WorldWideScience

Sample records for cryogen sprays impinging

  1. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Directory of Open Access Journals (Sweden)

    Qiang WEI

    2017-08-01

    Full Text Available To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray, the conventional uncoupled spray model for impinging injectors is extended by considering the coupling of the jet impingement process and the ambient gas field. The new coupled model consists of the plain-orifice sub-model, the jet-jet impingement sub-model and the droplet collision sub-model. The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions. The overall model is benchmarked under various impingement angles, jet momentum and off-center ratios. Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics, such as the mass flux and mixture ratio distributions in quiescent air. Besides, impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions. First, a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile. The minimum average droplet diameter is achieved when the orifices work in cavitation state, and is about 30% smaller than the steady single phase state. Second, the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°. The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  2. Coupled Lagrangian impingement spray model for doublet impinging injectors under liquid rocket engine operating conditions

    Institute of Scientific and Technical Information of China (English)

    Qiang WEI; Guozhu LIANG

    2017-01-01

    To predict the effect of the liquid rocket engine combustion chamber conditions on the impingement spray,the conventional uncoupled spray model for impinging injectors is extended by considering the couplingof the jet impingement process and the ambient gas field.The new coupled model consists of the plain-orifice sub-model,the jet-jet impingement sub-model and the droplet collision sub-model.The parameters of the child droplet are determined with the jet-jet impingement sub-model using correlations about the liquid jet parameters and the chamber conditions.The overall model is benchmarked under various impingement angles,jet momentum and offcenter ratios.Agreement with the published experimental data validates the ability of the model to predict the key spray characteristics,such as the mass flux and mixture ratio distributions in quiescent air.Besides,impinging sprays under changing ambient pressure and non-uniform gas flow are investigated to explore the effect of liquid rocket engine chamber conditions.First,a transient impingement spray during engine start-up phase is simulated with prescribed pressure profile.The minimum average droplet diameter is achieved when the orifices work in cavitation state,and is about 30% smaller than the steady single phase state.Second,the effect of non-uniform gas flow produces off-center impingement and the rotated spray fan by 38°.The proposed model suggests more reasonable impingement spray characteristics than the uncoupled one and can be used as the first step in the complex simulation of coupling impingement spray and combustion in liquid rocket engines.

  3. Spray Formation of Herschel-Bulkley Fluids using Impinging Jets

    Science.gov (United States)

    Rodrigues, Neil; Gao, Jian; Chen, Jun; Sojka, Paul E.

    2015-11-01

    The impinging jet spray formation of two non-Newtonian, shear-thinning, Herschel-Bulkley fluids was investigated in this work. The water-based gelled solutions used were 1.0 wt.-% agar and 1.0 wt.-% kappa carrageenan. A rotational rheometer and a capillary viscometer were used to measure the strain-rate dependency of viscosity and the Herschel-Bulkley Extended (HBE) rheological model was used to characterize the shear-thinning behavior. A generalized HBE jet Reynolds number Rej , gen - HBE was used as the primary parameter to characterize the spray formation. A like-on-like impinging jet doublet was used to produce atomization. Shadowgraphs were captured in the plane of the sheet formed by the two jets using a CCD camera with an Nd:YAG laser beam providing the back-illumination. Typical behavior for impinging jet atomization using Newtonian liquids was not generally observed due to the non-Newtonian, viscous properties of the agar and kappa carrageenan gels. Instead various spray patterns were observed depending on Rej , gen - HBE. Spray characteristics of maximum instability wavelength and sheet breakup length were extracted from the shadowgraphs. Multi-University Research Initiative Grant Number W911NF-08-1-0171.

  4. Numerical study of the spray impingement onto a solid wall

    OpenAIRE

    Rodrigues, Christian Michel Gomes

    2011-01-01

    The modelling of turbulent multiphase flows has been gathering high interest in the last decades in the scientific community due to its relevance in several applications, such as in industrial and environmental processes or for chemical and biomedical purposes. In fact, regarding the industrial applications, the impingement of liquid fuel sprays onto engine surfaces has become a subject of interest due to its influence on the mixture preparation prior to combustion and, consequently, engine p...

  5. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment

    Science.gov (United States)

    Majaron, Boris; Svaasand, Lars O.; Aguilar, Guillermo; Nelson, J. Stuart

    2002-09-01

    Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.

  6. Impinging jet spray formation using non-Newtonian liquids

    Science.gov (United States)

    Rodrigues, Neil S.

    Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance. A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension). Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks. This experimental work seeks to help resolve the scarcity in existing literature by providing drop size

  7. Cryogen spray cooling: Effects of droplet size and spray density on heat removal.

    Science.gov (United States)

    Pikkula, B M; Torres, J H; Tunnell, J W; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is an effective method to reduce or eliminate non-specific injury to the epidermis during laser treatment of various dermatological disorders. In previous CSC investigations, fuel injectors have been used to deliver the cryogen onto the skin surface. The objective of this study was to examine cryogen atomization and heat removal characteristics of various cryogen delivery devices. Various cryogen delivery device types including fuel injectors, atomizers, and a device currently used in clinical settings were investigated. Cryogen mass was measured at the delivery device output orifice. Cryogen droplet size profiling for various cryogen delivery devices was estimated by optically imaging the droplets in flight. Heat removal for various cryogen delivery devices was estimated over a range of spraying distances by temperature measurements in an skin phantom used in conjunction with an inverse heat conduction model. A substantial range of mass outputs were measured for the cryogen delivery devices while heat removal varied by less than a factor of two. Droplet profiling demonstrated differences in droplet size and spray density. Results of this study show that variation in heat removal by different cryogen delivery devices is modest despite the relatively large difference in cryogen mass output and droplet size. A non-linear relationship between heat removal by various devices and droplet size and spray density was observed. Copyright 2001 Wiley-Liss, Inc.

