WorldWideScience

Sample records for cryogenic current comparator

  1. Cryogenic current comparators for precise ion beam current measurements

    International Nuclear Information System (INIS)

    Kurian, Febin

    2015-01-01

    The planned Facility for Antiproton and Ion Research (FAIR) at GSI has to cope with a wide range of beam intensities in its high-energy beam transport systems and in the storage rings. To meet the requirements of a non-intercepting intensity measurement down to nA range, it is planned to install a number of Cryogenic Current Comparator (CCC) units at different locations in the FAIR beamlines. In this work, the first CCC system for intensity measurement of heavy ion beams, which was developed at GSI, was re-commissioned and upgraded to be used as a 'GSI - CCC prototype' for extensive optimization and development of an improved CCC for FAIR. After installation of a new SQUID sensor and related electronics, as well as implementation of improved data acquisition components, successful beam current measurements were performed at a SIS18 extraction line. The measured intensity values were compared with those of a Secondary Electron Monitor (SEM). Furthermore, the spill-structure of a slowly extracted beam was measured and analyzed, investigating its improvement due to bunching during the slow-extraction process. Due to the extreme sensitivity of the superconducting sensor, the determined intensity values as well as the adjustment of the system for optimal performance are strongly influenced by the numerous noise sources of the accelerators environment. For this reason, detailed studies of different effects caused by noise have been carried out, which are presented together with proposals to reduce them. Similarly, studies were performed to increase the dynamic range and overcome slew rate limitations, the results of which are illustrated and discussed as well. By combining the various optimizations and characterizations of the GSI CCC prototype with the experiences made during beam operation, criteria for a more efficient CCC System could be worked out, which are presented in this work. The details of this new design are worked out with respect to the

  2. SQUID based cryogenic current comparator for measurements of the dark current of superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W.; Nietzsche, S.; Neubert, R.; Nawrodt, R. [Friedrich Schiller Univ. Jena (Germany); Peters, A. [GSI Darmstadt (Germany); Knaack, K.; Wendt, M.; Wittenburg, K. [DESY Hamburg (Germany)

    2005-07-01

    The linear accelerator technology, based on super-conducting L-band (1.3 GHz) is currently under study at DESY (Hamburg, Germany). The two 10 km long main Linacs will be equipped with a total of nearly 20.000 cavities. The dark current due to the emission of electrons in these high gradient field super-conducting cavities is an unwanted particle source. A newly high performance SQUID based measurement system for detecting dark currents is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the pA range with a measurement bandwidth of up to 70 kHz. The use of a cryogenic current comparator as dark current sensor has some important advantages: -) the measurement of the absolute value of the dark current, -) the non-dependence on the electron trajectories, -) the accurate absolute calibration with an additional wire loop, and -) extremely high resolution.

  3. SQUID Based Cryogenic Current Comparator for Measurements of the Dark Current of Superconducting Cavities

    CERN Document Server

    Vodel, W; Neubert, R; Nietzsche, S

    2005-01-01

    This contribution presents a LTS-SQUID based Cryogenic Current Comparator (CCC) for detecting dark currents, generated e.g. by superconducting cavities for the upcoming X-FEL project at DESY. To achieve the maximum possible energy the gradients of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The measurement of the undesired field emission of electrons (the so-called dark current) in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a high performance LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the extracted dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil (inner diameter: about 100 mm) for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measurement bandwidth of up to 70 kHz was achieved without the pick-up coil. Now, ...

  4. Highly Sensitive Measurements of the Dark Current of Superconducting Cavities for TESLA Using a SQUID Based Cryogenic Current Comparator

    CERN Document Server

    Vodel, W; Nietzsche, S

    2004-01-01

    This contribution presents a Cryogenic Current Comparator (CCC) as an excellent tool for detecting dark currents generated, e.g. by superconducting cavities for the upcoming TESLA project (X-FEL) at DESY. To achieve the maximum possible energy the gradient of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The undesired field emission of electrons (so-called dark current) of the superconducting RF cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a highly sensitive LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measu...

  5. Cryogenic upgrade of the low heat load liquid helium cryostat used to house the Cryogenic Current Comparator in the Antiproton Decelerator at CERN

    Science.gov (United States)

    Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.

    2017-12-01

    The Cryogenic Current Comparator (CCC) and its purpose built cryostat were installed in the low-energy Antiproton Decelerator (AD) at CERN in 2015. A pulse-tube cryocooler recondenses evaporated helium to liquid at 4.2 K filling the helium vessel of the cryostat at an equivalent cooling power of 0.69 W. To reduce the transmission of vibration to the highly sensitive CCC, the titanium support systems of the cryostat were optimized to be as stiff as possible while limiting the transmission of heat to the liquid helium vessel. During operation the liquid helium level in the cryostat was seen to reduce, indicating that heat load was higher than intended. To verify the reason for this additional heat load and improve the cryogenic performance of the cryostat, an upgrade was undertaken during the 2016 technical stop of the AD. This article presents the studies undertaken to understand the thermal performance of the cryostat and details the improvements made to reduce heat load on the liquid helium vessel. Also discussed are the procedures used to reduce the diffusion of helium to the vacuum space through ceramic insulators. Finally the upgraded cryogenic performance of the cryostat is presented.

  6. Finite-element simulation of the performance of a superconducting meander structure shielding for a cryogenic current comparator

    Energy Technology Data Exchange (ETDEWEB)

    De Gersem, H., E-mail: degersem@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schlossgartenstraße 8, 64289 Darmstadt (Germany); Marsic, N.; Müller, W.F.O. [Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schlossgartenstraße 8, 64289 Darmstadt (Germany); Kurian, F.; Sieber, T.; Schwickert, M. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2016-12-21

    The ferrite core and measuring coil of a cryogenic current comparator have to be shielded against external magnetic fields by a compact, efficient meander structure made of superconducting niobium. A design with minimized material and production costs is only feasible when a highly accurate magnetic field simulator is available. 3D field models become prohibitively large. The cylindrical symmetry of the devices motivates to develop a quasi-3D field solver, exploiting the symmetry while still capable of representing 3D field distributions.

  7. A Cryogenic Current Comparator for the Low Energy Antiproton Facilities at CERN

    CERN Document Server

    Fernandes, M; Welsch, CP

    2014-01-01

    Several laboratories have shown the potential of using Superconducting QUantum Interference Device (SQUID) magnetometers together with superconductor magnetic shields to measure beam current intensities in the submicro-Ampere regime. CERN, in collaboration with GSI, Jena university and Helmholtz Institute Jena, is currently working on developing an improved version of such a current monitor for the Antiproton Decelerator (AD) and Extra Low ENergy Antiproton (ELENA) rings at CERN, aiming for better current resolution and overall system availability. This contribution will present the current design, including theoretical estimation of the current resolution; stability limits of SQUID systems and adaptation of the coupling circuit to the AD beam parameters; the analysis of thermal and mechanical cryostat modes.

  8. Final report on RMO comparison SIM.EM-S10: High value resistance comparison with two-terminal cryogenic current comparators

    Science.gov (United States)

    Bierzychudek, Marcos E.; Elmquist, Randolph; Hernández, Felipe

    2014-01-01

    This work presents a supplementary comparison of high value resistance standards performed during 2012 and January 2013, following the guidelines presented in a document about measurement comparisons in the CIPM MRA. The purpose of this task was to compare the high resistance cryogenic current comparator scaling of the participating institutes: National Institute of Standards and Technology, USA (NIST), Centro Nacional de Metrología, Mexico (CENAM) and Instituto Nacional de Tecnología Industrial, Argentina (INTI), all of which are members of the Sistema Interamericano de Metrología (SIM) Regional Metrology Organization. All the measurements of this comparison were performed with two-terminal cryogenic current comparators (CCC). Degrees of equivalence of the participating institutes relative to the comparison reference values are given in the report for the measured resistance values. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by SIM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Eddy current losses at cryogenic temperatures

    International Nuclear Information System (INIS)

    Sokolovsky, V.; Meerovich, V.; Slonim, M.

    1993-01-01

    The present paper analyses effect of thermal processes on eddy-current losses in construction elements of cryogenic and superconducting devices. Maxwell's equations coupled with heat-conduction equation are solved with taking into account the dependence of resistivity, heat capacity and heat-transfer coefficient on temperature. Analysis of losses as a function of magnetic field, frequency and geometry factors is given for the case of thin strip in a uniform magnetic field. It is shown that losses calculated with taking into account the thermal processes may differ from those obtained at constant temperature

  10. Current status of large-scale cryogenic gravitational wave telescope

    International Nuclear Information System (INIS)

    Kuroda, K; Ohashi, M; Miyoki, S; Uchiyama, T; Ishitsuka, H; Yamamoto, K; Kasahara, K; Fujimoto, M-K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Nagano, S; Tsunesada, Y; Zhu, Zong-Hong; Shintomi, T; Yamamoto, A; Suzuki, T; Saito, Y; Haruyama, T; Sato, N; Higashi, Y; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Aso, Y; Ueda, K-I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Tagoshi, H; Nakamura, T; Sasaki, M; Tanaka, T; Oohara, K; Takahashi, H; Miyakawa, O; Tobar, M E

    2003-01-01

    The large-scale cryogenic gravitational wave telescope (LCGT) project is the proposed advancement of TAMA, which will be able to detect the coalescences of binary neutron stars occurring in our galaxy. LCGT intends to detect the coalescence events within about 240 Mpc, the rate of which is expected to be from 0.1 to several events in a year. LCGT has Fabry-Perot cavities of 3 km baseline and the mirrors are cooled down to a cryogenic temperature of 20 K. It is planned to be built in the underground of Kamioka mine. This paper overviews the revision of the design and the current status of the R and D

  11. Cryogenic Test of High Temperature Superconducting Current Leads at Enea

    CERN Document Server

    Ballarino, A; Chambouvet, P; Della Corte, A; Di Zenobio, A; Fiamozzi-Zignani, C; Mayorga, J; Napolitano, M; Turtu, S; Viola, R

    2006-01-01

    The LHC (Large Hadron Collider), the accelerator being constructed on the CERN site, involves the operation of more than 8000 superconducting magnets of various current ratings. Essential elements for the powering of these magnets are the HTS current leads. These devices provide the electrical link between the warm cables from/to the power converter and the low temperature superconducting bus bars bringing the current from/to the cryo-magnets. Thus they operate in a temperature range between room temperature and liquid helium temperature. The operation of the LHC will require more than 1000 HTS current leads operating at currents ranging from 600 A to 13000 A. Cryogenic tests of the series of 13000 A and 6000 A HTS current leads are made at ENEA in the framework of a CERN-ENEA collaboration. This report gives an overview of the experimental set-up built in ENEA. The set-up was designed following the typical criterion of a scientific experiment but it was dimensioned to satisfy the schedule of an i...

  12. Cryogenics

    International Nuclear Information System (INIS)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V.

    1997-01-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  13. Cryogenic heat treatment — a review of the current state

    Directory of Open Access Journals (Sweden)

    Kamran Amini

    2017-03-01

    Full Text Available The deep cryogenic heat treatment is an old and effective heat treatment, performed on steels and cast irons to improve the wear resistance and hardness. This process includes cooling down to the liquid nitrogen temperature, holding the samples at that temperature and heating at the room temperature. The benefits of this process are significant on the ferrous materials, but recently some studies focused on other nonferrous materials. This study attempts to clarify the different behavior of some materials subjected to the deep cryogenic heat treatment, as well as explaining the common theories about the effect of the cryogenic heat treatment on these materials. Results showed that polymers exhibit different behavior regarding to their crystallinity, however the magnesium alloys, titanium alloys and tungsten carbide show a noticeable improvement after the deep cryogenic heat treatment due to their crystal structure.

  14. Superconducting Current Leads for Cryogenic Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space flight cryocoolers will be able to handle limited heat loads at their expected operating temperatures and the current leads may be the dominant contributor to...

  15. High current density, cryogenically cooled sliding electrical joint development

    International Nuclear Information System (INIS)

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an ∼ 20 T toroidal field magnet with a flat top conductor current of ∼ 300 kA and a sliding electrical joint with a gross current density of ∼ 0.6 kA/cm 2 . A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025

  16. Low flow velocity, fine-screen heat exchangers and vapor-cooled cryogenic current leads

    International Nuclear Information System (INIS)

    Steyert, W.A.; Stone, N.J.

    1978-09-01

    The design, construction, and testing of three compact, low temperature heat exchangers are reported. A method is given for the construction of a small (approximately = 20-cm 3 volume) exchanger that can handle 6 g/s helium flow with low pressure drops (ΔP/P = 10 percent) and adequate heat transfer (N/sub tu/ = 3). The use of screen for simple, vapor-cooled current leads into cryogenic systems is also discussed

  17. BOOK REVIEW: The Current Comparator

    Science.gov (United States)

    Petersons, Oskars

    1989-01-01

    This 120-page book is a concise, yet comprehensive, clearly-written and well-illustrated monograph that covers the subject matter from basic principles through design, construction and calibration details to the principal applications. The book will be useful, as a primer, to the uninitiated and, as a reference book to the practitioner involved with transformer-type ratio devices. The length of the book and the style of presentation will not overburden any informed reader. The described techniques and the cited references are primarily from the work at the National Research Council, Canada (NRC). Any omissions, however, are not serious with respect to coverage of the subject matter, since most of the development work has been done at NRC. The role of transformers and transformer-like devices for establishing accurate voltage and current ratios has been recognized for over half a century. Transformer techniques were much explored and developed in the fifties and sixties for accuracy levels suitable for standards laboratories. Three-winding voltage transformers were developed for scaling of impedances in connection with the calculable Thompson Lampard capacitor; three-winding current transformers or current comparators were initially explored for the calibration of current transformers and later for specialized impedance measurements. Extensive development of the current comparator and its applications has been and is still being conducted at the NRC by a team that was started and, until his retirement, led by N L Kusters. The team is now led by W J M Moore. He and P N Miljanic, the authors of this book, have had the principal roles in the development of the current comparator. It is fortunate for the field of metrology that considerabe resources and a talented group of researchers were available to do this development along with mechanisms that were available to transfer this technology to a private sector instrument manufacturer and, thus, disseminate it world wide

  18. Development of modular thermostatic vapour-cooled current leads for cryogenic service

    International Nuclear Information System (INIS)

    Blessing, H.; Lebrun, P.

    1983-01-01

    Cryogenic current leads cooled by helium vapour have been developed, built and tested. Their construction, based on standard electrolytic copper braids crimped at the ends, is such as to provide flexible cold terminations and make possible a modular design. The warm terminations combine electrical insulation, leak-tightness and integrated thermostatic valves controlling lead temperature and avoiding thermal run-away or ice build-up. After giving a detailed description of their construction, this report presents results of performance and reliability tests made on prototype units. (orig.)

  19. A Comparative Study of Fracture Toughness at Cryogenic Temperature of Austenitic Stainless Steel Welds

    Science.gov (United States)

    Aviles Santillana, I.; Boyer, C.; Fernandez Pison, P.; Foussat, A.; Langeslag, S. A. E.; Perez Fontenla, A. T.; Ruiz Navas, E. M.; Sgobba, S.

    2018-03-01

    The ITER magnet system is based on the "cable-in-conduit" conductor (CICC) concept, which consists of stainless steel jackets filled with superconducting strands. The jackets provide high strength, limited fatigue crack growth rate and fracture toughness properties to counteract the high stress imposed by, among others, electromagnetic loads at cryogenic temperature. Austenitic nitrogen-strengthened stainless steels have been chosen as base material for the jackets of the central solenoid and the toroidal field system, for which an extensive set of cryogenic mechanical property data are readily available. However, little is published for their welded joints, and their specific performance when considering different combinations of parent and filler metals. Moreover, the impact of post-weld heat treatments that are required for Nb3Sn formation is not extensively treated. Welds are frequently responsible for cracks initiated and propagated by fatigue during service, causing structural failure. It becomes thus essential to select the most suitable combination of parent and filler material and to assess their performance in terms of strength and crack propagation at operation conditions. An extensive test campaign has been conducted at 7 K comparing tungsten inert gas (TIG) welds using two fillers adapted to cryogenic service, EN 1.4453 and JK2LB, applied to two different base metals, AISI 316L and 316LN. A large set of fracture toughness data are presented, and the detrimental effect on fracture toughness of post-weld heat treatments (unavoidable for some of the components) is demonstrated. In this study, austenitic stainless steel TIG welds with various filler metals have undergone a comprehensive fracture mechanics characterization at 7 K. These results are directly exploitable and contribute to the cryogenic fracture mechanics properties database of the ITER magnet system. Additionally, a correlation between the impact in fracture toughness and microstructure

  20. Development of capacitive beam position, beam current and Schottky-signal monitors for the Cryogenic Storage Ring (CSR)

    International Nuclear Information System (INIS)

    Laux, Felix

    2011-01-01

    In this thesis novel techniques based on capacitive pickups for the determination of the beam current, the beam position and the Schottky-signal in storage rings have been developed. Beam current measurements at the heavy ion storage ring TSR with a capacitive pickup have been found in very good agreement with the theory. Using this device the accurate measurement of beam currents at the TSR far below 1 μA is now possible. This method will also be used at the Cryogenic Storage Ring (CSR) at which beam currents in the range of 1 nA-1 μA are expected. For the first time, position measurements with a resonant amplifier system for capacitive pickups have been examined at the TSR for later use of this technique in the CSR. With this method an increased signal-to-noise ratio can be achieved using a parallel inductance. A comparison with measurements using the rest gas beam profile monitor has shown very good agreement even at very low intensities. Experiments with the cryo-capable electronics for the CSR beam position monitors have shown an achievable quality factor of Q=500, resulting in the prospect of precise position measurements at the CSR even at very low beam currents. The CSR Schottky-Pickup will also be equipped with a resonant amplifier system with a comparable quality factor. An estimation of the signal-to-noise ratio suggests a detection limit of a few protons. (orig.)

  1. A cryogenic current-measuring device with nano-ampere resolution at the storage ring TARN II

    International Nuclear Information System (INIS)

    Tanabe, T.; Chida, K.; Shinada, K.

    1999-01-01

    In cooler-ring experiments, an accurate and non-destructive current measurement is essential for determining the reaction cross sections. The lowest current which can be measured by the DC current transformer commonly used so far is some μA. In order to measure a low-beam current from nA to μA, we made a cryogenic current-measuring device using a superconducting quantum interference devices (SQUID), and measured the circulating ion current at the cooler ring TARN II. This paper gives the design and performance of the device

  2. Cryogenic Propulsion

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants can enhance NASA missions. This project will establish that modern cryogenic storage technologies will allow the use of cryogenic propulsion...

  3. A 1 kA-class cryogen-free critical current characterization system for superconducting coated conductors.

    Science.gov (United States)

    Strickland, N M; Hoffmann, C; Wimbush, S C

    2014-11-01

    A cryogenic electrical transport measurement system is described that is particularly designed to meet the requirements for routine and effective characterization of commercial second generation high-temperature superconducting (HTS) wires in the form of coated conductors based on YBa2Cu3O7. Specific design parameters include a base temperature of 20 K, an applied magnetic field capability of 8 T (provided by a HTS split-coil magnet), and a measurement current capacity approaching 1 kA. The system accommodates samples up to 12 mm in width (the widest conductor size presently commercially available) and 40 mm long, although this is not a limiting size. The sample is able to be rotated freely with respect to the magnetic field direction about an axis parallel to the current flow, producing field angle variations in the standard maximum Lorentz force configuration. The system is completely free of liquid cryogens for both sample cooling and magnet cool-down and operation. Software enables the system to conduct a full characterization of the temperature, magnetic field, and field angle dependence of the critical current of a sample without any user interaction. The system has successfully been used to measure a wide range of experimental and commercially-available superconducting wire samples sourced from different manufacturers across the full range of operating conditions. The system encapsulates significant advances in HTS magnet design and efficient cryogen-free cooling technologies together with the capability for routine and automated high-current electrical transport measurements at cryogenic temperatures. It will be of interest to both research scientists investigating superconductor behavior and commercial wire manufacturers seeking to accurately characterize the performance of their product under all desired operating conditions.

  4. Cryogenics theory, processes and applications

    CERN Document Server

    Hayes, Allyson E

    2011-01-01

    Cryogenics is the study of the production of very low temperature (below -150 -C, -238 -F or 123 K) and the behaviour of materials at those temperatures. This book presents current research from across the globe in the study of cryogenics, including the effect of cryogenic treatment on microstructure and mechanical properties of light weight alloys; the application of Fiber Bragg grating sensors at cryogenic temperatures; cryogenic grinding; liquid oxygen magnetohydrodynamics; and, genetic engineering techniques used to improve tolerance to cryopreservation.

  5. The Cryogenic Transient Current Technique (C-TCT) measurement setup of CERN RD39 Collaboration

    CERN Document Server

    Härkönen, J; Verbitskaya, E; Czellar, S; Pusa, P; Li, Z; Niinikoski, T O

    2007-01-01

    The CERN RD39 Collaboration has constructed a Transient Current Technique (TCT) measurement setup, which is capable to operate below liquid nitrogen temperatures. By analyzing the current transients, it is possible to extract the full depletion voltage, effective trapping time, electric field distribution and the sign of the space charge in the silicon bulk. Our results show that the effective space charge and trapping can be manipulated by charge injection and temperature. This might allow significantly higher Charge Collection Efficiency (CCE) compared to the detectors operating under normal reverse bias and at temperatures from 0 to .

  6. Optical Approach to Augment Current Float Sensing Method of Determining Cryogen Fluid Height Within a Tank, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative Imaging and Research, a small technology development company, has teamed with the University of Southern Mississippi Instrument and Cryogenics Research...

  7. Cryogenics safety

    International Nuclear Information System (INIS)

    Reider, R.

    1977-01-01

    The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described

  8. Cryogenics Research and Engineering Experience

    Science.gov (United States)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  9. Design, Assembly, and Commissioning of a Cryogenic DC Current Transformer Designed for Measuring Currents of up to 80 kA

    CERN Document Server

    Montenero, G; Bottura, L; Arpaia, P

    2015-01-01

    A new cryogenic dc current transformer (Cryo-DCCT) has recently been designed and assembled at CERN. The device, whose design is based on that of a high-accuracy 600 A market solution suitable for room temperature applications, is optimized for measuring currents of up to 80 kA and for operation at 4.2 K. The CryoDCCT has been conceived with the objective of preserving the metrological performance of the original commercial device in the new extended range of operation. For reducing the effect of interfering magnetic fields arising from test conditions, it incorporates ferromagnetic and MgB2 superconducting shields. In this paper, the design of the CryoDCCT and the results of the commissioning of the device at CERN are reported. The effectiveness of the current transducer is analysed and discussed. This new device will be used for measuring the secondary current of a 80 kA superconducting transformer feeding a sample of NbSn3 cable at the Facility for Research on Superconducting Cables (FRESCA) at CERN.

  10. Comparing Teaching Approaches About Maxwell's Displacement Current

    Science.gov (United States)

    Karam, Ricardo; Coimbra, Debora; Pietrocola, Maurício

    2014-08-01

    Due to its fundamental role for the consolidation of Maxwell's equations, the displacement current is one of the most important topics of any introductory course on electromagnetism. Moreover, this episode is widely used by historians and philosophers of science as a case study to investigate several issues (e.g. the theory-experiment relationship). Despite the consensus among physics educators concerning the relevance of the topic, there are many possible ways to interpret and justify the need for the displacement current term. With the goal of understanding the didactical transposition of this topic more deeply, we investigate three of its domains: (1) The historical development of Maxwell's reasoning; (2) Different approaches to justify the term insertion in physics textbooks; and (3) Four lectures devoted to introduce the topic in undergraduate level given by four different professors. By reflecting on the differences between these three domains, significant evidence for the knowledge transformation caused by the didactization of this episode is provided. The main purpose of this comparative analysis is to assist physics educators in developing an epistemological surveillance regarding the teaching and learning of the displacement current.

  11. Critical current and cryogenic stability modelling of filamentary MgB2 conductors

    DEFF Research Database (Denmark)

    Glowacki, B.A.; Majoros, M.; Tanaka, K.

    2006-01-01

    ) we used experimental dependence of J(c)(B,4.2 K) for the best wire. Then Poisson equation for magnetic vector potential was solved by finite element method and self-field critical current densities of the wires with different diameter were calculated. There is no significant dependence of J...

  12. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  13. Comparing the effectiveness of 585-nm vs. 595-nm wavelength pulsed dye laser treatment of port wine stains in conjunction with cryogen spray cooling

    NARCIS (Netherlands)

    Chang, Cheng-Jen; Kelly, Kristen M.; van Gemert, Martin J. C.; Nelson, J. Stuart

    2002-01-01

    Background and Objectives: The objective of this study was to compare the efficacy and safety of cryogen spray cooled laser treatment (CSC-LT) at wavelengths of 585 nm vs. 595 nm for port wine stain (PWS) birthmarks in a large series of patients. Study Design/Materials and Methods: A retrospective

  14. Cryogenic electronics

    Energy Technology Data Exchange (ETDEWEB)

    Fourches, N.; Abbon, P.; Delagnes, E.; Le Meur, L.P.

    1995-04-01

    This study presents the cryogenic electronics, which is used in high energy physics with appropriate device. It discuss their ability to hardening against ionization radiation and neutrons. Some partial results on the operation of microelectronics devices at cryogenic temperature are given. (TEC). 33 refs., 13 figs.

  15. A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units

    International Nuclear Information System (INIS)

    Skorek-Osikowska, Anna; Bartela, Łukasz; Kotowicz, Janusz

    2015-01-01

    Highlights: • Mathematical model of an integrated oxy-combustion power plant. • Comparison of a hybrid membrane–cryogenic oxygen generation plant with a cryogenic plant. • Thermodynamic analysis of the modeled cases of the plant. • Comparative economic analysis of the power plant with cryogenic and hybrid ASU. • Comparative risk analysis using a Monte Carlo method and sensitivity analysis. - Abstract: This paper presents a comparison of two types of oxy-combustion power plant that differ from each other in terms of the method of oxygen separation. For the purpose of the analysis, detailed thermodynamic models of oxy-fuel power plants with gross power of approximately 460 MW were built. In the first variant (Case 1), the plant is integrated with a cryogenic air separation unit (ASU). In the second variant (Case 2), the plant is integrated with a hybrid membrane–cryogenic installation. The models were built and optimized using the GateCycle, Aspen Plus and Aspen Custom Modeller software packages and with the use of our own computational codes. The results of the thermodynamic evaluation of the systems, which primarily uses indicators such as the auxiliary power and efficiencies of the whole system and of the individual components that constitute the unit, are presented. Better plant performance is observed for Case 2, which has a net efficiency of electricity generation that is 1.1 percentage points greater than that of Case 1. For the selected structure of the system, an economic analysis of the solutions was made. This analysis accounts for different scenarios of the functioning of the Emission Trading Scheme and includes detailed estimates of the investment costs in both cases. As an indicator of profitability, the break-even price of electricity was used primarily. The results of the analysis for the assumptions made are presented in this paper. A system with a hybrid air separation unit has slightly better economic performance. The break-even price

  16. RHIC cryogenics

    Energy Technology Data Exchange (ETDEWEB)

    Iarocci, M.A. E-mail: iarocci@bnl.gov; Brown, D.; Sondericker, J.; Wu, K.C.; Benson, J.; Farah, Y.; Lac, C.; Morgillo, A.; Nicoletti, A.; Quimby, E.; Rank, J.; Rehak, M.; Werner, A

    2003-03-01

    An integrated helium cryogenic system was designed with the specific performance goal of cooling and refrigerating the cryogenic magnets to below their nominal operating temperature. These magnets make up the steering and focusing elements for the Relativistic Heavy Ion Collider (RHIC). In addition to meeting the accelerator demands, reliability, flexibility, safety, and ease of operation were key considerations during the design phase of the project. The refrigerator, with a capacity of 25 kW at about 4 K, was originally designed to match the load for the Colliding Beam Accelerator Project. The existing refrigerator, along with its complimentary warm compressor system was reconfigured slightly to meet the cooling process cycle design for RHIC. The original VAX based process control system was also adapted for RHIC, and later expanded upon to integrate a new programmable logic controller based ring resident control system, hence forming a common system to monitor and control all cryogenic components.

  17. 54th meeting on cryogenics and superconductivity. Shield and permanent current switch (PCS); Dai 54 kai 1995 nendo teion kogaku chodendo gakkai koenshu. Shield oyobi PCS

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H. [Dowa Mining Co. Ltd., Tokyo (Japan); Mizuochi, G. [Yamagata University, Yamagata (Japan). Faculty of Engineering; Nakade, M. [Tokyo Electric Power Co. Inc., Tokyo (Japan); Waki, M. [National Lab. for High Energy Physics, Tsukuba (Japan); Sato, M. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Sadakata, N. [Fujikura Ltd., Tokyo (Japan)

    1995-11-03

    This paper describes reports related to shields and PCS presented at the Meeting on Cryogenics and Superconductivity in fiscal 1995. In developing a magnet shielding body for measuring biomagnetism, a superconduction magnetic shielding body was fabricated by forming a Bi-system 2223 phase superconductor film on the inner side of a heat-resistant metal cylinder. In increasing the capacity of a magnetic shielding system by superconduction junction, a possibility was suggested in increasing the capacity by superimposing small superconductor test pieces. In measuring the heat penetration amount in an alternating current high-temperature conductor current lead, the heat penetration amount was shown to increase by increasing the number of leads and reducing the length of the leads. In evaluating a surface treatment on superconduction cavities by using the magnetization measurement, a method was developed that observes and evaluates defects in an Nb material surface as magnetization hysteresis. With regard to the on-off characteristics of a current transformer type permanent current switch, tests were carried out on connecting actions of a 1-KA permanent current switch to a system stabilizing SMES equipment. The paper also reports the demonstration test on a 1-KA magnetic field type permanent current switch. 8 refs., 12 figs., 2 tabs.

  18. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    Science.gov (United States)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  19. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  20. Cryogenic photodetectors

    CERN Document Server

    Chardin, G

    2000-01-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  1. Performance and Reliability of Solid Tantalum Capacitors at Cryogenic Conditions

    Science.gov (United States)

    Teverovsky, Alexander

    2006-01-01

    Performance of different types of solid tantalum capacitors was evaluated at room and low temperatures, down to 15 K. The effect of temperature on frequency dependencies of capacitance, effective series resistances (ESR), leakage currents, and breakdown voltages has been investigated and analyzed. To assess thermo-mechanical robustness of the parts, several groups of loose capacitors and those soldered on FR4 boards were subjected to multiple (up to 500) temperature cycles between room temperature and 77 K. Experiments and mathematical modeling have shown that degradation in tantalum capacitors at low temperatures is mostly due to increasing resistance of the manganese cathode layer, resulting in substantial decrease of the roll-off frequency. Absorption currents follow a power law, I approximately t(sup -m), with the exponent m varying from 0.8 to 1.1. These currents do not change significantly at cryogenic conditions and the value of the exponent remains the same down to 15 K. Variations of leakage currents with voltage can be described by Pool-Frenkel and Schottky mechanisms of conductivity, with the Schottky mechanism prevailing at cryogenic conditions. Breakdown voltages of tantalum capacitors increase and the probability of scintillations decreases at cryogenic temperatures. However, breakdown voltages measured during surge current testing decrease at liquid nitrogen (LN) compared to room-temperature conditions. Results of temperature cycling suggest that tantalum capacitors are capable of withstanding multiple exposures to cryogenic conditions, but the probability of failures varies for different part types.

  2. Lock-in detection using a cryogenic low noise current preamplifier for the readout of resistive bolometers

    International Nuclear Information System (INIS)

    Yvon, D.; Sushkov, V.; Bernard, R.; Bret, J.L.; Cahan, B.; Cloue, O.; Maillard, O.; Mazeau, B.; Passerieux, J.P.; Paul, B.; Veyssiere, C.

    2002-01-01

    We implemented a low noise current preamplifier for the readout of resistive bolometers. We tested the apparatus on thermometer resistances ranging from 10 to 500 MΩ. The use of current preamplifier overcomes constraints introduced by the readout time constant due to the thermometer resistance and the input capacitance. Using cold JFETs, this preamplifier board is shown to have very low noise: the Johnson noise of the source resistor (1 fA/Hz 1/2 ) dominated in our noise measurements. We also implemented a lock-in chain using this preamplifier. Due to fast risetime, compensation of the phase shift may be unnecessary. If implemented, no tuning is necessary when the sensor impedance changes. Transients are very short, and thus low-passing or sampling of the signal is simplified. In case of spurious noise, the modulation frequency can be chosen in a much wider frequency range, without requiring a new calibration of the apparatus

  3. Multi-Stage ADRs for Current and Future Astronomy Missions: Performance and Requirements for Cryogen-Free Operation

    Science.gov (United States)

    Shirron, Peter; Kimball, Mark; Vlahacos, Kosta

    2010-01-01

    The cooling requirements for current (e.g. Astro-H) and future (e.g. IXO and ASP) astronomy missions pose significant challenges for the sub-Kelvin Cooler. In particular, the use of large detector arrays increases the cooling power needed, and the variety of cryocoolers that can be used for pre-cooling greatly expands the range of temperatures at which the sub-Kelvin cooler can be designed to reject heat. In most cases, there is also a need for a stable higher temperature stage for cooling amplifiers or telescope components. NASA/GSFC is currently building a 3-stage ADR for the Astro-H mission, and is developing a 5-stage ADR suitable for IXO and ASP, as well as many other missions in the early planning stages. The architecture of these ADRs allows them to be adapted rather easily for different cooling requirements and to accommodate different cryocooler capabilities (operating temperature and cooling power). This paper will discuss the performance of these ADRs, which operate in both continuous, and single-shot cooling modes, and the minimum cryocooler capabilities needed to meet the requirements of future missions.

  4. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  5. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  6. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  7. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  8. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  9. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  10. Wrapped-MLI: Thermal Insulation for Cryogenic Piping, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — New NASA vehicles (EDS, Orion, landers & orbiting fuel depots) need improved cryogenic propellant transfer & storage for long duration missions. Current...

  11. Cryogenics maintenance strategy

    Science.gov (United States)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  12. Comparing current cluster, massively parallel, and accelerated systems

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Kevin J [Los Alamos National Laboratory; Davis, Kei [Los Alamos National Laboratory; Hoisie, Adolfy [Los Alamos National Laboratory; Kerbyson, Darren J [Los Alamos National Laboratory; Pakin, Scott [Los Alamos National Laboratory; Lang, Mike [Los Alamos National Laboratory; Sancho Pitarch, Jose C [Los Alamos National Laboratory

    2010-01-01

    Currently there is large architectural diversity in high perfonnance computing systems. They include 'commodity' cluster systems that optimize per-node performance for small jobs, massively parallel processors (MPPs) that optimize aggregate perfonnance for large jobs, and accelerated systems that optimize both per-node and aggregate performance but only for applications custom-designed to take advantage of such systems. Because of these dissimilarities, meaningful comparisons of achievable performance are not straightforward. In this work we utilize a methodology that combines both empirical analysis and performance modeling to compare clusters (represented by a 4,352-core IB cluster), MPPs (represented by a 147,456-core BG/P), and accelerated systems (represented by the 129,600-core Roadrunner) across a workload of four applications. Strengths of our approach include the ability to compare architectures - as opposed to specific implementations of an architecture - attribute each application's performance bottlenecks to characteristics unique to each system, and to explore performance scenarios in advance of their availability for measurement. Our analysis illustrates that application performance is essentially unrelated to relative peak performance but that application performance can be both predicted and explained using modeling.

  13. Introduction to cryogenic engineering

    CERN Multimedia

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  14. Survey of cryogenic semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  15. A Magnetically Coupled Cryogenic Pump

    Science.gov (United States)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    the pump, and the pump was successfully operated meeting all expected operating parameters. Unique pump sub-assembly parts were designed and manufactured by the CTL using specialized materials determined to be superior for cryogenic thermal applications under the pump design conditions. This work is a proof-of-concept/proof-of-operation of the pump only. Other known internal design modifications to the pump should be accomplished for the long-term use of the pump. An upscaled version of this pump, which is under development and testing at the CTL, can be used either for current or future vehicle loading or for vehicle replenishment. Scaling of this pump can be easily accomplished.

  16. Status of the LBNF Cryogenic System

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, D. [Fermilab; Adamowski, M. [Fermilab; Bremer, J. [CERN; Delaney, M. [Fermilab; Diaz, A. [CERN; Doubnik, R. [Fermilab; Haaf, K. [Fermilab; Hentschel, S. [Fermilab; Norris, B. [Fermilab; Voirin, E. [Fermilab

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 ton of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the models of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  17. Status of the LBNF Cryogenic System

    CERN Document Server

    Montanari, D; Bremer, J; Delany, M; Diaz, A; Doubnik, R; Haaf, K; Henstchel, S; Norris, B; Voirin, E

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  18. Booster cryogenics

    International Nuclear Information System (INIS)

    Storm, D.W.; Weitkamp, W.G.; Will, D.I.

    1984-01-01

    During this past year the authors have ordered a helium refrigerator, developed cryostat specifications and come to understand better some of the potential problems to avoid in helium distribution systems. The helium refrigerator consists of a Koch Process Systems 2800HR with three type RS screw compressors. The 2800HR has two dry expansion engines, each with two 3'' diameter pistons, and one wet expansion engine with a single 2'' diameter piston. It has guaranteed capacities at 4.5 0 K of 440 W without liquid nitrogen precool and of 510 W with liquid nitrogen precool which compare favorably with the estimated need of 300 W. At present the authors have nearly completed material, technique and performance specifications for their cryostats, pending a decision on bayonet design, and the authors are beginning preliminary specifications for their liquid helium distribution manifold and transfer siphons

  19. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  20. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  1. Development of cryogenic components for the ALPHATRAP experiment

    Energy Technology Data Exchange (ETDEWEB)

    Turkalj Oreskovic, Marko; Weigel, Andreas; Roux, Christian; Wolf, Robert; Sturm, Sven; Blaum, Klaus [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2014-07-01

    At the Max-Planck-Institute for Nuclear Physics, Heidelberg, a Penning trap experiment for the determination of the g-factor of the bound electron in heavy highly-charged ions is under construction. ALPHATRAP will be connected to an EBIT via a room temperature beam-line. Since trapping of highly-charged ions requires extremely good vacuum, in excess of 10-15 mbar, the external flow of the background gas from the room-temperature beam-line has to be reduced significantly. Therefore, a cryogenic vacuum valve was developed, which enables adequate storage times. The valve can reduce the rest-gas pressure by a factor of at least 400, is manually actuated, and operates at cryogenic temperatures as well as in strong magnetic fields. Furthermore, for the image-current detection electronics a cryogenic electromechanical switch and a variable capacitor are developed. Advantages compared to solid state devices are negligible leakage currents for the switch being in open position and negligible dielectric losses. The switch is designed as a single pole single throw switch and has a residual resistance of only 11 mOhm. The designs and first test results of the devices will be presented.

  2. Cryogenic mechanical properties of low density superplastically formable Al-Li alloys

    Science.gov (United States)

    Verzasconi, S. L.; Morris, J. W., Jr.

    1989-01-01

    The aerospace industry is considering the use of low density, superplastically formable (SPF) materials, such as Al-Li alloys in cryogenic tankage. SPF modifications of alloys 8090, 2090, and 2090+In were tested for strength and Kahn tear toughness. The results were compared to those of similar tests of 2219-T87, an alloy currently used in cryogenic tankage, and 2090-T81, a recently studied Al-Li alloy with exceptional cryogenic properties (1-9). With decreasing temperature, all materials showed an increase in strength, while most materials showed an increase in elongation and decrease in Kahn toughness. The indium addition to 2090 increased alloy strength, but did not improve the strength-toughness combination. The fracture mode was predominantly intergranular along small, recrystallized grains, with some transgranular fracture, some ductile rupture, and some delamination on large, unrecrystallized grains.

  3. Cryogenic Acoustic Suppression Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — A proof-of-concept method utilizing a cryogenic fluid for acoustic suppression in rocket engine testing environments will be demonstrated. It is hypothesized that...

  4. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  5. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  6. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  7. Cryogenic Permanent Magnet Undulators

    International Nuclear Information System (INIS)

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-01-01

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm 2 Co 17 or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  8. Aerogel Blanket Insulation Materials for Cryogenic Applications

    Science.gov (United States)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  9. Refrigeration assessment of the existing cryogenic plants for the high luminosity upgrade of the Large Hadron Collider (LHC)

    Science.gov (United States)

    Berkowitz Zamora, D.; Claudet, S.; Perin, A.

    2017-12-01

    The cryogenic system of the LHC will be upgraded by 2025 to comply with a considerable increase of beam induced heat loads deriving from higher beam currents and peak luminosity levels from the High Luminosity LHC. The current baseline foresees a modified sectorisation scheme with three additional cryogenic plants dedicated to cool the insertions at LHC’s points 1, 4 and 5, reducing the refrigeration duty of the existent adjacent plants. This paper assesses the refrigeration duty of the eight existing plants considering the modified sectorisation and increased heat load deposition. The accelerator loads and distribution losses are quantified for each plant and compared to the existing refrigeration capacity. The heat load values were obtained from the extrapolation of previous LHC assessments as well as from new calculations. Specifically for the LHC point 4 cryogenic equipment, based on updated refrigeration requirements, the upgrade of an existing plant is proposed as an alternative to the baseline scenario.

  10. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  11. Cryogenic regenerative heat exchangers

    CERN Document Server

    Ackermann, Robert A

    1997-01-01

    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  12. Cryogenic and Vacuum Compatible Metrology Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR project for NASA, Flexure Engineering of Greenbelt, MD will leverage the work we did in our current SBIR project entitled: Cryogenic Optical...

  13. Physics of cryogenics an ultralow temperature phenomenon

    CERN Document Server

    Zohuri, Bahman

    2018-01-01

    Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics.

  14. Adsorption in cryogenics

    International Nuclear Information System (INIS)

    Ravex, A.

    1989-01-01

    There are two main fields for application of physical adsorption in cryogenics: cryopumping and refrigeration. Cryopumping has known many developments but is now almost industrial. Basic principles, applications and realizations are presented, for instance, in nuclear fusion and particle physics. For refrigeration developments and realizations are rare but present potential space applications [fr

  15. Aerogel-Filled Foam Core Insulation for Cryogenic Propellant Storage, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current cryogenic insulation materials suffer from various drawbacks including high cost and weight, lack of structural or load-bearing capability, fabrication...

  16. Aerogel-Filled Foam Core Insulation for Cryogenic Propellant Storage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current cryogenic insulation materials suffer from various drawbacks including high cost and weight, lack of structural or load-bearing capability, fabrication...

  17. Cryogenics for HL-LHC

    Science.gov (United States)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  18. CRYOGENIC PROCESSES IN LOESS

    Directory of Open Access Journals (Sweden)

    V. N. Konishchev

    2017-01-01

    Full Text Available This paper presents a new approach to the analysis of the genetic nature of the mineral substance of loessial rocks. At the present time, the prevailing view on this issue is the eolian accumulation of loess, while the influence of other factors of formation has not been practically taken into account. However, loess accumulation can be explained by other mechanisms, e.g., active processes of cryogenic weathering under a very harsh climate. The latter concept is based on the results of analysis of wedge-shaped structures in loess thickness, as well as numerous data of spore-pollen, microfaunistic, and other types of analysis. Further developing concepts of loess formation, the authors made an attempt to assess the degree of influence of cryogenic processes on the composition and structure of loess. The proposed method is based on a differentiated analysis of the distribution of the main rock-forming minerals (quartz and feldspars along the granulometric spectrum. Two criteria are proposed − the coefficient of cryogenic contrast and the heavy fraction coefficient (i.e., the coefficient of distribution of heavy minerals − which allow determining the degree of participation of cryogenic processes, as well as aeolian and aqueous sedimentation, in the formation of loessial rocks. This method was used to study two sections of loessial thickness − in the south of the Russian Plain and within the Loess Plateau of China. The results of the study revealed the role of cryogenic factors in the formation of the composition of the loess horizons of soil-loess sequences of different territories. Particularly clearly the effect of cryogenesis was manifested in the loess section in the south of the Russian Plain. In the section of the Loess Plateau, only the youngest deposits of the last formation stage are affected by cryogenesis. It follows that not only within the long-term periglacial permafrost zone, but also under the conditions of seasonal freezing

  19. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  20. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  1. Experimental wear behaviour of cryogenically treated aluminium 6063 and 8011 materials

    Directory of Open Access Journals (Sweden)

    K. K. Padmanabhan

    2016-12-01

    Full Text Available The aim of this paper is to focus on the effect of cryogenic treatment on the microstructure, mechanical and wear properties of Al 6061 and Al 8011. The first objective was to understand the degree to which wear behaviour has shown improvement with aluminium grades being treated cryogenically on the specimens. To conduct wear test Aluminium experimental investigation has been carried out on aluminium alloys with cryogenic coolants. The cryogenic coolant has increased the wear resistance properties of aluminium upto 25% when compared to wear of non-cryogenically treated aluminium. The cryogenic treatment was carried out under three different timings for three different rpm’s under varying loads. The paper also studies the micro structural changes under these varying conditions. The experimental investigation of the paper concludes that cryogenically treated aluminium shows increase in wear resistance of nearly 25%.

  2. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-01-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  3. Cryogenic 3-D Detectors for Solar Physics

    Science.gov (United States)

    Stern, R. A.

