures. Recent research has indicated the feasibility of fabricating high-purity aluminum conductors in a composite conductor form

  10. Cryogenics for high-energy particle accelerators: highlights from the first fifty years

    CERN Document Server

    AUTHOR|(CDS)2067931

    2017-01-01

    Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices – magnets and high-frequency cavities – distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic flu...

  11. Design and operating experience of the cryogenic system of the U.S. SCMS as incorporated into the bypass loop of the U-25 MHD generator facility

    International Nuclear Information System (INIS)

    Niemann, R.C.; Mataya, K.F.; McWilliams, D.A.; Borden, R.; Streeter, M.H.; Wickson, R.; Smelser, P.; Privalov, N.P.

    1978-01-01

    The design features and accumulated operating experience, from a cryogenics point of view, of the United States Superconducting Magnet System (U.S. SCMS) are presented. The principal cryogenic system design parameters are enumerated. Details of the cryogenic aspects of magnetic system commissioning, standby mode, and operation with MHD generators are discussed. Included are system operation, problems encountered and corrective actions taken, and measured operating parameters which include liquid helium boiloff, cryostat pressure and level versus time, etc. The aspects of the transition between operation in the laboratory and in an MHD plant are elaborated

  12. Grain refinement and hardness distribution in cryogenically cooled ferritic stainless steel welds

    International Nuclear Information System (INIS)

    Amuda, M.O.H.; Mridha, S.

    2013-01-01

    Highlights: ► Grain refinement was undertaken in AISI 430 FSS welds using cryogenic cooling. ► Flow rates of the cryogenic liquid influenced weld grain structure. ► Cryogenic cooling of welds generates about 45% grain refinement in welds. ► Phase structure of welds is not affected by flow rates of cryogenic liquid. ► Hardness profile in cryogenically cooled and conventional welds is similar. - Abstract: The energy input and heat dissipation dynamics during fusion welding generates coarse grain in the welds resulting in poor mechanical properties. While grain refinement in welds via the control of the energy input is quite common, the influence of heat dissipation on grain morphology and properties is not fully established. This paper characterized cryogenically cooled ferritic stainless steel (FSS) welds in terms of grain structure and hardness distribution along transverse and thickness directions. Cryogenic cooling reduces the weld dimension by more than 30% and provides grain refinement of almost 45% compared to conventional weld. The hardness distribution in the thickness direction gives slightly higher profile because of decreased grain growth caused by faster cooling effects of cryogenic liquid

  13. Helium production in reactor materials

    International Nuclear Information System (INIS)

    Lippincott, E.P.; McElroy, W.N.; Farrar, H. IV.

    1975-02-01

    Comparisons of integral helium production measurements with predictions based on ENDF/B Version IV cross sections have been made. It is concluded that an ENDF/B helium production cross section file should be established in order to ensure a complete and consistent cross section evaluation to meet accuracies required for LMFBR, CTR, and LWR applications. (U.S.)

  14. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  15. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  16. Cryogenic Cam Butterfly Valve

    Science.gov (United States)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  17. Cryogenic supplies for the TFTR neutral beam line cryopanels

    International Nuclear Information System (INIS)

    Pinter, G.

    1977-01-01

    Cryocondensing panels will be used for the Neutral Beam Lines of the TFTR to satisfy a pumping speed requirement of 2.5 x 10 6 l/s. The cryocondensing panels are fed by liquid helium (LHe), boiling at selectable temperatures of 4.5 0 K or 3.8 0 K. Liquid nitrogen (LN 2 ) panels and chevrons thermally shield the LHe panel. The closed-loop LHe supply system and the open loop LN 2 system are discussed. The helium refrigerator of minimum 1070-W capacity, together with its distribution system, and the nitrogen distribution system in the ton/hour LN 2 range is presented. Problems and their solutions in connection with the LHe system, including the distribution over a distance of 500 feet of large quantities of liquid/gas mixtures with load variations over the range of about 3 : 1, and the economies of various types of distribution lines (passive, pumped, shielded, combined), are described. The system design passed the preliminary phase. Design features and auxiliary equipment to assure dispersion of large quantities of nitrogen into the atmosphere and to permit operation under degraded cryogenic helium refrigerator performance are also discussed in Design Considerations

  18. Gas turbine modular helium reactor in cogeneration

    International Nuclear Information System (INIS)

    Leon de los Santos, G.

    2009-10-01

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  19. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto [Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  20. Cryopumping of deuterium hydrogen and helium mixtures on smooth 4.2 K surfaces

    International Nuclear Information System (INIS)

    Chou, T.S.; Halama, H.J.

    1977-01-01

    The large quantities of deuterium and hydrogen to be pumped in a fusion reactor and its subsystems favor cryopumping over other pumping methods. Cryogen consumption and the operating pressure will not only depend on the gas to be pumped, but also on the amount of helium gas present in the system. In fact, residual helium pressure between pulses will determine the power dissipation of the pump, and hence, influence the choice of cryocondensation or cryosorption. In this paper we will present the results of our studies on (1) cryotrapping of helium in thick D 2 and H 2 films and hydrogen in D 2 films at 4.2 K; (2) diffusion of He and H 2 from D 2 films; (3) steady-state liquid helium consumption; (4) liquid helium consumption as a function of D 2 and H 2 fluxes being pumped; (5) liquid helium consumption as a function of He partial pressure in the system. Finally, these measurements will suggest maximum permissible He to D 2 and He to H 2 ratios in a cryocondensation pump