  8. Effect of wall impingement on ambient gas entrainment, fuel evaporation and mixture formation of diesel spray

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Keiya [Department of Mechanical Physics Engineering, University of Hiroshima (Japan); Matsumoto, Yuhei; Zhang, Wu [Mazda Motor Corp. (Japan); Gao, Jian [University of Wisconsin (United States); Moon, Seoksu [Argonne National Laboratory (United States)

    2010-07-01

    In the energy sector, with the implementation of stringent regulations on combustion emissions and the depletion of conventional fuels, there is a pressing need to improve the performance of engines. The purpose of this paper is to determine the impact of wall impingement on several characteristics of diesel spray. Experiments were carried out with both a small and a large amount of diesel spray injected and ambient gas entrainment, fuel evaporation and mixture formation were evaluated using an LAS optical system. Results showed that wall impingement has the same effects for small or large amounts of diesel spray injected; these are: a larger volume spray after the impingement and a smaller volume after it, the suppression of ambient gas entrainment and fuel evaporation, and the shift of the PDF peak of the vapor equivalent ratio. This study provided useful information but further work is needed to address the remaining issues.

  9. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    Science.gov (United States)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  10. Cryogen spray cooling during laser tissue welding.

    Science.gov (United States)

    Fried, N M; Walsh, J T

    2000-03-01

    Cryogen cooling during laser tissue welding was explored as a means of reducing lateral thermal damage near the tissue surface and shortening operative time. Two centimetre long full-thickness incisions were made on the epilated backs of guinea pigs, in vivo. India ink was applied to the incision edges then clamps were used to appose the edges. A 4 mm diameter beam of 16 W, continuous-wave, 1.06 microm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. There was a delay of 2 s between scans. The total irradiation time was varied from 1-2 min. Cryogen was delivered to the weld site through a solenoid valve in spurt durations of 20, 60 and 100 ms. The time between spurts was either 2 or 4 s, corresponding to one spurt every one or two laser scans. Histology and tensile strength measurements were used to evaluate laser welds. Total irradiation times were reduced from 10 min without surface cooling to under 1 min with surface cooling. The thermal denaturation profile showed less denaturation in the papillary dermis than in the mid-dermis. Welds created using optimized irradiation and cooling parameters had significantly higher tensile strengths (1.7 +/- 0.4 kg cm(-2)) than measured in the control studies without cryogen cooling (1.0 +/- 0.2 kg cm(-2)) (p laser welding results in increased weld strengths while reducing thermal damage and operative times. Long-term studies will be necessary to determine weld strengths and the amount of scarring during wound healing.

  11. Sequential cryogen spraying for heat flux control at the skin surface

    Science.gov (United States)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  12. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  13. Spray-on foam insulations for launch vehicle cryogenic tanks

    Science.gov (United States)

    Fesmire, J. E.; Coffman, B. E.; Meneghelli, B. J.; Heckle, K. W.

    2012-04-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex array of many variables starting with the large temperature difference of 200-260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the different

  14. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.

    Science.gov (United States)

    Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P

    2016-02-08

    This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.

  15. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    Science.gov (United States)

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  16. Efficacy of water spray protection against propane and butane jet fires impinging on LPG storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Shirvill, L.C. [Shell Global Solutions (UK), Chester (United Kingdom)

    2004-03-01

    Liquefied petroleum gas (LPG) storage tanks are often provided with water sprays to protect them in the event of a fire. This protection has been shown to be effective in a hydrocarbon pool fire but uncertainties remained regarding the degree of protection afforded in a jet fire resulting from a liquid or two-phase release of LPG. Two projects, sponsored by the Health and Safety Executive, have been undertaken to study, at full scale, the performance of a water spray system on an empty 13 tonne LPG vessel under conditions of jet fire impingement from nearby releases of liquid propane and butane. The results showed that a typical water deluge system found on an LPG storage vessel cannot be relied upon to maintain a water film over the whole vessel surface in an impinging propane or butane jet fire scenario. The deluge affects the fire itself, reducing the luminosity and smoke, resulting in a lower rate of wall temperature rise at the dry patches, when compared with the undeluged case. The results of these studies will be used by the HSE in assessing the risk of accidental fires on LPG installations leading to boiling liquid expanding vapour explosion (BLEVE) incidents. (Author)

  17. Spatially-resolved, three-dimensional spray characterization of impinging jets by digital in-line holography

    Science.gov (United States)

    Gao, Jian; Rodrigues, Neil; Sojka, Paul; Chen, Jun

    2014-11-01

    The impinging jet injector is a preferred method for the atomization of liquid rocket propellants. The majority of experimental studies in literature are not spatially-resolved due to the limitations of widely available point-wise and two-dimensional (2D) diagnostic techniques such as phase Doppler anemometry (PDA), which requires significant experimental repetitions to give spatially-resolved measurements. In the present study, digital in-line holography (DIH) is used to provide spatially-resolved, three-dimensional (3D) characteristics of impinging jet sprays. A double-exposure DIH setup is configured to measure droplet 3D, three-component velocity as well as the size distribution. The particle information is extracted by the hybrid method, which is recently proposed as a particle detection method. To enlarge the detection volume, two parallel, collimated laser beams are used to simultaneously probe the spray at two locations, and two identical cameras are used to record the corresponding holograms. Such a setup has a detection volume of approximately 20 cm by 3.6 cm by 4.8 cm. Sprays of both Newtonian and non-Newtonian liquids corresponding to regimes at relatively lower jet Reynolds and Weber numbers are investigated. Measurements from DIH are further verified by comparison with experimental data obtained from shadowgraph and PDA. It is revealed that DIH is particularly suitable to provide spatially-resolved, 3D measurements of impinging jet sprays that are not particularly dense.

  18. A study on post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems

    Science.gov (United States)

    Shahariar, G. M. H.; Wardana, M. K. A.; Lim, O. T.