    2003-05-01

    Space and ground-based astronomy is currently undergoing a revolution in detector technology with the advent of cryogenic sensors operating in the sub-Kelvin temperature range. These detectors provide non-dispersive energy resolution at optical through gamma ray energies (e.g, E/Δ E ˜ 1500 at 6 keV), high time resolution (msec or better), and can be made into arrays using a combination of microlithography and multiplexing using SQUID amplifiers. The application of such ``3-D'' detector technology to solar physics could lead to significant advances in our understanding of magnetic reconnection in the Sun, including X-ray jet phenomena, and active region dynamics. In this talk, I will review some of the basic principles of cryogenic 3-D detectors, current astronomical applications, and their potential for future NASA solar physics Explorer-class missions. This work was supported in part by the Lockheed Martin Independent Research Program

  4. Proceedings of cryogenic optical systems and instruments IV

    International Nuclear Information System (INIS)

    Melugin, R.K.

    1990-01-01

    This book contains the proceedings of Cryogenic Optical systems and Instruments IV. Topics covered include: Cryogenic System Design and Optical Technology; Cryogenic Instruments, Sensors, and Detectors; Space Cryogenic Dewars and Coolers; and Cryogenic Mechanisms, Testing, and Structures

  5. Cryogenic temperature measurement for large applications

    CERN Document Server

    Ylöstalo, J; Kyynäräinen, J; Niinikoski, T O; Voutilainen, R

    1996-01-01

    We have developed a resistance thermometry system for the acquisition, control and monitoring of temperature in large-scale cryogenic applications. The resistance of the sensor is converted to a voltage using a self-balancing AC bridge circuit featuring square-wave excitation currents down to 1 nA. The system is easily scalable and includes intelligent features to treat special situations such as magnet quenches differently from normal operation.

  6. A Cryogenic Flow Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of cryogens in spacecraft propellant...

  7. Cryogenic Propellant Storage and Transfer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cryogenic Propellant Storage and Transfer project will demonstrate the capability to safely and efficiently store, transfer and measure cryogenic propellants,...

  8. Thermal conductivity of silver loaded conductive epoxy from cryogenic to ambient temperature and its application for precision cryogenic noise measurements

    Science.gov (United States)

    Amils, Ricardo I.; Gallego, Juan Daniel; Sebastián, José Luis; Muñoz, Sagrario; Martín, Agustín; Leuther, Arnulf

    2016-06-01

    The pressure to increase the sensitivity of instrumentation has pushed the use of cryogenic Low Noise Amplifier (LNA) technology into a growing number of fields. These areas range from radio astronomy and deep space communications to fundamental physics. In this context manufacturing for cryogenic environments requires a proper thermal knowledge of the materials to be able to achieve adequate design behavior. In this work, we present experimental measurements of the thermal conductivity of a silver filled conductive epoxy (EPO-TEK H20E) which is widely used in cryogenic electronics applications. The characterization has been made using a sample preparation which mimics the practical use of this adhesive in the fabrication of cryogenic devices. We apply the data obtained to a detailed analysis of the effects of the conductive epoxy in a monolithic thermal noise source used for high accuracy cryogenic microwave noise measurements. In this application the epoxy plays a fundamental role since its limited thermal conductivity allows heating the chip with relatively low power. To our knowledge, the cryogenic thermal conductivity data of this epoxy has not been reported before in the literature in the 4-300 K temperature range. A second non-conductive epoxy (Gray Scotch-Weld 2216 B/A), also widely used in cryogenic applications, has been measured in order to validate the method by comparing with previous published data.

  9. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  10. The integration of cryogenic cooling systems with superconducting electronic systems

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  11. Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  12. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Kwang-Chang [Center for General Education, Chang Gung University,Kwei-Shan, Taoyuan, 333, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Lee, Fei-Fan [Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lee, Feng-Shiuh [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Lin, Guey-Lin [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Institute of Physics, National Chiao Tung University,Hsinchu, 300, Taiwan (China); Liu, Tsung-Che [Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 106, Taiwan (China); Yang, Yi [Department of Electrophysics, National Chiao Tung University,Hsinchu, 300, Taiwan (China)

    2016-07-22

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(ν-bar)+p→ν(ν-bar)+p, and inverse beta decays (IBD), ν-bar{sub e}+p→n+e{sup +}, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of ν-bar{sub e} flux with the ν-bar{sub x} (x=μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  13. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  14. Comparing two loops calculation in chiral perturbation theory with the unitarization program of current algebra

    International Nuclear Information System (INIS)

    Borges, J. Sa; Barbosa, J. Soares; Tonasse, M.D.

    1998-01-01

    In this work we compare two loop Chiral Perturbation Theory calculation of pion-pion scattering with the unitary second order correction to the current algebra soft-pion theorem. It is shown that both methods lead to the same analytic structure for the scattering amplitude. (author)

  15. Effects of Cryogenic Treatment on Residual Stress and Tensile Properties for 6061 Al Alloy

    International Nuclear Information System (INIS)

    Park, Kijung; Cho, Young-Rae; Ko, Dea Hoon; Kim, Byung Min; Lim, Hak Jin; Lee, Jung Min

    2011-01-01

    To develop a 6061 aluminum alloy with low residual stress and high tensile strength, a cryogenic treatment process was investigated. Compared to the conventional heat treatment process for precipitation hardening with artificial aging, the cryogenic treatment process has two additional steps. The first step is cryogenic quenching of the sample into liquid nitrogen, the second step is up-hill quenching of the sample into boiling water. The residual stress for the sample was measured by the sin 2 ψ method with X-ray diffraction. The 6061 aluminum alloy sample showed 67% relief in stress at the cryogenic treatment process with artificial aging at 175°C. From this study, it was found that the optimum cryogenic treatment process for a sample with low residual stress and high tensile strength is relatively low cooling speed in the cryogenic quenching step and a very high heating speed in the up-hill quenching step.

  16. Cryogenic Propellant Storage and Transfer

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Flight Demonstration development has been canceled in favor of a ground test bed development for of passive/active cryogenic propellant storage, transfer, and...

  17. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  18. Prospective randomized comparative study of bipolar versus direct current electrocoagulation for treatment of bleeding internal hemorrhoids.

    Science.gov (United States)

    Randall, G M; Jensen, D M; Machicado, G A; Hirabayashi, K; Jensen, M E; You, S; Pelayo, E

    1994-01-01

    Internal hemorrhoids are the most common cause of lower gastrointestinal bleeding. Although new anoscopic therapies are available, few comparative randomized studies have evaluated them in regard to long-term efficacy, recurrence rates, and safety. Our purpose was to compare the treatment of internal hemorrhoids with direct current (Ultroid, Cabot Medical, Langhorn, Pa.) and bipolar (BICAP, Circon ACMI, Stamford, Conn.) hemorrhoid probes. One hundred patients with symptomatic internal hemorrhoids were randomized: 50 to direct current electrocoagulation and 50 to bipolar electrocoagulation. Follow-up and treatment were at 3- to 4-weekly intervals; two to three hemorrhoid segments were treated at each session until relief of symptoms (bleeding, prolapse, and discharge) and a reduction in hemorrhoid size to grade 1 or 0 were noted. The hemorrhoids of 98% of all patients studied were grade 2 or 3; 2% of patients had grade 1 hemorrhoids and none had grade 4 hemorrhoids. At 1 year after treatment, most patients had no (69%) or only mild (23%) recurrence, and a few had severe, symptomatic (8%) hemorrhoid recurrence. A greater recurrence rate was noted after direct current treatment (34%) than bipolar treatment (29%). In contrast, rebleeding at 1 year occurred less frequently after direct current treatment (5%) than after bipolar treatment (20%). Our conclusions were as follows: (1) Both direct current and bipolar probes were effective for control of chronic bleeding from grade 1 to 3 internal hemorrhoids. (2) Bipolar probe was significantly faster than direct current probe. (3) Direct current treatment produced fewer complications than bipolar treatment (12% versus 14%). (4) Recurrence rates were low after 1 year with either device (8%).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations

    Science.gov (United States)

    Jordanova, V. K.; Zaharia, S.; Welling, D. T.

    2010-12-01

    The effects of nondipolar magnetic field configuration and the feedback of a self-consistently computed magnetic field on ring current dynamics are investigated during a double-dip storm with minima SYM-H = -90 nT at ˜2000 UT, 20 November, and SYM-H = -127 nT at ˜1000 UT, 21 November 2002. We use our kinetic ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB) to study the redistribution of plasma in the inner magnetosphere after its fresh injection from the plasma sheet. The kinetic model is fully extended to nondipolar magnetic (B) field geometry and two-way coupled with an Euler-potential-based equilibrium model that calculates self-consistently the three-dimensional magnetic field in force balance with the anisotropic ring current distributions. The ring current source population is inferred from LANL geosynchronous satellite data; a superdense plasma sheet observed during the second storm main phase contributes significantly to ring current buildup. We find that the bounce-averaged velocities increase while the bounce-averaged geocoronal hydrogen densities decrease on the nightside when a nondipolar B field is used. A depression of the ring current fluxes and a confinement of the ring current close to Earth are thus observed on the nightside as geomagnetic activity increases. In contrast to the dipolar case, the proton anisotropy increases considerably in the postnoon sector, and the nondipolar simulations predict the excitation of intense EMIC waves at large L shells. The total ring current energy and ∣Dst∣ index calculated with the self-consistent B field are in best agreement with observations, being smaller compared to the dipolar calculations but larger than the empirical B field predictions.

  20. Cryogenic Insulation Standard Data and Methodologies Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  1. Feeding practices of low-income mothers: how do they compare to current recommendations?

    OpenAIRE

    Power, Thomas G; Hughes, Sheryl O; Goodell, L Suzanne; Johnson, Susan L; Duran, J Andrea Jaramillo; Williams, Kimberly; Beck, Ashley D; Frankel, Leslie A

    2015-01-01

    Background Despite a growing consensus on the feeding practices associated with healthy eating patterns, few observational studies of maternal feeding practices with young children have been conducted, especially in low-income populations. The aim of this study was to provide such data on a low income sample to determine the degree to which observed maternal feeding practices compare with current recommendations. Methods Eighty low-income mothers and their preschool children were videotaped a...

  2. Linear beam raster for cryogenic targets

    Energy Technology Data Exchange (ETDEWEB)

    Yan, C; Sinkine, N; Wojcik, R

    2005-02-21

    Based on the H-bridge switch technique a linear beam raster system was developed in 2002. The system generates a rectangular raster pattern with highly uniform ({approx}95%) raster density distribution on cryogenic targets. The two raster frequencies are 24.96 and 25.08 kHz. The turning time at the vertex is 200 ns and the scan linearity is 98%. The beam-heating effect on the target is effectively eliminated. The new raster system allows the use of higher beam current toward 200 muA in many of the experimental proposals at end station Hall A and Hall C of the Jefferson lab.

  3. ngVLA Cryogenic Subsystem Concept

    Science.gov (United States)

    Wootten, Al; Urbain, Denis; Grammer, Wes; Durand, S.

    2018-01-01

    The VLA’s success over 35 years of operations stems in part from dramatically upgraded components over the years. The time has come to build a new array to lead the radio astronomical science into its next 40 years. To accomplish that, a next generation VLA (ngVLA) is envisioned to have 214 antennas with diameters of 18m. The core of the array will be centered at the current VLA location, but the arms will extend out to 1000km.The VLA cryogenic subsystem equipment and technology have remained virtually unchanged since the early 1980s. While adequate for a 27-antenna array, scaling the current system for an array of 214 antennas would be prohibitively expensive in terms of operating cost and maintenance. The overall goal is to limit operating cost to within three times the current level, despite having 8 times the number of antennas. To help realize this goal, broadband receivers and compact feeds will be utilized to reduce both the size and number of cryostats required. The current baseline front end concept calls for just two moderately-sized cryostats for the entire 1.2-116 GHz frequency range, as opposed to 8 in the VLA.For the ngVLA cryogenics, our objective is a well-optimized and efficient system that uses state-of-the-art technology to minimize per-antenna power consumption and maximize reliability. Application of modern technologies, such as variable-speed operation for the scroll compressors and cryocooler motor drives, allow the cooling capacity of the system to be dynamically matched to thermal loading in each cryostat. Significantly, power savings may be realized while the maintenance interval of the cryocoolers is also extended.Finally, a receiver designed to minimize thermal loading can produce savings directly translating to lower operating cost when variable-speed drives are used. Multi-layer insulation (MLI) on radiation shields and improved IR filters on feed windows can significantly reduce heat loading.Measurements done on existing cryogenic

  4. Renovation of the Sissi cryogenic system

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    SISSI (high current superconductor secondary ion source) involved a cryo-generator operating in a close circuit when the whole system was put in service in 1994. Since then the cryo-generator has proved to be insufficiently reliable. A new cryogenic system based on an external liquid helium supply has been designed. The helium transfer lines are surrounded by a shield at liquid nitrogen temperature and numerous layers of super-insulators in order to have minimum thermal losses. The installation was integrated to SISSI in summer 1998 and after the first operating period some improvements concerning the cooling procedure have to be considered. (A.C.)

  5. Thermodynamic analysis and optimization of an irreversible Ericsson cryogenic refrigerator cycle

    International Nuclear Information System (INIS)

    Ahmadi, Mohammad Hossein; Ahmadi, Mohammad Ali

    2015-01-01

    Highlights: • Thermodynamic modeling of Ericsson refrigeration is performed. • The latter is achieved using NSGA algorithm and thermodynamic analysis. • Different decision makers are utilized to determine optimum values of outcomes. - Abstract: Optimum ecological and thermal performance assessments of an Ericsson cryogenic refrigerator system are investigated in different optimization settings. To evaluate this goal, ecological and thermal approaches are proposed for the Ericsson cryogenic refrigerator, and three objective functions (input power, coefficient of performance and ecological objective function) are gained for the suggested system. Throughout the current research, an evolutionary algorithm (EA) and thermodynamic analysis are employed to specify optimum values of the input power, coefficient of performance and ecological objective function of an Ericsson cryogenic refrigerator system. Four setups are assessed for optimization of the Ericsson cryogenic refrigerator. Throughout the three scenarios, a conventional single-objective optimization has been utilized distinctly with each objective function, nonetheless of other objectives. Throughout the last setting, input power, coefficient of performance and ecological function objectives are optimized concurrently employing a non-dominated sorting genetic algorithm (GA) named the non-dominated sorting genetic algorithm (NSGA-II). As in multi-objective optimization, an assortment of optimum results named the Pareto optimum frontiers are gained rather than a single ultimate optimum result gained via conventional single-objective optimization. Thus, a process of decision making has been utilized for choosing an ultimate optimum result. Well-known decision-makers have been performed to specify optimized outcomes from the Pareto optimum results in the space of objectives. The outcomes gained from aforementioned optimization setups are discussed and compared employing an index of deviation presented in this

  6. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Veronica De Miguel-Soto

    2017-11-01

    Full Text Available In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG, and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  7. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.

    Science.gov (United States)

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-11-30

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  8. A Comparative Study of Current and Potential Users of Mobile Payment Services

    Directory of Open Access Journals (Sweden)

    Chanchai Phonthanukitithaworn

    2016-11-01

    Full Text Available Previous studies of mobile payment (m-payment services have primarily focused on a single group of adopters. This study identifies the factors that influence an individual’s intention to use m-payment services and compares groups of current users (adopters with potential users (non-adopters. A research model that reflects the behavioral intention to use m-payment services is developed and empirically tested using structural equation modeling on a data set consisting of 529 potential users and 256 current users of m-payment services in Thailand. The results show that the factors that influence current users’ intentions to use m-payment services are compatibility, subjective norms, perceived trust, and perceived cost. Subjective norms, compatibility, ease of use, and perceived risk influenced potential users’ intentions to use m-payment. Subjective norms and perceived risk had a stronger influence on potential users, while perceived cost had a stronger influence on current users, in terms of their intentions to use m-payment services. Discussions, limitations, and recommendations for future research are addressed.

  9. SRF Test Areas Cryogenic System Controls Graphical User Interface

    Energy Technology Data Exchange (ETDEWEB)

    DeGraff, B.D.; Ganster, G.; Klebaner, A.; Petrov, A.D.; Soyars, W.M.; /Fermilab

    2011-06-09

    Fermi National Accelerator Laboratory has constructed a superconducting 1.3 GHz cavity test facility at Meson Detector Building (MDB) and a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab Building (NML). The control of these 2K cryogenic systems is accomplished by using a Synoptic graphical user interface (GUI) to interact with the underlying Fermilab Accelerator Control System. The design, testing and operational experience of employing the Synoptic client-server system for graphical representation will be discussed. Details on the Synoptic deployment to the MDB and NML cryogenic sub-systems will also be discussed. The implementation of the Synoptic as the GUI for both NML and MDB has been a success. Both facilities are currently fulfilling their individual roles in SCRF testing as a result of successful availability of the cryogenic systems. The tools available for creating Synoptic pages will continue to be developed to serve the evolving needs of users.

  10. Advanced monitoring, fault diagnostics, and maintenance of cryogenic systems

    CERN Document Server

    Girone, Mario; Pezzetti, Marco

    In this Thesis, advanced methods and techniques of monitoring, fault diagnostics, and predictive maintenance for cryogenic processes and systems are described. In particular, in Chapter 1, mainstreams in research on measurement systems for cryogenic processes are reviewed with the aim of dening key current trends and possible future evolutions. Then, in Chapter 2, several innovative methods are proposed. A transducer based on a virtual ow meter is presented for monitoring helium distribution and consumption in cryogenic systems for particle accelerators [1]. Furthermore, a comprehensive metrological analysis of the proposed transducer for verifying the metrological performance and pointing out most critical uncertainty sources is described [2]. A model-based method for fault detection and early-stage isolation, able to work with few records of Frequency Response Function (FRF) on an unfaulty compressor, is then proposed [3]. To enrich the proposal, a distributed diagnostic procedure, based on a micro-genetic...

  11. Cryogenic engineering fifty years of progress

    CERN Document Server

    Reed, Richard

    2007-01-01

    Cryogenic Engineering: Fifty Years of Progress is a benchmark reference work which chronicles the major developments in the field. Starting with an historical background dating to the 1850s, this book reviews the development of data resources now available for cryogenic fields and properties of materials. The advances in cryogenic fundamentals are covered by reviews of cryogenic principles, cryogenic insulation, low-loss storage systems, modern liquefaction processes, helium cryogenics and low-temperature thermometry. Several well-established applications resulting from cryogenic advances include aerospace cryocoolers and refrigerators, use of LTS and HTS systems in electrical applications, and recent changes in cryopreservation. Extensive references are provided for the readers interested in the details of these cryogenic engineering advances.

  12. Cryogenics bringing the temperature down, underground

    CERN Multimedia

    2005-01-01

    The first 600m of the LHC cryogenic distribution line (QRL), which will feed the accelerator's superconducting magnets, has passed initial validating tests of its mechanical design at room and cryogenic temperatures.

  13. Cryogenic rocket engine development at Delft aerospace rocket engineering

    NARCIS (Netherlands)

    Wink, J; Hermsen, R.; Huijsman, R; Akkermans, C.; Denies, L.; Barreiro, F.; Schutte, A.; Cervone, A.; Zandbergen, B.T.C.

    2016-01-01

    This paper describes the current developments regarding cryogenic rocket engine technology at Delft Aerospace Rocket Engineering (DARE). DARE is a student society based at Delft University of Technology with the goal of being the first student group in the world to launch a rocket into space. After

  14. Comparative evaluation of different strengths of electrical current in the management of dentinal hypersensitivity

    Directory of Open Access Journals (Sweden)

    Sandhu Sharn

    2010-01-01

    Full Text Available Background : Dentinal hypersensitivity is a commonly occurring but less understood and poorly managed problem of the teeth. Iontophoresis is a technique wherein desensitizing agents can be transferred under electrical pressure into the tooth structure to manage hypersensitivity. Aim : The purpose of present study is to compare the effect of different strengths of electrical current used for varying lengths of time, keeping the electrical dosage constant with the iontophoretic unit in the management of dentinal hypersensitivity. Materials and Methods : This study was conducted among the patients attending the Periodontal Department of the Government Dental College and Hospital, Patiala, Punjab, specifically complaining of tooth hypersensitivity. The Verbal Rating Scale (VRS was used to record scores pre-, during, and post-treatment. Ten percent SrCl2 solution was applied with an iontophoretic unit. Three applications were performed at weekly intervals, up to the second week, using the same electric current dosage. The data compiled was statistically analyzed. Results : A remarkable reduction in dentinal hypersensitivity to both air blast and cold water stimuli was noted at the end of two months after iontophoresis with each current group / method, namely, I (0.25 mA for 4 minutes, II (0.5 mA for 2 minutes, and III (1 mA for 1 minute. However, the differences in effectiveness / improvement within the three current groups during the entire duration of the study were found to be statistically insignificant. Conclusion : Within the limits of this study, it could be implied that for relieving hypersensitivity, iontophoresis for all three current groups was almost equally effective, and it was found that repeated applications (up to three gave good relief. Iontophoresis was found to be effective and safe.

  15. Comparative ecophysiology of active zoobenthic filter feeding, essence of current knowledge

    Science.gov (United States)

    Riisgård, H. U.; Larsen, P. S.

    2000-12-01

    The present contribution gives an overview of current knowledge of a comprehensive and steadily growing research field. The first section deals with water pumping and particle retention mechanisms in ciliary and muscular filter feeders. The second section examines the biological filter pumps in order to assess adaptation to the environment. Filter-feeding benthic invertebrates have evolved filter pumps to solve common basic problems. This has led to a large degree of similarity between otherwise distant standing species, which makes comparative studies interesting and important. The present review of zoobenthic filter feeding aims at accentuating such recognition.

  16. Comparative investigation of the economics of seawater desalting based on current and advanced distillation concepts

    International Nuclear Information System (INIS)

    Glueckstern, P.; Reed, S.A.

    1976-01-01

    A reassessment of desalting plant design and product water cost based on current technology and energy and equipment costs has been made. Plant sizes in the range of 1 to 200 Mgd utilizing the multistage flash (MSF) and the vertical tube evaporator (VTE) were investigated. Process steam was assumed to be supplied by large nuclear dual-purpose plants or from fossil-fired low-pressure boilers. Plants applying the pH control method versus the threshold pretreatment method were compared. The potential benefits of applying low cost aluminum tubing in low-temperature VTE plants were also investigated

  17. Silicon Germanium Cryogenic Low Noise Amplifiers

    Science.gov (United States)

    Bardin, J. C.; Montazeri, S.; Chang, Su-Wei

    2017-05-01

    Silicon germanium heterojunction bipolar transistors have emerged in the last decade as an excellent option for use in cryogenic low noise amplifiers. This paper begins with a review of the critical developments that have led to today’s cryogenic low noise amplifiers. Next, recent work focused on minimizing the power consumption of SiGe cryogenic amplifiers is presented. Finally, open issues related to the cryogenic noise properties of SiGe HBTs are discussed.

  18. High speed cryogenic monodisperse targets

    Science.gov (United States)

    Boukharov, A.; Vishnevkii, E.

    2017-11-01

    The basic possibility of creation of high speed cryogenic monodisperse targets is shown. According to calculations at input of thin liquid cryogenic jets with a velocity of bigger 100 m/s in vacuum the jets don’t manage to freeze at distance to 1 mm and can be broken into monodisperse drops. Drops due to evaporation are cooled and become granules. High speed cryogenic monodisperse targets have the following advantages: direct input in vacuum (there is no need for a chamber of a triple point chamber and sluices), it is possible to use the equipment of a cluster target, it is possible to receive targets with a diameter of D 100m/s), exact synchronization of the target hitting moment in a beam with the moment of sensors turning on.

  19. Cryogenic safety organisation at CERN

    CERN Document Server

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  20. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  1. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions.

    Science.gov (United States)

    Choudhary, Krishna; Deng, Fei; Aviran, Sharon

    2017-03-01

    Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data. We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy. To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.

  2. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers

    Science.gov (United States)

    Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.

    2007-04-01

    Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.

  3. Current Comparative Table (CCT) automates customized searches of dynamic biological databases.

    Science.gov (United States)

    Landsteiner, Benjamin R; Olson, Michael R; Rutherford, Robert

    2005-07-01

    The Current Comparative Table (CCT) software program enables working biologists to automate customized bioinformatics searches, typically of remote sequence or HMM (hidden Markov model) databases. CCT currently supports BLAST, hmmpfam and other programs useful for gene and ortholog identification. The software is web based, has a BioPerl core and can be used remotely via a browser or locally on Mac OS X or Linux machines. CCT is particularly useful to scientists who study large sets of molecules in today's evolving information landscape because it color-codes all result files by age and highlights even tiny changes in sequence or annotation. By empowering non-bioinformaticians to automate custom searches and examine current results in context at a glance, CCT allows a remote database submission in the evening to influence the next morning's bench experiment. A demonstration of CCT is available at http://orb.public.stolaf.edu/CCTdemo and the open source software is freely available from http://sourceforge.net/projects/orb-cct.

  4. Temperature control of cryogenic systems

    International Nuclear Information System (INIS)

    Lessard, P.A.; Bartlett, A.J.; Peterson, J.F.

    1987-01-01

    A cryogenic refrigerator is described comprising: a refrigerator heat sink; a source of refrigerant gas under pressure; gas expansion means including a reciprocating piston in a cylinder for expanding the refrigerant gas in a gas expansion space within the cylinder to cool the gas and the refrigerator heat sink to cryogenic temperatures; means for selectively diverting refrigerant gas away from the gas expansion means; and a heat exchanger in thermal communication with the refrigerator heat sink for receiving diverted gas and conducting heat from the refrigerant gas into the refrigerator heat sink to warm the heat sink while keeping the diverted gas out of fluid communication with the gas expansion space

  5. Current standards for syphilis treatment: comparing the russian and foreign guidelines (part II

    Directory of Open Access Journals (Sweden)

    T. V. Krasnoselskikh

    2015-01-01

    Full Text Available The introduction of penicillin has been a breakthrough in the treatment of syphilis. For 70 years, penicillin remains the preferred drug for the treatment of all forms of the disease; its effectiveness has been proven by wide experience gained from clinical observations. However, a very limited number of published meta-analyzes, systematic reviews and data from randomized controlled trials on the comparative assessment of the effectiveness of various antibiotics and treatment regimens are currently available. Some aspects of syphilis treatment are insufficiently developed, particularly, the treatment schedules for neurosyphilis, syphilis in pregnancy, syphilis in HIV-infected individuals and persons allergic to penicillin. There are disagreements in the assessment of the clinical significance of serofast state after a course of antibiotic therapy. There is no uniform approach to the management of patients with treatment failures. This article compares the Russian standards for syphilis treatment set out in the «Federal guidelines for the management of patients with syphilis» with the current European recommendations of the International Union against Sexually Transmitted Infections (IUSTI and the recommendations of the US Centers for Disease Control and Prevention (CDC. The peculiarities of these guidelines, their strengths and shortcomings, as well as controversial issues of syphilis therapy are discussed. The differences between the domestic and foreign recommendations are more significant in the section concerning the treatment of syphilis than in the section of diagnosis.

  6. Modeling Unsteady Cavitation Effects and Dynamic Loads in Cryogenic Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There currently are no analytical or CFD tools that can reliably predict unsteady cavitation dynamics in liquid rocket cryogenic systems. Analysis of cavitating...

  7. Electronprobe microanalysis of volcanic glass at cryogenic temperatures

    Science.gov (United States)

    Kearns, S.; Steen, N.; Erlund, E.

    2003-04-01

    Analysis of volcanic glass is of particular importance to volcanologists and petrologists. However, for many volcanic systems, the production of good quantitative analyses is problematic due to the interstitial nature of the glass and the instability of the sample under the impact of a high energy electron beam on the surface. Previous studies have established that alkali ions, especially sodium and potassium migrate away from the point of beam impact during routine EPMA of glasses yielding erroneous results. An initial study here has investigated the effects both at normal ambient temperature (298 K) and cryogenic temperature (83 K) by means of a liquid-nitrogen cooled cryo-stage across a broad range of volcanic glass compositions. The glasses studied have between 48 and 76 wt% SiO_2 and varying concentrations of sodium and potassium and other non-volatile components. The water content of each glass was independently determined by FTIR spectroscopy. All analyses were performed on a Cameca Camebax Micro operating under SAMX automation software. Under "normal" wavelength dispersive EPMA operating conditions, a typical analysis might take between two and four minutes depending on the number of spectrometers available, the number of elements analysed and the required precision and detection limits for the elements concerned. Results show that there is a strong relationship between initial temperature and stability of the alkali species during the course of a single analysis. Under cryogenic analytical conditions the glass is seen to be immune to the heating effects of the electron beam and alkali ions will remain stable in the sample. Consequently it is possible to analyse these materials with higher beam currents, smaller spot sizes and longer dwell times than is possible under ambient temperature conditions. Analysis performed using the cryo-stage can yield a marked improvement in the precision and detection limits of both major and minor elements compared with

  8. Comparing primary production methods to better constrain historical, current and future rates

    Science.gov (United States)

    Timmerman, A. H.; Hamme, R. C.

    2016-02-01

    Understanding current primary production and carbon export rates to the deep ocean will provide insight into possible climate change scenarios, because carbon export is an important mechanism sequestering carbon from the surface and may change in the future. By using multiple methods, production rates can be better constrained. Each method has its own advantages, disadvantages, and assumptions. By pairing methods, biases can be taken into account for data interpretation. For example, removing phytoplankton from the environment could change the light levels and temperature of the water. In addition, phytoplankton can be affected by the sides of the incubation container. By including in situ methods, bottle effects are removed and integration times are lengthened. In situ methods have their own set of disadvantages; uncertainty is introduced with the gas exchange rate and if surface water mixes with deeper water. However, comparing methods is complicated since each measures a different fraction of production (e.g net community, net primary, gross production). We present simultaneous in situ (O2/Ar, triple oxygen isotope), in vitro (13C, 15NO3, 15NH4, and 18O incubations) and satellite measurements of primary production from the subarctic northeast Pacific Ocean, Labrador Sea, Baffin Bay, and Canadian Arctic Archipelago. By comparing net community production (NCP; O2/Ar) to gross production (18O incubation or triple oxygen isotope), we estimate ecosystem efficiency. Some methods have multiple ways the rates could be calculated, but by comparing methods it could be possible to select the best options. Our goal is to identify conditions where the methods have consistent differences so measurements can be converted between methods and so ecosystem efficiency can be determined. By finding a way of converting to a more relevant export term (NCP), a wealth of 14C and 13C data exists that could be used to determine historic, current and future export rates.

  9. Performance evaluation of various cryogenic energy storage systems

    International Nuclear Information System (INIS)

    Abdo, Rodrigo F.; Pedro, Hugo T.C.; Koury, Ricardo N.N.; Machado, Luiz; Coimbra, Carlos F.M.; Porto, Matheus P.

    2015-01-01

    This work compares various CES (cryogenic energy storage) systems as possible candidates to store energy from renewable sources. Mitigating solar and wind power variability and its direct effect on local grid stability are already a substantial technological bottleneck for increasing market penetration of these technologies. In this context, CES systems represent low-cost solutions for variability that can be used to set critical power ramp rates. We investigate the different thermodynamic and engineering constraints that affect the design of CES systems, presenting theoretical simulations, indicating that optimization is also needed to improve the cryogenic plant performance. - Highlights: • We assessed the performance of cryogenic energy storage systems. • We re-evaluated the Linde–Hampson cycle proposed by Chen. • We proposed the Claude and Collins cycles as alternatives for the Linde–Hampson cycle. • We concluded that Claude cycle is the best alternative for the simulated conditions.

  10. Severe deformation twinning in pure copper by cryogenic wire drawing

    International Nuclear Information System (INIS)

    Kauffmann, A.; Freudenberger, J.; Geissler, D.; Yin, S.; Schillinger, W.; Sarma, V. Subramanya; Bahmanpour, H.; Scattergood, R.; Khoshkhoo, M.S.; Wendrock, H.; Koch, C.C.; Eckert, J.; Schultz, L.

    2011-01-01

    The effect of low-temperature on the active deformation mechanism is studied in pure copper. For this purpose, cryogenic wire drawing at liquid nitrogen temperature (77 K) was performed using molybdenum disulfide lubrication. Microstructural investigation and texture analysis revealed severe twin formation in the cryogenically drawn copper, with a broad twin size distribution. The spacing of the observed deformation twins ranges from below 100 nm, as reported in previous investigations, up to several micrometers. The extent of twin formation, which is significantly higher when compared to other cryo-deformation techniques, is discussed with respect to the state of stress and the texture evolution during wire drawing.

  11. Evaluation of hydrogen as a cryogenic wind tunnel test gas

    Science.gov (United States)

    Haut, R. C.

    1977-01-01

    The nondimensional ratios used to describe various flow situations in hydrogen were determined and compared with the corresponding ideal diatomic gas ratios. The results were used to examine different inviscid flow configurations. The relatively high value of the characteristic rotational temperature causes the behavior of hydrogen, under cryogenic conditions, to deviate substantially from the behavior of an ideal diatomic gas in the compressible flow regime. Therefore, if an idea diatomic gas is to be modeled, cryogenic hydrogen is unacceptable as a wind tunnel test gas in a compressible flow situation.

  12. Comparing Self-Concept Among Youth Currently Receiving Inpatient Versus Outpatient Mental Health Services.

    Science.gov (United States)

    Choi, Chris; Ferro, Mark A

    2018-01-01

    This study compared levels of self-concept among youth who were currently receiving inpatient versus outpatient mental health services. Forty-seven youth were recruited from the Child & Youth Mental Health Program at McMaster Children's Hospital. Self-concept was measured using the Self-Perception Profile for Children and Adolescents. The mean age was 14.5 years and most participants were female (70.2%). ANOVAs comparing self-concept with population norms showed large significant effects (d = 0.77 to 1.93) indicating compromised self-concept among youth receiving mental health services. Regression analyses controlling for patient age, sex, family income, and diagnoses of major depressive disorder, generalized social phobia, and generalized anxiety showed that the inpatient setting was a significant predictor of lower global self-worth (β=-.26; p=.035). Compared to outpatients, inpatients generally reported lower self-concept, but differences were significant only for global self-worth. Future research replicating this finding and assessing its clinical significance is encouraged.

  13. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  14. A cryogenic slab CO laser

    International Nuclear Information System (INIS)

    Ionin, Andrei A; Kozlov, A Yu; Seleznev, L V; Sinitsyn, D V

    2009-01-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ∼12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ∼14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ∼ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour. (lasers)

  15. The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haizhi [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Tong, Weiping, E-mail: wptong@mail.neu.edu.cn [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Cui, Junjun [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zhang, Hui [Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Chen, Liqing [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Zuo, Liang [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2016-04-26

    Deep cryogenic treatment can improve the mechanical properties of many metallic materials, but there are few reports of the effect of deep cryogenic treatment on high-vanadium alloy steel. The main objective of this work is to investigate the effect of deep cryogenic treatment on the microstructure, hardness, impact toughness and abrasive wear resistance of high-vanadium alloy steel. The results show that large amounts of small secondary carbide precipitation after deep cryogenic treatment and microcracks were detected and occurred preferentially at carbide/matrix interfaces; except for the hardness, the mechanical properties increased compared to those of the conventional treatment sample. By increasing the deep cryogenic processing time and cycle number, impact toughness and abrasive wear resistance can be further improved, the carbide contents continuously increase, and the hardness decreases.

  16. Superconducting magnets and cryogenics: proceedings

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1986-01-01

    Separate abstracts were prepared for 70 papers in these workshop proceeedings. Topics covered include: superconducting accelerator magnet research and development; superconductor development; electrical measurements; magnet design and construction methods; field correction methods; power schemes and quench protection; cryogenic systems; and magnet measurements

  17. Champagne for the cryogenics teams

    CERN Multimedia

    2005-01-01

    Christmas has come early for the LHC as a complete sector of the cryogenic distribution line has been operating at 10 degrees Kelvin (-263°C) for the past two weeks, just a few degrees above the machine's nominal operating temperature.

  18. Operation of large cryogenic systems

    International Nuclear Information System (INIS)

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab

  19. LHC Cryogenics on the mend

    CERN Multimedia

    2004-01-01

    On 29 September, repairs began on the LHC cryogenic distribution line, or QRL, to replace a faulty part that occurs in the hundreds of elements of the line that are already on-site. The Accelerator Technology Department is designing a work programme to finish the repairs as soon as possible and minimize delays to the rest of the LHC project.

  20. Sources of Cryogenic Data and Information

    Science.gov (United States)

    Mohling, R. A.; Hufferd, W. L.; Marquardt, E. D.

    It is commonly known that cryogenic data, technology, and information are applied across many military, National Aeronautics and Space Administration (NASA), and civilian product lines. Before 1950, however, there was no centralized US source of cryogenic technology data. The Cryogenic Data Center of the National Bureau of Standards (NBS) maintained a database of cryogenic technical documents that served the national need well from the mid 1950s to the early 1980s. The database, maintained on a mainframe computer, was a highly specific bibliography of cryogenic literature and thermophysical properties that covered over 100 years of data. In 1983, however, the Cryogenic Data Center was discontinued when NBS's mission and scope were redefined. In 1998, NASA contracted with the Chemical Propulsion Information Agency (CPIA) and Technology Applications, Inc. (TAI) to reconstitute and update Cryogenic Data Center information and establish a self-sufficient entity to provide technical services for the cryogenic community. The Cryogenic Information Center (CIC) provided this service until 2004, when it was discontinued due to a lack of market interest. The CIC technical assets were distributed to NASA Marshall Space Flight Center and the National Institute of Standards and Technology. Plans are under way in 2006 for CPIA to launch an e-commerce cryogenic website to offer bibliography data with capability to download cryogenic documents.

  1. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research

    Science.gov (United States)

    2014-01-01

    Microalgae cells have the potential to rapidly accumulate lipids, such as triacylglycerides that contain fatty acids important for high value fatty acids (e.g., EPA and DHA) and/or biodiesel production. However, lipid extraction methods for microalgae cells are not well established, and there is currently no standard extraction method for the determination of the fatty acid content of microalgae. This has caused a few problems in microlagal biofuel research due to the bias derived from different extraction methods. Therefore, this study used several extraction methods for fatty acid analysis on marine microalga Tetraselmis sp. M8, aiming to assess the potential impact of different extractions on current microalgal lipid research. These methods included classical Bligh & Dyer lipid extraction, two other chemical extractions using different solvents and sonication, direct saponification and supercritical CO2 extraction. Soxhlet-based extraction was used to weigh out the importance of solvent polarity in the algal oil extraction. Coupled with GC/MS, a Thermogravimetric Analyser was used to improve the quantification of microalgal lipid extractions. Among these extractions, significant differences were observed in both, extract yield and fatty acid composition. The supercritical extraction technique stood out most for effective extraction of microalgal lipids, especially for long chain unsaturated fatty acids. The results highlight the necessity for comparative analyses of microalgae fatty acids and careful choice and validation of analytical methodology in microalgal lipid research. PMID:24456581

  2. A comparative study: the impact of different lipid extraction methods on current microalgal lipid research.

    Science.gov (United States)

    Li, Yan; Ghasemi Naghdi, Forough; Garg, Sourabh; Adarme-Vega, Tania Catalina; Thurecht, Kristofer J; Ghafor, Wael Abdul; Tannock, Simon; Schenk, Peer M

    2014-01-24

    Microalgae cells have the potential to rapidly accumulate lipids, such as triacylglycerides that contain fatty acids important for high value fatty acids (e.g., EPA and DHA) and/or biodiesel production. However, lipid extraction methods for microalgae cells are not well established, and there is currently no standard extraction method for the determination of the fatty acid content of microalgae. This has caused a few problems in microlagal biofuel research due to the bias derived from different extraction methods. Therefore, this study used several extraction methods for fatty acid analysis on marine microalga Tetraselmis sp. M8, aiming to assess the potential impact of different extractions on current microalgal lipid research. These methods included classical Bligh & Dyer lipid extraction, two other chemical extractions using different solvents and sonication, direct saponification and supercritical CO₂ extraction. Soxhlet-based extraction was used to weigh out the importance of solvent polarity in the algal oil extraction. Coupled with GC/MS, a Thermogravimetric Analyser was used to improve the quantification of microalgal lipid extractions. Among these extractions, significant differences were observed in both, extract yield and fatty acid composition. The supercritical extraction technique stood out most for effective extraction of microalgal lipids, especially for long chain unsaturated fatty acids. The results highlight the necessity for comparative analyses of microalgae fatty acids and careful choice and validation of analytical methodology in microalgal lipid research.

  3. Looking for the best anti-colitis medicine: A comparative analysis of current and prospective compounds.

    Science.gov (United States)

    Chumanevich, Anastasiya A; Chaparala, Anusha; Witalison, Erin E; Tashkandi, Hossam; Hofseth, Anne B; Lane, Corey; Pena, Edsel; Liu, Piaomu; Pittman, Doug L; Nagarkatti, Prakash; Nagarkatti, Mitzi; Hofseth, Lorne J; Chumanevich, Alexander A

    2017-01-03

    Ulcerative colitis (UC) is a chronic lifelong inflammatory disorder of the colon, which, while untreated, has a relapsing and remitting course with increasing risk of progression toward colorectal cancer. Current medical treatment strategies of UC mostly focus on inhibition of the signs and symptoms of UC to induce remission and prevent relapse of disease activity, minimizing the impact on quality of life, but not affecting the cause of disease. To date, however, there is no single reliable treatment agent and/or strategy capable of effectively controlling colitis progression throughout the patient's life without side effects, remission, or resistance. Taking into consideration an urgent need for the new colitis treatment strategies, targets and/or modulators of inflammation, we have tested current and prospective compounds for colitis treatment and directly compared their anti-colitis potency using a dextran sulfate sodium (DSS) mouse model of colitis. We have introduced a composite score - a multi-parameters comparison tool - to assess biological potency of different compounds.

  4. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    Science.gov (United States)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  5. Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Barry [Fermilab; Bremer, Johan [CERN; Chalifour, Michel [Fermilab; Delaney, Mike [Fermilab; Dinnon, Mike [Fermilab; Doubnik, Roza [Fermilab; Geynisman, Michael [Fermilab; Hentschel, Steve [Fermilab; Kim, Min Jeong [Fermilab; Stefanik, Andy [Fermilab; Tillman, Justin [Fermilab; Zuckerbrot, Mike [Fermilab

    2017-01-01

    qualified by an international engineering team. This contribution presents the performance, the functional requirements and the modes of operation of the SBN cryogenics, and details the current status of the design, present and future needs.

  6. Ames Research Center cryogenic mirror testing program - A comparison of the cryogenic performance of metal and glass mirrors with different types of mounts

    Science.gov (United States)

    Miller, Jacob H.; Melugin, Ramsey K.; Augason, Gordon C.; Howard, Steven D.; Pryor, G. Mark

    1989-01-01

    A summary of the cryogenic testing of glass and metal mirrors performed at NASA Ames Research Center (ARC) and two other places is presented. Recent improvements to the ARC Cryogenic Optics Test Facility are described. The purposes of the tests were to determine: (1) how glass mirrors would perform at cryogenic temperatures compared with metal mirrors and (2) how various mirror mounts would affect the cryogenic performance of mirrors. Details of a cryogenic test of a 50 cm 'double arch', fused-silica mirror with a three-point mount and with a radially-compliant, flexured mount are given. Within the accuracy of the measurements, it was determined that the flexured mount did not induce appreciable distortion in the double arch mirror. Results of the cryogenic tests of a number of glass mirrors and two beryllium mirrors are included. The cryogenic distortion of the glass mirrors was found to be less than that for the beryllium mirrors. Within the accuracy of the measurements, no hysteresis was found in the glass mirrors. It was possible to measure hysteresis in one of the beryllium mirrors.

  7. Estimation for the performance of superconducting DC transmission lines with cryogenics improvements

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, Toshio, E-mail: toshi@isc.chubu.ac.j [Center of Applied Superconductivity and Sustainable Energy Research, Chubu University, Aichi 487-8501 (Japan); Fujii, Tomohiro [Department of Electrical Engineering, Chubu University, Aichi 487-8501 (Japan); Emoto, Masahiko [National Institute for Fusion Science, Gifu 509-5292 (Japan); Hamabe, Makoto; Sun, Jian; Watanabe, Hirofumi [Center of Applied Superconductivity and Sustainable Energy Research, Chubu University, Aichi 487-8501 (Japan); Yamaguchi, Satarou [Center of Applied Superconductivity and Sustainable Energy Research, Chubu University, Aichi 487-8501 (Japan); Department of Electrical Engineering, Chubu University, Aichi 487-8501 (Japan)

    2010-12-15

    Recent energy saving and environmental protection highly demand the development of new technology such as superconducting applications. At Chubu University, we have developed direct current (DC) superconducting 20 m transmission lines as a working trial system for the actual applications. Our parameter is promising for long distance transmission with low pump power. On the other hand, superconducting DC distribution is also useful in green internet technology such as the energy saving in the internet data center. However, such short length superconducting applications require special thermal designs because the heat leak into the system is comparably larger than the energy reduction in superconducting cables. From the viewpoint of cryogenics, high performance current lead is in high demand such as the Peltier current lead (PCL). With the improvements of current leads, we can reduce the heat leak to reach the very low loss systems required for the small superconducting application systems as the cost-effective ones.