    2018-04-01

    The post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems was numerically investigated in a constant volume chamber using STAR CCM+ CFD code. The turbulence flow was modelled by realizable k-ε two-layer model together with standard wall function and all y+ treatment was applied along with two-layer approach. The Eulerian-Lagrangian approach was used for the modelling of multi phase flow. Urea water solution (UWS) was injected onto the heated wall for the wall temperature of 338, 413, 473, 503 & 573 K. Spray development after impinging on the heated wall was visualized and measured. Droplet size distribution and droplet evaporation rates were also measured, which are vital parameters for the system performance but still not well researched. Specially developed user defined functions (UDF) are implemented to simulate the desired conditions and parameters. The investigation reveals that wall temperature has a great impact on spray development after impingement, droplet size distribution and evaporation. Increasing the wall temperature leads to longer spray front projection length, smaller droplet size and faster droplet evaporation which are preconditions for urea crystallization reduction. The numerical model and parameters are validated comparing with experimental data.

  19. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    impingement sheet – Probably due to a impingement point physically moving Distribution A: Approved for Public Release; Distribution Unlimited. PA# 16333 22...AIAA-92- 0458 30th ASM 7. N. Bremond and E. Villermaux, “Atomization by jet impact”, J. Fluid Mech 2006, vol.549, 273-306 8. W.E. Anderson, H. M. Ryan...Sheets formed by Impinging Jets in High Pressure Environments,” AIAA-2004-3526 40th ASM 11. X. Chen, D. Ma, and V. Yang, “Mechanism Study of Impact Wave

  20. Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures

    International Nuclear Information System (INIS)

    Jia Wangcun; Aguilar, Guillermo; Wang Guoxiang; Nelson, J Stuart

    2004-01-01

    Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during laser dermatologic therapy. However, the dominant mechanisms of heat transfer during the transient cooling process are incompletely understood. The objective of this study is to elucidate the physics of CSC by measuring the effect of initial substrate temperature (T 0 ) on cooling dynamics. Cryogen was delivered by a straight-tube nozzle onto a skin phantom. A fast-response thermocouple was used to record the phantom temperature changes before, during and after the cryogen spray. Surface heat fluxes (q'') and heat-transfer coefficients (h) were computed using an inverse heat conduction algorithm. The maximum surface heat flux (q'' max ) was observed to increase with T 0 . The surface temperature corresponding to q'' max also increased with T 0 but the latter has no significant effect on h. It is concluded that heat transfer between the cryogen spray and skin phantom remains in the nucleate boiling region even if T 0 is 80 0 C

  1. A study on the velocity characteristics of the spray formed by two impinging jets

    International Nuclear Information System (INIS)

    Choo, Yeon Jun; Seo, Kwi Hyun; Kang, Bo Seon

    2001-01-01

    In this study, the velocity characteristics of liquid elements formed by two impinging jets is analysed using double pulse image capturing technique. For the droplets formed by low speed impinging jets, the droplet velocities are higher with smaller azimuthal and impingement angle. The maximum droplet velocities are about 25% lower than jet velocity. With an increase of azimuthal angle, the shedding angles increases but remains lower than azimuthal angle. The velocities of ligaments formed by high speed impinging jets gradually decreases with an increase of azimuthal angle. The maximum ligament velocities are about 40% lower than jet velocity. Higher impingement angles produce lower ligament velocities. The shedding angles of ligament almost increases with the same value of azimuthal angle, which implies that the moving direction of ligaments is radial from the origin as the impingement point

  2. Study on the characteristics of the impingement erosion-corrosion for Cu-Ni Alloy sprayed coating(I)

    International Nuclear Information System (INIS)

    Lee, Sang Yeol; Lim, Uh Joh; Yun, Byoung Du

    1998-01-01

    Impingement erosion-corrosion test and electrochemical corrosion test in tap water(5000Ω-cm) and seawater(25Ω-cm). Thermal spraying coated Cu-Ni alloy on the carbon steel was carried out. The impingement erosion-corrosion behavior and electrochemical corrosion characteristics of the substrate(SS41) and Cu-Ni thermal spray coating were investigated. The erosion-corrosion control efficiency of Cu-Ni coating to substrate was also estimated quantitatively. Main results obtained are as follows : 1) Under the flow velocity of 13m/s, impingement erosion-corrosion of Cu-Ni coating is under the control of electrochemical corrosion factor rather than that of mechanical erosion. 2) The corrosion potential of Cu-Ni coating becomes more noble than that of substrate, and the current density of Cu-Ni coating under the corrosion potential is drained lowly than that of substrate. 3) The erosion-corrosion control efficiency of Cu-Ni coating to substrate is excellent in the tap water of high specific resistance solution, but it becomes dull in the seawater of low specific resistance. 4) The corrosion control efficiency of Cu-Ni coating to substrate in the seawater appears to be higher than that in the tap water

  3. Cryogenic Impinging Jets Subjected to High Frequency Transverse Acoustic Forcing in a High Pressure Environment

    Science.gov (United States)

    2016-07-27

    generated by a Fluke 292 arbitrary waveform generator. The signal generator was then fed to two Trek PZD2000A high- voltage amplifiers that drove two...Processes of Impinging Jet Injectors,” NASA Propulsion Engineering Research Center, vol. 2, N94-23042, 1993, pp.69-74. 8 Li, R., and Ashgriz...Instability,” NASA SP-194, 1972 V. Appendix A Figure A1. Instantaneous images of an acoustic cycle for the PAN 5 condition. A large group of

  4. An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application.

    Science.gov (United States)