  8. Taper Preparation Variability Compared to Current Taper Standards Using Computed Tomography

    Directory of Open Access Journals (Sweden)

    Richard Gergi

    2012-01-01

    Full Text Available Introduction. The purpose of this study was to compare the taper variation in root canal preparations among Twisted Files and PathFiles-ProTaper .08 tapered rotary files to current standards. Methods. 60 root canals with severe angle of curvature (between 25∘ and 35∘ and short radius (<10 mm were selected. The canals were divided randomly into two groups of 30 each. After preparation with Twisted Files and PathFiles-ProTaper to size 25 taper .08, the diameter was measured using computed tomography (CT at 1, 3, and 16 mm. Canal taper preparation was calculated at the apical third and at the middle-cervical third. Results. Of the 2 file systems, both fell within the ±.05 taper variability. All preparations demonstrated variability when compared to the nominal taper .08. In the apical third, mean taper was significantly different between TF and PathFiles-ProTaper ( value < 0.0001; independent -test. Mean Taper was significantly higher with PathFile-ProTaper. In the middle-cervical third, mean Taper was significantly higher with TF ( value = 0.015; independent -test. Conclusion. Taper preparations of the investigated size 25 taper .08 were favorable but different from the nominal taper.

  9. Comparative investigation of the energetic ion spectra comprising the magnetospheric ring currents of the solar system.

    Science.gov (United States)

    Mauk, B H

    2014-12-01

    Investigated here are factors that control the intensities and shapes of energetic ion spectra that make up the ring current populations of the strongly magnetized planets of the solar system, specifically those of Earth, Jupiter, Saturn, Uranus, and Neptune. Following a previous and similar comparative investigation of radiation belt electrons, we here turn our attention to ions. Specifically, we examine the possible role of the differential ion Kennel-Petschek limit, as moderated by Electromagnetic Ion Cyclotron (EMIC) waves, as a standard for comparing the most intense ion spectra within the strongly magnetized planetary magnetospheres. In carrying out this investigation, the substantial complexities engendered by the very different ion composition distributions of these diverse magnetospheres must be addressed, given that the dispersion properties of the EMIC waves are strongly determined by the ion composition of the plasmas within which the waves propagate. Chosen for comparison are the ion spectra within these systems that are the most intense observed, specifically at 100 keV and 1 MeV. We find that Earth and Jupiter are unique in having their most intense ion spectra likely limited and sculpted by the Kennel-Petschek process. The ion spectra of Saturn, Uranus, and Neptune reside far below their respective limits and are likely limited by interactions with gas and dust (Saturn) and by the absence of robust ion acceleration processes (Uranus and Neptune). Suggestions are provided for further testing the efficacy of the differential Kennel-Petschek limit for ions using the Van Allen Probes.

  10. Real time SQUID dynamics revealed using high resolution cryogenic sampler

    International Nuclear Information System (INIS)

    Faris, S.M.; Pedersen, N.F.

    1981-01-01

    Real time measurements of SQUID dynamics have been performed using a fast cryogenic sampler based on Josephson junction electronics. Complex waveforms representing the switching of a SQUID from one voltage state to another are obtained with time and current resolution of 10 ps and 1 μA, respectively. With this setup, it is possible to demonstrate the interaction between the internal SQUID dynamics (resonances) and the load. The interaction depends on the details of the bias and control currents. (orig.)

  11. Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles.

    Science.gov (United States)

    Qiu, Yinghua; Lin, Chih-Yuan; Hinkle, Preston; Plett, Timothy S; Yang, Crystal; Chacko, Jenu Varghese; Digman, Michelle A; Yeh, Li-Hsien; Hsu, Jyh-Ping; Siwy, Zuzanna S

    2016-09-27

    Single pores in the resistive-pulse technique are used as an analytics tool to detect, size, and characterize physical as well as chemical properties of individual objects such as molecules and particles. Each object passing through a pore causes a transient change of the transmembrane current called a resistive pulse. In high salt concentrations when the pore diameter is significantly larger than the screening Debye length, it is assumed that the particle size and surface charge can be determined independently from the same experiment. In this article we challenge this assumption and show that highly charged hard spheres can cause a significant increase of the resistive-pulse amplitude compared to neutral particles of a similar diameter. As a result, resistive pulses overestimate the size of charged particles by even 20%. The observation is explained by the effect of concentration polarization created across particles in a pore, revealed by numerical modeling of ionic concentrations, ion current, and local electric fields. It is notable that in resistive-pulse experiments with cylindrical pores, concentration polarization was previously shown to influence ionic concentrations only at pore entrances; consequently, additional and transient modulation of resistive pulses was observed when a particle entered or left the pore. Here we postulate that concentration polarization can occur across transported particles at any particle position along the pore axis and affect the magnitude of the entire resistive pulse. Consequently, the recorded resistive pulses of highly charged particles reflect not only the particles' volume but also the size of the depletion zone created in front of the moving particle. Moreover, the modeling identified that the effective surface charge density of particles depended not only on the density of functional groups on the particle but also on the capacitance of the Stern layer. The findings are of crucial importance for sizing particles and

  12. Cryogenic systems for detectors and particle accelerators

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1988-01-01

    It's been one hundred years since the first successful experiments were carried out leading to the liquefaction of oxygen which birthed the field of cryogenics and about sixty years since cryogenics went commercial. Originally, cryogenics referred to the technology and art of producing low temperatures but today the definition adopted by the XII Congress of the International Institute of Refrigeration describes cryogenics as the study of phenomena, techniques, and concepts occurring at our pertaining to temperatures below 120 K. Modern acceptance of the importance and use of cryogenic fluids continues to grow. By far, the bulk of cryogenic products are utilized by industry for metal making, agriculture, medicine, food processing and as efficient storage of fuels. Cryogenics has found many uses in the scientific community as well, enabling the development of ultra low noise amplifiers, fast cold electronics, cryopumped ultra high vacuums, the production of intense magnetic fields and low loss power transmission through the sue of cryogenically cooled superconductors. High energy physic research has been and continues to use cryogenic hardware to produce liquids used as detector targets and to produce refrigeration necessary to cool superconducting magnets to design temperature for particle accelerator applications. In fact, today's super accelerators achieve energies that would be impossible to reach with conventional copper magnets, demonstrating that cryogenics has become an indispensable ingredient in today's scientific endeavors

  13. Inflammatory responses after laparoscopic uterine myomectomy compared to open surgery in current clinical practice

    International Nuclear Information System (INIS)

    Holub, Z.; Kliment, L.; Jabor, A.; Sprongl, L.

    2006-01-01

    Objective was to determine the differences in inflammatory response and clinical outcome of current clinical practice in women undergoing laparoscopic myomectomy (LM) and abdominal myomectomy (AM) for symptomatic fibroid. A total of 36 women entered the study between October 2004 to June 2005 at the Department of Gynecology and Obstetrics and the Endosopy Training Center at the Baby Friendly Hospital in Klando, Czech Republic, based upon an ultrasonographic assessment size of dominant fibroid (DM) before surgery. All women were allocated to one of 2 groups: group 1 (n=17), DM -6cm, treated with open myomectomy. Surgical characteristics, hospital stay and complications were analyzed. Blood samples for assay of the acute phase reactants and markers of tissue trauma [C-reactive protein (CRP), interleukin-6 (IL-6), serum amyloid kinase (CK)] were taken preoperatively and on the first and third postoperative day. The difference between the groups in mean size of DM was statistically significant (4.8 cm in group 1 versus 6.9 cm in group 2, p<0.05). Statistically, significant differences were found between the compared groups in intra-operative blood loss (p<0.05) and length of hospital stay (p<0.001). No complication was reported after LM. There were significantly higher levels of CRP, IL-6, SAA, WBC and CK in both groups after surgery. Increased levels of IL-6, WBC and CK were greatest on the first postoperative day in the open group. The serum CRP, IL-6, SAA, WBC, CK and the fall in the hemoglobin were statistically different between the 2 groups. Compared with open myomectomy, LM was associated with a less intensive inflammatory response and a more favorable clinical outcome. (author)

  14. Comparative investigation of the energetic ion spectra comprising the magnetospheric ring currents of the solar system

    Science.gov (United States)

    Mauk, B H

    2014-01-01

    Investigated here are factors that control the intensities and shapes of energetic ion spectra that make up the ring current populations of the strongly magnetized planets of the solar system, specifically those of Earth, Jupiter, Saturn, Uranus, and Neptune. Following a previous and similar comparative investigation of radiation belt electrons, we here turn our attention to ions. Specifically, we examine the possible role of the differential ion Kennel-Petschek limit, as moderated by Electromagnetic Ion Cyclotron (EMIC) waves, as a standard for comparing the most intense ion spectra within the strongly magnetized planetary magnetospheres. In carrying out this investigation, the substantial complexities engendered by the very different ion composition distributions of these diverse magnetospheres must be addressed, given that the dispersion properties of the EMIC waves are strongly determined by the ion composition of the plasmas within which the waves propagate. Chosen for comparison are the ion spectra within these systems that are the most intense observed, specifically at 100 keV and 1 MeV. We find that Earth and Jupiter are unique in having their most intense ion spectra likely limited and sculpted by the Kennel-Petschek process. The ion spectra of Saturn, Uranus, and Neptune reside far below their respective limits and are likely limited by interactions with gas and dust (Saturn) and by the absence of robust ion acceleration processes (Uranus and Neptune). Suggestions are provided for further testing the efficacy of the differential Kennel-Petschek limit for ions using the Van Allen Probes. PMID:26167438

  15. Implementation of time synchronized cryogenics control system network architecture for SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rakesh J., E-mail: rpatel@ipr.res.in; Mahesuria, Gaurang; Panchal, Pradip; Panchal, Rohit; Sonara, Dasarath; Tanna, Vipul; Pradhan, Subrata

    2016-11-15

    Highlights: • SST-1 cryogenics sub-systems are 1.3 kW HRL, LN2 distribution system, current feeders system and 80 K booster system. • GUI developed in SCADA and control program developed in PLC for automation of the above sub-systems. • Implemented the cryogenics control system network to communicate all systems to InSQL server. • InSQL server configured for real time centralized process data acquisition from all connected sub-systems control nodes. • Acquired the process parameters coming from different systems at same time stamp. - Abstract: Under the SST-1 mission mandate, the several cryogenic sub-systems have been developed, upgraded and procured in prior to the SST-1 operation. New developments include 80 K Bubble type thermal shields, LN2 distribution system, LN2 booster system and current feeders system (CFS).Graphical User Interface (GUI) program developed in Wonderware SCADA and control logic program developed in Schneider make PLC for the above sub-systems. Industrial SQL server (InSQL) configured for centralized storage of real time process data coming from various control nodes of cryogenics sub-systems. The cryogenics control system network for communicating all cryogenics sub-system control nodes to InSQL server for centralized data storage and time synchronization among cryogenic sub-systems with centralized InSQL server is successfully implemented. Due to implemented time synchronization among sub-systems control nodes, it is possible to analyze the process parameters coming from different sub-systems at same time stamp. This paper describes the overview of implemented cryogenics control system network architecture for real time cryogenic process data monitor, storage and retrieval.

  16. Cryogenic refractive index of Heraeus homosil glass

    Science.gov (United States)

    Miller, Kevin H.; Quijada, Manuel A.; Leviton, Douglas B.

    2017-08-01

    This paper reports measurements of the refractive index of Homosil (Heraeus) over the wavelength range of 0.34—3.16 μm and temperature range of 120—335 K. These measurements were performed by using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) facility at the NASA's Goddard Space Flight Center. These measurements were in support of an integrated Structural-Thermal-Optical-Performance (STOP) model that was developed for a fieldwidened Michelson interferometer that is being built and tested for the High Spectral Resolution Lidar (HSRL) project at the NASA Langley Research Center (LaRC). The cryogenic refractive index measurements were required in order to account for the highly sensitive performance of the HSRL instrument to changes in refractive index with temperature, temperature gradients, thermal expansion, and deformation due to mounting stresses. A dense coverage of the absolute refractive index over the aforementioned wavelength and temperature ranges was used to determine the thermo-optic coefficient (dn/dT) and dispersion relation (dn/dλ) as a function of wavelength and temperature. Our measurements of Homosil will be compared with measurements of other glasses from the fused silica family studied in CHARMS as well as measurements reported elsewhere in the literature.

  17. A water blown urethane insulation for use in cryogenic environments

    Science.gov (United States)

    Blevins, Elana; Sharpe, Jon

    1995-01-01

    Thermal Protection Systems (TPS) of NASA's Space Shuttle External Tank include polyurethane and polyisocyanurate modified polyurethane foam insulations. These insulations, currently foamed with CFC 11 blowing agent, serve to maintain cryogenic propellant quality, maintain the external tank structural temperature limits, and minimize the formation of ice and frost that could potentially damage the ceramic insulation on the space shuttle orbiter. During flight the external tank insulations are exposed to mechanical, thermal and acoustical stresses. TPS must pass cryogenic flexure and substrate adhesion tests at -253 C, aerothermal and radiant heating tests at fluxes up to approximately 14 kilowatts per square meter, and thermal conductivity tests at cryogenic and elevated temperatures. Due to environmental concerns, the polyurethane insulation industry and the External Tank Project are tasked with replacing CFC 11. The flight qualification of foam insulations employing HCFC 141b as a foaming agent is currently in progress; HCFC 141b blown insulations are scheduled for production implementation in 1995. Realizing that the second generation HCFC blowing agents are an interim solution, the evaluation of third generation blowing agents with zero ozone depletion potential is underway. NASA's TPS Materials Research Laboratory is evaluating third generation blowing agents in cryogenic insulations for the External Tank; one option being investigated is the use of water as a foaming agent. A dimensionally stable insulation with low friability, good adhesion to cryogenic substrates, and acceptable thermal conductivity has been developed with low viscosity materials that are easily processed in molding applications. The development criteria, statistical experimental approach, and resulting foam properties will be presented.

  18. Performance and Cost Evaluation of Cryogenic Solid Propulsion Systems

    Science.gov (United States)

    Adirim, Harry; Lo, Roger; Knecht, Thomas; Reinbold, Georg-Friedrich; Poller, Sascha

    2002-01-01

    cooling equipment and its operation during fabrication and launch, neither were there problems with thrust to weight ratio of un-cooled but insulated Cryogenic Solid Motors which ascend into their trajectory while leaving the cooling equipment at the launch pad. In performance calculations for new launchers with CSP-replacements of boosters or existing stages, ARIANE 5 and a 3-stage launcher with CSP - 1st stage into GTO serve as examples. For keeping payload-capacity in the reference orbit constant, the modeling of a rocket system essentially requires a process of iteration, in which the propellant mass is varied as central parameter and - with the help of a CSP mass-model - all other dimensions of the booster are derived from mass models etc. accordingly. The process is repeated until the payload resulting from GTO track-optimization corresponds with that of the model ARIANE 5 in sufficient approximation. Under the assumptions made, the application of cryogenic motors lead to a clear reduction of the launch mass. This is essentially caused by the lower propellant mass and secondary by the reduced structure mass. Finally cost calculations have been made by ASTRIUM and demonstrated the cost saving potential of CSP propulsion. For estimating development, production, ground facilities, and operating cost, the parametric cost modeling tool has been used in combination with Cost Estimating Relationships (CER). Parametric cost models only allow comparative analyses, therefore ARIANE 5 in its current (P1) configuration has been estimated using the same mission model as for the CSP launcher. As conclusion of these cost assessment can be stated, that the utilization of cryogenic solid propulsion could offer a considerable cost savings potential. Academic and industrial cooperation is crucial for the challenging R&D work required. It will take the combined capacities of all experts involved to unlock the promises of clean, high Isp CSP propulsion for chemical Earth

  19. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  20. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    Science.gov (United States)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  1. Composite materials for cryogenic structures

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1978-01-01

    The paper is concerned with the composition, mechanical properties and capabilities of various types of composite materials for cryogenic structures. Attention is given to high-pressure plastic laminates, low-pressure plastic laminates, metal-matrix laminates, and aggregates (low-temperature concretes). The ability of these materials to match the strength and modulus of stainless steels suggests that their usage will substantially increase as alloying elements become scarce and more expensive

  2. Cryogenic moderator simulations: confronting reality

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities

  3. Study of Cryogenic MODFETS

    Science.gov (United States)

    1987-07-14

    current ratio along the [TI0] direction is A.03 Ga0,As layer inserted between the last 200 A of Rj1 ,01 ( = Vsc /I 4 8 ). In Fig. 4 we plot the ratio...growing on a lattice- c; anne . however, serserely limits he zeak fmax to 125 matched substrate. i rj 7RO DUCTO N Gallium arsenide MODFETs (Modulation

  4. Room temperature cryogenic test interface

    International Nuclear Information System (INIS)

    Faris, S. M.; Davidson, A.; Moskowitz, P. A.; Sai-Halasz, G. A.

    1985-01-01

    This interface permits the testing of high speed semiconductor devices (room-temperature chips) by a Josephson junction sampling device (cryogenic chip) without intolerable loss of resolution. The interface comprises a quartz pass-through plug which includes a planar transmission line interconnecting a first chip station, where the cryogenic chip is mounted, and a second chip station, where the semiconductor chip to be tested is temporarily mounted. The pass-through plug has a cemented long half-cylindrical portion and short half-cylindrical portion. The long portion carries the planar transmission line, the ends of which form the first and second chip mounting stations. The short portion completes the cylinder with the long portion for part of its length, where a seal can be achieved, but does not extend over the chip mounting stations. Sealing is by epoxy cement. The pass-through plug is sealed in place in a flange mounted to the chamber wall. The first chip station, with the cryogenic chip attached, extends into the liquid helium reservoir. The second chip station is in the room temperature environment required for semiconductor operation. Proper semiconductor operating temperature is achieved by a heater wire and control thermocouple in the vicinity of each other and the second chip mounting station. Thermal isolation is maintained by vacuum and seals. Connections for power and control, for test result signals, for temperature control and heating, and for vacuum complete the test apparatus

  5. The town in Serbia and Bulgaria: A comparative reading of current processes. Introduction

    Directory of Open Access Journals (Sweden)

    Zlatanović Sanja

    2015-01-01

    Full Text Available The topic of this volume is a result from The Contemporary City in Serbia and Bulgaria: Processes and Changes, a bilateral project of the Institute of Ethnography of the Serbian Academy of Sciences and Arts and the Institute of Ethnology and Folklore Studies with Ethnographic Museum of the Bulgarian Academy of Sciences (2014-2016. The six papers offer a comparative view of current social processes in two neighbouring Balkan countries, linked by numerous historical and political experiences. Comparative research into societal trends enables a more thorough understanding and monitoring of global processes. In today’s increasingly globalised and glocalised world, towns experience sudden changes and it is in the towns that these changes are most vividly to be seen. The focus of our research is on the dynamism of the contemporary town, on processuality and changes in societal practices. Ana Luleva examines life in the small town of Nessebar in southeast Bulgaria, which has been on the UNESCO World Heritage list since 1983. The protection, management and presentation of Nessebar’s cultural heritage are highly complex issues, further complicated by the problem of collision with the interests of the inhabitants. The author analyses the relations between the various factors - the state administration, municipal authorities and the local population. Here the tourist industry, investment interests, corrupt institutions and civil society all play their part. Ivanka Petrova chose to research Belogradchik, a small town in northwest Bulgaria. Petrova investigates how local social and cultural resources are used in the work of a family tourist enterprise. The author looks for answers to questions such as: how its members identify with the town and its culture and how the work of the enterprise fits into the Belogradchik local context. At the focus of her paper are current societal practices: the local urban economy and the production of images and symbols

  6. The DARWIN breadboard cryogenic optical delay line

    Science.gov (United States)

    van den Dool, T. C.; Gielesen, W.; Kamphues, F.; Loix, N.; Kooijman, P. P.; de Vries, C.; van Weers, H.; Fleury, K.; Stockman, Y.; Velsink, G.; Benoit, J.; Poupinet, A.; Sève, F.

    2017-11-01

    TNO, in cooperation with Micromega-Dynamics, SRON, Dutch Space and CSL, has designed a compact breadboard cryogenic delay line (figure 1) for use in future space interferometry missions. The work is performed under ESA contract 17.747/03 in preparation for the DARWIN mission. The breadboard (BB) delay line is representative of a flight mechanism. The delay line has a single stage voice coil actuator for Optical Path Difference (OPD) control, driving a twomirror cat's eye. Magnetic bearings provide frictionless and wear free operation with zero-hysteresis. The design of the BB delay line has been completed. The development test program, including operation at 100 K has been completed. The verification test programme is currently being carried out and will include functional testing at 40 K.

  7. Cryogenic magnet test facility for fair

    CERN Document Server

    Schroeder, C; Marzouki, F; Stafiniac, A; Floch, E; Schnizer, P; Moritz, G; Xiang, Y; Kauschke, M; Meier, J; Hess, G ,

    2009-01-01

    For testing fast-pulsed superconducting model and pre-series magnets for FAIR (Facility of Antiproton and Ion Research), a cryogenic magnet test facility was built up at GSI. The facility is able to cool either cold masses in a universal cryostat or complete magnets in their own cryo-module. It is possible to operate bath cooled, 2 phase cooled, and supercritical cooled magnets with a maximum current up to 11 kA and a ramp rate up to 14 kA/s. Measurements of magnet heat loss, with calorimetric and a V-I methods, are available, as are quench and magnetic field measurements. Design and functionality of the test facility will be described. Results of measurements with a supercritical cooled magnet and with a 2 phase cooled SIS100 model magnet will be shown.

  8. A dynamic optical measurement system for cryogenic fluids using laser interferometry

    International Nuclear Information System (INIS)

    Zhang, J H; Bao, S R; Zhang, R P; Qiu, L M

    2015-01-01

    Dynamic visualization is of great significance in the research of flow conditions and mass transfer process of cryogenic fluids. In this paper, two common ways to measure the concentration of cryogenic fluids are introduced and compared. To improve the real-time monitoring of cryogenic fluid, a non-contact dynamic optical measurement system using laser interferometry is designed, which is sensitive to subtle changes of fluid concentration. A precise and dynamic interference pattern can be obtained using this system. Two-dimensional concentration distribution of the fluid can be calculated from the interference pattern. Detailed calculation process is presented in the paper. (paper)

  9. High Reliability Cryogenic Piezoelectric Valve Actuator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  10. Cryogenic MEMS Technology for Sensing Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of cryogenic microwave components, such as focal plane polarization modulators, first requires an RF MEMS switching technology that operates...

  11. Ring Current Dynamics in Moderate and Strong Storms: Comparative Analysis of TWINS and IMAGE/HENA Data with the Comprehensive Ring Current Model

    Science.gov (United States)

    Buzulukova, N.; Fok, M.-C.; Goldstein, J.; Valek, P.; McComas, D. J.; Brandt, P. C.

    2010-01-01

    We present a comparative study of ring current dynamics during strong and moderate storms. The ring current during the strong storm is studied with IMAGE/HENA data near the solar cycle maximum in 2000. The ring current during the moderate storm is studied using energetic neutral atom (ENA) data from the Two Wide-Angle Imaging Neutral- Atom Spectrometers (TWINS) mission during the solar minimum in 2008. For both storms, the local time distributions of ENA emissions show signatures of postmidnight enhancement (PME) during the main phases. To model the ring current and ENA emissions, we use the Comprehensive Ring Current Model (CRCM). CRCM results show that the main-phase ring current pressure peaks in the premidnight-dusk sector, while the most intense CRCM-simulated ENA emissions show PME signatures. We analyze two factors to explain this difference: the dependence of charge-exchange cross section on energy and pitch angle distributions of ring current. We find that the IMF By effect (twisting of the convection pattern due to By) is not needed to form the PME. Additionally, the PME is more pronounced for the strong storm, although relative shielding and hence electric field skewing is well developed for both events.

  12. Aerogel Insulation to Support Cryogenic Technologies, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is seeking a high performance thermal insulation material for cryogenic applications in space launch development. Many of the components in cryogenic...

  13. Comparative study on current limiting characteristics of flux-lock type SFCL with series or parallel connection of two coils

    International Nuclear Information System (INIS)

    Lim, S.H.

    2008-01-01

    We investigated the current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL) with series or parallel connection of two coils. These two flux-lock type SFCLs with magnetically coupled two coils have the same operational principle that the fault current can be limited by the magnetic flux generated between two coils of the SFCL when a fault happens. In addition, the inductance ratio and the winding direction of two coils in both the SFCLs are the major design parameters that affect the fault current limiting characteristics of the SFCL. On the other hand, the operational current and the limiting impedance of both the SFCLs under the same design condition have the different tendency, which results from the different winding methods of two coils on an iron core. Therefore, the comparative study for both the SFCLs from the current limiting performance of the SFCL point of view is needed. To compare the current limiting characteristics of both the SFCLs, the operational current and the limiting impedance of the SFCL, which describes the performance of the SFCL, were derived from each SFCL's electrical equivalent circuit. Through the analysis for the fault current limiting experiments of both the SFCLs, the different current limiting characteristics of both the SFCLs were discussed

  14. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129.

    Directory of Open Access Journals (Sweden)

    Joseph S Six

    Full Text Available Hyperpolarized (hp (129Xe and hp (83Kr for magnetic resonance imaging (MRI are typically obtained through spin-exchange optical pumping (SEOP in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp (129Xe MRI cumbersome. For hp (83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For (129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized (129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm(3/min. For hp (83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm(3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D(1 transition was observed and taken into account for the qualitative description of the SEOP process.

  15. Study on ICT specification devices compared with needs and current technologies at Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohd Fauzi Haris; Raja Murzaferi Raja Moktar; Mohd Hafez Mohd Tahir

    2012-01-01

    In line with current development of ICT, Malaysian government has planned and introduced several initiatives based on ICT strategies. In Economic Transformation Programs, these matters were mentioned in Chapter 13 entitled Communication Content and Infrastructure. In order to make these plans successful, sustainability and preparedness of ICT are required. ICT devices were not focused only on computer but also others components that supported and increased the performance of computer itself. This paper discussed on data produced from study of current ICT needs in line with technology and in future hopefully it can support all the planning made by the government. (author)

  16. Longevity of cryogenically stored seeds.

    Science.gov (United States)

    Walters, Christina; Wheeler, Lana; Stanwood, Phillip C

    2004-06-01

    Though cryogenic storage is presumed to provide nearly infinite longevity to cells, the actual shelf life achieved under ultra-cold temperatures has not been addressed theoretically or empirically. Here, we report measurable changes in germination of dried seeds stored under liquid nitrogen conditions for >10 years. There was considerable variability in the extent of deterioration among species and accessions within a species. Aging time courses for lettuce seeds stored at temperatures between 50 and -196 degrees C were fit to a form of the Avrami equation to determine rate coefficients and predict half-life of accessions. A reduction in the temperature dependency on aging rate, determined as a break in the Arrhenius plot, occurred at about -15 degrees C, and this resulted in faster deterioration than anticipated from extrapolation of kinetics measured at higher temperatures. The break in Arrhenius behavior occurred at temperatures in between the glass transition temperature (28 degrees C) and the Kauzmann temperature (-42 degrees C) and also coincided with a major triacylglycerol phase change (-40 to -7 degrees C). In spite of the faster than anticipated deterioration, cryogenic storage clearly prolonged shelf life of lettuce seeds with half-lives projected as approximately 500 and approximately 3400 years for fresh lettuce seeds stored in the vapor and liquid phases of liquid nitrogen, respectively. The benefit of low temperature storage (-18 or -135 degrees C) on seed longevity was progressively lost if seeds were first stored at 5 degrees C. Collectively, these results demonstrate that lowering storage temperature progressively increases longevity of seeds. However, cryogenic temperatures were not sufficient to stop deterioration, especially if initial stages of aging were allowed to progress at higher storage temperatures. This work contributes to reliable assessments of the potential benefit and cost of different genebanking strategies.

  17. Cryogenic fluid management program flight concept definition

    Science.gov (United States)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  18. Low Mn alloy steel for cryogenic service

    Science.gov (United States)

    Morris, J.W. Jr.; Niikura, M.

    A ferritic cryogenic steel which has a relatively low (about 4 to 6%) manganese content and which has been made suitable for use at cryogenic temperatures by a thermal cycling treatment followed by a final tempering. The steel includes 4 to 6% manganese, 0.02 to 0.06% carbon, 0.1 to 0.4% molybdenum and 0 to 3% nickel.

  19. Zero Boil Off Cryogen Storage for Future Launchers

    Science.gov (United States)

    Valentian, D.; Plachta, D.; Kittel, P.; Hastings, L. J.; Salerno, Louis J.; Arnold, James O. (Technical Monitor)

    2001-01-01

    be to actively cool the shield in the hydrogen tank to reduce the parasitic losses. This would allow the use of less expensive, presently available coolers (80 K vs. 20 K) and potentially simplify the system by requiring only a single compressor on the pad amd a single disconnect line. The compressor could be a hefty commercial unit, with only the cold head requiring expensive flight development and qualification. While this is actually a reduced boil off configuration rather than a zero-boil off case, if the cryogen loss could be cut significantly, the increase in hold time and reduced need for draining and refilling the propellant tanks could meet the vehicle operations needs in the majority of instances.Bearing in mind the potential benefits of ZBO, NASA AMES and SNECMA Moteurs decided to exchange their technical views on the subject. This paper will present a preliminary analysis for a multi-mission module using a fairly low thrust cryogenic engine and ZBO during cruise. Initial mass is 5.5. tons (in ETO). The cryogenic engine will be used near each periapsis in order to minimize the AV requirement. The payload obtained by this propulsion system is compared to a classical storable bipropellant propulsion system for several cases (e. g. Mars lander, Jupiter orbiter, Saturn orbiter). For the Jupiter and Saturn cases, the power source could be an RTG or a large parabolic mirror illuminating a solar panel. It is shown -that - due to its much larger specific impulse - the cryogenic ZBO solution provides much higher payloads, especially for exploration missions involving landing on planets, asteroids, comets, or other celestial bodies.

  20. Self-Sealing Cryogenic Fitting

    Science.gov (United States)

    Jia, Lin Xiang; Chow, Wen Lung; Moslemian, Davood; Lin, Gary; Melton, Greg

    1994-01-01

    Self-sealing fitting for cryogenic tubes remains free of leakage from room temperature to liquid-helium temperature even at internal pressure as high as 2.7 MPa. Fitting comprises parts made of materials with different coefficients of thermal expansion to prevent leakage gaps from forming as temperature decreases. Consists of coupling nut, two flared tube ends, and flared O-ring spacer. Spacer contracts more than tube ends do as temperature decreases. This greater contraction seals tube ends more tightly, preventing leakage.

  1. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...... operated at 77 K is designed and implemented for C imaging at 3 T (32.13 MHz), using off-the-shelves components. The design is based on a high electron mobility transistor (ATF54143) in a common source configuration. Required auxiliary circuitry for optimal cryogenic preamplifier performance is also...... presented consisting of a voltage regulator (noise free supply voltage and optimal power consumption), switch, and trigger (for active detuning during transmission to protect the preamplifier). A gain of 18 dB with a noise temperature of 13.7 K is achieved. Performing imaging experiments in a 3 T scanner...

  2. Comparing childhood meal frequency to current meal frequency, routines, and expectations among parents.

    Science.gov (United States)

    Friend, Sarah; Fulkerson, Jayne A; Neumark-Sztainer, Dianne; Garwick, Ann; Flattum, Colleen Freeh; Draxten, Michelle

    2015-02-01

    Little is known about the continuation of family meals from childhood to parenthood. This study aims to examine associations between parents' report of eating family meals while growing up and their current family meal frequency, routines, and expectations. Baseline data were used from the Healthy Home Offerings via the Mealtime Environment (HOME) Plus study, a randomized controlled trial with a program to promote healthful behaviors and family meals at home. Participants (160 parent/child dyads) completed data collection in 2011-2012 in the Minneapolis/St. Paul, MN metropolitan area. Parents were predominately female (95%) and white (77%) with a mean age of 41.3 years. General linear modeling examined relationships between parents' report of how often they ate family meals while growing up and their current family meal frequency, routines, and expectations as parents, controlling for parent age, education level, and race. Parental report of eating frequent family meals while growing up was positively and significantly associated with age, education, and self-identification as white (all p meals less than three times/week or four to five times/week, parents who ate six to seven family meals/week while growing up reported significantly more frequent family meals with their current family (4.0, 4.2 vs. 5.3 family meals/week, p = .001). Eating frequent family meals while growing up was also significantly and positively associated with having current regular meal routines and meal expectations about family members eating together (both p meals with children may have long-term benefits over generations. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  3. Family meal traditions. Comparing reported childhood food habits to current food habits among university students.

    Science.gov (United States)

    De Backer, Charlotte J S

    2013-10-01

    The aim of this study is to investigate if reported childhood food habits predict the food habits of students at present. Questions addressed are: does the memory of childhood family meals promote commensality among students? Does the memory of (grand)parents' cooking influence students' cooking? And, is there still a gender difference in passing on everyday cooking skills? Using a cross-sectional survey, 104 students were asked about their current eating and cooking habits, and their eating habits and the cooking behavior of their (grand)parents during their childhood. Results show that frequencies in reported childhood family meals predict frequencies of students' commensality at present. The effects appear for breakfast and dinner, and stay within the same meal: recalled childhood family breakfasts predict current breakfast commensality, recalled childhood family dinners predict current dinner commensality. In terms of recalled cookery of (grand)parents and the use of family recipes a matrilineal dominance can be observed. Mothers are most influential, and maternal grandmothers outscore paternal grandmothers. Yet, fathers' childhood cooking did not pass unnoticed either. They seem to influence male students' cookery. Overall, in a life-stage of transgression students appear to maintain recalled childhood food rituals. Suggestions are discussed to further validate these results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Advances in Cryogenics at the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    1998-01-01

    After a decade of intensive R&D in the key technologies of high-field superconducting accelerator magnets and superfluid helium cryogenics, the Large Hadron Collider (LHC) has now fully entered its co nstruction phase, with the adjudication of major procurement contracts to industry. As concerns cryogenic engineering, this R&D program has resulted in significant developments in several fields, amon g which thermo-hydraulics of two-phase saturated superfluid helium, efficient cycles and machinery for large-capacity refrigeration at 1.8 K, insulation techniques for series-produced cryostats and mu lti-kilometre long distribution lines, large-current leads using high-temperature superconductors, industrial precision thermometry below 4 K, and novel control techniques applied to strongly non-line ar processes. We review the most salient advances in these domains.

  5. An analytical study of reusable flight-weight cryogenic propellant tank designs

    Science.gov (United States)

    Taylor, A. H.; Jackson, L. R.; Cerro, J. A.

    1984-01-01

    Thermostructural analyses of reusable flight-weight cryogenic tanks for a vertically launched space vehicle have been conducted. An analytical procedure was developed for sizing the tank structure, cryogenic insulation, and thermal protection system. Unstiffened, integrally-stiffened, and honeycomb core sandwich tank skins using aluminum or stainless steel materials were compared for their ability to meet design criteria at least weight. Cryogenic insulation systems were also evaluated, including closed-cell cryogenic foams and evacuated honeycomb core. The results indicate that a 400 F foam-insulated unstiffened-skin aluminum tank structure is the lightest structure for either LOX or LH2 tanks that meet the selected design criteria, but only two to four percent lighter than a stiffened aluminum tank.

  6. [Clinical study comparing the effectiveness and tolerance of 2 current and one new glibenclamide formulation].

    Science.gov (United States)

    Lingg, G; Haushofer, A

    1989-06-30

    In a clinical study efficacy and tolerance of Neogluconin (2.5 mg) a new galenical form of glibenclamide were compared with a conventional preparation (Euglucon 5). Neogluconin showed an improved absorption and comparable blood sugar levels at a dosage reduced by 25%. 25 outpatients suffering from Type II diabetes in a well balanced metabolic state and previously under Euglucon therapy for at least one year were changed to the new product. After 2 months of Neogluconin therapy blood sugar profiles, HbA1, C-peptide and cholesterin levels were unchanged in comparison to values determined during the previous Euglucon treatment. This confirms that Neogluconin produces a comparable favorable blood glucose lowering effect despite a 25% reduction in dosage.

  7. The cryogenic storage ring CSR

    Science.gov (United States)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  8. Greenhouse gas emission management in the US - current regional initiatives compared with international carbon trading programs

    International Nuclear Information System (INIS)

    Rink, A.G.; Law, S.

    2009-01-01

    In the United States (US) there are currently voluntary reporting programs (EPA Climate Leaders, Carbon Disclosure Project and The Climate Registry), organized market-based trading platforms (Chicago Climate Exchange and The Green Exchange) and proposed regional mandatory cap and trade programs in California, the Northeast, the West and the Midwest. The past success of the US Acid Rain 'cap-and-trade' system market-based format together with the availability of the European Union Emission Trading Scheme to serve as a template for future greenhouse gas regulations is promising as the US can participate in the world wide carbon markets already established. (author)

  9. Nerve Regeneration in vitro: Comparative Effects of Direct and Induced Current and NGF.

    Science.gov (United States)

    1985-11-26

    1OnA) DC (32nA) PEMIF-V CHICK DRG 10-11 Days in vitro Figure1 i Membrane Potential Recordings after Treatment with Direct Current or PEMF -V :fr the...dense than that obtained fram chick spinal cord; both responded to the two different electrical signals. Both DC and PEMF treatments produced a...13.8 PEMF 192 3 43 238 19.33 Chi-square- 2.09 (ns) 88 FIELDS AND NORMAL CHICK DEIVELOPMENT TABLE 3 Continuous Treatment for 7 Days using Signal B

  10. SiGe HBT cryogenic preamplification for higher bandwidth donor spin read-out

    Science.gov (United States)

    Curry, Matthew; Carr, Stephen; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2014-03-01

    Single-shot read-out of a donor spin can be performed using the response of a single-electron-transistor (SET). This technique can produce relatively large changes in current, on the order of 1 (nA), to distinguish between the spin states. Despite the relatively large signal, the read-out time resolution has been limited to approximately 100 (kHz) of bandwidth because of noise. Cryogenic pre-amplification has been shown to extend the response of certain detection circuits to shorter time resolution and thus higher bandwidth. We examine a SiGe HBT circuit configuration for cryogenic preamplification, which has potential advantages over commonly used HEMT configurations. Here we present 4 (K) measurements of a circuit consisting of a Silicon-SET inline with a Heterojunction-Bipolar-Transistor (HBT). We compare the measured bandwidth with and without the HBT inline and find that at higher frequencies the signal-to-noise-ratio (SNR) with the HBT inline exceeds the SNR without the HBT inline. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  11. National Ignition Facility Cryogenic Target Systems Interim Management Plan

    International Nuclear Information System (INIS)

    Warner, B

    2002-01-01

    Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety and Health (ES and H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for

  12. Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables

    Science.gov (United States)

    Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.

    2015-12-01

    This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.

  13. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    Science.gov (United States)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  14. Proposal for a cryogenic magnetic field measurement system for SSC dipole magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Hansen, L.

    1991-03-01

    This proposal describes the research and development required, and the subsequent fabrication of, a system capable of making integrated magnetic multipole measurements of cryogenic 40-mm-bore SSC dipole magnets utilizing a cryogenic probe. Our experience and some preliminary studies indicate that it is highly unlikely that a 16-meter-long probe can be fabricated that will have a twist below several milliradians at cryogenic temperatures. We would anticipate a twist of several milliradians just as a result of cooldown stresses. Consequently, this proposal describes a segmented 16-meter-long probe, for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system will be described. The duration of an integral measurement at one current is expected to be under 10 seconds. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1-meter models of SSC magnets with a cryogenic probe. It should be noted that the expansion of the dipole bore from 40 to 50 mm may make a warm-finger device practical at a cost of approximately one quarter of the cryogenic probe. A warm quadrupole measurement system can be based upon the same principles. 5 refs., 9 figs., 1 tab

  15. Comparative evaluation of anaerobic biodegradability of hydrocarbons and fatty derivatives currently used as drilling fluids.

    Science.gov (United States)

    Steber, J; Herold, C P; limia, J M

    1995-08-01

    The examination of a number of potential and currently used carrier fluids for invert emulsion drilling fluids in the ECETOC screening test revealed clear differences with respect to their easy anaerobic biodegradability. Fatty acid- and alcohol-based ester oils exhibited excellent anaerobic degradation to the gaseous final end products of the methanogenic degradation pathway, methane and carbon dioxide. Mineral oils, dialkyl ethers, alpha-olefins, polyalphaolefins, linear alkylbenzenes and an acetal-derivative were not or only slowly degraded. Although the poor degradation results obtained in the stringent ECETOC screening test may not be regarded as final proof of anaerobic recalcitrance, nevertheless, these results were found to be in line with the present understanding of the structural requirements for anaerobic biodegradability of chemicals. The validity of the conclusions drawn is corroborated by published results on the anaerobic biodegradation behaviour of ester oils, mineral oils and alkylbenzenes in marine sediments.

  16. Design and comparative study of vertical LEDs with graphene, ITO and Ni/Au as contact/current spreading layer

    Science.gov (United States)

    Singh, Sumitra; Mahala, Pramila; Pal, Suchandan

    2018-01-01

    This work evaluates the effect of graphene, indium tin oxide (ITO) and Ni/Au as contact/current spreading layer/current spreading layer for GaN vertical light emitting diodes (V-LEDs). In this simulation study, the effect of these contact/current spreading layers on different performance parameters of GaN V-LEDs has been studied. By using these three different types of contact/current spreading layers, we have comparatively studied the effect on light extraction efficiency (LEE), optical output power, wall plug efficiency and radiant intensity of V-LEDs. As per the simulation results, it shows that using graphene contact/current spreading layers, it is possible to achieve better performance than using ITO and Ni/Au contact/current spreading layers. For graphene/(Ni/Au) contact/current spreading layers, the LEE is improved by 36.77% whereas for ITO/(Ni/Au) contact/current spreading layers it is improved by 13.74%. Also, by using graphene/(Ni/Au) contact/current spreading layers, the optical output power of LEDs improved by 11.11% whereas for ITO/(Ni/Au) contact/current spreading layers shown 4.16% improvement. The radiant intensity is enhanced by 37.65% for graphene/(Ni/Au) contact/current spreading layers and 13.5% for ITO/(Ni/Au) contact/current spreading layers. In this report, we have given a detailed analysis of the obtained simulation results. The simulation was carried out in SimuLED tool.

  17. Throttling Cryogen Boiloff To Control Cryostat Temperature

    Science.gov (United States)

    Cunningham, Thomas

    2003-01-01

    An improved design has been proposed for a cryostat of a type that maintains a desired low temperature mainly through boiloff of a liquid cryogen (e.g., liquid nitrogen) at atmospheric pressure. (A cryostat that maintains a low temperature mainly through boiloff of a cryogen at atmospheric pressure is said to be of the pour/fill Dewar-flask type because its main component is a Dewar flask, the top of which is kept open to the atmosphere so that the liquid cryogen can boil at atmospheric pressure and cryogenic liquid can be added by simply pouring it in.) The major distinguishing feature of the proposed design is control of temperature and cooling rate through control of the flow of cryogen vapor from a heat exchanger. At a cost of a modest increase in complexity, a cryostat according to the proposal would retain most of the compactness of prior, simpler pour/fill Dewar-flask cryostats, but would utilize cryogen more efficiently (intervals between cryogen refills could be longer).

  18. Monocyte-mediated erythrocyte destruction. A comparative study of current methods

    International Nuclear Information System (INIS)

    Hunt, J.S.; Beck, M.L.; Wood, G.W.

    1981-01-01

    Three assay systems-EAIgG rosette formation, 51Cr release, and erythrophagocytosis-were used to quantitate interaction between antibody-coated human erythrocytes and normal blood monocytes. The three methods were compared in terms of time requirements and sensitivity. Erythrophagocytosis required more time to perform (2 hours) than did rosette tests (30 minutes) but less than minimum 51Cr release assays (5.5 hours). Erythrophagocytosis was 20-fold more sensitive than either of the other two procedures. Results obtained with purified IgG anti-D and with antibodies induced by transfusion or pregnancy were similar

  19. Minimizing Uncertainty in Cryogenic Surface Figure Measurement

    Science.gov (United States)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Robinson, F. David; Content, David; Davila, Pamela

    2005-01-01

    A new facility at the Goddard Space Flight Center is designed to measure with unusual accuracy the surface figure of mirrors at cryogenic temperatures down to 12 K. The facility is currently configured for spherical mirrors with a radius of curvature (ROC) of 600 mm, and apertures of about 150 mm or less. The goals of the current experiment were to 1) Obtain the best possible estimate of test mirror surface figure, S(x,y) at 87 K and 20 K; 2) Obtain the best estimate of the cryo-change, Delta (x,y): the change in surface figure between room temperature and the two cryo-temperatures; and 3) Determine the uncertainty of these measurements, using the definitions and guidelines of the ISO Guide to the Expression of Uncertainty in Measurement. A silicon mirror was tested, and the cry-change from room temperature to 20K was found to be 3.7 nm rms, with a standard uncertainty of 0.23 nm in the rms statistic. Both the cryo-change figure and the uncertainty are among the lowest such figures yet published. This report describes the facilities, experimental methods, and uncertainty analysis of the measurements.

  20. Past and Current Paths to European Union Accession: Romania and Turkey a Comparative Approach

    Directory of Open Access Journals (Sweden)

    Tatiana-Camelia Dogaru

    2015-05-01

    Full Text Available Several decades ago, leaders of six European countries with an inclusive vision of Europe and strong courage started a construction without precedent, the European Union. The remarkable construction evolved not only concerning the number of the Member States, but also in terms of institutional and functional development. Nowadays, the European Union is one of the most important changing factor concerning the governance and the policy-making process at European level and not only, and there is no doubt that the EU will continue to grow as an increasing number of countries express interest in membership. This paper reveals in a comparative perspective the path to European Union Accession, and is based on documentary analysis, using strategy-level documents of the countries and the Progress Reports the European Commission provided during the past enlargement.

  1. Summary of ISABELLE cryogenic systems workshop

    International Nuclear Information System (INIS)

    Brown, D.P.

    1976-05-01

    Twenty-four people participated in the ISABELLE Cryogenic System Workshop which was held on June 2 and 3, 1976. The magnet cooling system for ISABELLE, as described in the new proposal, utilizes supercritical helium as the refrigerant instead of pool-boiling helium as in earlier proposals. This new and more cost-effective system was described in detail with discussion of the design parameters for the refrigerator itself, turbomachinery required and the refrigerant distribution system. The testing and prototype development program for ISABELLE cryogenic system components was also reviewed. A small cryogenic turbocompressor/expander system is now on order for testing with an ISABELLE half-cell

  2. Implementation of comparative effectiveness research in personalized medicine applications in oncology: current and future perspectives

    Directory of Open Access Journals (Sweden)

    IJzerman MJ

    2015-11-01

    Full Text Available Maarten J IJzerman,1,3 Andrea Manca,2,3 Julia Keizer,1 Scott D Ramsey4 1Department of Health Technology and Services Research, University of Twente, Enschede, the Netherlands; 2Centre for Health Economics, University of York, York, UK; 3Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg, 4Fred Hutchinson Cancer Research Center, Seattle, WA, USAAbstract: Personalized medicine (PM or precision medicine has been defined as an innovative approach that takes into account individual differences in people's genes, environments, and lifestyles in prevention and treatment of disease. In PM, genomic information may contribute to the molecular understanding of disease, to optimize preventive health care strategies, and to fit the best drug therapies to the patient's individual characteristics. Evidence development in the era of genomic medicine is extremely challenging due to a number of factors. These include the rapid technological innovation in molecular diagnostics and targeted drug discoveries, and hence the large number of mutations and multiple ways these may influence treatment decisions. Although the evidence base for PM is evolving rapidly, the main question to be explored in this article is whether existing evidence is also fit for comparative effectiveness research (CER. As a starting point, this paper therefore reflects on the evidence required for CER and the evidence gaps preventing decisions on market access and coverage. The paper then discusses challenges and potential barriers for applying a CER paradigm to PM, identifies common methodologies for designing clinical trials in PM, discusses various approaches for analyzing clinical trials to infer from population to individual level, and presents an example of a clinical trial in PM (The RxPONDER TRIAL demonstrating good practice. The paper concludes with a future perspective, including modeling approaches for evidence synthesis.Keywords: personalized

  3. Review of comparative LCAs of food waste management systems – Current status and potential improvements

    International Nuclear Information System (INIS)

    Bernstad, A.; Cour Jansen, J. la

    2012-01-01

    Highlights: ► GHG-emissions from different treatment alternatives vary largely in 25 reviewed comparative LCAs of bio-waste management. ► System-boundary settings often vary largely in reviewed studies. ► Existing LCA guidelines give varying recommendations in relation to several key issues. - Abstract: Twenty-five comparative cycle assessments (LCAs) addressing food waste treatment were reviewed, including the treatment alternatives landfill, thermal treatment, compost (small and large scale) and anaerobic digestion. The global warming potential related to these treatment alternatives varies largely amongst the studies. Large differences in relation to setting of system boundaries, methodological choices and variations in used input data were seen between the studies. Also, a number of internal contradictions were identified, many times resulting in biased comparisons between alternatives. Thus, noticed differences in global warming potential are not found to be a result of actual differences in the environmental impacts from studied systems, but rather to differences in the performance of the study. A number of key issues with high impact on the overall global warming potential from different treatment alternatives for food waste were identified through the use of one-way sensitivity analyses in relation to a previously performed LCA of food waste management. Assumptions related to characteristics in treated waste, losses and emissions of carbon, nutrients and other compounds during the collection, storage and pretreatment, potential energy recovery through combustion, emissions from composting, emissions from storage and land use of bio-fertilizers and chemical fertilizers and eco-profiles of substituted goods were all identified as highly relevant for the outcomes of this type of comparisons. As the use of LCA in this area is likely to increase in coming years, it is highly relevant to establish more detailed guidelines within this field in order to

  4. A sub-Kelvin cryogen-free EPR system.

    Science.gov (United States)

    Melhuish, Simon J; Stott, Chloe; Ariciu, Ana-Maria; Martinis, Lorenzo; McCulloch, Mark; Piccirillo, Lucio; Collison, David; Tuna, Floriana; Winpenny, Richard

    2017-09-01

    We present an EPR instrument built for operation at Q band below 1K. Our cryogen-free Dewar integrates with a commercial electro-magnet and bridge. A description of the cryogenic and RF systems is given, along with the adaptations to the standard EPR experiment for operation at sub-Kelvin temperatures. As a first experiment, the EPR spectra of powdered Cr 12 O 9 (OH) 3 [Formula: see text] were measured. The sub-Kelvin EPR spectra agree well with predictions, and the performance of the sub-Kelvin system at 5K is compared to that of a commercial spectrometer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Application of risk-based inspection methods for cryogenic equipment

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Risk-based Inspection (RBI) is widely applied across the world as part of Pressure Equipment Integrity Management, especially in the oil and gas industry, to generally reduce costs compared with time-based approaches and assist in assigning resources to the most critical equipment. One of the challenges in RBI is to apply it for low temperature and cryogenic applications, as there are usually no degradation mechanisms by which to determine a suitable probability of failure in the overall risk assessment. However, the assumptions used for other degradation mechanisms can be adopted to determine, qualitatively and semi-quantitatively, a consequence of failure within the risk assessment. This can assist in providing a consistent basis for the assumptions used in ensuring adequate process safety barriers and determining suitable sizing of relief devices. This presentation will discuss risk-based inspection in the context of cryogenic safety, as well as present some of the considerations for the risk assessme...

  6. Progress Toward Innovations in Cryogenic Ion Cluster Spectrometers

    Science.gov (United States)

    Howdieshell, Casey J.; Garand, Etienne

    2017-06-01

    Cryogenic Ion Vibrational Spectroscopy (CIVS) is a useful technique that yields rich information about non-covalent interactions in various systems including catalytic complexes, small biologically relevant molecules, and solvent networks. Current instrumentation demands high production costs and large laboratory facilities. We have designed an affordable and compact instrument that is capable of current CIVS experiments. This setup utilizes an ion funnel and a Linear Trap Quadrupole (LTQ) which improves the ion density and allows for spectroscopic interrogation directly in the trap. Preliminary results and future innovations will be discussed.

  7. Cryogenic Milling of Titanium Powder

    Directory of Open Access Journals (Sweden)

    Jiří Kozlík

    2018-01-01

    Full Text Available Ti Grade 2 was prepared by cryogenic attritor milling in liquid nitrogen and liquid argon. Two types of milling balls were used—stainless steel balls and heavy tungsten carbide balls. The effect of processing parameters on particle size and morphology, contamination of powder and its microhardness was investigated. Milling in liquid nitrogen was not feasible due to excessive contamination by nitrogen. Minor reduction of particle size and significant alterations in particle morphology depended on type of milling balls and application of stearic acid as processing control agent. Heavily deformed ultra-fine grained (UFG internal microstructure of powder particles was observed by the method of “transmission Kikuchi diffraction”.

  8. [The fish community in the Términos lagoon: compared current structure].

    Science.gov (United States)

    Amado Ayala-Pérez, Luis; Ramos Miranda, Julia; Flores Hernández, Domingo

    2003-01-01

    The structure of the fish community in Terminos Lagoon, Campeche, is analyzed on the base the description of the abundance, distribution, length composition and identification of the dominant species. The results are discussed and compared with the published information. 437 trawl tows were made in 19 monthly collection in 23 sites between September 1997 to March 1999. A total of 25,588 individual with a total weight of 601.5 kg were grouped in 107 species, 76 gender and 37 families. The abundance of the fish community showed the following intervals in temporal scale: 0.395 to 0.895 ind/m2; 8.637 to 18.316 g/m2 and 18.358 to 34.837 g/ind. The Shannon index oscillated between 1.875 and 3.995 and 4.94 and 7.88 respectively. 18 dominant species were identified. The most important species by its numerical abundance and appearance frequency is Arius melanopus that represents to the 26.5% of the total catch followed by Diapterus rhombeus with 18.9%. As dominant species, Bairdiella chrysura, B. ronchus, Archosargus rhomboidalis, Eugerres plumieri, Cynoscion arenarius and Chaetodipterus faber, are fishing resources with local and regional value.

  9. Comparative environmental assessment of current and future electricity supply technologies for Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.; Dones, R.; Heck, T.; Hirschberg, S

    2007-07-01

    The environmental performance of a portfolio of eighteen technologies for electricity generation including renewable, fossil, and nuclear systems was analyzed for two reference years 2000 and 2030. The assessment covers large centralized and smaller decentralized power plants in Switzerland and few other European countries (for electricity imports). Evolutionary technology development was assumed between today and 2030. Full life cycle inventories were established for all energy chains, using 'ecoinvent' as the background inventory database. The average European electricity mix in 2030 was adapted using a business-as-usual scenario. The environmental assessment was part of a more comprehensive interdisciplinary sustainability evaluation using a multi-criteria decision analysis (MCDA) approach. Results from this evaluation for the environment area alone are herewith compared using Eco-indicator'99 as representative LCIA method as well as external cost assessment. In general the rankings from different aggregation methodologies converge when considering common indicators. However, putting different emphasis or weight on impact categories and individual indicators introduces variation in the ranking. Superior environmental performance of hydro power is ascertained by all approaches. Nuclear follows hydro as top performer based on Eco-indicator 99 (H, A) and external costs. Fossil systems score worst and biomass shows mostly worse performance than other renewables. (author)

  10. [COMPARATIVE EVALUATION OF CURRENT METHODS OF ANESTHESIA IN PERFORMANCE OF TRANSRECTAL PROSTATE BIOPSY].

    Science.gov (United States)

    Topuzov, M E; Pryalukhin, A E; Belogortsev, I O; Zubarev, V A; Vodop'yan, S S

    2015-01-01

    Prostate biopsy guided by transrectal ultrasonography (TRUS) is largely used in prostate cancer diagnostics. This procedure is usually quite painful and fear of pain could scare patients from this important research. The aim of the study was to compare methods of anesthesia for prostate biopsy. The patients were divided into 4 groups (40 patients in each group). TRUS-guided periprostatic anesthesia with 1% solution of lidocaine (10 ml) was carried out in the first group. An intrarectal introduction of 5 g EMLA cream (lidocaine 2,5% and prilocaine 2,5%) was applied in the second group. The intrarectal introduction of 10% lidocaine spray (3 doses) was used in the third group. Placebo as ultrasonic gel was utilized for the fourth group. The authors used the 100-score linear visual analog scale (LVS 1-100) and 5-score numeric visual scale (NVS-4). Minimal scores of pain were obtained in patients using TRUS-guided periprostatic anesthesia with 1% solution of lidocaine (10 ml). This type of anesthesia didn't lead to increase of the number of complications.

  11. Comparative environmental assessment of current and future electricity supply technologies for Switzerland

    International Nuclear Information System (INIS)

    Bauer, C.; Dones, R.; Heck, T.; Hirschberg, S.

    2007-01-01

    The environmental performance of a portfolio of eighteen technologies for electricity generation including renewable, fossil, and nuclear systems was analyzed for two reference years 2000 and 2030. The assessment covers large centralized and smaller decentralized power plants in Switzerland and few other European countries (for electricity imports). Evolutionary technology development was assumed between today and 2030. Full life cycle inventories were established for all energy chains, using 'ecoinvent' as the background inventory database. The average European electricity mix in 2030 was adapted using a business-as-usual scenario. The environmental assessment was part of a more comprehensive interdisciplinary sustainability evaluation using a multi-criteria decision analysis (MCDA) approach. Results from this evaluation for the environment area alone are herewith compared using Eco-indicator'99 as representative LCIA method as well as external cost assessment. In general the rankings from different aggregation methodologies converge when considering common indicators. However, putting different emphasis or weight on impact categories and individual indicators introduces variation in the ranking. Superior environmental performance of hydro power is ascertained by all approaches. Nuclear follows hydro as top performer based on Eco-indicator 99 (H, A) and external costs. Fossil systems score worst and biomass shows mostly worse performance than other renewables. (author)

  12. The oxycoal process with cryogenic oxygen supply

    Science.gov (United States)

    Kather, Alfons; Scheffknecht, Günter

    2009-09-01

    Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly

  13. Cryogenic flow rate measurement with a laser Doppler velocimetry standard

    Science.gov (United States)

    Maury, R.; Strzelecki, A.; Auclercq, C.; Lehot, Y.; Loubat, S.; Chevalier, J.; Ben Rayana, F.

    2018-03-01

    A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame-Exadebit is involved in various research and development programs. Within the framework of the first (2010-2013) and second (2014-2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame-Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame-Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).

  14. A comparative analysis of currently used microscopic and macroscopic traffic simulation software

    International Nuclear Information System (INIS)

    Ratrout Nedal T; Rahman Syed Masiur

    2009-01-01

    The significant advancements of information technology have contributed to increased development of traffic simulation models. These include microscopic models and broadening the areas of applications ranging from the modeling of specific components of the transportation system to a whole network having different kinds of intersections and links, even in a few cases combining travel demand models. This paper mainly reviews the features of traditionally used macroscopic and microscopic traffic simulation models along with a comparative analysis focusing on freeway operations, urban congested networks, project-level emission modeling, and variations in delay and capacity estimates. The models AIMSUN, CORSIM, and VISSIM are found to be suitable for congested arterials and freeways, and integrated networks of freeways and surface streets. The features of AIMSUN are favorable for creating large urban and regional networks. The models AIMSUN, PARAMICS, INTEGRATION, and CORSIM are potentially useful for Intelligent Transportation System (ITS). There are a few simulation models which are developed focusing on ITS such as MITSIMLab. The TRAF-family and HUTSIM models attempt a system-level simulation approach and develop open environments where several analysis models can be used interactively to solve traffic simulation problems. In Saudi Arabia, use of simulation software with the capability of analyzing an integrated system of freeways and surface streets has not been reported. Calibration and validation of simulation software either for freeways or surface streets has been reported. This paper suggests that researchers evaluate the state-of-the-art simulation tools and find out the suitable tools or approaches for the local conditions of Saudi Arabia. (author)

  15. COMPARATIVE EFFICIENCY AND TOLERABILITY OF CURRENT THERAPIES FOR EARLY RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    E. V. Fedorenko

    2015-01-01

    Full Text Available Objective: to compare the efficiency and safety of four treatment regimens using methotrexate (MT,  leflunomide (LEF,  and a combination  of MT and glucocorticoids  (GC  for early rheumatoid  arthritis (RA (disease duration <2 years.Subjects and methods. 141 patients with early RA (of them there were 122 women; mean age 51 years; mean disease duration  7.8 months;  mean DAS28 6.0 were randomized  to 4 treatment groups: 1 MT 10–20 mg/week (n = 35; 2 MT 10–20 mg/week + oral GC equivalent to 10 mg/day of prednisolone  (n = 34; 3 MT 10–20 mg/week + oral CG + single intravenous administration of methylprednisolone (MP 1000 mg at baseline (n = 35; 4 LEF 20 mg/day (n = 37. The patients were matched for main clinical and demographic  characteristics. The duration of treatment was 1 year. Its efficiency was evaluated according to the European  League Against Rheumatism (EULAR  criteria.Results. 125 patients completed one-year treatment. At this time, 11.4% of the patients achieved remission (DAS28 <2.6 in the MT group, 37.5% in the MT+GC group, 29.4% in the MT+GC+MP group, and 16.2% in the LEF group. Adverse events, mainly of mild intensity, were recorded in 9 patients in each MT group. A total of 7 patients had to discontinue treatment because of its inefficiency.Conclusion. All the four therapy regimens demonstrated a significant efficiency in patients with early RA; the total remission rate was 24%. The combination  of MT and GC produced the most pronounced effect. The tolerability of treatment was good in all groups.

  16. A Cryogenic Flow Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the success of the phase I effort, Advanced Technologies Group, Inc. proposes the development of a Cryogenic Flow Sensor (CFS) for determining mass flow of...

  17. Cryogenic Safety Rules and Guidelines at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    CERN defines and implements a Safety Policy that sets out the general principles governing safety at CERN. As an intergovernmental organisation, CERN further establishes its own Safety Rules as necessary for its proper functioning. In this process, it takes into account the laws and regulation of the Host States (France and Switzerland), EU regulations and directives, as well as international regulations, standards and directives. For the safety of cryogenic equipment, this is primarily covered by the Safety Regulation for Mechanical Equipment and the General Safety Instruction for Cryogenic Equipment. In addition, CERN has also developed Safety Guidelines to support the implementation of these safety rules, covering cryogenic equipment and oxygen deficiency hazard assessment and mitigation. An overview of the cryogenic safety rules and these safety guidelines will be presented.

  18. Cryogenic Insulation Standard Data and Methodologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of...

  19. Cryogenic MEMS Pressure Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A directly immersible cryogenic MEMS pressure sensor will be developed. Each silicon die will contain a vacuum-reference and a tent-like membrane. Offsetting thermal...

  20. Advanced Insulation Techniques for Cryogenic Tanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to store large amounts of cryogenic fluids for long durations has a profound effect on the success of many future space programs using these fluids for...

  1. Temperature Stratification in a Cryogenic Fuel Tank

    Data.gov (United States)

    National Aeronautics and Space Administration — A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It...

  2. A simple low-cost cryogenic controller

    International Nuclear Information System (INIS)

    Mitchell, I.V.; Bartram, C.P.

    1977-01-01

    A simple, inexpensive cryogenic temperature controller is described. Temperatures from 78 K to 300 K are maintained to 0.1 K. A novel feature, using a power transistor for the heating element, is discussed. (Auth.)

  3. Cryogenic Propellant Storage and Handling Efficiency Improvement

    Data.gov (United States)

    National Aeronautics and Space Administration — Stennis Space Center (SSC) is NASA’s top annual consumer of cryogenic propellants. Improvements in ground propellant system operations at SSC require having the...

  4. Cryogenic Cycling Behavior of Polymeric Composite Materials

    National Research Council Canada - National Science Library

    Seferis, James

    2002-01-01

    The basis of this research was an exploration of the fundamental phenomena that determine the response of fiber-reinforced composite materials to thermal cycling between cryogenic and ambient temperatures...

  5. Lightweight Inflatable Cryogenic Tank, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of an inflatable and lightweight polymer-fabric structured pressure vessel designed for the containment of cryogenic fluids....

  6. Commercially Available Capacitors at Cryogenic Temperatures

    OpenAIRE

    Teyssandier, F.; Prêle, D.

    2010-01-01

    Commercially available capacitors are not specified for operation at 77 K or 4 K, and some devices showed a dramatic decrease of capacitance at cryogenic temperature. Furthermore, for voltage biasing of cryogenic low impedance sensors it is very important to know parasitic resistance. In this case, the parasitic Equivalent Series Resistance (ESR) of the capacitor used for the AC-biasing is a bottleneck of the voltage biasing. Involved in TES development and SQUID multiplexing, we have charact...

  7. Modified Apollo cryogenic oxygen tank design

    Science.gov (United States)

    Vanleuven, K.

    1971-01-01

    Assessment of the Apollo 13 mission indicated that some design changes to be incorporated into Apollo cryogenic oxygen storage tanks. These changes broadly fit into three categories. They were: (1) deletion of the fluid equilibration motors and redesign of heater assembly, (2) material changes for internal tank wiring and density sensor, and (3) the addition of a heater assembly temperature sensor. Development of a cryogenic oxygen tank incorporating these changes is presented.

  8. Sensitivity of Inferred Electron Temperature from X-ray Emission of NIF Cryogenic DT Implosions

    Energy Technology Data Exchange (ETDEWEB)

    Klem, Michael [Univ. of Dallas, Irving, TX (United States)

    2015-05-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory seeks to achieve thermonuclear ignition through inertial confinement fusion. The accurate assessment of the performance of each implosion experiment is a crucial step. Here we report on work to derive a reliable electron temperature for the cryogenic deuteriumtritium implosions completed on the NIF using the xray signal from the Ross filter diagnostic. These Xrays are dominated by bremsstrahlung emission. By fitting the xray signal measured through each of the individual Ross filters, the source bremsstrahlung spectrum can be inferred, and an electron temperature of the implosion hot spot inferred. Currently, each filter is weighted equally in this analysis. We present work quantifying the errors with such a technique and the results from investigating the contribution of each filter to the overall accuracy of the temperature inference. Using this research, we also compare the inferred electron temperature against other measured implosion quantities to develop a more complete understanding of the hotspot physics.

  9. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, huge detectors and accelerators. With the termination of the LHC, CERN will in fact become the world’s largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. Monday 5.12.2005 Introduction: From History to Modern Refrigeration Cycles (Goran Perinic) Tuesday 6.12.2005 Refrigerants, Standard Cryostats, Cryogenic Des...

  10. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. From history to modern refrigeration cycles (1/5) Refrigerants, standard cryostats, cryogenic design (2/5) Heat transfer and insulation (3/5) Safety in cryoge...

  11. Spray-on foam insulations for launch vehicle cryogenic tanks

    Science.gov (United States)

    Fesmire, J. E.; Coffman, B. E.; Meneghelli, B. J.; Heckle, K. W.

    2012-04-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex array of many variables starting with the large temperature difference of 200-260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the different

  12. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  13. Cryogenic controls for the TESLA test facility

    Science.gov (United States)

    Clausen, M.; Gerke, Chr.; Knopf, U.; Rettig, S.; Schoeneburg, B.

    1994-12-01

    The TESLA Test Facility (TTF) is designed to perform intensive testing of the superconducting cavities foreseen for the next generation of linear colliders. The cryogenic system is one part of this facility. The controls for this system will initially use the existing software and hardware to be able to cool down the first cavities fabricated in the TTF workshop. Later the control system will be modified to meet the current standards in process and accelerator controls. The hardware will be changed to use the VME system as the major platform. The operating system and the communication will be based on de-facto standards such as UNIX for the workstations and the front-end computers and TCP/IP for network communication. The application software (EPICS) will be part of a collaboration with several other institutes. The final goal is to port all the software to the POSIX standard and to use Object-Oriented tools wherever possible. The first part of this paper describes the migration from the existing control system to the future design. Special decisions on hardware and software solutions are highlighted. Nonproprietary field busses for remote process I/O are becoming usual for slow control. A suitable bus for our future basic I/O system had to be selected. Finally a new temperature monitor module working on the CAN-bus and its measurement procedure will be explained.

  14. Study of the effectiveness of interferential current as compared to transcutaneous electrical nerve stimulation in reducing chronic low back pain

    OpenAIRE

    Dohnert,Marcelo Baptista; Bauer,Jordana Peres; Pavão,Tiago Sebastiá

    2015-01-01

    BACKGROUND AND OBJECTIVES: Chronic low back pain has an incidence of 70% in general population and induces significant limitations. As treatment, physiotherapy stands out with a wide variety of techniques among them, for pain relief, electrotherapy is a useful tool. This study aimed at comparing the analgesic effects of transcutaneous electrical nerve stimulation and interferential current in patients with chronic low back pain. METHODS: Randomized clinical trial carried out between August 20...

  15. Future cryogenic switchgear technologies for superconducting power systems

    Science.gov (United States)

    Xu, C.; Saluja, R.; Damle, T.; Graber, L.

    2017-12-01

    This paper introduces cryogenic switchgear that is needed for protection and control purposes in future multi-terminal superconducting power systems. Implementation of cryogenic switchgear is expected to improve system reliability and minimize overall volume and weight, but such switchgear is not available yet. Design of cryogenic switchgear begins by referring to conventional circuit breakers, a brief review of state-of-the-art switchgear technologies is presented. Then, promising cryogenic interruption media are identified and analysed with respect to physical and dielectric properties. Finally, we propose several cryogenic circuit breaker designs for potential aerospace, marine and terrestrial applications. Actuation mechanism for cryogenic switchgear is also investigated.

  16. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    Science.gov (United States)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  17. Internship at NASA Kennedy Space Center's Cryogenic Test laboratory

    Science.gov (United States)

    Holland, Katherine

    2013-01-01

    NASA's Kennedy Space Center (KSC) is known for hosting all of the United States manned rocket launches as well as many unmanned launches at low inclinations. Even though the Space Shuttle recently retired, they are continuing to support unmanned launches and modifying manned launch facilities. Before a rocket can be launched, it has to go through months of preparation, called processing. Pieces of a rocket and its payload may come in from anywhere in the nation or even the world. The facilities all around the center help integrate the rocket and prepare it for launch. As NASA prepares for the Space Launch System, a rocket designed to take astronauts beyond Low Earth Orbit throughout the solar system, technology development is crucial for enhancing launch capabilities at the KSC. The Cryogenics Test Laboratory at Kennedy Space Center greatly contributes to cryogenic research and technology development. The engineers and technicians that work there come up with new ways to efficiently store and transfer liquid cryogens. NASA has a great need for this research and technology development as it deals with cryogenic liquid hydrogen and liquid oxygen for rocket fuel, as well as long term space flight applications. Additionally, in this new era of space exploration, the Cryogenics Test Laboratory works with the commercial sector. One technology development project is the Liquid Hydrogen (LH2) Ground Operations Demonstration Unit (GODU). LH2 GODU intends to demonstrate increased efficiency in storing and transferring liquid hydrogen during processing, loading, launch and spaceflight of a spacecraft. During the Shuttle Program, only 55% of hydrogen purchased was used by the Space Shuttle Main Engines. GODU's goal is to demonstrate that this percentage can be increased to 75%. Figure 2 shows the GODU layout when I concluded my internship. The site will include a 33,000 gallon hydrogen tank (shown in cyan) with a heat exchanger inside the hydrogen tank attached to a

  18. Ion Acceleration by Laser Plasma Interaction from Cryogenic Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Propp, Adrienne [Harvard Univ., Cambridge, MA (United States)

    2015-08-16

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high-power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. However, this mechanism is not ideal for creating the high-energy proton beams needed for future applications. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for exploring new regimes of ion acceleration. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we achieved a pure proton beam with evidence of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic

  19. Device for delivering cryogen to rotary super-conducting winding of cryogen-cooled electrical machine

    International Nuclear Information System (INIS)

    Filippov, I.F.; Gorbunov, G.S.; Khutoretsky, G.M.; Popov, J.S.; Skachkov, J.V.; Vinokurov, A.A.

    1980-01-01

    A device is disclosed for delivering cryogen to a superconducting winding of a cryogen-cooled electrical machine comprising a pipe articulated along the axis of the electrical machine and intended to deliver cryogen. One end of said pipe is located in a rotary chamber which communicates through channels with the space of the electrical machine, and said space accommodating its superconducting winding. The said chamber accommodates a needle installed along the chamber axis, and the length of said needle is of sufficient length such that in the advanced position of said cryogen delivering pipe said needle reaches the end of the pipe. The layout of the electrical machine increases the reliability and effectiveness of the device for delivering cryogen to the superconducting winding, simplifies the design of the device and raises the efficiency of the electrical machine

  20. Bone density loss on computed tomography at 3-year follow-up in current compared to former male smokers

    International Nuclear Information System (INIS)

    Pompe, E.; Bartstra, J.; Verhaar, H.J.; Koning, H.J. de; Aalst, C.M. van der; Oudkerk, M.; Vliegenthart, R.; Lammers, J.-W.J.; Jong, P.A. de; Mohamed Hoesein, F.A.A.

    2017-01-01

    Objectives: Cigarette smoking negatively affects bone quality and increases fracture risk. Little is known on the effect of smoking cessation and computed tomography (CT)-derived bone mineral density (BMD) decline in the spine. We evaluated the association of current and former smoking with BMD decline after 3-year follow-up. Methods: Male current and former smokers participating in a lung cancer screening trial who underwent baseline and 3-year follow-up CT were included. BMD was measured by manual placement of a region of interest in the first lumbar vertebra and expressed in Hounsfield Unit (HU). Multiple linear regression analysis was used to evaluate the association between pack years smoked and smoking status with BMD decline. Results: 408 participants were included with median (25th–75th percentile) age of 59.4 (55.9–63.5) years. At the start of the study, 197 (48.3%) participants were current smokers and 211 (51.7%) were former smokers and had a similar amount of pack years. Current smokers had quit smoking for 6 (4–8) years prior to inclusion. There was no difference in BMD between current and former smokers at baseline (109 ± 34 HU vs. 108 ± 32 HU, p = 0.96). At 3-year follow-up, current smokers had a mean BMD decline of −3 ± 13 HU (p = 0.001), while BMD in former smokers did not change as compared to baseline (1 ± 13 HU, p = 0.34). After adjustment for BMD at baseline and body mass index, current smoking was independently associated with BMD decline (−3.8 HU, p = 0.003). Age, pack years, and the presence of a fracture at baseline did not associate with BMD decline. Conclusions: Current smokers showed a more rapid BMD decline over a 3-year period compared to former smokers. This information might be important to identify subjects at risk for osteoporosis and emphasizes the importance of smoking cessation in light of BMD decline.

  1. Bone density loss on computed tomography at 3-year follow-up in current compared to former male smokers

    Energy Technology Data Exchange (ETDEWEB)

    Pompe, E., E-mail: e.pompe@umcutrecht.nl [Department of Pulmonology, University Medical Center Utrecht, Utrecht (Netherlands); Bartstra, J. [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands); Verhaar, H.J. [Department of Geriatric Medicine, University Medical Center Utrecht, Utrecht (Netherlands); Koning, H.J. de; Aalst, C.M. van der [Department of Public Health, Erasmus MC − University Medical Center Rotterdam, Rotterdam (Netherlands); Oudkerk, M. [University of Groningen, University Medical Center Groningen, Groningen, Department of Radiology (Netherlands); Vliegenthart, R. [University of Groningen, University Medical Center Groningen, Groningen, Department of Radiology (Netherlands); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Groningen (Netherlands); Lammers, J.-W.J. [Department of Pulmonology, University Medical Center Utrecht, Utrecht (Netherlands); Jong, P.A. de; Mohamed Hoesein, F.A.A. [Department of Radiology, University Medical Center Utrecht, Utrecht (Netherlands)

    2017-04-15

    Objectives: Cigarette smoking negatively affects bone quality and increases fracture risk. Little is known on the effect of smoking cessation and computed tomography (CT)-derived bone mineral density (BMD) decline in the spine. We evaluated the association of current and former smoking with BMD decline after 3-year follow-up. Methods: Male current and former smokers participating in a lung cancer screening trial who underwent baseline and 3-year follow-up CT were included. BMD was measured by manual placement of a region of interest in the first lumbar vertebra and expressed in Hounsfield Unit (HU). Multiple linear regression analysis was used to evaluate the association between pack years smoked and smoking status with BMD decline. Results: 408 participants were included with median (25th–75th percentile) age of 59.4 (55.9–63.5) years. At the start of the study, 197 (48.3%) participants were current smokers and 211 (51.7%) were former smokers and had a similar amount of pack years. Current smokers had quit smoking for 6 (4–8) years prior to inclusion. There was no difference in BMD between current and former smokers at baseline (109 ± 34 HU vs. 108 ± 32 HU, p = 0.96). At 3-year follow-up, current smokers had a mean BMD decline of −3 ± 13 HU (p = 0.001), while BMD in former smokers did not change as compared to baseline (1 ± 13 HU, p = 0.34). After adjustment for BMD at baseline and body mass index, current smoking was independently associated with BMD decline (−3.8 HU, p = 0.003). Age, pack years, and the presence of a fracture at baseline did not associate with BMD decline. Conclusions: Current smokers showed a more rapid BMD decline over a 3-year period compared to former smokers. This information might be important to identify subjects at risk for osteoporosis and emphasizes the importance of smoking cessation in light of BMD decline.

  2. Vegetable and Fruit Intakes of On-Reserve First Nations Schoolchildren Compared to Canadian Averages and Current Recommendations

    Directory of Open Access Journals (Sweden)

    Ian D. Martin

    2012-04-01

    Full Text Available This study investigated, in on-reserve First Nations (FN youth in Ontario, Canada, the following: (a the intakes of vegetable and fruit, “other” foods and relevant nutrients as compared to current recommendations and national averages, (b current prevalence rates of overweight and obesity and (c the relationship between latitude and dietary intakes. Twenty-four-hour diet recalls were collected via the Waterloo Web-Based Eating Behaviour Questionnaire (WEB-Q (n = 443. Heights and weights of participants were self reported using measured values and Body Mass Index was categorized using the International Obesity Task Force cutoffs. Food group and nutrient intakes were compared to current standards, Southern Ontario Food Behaviour data and the Canadian Community Health Survey, Cycle 2.2, using descriptive statistics. Mean vegetable and fruit, fibre and folate intakes were less than current recommendations. Girls aged 14–18 years had mean intakes of vitamin A below current recommendations for this sub-group; for all sub-groups, mean intakes of vegetables and fruit were below Canadian averages. All sub-groups also had intakes of all nutrients and food groups investigated that were less than those observed in non-FN youth from Southern Ontario, with the exception of “other” foods in boys 12–18 years. Prevalence rates of overweight and obesity were 31.8% and 19.6%, respectively, exceeding rates in the general population. Dietary intakes did not vary consistently by latitude (n = 248, as revealed by ANOVA. This study provided a unique investigation of the dietary intakes of on-reserve FN youth in Ontario and revealed poor intakes of vegetables and fruit and related nutrients and high intakes of “other” foods. Prevalence rates of overweight and obesity exceed those of the general population.

  3. Cryogenic helium gas convection research

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1994-10-01

    This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so

  4. Cryogenic Deflashing for Rubber Products

    Directory of Open Access Journals (Sweden)

    Abhilash M.

    2018-01-01

    Full Text Available Deflashing is the process of removal of excess flashes from the rubber products. Initially deflashing was a manual operation where dozen of workers, seated at small work stations would take each part and trim the excess rubber off with scissors, knives or by grinding. Still the same method is employed in most of the rubber industry. The drawbacks of this method are demand inconsistent and repeatable quality. Work done by hand is often inconsistent. There are commercially available cryogenic deflashing machine but they are too expensive hence cost effectiveness is also a prime factor. The objective of this paper is to develop a technique, to identify the media through which the flashes can be removed easily and effectively. Based on the test results obtained from testing of five different types of media, ABCUT Steel media gave best results. The testing of the ABCUT Steel media on rubber samples like O-rings, grommet tail door, bottom bush etc. shows good results.

  5. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  6. Mass Driver Two - Cryogenic module

    Science.gov (United States)

    Fine, K.; Williams, F.; Mongeau, P.; Kolm, H.

    1979-01-01

    The cryogenic module of Mass Driver Two comprises a 3.25 inch (82.55 mm) OD bucket with two 44 kilo-ampere-turn coils made with .028 inch (.71 mm) diam niobium-titanium multi-filamentary cable in a copper matrix, impregnated with lead alloy for thermal inertia, as well as the service station to refrigerate, energize and eject the bucket. The station is housed in a six inch flanged pyrex cross which connects to the four inch pyrex tube of the mass driver itself. The bucket is refrigerated by being forced against a copper braid cradle attached to the bottom of a liquid helium reservoir which protrudes into the cross from above. The bucket is energized inductively by turning off two superconducting coils which are also attached to the helium reservoir, and which have maintained the correct flux linkage through the bucket coils during their cool-down through the critical temperature. Once charging is completed, the clamping pressure is released and the bucket is injected into the mass driver by means of two normal-conductor pulse coils surrounding the horizontal branches of the cross.

  7. A Mueller bridge set for cryogenic temperature measurements

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1966-01-01

    An a.c. Mueller bridge set for resistance thermometry at cryogenic temperature is described. A commercial tuned null detector is used at an operating frequency of 1025 c/s. The set includes a high stability oscillator, line reject filter, phase shifter, Q multiplier and selector box. The latter...... permits the dissipation in the thermometers not being measured to be maintained at the operating level with direct current. A temperature change of the order of 10 μdegK can be detected with 10-8 W applied to the thermometer....

  8. Thermodynamic and transport properties of cryogenic propellants and related fluids

    Science.gov (United States)

    Johnson, V. J.

    1973-01-01

    Significant advances have been made in recent years in the quality and range of thermophysical data for the cryogenic propellants, pressurants, and inertants. A review of recently completed and current data compilation projects for helium, hydrogen, argon, nitrogen, oxygen, fluorine, and methane is given together with recommended references for thermodynamic and transport property data tables for these fluids. Modern techniques in the plotting of thermodynamic charts from tabular data (or from functions such as the equation of state) have greatly improved their precision and value. A list of such charts is included.

  9. Ring to measure magnetic permeability at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    While for magn. permeability measurements at room temperature a split-coil permeameter is used (see photo 7708553X), for measurements at cryogenic temperatures the excitation and the flux-measuring coils are wound directly on the ring sample by means of a toroidal winding machine. The ring in the picture was made to select the mild steel for the ISR Prototype Superconducting Quadrupole(see photo 7702690X). The excitation coil was wound with 1 mm diam. copper wire and had about 2730 turns. For measurements at 4.2 K a max. current of 90 A was used. See also photos 7708553X,7708100,7708103.

  10. Cryogenic radiometry in the hard X-ray range

    International Nuclear Information System (INIS)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Muller, P.; Rabus, H.; Ulm, G.

    2008-01-01

    For many applications in radiometry, spectroscopy or astrophysics, absolute measurement of radiant power with low uncertainty is essential. Cryogenic electrical substitution radiometers (ESRs) are regarded as the highest-accuracy primary standard detector in radiometry, from the infrared to the ultraviolet region; in combination with tuneable monochromatized synchrotron radiation from electron storage rings, their range of operation has been extended to the soft x-ray region. ESRs are absolute thermal detectors, based on the equivalence of electrical power and radiant power that can be traced back to electrical SI units and be measured with low uncertainties. Their core piece is a cavity absorber, which is typically made of copper to achieve a short response time suitable for use with synchrotron radiation. At higher photon energies, the use of copper prevents the operation of ESRs due to increasing transmittance. A new absorber design for hard x-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II. The Monte Carlo simulation code Geant4 was applied to optimize its absorptance for photon energies of up to 60 keV, resulting in a cavity absorber with a gold base and a cylindrical shell made of copper, in combination with a thermal sensitivity of around 150 mK μW -1 and a time constant of less than 3 min, which is short compared with the lifetime of many hours for the storage ring current. The measurement of the radiant power of monochromatized synchrotron radiation was achieved with relative standard uncertainties of less than 0.2%, covering the entire photon energy range of three beamlines from 50 eV to 60 keV. Monochromatized synchrotron radiation of high spectral purity was used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative standard uncertainties below 0.3%. (authors)

  11. Cryogenic radiometry in the hard X-ray range

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Muller, P.; Rabus, H.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Berlin (Germany)

    2008-10-15

    For many applications in radiometry, spectroscopy or astrophysics, absolute measurement of radiant power with low uncertainty is essential. Cryogenic electrical substitution radiometers (ESRs) are regarded as the highest-accuracy primary standard detector in radiometry, from the infrared to the ultraviolet region; in combination with tuneable monochromatized synchrotron radiation from electron storage rings, their range of operation has been extended to the soft x-ray region. ESRs are absolute thermal detectors, based on the equivalence of electrical power and radiant power that can be traced back to electrical SI units and be measured with low uncertainties. Their core piece is a cavity absorber, which is typically made of copper to achieve a short response time suitable for use with synchrotron radiation. At higher photon energies, the use of copper prevents the operation of ESRs due to increasing transmittance. A new absorber design for hard x-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II. The Monte Carlo simulation code Geant4 was applied to optimize its absorptance for photon energies of up to 60 keV, resulting in a cavity absorber with a gold base and a cylindrical shell made of copper, in combination with a thermal sensitivity of around 150 mK {mu}W{sup -1} and a time constant of less than 3 min, which is short compared with the lifetime of many hours for the storage ring current. The measurement of the radiant power of monochromatized synchrotron radiation was achieved with relative standard uncertainties of less than 0.2%, covering the entire photon energy range of three beamlines from 50 eV to 60 keV. Monochromatized synchrotron radiation of high spectral purity was used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative standard uncertainties below 0.3%. (authors)

  12. Cryogenic radiometry in the hard x-ray range

    Science.gov (United States)

    Gerlach, M.; Krumrey, M.; Cibik, L.; Müller, P.; Rabus, H.; Ulm, G.

    2008-10-01

    For many applications in radiometry, spectroscopy or astrophysics, absolute measurement of radiant power with low uncertainty is essential. Cryogenic electrical substitution radiometers (ESRs) are regarded as the highest-accuracy primary standard detector in radiometry, from the infrared to the ultraviolet region; in combination with tuneable monochromatized synchrotron radiation from electron storage rings, their range of operation has been extended to the soft x-ray region. ESRs are absolute thermal detectors, based on the equivalence of electrical power and radiant power that can be traced back to electrical SI units and be measured with low uncertainties. Their core piece is a cavity absorber, which is typically made of copper to achieve a short response time suitable for use with synchrotron radiation. At higher photon energies, the use of copper prevents the operation of ESRs due to increasing transmittance. A new absorber design for hard x-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II. The Monte Carlo simulation code Geant4 was applied to optimize its absorptance for photon energies of up to 60 keV, resulting in a cavity absorber with a gold base and a cylindrical shell made of copper, in combination with a thermal sensitivity of around 150 mK µW-1 and a time constant of less than 3 min, which is short compared with the lifetime of many hours for the storage ring current. The measurement of the radiant power of monochromatized synchrotron radiation was achieved with relative standard uncertainties of less than 0.2%, covering the entire photon energy range of three beamlines from 50 eV to 60 keV. Monochromatized synchrotron radiation of high spectral purity was used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative standard uncertainties below 0.3%.

  13. Fastener load tests and retention systems tests for cryogenic wind-tunnel models

    Science.gov (United States)

    Wallace, J. W.

    1984-01-01

    A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.

  14. Operational present status and reliability analysis of the upgraded EAST cryogenic system

    Science.gov (United States)

    Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.

    2017-12-01

    Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.

  15. Modified-Collins cryocooler for zero-boiloff storage of cryogenic fuels in space

    Science.gov (United States)

    Hannon, Charles L.; Krass, Brady; Hogan, Jake; Brisson, John

    2012-06-01

    Future lunar and planetary explorations will require the storage of cryogenic propellants, particularly liquid oxygen (LOX) and liquid hydrogen (LH2), in low earth orbit (LEO) for periods of time ranging from days to months, and possibly longer. Without careful thermal management, significant quantities of stored liquid cryogens can be lost due to boil-off. Boil-off can be minimized by a variety of passive means including insulation, sun shades and passive radiational cooling. However, it has been shown that active cooling using space cryocoolers has the potential to result in Zero Boil-Off (ZBO) and the launch-mass savings using active cooling exceeds that of passive cooling of LOX for mission durations in LEO of less than 1 week, and for LH2 after about 2 months in LEO. Large-scale DC-flow cryogenic refrigeration systems operate at a fraction of the specific power levels required by small-scale AC-flow cryocoolers. The efficiency advantage of DC-flow cryogenic cycles motivates the current development of a cryocooler based on a modification of the Collins Cycle. The modified Collins cycle design employs piston type expanders that support high operating pressure ratios, electromagnetic valves that enable "floating pistons", and recuperative heat transfer. This paper will describe the design of a prototype Modified-Collins cryocooler for ZBO storage of cryogenic fuels in space.

  16. Towards the invisible cryogenic system for Magnetic Resonance Imaging

    Science.gov (United States)

    Steinmeyer, F.; Retz, P. W.; White, K.; Lang, A.; Stautner, W.; Smith, P. N.; Gilgrass, G.

    2002-05-01

    With about 10,000 Magnetic Resonance Imaging (MRI) systems installed worldwide, helium cooled magnets have become familiar equipment in hospitals and imaging centers. Patients and operators are only aware of the hissing sound of the Gifford-MacMahon refrigerator. Service technicians, however, still work with cryogenic fluids and cold gases, e.g. for replenishing the helium reservoir, inserting retractable current leads for magnet ramps, or replacing burst disks after a magnet quench. We will describe the steps taken at Oxford Magnet Technology towards the ultimate goal of a superconducting magnet being as simple as a household fridge. Early steps included the development of resealing quench valves, as well as permanently installed transfer siphons that only open when fully cooled to 4K. On recently launched 1.5 Tesla solenoid magnets, 500 A current leads are permanently fixed into the service turret, with hardly any boil-off penalty (40-50 cc/hr total). Ramping of the magnet has been fully automated, including electronic supervision of the gas-cooled current leads. One step ahead, the 1 Tesla High Field Open magnet is refrigerated by a single 4K Gifford MacMahon coldhead, relieving the user from the necessity to refill with helium. Our conduction cooled 0.2 Tesla HTS magnet testbed does not require liquid cryogens at any time in its life, including initial cool-down.

  17. Cryogenic systems for inertial fusion energy

    International Nuclear Information System (INIS)

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  18. Upgrade of the cryogenic infrastructure of SM18, CERN main test facility for superconducting magnets and RF cavities

    Science.gov (United States)

    Perin, A.; Dhalla, F.; Gayet, P.; Serio, L.

    2017-12-01

    SM18 is CERN main facility for testing superconducting accelerator magnets and superconducting RF cavities. Its cryogenic infrastructure will have to be significantly upgraded in the coming years, starting in 2019, to meet the testing requirements for the LHC High Luminosity project and for the R&D program for superconducting magnets and RF equipment until 2023 and beyond. This article presents the assessment of the cryogenic needs based on the foreseen test program and on past testing experience. The current configuration of the cryogenic infrastructure is presented and several possible upgrade scenarios are discussed. The chosen upgrade configuration is then described and the characteristics of the main newly required cryogenic equipment, in particular a new 35 g/s helium liquefier, are presented. The upgrade implementation strategy and plan to meet the required schedule are then described.

  19. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.