    Torres, J H; Tunnell, J W; Pikkula, B M; Anvari, B

    2001-01-01

    Cryogen spray cooling (CSC) is a method used to protect the epidermis from non-specific thermal injury that may occur as a result of various dermatological laser procedures. However, better understanding of cryogen deposition and skin thermal response to CSC is needed to optimize the technique. Temperature measurements and video imaging were carried out on an epoxy phantom as well as human skin during CSC with and without simultaneous application of airflow which was intended to accelerate cryogen evaporation from the substrate surface. An inverse thermal conduction model was used to estimate heat flux and total heat removed. Lifetime of the cryogen film deposited on the surface of skin and epoxy phantom lasted several hundred milliseconds beyond the spurt, but could be reduced to the spurt duration by application of airflow. Values over 100 J/cm(3) were estimated for volumetric heat removed from the epidermis using CSC. "Film cooling" instead of "evaporative cooling" appears to be the dominant mode of CSC on skin. Estimated values of heat removed from the epidermis suggest that a cryogen spurt as long as 200 milliseconds is required to counteract heat generated by high laser fluences (e.g., in treatment of port wine stains) in patients with high concentration of epidermal melanin. Additional cooling beyond spurt termination can be avoided by simultaneous application of airflow, although it is unclear at the moment if avoiding the additional cooling would be beneficial in the actual clinical situation. Copyright 2001 Wiley-Liss, Inc.

  5. Heat flux characteristics of spray wall impingement with ethanol, butanol, iso-octane, gasoline and E10 fuels

    International Nuclear Information System (INIS)

    Serras-Pereira, J.; Aleiferis, P.G.; Walmsley, H.L.; Davies, T.J.; Cracknell, R.F.

    2013-01-01

    Highlights: • Heat flux sensors used to characterise the locations of fuel spray wall impingement. • Droplet evaporation modelling used to study the effect of fuel properties. • Behaviour of ethanol and butanol distinctively different to hydrocarbons. -- Abstract: Future fuel stocks for spark-ignition engines are expected to include a significant portion of bio-derived components with quite different chemical and physical properties to those of liquid hydrocarbons. State-of-the-art high-pressure multi-hole injectors for latest design direct-injection spark-ignition engines offer some great benefits in terms of fuel atomisation, as well as flexibility in in-cylinder fuel targeting by selection of the exact number and angle of the nozzle’s holes. However, in order to maximise such benefits for future spark-ignition engines and minimise any deteriorating effects with regards to exhaust emissions, it is important to avoid liquid fuel impingement onto the cylinder walls and take into consideration various types of biofuels. This paper presents results from the use of heat flux sensors to characterise the locations and levels of liquid fuel impingement onto the engine’s liner walls when injected from a centrally located multi-hole injector with an asymmetric pattern of spray plumes. Ethanol, butanol, iso-octane, gasoline and a blend of 10% ethanol with 90% gasoline (E10) were tested and compared. The tests were performed in the cylinder of a direct-injection spark-ignition engine at static conditions (i.e. quiescent chamber at 1.0 bar) and motoring conditions (at full load with inlet plenum pressure of 1.0 bar) with different engine temperatures in order to decouple competing effects. The collected data were analysed to extract time-resolved signals, as well as mean and standard deviation levels of peak heat flux. The results were interpreted with reference to in-cylinder spray formation characteristics, as well as fuel evaporation rates obtained by modelling

  6. Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement

    Science.gov (United States)

    Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.

    2014-02-01

    In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.

  7. Spray-Wall Impingement of Diesel-CNG Dual Fuel Jet using Schlieren Imaging Technique

    Directory of Open Access Journals (Sweden)

    Ismael Mhadi Abaker

    2014-07-01

    Full Text Available Natural gas is a low cost fuel with high availability in nature. However, it cannot be used by itself in conventional diesel engines due to its low flame speed and high ignition temperature. The addition of a secondary fuel to enhance the mixture formation and combustion process facilitate its wider use as an alternative fuel. An experimental study was performed to investigate the diesel-CNG dual fuel jet-wall impingement. A constant volume optical chamber was designed to facilitate maximum optical access for the study of the jet-wall impingement at different injection pressures, temperatures and injector-wall distances. The bottom plate of the test rig was made of aluminum (piston material and it was heated up to 500 K at ambient pressure. An injector driver was used to control the single-hole nozzle diesel injector combined with a natural gas injector. The injection timing of both injectors was synchronized with a camera trigger. The jet-wall impingement of diesel and diesel-CNG dual fuel jets was recorded with a high speed camera using Schlieren imaging technique and associated image processing software. The measurements of the jet radial penetration were higher in diesel-CNG dual fuel while the jet height travel along were higher in the case of diesel single fuel.

  8. An experimental and theoretical investigation of spray characteristics of impinging jets in impact wave regime

    Science.gov (United States)

    Rodrigues, N. S.; Kulkarni, V.; Gao, J.; Chen, J.; Sojka, P. E.

    2015-03-01

    The current study focuses on experimentally and theoretically improving the characterization of the drop size and drop velocity for like-on-like doublet impinging jets. The experimental measurements were made using phase Doppler anemometry (PDA) at jet Weber numbers We j corresponding to the impact wave regime of impinging jet atomization. A more suitable dynamic range was used for PDA measurements compared to the literature, resulting in more accurate experimental measurements for drop diameters and velocities. There is some disagreement in the literature regarding the ability of linear stability analysis to accurately predict drop diameters in the impact wave regime. This work seeks to provide some clarity. It was discovered that the assumed uniform jet velocity profile was a contributing factor for deviation between diameter predictions based on models in the literature and experimental measurements. Analytical expressions that depend on parameters based on the assumed jet velocity profile are presented in this work. Predictions based on the parabolic and 1/7th power law turbulent profiles were considered and show better agreement with the experimental measurements compared to predictions based on the previous models. Experimental mean drop velocity measurements were compared with predictions from a force balance analysis, and it was observed that the assumed jet velocity profile also influences the predicted velocities, with the turbulent profile agreeing best with the experimental mean velocity. It is concluded that the assumed jet velocity profile has a predominant effect on drop diameter and velocity predictions.