    Science.gov (United States)

    Villa, E; Aja, B; de la Fuente, L; Artal, E

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  20. Physics Based Model for Cryogenic Chilldown and Loading. Part IV: Code Structure

    Science.gov (United States)

    Luchinsky, D. G.; Smelyanskiy, V. N.; Brown, B.

    2014-01-01

    This is the fourth report in a series of technical reports that describe separated two-phase flow model application to the cryogenic loading operation. In this report we present the structure of the code. The code consists of five major modules: (1) geometry module; (2) solver; (3) material properties; (4) correlations; and finally (5) stability control module. The two key modules - solver and correlations - are further divided into a number of submodules. Most of the physics and knowledge databases related to the properties of cryogenic two-phase flow are included into the cryogenic correlations module. The functional form of those correlations is not well established and is a subject of extensive research. Multiple parametric forms for various correlations are currently available. Some of them are included into correlations module as will be described in details in a separate technical report. Here we describe the overall structure of the code and focus on the details of the solver and stability control modules.

  1. A compact 3 T all HTS cryogen-free MRI system

    Science.gov (United States)

    Parkinson, B. J.; Bouloukakis, K.; Slade, R. A.

    2017-12-01

    We have designed and built a passively shielded, cryogen-free 3 T 160 mm bore bismuth strontium calcium copper oxide HTS magnet with shielded gradient coils suitable for use in small animal imaging applications. The magnet is cooled to approximately 16 K using a two-stage cryocooler and is operated at 200 A. The magnet has been passively shimmed so as to achieve ±10 parts per million (ppm) homogeneity over a 60 mm diameter imaging volume. We have demonstrated that B 0 temporal stability is fit-for-purpose despite the magnet operating in the driven mode. The system has produced good quality spin-echo and gradient echo images. This compact HTS-MRI system is emerging as a true alternative to conventional low temperature superconductor based cryogen-free MRI systems, with much more efficient cryogenics since it operates entirely from a single phase alternating current electrical supply.

  2. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  3. In-Space Cryogenic VOST Connect/Disconnect, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel cryogenic coupling will be designed and modeled. Intended for in-space use at cryogenic propellant depots, the coupling is based on patented Venturi-Offset...

  4. Manufacture of Novel Cryogenic Thermal Protection Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA SBIR solicitation X8 "Space Cryogenic Systems" under subtopic X8.01, "Cryogenic Fluid Transfer and...

  5. Manufacture of Novel Cryogenic Thermal Protection Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA SBIR solicitation X8 "Space Cryogenic Systems" under subtopic X8.01, "Cryogenic Fluid Transfer and...

  6. Low evaporation rate storage media for cryogenic liquids, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Considerable design work has been devoted to the development of cryogenic liquid storage containers. Containers which hold cryogenic liquids such as liquid nitrogen,...

  7. Advanced Sprayable Composite Coating for Cryogenic Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the NASA solicitation X10 "Cryogenic Propellant Storage and Transfer" under subtopic X.01 "Cryogenic Fluid...

  8. In-Space Cryogenic VOST Connect/Disconnect, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel cryogenic couplings will be designed, fabricated and tested. Intended for in-space use at cryogenic propellant depots, the couplings are based on patented...

  9. Approach to modeling of the fast energy discharge in cryogenic systems in the form of an electric arc

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Superconducting magnets are supplied with a few kA of electric current and can store a large amount of energy. Therefore, cryogenic systems which are comprised of such magnets are subject to the risk of fast energy discharge from the magnets themselves in the form of an electric arc. The arcing can be a result of failure in the insulation of an electric circuit or in the connection between the magnet and its current lead. During the discharge, energy can be partially dissipated into the cryogen and partially into the cryogenic system metallic structure. The part of the energy that is transferred to the metallic structure will strongly heat up the metal surface, which can lead to material burning. In this case, the cryogen will flow through the perforation to the insulation vacuum space, which can trigger a rapid increase in pressure in the vacuum enclosure. However, the discharged energy that has been stored in the cryogen also causes a rapid increase in cryogenic pressure. Hence, the proper estimation of the...

  10. Cryogenic Thermometer Calibration Facility at CERN

    CERN Document Server

    Balle, C; Thermeau, J P

    1998-01-01

    A cryogenic thermometer calibration facility has been designed and is being commissioned in preparation for the very stringent requirements on the temperature control of the LHC superconducting magnets. The temperature is traceable in the 1.5 to 30 K range to standards maintained in a national metrological laboratory by using a set of Rhodium-Iron temperature sensors of metrological quality. The calibration facility is designed for calibrating simultaneously 60 industrial cryogenic thermometers in the 1.5 K to 300 K temperature range, a thermometer being a device that includes both a temperature sensor and the wires heat-intercept. The thermometers can be calibrated in good and degraded vacuum or immersed in the surrounding fluid and at different Joule self-heating conditions that match those imposed by signal conditioners used in large cryogenic machinery. The calibration facility can be operated in an automatic mode and all the control and safety routines are handled by a Programmable Logic Controller (PLC)...

  11. Cryogenic hydrogen-induced air liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  12. Technical presentation: BGM Cryogenic Engineering Limited

    CERN Multimedia

    Caroline Laignel - FI Department

    2006-01-01

    13 - 14 June 2006 TECHNICAL PRESENTATION BGM Cryogenic Engineering Limited 09:00 - 18:00, 60-2-016, Main Building. Presentation on BGM: 11:00 - 12:00, 60-2-016, Main Building. BGM Cryogenic Engineering Limited manufactures assemblies, sub-assemblies and machined components for the cryogenic technology sector. The primary markets served include superconducting magnets used in the healthcare sector (eg MRI body scanners), spectroscopy and NMR equipment for numerous R & D and technology applications, high vacuum applications and particle physics research. BGM has specialist assembly capability including stainless steel and aluminium welding, vacuum testing, electromechanical assembly and metal finishing. BGM offers a ‘one stop shop'facility to satisfy any customer requirement. Through our design partner we can offer a full design and modelling service, including 3D modelling and production of 2D drawings on your own borders. We can conduct heat load and force calculations and advise on the best...

  13. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  14. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Science.gov (United States)

    2010-10-01

    ... filling density for hydrogen, cryogenic liquid is defined as the percent ratio of the weight of lading in... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...

  15. The effect of prior tempering on cryogenic treatment to reduce retained austenite

    International Nuclear Information System (INIS)

    Stratton, Paul

    2010-01-01

    The consensus view is that a high carbon case gives gears the best overall properties provided that there is no carbide network and that the retained austenite has been reduced below 20% by cryogenic treatment. This view is effectively enshrined in the SAE AMS 2759/7 standard. The cryogenic treatment usually takes place immediately after the quench to avoid austenite stabilisation. However, for some parts with complex geometries that might crack during the treatment, a short low temperature temper is carried out first. Little is known on how this temper affects the subsequent cryogenic treatment. Three carburizing steels used extensively in the aerospace industry were carburized to produce high retained austenite levels in the case using two different, but typical carburizing cycles. The retained austenite was determined by XRD before and after cryogenic treatment carried out in accordance with the standard and compared with that obtained when an intermediate temper was used. This study shows that for three typical carburizing steels, carburized using typical cycles, the efficacy of the cryogenic treatment is reduced only slightly after the temper, and not enough to be industrially significant. (author)

  16. Functional and morphological cardiac magnetic resonance imaging of mice using a cryogenic quadrature radiofrequency coil.

    Directory of Open Access Journals (Sweden)

    Babette Wagenhaus

    Full Text Available Cardiac morphology and function assessment by magnetic resonance imaging is of increasing interest for a variety of mouse models in pre-clinical cardiac research, such as myocardial infarction models or myocardial injury/remodeling in genetically or pharmacologically induced hypertension. Signal-to-noise ratio (SNR constraints, however, limit image quality and blood myocardium delineation, which crucially depend on high spatial resolution. Significant gains in SNR with a cryogenically cooled RF probe have been shown for mouse brain MRI, yet the potential of applying cryogenic RF coils for cardiac MR (CMR in mice is, as of yet, untapped. This study examines the feasibility and potential benefits of CMR in mice employing a 400 MHz cryogenic RF surface coil, compared with a conventional mouse heart coil array operating at room temperature. The cryogenic RF coil affords SNR gains of 3.0 to 5.0 versus the conventional approach and hence enables an enhanced spatial resolution. This markedly improved image quality--by better deliniation of myocardial borders and enhanced depiction of papillary muscles and trabeculae--and facilitated a more accurate cardiac chamber quantification, due to reduced intraobserver variability. In summary the use of a cryogenically cooled RF probe represents a valuable means of enhancing the capabilities of CMR of mice.

  17. Streamlined cryogenic deep reactive ion etching protocol for hybrid micronozzle arrays

    Science.gov (United States)

    Erten, Ahmet; Makale, Milan; Lu, Xuekun; Fruhberger, Bernd; Kesari, Santosh; Esener, Sadik

    2011-10-01

    This paper describes a novel fabrication methodology for hybrid micronozzle arrays that markedly streamlines and simplifies process flow for cryogenic deep reactive ion etching (DRIE). Cryogenic DRIE utilizes SF6/O2-based high-density plasmas at cryogenic temperatures. A key innovation that we have developed and tested is the application of SU-8 negative resist as both the cryogenic etch mask, replacing hard masks, and as a means of defining micronozzle orifices. First, a thin layer of SU-8 is spun onto one side of the silicon wafer and is patterned to define the micronozzle exit orifices. Then a thick layer of SU-8 is spun onto the backside of wafer, aligned to the micro-patterns of the thin layer of SU-8 and is patterned to act as etch mask and define the micronozzle inlets. These parallel SU-8 coatings on the wafer simplify and shorten the fabrication process by eliminating multiple etching steps and mitigate common problems associated with wafer-wide etching rate non-uniformities and RIE lag. The potential benefits of the rapid cryogenic DRIE micronozzle array fabrication strategy include (1) accelerated throughput of micronozzle array fabrication, (2) enhanced feasibility of fabricating comparatively more complex and/or novel hybrid structures and (3) potential simplification of other through-silicon microfabrication processes.

  18. Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures

    Science.gov (United States)

    Perrella, M. D.; Ghiaasiaan, S. M.

    2017-12-01

    The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.

  19. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    Science.gov (United States)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  20. Compact insert design for cryogenic pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco; Petitpas, Guillaume; Switzer, Vernon A.

    2017-06-14

    A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.

  1. Thermoelectric Module Performance in Cryogenic Temperature

    Science.gov (United States)

    Kambe, Mitsuru; Morita, Ryo; Omoto, Kazuyuki; Koji, Yasuhiro; Yoshida, Tatsuo; Noishiki, Koji

    Performance of thermoelectric (TE) modules for the TE power conversion system combined with open rack type LNG vaporizer (ORV) is discussed. Most of the conventional BiTe TE modules suffer sudden decrease of the power at cryogenic temperature as low as -160°C. This is called as Mayer-Marschall effect. Authors investigated the cause of this effect and found TE modules that could avoid such effect. Performance data of such TE modules obtained at the cryogenic thermoelectric (CTE) test rig which could realize temperature and fluid dynamic condition of the ORV is presented.

  2. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  3. Amplifier development for multiplexed cryogenic detectors

    Science.gov (United States)

    Kiviranta, Mikko

    2012-12-01

    We make some considerations on the question of driving the cable from the cryogenic stage of refrigerators to the room temperature, in the case of multiplexed detector array systems where a high total Shannon information capacity is required. We have constructed large SQUID arrays for the purpose, some of which exhibit lower than 5 × 10-8 Φ0 Hz-1/2 flux noise at 4.2 K and do not require magnetic shielding in a typical laboratory environment. The option of using class-D amplifiers to reduce the cryogenic heat load is briefly reviewed.

  4. Power Electronics Being Developed for Deep Space Cryogenic Applications

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2003-01-01

    Electronic circuits and systems designed for deep space missions need to operate reliably and efficiently in harsh environments that include very low temperatures. Spacecraft that operate in such cold environments carry a large number of heaters so that the ambient temperature for the onboard electronics remains near 20 C. Electronics that can operate at cryogenic temperatures will simplify system design and reduce system size and weight by eliminating the heaters and their associated structures. As a result, system development and launch cost will be reduced. At the NASA Glenn Research Center, an ongoing program is focusing on the development of power electronics geared for deep space low-temperature environments. The research and development efforts include electrical components design, circuit design and construction, and system integration and demonstration at cryogenic temperatures. Investigations are being carried out on circuits and systems that are targeted for use in NASA missions where low temperatures will be encountered: devices such as ceramic and tantalum capacitors, metal film resistors, semiconductor switches, magnetics, and integrated circuits including dc/dc converters, operational amplifiers, voltage references, and motor controllers. Test activities cover a wide range of device and circuit performance under simple as well as complex test conditions, such as multistress and thermal cycling. The effect of low-temperature conditions on the switching characteristics of an advanced silicon-on-insulator field effect transistor is shown. For gate voltages (VGS) below 2.6 V, drain currents at -190 C are lower than drain currents at room temperature (20 C).

  5. Performance of the JT-60SA cryogenic system under pulsed heat loads during acceptance tests

    Science.gov (United States)

    Hoa, C.; Bonne, F.; Roussel, P.; Lamaison, V.; Girard, S.; Fejoz, P.; Goncalves, R.; Vallet, J. C.; Legrand, J.; Fabre, Y.; Pudys, V.; Wanner, M.; Cardella, A.; Di Pietro, E.; Kamiya, K.; Natsume, K.; Ohtsu, K.; Oishi, M.; Honda, A.; Kashiwa, Y.; Kizu, K.

    2017-12-01

    The JT-60SA cryogenic system a superconducting tokamak currently under assembly at Naka, Japan. After one year of commissioning, the acceptance tests were successfully completed in October 2016 in close collaboration with Air Liquide Advanced Technologies (ALaT), the French atomic and alternative energies commission (CEA), Fusion for Energy (F4E) and the Quantum Radiological Science and Technology (QST). The cryogenic system has several cryogenic users at various temperatures: the superconducting magnets at 4.4 K, the current leads at 50 K, the thermal shields at 80 K and the divertor cryo-pumps at 3.7 K. The cryogenic system has an equivalent refrigeration power of about 9.5 kW at 4.5 K, with peak loads caused by the nuclear heating, the eddy currents in the structures and the AC losses in the magnets during cyclic plasma operation. The main results of the acceptance tests will be reported, with emphasis on the management of the challenging pulsed load operation using a liquid helium volume of 7 m3 as a thermal damper.

  6. Development of cryogenic Si detectors by CERN RD39 Collaboration for ultra radiation hardness in SLHC environment

    CERN Document Server

    Li, Z; Anbinderis, P; Anbinderis, T; D’Ambrosio, N; de Boer, Wim; Borchi, E; Borer, K; Bruzzi, M; Buontempo, S; Chen, W; Cindro, V; Dierlamm, A; Eremin, V; Gaubas, E; Gorbatenko, V; Grigoriev, E; Hauler, F; Heijne, Erik H M; Heising, S; Hempel, O; Herzog, R; Härkönen, J; Ilyashenko, I; Janos, S; Jungermann, L; Kalesinskas, V; Kapturauskas, J; Laiho, R; Luukka, P; Mandic, I; De Masi, R; Menichelli, D; Mikuz, M; Militaru, O; Niinikosky, T O; O’Shea, V; Pagano, S; Paul, S; Piotrzkowski, K; Pretzl, K; Rato-Mendes, P; Rouby, X; Ruggiero, G; Smith, K; Sonderegger, P; Sousa, P; Tuominen, E; Tuovinen, E; Verbitskaya, E; Vaitkus, J; Wobst, E; Zavrtanik, M

    2007-01-01

    There are two key approaches in our CERN RD 39 Collaboration efforts to obtain ultra-radiation-hard Si detectors: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (150 K), and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the liquid nitrogen (LN2) temperature. In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures.

  7. Dynamic simulations of the cryogenic system of a tokamak

    International Nuclear Information System (INIS)

    Cirillo, R.; Hoa, C.; Michel, F.; Rousset, B.; Poncet, J.M.

    2015-01-01

    In a tokamak plasma confinement is achieved through high magnetic fields generated by superconductive coils that need to be cooled down to 4.4 K with a forced flow of supercritical Helium. Tokamak's coil system works cyclically and so it is subject to pulsed heat loads which have to be handled by the refrigerator. This latter has to be sized on the average power value and not according to the peak to limit investment and operation costs and hence the heat load needs to be smoothed. CEA Grenoble is in charge of providing the cryogenic system for the Japanese tokamak JT60-SA, currently under construction in Naka (Japan). Hence, in order to model and study the smoothing strategies, an experimental set up: HELIOS (Helium Loop for high load smoothing) has been built. This is a scaled down model (1:20) of the helium distribution system whose main components are a saturated helium bath and a supercritical helium loop. This large installation can reproduce conditions of pressure, temperature and transport times, similar to those expected in the cooling circuits of the central solenoid superconducting magnets of JT-60SA. The peak loads representative of the tokamak operation have been reproduced and smoothed before they arrive in the refrigerator, by means of a saturated helium bath (thermal reservoir). A dynamic modelling of the cryogenic system is presented, with results on the pulsed load scenarios. All the simulations have been performed with EcosimPro software developed and the cryogenic library: CRYOLIB. This document is made up of an abstract and the slides of the presentation

  8. Light-Weight Injector Technology for Cryogenic Mars Ascent Engines

    Science.gov (United States)

    Trihn, Huu Phuoc; Cramer, John M.

    1998-01-01

    Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of launch vehicles. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission decrease. NASA/Johnson Space Center has initiated several concept studies of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This state-of-the-art technology will then be applied to the development of a cryogenic propulsion system that will meet the requirements of the planned Mars sample return (MSR) mission. The current baseline propulsion system for the MSR mission uses a storable propellant combination [monomethyl hydrazine/mixed oxides of nitrogen-25. However, a mission option that incorporates in-situ propellant production and utilization for the ascent stage is being carefully considered as a subscale

  9. Comparison of different cryogenic control strategies via simulation applied to a superconducting magnet test bench at CERN

    Science.gov (United States)

    Arpaia, P.; Coppier, H.; De Paola, D.; di Bernardo, M.; Guarino, A.; Pedemonte, B. Luz; Pezzetti, M.

    2017-12-01

    Industrial process controllers for cryogenic systems used in test facilities for superconducting magnets are typically PIDs, tuned by operational expertise according to users’ requirements (covering cryogenic transients and associated thermo-mechanical constraints). In this paper, an alternative fully-automatic solution, equally based on PID controllers, is proposed. Following the comparison of the operational expertise and alternative fully-automatic approaches, a new process control configuration, based on an estimated multiple-input/multiple-output (MIMO) model is proposed. The new MIMO model-based approach fulfils the required operational constraints while improving performance compared to existing solutions. The analysis and design work is carried out using both theoretical and numerical tools and is validated on the case study of the High Field Magnet (HFM) cryogenic test bench running at the SM18 test facility located at CERN. The proposed solution have been validated by simulation using the CERN ECOSIMPRO software tools using the cryogenic library (CRYOLIB [1]) developed at CERN.

  10. Comparison of Heat Insulations for Cryogenic Tankers Using Analytical and Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Ramón Miralbés Buil

    2013-01-01

    Full Text Available This paper presented a methodology for the design of heat insulations used in cryogenic tankers. This insulation usually comprises a combination of vacuum and perlite or vacuum and superinsulation. Concretely, it is a methodology to obtain the temperatures, heat fluxes, and so forth. Using analytical tools has been established, which is based on the equivalence with an electric circuit, and on numerical tools using finite elements. Results obtained with both methods are then compared. In addition, the influence of the outer finish of the external part, due to the effect of the solar radiation, is analyzed too, and the equations to determine the maximum time available to transport the cryogenic liquid have been established. All these aspects are applied to a specific cryogenic commercial vehicle.

  11. Cryogenic Q-factor measurement of optical substrates for optimization of gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nietzsche, S [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Nawrodt, R [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Zimmer, A [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Schnabel, R [Max-Planck-Institut fuer Gravitationsphysik, Universitaet Hannover, Callinstrasse 38, D-30167 Hannover (Germany); Vodel, W [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany); Seidel, P [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, D-07743 Jena (Germany)

    2006-05-15

    Future generations of gravitational wave interferometers are likely to be operated at cryogenic temperatures because one of the sensitivity limiting factors of the present generation is the thermal noise of end mirrors and beam splitters that occurs in the optical substrates as well as in the dielectric coatings. A possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical quality factor Q, and maximizing the eigenfrequencies of the substrate. We present experimental details of a new cryogenic apparatus that is suitable for the measurement of the temperature-dependent Q-factor of reflective, transmissive as well as nano-structured grating optics down to 5 K. In particular, the SQUID-based and the optical interferometric approaches to the measurement of the amplitude of vibrating test bodies are compared and the method of ring-down recording is described.

  12. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    Science.gov (United States)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  13. COMPAR

    International Nuclear Information System (INIS)

    Kuefner, K.

    1976-01-01

    COMPAR works on FORTRAN arrays with four indices: A = A(i,j,k,l) where, for each fixed k 0 ,l 0 , only the 'plane' [A(i,j,k 0 ,l 0 ), i = 1, isub(max), j = 1, jsub(max)] is held in fast memory. Given two arrays A, B of this type COMPAR has the capability to 1) re-norm A and B ind different ways; 2) calculate the deviations epsilon defined as epsilon(i,j,k,l): =[A(i,j,k,l) - B(i,j,k,l)] / GEW(i,j,k,l) where GEW (i,j,k,l) may be chosen in three different ways; 3) calculate mean, standard deviation and maximum in the array epsilon (by several intermediate stages); 4) determine traverses in the array epsilon; 5) plot these traverses by a printer; 6) simplify plots of these traverses by the PLOTEASY-system by creating input data blocks for this system. The main application of COMPAR is given (so far) by the comparison of two- and three-dimensional multigroup neutron flux-fields. (orig.) [de

  14. Stray current vs anodic polarization in reinforced mortar: a comparative study on steel corrosion behaviour in both regimes

    NARCIS (Netherlands)

    Chen, Zhipei; Koleva, D.A.; van Breugel, K.

    2015-01-01

    Stray current arising from direct current electrified traction systems and then circulat-ing in reinforced concrete structures may initiate corrosion or even accelerate existing corrosion processes on embedded reinforcement. Therefore, stray-current induced corrosion of nearby reinforced concrete

  15. Modeling Dynamic Fracture of Cryogenic Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Paul [General Atomics, San Diego, CA (United States)

    2016-06-30

    This work is part of an investigation with the long-range objective of predicting the size distribution function and velocity dispersion of shattered pellet fragments after a large cryogenic pellet impacts a solid surface at high velocity. The study is vitally important for the shattered pellet injection (SPI) technique, one of the leading technologies being implemented at ORNL for the mitigation of disruption damage on current tokamaks and ITER. The report contains three parts that are somewhat interwoven. In Part I we formulated a self-similar model for the expansion dynamics and velocity dispersion of the debris cloud following pellet impact against a thick (rigid) target plate. Also presented in Part I is an analytical fracture model that predicts the nominal or mean size of the fragments in the debris cloud and agrees well with known SPI data. The aim of Part II is to gain an understanding of the pellet fracturing process when a pellet is shattered inside a miter tube with a sharp bend. Because miter tubes have a thin stainless steel (SS) wall a permanent deformation (dishing) of the wall is produced at the site of the impact. A review of the literature indicates that most projectile impact on thin plates are those for which the target is deformed and the projectile is perfectly rigid. Such impacts result in “projectile embedding” where the projectile speed is reduced to zero during the interaction so that all the kinetic energy (KE) of the projectile goes into the energy stored in plastic deformation. Much of the literature deals with perforation of the target. The problem here is quite different; the softer pellet easily undergoes complete material failure causing only a small transfer of KE to stored energy of wall deformation. For the real miter tube, we derived a strain energy function for the wall deflection using a non-linear (plastic) stress-strain relation for 304 SS. Using a dishing profile identical to the linear Kirchkoff-Love profile (for lack

  16. A comparative study of sheath potential profile measurements with laser-heated and current-heated emissive probes

    Science.gov (United States)

    Kella, Vara Prasad; Mehta, Payal; Sarma, A.; Ghosh, J.; Chattopadhyay, P. K.

    2016-04-01

    Emissive Langmuir probe is one of the most efficient diagnostic tools available for plasma potential measurements. Extensive studies have been carried out in designing different kinds of conventional (electrically heated) emissive probes (CEPs) to estimate the plasma potential. Laser heated emissive probe (LHEP) has been developed with certain advantages over the conventional probes such as low evaporation rate of the probe material, high lifetime, and high emission levels. Most importantly, the LHEP uses laser to heat the probe-tip and does not require electric current to heat the probe-tip like in CEP. The heating current in CEP substantially affects the plasma potential measurements, especially in the regions of plasma where high electric and magnetic field gradients are present. In this paper, we studied the plasma potential structures in sheath-presheath region using both LHEP and CEP in an unmagnetized dc-filament discharge plasma. Measurements of sheath spatial potential profile using laser heated emissive probe are compared with those obtained using conventional emissive probe.

  17. LASERS: A cryogenic slab CO laser

    Science.gov (United States)

    Ionin, Andrei A.; Kozlov, A. Yu; Seleznev, L. V.; Sinitsyn, D. V.

    2009-03-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ~12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ~14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ~ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour.

  18. Cryogenic refrigeration for cold neutron sources

    International Nuclear Information System (INIS)

    Gistau-Baguer, Guy

    1998-01-01

    Neutron moderation by means of a fluid at cryogenic temperature is a very interesting way to obtain cold neutrons. Today, a number of nuclear research reactors are using this technology. This paper deals with thermodynamics and technology which are used for cooling Cold Neutron Sources

  19. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  20. Impact resistance cryogenic bunker fuel tanks

    NARCIS (Netherlands)

    Voormeeren, L.O.; Atli-Veltin, B.; Vredeveldt, A.W.

    2014-01-01

    The increasing use of liquefied natural gas (LNG) as bunker fuel in ships, calls for an elaborate study regarding the risks involved. One particular issue is the vulnerability of cryogenic LNG storage tanks with respect to impact loadings, such as ship collisions and dropped objects. This requires

  1. Cryogenic Liquid Fluctuations in a Motionless Tank

    Directory of Open Access Journals (Sweden)

    Min Vin Ai

    2014-01-01

    Full Text Available The article considers approximate numerical methods to determine own frequencies of cryogenic liquid fluctuations stratification of which changes under any law. The increasing use of cryogenic liquids, liquefied gas, superfluid solutions, and slush liquids in modern mechanical engineering define relevance of a perspective. Interest in the considered problem is also caused by the fact that in cryogenic liquid along with superficial waves there can be internal wave movements penetrating all thickness of liquid in a tank and therefore playing important role in many hydro-dynamic processes.This article considers problems of determining the own frequencies of cryogenic liquid fluctuations, partially filling cylindrical tank of any cross section. It is supposed that the change of the liquid particles density due to thermal stratification of entire liquid mass can proceed continuously under any law. To solve numerically a similar problem, a method of trigonometric series (MTS and a method of final elements (MFE were used. When using the MTS method the unknown solution and variable coefficients of the equation were presented in the form of trigonometric series. Further, after multiplication of series and the subsequent mathematical operations the frequency equation was obtained. Bubnov-Galyorkin's approach was used to obtain solutions by the MFE method. Reliability of received numerical results is confirmed by coincidence with frequency results calculated by analytical formulas of solutions of differential equations with constant frequency of buoyancy.

  2. Transient boiling crisis of cryogenic liquids

    NARCIS (Netherlands)

    Deev, [No Value; Kharitonov, VS; Kutsenko, KV; Lavrukhin, AA

    2004-01-01

    This paper introduces a new physical model of boiling crisis under rapid increase of power on the heated surface. The calculation of the time interval of the transition to film boiling in cryogenic liquids was carried out depending on heat flux and pressure. The obtained results are in good

  3. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  4. Solid State Circuits for Cryogenic Operation

    Science.gov (United States)

    Petrac, D.; Spencer, R. L.

    1983-01-01

    Tests confirm operation of five commercial semiconductor devices at cryogenic temperatures. The five devices - one tunnel diode, one field-effect transistor, and three CMOS integrated circuits - all perform well in circuits immersed in liquid-helium bath. For some tests, bath temperature was reduced to 1,25K by pumping.

  5. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  6. Cryogenics Testbed Laboratory Flange Baseline Configuration

    Science.gov (United States)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  7. Cryogenic carbonates in cave environments: A review

    Czech Academy of Sciences Publication Activity Database

    Žák, Karel; Onac, B. P.; Persoiu, A.

    2008-01-01

    Roč. 187, č. 1 (2008), s. 84-96 ISSN 1040-6182 Institutional research plan: CEZ:AV0Z30130516 Keywords : cryogenic cave carbonate * cave * Romania * stable Isotopes * isotope fractionation Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.482, year: 2008

  8. Testing the LHC magnet cryogenic systems

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The magnets in the LHC will be cooled to 1.9 K (- 270.3°C). To keep this 27 km long machine at such a low temperatures requires one of the largest refrigeration systems in the world. These pictures show the cryogenics plant in the testing area.

  9. Cryogenics system: strategy to achieve nominal performance and reliable operation

    CERN Document Server

    Bremer, J; Casas, J; Claudet, S; Delikaris, D; Delruelle, N; Ferlin, G; Fluder, C; Perin, A; Perinic, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the overcapacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the "cannibalization" of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of ...

  10. Fingerprinting of Salvia miltiorrhiza Bunge by non-aqueous capillary electrophoresis compared with high-speed counter-current chromatography.

    Science.gov (United States)

    Gu, Ming; Zhang, Shufeng; Su, Zhiguo; Chen, Yi; Ouyang, Fan

    2004-11-19

    The component of the traditional Chinese medicine (TCM) can be influenced by soil, climate, and growth stage, and fingerprint is an important means in its quality control. Our previous studies showed that high-speed counter-current chromatography (HSCCC) was helpful in the development of fingerprint of TCM. Since the HSCCC method is new, it is necessary to compare it with conventional ones, such as high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC) and high-performance capillary electrophoresis (HPCE). Comparison with HPLC was conducted in our previous study. In this study, HSCCC was compared with non-aqueous capillary electrophoresis (NACE). With NACE, seven stable components were separated within 55 min, respectively, from three crude samples of Salvia miltiorrhiza Bunge from different growth locations. In HSCCC separation, 12 components were separated, respectively, with good correspondence and precision within 13 h. Both NACE and HSCCC were effective in showing whole concentration distribution of all kinds of constituents. Principles of these two methods were very different, which led to different elution sequences and relative contents of peaks. HSCCC showed better performance in analysis of tanshinones, which made its fingerprint containing more chemical information than that of NACE. It was further proven that HSCCC could be a feasible and cost-effective method in the development of the fingerprint of TCM.

  11. Analysis and test of a breadboard cryogenic hydrogen/Freon heat exchanger

    Science.gov (United States)

    Desjardins, L. F.; Hooper, J.

    1973-01-01

    System studies required to verify a tube-in-tube cryogenic heat exchanger as optimum for the space shuttle mission are described. Design of the optimum configuration, which could be fabricated from commercially available hardware, is discussed. Finally, testing of the proposed configuration with supercritical hydrogen and Freon 21 is discussed and results are compared with thermal and dynamic analysis.

  12. Clumped isotope thermometry of cryogenic cave carbonates

    Science.gov (United States)

    Kluge, Tobias; Affek, Hagit P.; Zhang, Yi Ge; Dublyansky, Yuri; Spötl, Christoph; Immenhauser, Adrian; Richter, Detlev K.

    2014-02-01

    Freezing of cave pool water that is increasingly oversaturated with dissolved carbonate leads to precipitation of a very specific type of speleothems known as cryogenic cave carbonates (CCC). At present, two different environments for their formation have been proposed, based on their characteristic carbon and oxygen isotope ratios. Rapidly freezing thin water films result in the fast precipitation of fine-grained carbonate powder (CCCfine). This leads to rapid physicochemical changes including CO2 degassing and CaCO3 precipitation, resulting in significantly 13C-enriched carbonates. Alternatively, slow carbonate precipitation in ice-covered cave pools results in coarse crystalline CCC (CCCcoarse) yielding strongly 18O-depleted carbonate. This is due to the formation of relatively 18O-enriched ice causing the gradual depletion of 18O in the water from which the CCC precipitates. Cryogenic carbonates from Central European caves were found to have been formed primarily during the last glacial period, specifically during times of permafrost thawing, based on the oxygen isotope ratios and U-Th dating. Information about the precise conditions of CCCcoarse formation, i.e. whether these crystals formed under equilibrium or disequilibrium conditions with the parent fluid, however, is lacking. An improved understanding of CCCcoarse formation will increase the predictive value of this paleo-permafrost archive. Here we apply clumped isotopes to investigate the formation conditions of cryogenic carbonates using well-studied CCCcoarse from five different cave systems in western Germany. Carbonate clumped isotope measurements yielded apparent temperatures between 3 and 18 °C and thus exhibit clear evidence of isotopic disequilibrium. Although the very negative carbonate δ18O values can only be explained by gradual freezing of pool water accompanied by preferential incorporation of 18O into the ice, clumped isotope-derived temperatures significantly above expected freezing

  13. Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications

    Directory of Open Access Journals (Sweden)

    Christopher Winnefeld

    2018-01-01

    Full Text Available In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.

  14. Main improvements of LHC Cryogenics Operation during Run 2 (2015-2018)

    Science.gov (United States)

    Delprat, L.; Bradu, B.; Brodzinski, K.; Ferlin, G.; Hafi, K.; Herblin, L.; Rogez, E.; Suraci, A.

    2017-12-01

    After the successful Run 1 (2010-2012), the LHC entered its first Long Shutdown period (LS1, 2013-2014). During LS1 the LHC cryogenic system went under a complete maintenance and consolidation program. The LHC resumed operation in 2015 with an increased beam energy from 4 TeV to 6.5 TeV. Prior to the new physics Run 2 (2015-2018), the LHC was progressively cooled down from ambient to the 1.9 K operation temperature. The LHC has resumed operation with beams in April 2015. Operational margins on the cryogenic capacity were reduced compared to Run 1, mainly due to the observed higher than expected electron-cloud heat load coming from increased beam energy and intensity. Maintaining and improving the cryogenic availability level required the implementation of a series of actions in order to deal with the observed heat loads. This paper describes the results from the process optimization and update of the control system, thus allowing the adjustment of the non-isothermal heat load at 4.5 – 20 K and the optimized dynamic behaviour of the cryogenic system versus the electron-cloud thermal load. Effects from the new regulation settings applied for operation on the electrical distribution feed-boxes and inner triplets will be discussed. The efficiency of the preventive and corrective maintenance, as well as the benefits and issues of the present cryogenic system configuration for Run 2 operational scenario will be described. Finally, the overall availability results and helium management of the LHC cryogenic system during the 2015-2016 operational period will be presented.

  15. Protocol design and current status of CLIVIT: a randomized controlled multicenter relevance trial comparing clips versus ligatures in thyroid surgery

    Directory of Open Access Journals (Sweden)

    Wollermann C

    2006-09-01

    Full Text Available Abstract Background Annually, more than 90000 surgical procedures of the thyroid gland are performed in Germany. Strategies aimed at reducing the duration of the surgical procedure are relevant to patients and the health care system especially in the context of reducing costs. However, new techniques for quick and safe hemostasis have to be tested in clinically relevance randomized controlled trials before a general recommendation can be given. The current standard for occlusion of blood vessels in thyroid surgery is ligatures. Vascular clips may be a safe alternative but have not been investigated in a large RCT. Methods/design CLIVIT (Clips versus Ligatures in Thyroid Surgery is an investigator initiated, multicenter, patient-blinded, two-group parallel relevance randomized controlled trial designed by the Study Center of the German Surgical Society. Patients scheduled for elective resection of at least two third of the gland for benign thyroid disease are eligible for participation. After surgical exploration patients are randomized intraoperatively into either the conventional ligature group, or into the clip group. The primary objective is to test for a relevant reduction in operating time (at least 15 min when using the clip technique. Since April 2004, 121 of the totally required 420 patients were randomized in five centers. Discussion As in all trials the different forms of bias have to be considered, and as in this case, a surgical trial, the role of surgical expertise plays a key role, and will be documented and analyzed separately. This is the first randomized controlled multicenter relevance trial to compare different vessel occlusion techniques in thyroid surgery with adequate power and other detailed information about the design as well as framework. If significant, the results might be generalized and may change the current surgical practice.

  16. [Influence of cryogenic treatment and age-hardening heat treatment on the microhardness of palladium-silver dental alloys].

    Science.gov (United States)

    Zhao, Yao; Tong, Xu; Liu, Jiajun; Hao, Zhichao; Meng, Yukun

    2013-06-01

    The purpose of this study was to investigate the influence of cryogenic treatment and age-hardening heat treatment on the micro-Vicker's hardness of palladium-silver dental alloys. A low-gold content dental casting alloy composed of Ag-Pd-Cu-Au was prepared for this study. Experimental specimens according to standard requirements were prepared following a standard dental laboratory casting procedure, cast specimens were heated to 900 degrees C and quenched in ice water. The specimens were then divided into 4 groups. They were subsequently subjected to different treatments, including age-hardening heat treatment, cryogenic treatment, heat treatment combined with cryogenic treatment. The non-treated group was used as control. The micro-Vicker's hardness value was examined. The significance of correlation was analyzed. The micro-Vicker's hardness of specimens after age-hardening heat treatment, cryogenic treatment, heat treatment combined with cryogenic treatment increased by 129%, 13% and 141%, respectively, compared with that of the non-treated control group. Conclusion Age-hardening heat treatment and cryogenic treatment were effective in elevating the hardness of Ag-Pd-Cu-Au alloy.

  17. A Digitization Scheme of Sub-Microampere Current Using a Commercial Comparator with Hysteresis and FPGA-Based Wave Union TDC

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinyuan [Fermilab

    2012-11-01

    A digitization scheme of sub-microampere current using a commercial comparator with adjustable hysteresis and FPGA-based Wave Union TDC has been tested. The comparator plus a few passive components forms a current controlled oscillator and the input current is sent into the hysteresis control pin. The input current is converted into the transition times of the oscillations, which are digitized with a Wave Union TDC in FPGA and the variation of the transition times reflects the variation of the input current. Preliminary tests show that input charges < 25 fC can be measured at > 50 M samples/s without a preamplifier.

  18. Impact of Current Antipsychotic Medications on Comparative Mortality and Adverse Events in People With Parkinson Disease Psychosis.

    Science.gov (United States)

    Ballard, Clive; Isaacson, Stuart; Mills, Roger; Williams, Hilde; Corbett, Anne; Coate, Bruce; Pahwa, Rajesh; Rascol, Olivier; Burn, David J

    2015-10-01

    To establish the mortality risk and adverse events associated with the use of atypical antipsychotic medications in people with Parkinson disease psychosis (PDP) in a clinically defined trial cohort. Post hoc analysis of data from a multicenter, open-label extension study of pimavanserin comparing people taking and not taking current antipsychotics. Primary and secondary care medical centers in the United States, Canada, Europe, and India. A total of 459 people with PDP enrolled in the extension study. Participants were between ages 30 and 80 years, and had an established diagnosis of idiopathic Parkinson disease and moderate to severe psychosis. Participants were categorized into 2 groups: those receiving concomitant antipsychotic medications ("concurrent APD") and those who did not take antipsychotic medications at any time during the study ("no APD"). Participants were receiving 40 mg pimavanserin daily in addition to concurrent antipsychotics and Parkinson disease medications. Safety assessments at 2 weeks; 1, 3, 6, 9, and 12 months; and every 6 months thereafter, including evaluation of adverse events (AEs), vital signs, weight, physical examinations, 12-lead electrocardiograms, clinical laboratory tests (serum chemistry, hematology, and urinalysis), and the Unified Parkinson's Disease Rating Scale Parts II and III (UPDRS-II+III, activities of daily living and motor impairment, respectively). Differences between participants taking and not taking current antipsychotics were evaluated using incidence rate ratios (IRRs) with 95% confidence intervals (CIs). There was significant increase in the mortality rate for participants taking concurrent antipsychotics compared with the group not taking antipsychotic medications (IRR 4.20, 95% CI 2.13-7.96). Participants who received a concurrent antipsychotic were also significantly more likely to experience overall a serious AE (IRR 2.95, 95% CI 2.02-4.24), any antipsychotic-related event (IRR 1.66, 95% CI 1

  19. Comparative Study on Assimilating Remote Sensing High Frequency Radar Surface Currents at an Atlantic Marine Renewable Energy Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-12-01

    Full Text Available A variety of data assimilation approaches have been applied to enhance modelling capability and accuracy using observations from different sources. The algorithms have varying degrees of complexity of implementation, and they improve model results with varying degrees of success. Very little work has been carried out on comparing the implementation of different data assimilation algorithms using High Frequency radar (HFR data into models of complex inshore waters strongly influenced by both tides and wind dynamics, such as Galway Bay. This research entailed implementing four different data assimilation algorithms: Direct Insertion (DI, Optimal Interpolation (OI, Nudging and indirect data assimilation via correcting model forcing into a three-dimensional hydrodynamic model and carrying out detailed comparisons of model performances. This work will allow researchers to directly compare four of the most common data assimilation algorithms being used in operational coastal hydrodynamics. The suitability of practical data assimilation algorithms for hindcasting and forecasting in shallow coastal waters subjected to alternate wetting and drying using data collected from radars was assessed. Results indicated that a forecasting system of surface currents based on the three-dimensional model EFDC (Environmental Fluid Dynamics Code and the HFR data using a Nudging or DI algorithm was considered the most appropriate for Galway Bay. The largest averaged Data Assimilation Skill Score (DASS over the ≥6 h forecasting period from the best model NDA attained 26% and 31% for east–west and north–south surface velocity components respectively. Because of its ease of implementation and its accuracy, this data assimilation system can provide timely and useful information for various practical coastal hindcast and forecast operations.

  20. A cryogen-free dilution refrigerator based Josephson qubit measurement system

    Science.gov (United States)

    Tian, Ye; Yu, H. F.; Deng, H.; Xue, G. M.; Liu, D. T.; Ren, Y. F.; Chen, G. H.; Zheng, D. N.; Jing, X. N.; Lu, Li; Zhao, S. P.; Han, Siyuan

    2012-03-01

    We develop a small-signal measurement system on cryogen-free dilution refrigerator which is suitable for superconducting qubit studies. Cryogen-free refrigerators have several advantages such as less manpower for system operation and large sample space for experiment, but concern remains about whether the noise introduced by the coldhead can be made sufficiently low. In this work, we demonstrate some effective approaches of acoustic isolation to reduce the noise impact. The electronic circuit that includes the current, voltage, and microwave lines for qubit coherent state measurement is described. For the current and voltage lines designed to have a low pass of dc-100 kHz, we show that the measurements of Josephson junction's switching current distribution with a width down to 1 nA, and quantum coherent Rabi oscillation and Ramsey interference of the superconducting qubit can be successfully performed.

  1. Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off

    Science.gov (United States)

    Sass, J. P.; Frontier, C. R.

    2007-01-01

    The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.

  2. Neutron Irradiation Tests of Calibrated Cryogenic Sensors at Low Temperatures

    CERN Document Server

    Junquera, T; Thermeau, J P; Casas-Cubillos, J

    1998-01-01

    This paper presents the advancement of a program being carried out in view of selecting the cryogenic temperature sensors to be used in the LHC accelerator. About 10,000 sensors will be installed around the 26.6 km LHC ring, and most of them will be exposed to high radiation doses during the accelerator lifetime. The following thermometric sensors : carbon resistors, thin films, and platinum resistors, have been exposed to high neutron fluences (>10$^15$ n/cm$^2$) at the ISN (Grenoble, France) Cryogenic Irradiation Test Facility. A cryostat is placed in a shielded irradiation vault where a 20 MeV deuteron beam hits a Be target, resulting in a well collimated and intense neutron beam. The cryostat, the on-line acquisition system, the temperature references and the main characteristics of the irradiation facility are described. The main interest of this set-up is its ability to monitor online the evolution of the sensors by comparing its readout with temperature references that are in principle insensitive to t...

  3. Computational Fluid Dynamics Based Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  4. RMs1: qualification results of the rotary miniature Stirling cryocooler at Thales Cryogenics

    Science.gov (United States)

    Martin, Jean-Yves; Seguineau, Cédric; Van-Acker, Sébastien; Sacau, Mikel; Le Bordays, Julien; Etchanchu, Thierry; Vasse, Christophe; Abadie, Christian; Laplagne, Gilles; Benschop, Tonny

    2017-05-01

    The trend for miniaturized Integrated Dewar and Cooler Assemblies (IDCA) has been confirmed over the past few years with several mentions of a new generation of IR detector working at High Operating Temperature (HOT). This key technology enables the use of cryocooler with reduced needs of cryogenics power. As a consequence, miniaturized IDCA are the combination of a HOT IR detector coupled with a low-size, low-weight and low-power (SWaP) cryocooler. Thales Cryogenics has developed his own line of SWaP products. Qualification results on linear solution where shown last year. The current paper focuses on the latest results obtained on RMs1 prototypes, the new rotary SWaP cryocooler from Thales Cryogenics. Cryogenic performances and induced vibrations are presented. In a second part, progress is discussed on compactness and weight on one side, and on power consumption on the other side. It shows how the trade-off made between weight and power consumption could lead to an optimized solution at system level. At least, an update is made on the qualification status.

  5. The Evolution of the Cryogenic System of the European Spallation Source

    Science.gov (United States)

    Hees, W.; Arnold, Ph; Fydrych, J.; Jurns, J.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is an intergovernmental project building a multidisciplinary research laboratory based upon the world's most powerful neutron source to be built in Lund, Sweden. The ESS will use a superconducting linear accelerator which will deliver protons with 5 MW of power to the target at 2.0 GeV with a nominal current of 62.5 mA. A cryomodule test stand will be supplied with helium for the site acceptance tests. The target will have two moderators using supercritical hydrogen to cool down the neutrons. The neutron instruments and the experiments’ sample environment will use liquid helium and liquid nitrogen to cool detectors and samples. The ESS cryogenic system is designed to deliver cryogenic cooling capacity to all three client system. A first concept of the ESS cryogenic system was developed in 2010 and 2011 with a limited amount of input from the clients as well as from site infrastructure (i.e. buildings and utilities). The design had to be flexible enough to accommodate future changes in scope, schedule and available infrastructure. Over the following years the design has evolved together with these parameters to achieve a maturity today which allowed us to order the accelerator cryoplant and to start procurement of many of the other parts of the ESS cryogenic system. This paper presents the evolution of the design throughout the years and the factors influencing certain design choices.

  6. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  7. Hydrogen isotope separation by cryogenic distillation method

    International Nuclear Information System (INIS)

    Hayakawa, Nobuo; Mitsui, Jin

    1987-01-01

    Hydrogen isotope separation in fusion fuel cycle and tritium recovery from heavy water reactor are very important, and therefore the early establishment of these separation techniques are desired. The cryogenic distillation method in particular is promising for the separation of hydrogen isotope and the recovery of high concentrated tritium. The studies of hydrogen isotope separation by cryogenic distillation method have been carried out by using the experimental apparatus made for the first time in Japan. The separation of three components (H 2 -HD-D 2 ) under total reflux conditions was got by using the packing tower of 500 mm height. It was confirmed that the Height Equivalent Theoretical Plate (HETP) was 20 - 30 mm for the vapor's line velocity of 20 - 80 mm/s. (author)

  8. Cryogenic performance of single polymer polypropylene composites

    Science.gov (United States)

    Atli-Veltin, Bilim

    2018-03-01

    The main objective of the experimental study detailed in this paper is to investigate the performance of fully recyclable, lightweight, low-cost, thermoplastic Polypropylene (PP) composite tapes at low temperatures. Coupons made of [±45] and [0/90] laminates are subjected to tensile and 3-point bending tests at room temperature as well as at -196 °C. In addition to that, cryogenic low velocity impact tests at 268 J and 777 J impact energies are performed on tubular structures. The results are indicating that the laminates made of PP tapes have sufficient ductility for cryogenic applications. Low velocity impact tests showed that the viscoelastic behavior of the material is preserved, even at such low temperatures and more than 72% of impact energy is absorbed by the material.

  9. Cryogenic fluid management (base R/T): Cryogenic fluid systems, Cryogenic Orbital Nitrogen Experiment (CONE), Cryogenic Orbital Hydrogen Experiment (COHE). (Transportation focused technology)

    Science.gov (United States)

    Symons, Pat

    1991-01-01

    The topics presented are covered in viewgraph form. The concluded remarks are: (1) advanced cryogenic fluid systems technology is enhancing or enabling to all known transportation scenarios for space exploration; (2) an integrated/coordinated program involving LeRC/MSFC has been formulated to address all known CFM needs - new needs should they develop, can be accommodated within available skills/facilities; (3) all required/experienced personnel and facilities are finally in place - data from initial ground-based experiments is being collected and analyzed - small scale STS experiments are nearing flight - program is beginning to yield significant results; (4) future proposed funding to primarily come from two sources; and (5) cryogenic fluid experimentation is essential to provide required technology and assure implementation in future NASA missions.

  10. Alignment Stage for a Cryogenic Dilatometer

    Science.gov (United States)

    Dudik, Matthew; Moore, Donald

    2005-01-01

    A three-degree-of-freedom alignment stage has been designed and built for use in a cryogenic dilatometer that is used to measure thermal strains. The alignment stage enables precise adjustments of the positions and orientations of optical components to be used in the measurements and, once adjustments have been completed, keeps the components precisely aligned during cryogenic-dilatometer operations that can last as long as several days. The alignment stage includes a case, a circular tilt/tip platform, and a variety of flexural couplings between the case and the platform, all machined from a single block of the low-thermal-expansion iron/nickel alloy Invar, in order to minimize effects of temperature gradients and to obtain couplings that are free of stiction and friction. There are three sets of flexural couplings clocked at equal angles of 120 degrees around the platform, constituting a three-point kinematic support system.

  11. Cryogenic in situ microcompression testing of Sn

    International Nuclear Information System (INIS)

    Lupinacci, A.; Kacher, J.; Eilenberg, A.; Shapiro, A.A.; Hosemann, P.; Minor, A.M.

    2014-01-01

    Characterizing plasticity mechanisms below the ductile-to-brittle transition temperature is traditionally difficult to accomplish in a systematic fashion. Here, we use a new experimental setup to perform in situ cryogenic mechanical testing of pure Sn micropillars at room temperature and at −142 °C. Subsequent electron microscopy characterization of the micropillars shows a clear difference in the deformation mechanisms at room temperature and at cryogenic temperatures. At room temperature, the Sn micropillars deformed through dislocation plasticity, while at −142 °C they exhibited both higher strength and deformation twinning. Two different orientations were tested, a symmetric (1 0 0) orientation and a non-symmetric (4 5 ¯ 1) orientation. The deformation mechanisms were found to be the same for both orientations

  12. A comparative analysis of current microbial water quality risk assessment and management practices in British Columbia and Ontario, Canada.

    Science.gov (United States)

    Dunn, Gemma; Harris, Leila; Cook, Christina; Prystajecky, Natalie

    2014-01-15

    Bacteria, protozoa and viruses are ubiquitous in aquatic environments and may pose threats to water quality for both human and ecosystem health. Microbial risk assessment and management in the water sector is a focus of governmental regulation and scientific inquiry; however, stark gaps remain in their application and interpretation. This paper evaluates how water managers practice microbial risk assessment and management in two Canadian provinces (BC and Ontario). We assess three types of entities engaged in water management along the source-to-tap spectrum (watershed agencies, water utilities, and public health authorities). We analyze and compare the approaches used by these agencies to assess and manage microbial risk (including scope, frequency, and tools). We evaluate key similarities and differences, and situate them with respect to international best practices derived from literatures related to microbial risk assessment and management. We find considerable variability in microbial risk assessment frameworks and management tools in that approaches 1) vary between provinces; 2) vary within provinces and between similar types of agencies; 3) have limited focus on microbial risk assessment for ecosystem health and 4) diverge considerably from the literature on best practices. We find that risk assessments that are formalized, routine and applied system-wide (i.e. from source-to-tap) are limited. We identify key limitations of current testing methodologies and looking forward consider the outcomes of this research within the context of new developments in microbial water quality monitoring such as tests derived from genomics and metagenomics based research. © 2013 Elsevier B.V. All rights reserved.

  13. High field conditioning of cryogenic RF cavities

    International Nuclear Information System (INIS)

    Cole, M.; Debiak, T.; Lom, C.; Shephard, W.; Sredniawski, J.

    1993-01-01

    Space-based and other related accelerators have conditioning and operation requirements that are not found in most machines. The use of cryogenic copper, relatively poor vacuum, and limited power storage and operating time put unusual demands on the high-field conditioning process and present some concerns. Two CW cryogenic engineering model open-quotes sparkerclose quotes cavities have been fabricated and tested to fairly high field levels. Tests included initial and repeated conditioning as well as sustained RF operations. The two cavities were an engineering model TDL and an engineering model RFQ. Both cavities operated at 425 MHz. The DTL was conditioned to 46 MV/m at 100% duty factor (CW) at cryogenic temperature. This corresponds to a gap voltage of 433 kV and a real estate accelerating gradient (energy gain/total cavity length) of 6.97 MV/m. The authors believe this to be record performance for cryo CW operation. During cryo pulsed operation, the same cavity reached 48 MV/m with 200 μsec pulses at 0.5% DF. The RFQ was conditioned to 30 MV/m CW at cryo, 85 kV gap voltage. During a brief period of cryo pulsed operation, the RFQ operated at 46 MV/m, or 125 kV gap voltage. Reconditioning experiments were performed on both cavities and no problems were encountered. It should be noted that the vacuum levels were not very stringent during these tests and no special cleanliness or handling procedures were followed. The results of these tests indicate that cavities can run CW without difficulty at cryogenic temperatures at normal conservative field levels. Higher field operation may well be possible, and if better vacuums are used and more attention is paid to cleanliness, much higher fields may be attainable

  14. A breath of fresh air for cryogenics training

    CERN Multimedia

    HSE Unit

    2014-01-01

    Whether you work full-time in a cryogenic installation or are required to handle cryogenic substances temporarily, you need to have followed the appropriate safety training.   Photo: Christoph Balle. Two new training courses are now available in English and French at CERN: “Cryogenic Safety – Fundamentals” (at the Prévessin Training Centre) and “Cryogenic Safety – Helium Transfer” (at the Cryolab). The first covers the content of levels 1 and 2 of the old “Cryogenic Safety” course. The second is a completely new course for CERN: it covers specific aspects of the transfer of liquid helium, such as the evaporation process of helium and the associated risks to human health (asphyxia due to displacement of oxygen), the colour code for gas bottles, etc. These training modules have been rewritten in response to the increase in the number of projects involving cryogenics and following various related incident...

  15. Impact of the Cryogen Free Revolution on Neutron Scattering Laboratories

    Science.gov (United States)

    Kirichek, Oleg

    A global shortage of helium gas can seriously jeopardise the scientific programmes of neutron scattering laboratories due to the use of cryogenic sample environment in the majority of the neutron scattering experiments. Recently developed cryogen-free technology allows a significant reduction or even a complete elimination of liquid helium consumption. Here we review the impact of the cryogen-free revolution on cryogenic equipment used at large neutron facilities, such as cryostats, dilution refrigerators, superconducting magnets and other cryogenic systems. Particular attention is given to the newly developed superconducting magnets for neutron diffraction and spectroscopy experiments. Use of the cryogen-free approach, as well as cutting-edge superconducting magnet technology and advanced neutron optics allows researcher to achieve extraordinary performance in their experiments, opening up new opportunities in neutron scattering research.

  16. Investigation of a working fluid for cryogenic energy storage systems

    Science.gov (United States)

    Wojcieszak, P.; Poliński, J.; Chorowski, M.

    2017-12-01

    Cryogenic energy storage (CES) systems are promising alternatives to existing electrical energy storage technologies such as a pumped hydroelectric storage (PHS) or compressed air energy storage (CAES). In CES systems, excess electrical energy is used to liquefy a cryogenic fluid. The liquid can be stored in large cryogenic tanks for a long time. When a demand for the electricity is high, the liquid cryogen is pumped to high pressure and then warmed in a heat exchanger using ambient temperature or an available waste heat source. The vaporized cryogen is then used to drive a turbine and generate the electricity. Most research on cryogenic energy storage focuses on liquid air energy storage, as atmospheric air is widely available and therefore it does not limit a location of the energy storage plant. Nevertheless, CES with other gases as the working fluids can exhibit a higher efficiency. In this research a performance analysis of simple CES systems with several working fluids was performed.

  17. Safety Aspects of Big Cryogenic Systems Design

    Science.gov (United States)

    Chorowski, M.; Fydrych, J.; Poliński, J.

    2010-04-01

    Superconductivity and helium cryogenics are key technologies in the construction of large scientific instruments, like accelerators, fusion reactors or free electron lasers. Such cryogenic systems may contain more than hundred tons of helium, mostly in cold and high-density phases. In spite of the high reliability of the systems, accidental loss of the insulation vacuum, pipe rupture or rapid energy dissipation in the cold helium can not be overlooked. To avoid the danger of over-design pressure rise in the cryostats, they need to be equipped with a helium relief system. Such a system is comprised of safety valves, bursting disks and optionally cold or warm quench lines, collectors and storage tanks. Proper design of the helium safety relief system requires a good understanding of worst case scenarios. Such scenarios will be discussed, taking into account different possible failures of the cryogenic system. In any case it is necessary to estimate heat transfer through degraded vacuum superinsulation and mass flow through the valves and safety disks. Even if the design of the helium relief system does not foresee direct helium venting into the environment, an occasional emergency helium spill may happen. Helium propagation in the atmosphere and the origins of oxygen-deficiency hazards will be discussed.

  18. Properties of strain gages at cryogenic temperature

    International Nuclear Information System (INIS)

    Shibata, Nobuo; Fujiyoshi, Toshimitsu.

    1978-01-01

    At the time of developing superconduction generators, the stress measurement for rotor parts is required to grasp the safety and performance of the rotor at cryogenic temperature, which is cooled with liquid helium. In case of carrying out the stress measurement with strain gages, the problems are as follows. The strain gages and lead wires are exposed to cryogenic temperature from 4 to 10 K and strong magnetic field of about 3T, and subjected to high centrifugal acceleration of about 500G. In order to establish the techniques of the stress measurement under such conditions, the adhesives and damp-proof coatings for strain gages and strain gages themselves in Japan and foreign countries were examined on the properties at cryogenic temperature. As for the properties of strain gages, mainly the apparent strain owing to temperature change was investigated, and the change of the gage factors was studies only at liquid nitrogen temperature. The stress measurement with strain gages at low temperature had been studied in detail down to liquid nitrogen temperature concerning LNG tanks. The experimental apparatus, the samples, the testing methods and the test results of cooling tests on adhesives and damp-proof coatings, and the temperature characteristics of strain gages are reported. The usable adhesives and coatings were found, and correction by accurate temperature measurement is required for apparent strain. (Kako, I.)

  19. A cryogenic DAC operating down to 4.2 K

    Science.gov (United States)

    Rahman, M. T.; Lehmann, T.

    2016-04-01

    This paper presents a 10 bit CMOS current steering digital to analog converter (DAC) that operates from room temperature to as low as 4.2 K. It works as the core part of a cryogenic Silicon quantum computer controller circuit producing rapid control gate voltage pulses for quantum bits (qubits) initialization. An improved analog calibration method with a unique unit current cell design is included in the D/A converter structure to overcome the extended cryogenic nonlinear and mismatch effects. The DAC retains its 10 bit linear monotonic behavior over the wide temperature range and it drives a 50 Ω load to 516 mV with a full scale rise time of 10 ns. The differential non-linearity (DNL) of the converter is 0.35LSB while its average power consumption is 32.18 mW from a 3 V power supply. The complete converter is fabricated using a commercial 0.5 μm 1 poly 3 metal Silicon on Sapphire (SOS) CMOS process. He briefly worked as a Lecturer in the Stamford University Bangladesh prior to starting his Ph.D. in 2012 in the School of Electrical Engineering and Telecommunications, UNSW. His Ph.D. research is focused on cryogenic electronics for Quantum Computer Interface. His main research interests are in designing data converters for ultra-low temperature electronics and biomedical applications. He spent two years as a Research Fellow at the University of Edinburgh, U.K., where he worked with biologically inspired artificial neural systems. From 1997 to 2000, he was an Assistant Professor in electronics at the Technical University of Denmark, working with low-power low-noise low-voltage analog and mixed analog-digital integrated circuits. From 2001 to 2003 he was Principal Engineer with Cochlear Ltd., Australia, where he was involved in the design of the world's first fully implantable cochlear implant. Today he is Associate Professor in microelectronics at the University of New South Wales, Australia. He has authored over 100 journal papers, conference papers, book chapters

  20. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Anindya [Fermilab; Rane, Tejas [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  1. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Science.gov (United States)

    Chakravarty, Anindya; Rane, Tejas; Klebaner, Arkadiy

    2017-12-01

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation are determined. The static heat loads of the cavities along with the CDS are discussed. The supercritical helium (SHe) flow requirements for each cryomodule are computed through simulation study. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation are made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  2. Some General Principles in Cryogenic Design, Implementation, and Testing

    Science.gov (United States)

    Dipirro, Michael James

    2015-01-01

    Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.

  3. Cryogenic Safety HSE Seminar | 21 - 23 September 2016

    CERN Multimedia

    2016-01-01

    With the LHC being the world’s largest superconducting installation, it’s not surprising that CERN is a world leader in cryogenic safety. On 21 and 22 September, over 100 experts in cryogenic safety will be coming to CERN to take part in CERN’s first Cryogenic Safety Seminar, which aims to stimulate collaboration and further the state of the art in this increasingly important field.  

  4. Texture comparison between cold rolled and cryogenically rolled pure copper

    OpenAIRE

    Lapeire, Linsey; Sidor, J; Lombardia, EM; Verbeken, Kim; De Graeve, Iris; Terryn, H; Kestens, Leo

    2015-01-01

    Nowadays, there is a considerable scientific interest in bulk ultrafine grained materials, due to their potential for superior mechanical properties. One of the possible formation methods of nano-grained materials is cryogenic rolling. The influence of rolling at cryogenic temperatures has been investigated. Significant differences in the textures and the microstructures can be observed between the cryogenically rolled copper and conventionally cold rolled copper, reduced to the same thickness.

  5. Interdefect charge exchange in silicon particle detectors at cryogenic temperatures

    CERN Document Server

    MacEvoy, B; Hall, G; Moscatelli, F; Passeri, D; Santocchia, A

    2002-01-01

    Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase in the bias required to deplete the detector and hence achieve efficient charge collection. We have previously presented a model of interdefect charge exchange between closely spaced centers in the dense terminal clusters formed by hadron irradiation. This manifestly non-Shockley-Read-Hall (SRH) mechanism leads to a marked increase in carrier generation rate and negative space charge over the SRH prediction. There is currently much interest in the subject of cryogenic detector operation as a means of improving radiation hardness. Our motivation, however, is primarily to investigate our model further by testing its predictions over a range of temperatures. We present measurements of spectra from /sup 241/Am alpha par...

  6. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  7. Fabrication and characterization of cryogenic targets for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rieger, H.; Kim, K.

    1979-08-01

    A new technique has been developed which is capable of fabricating uniform cryogenic targets for use in inertial confinement fusion. The essence of the technique is to directly wet a target with a cold helium gas jet, which results in freezing of the DT mixture contained in the target. A controlled amount of current is pulsed through a heater wire surrounding the target, giving rise to fast evaporation and refreezing of the DT-condensate into a uniform layer. Experiments, which have been performed with D 2 -filled glass microshells, successfully produce uniform layers of both liquid and solid D 2 inside the glass shells. A set of data illustrating the technique is presented and analyzed

  8. Passive Capillary Pumped Cryocooling System for Zero-Boil-Off Cryogen Storage Tanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Significant cost and weight savings of a space mission can be achieved by improving the cryogenic storage technology. Added cryogen mass due to the cryogen boil-off,...

  9. The Effects of Cryogenic Treatment on Cutting Tools

    Science.gov (United States)

    Kumar, Satish; Khedkar, Nitin K.; Jagtap, Bhushan; Singh, T. P.

    2017-08-01

    Enhancing the cutting tool life is important and economic factor to reduce the tooling as well as manufacturing cost. The tool life is improved considerably by 92 % after cryogenic treatment. The cryogenic treatment is a one-time permanent, sub-zero heat treatment that entirely changes cross-section of cutting tool. The cryogenic treatment is carried out with deep freezing of cutting tool materials to enhance physical and mechanical properties. The cryogenic treatment improves mechanical such as hardness, toughness and tribological properties such as wear resistance, coefficient of friction, surface finish, dimensional stability and stress relief. The deep cryogenic treatment is the most beneficial treatment applied on cutting tools. The cryogenic treatment is the most advanced heat treatment and popular to improve performance of the cutting tool. The optimization of cryogenic treatment variables is necessary to improve tool life. This study reviews the effects of cryogenic treatment on microstructure, tribological properties of tool steels and machining applications of cutting tool by investigating the surface and performing the surface characterization test like SEM. The economy of cutting tool can be achieved by deep cryogenic treatment.

  10. Highly Flexible and Extremely Durable Polyimide Cryogenic Insulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovative insulation would greatly enhance the usability of, and reduce the inherent losses associated with, cryogenic fuel delivery and storage...

  11. High Reliability Cryogenic Piezoelectric Valve Actuator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  12. Investigation of woven composites as potential cryogenic tank materials

    Science.gov (United States)

    Islam, Md. S.; Melendez-Soto, E.; Castellanos, A. G.; Prabhakar, P.

    2015-12-01

    In this paper, carbon fiber and Kevlar® fiber woven composites were investigated as potential cryogenic tank materials for storing liquid fuel in spacecraft or rocket. Towards that end, both carbon and Kevlar® fiber composites were manufactured and tested with and without cryogenic exposure. The focus was on the investigation of the influence of initial cryogenic exposure on the degradation of the composite. Tensile, flexural and inter laminar shear strength (ILSS) tests were conducted, which indicate that Kevlar® and carbon textile composites are potential candidates for use under cryogenic exposure.

  13. Cryogenic freezing of fresh date fruits for quality preservation during frozen storage

    Directory of Open Access Journals (Sweden)

    Abdullah Alhamdan

    2018-01-01

    Full Text Available Fresh date fruits, especially Barhi cultivar, are favored and widely consumed at the Khalal maturity stage (first color edible stage. These fruits are seasonal and perishable and there is a need for extending their shelf life. This study evaluates two different freezing methods, namely cryogenic freezing using liquid nitrogen and conventional deep freezing on preserving the quality and stability of date fruits (cv. Barhi at Khalal maturity stage. Fresh date fruits (cv. Barhi at Khalal stage were frozen utilizing the two methods. The produced frozen dates were stored under frozen storage conditions for nine months (at −20 °C and −40 °C for the conventional and cryogenic freezing, respectively. Color values, textural properties (hardness, elasticity, chewiness and resilience, and nutrition attributes (enzymes and sugars for fresh dates before freezing and for the frozen dates were measured every three months during the frozen storage. Color values of the frozen dates were affected by the freezing method and the frozen storage period. There are substantial differences in the quality of the frozen fruits in favor of cryogenic freezing compared to the conventional slow freezing. The results revealed a large disparity between the times of freezing of the two methods. The freezing time accounted to 10 min in the cryogenic freezing method, whereas it was 1800 min for the conventional slow freezing system.

  14. System and method for quench and over-current protection of superconductor

    Science.gov (United States)

    Huang, Xianrui; Laskaris, Evangelos Trifon; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas; Fogarty, James Michael; Steinbach, Albert Eugene

    2005-05-31

    A system and method for protecting a superconductor. The system may comprise a current sensor operable to detect a current flowing through the superconductor. The system may comprise a coolant temperature sensor operable to detect the temperature of a cryogenic coolant used to cool the superconductor to a superconductive state. The control circuit is operable to estimate the superconductor temperature based on the current flow and the coolant temperature. The system may also be operable to compare the estimated superconductor temperature to at least one threshold temperature and to initiate a corrective action when the superconductor temperature exceeds the at least one threshold temperature.

  15. Design of spiral fin type condenser for hydrogen cryogenic distillation column

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Nishi, Masataka; Yamanishi, Toshihiko

    2005-08-01

    The purpose of this paper is the proposal of new concept condenser for hydrogen cryogenic distillation column of Hydrogen Isotope Separation System (ISS) in a fusion reactor, and the establishment of numerical evaluation method of the hydrogen isotope inventory in the condenser. A large amount of hydrogen isotopes including high concentration of tritium, radioactive hydrogen isotope, has been handled in the cryogenic distillation column. Therefore, from the safety point of view, cryogenic coolant tube was commonly arranged to surround the condensed area to prevent the mixing of tritium into the coolant. This inevitable arrangement leads the difficulty in the minimization of the condenser. The scale of condenser has influence on the scale of the ISS and its earthquake-resistance. The spiral fin type condenser, which introduces fins inside it and in coolant tube to enhance heat exchange, is proposed as a new concept condenser for hydrogen cryogenic distillation column to miniaturize the condenser. The volume of spiral fin type condenser is estimated to become less than half of that of coil tube type condenser currently in use. Accordingly, it is found that the adoption of spiral fin type condenser realizes the significant miniaturization of the ISS. Moreover, the numerical evaluation method of the hydrogen isotope inventory in the condenser is proposed. The validity of this method was confirmed by the experimental data. The synthetic design of the condenser for the hydrogen cryogenic distillation column is achieved by the combination of the proposed new concept condenser with the numerical evaluation method of the hydrogen isotope inventory. (author)

  16. Comparative Study of two PWM techniques for Three Phase Shunt Hybrid Active Power Filter to Suppress Line Current Harmonics

    OpenAIRE

    SELVAMUTHUKUMARAN Rajasekar; NATARAJAN Muraly; PERIANAYAGAM Ajay-D-VimalRaj; MAHALINGAM Sudhakaran

    2010-01-01

    This paper investigates the performanceand comparison of two pulse-width-modulation (PWM)techniques by employing direct current control strategyapplied to three phase shunt hybrid active power filter(SHAPF). The objective of SHAPF is to eliminate linecurrent harmonics and to incur reactive powercompensation. The direct current control strategy isimplemented using Standard PWM (S-PWM) and aModified PWM (M-WM), in order to compensatecurrent harmonic and reactive power generated bydifferent load...

  17. A new ultra-low-temperature cryogen-free experimental platform

    Science.gov (United States)

    Batey, G.; Matthews, A. J.; Patton, M.

    2014-12-01

    We report the introduction of a new cryogen-free dilution refrigerator experimental platform that provides significant performance enhancements, in several key areas, over the current generation of systems. In particular the ability to: install more experimental services; install higher-field experimental magnets; dissipate more power at the ~ 4 K stage; and to attain higher cooling powers and lower base-temperatures (below 3.5 mK) at the mixing chamber plate.

  18. Cryogenic Clamp-on Ultrasonic Flowmeters using Single Crystal Piezoelectric Transducers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Clamp-on ultrasound cryogenic flowmeters using single crystal piezoelectric transducers are proposed to enable reliable, accurate cryogenic instrumentation needs in...

  19. Cryogenic target design considerations for the production of [18F]fluoride from enriched [18O]carbon dioxide.

    Science.gov (United States)

    Firouzbakht, M L; Schlyer, D J; Fowler, J S

    1999-10-01

    Four cryogenic target designs are described for the production of fluorine-18 in the chemical form of fluoride using oxygen-18-enriched carbon dioxide gas utilizing the (18)O(p,n)18F nuclear reaction. The targets are conical in shape and made of copper or silver and the carbon dioxide is frozen into the cone at liquid nitrogen temperatures. Three of the targets (2 copper and 1 silver) have four cooling fins extending radially and are different lengths, and one target has only a single heat sink at the rear of the cone. The targets with four cooling fins could be run with 17.4 MeV protons incident on the target material at a beam current of 25 microA with no detectable volatilization of the target material, although yields did decrease slightly when compared with lower current runs. The target with the single cooling block showed volatilization at about 8 microA. The two copper targets of different lengths did not show a difference in the volatilization of the target material at the beam current limit of our cyclotron (25 microA). The shorter target did maintain production with a lower amount of gas frozen into the target, while the longer target maintained production at higher beam currents. Targets of this type are compatible with low energy, high current accelerators because very thin windows may be used.

  20. Cryogenic-temperature profiling of high-power superconducting lines using local and distributed optical-fiber sensors

    CERN Document Server

    Chiuchiolo, Antonella; Consales, Marco; Giordano, Michele; Borriello, Anna; Bajas, Hugues; Galtarossa, Andrea; Bajko, Marta; Cusano, Andrea

    2015-01-01

    This contribution presents distributed and multi-point fiber-optic monitoring of cryogenic temperatures along a superconducting power transmission line down to 30 K and over 20 m distance. Multi-point measurements were conducted using fiber Bragg gratings sensors coated with two different functional overlays (epoxy and PMMA) demonstrating cryogenic operation in the range 300 – 4.2 K. Distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimide). The integrated system has been placed along the 20 m long cryostat of a superconducting power transmission line, which is currently being tested at the European Organization for Nuclear Research (CERN). Cool-down events from 300 K to 30 K have been successfully measured in space and time, confirming the viability of these approaches to the monitoring of cryogenic temperatures along a superconducting transmission line.

  1. Cryogenic studies of rf accelerating structures, vintage 1978

    International Nuclear Information System (INIS)

    Liska, D.; Uher, J.; Potter, J.

    1986-01-01

    Cryogenically cooled rf cavity studies were undertaken at Los Alamos in 1978 to test the effectiveness of reduced temperature on the Q-enhancement of 450-MHz drift-tube linac structures. A complete facility was set up to do high power tests, not only at liquid nitrogen (LN 2 ) temperature but with liquid hydrogen (LH 2 ) as well. The cavity, Dewar, klystron test stand, and a remote outdoor enclosure were constructed. Hydrogen safety approval for the tests was obtained. Unfortunately, the hydrogen tests were never done. However, the cavity was tested at high power in LN 2 and a Q-enhancement of 2.02 was recorded, compared to 2.7 expected theoretically. This work is now continuing with improved measuring techniques using some of the same apparatus. It is the purpose of this paper to report on the early work and to reference its continuation today

  2. Proceedings of the 26th International Cryogenic Engineering Conference - International Cryogenic Material Conference 2016

    Science.gov (United States)

    Datta, T. S.; Sharma, R. G.; Kar, S.

    2017-02-01

    International Conference ICEC 26 - ICMC 2016 was organized at New Delhi, India during March 7-11, 2016. Previous conference ICEC25-ICMC 2014 was held at the University of Twente, The Netherlands in July 2014. Next Conference ICEC 27- ICMC 2018 will be held at Oxford, UK during September 3-7, 2018 1. Introduction This is a biennial international conference on cryogenic engineering and cryogenics materials organized by the International Cryogenic Engineering Committee and the International Cryogenic Material Committee. For some years, the host country has been alternating between Europe and Asia. The present conference was held at the Manekshaw Convention Centre, New Delhi, India during March 7-11, 2016 and hosted jointly by the Indian Cryogenics Council (ICC) and the Inter-University Accelerator Centre (IUAC), New Delhi. Put all together as many as 547 persons participated in the conference. Out of these 218 were foreign delegates coming from 25 countries and the rest from India. 2. Inaugural Session & Course Lectures The pre conference short course lectures on “Cryocoolers” and “Superconducting Materials for Power Applications” were organized on 7th March. Cryocooler course was given jointly by Dr. Chao Wang from M/s. Cryomech, USA and Prof. Milind Atrey from IIT Bombay, India. The Course on Superconducting Materials was given by Prof. Venkat Selvamanickam from the University of Houston, USA. The conference was inaugurated in the morning of March 8th in a typical Indian tradition and in the presence of the Chief Guest, Dr. R Chidambaram (Principle Scientific Adviser to Govt. of India), Guest of Honour, Prof. H Devaraj (Vice Chairman University Grant Commission), Prof Marcel ter Brake ( Chair, ICEC Board), Prof. Wilfried Goldacker (Chair, ICMC board), Dr. D Kanjilal (Director IUAC), Dr R K Bhandari, (President, Indian Cryogenic Council ). Dr. T S Datta, Chair Local Organizing Committee coordinated the proceedings of the inaugural function. 3. Technical

  3. Thermal conductivity studies of a polyurea cross-linked silica aerogel-RTV 655 compound for cryogenic propellant tank applications in space

    Science.gov (United States)

    Sabri, F.; Marchetta, J.; Smith, K. M.

    2013-10-01

    Silica-based aerogel is an ideal thermal insulator with a makeup of up to 99% air associated with the highly porous nature of this material. Polyurea cross-linked silica aerogel (PCSA) has superior mechanical properties compared to the native aerogels yet retains the highly porous open pore network and functions as an ideal thermal insulator with added load-bearing capability necessary for some applications. Room temperature vulcanizing rubber-RTV 655—is a space qualified elastomeric thermal insulator and encapsulant with high radiation and temperature tolerance as well as chemical resistance. Storage and transport of cryogenic propellant liquids is an integral part of the success of future space exploratory missions and is an area under constant development. Limitations and shortcomings of current cryogenic tank materials and insulation techniques such as non-uniform insulation layers, self-pressurization, weight and durability issues of the materials used, has motivated the quest for alternative materials. Both RTV 655 and PCSA are promising space qualified materials with unique and tunable microscopic and macroscopic properties making them attractive candidates for this study. In this work, the effect of PCSA geometry and volume concentration on the thermal behavior of RTV 655—PCSA compound material has been investigated at room temperature and at a cryogenic temperature. Macroscopic and microscopic PCSA material was encapsulated at increasing concentrations in an RTV 655 elastomeric matrix. The effect of pulverization on the nanopores of PCSA as a method for creating large quantities of homogeneous PCSA microparticles has also been investigated and is reported. The PCSA volume concentrations ranged between 22% and 75% for both geometries. Thermal conductivity measurements were performed based on the steady state transient plane source method.

  4. Cryogenic Characteristics of the ATLAS Barrel Toroid Superconducting Magnet

    CERN Document Server

    Pengo, R; Delruelle, N; Pezzetti, M; Pirotte, O; Passardi, Giorgio; Dudarev, A; ten Kate, H

    2008-01-01

    ATLAS, one of the experiments of the LHC accelerator under commissioning at CERN, is equipped with a large superconducting magnet the Barrel Toroid (BT) that has been tested at nominal current (20500 A). The BT is composed of eight race-track superconducting coils (each one weights about 45 tons) forming the biggest air core toroidal magnet ever built. By means of a large throughput centrifugal pump, a forced flow (about 10 liter/second at 4.5 K) provides the indirect cooling of the coils in parallel. The paper describes the results of the measurements carried out on the complete cryogenic system assembled in the ATLAS cavern situated 100 m below the ground level. The measurements include, among other ones, the static heat loads, i.e., with no or constant current in the magnet, and the dynamic ones, since additional heat losses are produced, during the current ramp-up or slow dump, by eddy currents induced on the coil casing.

  5. Conformal cryogenic tank trade study for reusable launch vehicles

    Science.gov (United States)

    Rivers, H. Kevin

    1999-01-01

    Future reusable launch vehicles may be lifting bodies with non-circular cross section like the proposed Lockheed-Martin VentureStar™. Current designs for the cryogenic tanks of these vehicles are dual-lobed and quad-lobed tanks which are packaged more efficiently than circular tanks, but still have low packaging efficiencies with large gaps existing between the vehicle outer mold line and the outer surfaces of the tanks. In this study, tanks that conform to the outer mold line of a non-circular vehicle were investigated. Four structural concepts for conformal cryogenic tanks and a quad-lobed tank concept were optimized for minimum weight designs. The conformal tank concepts included a sandwich tank stiffened with axial tension webs, a sandwich tank stiffened with transverse tension webs, a sandwich tank stiffened with rings and tension ties, and a sandwich tank stiffened with orthogrid stiffeners and tension ties. For each concept, geometric parameters (such as ring frame spacing, the number and spacing of tension ties or webs, and tank corner radius) and internal pressure loads were varied and the structure was optimized using a finite-element-based optimization procedure. Theoretical volumetric weights were calculated by dividing the weight of the barrel section of the tank concept and its associated frames, webs and tension ties by the volume it circumscribes. This paper describes the four conformal tank concepts and the design assumptions utilized in their optimization. The conformal tank optimization results included theoretical weights, trends and comparisons between the concepts, are also presented, along with results from the optimization of a quad-lobed tank. Also, the effects of minimum gauge values and non-optimum weights on the weight of the optimized structure are described in this paper.

  6. Cryogen spray cooling during laser tissue welding.

    Science.gov (United States)

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.

  7. R&D ERL: Cryogenic System

    Energy Technology Data Exchange (ETDEWEB)

    Than, R.

    2010-01-01

    The ERL cryogenic system will supply cooling to a super-conducting RF (SCRF) gun and the 5-cell super-conducting RF cavity system that need to be held cold at 2K. The engineering of the cavity cryomodules were carried out by AES in collaboration with BNL. The 2K superfluid bath is produced by pumping on the bath using a sub-atmospheric warm compression system. The cryogenic system makes use of mainly existing equipment relocated from other facilities: a 300W 4.5K coldbox, an 45 g/s screw compressor, a 3800 liter liquid helium storage dewar, a 170 m{sup 3} warm gas storage tank, and a 40,000 liter vertical low pressure liquid nitrogen storage dewar. An existing wet expander obtained from another facility has been added to increase the plant capacity. In order to deliver the required 3 to 4 bar helium to the cryomodules while using up stored liquid capacity at low pressure, a new subcooler will be installed to function as the capacity transfer device. A 2K to 4K recovery heat exchanger is also implemented for each cryomodule to recover refrigeration below 4K, thus maximizing 2K cooling capacity with the given sub-atmospheric pump. No 4K-300K refrigeration recovery is implemented at this time of the returning sub-atmospheric cold vapor, hence the 2K load appears as a liquefaction1 load on the cryogenic plant. A separate LN2 cooling loop supplies liquid nitrogen to the superconducting gun's cathode tip.

  8. Effect of tempering after cryogenic treatment of tungsten carbide ...

    Indian Academy of Sciences (India)

    Cryogenic treatment is a recent advancement in the field of machining to improve the properties of cutting tool materials. Tungsten carbide is the most commonly used cutting tool material in the industry and the technique can also be extended to it. Although the importance of tempering after cryogenic treatment has been ...

  9. Texture comparison between cold rolled and cryogenically rolled pure copper

    NARCIS (Netherlands)

    Lapeire, L.; Sidor, J.; Martinez Lombardia, E.; Verbeken, K.; De Graeve, I.; Terryn, H.A.; Kestens, L.A.I.

    2015-01-01

    Nowadays, there is a considerable scientific interest in bulk ultrafine grained materials, due to their potential for superior mechanical properties. One of the possible formation methods of nano-grained materials is cryogenic rolling. The influence of rolling at cryogenic temperatures has been

  10. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  11. Thermography to Inspect Insulation of Large Cryogenic Tanks

    Science.gov (United States)

    Arens, Ellen; Youngquist, Robert

    2011-01-01

    Thermography has been used in the past to monitor active, large, cryogenic storage tanks. This approach proposes to use thermography to monitor new or refurbished tanks, prior to filling with cryogenic liquid, to look for insulation voids. Thermography may provide significant cost and schedule savings if voids can be detected early before a tank is returned to service.

  12. 49 CFR 173.319 - Cryogenic liquids in tank cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in tank cars. 173.319 Section... cars. (a) General requirements. (1) A tank car containing a flammable cryogenic liquid may not be shipped unless it was loaded by, or with the consent of, the owner of the tank car. (2) The amount of...

  13. Support assembly for cryogenically coolable low-noise choke waveguide

    Science.gov (United States)

    Mccrea, F. E. (Inventor)

    1980-01-01

    A compact cryogenically coolable choked waveguide for low-noise input coupling into a cryogenically cooled device, such as a maser or parametric amplifier, utilizes coaxial stainless steel support tubes surrounding the waveguide and connected in cascade to provide a folded low thermal conduction path. The edges of the tubes connected are welded.

  14. The cryogenic source of slow monochromatic positrons

    International Nuclear Information System (INIS)

    Meshkov, I.N.; Pavlov, V.N.; Sidorin, A.O.; Yakovenko, S.L.

    2008-01-01

    The cryogenic source of slow monochromatic positrons based on the 22 Na isotope has been designed and constructed at JINR. Positrons emitted from radioactive source 22 Na have a very broad energy spectrum up to 0.5 MeV. To generate monochromatic beam of slow positrons the solid neon is used as a moderator. The solid neon allows forming slow positron beam of the energy of 1.2 eV at the spectrum width of 1 eV. The efficiency of moderation is 1 % of total positron flux

  15. Properties of a nanodielectric cryogenic resin

    Energy Technology Data Exchange (ETDEWEB)

    Polyzos, Georgios [ORNL; Tuncer, Enis [ORNL; Sauers, Isidor [ORNL; More, Karren Leslie [ORNL

    2010-01-01

    Physical properties of a nanodielectric composed of in situ synthesized titanium dioxide (TiO{sub 2}) nanoparticles ({le} 5 nm in diameter) and a cryogenic resin are reported. The dielectric losses were reduced by a factor of 2 in the nanocomposite, indicating that the presence of small TiO{sub 2} nanoparticles restricted the mobility of the polymer chains. Dielectric breakdown data of the nanodielectric was distributed over a narrower range than that of the unfilled resin. The nanodielectric had 1.56 times higher 1% breakdown probability than the resin, yielding 0.64 times thinner insulation thickness for the same voltage level, which is beneficial in high voltage engineering.

  16. Thin Cryogenic X-ray Windows

    CERN Document Server

    Niinikoski, T O; Davenport, M; Elias, N; Aune, S; Franz, J

    2009-01-01

    We describe the construction and tests of cryogenic X-ray windows of 47 mm diameter made of 15 ìm thick polypropylene foil glued on a UHV flange and supported with a strongback mesh machined by electro-erosion. These hermetic windows of the solar axion telescope of the CAST experiment at CERN withstand the static and dynamic pressures of the buffer gas that are normally below 130 mbar, but may reach 1.2 bar when the magnet quenches. They were tested at 60 K up to 3.5 bar static pressure without permanent deformation.

  17. Cryogenic Vacuum Insulation for Vessels and Piping

    Science.gov (United States)

    Kogan, A.; Fesmire, J.; Johnson, W.; Minnick, J.

    2010-01-01

    Cryogenic vacuum insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Three areas of consideration are vital to achieve the optimum result: materials, representative test conditions, and engineering approach for the particular application. Deficiency in one of these three areas can prevent optimum performance and lead to severe inefficiency. Materials of interest include micro-fiberglass, multilayer insulation, and composite arrangements. Cylindrical liquid nitrogen boil-off calorimetry methods were used. The need for standard thermal conductivity data is addressed through baseline testing. Engineering analysis and design factors such as layer thickness, density, and practicality are also considered.

  18. Explosive Boiling of Superheated Cryogenic Liquids

    CERN Document Server

    Baidakov, V G

    2007-01-01

    The monograph is devoted to the description of the kinetics of spontaneous boiling of superheated liquefied gases and their solutions. Experimental results are given on the temperature of accessible superheating, the limits of tensile strength of liquids due to processes of cavitation and the rates of nucleation of classical and quantum liquids. The kinetics of evolution of the gas phase is studied in detail for solutions of cryogenic liquids and gas-saturated fluids. The properties of the critical clusters (bubbles of critical sizes) of the newly evolving gas phase are analyzed for initial st

  19. Feasibility study of a cryogenically cooled window for high-power gyrotrons

    International Nuclear Information System (INIS)

    Haste, G.R.; Kimrey, H.D.; Prosise, J.D.

    1986-07-01

    Single-crystal sapphire is currently in use as the material for output windows in high-power microwave tubes, particularly gyrotrons. These windows are currently being cooled by fluorocarbon fluids at near-room temperatures. There are, however, several advantages in operating the window at very low temperatures: less absorption and consequent heating of the window, greater material strength, improved resistance to crack formation, greater thermal conductivity, and reduced thermal expansion. Operation at cryogenic temperatures is shown to be feasible. The output power, which is currently limited by window constraints, could be increased by an order of magnitude or more

  20. Cryogenic Fluid Management Technology for Moon and Mars Missions

    Science.gov (United States)

    Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

    2010-01-01

    In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

  1. Comparative effects of clindamycin and lincomycin on end-plate currents and quantal content at the neuromuscular junction.

    Science.gov (United States)

    Fiekers, J F; Henderson, F; Marshall, I G; Parsons, R L

    1983-11-01

    The pre- and postjunctional effects of the lincosamide antibiotics, clindamycin and lincomycin, were studied in voltage-clamped transected twitch fibers of costocutaneous muscles of garter snakes (species Thamnophis). Miniature end-plate currents and end-plate currents (EPCs) were recorded over a wide voltage range for each antibiotic. The amplitude and kinetics of these currents were studied and estimates of the quantal content of evoked transmitter release determined. High concentrations of clindamycin (2 X 10(-4) M) and lincomycin (2 X 10(-3) M) produced significant depression of EPC amplitude and a nonlinearity in the EPC-voltage relationships. The time constant of EPC decay was accelerated in clindamycin and the relationship between the time constant of EPC decay and membrane potential remained a single exponential function with a concentration-dependent loss of the voltage dependence. In contrast to clindamycin, lincomycin produced biphasic EPCs which consisted of two components, one faster and one slower than the control decay rate. The relative amplitude and decay rate of each component was both concentration and voltage dependent. Either increasing the concentration of lincomycin or membrane hyperpolarization decreased the amplitude ratio, iota slow/iota fast, and increased the ratio of the respective time constants, tau slow/tau fast. Clindamycin affected EPC decay amplitude and quantal content in the same concentration range, whereas lincomycin affected EPC decay at concentrations 20 times less than those required to reduce EPC amplitude and quantal content. These results suggest that the neuromuscular blocking effects of clindamycin involve both pre-and postjunctional sites, whereas the effects of lincomycin are primarily on the postjunctional receptor-channel complex.

  2. Numerical Simulations of Electrokinetic Processes Comparing the Use of a Constant Voltage Difference or a Constant Current as Driving Force

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    materials and the prevention of the reinforced concrete corrosion. The electrical energy applied in an electrokinetic process produces electrochemical reactions at the electrodes. Different electrode processes can occur. When considering inert electrodes in aqueous solutions, the reduction of water...... are transported from the anode to the cathode through the closed electrical circuit of the cell. In the solution, the electrical current is carried by the ions, which move towards the electrode with different charge. Therefore, different authors have studied the system using the circuit theory. Assuming...

  3. Subcutaneous Immunotherapy and Sublingual Immunotherapy: Comparative Efficacy, Current and Potential Indications, and Warnings--United States Versus Europe.