  9. Spray impingement on a wall in the context of the upper airways

    OpenAIRE

    Boudin , Laurent; Weynans , Lisl

    2008-01-01

    9 pages; ESAIM proceedings; We here address the modelling of an aerosol hitting the walls of the airways or an endotracheal tube used for a mechanical ventilation, and the possible creation of secondary droplets that may follow. We present a kinetic modelling of the spray-wall interaction and propose a boundary term that takes into account the possible formation of secondary droplets. Next we answer the following question: when, modelling the delivery of solute therapeutic aerosols, is it nec...

  10. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    Science.gov (United States)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the

  11. Evaluation of sub-zero and residence times after continuous versus multiple intermittent cryogen spray cooling exposure on human skin phantom

    OpenAIRE

    Ramirez-San-Juan, JC; Tuqan, AT; Kelly, KM; Nelson, JS; Aguilar, G

    2004-01-01

    Cryogen spray cooling (CSC) is used to minimize the risk of epidermal damage during various laser dermatologic surgeries. However, as the application of single or multiple cryogen spurts becomes available on some commercial lasers devices, it is necessary to determine the optimal CSC parameters for different laser surgeries. The objective of this study was to measure the time the sprayed surface of a human skin phantom (HSP) remains below water freezing temperature 0°C, referred to as subzero...

  12. Cryogenics

    International Nuclear Information System (INIS)

    Fradkov, A.B.

    1991-01-01

    The application of cryogenics in various areas of science and technology is related in a popular way. Utilization of cryogenics in the following production processes is described: separation of air, gas mixtures; production of helium; separation of hydrogen isotopes; production of deuterium. Applications of cryogenics in refrigerating engineering, superconductivity and high-energy physics, controlled thermonuclear fusion, superconducting electric motors and electric energy storages are considered

  13. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin.

    Science.gov (United States)

    Tunnell, James W; Chang, David W; Johnston, Carol; Torres, Jorge H; Patrick, Charles W; Miller, Michael J; Thomsen, Sharon L; Anvari, Bahman

    2003-06-01

    Increasing radiant exposure offers a means to increase treatment efficacy during laser-mediated treatment of vascular lesions, such as port-wine stains; however, excessive radiant exposure decreases selective vascular injury due to increased heat generation within the epidermis and collateral damage to perivascular collagen. To determine if cryogen spray cooling could be used to maintain selective vascular injury (ie, prevent epidermal and perivascular collagen damage) when using high radiant exposures (16-30 J/cm2). Observational study. Academic hospital and research laboratory. Twenty women with normal abdominal skin (skin phototypes I-VI). Skin was irradiated with a pulsed dye laser (wavelength = 585 nm; pulse duration = 1.5 milliseconds; 5-mm-diameter spot) using various radiant exposures (8-30 J/cm2) without and with cryogen spray cooling (50- to 300-millisecond cryogen spurts). Hematoxylin-eosin-stained histologic sections from each irradiated site were examined for the degree of epidermal damage, maximum depth of red blood cell coagulation, and percentage of vessels containing perivascular collagen coagulation. Long cryogen spurt durations (>200 milliseconds) protected the epidermis in light-skinned individuals (skin phototypes I-IV) at the highest radiant exposure (30 J/cm2); however, epidermal protection could not be achieved in dark-skinned individuals (skin phototypes V-VI) even at the lowest radiant exposure (8 J/cm2). The red blood cell coagulation depth increased with increasing radiant exposure (to >2.5 mm for skin phototypes I-IV and to approximately 1.2 mm for skin phototypes V-VI). In addition, long cryogen spurt durations (>200 milliseconds) prevented perivascular collagen coagulation in all skin types. Cryogen spurt durations much longer than those currently used in therapy (>200 milliseconds) may be clinically useful for protecting the epidermis and perivascular tissues when using high radiant exposures during cutaneous laser therapies

  14. Spray-loading: A cryogenic deposition method for diamond anvil cell

    Science.gov (United States)

    Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto

    2018-05-01

    An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.

  15. Cryogenics

    International Nuclear Information System (INIS)

    Shukla, R.K.

    1990-01-01

    Cryogenics refers to the coldest area known in nature. This temperature range has an upper limit arbitrarily defined as -100 degrees C (-250 degrees C by some) and a lower limit of absolute zero. These limits separate it from the temperature range generally used in refrigerating engineering. One important application of cryogenics is the separation ad purification of air into its various components (oxygen, nitrogen, argon, and the rare gases). Other important developments have been the large-scale production of liquid hydrogen; helium extraction from natural gas; storage and transport of liquefied gases such as oxygen, argon, nitrogen, helium, neon, xenon, and hydrogen; liquefaction of natural gas for ocean transport and peak shaving; and many new types of cryogenic refrigeration devices. This paper introduces the topic of cryogenic engineering. Cryogenic processes generally range from ambient conditions to the boiling point of the cryogenic fluid. Cryogenic cycles also incorporate two or more pressure levels. These properties must also cover the vapor, vapor-liquid, and sometimes the solid regions. Therefore, the physical properties of fluids over a great range of temperatures and pressures must be known. Solubility of contaminants must be known in order to design for their removal. The main physical properties for design purposes are those usually used in unit operations, such as fluid flow, heat transfer, and the like, in addition to those directly related to the Joule-Thomson effect and expansion work. Properties such as density, viscosity, thermal conductivity, heat capacity, enthalpy, entropy, vapor pressure, and vapor-liquid equilibriums are generally obtained in graphical, tabular, or equation form, as a function of temperature and pressure

  16. Epidermal protection with cryogen spray cooling during high fluence pulsed dye laser irradiation: an ex vivo study.

    Science.gov (United States)