    Science.gov (United States)

    Nelson, Harold S; Makatsori, Melina; Calderon, Moises A

    2016-02-01

    Subcutaneous immunotherapy and sublingual immunotherapy are effective for allergic rhinitis and allergic asthma and with some support for use in selected patients with atopic dermatitis. The sequence of immunologic responses is the same, irrespective of the route of administration, and similar disease modification has been demonstrated. However, there are differences between the two approaches. The most important is the greatly reduced likelihood of sublingual immunotherapy producing systemic reactions. There are major drawbacks for sublingual immunotherapy in regard to dosing. Finally, there is the question of relative clinical efficacy, with the currently available data favoring subcutaneous immunotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cryogenic commissioning, cool down and first magnet operation of Wendelstein 7-X

    Science.gov (United States)

    Nagel, M.; Dhard, C. P.; Bau, H.; Bosch, H.-S.; Meyer, U.; Raatz, S.; Risse, K.; Rummel, T.

    2017-02-01

    The construction of the stellarator fusion experiment Wendelstein 7-X (W7-X) was accomplished in 2014. Commissioning of cryogenic system, first cool down of W7-X cryostat and operation of the magnet system was achieved. First plasma operation was accomplished 10th of December 2015. W7-X consists of a magnet system with 70 superconducting coils inside a cryostat. The cold mass of 456 tons is cooled with a helium plant with an equivalent refrigeration power of 7 kW at 4.5 K. The paper presents the commissioning of the cryogenic system, the cool down of the cryostat and first steady state operation with currents up to 12.8 kA. Helium temperatures, mass flow rates and pressure drops inside W7-X cooling circuits are as expected allowing safe magnet operation. Heat loads on the thermal shield and on the superconducting coils are lower than specified for the cryostat design.

  5. MECHANICAL PROPERTIES OF THIN GDP SHELLS USED AS CRYOGENIC DIRECT DRIVE TARGETS AT OMEGA

    International Nuclear Information System (INIS)

    NIKROO, A.; CZECHOWICZ, D.; CHEN, K.C.; DICKEN, M.; MORRIS, C.; ANDREWS, R.; GREENWOOD, A.L; CASTILLO, E.

    2003-09-01

    OAK-B135 Thin glow discharge polymer (GDP) shells are currently used as the targets for cryogenic direct drive laser fusion experiments. These shells need to be filled with nearly 1000 atm of D 2 and cooled to cryogenic temperatures without failing due to buckling and bursting pressures they experience in this process. Therefore, the mechanical and permeation properties of these shells are of utmost importance in successful and rapid filling with D 2 . In this paper, they present an overview of buckle and burst pressures of several different types of GDP shells. These include those made using traditional GDP deposition parameters (standard GDP) using a high deposition pressure and using modified parameters (strong GDP) of low deposition pressure that leads to more robust shells

  6. Optimization of cryogenic cooled EDM process parameters using grey relational analysis

    International Nuclear Information System (INIS)

    Kumar, S Vinoth; Kumar, M Pradeep

    2014-01-01

    This paper presents an experimental investigation on cryogenic cooling of liquid nitrogen (LN 2 ) copper electrode in the electrical discharge machining (EDM) process. The optimization of the EDM process parameters, such as the electrode environment (conventional electrode and cryogenically cooled electrode in EDM), discharge current, pulse on time, gap voltage on material removal rate, electrode wear, and surface roughness on machining of AlSiCp metal matrix composite using multiple performance characteristics on grey relational analysis was investigated. The L 18 orthogonal array was utilized to examine the process parameters, and the optimal levels of the process parameters were identified through grey relational analysis. Experimental data were analyzed through analysis of variance. Scanning electron microscopy analysis was conducted to study the characteristics of the machined surface.

  7. Manufacturing and Installation of the Compound Cryogenic Distribution Line for the Large Hadron Collider

    CERN Document Server

    Riddone,, G; Bouillot, A; Brodzinski, K; Dupont, M; Fathallah, M; Fournel, JL; Gitton, E; Junker, S; Moussavi, H; Parente, C; Riddone, G

    2007-01-01

    The Large Hadron Collider (LHC) [1] currently under construction at CERN will make use of superconducting magnets operating in superfluid helium below 2 K. A compound cryogenic distribution line (QRL) will feed with helium at different temperatures and pressures the local elementary cooling loops in the cryomagnet strings. Low heat inleak to all temperature levels is essential for the overall LHC cryogenic performance. Following a competitive tendering, CERN adjudicated in 2001 the contract for the series line to Air Liquide (France). This paper recalls the main features of the technical specification and shows the project status. The basic choices and achievements for the industrialization phase of the series production are also presented, as well as the installation issues and status.

  8. Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.

  9. Characteristics of GaAs/AlGaAs-doped channel MISFET's at cryogenic temperatures

    International Nuclear Information System (INIS)

    Laskar, J.; Kolodzey, J.; Ketterson, A.A.; Adesida, I.; Cho, A.Y.

    1990-01-01

    The authors present high-frequency measurements at cryogenic temperatures to 125 K of 0.3-μm gate length GaAs/Al 0.3 Ga 0.7 As metal insulator semiconductor field-effect transistors (MISFET's) with a doped channel. Experimental results demonstrate significant improvement in performance including an increase in the maximum frequency of oscillation f max from 70 to 81 GHz and an increase in the unity current gain cutoff frequency f T from 46 to 57 GHz. Independently determined decreases in electron mobility and increases in electron velocity under similar conditions lead to the conclusion that carrier velocity and not mobility controls transport in these devices. These results show the high-speed potential of doped channel MISFET's at both room temperature and cryogenic temperatures

  10. Cryogenic readout electronics with silicon P-MOSFETS for the infrared astronomical satellite, ASTRO-F

    Science.gov (United States)

    Hirao, T.; Hibi, Y.; Kawada, M.; Nagata, H.; Shibai, H.; Watabe, T.; Noda, M.; Nakagawa, T.

    We have successfully developed a low-power, low-noise silicon p-channel MOSFET working at 1.8 K. This MOSFET was produced by a standard 0.5μm BiCMOS process. From the typical current-voltage characteristics of this p-channel MOSFET at 1.8K, we obtained that the drain resistance r d is ˜2Mω, the transconductance g m is ˜35μS, and the input referred noise voltage is as low as ˜2μV/√Hz at 1Hz under low-drain current condition (˜1μA). No "kink"-like behavior was observed within the nominal operation range (-1.5Vcryogenic electronics. The purpose of the present work is to develop the capacitive transimpedance amplifiers (CTIA) for the Far-infrared Surveyor (FIS) on board the Japanese infrared astronomical satellite, ASTRO-F. The cryogenic amplifier that is essential for CTIAs was successfully made by employing this p-channel MOSFET. The open-loop gain was ˜1000, and the power consumption was less than 10μW at 4.2K. We have finally demonstrated that the CTIA consisting of this cryogenic amplifier worked well at 4.2 K.

  11. Fuzzy logic, PSO based fuzzy logic algorithm and current controls comparative for grid-connected hybrid system

    Science.gov (United States)

    Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.

    2017-02-01

    In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.

  12. Fiber-Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging

    Science.gov (United States)

    Xu. Wei

    2010-01-01

    An innovative fiber-optic sensor has been developed for low-thrust-level settled mass gauging with measurement uncertainty optical fiber to measure liquid level and liquid distribution of cryogenic propellants. Every point of the sensing fiber is a point sensor that not only distinguishes liquid and vapor, but also measures temperature. This sensor is able to determine the physical location of each point sensor with 1-mm spatial resolution. Acting as a continuous array of numerous liquid/vapor point sensors, the truly distributed optical sensing fiber can be installed in a propellant tank in the same manner as silicon diode point sensor stripes using only a single feedthrough to connect to an optical signal interrogation unit outside the tank. Either water or liquid nitrogen levels can be measured within 1-mm spatial resolution up to a distance of 70 meters from the optical interrogation unit. This liquid-level sensing technique was also compared to the pressure gauge measurement technique in water and liquid nitrogen contained in a vertical copper pipe with a reasonable degree of accuracy. It has been demonstrated that the sensor can measure liquid levels in multiple containers containing water or liquid nitrogen with one signal interrogation unit. The liquid levels measured by the multiple fiber sensors were consistent with those virtually measured by a ruler. The sensing performance of various optical fibers has been measured, and has demonstrated that they can survive after immersion at cryogenic temperatures. The fiber strength in liquid nitrogen has also been measured. Multiple water level tests were also conducted under various actual and theoretical vibration conditions, and demonstrated that the signal-to-noise ratio under these vibration conditions, insofar as it affects measurement accuracy, is manageable and robust enough for a wide variety of spacecraft applications. A simple solution has been developed to absorb optical energy at the termination of

  13. Modelling and control of large cryogenic refrigerator

    International Nuclear Information System (INIS)

    Bonne, Francois

    2014-01-01

    This manuscript is concern with both the modeling and the derivation of control schemes for large cryogenic refrigerators. The particular case of those which are submitted to highly variable pulsed heat load is studied. A model of each object that normally compose a large cryo-refrigerator is proposed. The methodology to gather objects model into the model of a subsystem is presented. The manuscript also shows how to obtain a linear equivalent model of the subsystem. Based on the derived models, advances control scheme are proposed. Precisely, a linear quadratic controller for warm compression station working with both two and three pressures state is derived, and a predictive constrained one for the cold-box is obtained. The particularity of those control schemes is that they fit the computing and data storage capabilities of Programmable Logic Controllers (PLC) with are well used in industry. The open loop model prediction capability is assessed using experimental data. Developed control schemes are validated in simulation and experimentally on the 400W1.8K SBT's cryogenic test facility and on the CERN's LHC warm compression station. (author) [fr

  14. Cryogenic setup for trapped ion quantum computing.

    Science.gov (United States)

    Brandl, M F; van Mourik, M W; Postler, L; Nolf, A; Lakhmanskiy, K; Paiva, R R; Möller, S; Daniilidis, N; Häffner, H; Kaushal, V; Ruster, T; Warschburger, C; Kaufmann, H; Poschinger, U G; Schmidt-Kaler, F; Schindler, P; Monz, T; Blatt, R

    2016-11-01

    We report on the design of a cryogenic setup for trapped ion quantum computing containing a segmented surface electrode trap. The heat shield of our cryostat is designed to attenuate alternating magnetic field noise, resulting in 120 dB reduction of 50 Hz noise along the magnetic field axis. We combine this efficient magnetic shielding with high optical access required for single ion addressing as well as for efficient state detection by placing two lenses each with numerical aperture 0.23 inside the inner heat shield. The cryostat design incorporates vibration isolation to avoid decoherence of optical qubits due to the motion of the cryostat. We measure vibrations of the cryostat of less than ±20 nm over 2 s. In addition to the cryogenic apparatus, we describe the setup required for an operation with 40 Ca + and 88 Sr + ions. The instability of the laser manipulating the optical qubits in 40 Ca + is characterized by yielding a minimum of its Allan deviation of 2.4 ⋅ 10 -15 at 0.33 s. To evaluate the performance of the apparatus, we trapped 40 Ca + ions, obtaining a heating rate of 2.14(16) phonons/s and a Gaussian decay of the Ramsey contrast with a 1/e-time of 18.2(8) ms.

  15. Aerogel Beads as Cryogenic Thermal Insulation System

    Science.gov (United States)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

    2001-01-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  16. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  17. Narrow bandpass cryogenic filter for microwave measurements.

    Science.gov (United States)

    Ivanov, B I; Klimenko, D N; Sultanov, A N; Il'ichev, E; Meyer, H-G

    2013-05-01

    An ultra-wide stopband hairpin bandpass filter with integrated nonuniform transmission lines was designed and fabricated for highly sensitive measurements at cryogenic temperatures down to millikelvin and a frequency range of 10 Hz-10 GHz. The scattering matrices of the filter were characterized at T = 4.2 K. The filter provides a stopband from 10 Hz to 2.2 GHz and from 2.3 GHz to 10 GHz with more than 50 dB and 40 dB of amplitude suppression, respectively. The center frequency of the passband is f0 = 2.25 GHz with a bandwidth Δf = 80 MHz. The maximum insertion loss in the passband is 4 dB. The filter has a 50 Ω input and output impedance, SubMiniature version A connector termination, and significantly reduced form factor. The wide stopband frequency range and narrow passband in conjunction with small dimensions make the filter suitable to use it as a part of a high sensitive readout for superconducting quantum circuits, such as superconducting quantum bits and cryogenic parametric amplifiers.

  18. Cryogen free cryostat for neutron scattering experiments

    Science.gov (United States)

    Kirichek, O.; Down, R. B. E.; Manuel, P.; Keeping, J.; Bowden, Z. A.

    2014-12-01

    Most very low temperature (below 1K) experiments at advanced neutron facilities are based on dilution and 3He refrigerator inserts used with Orange cryostats, or similar systems. However recent increases in the cost of liquid helium caused by global helium supply problems, has raised significant concern about the affordability of such cryostats. Here we present the design and test results of a cryogen free top-loading cryostat with a standard KelvinoxVT® dilution refrigerator insert which provides sample environment for neutron scattering experiments in the temperature range 35 mK - 300 K. The dilution refrigerator insert operates in a continuous regime. The cooling time of the insert is similar to one operated in the Orange cryostat. The main performance criteria such as base temperature, cooling power, and circulation rate are compatible with the technical specification of a standard dilution refrigerator. In fact the system offers operating parameters very similar to those of an Orange cryostat, but without the complication of cryogens. The first scientific results obtained in ultra-low temperature neutron scattering experiment with this system are also going to be discussed.

  19. Neutron Detection with a Cryogenic Spectrometer

    CERN Document Server

    Bell, Z W; Cristy, S S; Lamberti, V E

    2003-01-01

    Cryogenic calorimeters are used for x-ray detection because of their exquisite energy resolution and have found application in x-ray astronomy, and the search for dark matter. These devices operate by detecting the heat pulse produced by ionization in an absorber cooled to temperatures below 1 K. Such temperatures are needed to lower the absorber's heat capacity to the point that the deposition of even a few eV results in a measurable temperature excursion. Typical absorbers for dark matter measurements are massive Si or Ge crystals, and, with Ge, have achieved a resolution of 650 eV at 10 keV. Chow, et al., report the measurement of the 60 keV emission from sup 2 sup 4 sup 1 Am with 230 eV resolution using a superconducting tin absorber. Cunningham, et al., also using a superconducting tin absorber, have recently reported a four-fold improvement over Chow. With such results being reported from the x- and gamma-ray world it is natural to examine the possibilities for cryogenic neutron spectroscopy. Such a det...

  20. Cryogenic Silicon Microstrip Detector Modules for LHC

    CERN Document Server

    Perea-Solano, B

    2004-01-01

    CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

  1. The DAΦNE cryogenic system

    International Nuclear Information System (INIS)

    Modena, M.

    1997-12-01

    The DAΦNE Project utilises superconductivity technology for a total of six superconducting magnets: the two Experiment magnets (KLOE and FINUDA) and the four Compensator Solenoid magnets needed to compensate the magnetic effect of the Experiment magnets on the electron and positron beams. This effect, on beams of 510 MeV (nominal DAΦNE Energy), is expected to be relevant, especially with the aim of achieving a very high luminosity, which is the main target of the Project. The KLOE superconducting magnet has two possible working positions: the first in the DAΦNE Hall, when the Experiment will be in operation, and the second one in the KLOE Assembly Hall. This second position is the first to be utilised for the KLOE magnet Acceptance Test and magnetic field mapping, prior to the mounting of all the experimental apparatus inside the magnet. This note intends to present the DAΦNE Cryogenic System and how the authors have converged to the definition of a common Cryogenic System compatible with all the six superconducting magnets

  2. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Hee; Yang, Gi Dong; Lee, Dong Yoon; Kim, Tae Gon; Lee, Seok Woo [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Suhaimi, M. A. [Universiti Teknologi Malaysia, Johor Bahru (Malaysia); Kim, Dong Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-11-15

    The cooling down of cutting temperature in machining is very important for the improvement of tool life, especially when dealing with work materials that have low thermal conductivity such as titanium alloy. In this study designed to investigate the machining performance of a variety of cooling methods, cryogenic, Minimum quantity lubrication (MQL), and flood cooling are performed on solid end milling of titanium alloy, Ti-6Al-4V. In particular, the effect of internal and external spray methods on cryogenic machining is analyzed with a specially designed liquid nitrogen spraying system by evaluating tool wear and cutting force at cutting conditions. The cutting force is also analyzed for tool breakage detection. As a result, the combination of MQL and internal cryogenic cooling improves tool life by up to 32% compared to conventional cooling methods. The cutting force is also reduced significantly by this combination of cooling and lubrication strategy of side end milling.

  3. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V

    International Nuclear Information System (INIS)

    Park, Kyung Hee; Yang, Gi Dong; Lee, Dong Yoon; Kim, Tae Gon; Lee, Seok Woo; Suhaimi, M. A.; Kim, Dong Won

    2015-01-01

    The cooling down of cutting temperature in machining is very important for the improvement of tool life, especially when dealing with work materials that have low thermal conductivity such as titanium alloy. In this study designed to investigate the machining performance of a variety of cooling methods, cryogenic, Minimum quantity lubrication (MQL), and flood cooling are performed on solid end milling of titanium alloy, Ti-6Al-4V. In particular, the effect of internal and external spray methods on cryogenic machining is analyzed with a specially designed liquid nitrogen spraying system by evaluating tool wear and cutting force at cutting conditions. The cutting force is also analyzed for tool breakage detection. As a result, the combination of MQL and internal cryogenic cooling improves tool life by up to 32% compared to conventional cooling methods. The cutting force is also reduced significantly by this combination of cooling and lubrication strategy of side end milling.

  4. Surface Characteristics of Machined NiTi Shape Memory Alloy: The Effects of Cryogenic Cooling and Preheating Conditions

    Science.gov (United States)

    Kaynak, Y.; Huang, B.; Karaca, H. E.; Jawahir, I. S.

    2017-07-01

    This experimental study focuses on the phase state and phase transformation response of the surface and subsurface of machined NiTi alloys. X-ray diffraction (XRD) analysis and differential scanning calorimeter techniques were utilized to measure the phase state and the transformation response of machined specimens, respectively. Specimens were machined under dry machining at ambient temperature, preheated conditions, and cryogenic cooling conditions at various cutting speeds. The findings from this research demonstrate that cryogenic machining substantially alters austenite finish temperature of martensitic NiTi alloy. Austenite finish ( A f) temperature shows more than 25 percent increase resulting from cryogenic machining compared with austenite finish temperature of as-received NiTi. Dry and preheated conditions do not substantially alter austenite finish temperature. XRD analysis shows that distinctive transformation from martensite to austenite occurs during machining process in all three conditions. Complete transformation from martensite to austenite is observed in dry cutting at all selected cutting speeds.

  5. Examining of Tool Wear in Cryogenic Machining of Cobalt-Based Haynes 25 Superalloy

    OpenAIRE

    Murat Sarıkaya; Abdulkadir Güllü

    2015-01-01

    Haynes 25 alloy (also known as L-605 alloy) is cobalt based super alloy which has widely applications such as aerospace industry, turbine and furnace parts, power generators and heat exchangers and petroleum refining components due to its excellent characteristics. However, the workability of this alloy is more difficult compared to normal steels or even stainless. In present work, an experimental investigation was performed under cryogenic cooling to determine cutting to...

  6. Evaluation of ionic liquid epoxy carbon fiber composites in a cryogenic environment

    Science.gov (United States)

    Lyne, Christopher T.; Henry, Christopher R.; Kaukler, William F.; Grugel, R. N.

    2018-03-01

    A novel ionic liquid epoxy (ILE) was used to fabricate carbon fiber composite discs which were then subjected to biaxial strain testing in liquid nitrogen. The ILE composite showed a greater strain-to-failure at cryogenic temperatures when compared to a commercial epoxy. This result is likely an effect, as shown in micrographs, of the strong ILE bonding with the carbon fibers as well as it exhibiting plastic deformation at the fracture surface.

  7. Performance Assessment of Industrial Prototype Cryogenic Helium Compressors for the Large Hadron Collider

    CERN Document Server

    Bézaguet, Alain-Arthur; Tavian, L

    1998-01-01

    In order to develop the technology of large-capacity refrigeration at superfluid helium temperature, essential for the LHC project, CERN has procured from industry three prototype single-stage hydrody namic cryogenic helium compressors, based on different construction choices, and tested them in the laboratory. After recalling the common functional specification, as well as the main design features of the three machines, we present comparative performance results, and draw conclusions as concerns future full-scale machines for the LHC.

  8. Comparative study of CAVET with dielectric and p-GaN gate and Mg ion-implanted current blocking layer

    Science.gov (United States)

    Mandal, Saptarshi; Agarwal, Anchal; Ahmadi, Elaheh; Mahadeva Bhat, K.; Laurent, Matthew A.; Keller, Stacia; Chowdhury, Srabanti

    2017-08-01

    In this work, a study of two different types of current aperture vertical electron transistor (CAVET) with ion-implanted blocking layer are presented. The device fabrication and performance limitation of a CAVET with a dielectric gate is discussed, and the breakdown limiting structure is evaluated using on-wafer test structures. The gate dielectric limited the device breakdown to 50V, while the blocking layer was able to withstand over 400V. To improve the device performance, an alternative CAVET structure with a p-GaN gate instead of dielectric is designed and realized. The pGaN gated CAVET structure increased the breakdown voltage to over 400V. Measurement of test structures on the wafer showed the breakdown was limited by the blocking layer instead of the gate p-n junction.

  9. Business Intelligence. A Presentation of the Current Lead Solutions and a Comparative Analysis of the Main Providers

    Directory of Open Access Journals (Sweden)

    Bogdan-Andrei IONESCU

    2014-09-01

    Full Text Available The aim of this paper is to synthesize the concepts behind Business Intelligence, by studying the solutions available on the market provided by the main players. We will present the software solutions already provided by them emphasizing the main advantages and benefits of each of them, but also as a comparative analysis, designed to reveal the area in which each provider is more remarkable than the others.

  10. Potential for improving the energy efficiency of cryogenic air separation unit (ASU) using binary heat recovery cycles

    International Nuclear Information System (INIS)

    Aneke, Mathew; Wang, Meihong

    2015-01-01

    In this paper, the potential of improving the energy efficiency of a conventional cryogenic air separation unit (ASU) was investigated through modelling and simulation using Aspen Plus ® v 8.1. It is achieved through converting the heat from the compressor effluent to electricity using organic Ranking cycle (ORC). Two different arrangements of combining compressor and waste heat recovery ORC system were compared with the conventional cryogenic ASU which was used as the benchmark. The benchmark is a conventional cryogenic ASU with 3 stages of compression which uses water for intercooling. In the first arrangement the water used as the cooling fluid of the intercooler/after cooler heat exchanger of a conventional cryogenic ASU process was replaced by R134a which also acts as the working fluid for the ORC system (C3WHR) while in the second arrangement, the 3 stages compressor of the conventional process was replaced with a single stage compressor with the same overall pressure ratio as the conventional process and the hot compressor effluent cooled with R134a which also acts as the working fluid of the ORC system (C1WHR). The simulation results based on a cryogenic ASU capable of processing 100 kg/s of atmospheric air at 30  ° C as feedstock show that the specific power consumption for the pure products which was 0.32 kWh/kg, 0.37 kWh/kg and 17.35 kWh/kg for oxygen, nitrogen and argon respectively for the conventional cryogenic ASU process was reduced by the addition of the waste heat recovery ORC system. The C1WHR reduced the specific power consumption by an average of 0.2% across the aforementioned pure products while the C3WHR reduced it by an average of 11%. The net power consumption of the conventional cryogenic ASU which was 21826.19 kW was also found to be reduced by the same percentage. - Highlights: • We model two cryogenic air separation unit with compressor waste heat recovery. • We compare the specific energy consumption of the models. • We

  11. PREVALENCE OF HELICOBACTER PYLORI TEN YEARS AGO COMPARED TO THE CURRENT PREVALENCE IN PATIENTS UNDERGOING UPPER ENDOSCOPY.

    Science.gov (United States)

    Frugis, Sandra; Czeczko, Nicolau Gregori; Malafaia, Osvaldo; Parada, Artur Adolfo; Poletti, Paula Bechara; Secchi, Thiago Festa; Degiovani, Matheus; Rampanazzo-Neto, Alécio; D Agostino, Mariza D

    2016-01-01

    Helicobacter pylori has been extensively studied since 1982 it is estimated that 50% of the world population is affected. The literature lacks studies that show the change of its prevalence in the same population over time. To compare the prevalence of H. pylori in 10 years interval in a population that was submitted to upper endoscopy in the same endoscopy service. Observational, retrospective and cross-sectional study comparing the prevalence of H. pylori in two samples with 10 years apart (2004 and 2014) who underwent endoscopy with biopsy and urease. Patients were studied in three consecutive months of 2004, compared to three consecutive months of 2014. The total number of patients was 2536, and 1406 in 2004 and 1130 in 2014. There were positive for H. pylori in 17 % of the sample as a whole. There was a significant decrease in the prevalence from 19.3% in 2004 to 14.1% in 2014 (pmundial esteja afetada. A literatura carece de estudos que mostrem a mudança de sua prevalência em uma mesma população ao longo do tempo. Comparar a prevalência do H.pylori no intervalo de 10 anos em população que realizou endoscopia digestiva alta no mesmo serviço de endoscopia. Estudo observacional, retrospectivo e transversal, comparando a prevalência de H. pylori em duas amostras com intervalo de 10 anos (2004 e 2014) que realizaram endoscopia digestiva alta com biópsias e teste da urease para a pesquisa de H. pylori. Foram estudados pacientes em três meses consecutivos de 2004, comparados aos de três meses consecutivos de 2014. O número total de pacientes avaliados foi 2536, sendo 1406 em 2004 e 1130 em 2014. Constatou-se resultado positivo para H.pylori em 17% da amostra como um todo. Houve queda significativa da prevalência de H.pylori de 19,3% em 2004 para 14,1% em 2014 (p<0.005). Houve redução de 5,2% da prevalência de H. pylori comparando-se dois períodos de três meses consecutivos com intervalo de 10 anos em duas amostras populacionais equivalentes.

  12. Commissioning of the Cryogenic Plant for the Cryogenic Storage Ring (CSR) at Heidelberg

    CERN Document Server

    von Hahn, R; Grieser, M; Haberstroh, C; Kaiser, D; Lange, M; Laux, F; Menk, S; Orlov, D A; Repnow, R; Sieber, T; Quack, H; Varju, J; Wolf A

    2009-01-01

    At the Max-Planck-Institute for Nuclear Physics in Heidelberg a next generation electrostatic storage ring for low velocity atomic and molecular ion beams is under construction. In contrast to existing electrostatic storage rings, the Cryogenic Storage Ring CSR will be cooled down to temperatures below 2 K. Thus acting as a large cryopump it will provide long storage times and, in addition, open a new field of quantum state controlled molecular physics due to a low heat radiation background from space-like environment. A concept for cooling the storage ring has been developed and is presently tested by means of a linear trap as a prototype with a length of 1/10 of the planned ring. A commercial refrigerator with 21 W at 2 K has been successfully commissioned and was connected to the prototype. This paper presents the status of the cryogenic plant after the commissioning and one year of operation.

  13. Evacuation apparatus with cryogenic pump and trap assembly

    International Nuclear Information System (INIS)

    Mahl, G.

    1980-01-01

    An evacuation apparatus comprising a vessel defining a vacuum chamber therein, vacuumizing means communicating with an opening to said vacuum chamber for selectively drawing a vacuum therein comprising cryogenic pump means disposed closely adjacent to said opening and defined by substantial cryogenically cooled trap surfaces for freezing-out water vapor from air evacuated from said vacuum chamber, said opening being common to said vacuum chamber and to said cryogenic pump means, valve means for selectively opening or closing the opening to said vacuum chamber and movable from a first position within said cryogenic pump means closing said opening to a second position within said cryogenic pump means directly exposing said vacuum chamber to said cryogenic pump means, through said opening, baffle means disposed closely adjacent to the opening to said vacuum chamber for providing substantial open communication to said vacuum chamber and for substantially preventing ingress of contaminants into said vacuum chamber, said baffle means being positioned to provide an optically dense view of said opening when viewed from a downstream side of said baffle means, and a plurality of longitudinally spaced and cryogenically cooled fins mounted in nested relationship within said baffle means and disposed in out-of-contact relationship therewith, said fins being positioned to provide an optically dense view of the downstream side of said baffle means when viewed from said openings. The cryogenic pump is adapted for use in an evacuation apparatus comprising a housing defining an opening to a vacuum chamber, a plurality of metallic plates defining a first chamber therein communicating with said vacuum chamber through said opening and further defining a second chamber at least partially surrounding said first chamber and adapted to be at least partially filled with a cryogenic liqui.d

  14. Developments at an electrostatic cryogenic storage ring for electron-cooled keV energy ion beams

    International Nuclear Information System (INIS)

    Vogel, Stephen

    2016-01-01

    This work is devoted to final setup activities and the commissioning of an electrostatic cryogenic storage ring (CSR) at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg. The first cryogenic operation of CSR in 2015 has been documented and characterized using a set of non-destructive beam diagnostic tools developed within this work. These are (1) the current pick-up system for the determination of the current of the stored ion beam and its velocity, (2) a position pick-up system for measuring the transverse position of the ion beam center at six symmetric locations of the storage ring circumference, and (3) a Schottky pick-up system for the monitoring of coasting ion beams. Despite the requirements imposed by the cryogenic operation, the developed diagnostic system demonstrated its full functionality. First characterizations of the storage ring properties and the performance of the diagnostic system are presented. Based on previous work, an electron cooling system for CSR has been developed and largely realized. With the implementation into CSR in 2016, the electron cooler will enhance the storage ring into a unique experimental facility for electron-ion collision studies. With this CSR is on the track to become the first cryogenic storage ring featuring actively cooled ion beams.

  15. Cold atoms in a cryogenic environment

    International Nuclear Information System (INIS)

    Haslinger, S.

    2011-01-01

    The idea of quantum information processing attracts increasingly interest, where a complex collection of quantum objects and quantum bits are employed to find the ideal building blocks for quantum information systems. Hybrid quantum systems are therefore promising objects as they countervail the particular drawbacks of single quantum objects. Based on superconducting resonator technology, microwave coplanar waveguides provide a well suited interconnection for photons and solid-state quantum bits (qubits), extensively investigated in recent years. Since a quantum memory is presently missing in those electrical accessible circuit cavity quantum devices, connecting the fast processing in a solid sate device to the exceptional long coherence times in atomic ensembles, the presented work is focused to establish the technological foundations for the hybridization of such quantum systems. The microwave photons stored in a superconducting high finesse microwave resonator are therefore an ideal connection between the atom and the solid state quantum world. In the last decade, the miniaturization and integration of quantum optics and atomic physics manipulation techniques on to a single chip was successfully established. Such atom chips are capable of detailed quantum manipulation of ultra-cold atoms and provide a versatile platform to combine the manipulation techniques from atomic physics with the capability of nano-fabrication. In recent years several experiments succeeded in realization of superconducting atom chips in cryogenic environments which opens the road for integrating super-conductive microwave resonators to magnetically couple an atomic ensemble to photons stored in the coplanar high finesse cavity. This thesis presents the concept, design and experimental setup of two approaches to establish an atomic ensemble of rubidium atoms inside a cryogenic environment, based on an Electron beam driven alkali metal atom source for loading a magneto optical trap in a

  16. An Investigation of Offerings of Industrial Arts Teacher Education Institutions in the Areas of Automation and Cybernetics as Compared with Current Practices in Industry.

    Science.gov (United States)

    Baker, George Lewis

    Tabulated and analyzed data from two questionnaires returned by 84 (92.3 percent) industrial arts educators and 20 (35 percent) selected industries, were used to determine the offerings in automation and cybernetics at industrial arts teacher education institutions and to compare these offerings with current practices in industry. Conclusions…

  17. Comparing Symptoms of Autism Spectrum Disorders Using the Current "DSM-IV-TR" Diagnostic Criteria and the Proposed "DSM-V" Diagnostic Criteria

    Science.gov (United States)

    Worley, Julie A.; Matson, Johnny L.

    2012-01-01

    The American Psychiatric Association has proposed major revisions for the diagnostic category encompassing Autism Spectrum Disorders (ASD), which will reportedly increase the specificity and maintain the sensitivity of diagnoses. As a result, the aim of the current study was to compare symptoms of ASD in children and adolescents (N = 208) who met…

  18. New application of superconductors: High sensitivity cryogenic light detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544 Princeton, NJ (United States); Bellini, F.; Casali, N. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Castellano, M.G. [Istituto di Fotonica e Nanotecnologie – CNR, Via Cineto Romano 42, 00156 Roma (Italy); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cosmelli, C.; Cruciani, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); D' Addabbo, A. [INFN – Laboratori Nazionali del Gran Sasso, Assergi (L' Aquila) 67010 (Italy); Di Domizio, S. [INFN – Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Martinez, M. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, Zaragoza 50009 (Spain); Tomei, C. [INFN – Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy (Italy); and others

    2017-02-11

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs) that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results obtained by the CALDER collaboration with 2×2 cm{sup 2} substrates sampled by 1 or 4 Aluminum KIDs. We show that the performances of the first prototypes are already competitive with those of other commonly used light detectors, and we discuss the strategies for a further improvement.

  19. Comparative analysis of the effects of synthetic derivatives of batrachotoxin on sodium currents in frog node of Ranvier.

    Science.gov (United States)

    Khodorov, B I; Yelin, E A; Zaborovskaya, L D; Maksudov, M Z; Tikhomirova, O B; Leonov, V N

    1992-02-01

    1. In voltage-clamp experiments on frog myelinated nerve fibers, the effects of nine synthetic derivatives of batrachotoxin (BTX) obtained from 7,8-dihydrobatrachotoxinin A (DBTX-A) on Na+ currents (INa) have been investigated. 2. Both of 20 alpha-esters of DBTX-A with 2,4,5-trimethylpyrrol-3-carboxylic acid (DBTX-P) and benzoic acid (DBTX) at a 10(-5) M concentration caused modification of INa qualitatively similar to that induced by BTX. 3. The quaternary derivative of DBTX (QDBTX) produced such changes in INa only at a 5.10(-4) M concentration, apparently due to its much lower lipid solubility. 4. Replacement of a -CH2- by a -C = O. group in the homomorpholine ring near the tertiary nitrogen atom abolished the DBTX activity, strongly suggesting the necessity of tertiary nitrogen protonation for the toxin interaction with the channel receptor. 5. Transfer of an 11-hydroxygroup from the alpha- to the beta-position in the DBTX molecule did not decrease its activity in spite of the fact that in the beta-position this group is sterically very hindered. The activity of 11 beta-DBTX is at variance with the prediction of Codding's (1983) "oxygen triad" hypothesis. 6. DBTX-A and compounds obtained from DBTX by oxidation of the 11 alpha-hydroxygroup (K-DBTX), acetylation (Ac-DBTX), or reduction of the hemiketal moiety (H2DBTX) even at a concentration as high as 10(-3) M were able to modify only a very small fraction of the Na channels. However, a clear-cut reversible blocking action on both normal and modified Na channels was observed. 7. These results led us to conclude that BTX modifies the Na channels only in the charged form and hemiketal and 20 alpha-ester moieties provide adequate disposition of toxin on the receptor surface. The inability of H2DBTX, DBTX-A, and K-DBTX and Ac-DBTX to modify most of the Na channels can be explained by a low "probability of correct disposition" of these ligands on the receptor surface.

  20. Cryogenic system operating experience review for fusion applications

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design

  1. Status of the Cryogenic System Commissioning at SNS

    CERN Document Server

    Casagrande, Fabio; Campisi, Isidoro E; Creel, Jonathan; Dixon, Kelly; Ganni, Venkatarao; Gurd, Pamela; Hatfield, Daniel; Howell, Matthew; Knudsen, Peter; Stout, Daniel; Strong, William

    2005-01-01

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

  2. Cryogenic system operating experience review for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design.

  3. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings

    Science.gov (United States)

    Andres, Luis San

    1993-01-01

    A thermohydrodynamic analysis is presented and a computer code developed for prediction of the static and dynamic force response of hydrostatic journal bearings (HJB's), annular seals or damper bearing seals, and fixed arc pad bearings for cryogenic liquid applications. The study includes the most important flow characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid inertia, liquid compressibility and thermal effects. The analysis and computational model devised allow the determination of the flow field in cryogenic fluid film bearings along with the dynamic force coefficients for rotor-bearing stability analysis.

  4. Influence of Cryogenic Treatments on the Wear Behavior of AISI 420 Martensitic Stainless Steel

    Science.gov (United States)

    Prieto, G.; Tuckart, W. R.

    2017-11-01

    The objective of the present work is to characterize the wear behavior of a cryogenically treated low-carbon AISI 420 martensitic stainless steel, by means of ball-on-disk tribological tests. Wear tests were performed under a range of applied normal loads and in two different environments, namely a petrolatum bath and an argon atmosphere. Wear tracks were analyzed by both optical and scanning electron microscopy and Raman spectroscopy to evaluate wear volume, track geometry, surface features and the tribolayers generated after testing. This paper is an extension of the work originally reported in the VIII Iberian Conference of Tribology (Prieto and Tuckart, in: Ballest Jiménez, Rodríguez Espinosa, Serrano Saurín, Pardilla Arias, Olivares Bermúdez (eds) VIII Iberian conference of tribology, Cartagena, 2015). In this study, it has been experimentally demonstrated that cryogenically treated specimens showed a wear resistance improvement ranging from 35 to 90% compared to conventionally treated ones.

  5. A blinded prospective study comparing four current noninvasive approaches in the differential diagnosis of medical versus surgical jaundice

    International Nuclear Information System (INIS)

    O'Connor, K.W.; Snodgrass, P.J.; Swonder, J.E.; Mahoney, S.; Burt, R.; Cockerill, E.M.; Lumeng, L.

    1983-01-01

    A prospective study was undertaken to compare the diagnostic accuracy of clinical evaluation, ultrasound, computed tomography, and technetium 99m-HIDA or -PIPIDA biliary scans in distinguishing between intrahepatic and extrahepatic jaundice. A final diagnosis was established in each of the 50 patients who completed the study, among whom 29 had intrahepatic cholestasis and 21 had extrahepatic obstruction. In the diagnosis of extrahepatic obstruction, the sensitivities of clinical evaluation, ultrasound, computed tomography, and nuclear medicine biliary scan were 95%, 55%, 63%, and 41%, respectively; the specificities were 76%, 93%, 93%, and 88%; and the overall accuracies were 84%, 78%, 81%, and 68%. These data support the conclusion that when the clinical evaluation is carefully performed, it is the single most effective noninvasive means of detecting extrahepatic biliary obstruction in a jaundiced patient. Although ultrasound, computed tomography, and radionuclide biliary scan are less sensitive, they are highly reliable if they indicate that extrahepatic obstruction is present. A flow chart of invasive and noninvasive approaches for evaluation of the jaundiced patient is presented

  6. Hybrid Direct-Current Circuit Breaker

    Science.gov (United States)

    Wang, Ruxi (Inventor); Premerlani, William James (Inventor); Caiafa, Antonio (Inventor); Pan, Yan (Inventor)

    2017-01-01

    A circuit breaking system includes a first branch including at least one solid-state snubber; a second branch coupled in parallel to the first branch and including a superconductor and a cryogenic contactor coupled in series; and a controller operatively coupled to the at least one solid-state snubber and the cryogenic contactor and programmed to, when a fault occurs in the load circuit, activate the at least one solid-state snubber for migrating flow of the electrical current from the second branch to the first branch, and, when the fault is cleared in the load circuit, activate the cryogenic contactor for migrating the flow of the electrical current from the first branch to the second branch.

  7. Features of Mobile Diabetes Applications: Review of the Literature and Analysis of Current Applications Compared Against Evidence-Based Guidelines

    Science.gov (United States)

    Fernandez-Luque, Luis; Årsand, Eirik; Hartvigsen, Gunnar

    2011-01-01

    = 101) were (1) insulin and medication recording, 63 (62%), (2) data export and communication, 61 (60%), (3) diet recording, 47 (47%), and (4) weight management, 43 (43%). From the literature search (n = 26), the most prevalent features were (1) PHR or Web server synchronization, 18 (69%), (2) insulin and medication recording, 17 (65%), (3) diet recording, 17 (65%), and (4) data export and communication, 16 (62%). Interestingly, although clinical guidelines widely refer to the importance of education, this is missing from the top functionalities in both cases. Conclusions While a wide selection of mobile applications seems to be available for people with diabetes, this study shows there are obvious gaps between the evidence-based recommendations and the functionality used in study interventions or found in online markets. Current results confirm personalized education as an underrepresented feature in diabetes mobile applications. We found no studies evaluating social media concepts in diabetes self-management on mobile devices, and its potential remains largely unexplored. PMID:21979293

  8. Progress report - Advanced cryogenic OTV engine technology

    Science.gov (United States)

    Schoenman, L.

    1985-01-01

    New technologies for space-based, reusable, throttleable, cryogenic orbit transfer propulsion are being evaluated. A variable-thrust (200 to 3000 lbF), 2000 psi chamber pressure, LO2/LH2 engine has been selected to demonstrate the 20-hour, 500-restart life goal, and a specific impulse in excess of 480 lbF-sec/lbM. The results of recent vehicle-engine integration analyses and the progress in design, fabrication, and testing are provided. Emphasis is placed on the following technology areas being investigated in support of the advanced engine design: LOX hydrostatic bearings; burn-resistant materials for high-pressure GOX turbines and valves; high surface-low flux annular combustion chambers for the dual propellant expander cycle; improved cooling approaches for high-pressure combustion chambers, new concepts in integrated controls; and engine health diagnostics.

  9. Rotary bayonets for cryogenic and vacuum service

    International Nuclear Information System (INIS)

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1993-07-01

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1-1/2 in. inner pipe size, 3 in. vacuum jacket, and 4 in. inner pipe size, 6 in. vacuum jacket The single wall vacuum service bayonets are in 4 in. and 6 in. pipe sizes. The bayonets have successfully been in active service for over one year

  10. Cavitation in liquid cryogens. 2: Hydrofoil

    Science.gov (United States)

    Hord, J.

    1973-01-01

    Boundary layer principles, along with two-phase concepts, are used to improve existing correlative theory for developed cavity data. Details concerning cavity instrumentation, data analysis, correlative techniques, and experimental and theoretical aspects of a cavitating hydrofoil are given. Both desinent and thermodynamic data, using liquid hydrogen and liquid nitrogen, are reported. The thermodynamic data indicated that stable thermodynamic equilibrium exists throughout the vaporous cryogen cavities. The improved correlative formulas were used to evaluate these data. A new correlating parameter based on consideration of mass limiting two-phase flow flux across the cavity interface, is proposed. This correlating parameter appears attractive for future correlative and predictive applications. Agreement between theory and experiment is discussed, and directions for future analysis are suggested. The front half of the cavities, developed on the hydrofoil, may be considered as parabolically shaped.

  11. Cryogenic safety in helium cryostats at CERN

    Science.gov (United States)

    Parma, Vittorio; Leclercq, Yann

    2017-12-01

    Cryostats contain large cold surfaces, cryogenic fluids, and sometimes large stored energy (e.g. energized magnets), with the potential risk of sudden liberation of energy through thermodynamic transformations of the fluids, which can be uncontrolled and lead to a dangerous increase of pressure inside the cryostat envelopes. The consequence, in the case of a rupture of the envelopes, may be serious for personnel (injuries from deflagration, burns, and oxygen deficiency hazard) as well as for the equipment. Performing a thorough risk analysis is an essential step to identify and understand risk hazards that may cause a pressure increase and in order to assess consequences, define mitigation actions, and design adequate safety relief devices to limit pressure accordingly. Lessons learnt from real cases are essential for improving safety awareness for future projects. We cover in this paper our experience on cryostats at CERN and the design-for-safety rules in place.

  12. Thermal Performance Testing of Cryogenic Insulation Systems

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  13. Photolytic separation of isotopes in cryogenic solution

    Science.gov (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  14. Helium Inventory Management For LHC Cryogenics

    CERN Document Server

    Pyarali, Maisam

    2017-01-01

    The LHC is a 26.7 km circumference ring lined with superconducting magnets that operate at 1.9 K. These magnets are used to control the trajectory of beams of protons traveling in opposite directions and collide them at various experimental sites across the LHC where their debris is analyzed. The focus of this paper is the cryogenic system that allows the magnets to operate in their superconducting states. It aims to highlight the operating principles of helium refrigeration and liquefaction, with and without nitrogen pre-cooling; discuss the various refrigerators and liquefiers used at CERN for both LHC and Non-LHC applications, with their liquefaction capacities and purposes; and finally to deliberate the management of the LHC inventory and how it contributes to the strategic decision CERN makes regarding the inventory management during the Year-End Technical Stop (YETS), Extended Year-End Technical Stop (EYETS) and long shutdowns.

  15. Hermeticity of three cryogenic calorimeter geometries

    International Nuclear Information System (INIS)

    Strovink, M.; Wormersley, W.J.; Forden, G.E.

    1989-04-01

    We calculate the effect of cracks and dead material on resolution in three simplified cryogenic calorimeter geometries, using a crude approximation that neglects transverse shower spreading and considers only a small set of incident angles. For each dead region, we estimate the average unseen energy using a shower parametrization, and relate it to resolution broadening using a simple approximation that agrees with experimental data. Making reasonable and consistent assumptions on cryostat wall thicknesses, we find that the effects of cracks and dead material dominate the expected resolution in the region where separate ''barrel'' and ''end'' cryostats meet. This is particularly true for one geometry in which the end calorimeter caps the barrel and also protrudes into the hole within it. We also find that carefully designed auxiliary ''crack filler'' detectors can substantially reduce the loss of resolution in these areas. 6 figs

  16. Stainless steels for cryogenic bolts and nuts

    International Nuclear Information System (INIS)

    Leroy, F.; Rabbe, P.; Odin, G.

    1975-01-01

    Stainless steel for cryogenic applications are generally austenitic steels which, under the effect of cold-drawing, can or cannot undergo a partial martensitic transformation according to their composition. It has been shown that very high ductility and endurance characteristics at low temperatures, together with very high yield strength and resistances values, can be attained with grades of nitrogenous steels of types Z2CN18-10N and Z3CMN18-8-6N. Optimum ductility values are obtained by employing to the best possible, the martensitic transformations which develop during cold-drawing. From the plotting of the rational traction curves, it is possible to analyse very simply the influence of the composition on the martensitic transformations [fr

  17. Initial performance of upgraded Tevatron cryogenic systems

    International Nuclear Information System (INIS)

    Norris, B.L.

    1996-09-01

    Fermilab began operating a re-designed satellite refrigerator systems in November 1993. Upgrades were installed to operate the Tevatron at a magnet temperature of 3.5 K, approximately 1K lower than the original design. Refrigerator upgrades included new valve boxes, larger reciprocating expanders, the installation of cold vapor compressors, new sub-atmospheric instrumentation and an entirely new distributed controls system. Cryogenic system reliability data for Colliding Physics Run 1B is presented emphasizing a failure analysis for each aspect of the upgrade. Comparison to data for Colliding Physics Run 1A (previous to upgrade) is presented to show the impact of a major system overhaul. New operational problems and their solutions are presented in detail

  18. Nuclear Cryogenic Propulsion Stage for Mars Exploration

    Science.gov (United States)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  19. Nuclear Cryogenic Propulsion Stage Affordable Development Strategy

    Science.gov (United States)

    Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

    2014-01-01

    The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

  20. Cryogenic system for a superconducting spectrometer

    International Nuclear Information System (INIS)

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN 2 circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations

  1. Development of Large Cryogenic Semiconductor Detectors

    International Nuclear Information System (INIS)

    Mandic, Vuk

    2016-01-01

    This project aims at developing large cryogenic semiconductor detectors for applications in particle physics and more broadly. We have developed a 150 mm diameter, 43 mm thick, Si-based detector that measures ionization released in an interaction of a particle inside the silicon crystal of high purity, operated at 30 mK temperature. We demonstrated that such a detector can be used to measure recoil energies on the keV scale, and that its stable operation can be maintained indefinitely. Detectors of this type could therefore be used in the fields of direct dark matter searches, coherent neutrino scattering measurements, X-ray observations, as well as in broader applications such as homeland security.

  2. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  3. A cryogenic electrostatic trap for long-time storage of keV ion beams

    Science.gov (United States)

    Lange, M.; Froese, M.; Menk, S.; Varju, J.; Bastert, R.; Blaum, K.; López-Urrutia, J. R. Crespo; Fellenberger, F.; Grieser, M.; von Hahn, R.; Heber, O.; Kühnel, K.-U.; Laux, F.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Schröter, C. D.; Schwalm, D.; Shornikov, A.; Sieber, T.; Toker, Y.; Ullrich, J.; Wolf, A.; Zajfman, D.

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2×103 cm-3, which for a room temperature environment corresponds to a pressure in the 10-14 mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  4. A cryogenic electrostatic trap for long-time storage of keV ion beams.

    Science.gov (United States)

    Lange, M; Froese, M; Menk, S; Varju, J; Bastert, R; Blaum, K; López-Urrutia, J R Crespo; Fellenberger, F; Grieser, M; von Hahn, R; Heber, O; Kühnel, K-U; Laux, F; Orlov, D A; Rappaport, M L; Repnow, R; Schröter, C D; Schwalm, D; Shornikov, A; Sieber, T; Toker, Y; Ullrich, J; Wolf, A; Zajfman, D

    2010-05-01

    We report on the realization and operation of a fast ion beam trap of the linear electrostatic type employing liquid helium cooling to reach extremely low blackbody radiation temperature and residual gas density and, hence, long storage times of more than 5 min which are unprecedented for keV ion beams. Inside a beam pipe that can be cooled to temperatures <15 K, with 1.8 K reached in some locations, an ion beam pulse can be stored at kinetic energies of 2-20 keV between two electrostatic mirrors. Along with an overview of the cryogenic trap design, we present a measurement of the residual gas density inside the trap resulting in only 2 x 10(3) cm(-3), which for a room temperature environment corresponds to a pressure in the 10(-14) mbar range. The device, called the cryogenic trap for fast ion beams, is now being used to investigate molecules and clusters at low temperatures, but has also served as a design prototype for the cryogenic heavy-ion storage ring currently under construction at the Max-Planck Institute for Nuclear Physics.

  5. The Cryogenic Distribution Line for the LHC Functional Specification and Conceptual Design

    CERN Document Server

    Erdt, W K; Trant, R

    1999-01-01

    The Large Hadron Collider (LHC) currently under construction at CERN will make use of superconducting magnets operating in superfluid helium below 2 K. The cryogenic distribution scheme for each of the eight sectors, individually served by a refrigeration plant, is based on a separate Cryogenic Distribution Line (QRL) feeding helium at different temperatures and pressures to the elementary cooling loops. The QRL comprises two supply headers and three return headers including a sub-atmospheric one. Low heat inleak to all temperature levels is essential for the overall LHC cryogenic performance. With an overall length of 25.6 km the QRL has a very critical cost-to-performance ratio. Therefore, following an in-house feasibility study, CERN adjudicated in autumn 1998 three industrial contracts in parallel for the supply of Pre-Series Test Cells (~ 112 m) of the QRL, which will be tested at CERN in 2000. Installation of the QRL for LHC is scheduled from 2002 to mid 2004. This paper will present the general layout,...

  6. Field Testing of Cryogenic Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, Aaron [Sustainable Energy Solutions, LLC; Frankman, Dave [Sustainable Energy Solutions, LLC; Baxter, Andrew [Sustainable Energy Solutions, LLC; Stitt, Kyler [Sustainable Energy Solutions, LLC; Baxter, Larry [Sustainable Energy Solutions, LLC; Brigham Young Univ., Provo, UT (United States)

    2017-07-17

    Sustainable Energy Solutions has been developing Cryogenic Carbon Capture™ (CCC) since 2008. In that time two processes have been developed, the External Cooling Loop and Compressed Flue Gas Cryogenic Carbon Capture processes (CCC ECL™ and CCC CFG™ respectively). The CCC ECL™ process has been scaled up to a 1TPD CO2 system. In this process the flue gas is cooled by an external refrigerant loop. SES has tested CCC ECL™ on real flue gas slip streams from subbituminous coal, bituminous coal, biomass, natural gas, shredded tires, and municipal waste fuels at field sites that include utility power stations, heating plants, cement kilns, and pilot-scale research reactors. The CO2 concentrations from these tests ranged from 5 to 22% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at a modest rate. The CCC CFG™ process has been scaled up to a .25 ton per day system. This system has been tested on real flue gas streams including subbituminous coal, bituminous coal and natural gas at field sites that include utility power stations, heating plants, and pilot-scale research reactors. CO2 concentrations for these tests ranged from 5 to 15% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at 90+%. Hg capture was also verified and the resulting effluent from CCC CFG™ was below a 1ppt concentration. This paper will focus on discussion of the capabilities of CCC, the results of field testing and the future steps surrounding the development of this technology.

  7. The DIII-D cryogenic system upgrade

    International Nuclear Information System (INIS)

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 ell/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed

  8. The DIII-D cryogenic system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

  9. Final report for the cryogenic retrieval demonstration

    International Nuclear Information System (INIS)

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft 3 of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a ''cold test pit'' that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 x 9 x 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub's proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were performed

  10. Final report for the cryogenic retrieval demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft{sup 3} of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a ``cold test pit`` that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 {times} 9 {times} 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub`s proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were performed.

  11. Final report for the cryogenic retrieval demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Valentich, D.J.; Yokuda, E.L.

    1992-09-01

    This report documents a demonstration of a proposed buried transuranic waste retrieval concept that uses cryogenic ground freezing and remote excavation. At the Idaho National Engineering Laboratory (INEL), there are over 8 million ft[sup 3] of intermingled soil and transuranic (TRU) wastes in shallow land burial, and retrieval of the material is one of the options being considered by the Buried Waste Integrated Demonstration for the Environmental Restoration program. Cryogenically freezing contaminated soil and buried waste has been proposed as a way to greatly reduce or eliminate the climate the threat of contamination spread during retrieval activities. In support of this idea, a demonstration of an innovative ground freezing and retrieval technology was performed at the INEL. This initial demonstration was held near the Radioactive Waste Management Complex at a cold test pit'' that was built in 1988 as a test bed for the demonstration of retrieval contamination control technologies. This pit is not contaminated with any radioactive or hazardous wastes. Barrels and boxes filled with metals, plastics, tools, paper, cloth, etc. configured in the same manner as expected in contaminated pits and trenches are buried at the cold test pit. After design, fabrication, and shop testing, Sonsub mobilized to the field in early July 1992 to perform the field demonstration. It was planned to freeze and extract four pits, each 9 [times] 9 [times] 10 ft. Each pit represented a different configuration of buried waste (stacked boxes, stacked barrels, random dumped barrels and boxes, and random dumped barrels). Sonsub's proposed technology consisted of driving a series of freeze pipes into the soil and waste, using liquid nitrogen to freeze the mass, and extracting the soil and debris using a series of remote operated, bridge crane mounted tools. In conjunction with the freezing and removal activities, temperature and moisture measurements, and air monitoring were

  12. Cryogenic Propellant Feed System Analytical Tool Development

    Science.gov (United States)

    Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.

    2011-01-01

    The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.

  13. Effects of cryogenic temperature on the mechanical and failure characteristics of melamine-urea-formaldehyde adhesive plywood

    Science.gov (United States)

    Kim, Jeong-Hyeon; Choi, Sung-Woong; Park, Doo-Hwan; Park, Seong-Bo; Kim, Seul-Kee; Park, Kwang-Jun; Lee, Jae-Myung

    2018-04-01

    The present study investigates the applicability of melamine-urea-formaldehyde (MUF) resin plywood in cryogenic applications, including liquefied natural gas (LNG) carrier insulation systems. Phenolic-formaldehyde (PF) resin plywood has been extensively used as a structural material in industrial applications. However, many shortcomings of PF resin plywood have been reported, and replacement of PF resin plywood with a new material is necessary to resolve these problems. MUF resin plywood has the advantages of short fabrication time, low veneer cost, and economic feasibility compared to PF resin plywood. However, the mechanical and failure characteristics of MUF resin plywood have not yet been investigated at low temperature ranges. For this reason, adapting MUF resin plywood for cryogenic applications has been difficult, despite the many strong points of the material in engineering aspects. In this study, the effects of cryogenic temperature and thermal treatment on the mechanical characteristics of MUF resin plywood are investigated. The performance of MUF resin plywood is compared with that of PF resin plywood to verify the applicability of the material for use as a structural material in LNG insulation systems. The results demonstrate that MUF resin plywood has mechanical properties comparable with those of PF resin plywood, even at cryogenic conditions.

  14. Evaluating the Validity of Current Mainstream Wearable Devices in Fitness Tracking Under Various Physical Activities: Comparative Study.

    Science.gov (United States)

    Xie, Junqing; Wen, Dong; Liang, Lizhong; Jia, Yuxi; Gao, Li; Lei, Jianbo

    2018-04-12

    Wearable devices have attracted much attention from the market in recent years for their fitness monitoring and other health-related metrics; however, the accuracy of fitness tracking results still plays a major role in health promotion. The aim of this study was to evaluate the accuracy of a host of latest wearable devices in measuring fitness-related indicators under various seminatural activities. A total of 44 healthy subjects were recruited, and each subject was asked to simultaneously wear 6 devices (Apple Watch 2, Samsung Gear S3, Jawbone Up3, Fitbit Surge, Huawei Talk Band B3, and Xiaomi Mi Band 2) and 2 smartphone apps (Dongdong and Ledongli) to measure five major health indicators (heart rate, number of steps, distance, energy consumption, and sleep duration) under various activity states (resting, walking, running, cycling, and sleeping), which were then compared with the gold standard (manual measurements of the heart rate, number of steps, distance, and sleep, and energy consumption through oxygen consumption) and calculated to determine their respective mean absolute percentage errors (MAPEs). Wearable devices had a rather high measurement accuracy with respect to heart rate, number of steps, distance, and sleep duration, with a MAPE of approximately 0.10, whereas poor measurement accuracy was observed for energy consumption (calories), indicated by a MAPE of up to 0.44. The measurements varied for the same indicator measured by different fitness trackers. The variation in measurement of the number of steps was the highest (Apple Watch 2: 0.42; Dongdong: 0.01), whereas it was the lowest for heart rate (Samsung Gear S3: 0.34; Xiaomi Mi Band 2: 0.12). Measurements differed insignificantly for the same indicator measured under different states of activity; the MAPE of distance and energy measurements were in the range of 0.08 to 0.17 and 0.41 to 0.48, respectively. Overall, the Samsung Gear S3 performed the best for the measurement of heart rate under

  15. Fluid Dynamics with Cryogenic Fluid Transfer in Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During chilldown of cryogenic fluid tanks and lines, the interface between the liquid and vapor rapidly changes. Understanding these rapid changes is key...

  16. Sprayable Thermal Insulation for Cryogenic Tanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation addressed in this proposal is Sprayable Thermal Insulation for Cryogenic Tanks, or STICT. This novel system could be applied in either an automated or...

  17. ISO and EIGA standards for cryogenic vessels and accessories

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The EIGA/WG 6’s scope is cryogenic vessels and accessories, including their design, material compatibility, operational requirements and periodical inspection. The specific responsibilities include monitoring international standardization (ISO, CEN) and regulations (UN, TPED, PED...

  18. The European Graduate Course in Cryogenics hosted at CERN.

    CERN Multimedia

    Laurent Tavian

    2010-01-01

    The “liquid helium” week of the European Graduate Course in Cryogenics was held at CERN from 30 August to 3 September 2010. This course scheduled annually since 2008 is a common teaching project of the Universities of Technology of Dresden, Wroclaw and Trondheim. It is focused on liquid natural gas, hydrogen and helium cryogenics. Attending students were carefully selected, and will take an examination giving ECTS credits for their academic curriculum.   This year, as Wroclaw University of Technology was already heavily involved in organising the International Cryogenic Engineering Conference (ICEC), it requested that the “liquid helium” week to be exceptionally held at CERN. While this is certainly a good choice from the point of view of large cryogenic helium systems, with the large cryoplants cooling the Large Hadron Collider (LHC) and its experiments, CERN has only acted as host laboratory organizing the course classes and visits, and the teaching and i...

  19. Safety Management for the Cryogenic System of Superconducting RF System

    CERN Document Server

    Kao, Sheau-Ping; Hsiao, Feng-Zone; Wang, Jau-Ping

    2005-01-01

    The installation of the helium cryogenic system for the superconducting RF cavity and magnet were finished in the National Synchrotron Radiation Research Center (NSRRC) at the end of October 2002. The first phase of this program will be commissioned at the end of 2004. This was the first large scale cryogenic system in Taiwan. The major hazards to personnel are cryogenic burn and oxygen deficient. To avoid the injury of the operators and meet the requirements of local laws and regulations, some safety measures must be adopted. This paper will illustrate the methods of risk evaluation and the safety control programs taken at NSRRC to avoid and reduce the hazards from the cryogenic system of the superconducting RF cavity and magnet system.

  20. Small Scroll Pump for Cryogenic Liquids, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a compact, reliable, light weight, electrically driven pump capable of pumping cryogenic liquids, based on scroll pump technology. This pump will...

  1. Advanced Insulation Techniques for Cryogenic Tanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The ability to store large amounts of cryogenic fluids for long durations has a profound effect on the success of many future space programs using these fluids for...

  2. Spinning-Scroll Pump for Cryogenic Feed System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is an efficient, compact, lightweight, reliable, electric-driven, cryogenic spinning scroll pump (CSSP) capable of pumping liquid methane or oxygen at...

  3. Temperature Sensing Solution for Cryogenic Space Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic systems, heavily used in rocket ground testing, space station operations, shuttle launch systems, etc, require a large number of temperature sensors for...

  4. Evaluation of Cryogenic Readout Electronics for ASTRO-F

    Science.gov (United States)

    Watabe, Toyoki; Hirao, Takanori; Shibai, Hiroshi; Kawada, Mitsunobu; Nagata, Hiroshi; Hibi, Yasunori; Noda, Manabu

    Cryogenic readout electronics have been developed for the far-infrared detectors onboard ASTRO-F, the first Japanese infrared astronomical satellite. This cryogenic readout circuit should be mounted near the detector array at the liquid helium temperature in order to achieve high sensitivity. We succeeded in developing the cryogenic p-MOS transistor by a standard Bi-CMOS process with a slight modification. By using the new p-MOS transistor, we have made several types of cryogenic electronics, (OP-AMP and CTIA), and evaluated their performances in the liquid helium temperature. The results are: 1. Open loop gain of OP-AMP ~300 2. Input equivalence noise ~3μV/Hz1/2 3. Power consumption ~10μW/ch More details will be shown on the poster.

  5. Advanced insulation Materials for Cryogenic Propellant Storage Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc (AMTI) responds to the Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9.01, "Long Term Cryogenic Propellant...

  6. Nanocoatings for Wicking of Low-Viscosity Cryogens Project

    Science.gov (United States)

    Fesmire, James E.

    2014-01-01

    The goal of this project is to develop smart, switchable materials systems for use in thermal management systems, including the evaluation of wicking nanocoatings for use in the transport and storage of cryogens.

  7. Dynamic Instability of Undamped Bellows Face Seals in Cryogenic Liquid

    National Research Council Canada - National Science Library

    Hudelson, John C

    1966-01-01

    .... The results of the tests indicated that dynamic instability will occur in undamped bellows face seals operating in a cryogenic environment and be of such a magnitude as to damage the sealing surface...

  8. High Effectiveness Heat Exchanger for Cryogenic Refrigerators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative high performance cryogenic heat exchanger manufactured of titanium by photo-etching and diffusion bonding. This is a parallel plate design...

  9. Overview of the Long-Baseline Neutrino Facility cryogenic system

    CERN Document Server

    Montanari, David; Bremer, Johan; Delaney, Michael; Aurelien, Diaz; Doubnik, Roza; Haaf, Kevin; Hentschel, Steve; Norris, Barry; Voirin, Erik

    2017-01-01

    The Deep Underground Neutrino Experiment (DUNE) collaboration is developing a multi-kiloton Long-Baseline neutrino experiment that will be located one mile underground at the Sanford Underground Research Facility (SURF) in Lead, SD. In the present design, detectors will be located inside four cryostats filled with a total of 68,400 ton of ultrapure liquid argon, at the level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) is developing the conventional facilities and cryogenics infrastructure supporting this experiment. The cryogenics system is composed of several sub-systems: External/Infrastructure, Proximity, and Internal cryogenics. It will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution highlights the main features of the LBNF cryogenic system. It presents its performance, functional requirements and modes of operations. It also details the status of the design, ...

  10. Long Term In-Space Cryogen Storage - Magnetic Isolation

    Data.gov (United States)

    National Aeronautics and Space Administration — A research activity is proposed to assess the feasibility of magnetic and/or quantum levitation techniques to hold cryogenic fluids in space for extended durations...

  11. Development of cryotribological theories & application to cryogenic devices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Yukikazu

    2001-03-12

    This is the final report of a research program on low-temperature friction and wear, primarily focused on development of cryotribological theories and application to cryogenic devices, particularly superconducting magnets.

  12. Sprayable Thermal Insulation for Cryogenic Tanks, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sprayable Thermal Insulation for Cryogenic Tanks (STICT) is a thermal management system applied by either an automated or manual spraying process with less...

  13. Use of PROFIBUS for cryogenic instrumentation at XFEL

    Science.gov (United States)

    Boeckmann, T.; Bolte, J.; Bozhko, Y.; Clausen, M.; Escherich, K.; Korth, O.; Penning, J.; Rickens, H.; Schnautz, T.; Schoeneburg, B.; Zhirnov, A.

    2017-12-01

    The European X-ray Free Electron Laser (XFEL) is a research facility and since December 2016 under commissioning at DESY in Hamburg. The XFEL superconducting accelerator is 1.5 km long and contains 96 superconducting accelerator modules. The control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the XFEL cryogenic system consisting of the XFEL refrigerator, cryogenic distribution systems and the XFEL accelerator. The PROFIBUS fieldbus technology is the key technology of the cryogenic instrumentation and the link to the control system. More than 650 PROFIBUS nodes are implemented in the different parts of the XFEL cryogenic facilities. The presentation will give an overview of PROFIBUS installation in these facilities regarding engineering, possibilities of diagnostics, commissioning and the first operating experience.

  14. Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures

    Science.gov (United States)

    Alberts, S. J.; Doehne, C. J.; Johnson, W. L.

    2017-01-01

    This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass.

  15. Advanced Insulation Materials for Cryogenic Propellant Storage Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc responds to the NASA solicitation Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9-01, "Long Term Cryogenic...

  16. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  17. Bismuth alloy potting seals aluminum connector in cryogenic application

    Science.gov (United States)

    Flower, J. F.; Stafford, R. L.

    1966-01-01

    Bismuth alloy potting seals feedthrough electrical connector for instrumentation within a pressurized vessel filled with cryogenic liquids. The seal combines the transformation of high-bismuth content alloys with the thermal contraction of an external aluminum tube.

  18. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  19. Computing the Thermodynamic State of a Cryogenic Fluid

    Science.gov (United States)

    Willen, G. Scott; Hanna, Gregory J.; Anderson, Kevin R.

    2005-01-01

    The Cryogenic Tank Analysis Program (CTAP) predicts the time-varying thermodynamic state of a cryogenic fluid in a tank or a Dewar flask. CTAP is designed to be compatible with EASY5x, which is a commercial software package that can be used to simulate a variety of processes and equipment systems. The mathematical model implemented in CTAP is a first-order differential equation for the pressure as a function of time.

  20. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  1. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    Science.gov (United States)

    Jadeja, K. A.; Bhatt, S. B.

    2012-11-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ~ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  2. Cryogenic Irradiation of Bacillus Atrophaeus spores to understand microbial survival on Icy Bodies

    Science.gov (United States)

    Yerby, C. J.; Noell, A. C.; Hodyss, R. P.; Johnson, P. V.; Ponce, A.

    2017-12-01

    Bacterial Spores are useful indicator organisms for studying the survival of microbes and degradation of biomolecules on the surface of planetary icy bodies. To predict the limits of life's proliferation in space, specifically on icy bodies, it is essential to understand the ability of microbes to withstand photon and particle irradiation at cryogenic temperatures. Bacillus Atrophaeus spores were transferred onto stainless steel coupons by varied processes and subsequently frozen at Europan temperatures (16oK—273oK) in a vacuum at 8.7x10-8 Torr. An argon lamp bombarded the spore-containing coupons with a solar-like radiation spectra for a variety of times, and spores were removed from the coupons and enumerated in culture. To date, (n=43) coupons have been analyzed for spore kill-rates with regards to ice temperature and radiation exposure time. Results will be presented on the effect of cryogenic temperatures in improving radiation resistance of bacterial spores. This works also details methodology improvements by comparing different spore deposition and recovery methods before and after cryogenic irradiation.

  3. PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA

    International Nuclear Information System (INIS)

    NIKROO, A; CZECHOWICZ, DG; CASTILLO, ER; PONTELANDOLFO, JM

    2002-01-01

    OAK A271 PRODUCTION OF HIGHER STRENGTH THIN WALLED GLOW DISCHARGE POLYMER SHELLS FOR CRYOGENIC EXPERIMENTS AT OMEGA. Thin walled polymer shells are needed for OMEGA cryogenic laser experiments. These capsules need to be about 900 (micro)m in diameter and as thin as possible (approx 1-2 (micro)m), while having enough strength to be filled with DT as fast as possible to about 1000 atm. The authors have found that by optimizing the coating parameters in the glow discharge polymer (GDP) deposition system, traditionally used for making ICF targets, they can routinely make robust, ∼ 1.5 (micro)m thick, 900 (micro)m diameter GDP shells with buckle strengths of over 0.3 atm. This is twice the strength of shells made prior to the optimization and is comparable to values quoted for polyimide shells. In addition, these shells were found to be approximately three times more permeable and over 20% denser than previously made GDP shells. The combination of higher strength and permeability is ideal for direct drive cryogenic targets at OMEGA. Shells as thin as 0.5 (micro)m have been made. In this paper, the authors discuss the shell fabrication process, effects of modifying various GDP deposition parameters on shell properties and chemical composition

  4. A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene

    Directory of Open Access Journals (Sweden)

    Ryszard Pawlak

    2016-12-01

    Full Text Available Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common −65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications—superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor.

  5. Thermal conductivity of aerogel blanket insulation under cryogenic-vacuum conditions in different gas environments

    Science.gov (United States)

    E Fesmire, J.; Ancipink, J. B.; Swanger, A. M.; White, S.; Yarbrough, D.

    2017-12-01

    Thermal conductivity of low-density materials in thermal insulation systems varies dramatically with the environment: cold vacuum pressure, residual gas composition, and boundary temperatures. Using a reference material of aerogel composite blanket (reinforcement fibers surrounded by silica aerogel), an experimental basis for the physical heat transmission model of aerogel composites and other low-density, porous materials is suggested. Cryogenic-vacuum testing between the boundary temperatures of 78 K and 293 K is performed using a one meter cylindrical, absolute heat flow calorimeter with an aerogel blanket specimen exposed to different gas environments of nitrogen, helium, argon, or CO2. Cold vacuum pressures include the full range from 1×10-5 torr to 760 torr. The soft vacuum region, from about 0.1 torr to 10 torr, is complex and difficult to model because all modes of heat transfer - solid conduction, radiation, gas conduction, and convection - are significant contributors to the total heat flow. Therefore, the soft vacuum tests are emphasized for both heat transfer analysis and practical thermal data. Results for the aerogel composite blanket are analyzed and compared to data for its component materials. With the new thermal conductivity data, future applications of aerogel-based insulation systems are also surveyed. These include Mars exploration and surface systems in the 5 torr CO2 environment, field joints for vacuum-jacketed cryogenic piping systems, common bulkhead panels for cryogenic tanks on space launch vehicles, and liquid hydrogen cryofuel systems with helium purged conduits or enclosures.

  6. Cryogenic ion implantation near amorphization threshold dose for halo/extension junction improvement in sub-30 nm device technologies

    International Nuclear Information System (INIS)

    Park, Hugh; Todorov, Stan; Colombeau, Benjamin; Rodier, Dennis; Kouzminov, Dimitry; Zou Wei; Guo Baonian; Khasgiwale, Niranjan; Decker-Lucke, Kurt

    2012-01-01

    We report on junction advantages of cryogenic ion implantation with medium current implanters. We propose a methodical approach on maximizing cryogenic effects on junction characteristics near the amorphization threshold doses that are typically used for halo implants for sub-30 nm technologies. BF 2 + implant at a dose of 8×10 13 cm −2 does not amorphize silicon at room temperature. When implanted at −100°C, it forms a 30 - 35 nm thick amorphous layer. The cryogenic BF 2 + implant significantly reduces the depth of the boron distribution, both as-implanted and after anneals, which improves short channel rolloff characteristics. It also creates a shallower n + -p junction by steepening profiles of arsenic that is subsequently implanted in the surface region. We demonstrate effects of implant sequences, germanium preamorphization, indium and carbon co-implants for extension/halo process integration. When applied to sequences such as Ge+As+C+In+BF 2 + , the cryogenic implants at −100°C enable removal of Ge preamorphization, and form more active n + -p junctions and steeper B and In halo profiles than sequences at room temperature.

  7. A comprehensive study of cryogenic cooled millimeter-wave frequency multipliers based on GaAs Schottky-barrier varactors

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rybalko, Oleksandr; Zhurbenko, Vitaliy

    2018-01-01

    The benefit of cryogenic cooling on the performance of millimeter-wave GaAs Schottky-barrier varactor-based frequency multipliers has been studied. For this purpose, a dedicated compact model of a GaAs Schottky-barrier varactor using a triple-anode diode stack has been developed for use with a co......The benefit of cryogenic cooling on the performance of millimeter-wave GaAs Schottky-barrier varactor-based frequency multipliers has been studied. For this purpose, a dedicated compact model of a GaAs Schottky-barrier varactor using a triple-anode diode stack has been developed for use...... with a commercial RF and microwave CAD tool. The model implements critical physical phenomena such as thermionic-field emission current transport at cryogenic temperatures, temperature dependent mobility, reverse breakdown, self-heating, and high-field velocity saturation effects. A parallel conduction model...... is employed in order to include the effect of barrier inhomogeneities which is known to cause deviation from the expected I--V characteristics at cryogenic temperatures. The developed model is shown to accurately fit the I--V --T dataset from 25 to 295 K measured on the varactor diode stack. Harmonic balance...

  8. Permeability and flammability study of composite sandwich structures for cryogenic applications

    Science.gov (United States)

    Bubacz, Monika

    Fiber reinforced plastics offer advantageous specific strength and stiffness compared to metals and has been identified as candidates for the reusable space transportation systems primary structures including cryogenic tanks. A number of carbon and aramid fiber reinforced plastics have been considered for the liquid hydrogen tanks. Materials selection is based upon mechanical properties and containment performance (long and short term) and upon manufacturing considerations. The liquid hydrogen tank carries shear, torque, end load, and bending moment due to gusts, maneuver, take-off, landing, lift, drag, and fuel sloshing. The tank is pressurized to about 1.5 atmosphere (14.6psi or 0.1 MPa) differential pressure and on ascent maintains the liquid hydrogen at a temperature of 20K. The objective of the research effort into lay the foundation for developing the technology required for reliable prediction of the effects of various design, manufacturing, and service parameters on the susceptibility of composite tanks to develop excessive permeability to cryogenic fuels. Efforts will be expended on developing the materials and structural concepts for the cryogenic tanks that can meet the functional requirements. This will include consideration for double wall composite sandwich structures, with inner wall to meet the cryogenic requirements. The structure will incorporate nanoparticles for properties modifications and developing barriers. The main effort will be extended to tank wall's internal skin design. The main requirements for internal composite stack are: (1) introduction of barrier film (e.g. honeycomb material paper sheet) to reduce the wall permeability to hydrogen, (2) introduction of nanoparticles into laminate resin to prevent micro-cracking or crack propagation. There is a need to characterize and analyze composite sandwich structural damage due to burning and explosion. Better understanding of the flammability and blast resistance of the composite structures

  9. Effect of Deep Cryogenic Treatment on Hardness and Wear Behavior of 5120 AISI Steel

    Directory of Open Access Journals (Sweden)

    S. Torkian

    2016-12-01

    Full Text Available In this paper the effect of deep cryogenic treatment time on microstructure and tribological behavior of AISI 5120 case hardennig steel is studied. The disk shape samples were carburized at 920 ◦C for 6 hours and air cooled; after austenitizing, the samples were quenched in oil.Then immediately after quenching and sanding, the sample were kept in liquid nitrogen for 1, 24, 30 and 48 h and then tempered at 200 ◦C for 2 hours. The wear test was done by ball on disk method using of WC ball at 80 and 110 N load. For characterization of carbides, the etchant solution of CuCl2 (5 gr+HCl (100 mL + ethanol (100 mL was used. The hardness of samples before and after of tempering was measured by vicers method at 300 N load.. The amount of retained austenite was measured by X Ray Diffraction method. For 1DCT and 24DCT samples it was about 8% and 4%; in the other samples, the retained austenite peal was so decreased that it was not visible. The result showed that the hardness increases by deep cryogenic treatment in all speciments. While wear resistance increases in 1DCT and 24DCT samples, it decreases for 30DCT and 48DCT samples in compare with Conventional heat treatment (CHT sample in both applied loads, such that , 48DCT sample has the least wear resistance. The cause of increament of hardness is due to reduction in amount of retained austenite as a result of deep cryogenic treatment and decreasing in wear resistance after 24 hour, is due to carbide growth and nonhemogenuse distribution in microstructure and then weakening of matrix. So the 24 hour deep cryogenic treatment was the best optimal for AISI 5120 steel.

  10. Experimental study on the thermal hydraulic performance of plate-fin heat exchangers for cryogenic applications

    Science.gov (United States)

    Jiang, Qingfeng; Zhuang, Ming; Zhang, Qiyong; Zhu, Zhigang; Geng, Maofei; Sheng, Linhai; Zhu, Ping

    2018-04-01

    Efficient and compact plate-fin heat exchangers are critical for large-scale helium liquefaction/refrigeration systems as they constitute major part in the cold box. This study experimentally explores the heat transfer and pressure drop behaviors of helium gas at low temperature in four types of plate-fin channels, namely offset-strip and perforated fins, with different geometrical parameters. A series of cryogenic experiments at approximately liquid nitrogen temperature are carried out to measure the Colburn j factors and Fanning friction f factors with a wide range of Reynolds number. Besides, to reveal the performance variations under different operating temperatures, comparative experiments respectively conducted at room temperature and liquid nitrogen temperature are implemented. The results show that in comparison with the performance data at room temperature, most of j factors are relatively smaller perhaps because the lower aluminum thermal conductivity and higher Prandtl Number at low temperature. Meanwhile, the f factors corresponding to cryogenic conditions exhibit slightly larger even though the core pressure drops show considerable reductions. In contrast to the calculated results from the frequently-used performance curves (Chen and Shen, 1993), the Root Mean Squared Errors of j and f values are correlated within 8.38% and 6.97% for one perforated fin core, 41.29% and 34.97% for three OSF cores, respectively. For OSFs, further comparisons with the previous empirical correlations from literatures are conducted to verify the accuracy of each correlation. Generally, most of the calculated results predict acceptably within the deviations of ±25% for the j factors, while the predicted results express relatively large deviations for the f factors. Therefore, it may be revealed that most of the existing correlations were not able to accurately predict the experimental data in consideration of the performance differences under realistic cryogenic operating

  11. 3 cm cryogenic electron linac for defectoscopy and medicine

    International Nuclear Information System (INIS)

    Androsov, V.V.; Saverskij, A.Ya.; Shchedrin, I.S.

    1979-01-01

    Comparative estimations of basic HF parameters of travelling and standing wave accelerating structures of cryogenic variants are given. A possibility for using liquid nitrogen as coolant has been considered. Changes in energy attenuation and storage along 1 m length for circular corrugated wavequide (CCW) when changing copper temperature from room to liquid nitrogen temperature has been considered as well. It is shown that nitrogen cooling does not result in significant energy gain for travelling wave CCW, however considerably decreases a share of power for attenuation in walls: electron efficiency of the accelerator may be increased at the expense of this share of power conserving energy storage a t the same level. Examination of the accelerating structure in the standing wave regime has shown that it is possible to gain considerably with respect to the field in comparison with 70 cm wave length when cooling 3 cm-wave length section with liquid nitrogen. At that, time of filling of the accele--rating cell with accelerating field reduces almost 3 times as compared to a ''hot'' 10 cm version. It is shown that liquid nitrogen consumption will amount not more than 2l/h for cooling of 1 m long 3 cm accelerating structure [ru

  12. UV and IR Photochemistries of Malonaldehyde Trapped in Cryogenic Matrices.

    Science.gov (United States)

    Trivella, A; Wassermann, T N; Manca Tanner, C; Lüttschwager, N O B; Coussan, S

    2018-03-08

    UV and IR photochemistries of malonaldehyde, the simplest molecule exhibiting an intramolecular proton exchange, have been studied in four cryogenic matrices at 4.3 K, N 2 , Ne, Ar, and Xe. Samples have been irradiated using a UV and IR OPO type tunable laser, and with a broad band UV mercury lamp. UV and IR spectra have been recorded and compared with theoretical calculations carried out at the SAC-CI/6-31++G(d,p) (UV transitions) and B3LYP/6-311++G(2d,2p) (IR spectra) levels of theory. After deposition, the intramolecularly H-bonded form is found exclusively, while several open forms are formed upon UV irradiation. These open forms show ability to interconvert upon UV irradiation too. Some of them are also able to isomerize upon selective IR irradiations. The whole set of results allowed us to identify seven isomers among the eight postulated. The photodynamics of the electronic relaxation of malonaldehyde have also been investigated. By following the decay or rise of suited specific vibrational bands in the IR spectra, and by comparing the results with an earlier study of the homologous acetylacetone, we deduced that the electronic relaxation of malonaldehyde proceeds through singlet states, most probably through a 3-fold conical intersection, as postulated from theoretical calculations. In contrast with acetylacetone, malonaldehyde does not show fragmentation after UV excitation.

  13. Thermal equilibrium of a cryogenic magnetized pure electron plasma

    Science.gov (United States)

    Dubin, D. H. E.; Oneil, T. M.

    1986-01-01

    The thermal equilibrium correlation properties of a magnetically confined pure electron plasma (McPEP) are related to those of a one-component plasma (OCP). The N-particle spatial distribution rho sub s and the Helmholtz free energy F are evaluated for the McPEP to O(lambda sub d-squared/a-squared), where lambda sub d is the thermal de Broglie wavelength and is an interparticle spacing. The electron gyromotion is allowed to be fully quantized while the guiding center motion is quasi-classical. The distribution rho sub s is shown to be identical to that of a classical OCP with a slightly modified potential. To O(lambda sub d-squared/a-squared) this modification does not affect that part of F that is caused by correlations, as long as certain requirements concerning the size of the plasma are met. This theory is motivated by a current series of experiments that involve the cooling of a magnetically confined pure electron plasma to the cryogenic temperature range.

  14. SBIR Grant:No-Vibration Agile Cryogenic Optical Refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard

    2013-04-09

    Optical refrigeration is currently the only all-solid-state cryocooling technology that has been demonstrated. Optical cryocoolers are devices that use laser light to cool small crystal or glass cooling elements. The cooling element absorbs the laser light and reradiates it at higher energy, an example of anti-Stokes fluorescence. The dif-ference between the energy of the outgoing and incoming light comes from the thermal energy of the cooling element, which in turn becomes colder. Entitled No-Vibration Agile Cryocoolers using Optical Refrigeration, this Phase I proposal directly addressed the continued development of the optical refrigerator components necessary to transition this scientific breakthrough into National Nu-clear Security Administration (NNSA) sensor applications in line with the objectives of topic 50b. ThermoDynamic Films LLC (TDF), in collaboration with the University of New Mexico (UNM), cooled an optical-refrigerator cooling element comprised of an ytterbium-doped yttrium lithium fluoride (Yb:YLF) crystal from room tempera-ture to 123 K with about 2% efficiency. This is the world record in optical refrigera-tion and an important step toward revolutionizing cryogenic systems for sensor ap-plications. During this period, they also designed and analyzed the crucial elements of a prototype optical refrigerator including the thermal link that connects the cool-ing element with the load.

  15. Thermal Performance of a Cryogenic Fluid Management Cubesat Mission

    Science.gov (United States)

    Berg, J. J.; Oliveira, J. M.; Congiardo, J. F.; Walls, L. K.; Putman, P. T.; Haberbusch, M. S.

    2013-01-01

    Development for an in-space demonstration of a CubeS at as a Cryogenic Fluid Management (CFM) test bed is currently underway. The favorable economics of CubeSats make them appealing for technology development activity. While their size limits testing to smaller scales, many of the regimes relevant to CFM can still be achieved. The first demo flight of this concept, CryoCube®-1, will focus on oxygen liquefaction and low-gravity level sensing using Reduced Gravity CryoTracker®. An extensive thermal modeling effort has been underway to both demonstrate concept feasibility and drive the prototype design. The satellite will utilize both a sun- and earth-shield to passively cool its experimental tank below 115 K. An on-board gas generator will create high pressure gaseous oxygen, which will be throttled into a bottle in the experimental node and condensed. The resulting liquid will be used to perform various experiments related to level sensing. Modeling efforts have focused on the spacecraft thermal performance and its effects on condensation in the experimental node. Parametric analyses for both optimal and suboptimal conditions have been considered and are presented herein.

  16. Progress of cryogenic pulsating heat pipes at UW-Madison

    Science.gov (United States)

    Diego Fonseca, Luis; Mok, Mason; Pfotenhauer, John; Miller, Franklin

    2017-12-01

    Space agencies continuously require innovative cooling systems that are lightweight, low powered, physically flexible, easily manufactured and, most importantly, exhibit high heat transfer rates. Therefore, Pulsating Heat Pipes (PHPs) are being investigated to provide these requirements. This paper summarizes the current development of cryogenic Pulsating Heat Pipes with single and multiple evaporator sections built and successfully tested at UW-Madison. Recently, a helium based Pulsating Heat Pipe with three evaporator and three condenser sections has been operated at fill ratios between 20 % and 80 % operating temperature range of 2.9 K to 5.19 K, resulting in a maximum effective thermal conductivity up to 50,000 W/m-K. In addition, a nitrogen Pulsating Heat Pipe has been built with three evaporator sections and one condenser section. This PHP achieved a thermal performance between 32,000 W/m-K and 96,000 W/m-K at fill ratio ranging from 50 % to 80 %. Split evaporator sections are very important in order to spread cooling throughout an object of interest with an irregular temperature distribution or where multiple cooling locations are required. Hence this type of configurations is a proof of concept which hasn’t been attempted before and if matured could be applied to cryo-propellant tanks, superconducting magnets and photon detectors.

  17. Germanium-76 Isotope Separation by Cryogenic Distillation. Final Report

    International Nuclear Information System (INIS)

    Stohler, Eric

    2007-01-01

    The current separation method for Germanium isotopes is electromagnetic separation using Calutrons. The Calutrons have the disadvantage of having a low separation capacity and a high energy cost to achieve the separation. Our proposed new distillation method has the advantage that larger quantities of Germanium isotopes can be separated at a significantly lower cost and in a much shorter time. After nine months of operating the column that is 1.5 meter in length, no significant separation of the isotopes has been measured. We conclude that the length of the column we have been using is too short. In addition, other packing material than the 0.16 inch Propak, 316 ss Protruded metal packing that we used in the column, should be evaluated which may have a better separation factor than the 0.16 inch Propak, 316 ss Protruded metal packing that has been used. We conclude that a much longer column - a minimum of 50 feet length - should be built and additional column packing should be tested to verify that isotopic separation can be achieved by cryogenic distillation. Even a longer column than 50 feet would be desirable.

  18. Cryogenic testing and analysis associated with Tevatron lower temperature operation

    International Nuclear Information System (INIS)

    Theilacker, J.C.

    1996-01-01

    An upgrade of the Tevatron cryogenic system was installed and commissioned in 1993 to allow lower temperature operation. As a result, higher energy operation of the Fermilab superconducting Tevatron accelerator is possible. Following the installation and initial commissioning, it was decided to continue the current colliding beam physics run at the previous energy of 900 GeV. This has allowed the author to perform parasitic lower temperature tests in the Tevatron over the last year and a half. This paper presents the results of operational experiences and thermal and hydraulic testing which have taken place. The primary goal of the testing is to better understand the operation of the cold compressor system, associated instrumentation, and the performance of the existing magnet system during lower temperature operation. This will lead to a tentatively scheduled higher energy test run in the fall of 1995. The test results have shown that more elaborate controlling methods are necessary in order to achieve reliable system operation. Fortunately, the new satellite refrigerator controls system is capable of the expansion necessary to reach this goal. New features are being added to the controls systems which will allow for more intelligent control and better diagnostics for component monitoring and trending

  19. The Development of a Cryogenic Over-Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Matthew L. [Illinois Inst. of Technology, Chicago, IL (United States)

    2012-01-01

    The Dark Energy Survey (DES) project will study the accelerated expansion of the universe. In order to further study this phenomenon, scientists have devised a method of creating an array of charged couple devices (CCD) to capture images that will be studied. These CCDs must be cooled and remain at 173K to eliminate thermal gradients and dark current. Therefore, a two-phase CCD liquid nitrogen (LN2) cooling system was designed to maintain the array of CCDs at a constant temperature. However, the centrifugal pump used to supply LN2 has a mean time between failure (MTBF) of approximately two thousand-eight hundred hours (116 days). Because of the low MTBF of the centrifugal pump, a new pump is being considered to replace the existing one. This positive displacement pump is a simpler design that is expected to have a MTBF that will exceed 116 days (2800hrs). This positive displacement reciprocating pump, also known as, the cryogenic over-pressure pump (OPP), was tested in February 2012 and successfully cooled the CCD array to 173K. Though unfit for service for DES CCD cooling system, the overall concept of this pump has been proven. Typical ow rates, pressures, and temperatures trends have been captured via instrumentation and are specific to the operation of future over-pressure pumps.

  20. Cryogenic instrumentation needs in the controlled thermonuclear research program

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, P.L.

    1976-01-01

    The magnet development effort for the controlled thermonuclear research program will require extensive testing of superconducting coils at various sizes from small-scale models to full-size prototypes. Extensive use of diagnostic instrumentation will be required and to make detailed comparisons of predicted and actual performance in magnet tests and to monitor the test facility for incipient failure modes. At later stages of the program, cryogenic instrumentation will be required to monitor magnet system performance in fusion power reactors. Measured quantities may include temperature, strain, deflection, coil resistance, helium coolant pressure and flow, current, voltages, etc. The test environment, which includes high magnetic fields (up to 8-10 T) and low temperature, makes many commercial measuring devices inoperative or at least inaccurate. In order to ensure reliable measurements, careful screening of commercial devices for performance in the test environment will be required. A survey of potentially applicable instrumentation is presented along with available information on operation in the test environment based on experimental data or on analysis of the physical characteristics of the device. Areas where further development work is needed are delineated.