    Tunnell, J W; Nelson, J S; Torres, J H; Anvari, B

    2000-01-01

    Higher laser fluences than currently used in therapy (5-10 J/cm(2)) are expected to result in more effective treatment of port wine stain (PWS) birthmarks. However, higher incident fluences increase the risk of epidermal damage caused by absorption of light by melanin. Cryogen spray cooling offers an effective method to reduce epidermal injury during laser irradiation. The objective of this study was to determine whether high laser incident fluences (15-30 J/cm(2)) could be used while still protecting the epidermis in ex vivo human skin samples. Non-PWS skin from a human cadaver was irradiated with a Candela ScleroPlus Laser (lambda = 585 nm; pulse duration = 1.5 msec) by using various incident fluences (8-30 J/cm(2)) without and with cryogen spray cooling (refrigerant R-134a; spurt durations: 40-250 msec). Assessment of epidermal damage was based on histologic analysis. Relatively short spurt durations (40-100 msec) protected the epidermis for laser incident fluences comparable to current therapeutic levels (8-10 J/cm(2)). However, longer spurt durations (100-250 msec) increased the fluence threshold for epidermal damage by a factor of three (up to 30 J/cm(2)) in these ex vivo samples. Results of this ex vivo study show that epidermal protection from high laser incident fluences can be achieved by increasing the cryogen spurt duration immediately before pulsed laser exposure. Copyright 2000 Wiley-Liss, Inc.

  17. Replacement of corrosion protection chromate primers and paints used in cryogenic applications on the Space Shuttle with wire arc sprayed aluminum coatings

    Science.gov (United States)

    Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.

    1995-01-01

    With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.

  18. Cryogenics

    International Nuclear Information System (INIS)

    Gutierrez R, C.; Jimenez D, J.; Cejudo A, J.; Hernandez M, V.

    1997-01-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  19. Femoroacetabular impingement

    International Nuclear Information System (INIS)

    Kassarjian, Ara; Brisson, Melanie; Palmer, William E.

    2007-01-01

    Femoroacetabular impingement is a relatively recently appreciated 'idiopathic' cause of hip pain and degenerative change. Two types of impingement have been described. The first, cam impingement, is the result of an abnormal morphology of the proximal femur, typically at the femoral head-neck junction. Cam impingement is most common in young athletic males. The second, pincer impingement, is the result of an abnormal morphology or orientation of the acetabulum. Pincer impingement is most common in middle-aged women. This article reviews the imaging findings of cam and pincer type femoroacetabular impingement. Recognition of these entities will help in the selection of the appropriate treatment with the goal of decreasing the likelihood of early degenerative change of the hip

  20. Study on a small diesel engine with direct injection impinging distribution spray combustion system. Optimum of injection system and combustion chamber; Shototsu kakusan hoshiki kogata diesel kikan ni kansuru kenkyu. Funshakei to nenshoshitsu no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K; Kato, S; Saito, T [Kanazawa Institute of Technology, Ishikawa (Japan); Tanabe, H [Gunma University, Gunma (Japan)

    1997-10-01

    This study is concerned with a small bore (93mm) diesel engine using impinged fuel spray, named OSKA system. The higher rate of injection show lower smoke emission with higher NOx Emission. The exhaust emission and performance were investigated under different compression ratio with higher rate of injection. The experimental results show that this OSKA system is capable for reducing the smoke emission without the deterioration of NOx emission and fuel consumption compared with the conventional DI diesel engine. 5 refs., 8 figs., 3 tabs.

  1. Influence of angle between the nozzle and skin surface on the heat flux and overall heat extraction during cryogen spray cooling

    International Nuclear Information System (INIS)

    Aguilar, Guillermo; Vu, Henry; Nelson, J Stuart

    2004-01-01

    High speed video imaging and an inverse heat conduction problem algorithm were used to observe and measure the effect of the angle between the nozzle and surface of a skin phantom on: (a) surface temperature; (b) heat flux q; and (c) overall heat extraction Q during cryogen spray cooling (CSC). A skin phantom containing a fast-response temperature sensor was sprayed with 50 ms cryogen spurts from a commercial nozzle placed 30 mm from the surface. The nozzle was systematically positioned at angles ranging from 5 deg. to 90 deg. (perpendicular) with respect to the phantom surface. It is shown that angles as low as 15 deg. have an insignificant impact on the surface temperature, q and Q. Only exaggerated angles of 5 deg. show up to 10% lower q and 30% lower Q with respect to the maximal values measured when nozzles are aimed perpendicularly. This study proves that the slight angle that many commercial nozzles have does not affect significantly the CSC efficiency. (note)

  2. Femoroacetabular impingement

    International Nuclear Information System (INIS)

    Anderson, Suzanne E.; Siebenrock, Klaus Arno; Tannast, Moritz

    2012-01-01

    Femoroacetabular impingement (FAI) is a pathomechanical concept describing the early and painful contact of morphological changes of the hip joint, both on the acetabular, and femoral head sides. These can lead clinically to symptoms of hip and groin pain, and a limited range of motion with labral, chondral and bony lesions. Pincer impingement generally involves the acetabular side of the joint where there is excessive coverage of the acetabulum, which may be focal or more diffuse. There is linear contact of the acetabulum with the head/neck junction. Cam impingement involves the femoral head side of the joint where the head is associated with bony excrescences and is aspheric. The aspheric femoral head jams into the acetabulum. Imaging appearances are reviewed below. This type is evident in young males in the second and third decades. The main features of FAI are described.

  3. A new method for spray deposit assessment

    Science.gov (United States)

    Chester M. Himel; Leland Vaughn; Raymond P. Miskus; Arthur D. Moore

    1965-01-01

    Solid fluorescent particles suspended in a spray liquid are distributed in direct proportion to the size of the spray droplets. Use of solid fluorescent particles is the basis of a new method for visual recognition of the size and number of droplets impinging on target and nontarget portions of sprayed areas.

  4. Impingement: an annotated bibliography

    International Nuclear Information System (INIS)

    Uziel, M.S.; Hannon, E.H.

    1979-04-01

    This bibliography of 655 annotated references on impingement of aquatic organisms at intake structures of thermal-power-plant cooling systems was compiled from the published and unpublished literature. The bibliography includes references from 1928 to 1978 on impingement monitoring programs; impingement impact assessment; applicable law; location and design of intake structures, screens, louvers, and other barriers; fish behavior and swim speed as related to impingement susceptibility; and the effects of light, sound, bubbles, currents, and temperature on fish behavior. References are arranged alphabetically by author or corporate author. Indexes are provided for author, keywords, subject category, geographic location, taxon, and title

  5. Subacromial impingement syndrome

    NARCIS (Netherlands)

    Umer, M.; Qadir, I.; Azam, M.

    2012-01-01

    Subacromial impingement syndrome (SAIS) represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a

  6. Perspectives on fish impingement

    International Nuclear Information System (INIS)

    Sharma, R.K.

    1977-01-01

    Data on fish impingement and related parameters are being gathered at a large number of power stations throughout the country at substantial monetary and manpower costs. A national survey of fish impingement at power plants was conducted and much of the information compiled in a standardized format--an effort that we think will aid in planning improvements in the design, siting, and operation of the cooling-water intakes. This paper examines the objectives of the fish impingement studies, monitoring programs, variables affecting fish impingement, siting and design criteria, state-of-the-art of screening systems, and suggestions for meeting 316(b) requirements. It also discusses where the emphasis should be placed in future fish-impingement related activities

  7. Atomization of Impinging Droplets on Superheated Superhydrophobic Surfaces

    Science.gov (United States)

    Emerson, Preston; Crockett, Julie; Maynes, Daniel

    2017-11-01

    Water droplets impinging smooth superheated surfaces may be characterized by dynamic vapor bubbles rising to the surface, popping, and causing a spray of tiny droplets to erupt from the droplet. This spray is called secondary atomization. Here, atomization is quantified experimentally for water droplets impinging superheated superhydrophobic surfaces. Smooth hydrophobic and superhydrophobic surfaces with varying rib and post microstructuring were explored. Each surface was placed on an aluminum heating block, and impingement events were captured with a high speed camera at 3000 fps. For consistency among tests, all events were normalized by the maximum atomization found over a range of temperatures on a smooth hydrophobic surface. An estimate of the level of atomization during an impingement event was created by quantifying the volume of fluid present in the atomization spray. Droplet diameter and Weber number were held constant, and atomization was found for a range of temperatures through the lifetime of the impinging droplet. The Leidenfrost temperature was also determined and defined to be the lowest temperature at which atomization ceases to occur. Both atomization and Leidenfrost temperature increase with decreasing pitch (distance between microstructures).

  8. Transient analysis of intermittent multijet sprays

    Energy Technology Data Exchange (ETDEWEB)

    Panao, Miguel R.O.; Moreira, Antonio Luis N. [Universidade Tecnica de Lisboa, IN, Center for Innovation, Technology and Policy Research, Instituto Superior Tecnico, Lisboa (Portugal); Durao, Diamantino G. [Universidade Lusiada, Lisboa (Portugal)

    2012-07-15

    This paper analyzes the transient characteristics of intermittent sprays produced by the single-point impact of multiple cylindrical jets. The aim is to perform a transient analysis of the intermittent atomization process to study the effect of varying the number of impinging jets in the hydrodynamic mechanisms of droplet formation. The results evidence that hydrodynamic mechanisms underlying the physics of ligament fragmentation in 2-impinging jets sprays also apply to sprays produced with more than 2 jets during the main period of injection. Ligaments detaching from the liquid sheet, as well as from its bounding rim, have been identified and associated with distinct droplet clusters, which become more evident as the number of impinging jets increases. Droplets produced by detached ligaments constitute the main spray, and their axial velocity becomes more uniformly distributed with 4-impinging jets because of a delayed ligament fragmentation. Multijet spray dispersion patterns are geometric depending on the number of impinging jets. Finally, an analysis on the Weber number of droplets suggests that multijet sprays are more likely to deposit on interposed surfaces, thus becoming a promising and competitive atomization solution for improving spray cooling. (orig.)

  9. Cryogenics safety

    International Nuclear Information System (INIS)

    Reider, R.

    1977-01-01

    The safety hazards associated with handling cryogenic fluids are discussed in detail. These hazards include pressure buildup when a cryogenic fluid is heated and becomes a gas, potential damage to body tissues due to surface contact, toxic risk from breathing air altered by cryogenic fluids, dangers of air solidification, and hazards of combustible cryogens such as liquified oxygen, hydrogen, or natural gas or of combustible mixtures. Safe operating procedures and emergency planning are described

  10. Subacromial impingement syndrome

    Directory of Open Access Journals (Sweden)

    Masood Umer

    2012-05-01

    Full Text Available Subacromial impingement syndrome (SAIS represents a spectrum of pathology ranging from subacromial bursitis to rotator cuff tendinopathy and full-thickness rotator cuff tears. The relationship between subacromial impingement and rotator cuff disease in the etiology of rotator cuff injury is a matter of debate. However the etiology is multi-factorial, and has been attributed to both extrinsic and intrinsic mechanisms. Management includes physical therapy, injections, and, for some patients, surgery. No high-quality RCTs are available so far to provide possible evidence for differences in outcome of different treatment strategies. There remains a need for high-quality clinical research on the diagnosis and treatment of SAIS.

  11. Femoroacetabular impingement surgery

    DEFF Research Database (Denmark)

    Reiman, Michael P; Thorborg, Kristian

    2015-01-01

    both the examination and treatment of FAI does not appear to accommodate this exponential growth. In fact, the direction currently taken for FAI is similar to previously described paths of other orthopaedic and sports medicine pathologies (eg, shoulder impingement, knee meniscus tear) for which we have......Femoroacetabuler impingement (FAI) is becoming increasingly recognised as a potential pathological entity for individuals with hip pain. Surgery described to correct FAI has risen exponentially in the past 10 years with the use of hip arthroscopy. Unfortunately, the strength of evidence supporting...

  12. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W

    2012-01-01

    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  13. Direct Flame Impingement

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    During the DFI process, high velocity flame jets impinge upon the material being heated, creating a high heat transfer rate. As a result, refractory walls and exhaust gases are cooler, which increases thermal efficiency and lowers NOx emissions. Because the jet nozzles are located a few inches from the load, furnace size can be reduced significantly.

  14. Cryogenic exciter

    Science.gov (United States)

    Bray, James William [Niskayuna, NY; Garces, Luis Jose [Niskayuna, NY

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  15. Sprayable Thermal Insulation for Cryogenic Tanks, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Sprayable Thermal Insulation for Cryogenic Tanks (STICT) is a thermal management system applied by either an automated or manual spraying process with less...

  16. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  17. Impingement syndrome of the shoulder

    International Nuclear Information System (INIS)

    Mayerhoefer, M.E.; Breitenseher, M.J.

    2004-01-01

    The impingement syndrome is a clinical entity characterized by shoulder pain due to primary or secondary mechanical irritation of the rotator cuff. The primary factors for the development of impingement are a curved or hook-shaped anterior acromion as well as subacromial osteophytes, which may lead to tearing of the supraspinatus tendon. Secondary impingement is mainly caused by calcific tendinopathy, glenohumeral instability, os acromiale and degenerative changes of the acromioclavicular joint. Conventional radiographs are initially obtained, mainly for evaluation of the bony structures of the shoulder. If available, sonography can be used for detection of lesions and tears of the rotator cuff. Finally, MR-imaging provides detailed information about the relationship of the acromion and the acromioclavicular joint to the rotator cuff itself. In many cases however, no morphologic cause for impingement syndrome can be found. While patients are initially treated conservatively, chronic disease usually requires surgical intervention. (orig.) [de

  18. Cryogenics; Criogenia

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez R, C; Jimenez D, J; Cejudo A, J; Hernandez M, V [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    Cryogenics is one of these technologies which contributes to scientific research that supports to the industry in the following benefits: 1. Storage ability and a great quantity of dense gases with cryogenic liquid which is found at high pressure. 2. Production ability at low cost with high purity gases through distillation or condensation. 3. Ability to use low temperatures in the refrigerating materials or alteration of the physical properties. This technology is used for reprocessing of those short and long half life radioactive wastes which always have been required that to be separated with classical methods. In this text we report the radioactive wastes separation by more sophisticated methods but more quickly and reliable. (Author)

  19. Cryogenic regenerators

    International Nuclear Information System (INIS)

    Kush, P.; Joshi, S.C.; Thirumaleshwar, M.

    1986-01-01

    Importance of regenerators in cryogenic refrigerators is highlighted. Design aspects of regenerator are reviewed and the factors involved in the selection of regenerator material are enumerated. Various methods used to calculate the heat transfer coefficient and regenerator effectiveness are mentioned. Variation of effectiveness with various parameters is calculated by a computer programme using the ideal, Ackermann and Tipler formulae. Results are presented in graphical form. Listing of the computer programme is given in the Appendix. (author)

  20. Cryogenic photodetectors

    Science.gov (United States)

    Chardin, G.

    2000-03-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  1. Cryogenic photodetectors

    CERN Document Server

    Chardin, G

    2000-01-01

    Some of the most significant developments in cryogenic photodetectors are presented. In particular, the main characteristics of microbolometers involving Transition Edge- and NTD-sensors and offering resolutions of a few eV in the keV range, superconducting tunnel junction detectors with resolutions of the order of 10 eV or offering position sensitivity, and infrared bolometers with recent developments towards matrix detectors are discussed. Some of the recent achievements using large mass bolometers for gamma and neutron discriminating detectors, and future prospects of single photon detection in the far infrared using Single Electron Transistor devices are also presented.

  2. LDR cryogenics

    Science.gov (United States)

    Nast, T.

    1988-01-01

    A brief summary from the 1985 Large Deployable Reflector (LDR) Asilomar 2 workshop of the requirements for LDR cryogenic cooling is presented. The heat rates are simply the sum of the individual heat rates from the instruments. Consideration of duty cycle will have a dramatic effect on cooling requirements. There are many possible combinations of cooling techniques for each of the three temperatures zones. It is clear that much further system study is needed to determine what type of cooling system is required (He-2, hybrid or mechanical) and what size and power is required. As the instruments, along with their duty cycles and heat rates, become better defined it will be possible to better determine the optimum cooling systems.

  3. Diagnosis of shoulder impingement syndrome

    International Nuclear Information System (INIS)

    Hodler, J.

    1996-01-01

    This article reviews the pathogenesis and clinical and imaging findings in shoulder impingement syndrome. Different stages of impingement syndrome are described. Stage I relates to edema and hemorrhage of the supraspinatus tendon. Stage II is characterized by bursal inflammation and fibrosis, as well as tendinopathy. In stage III there is a tear of the rotator cuff. Clinical signs many overlap. Moreover, calcifying tendinitis, fractures and pain originating from the cervical spine may mimic shoulder impingement syndrome. Imaging is important for the exact diagnosis. Standard radiographs are the basis of imaging in shoulder impingement syndrome. They may demonstrate subchondral sclerosis of the major tuberosity, subacromial spurs, and form anomalies of the acromion. They are also important in the differential diagnosis of shoulder impingement syndrome and demonstrate calcifying tendinitis, fractures and neoplasm. Ultrasonography has found acceptance as a screening tool and even as a final diagnostic method by many authors. However, there is a high interobserver variability in the demonstration of rotator cuff tears. Its usefulness has therefore been questioned. MR imaging is probably the method of choice in the evaluation of the rotator cuff and surrounding structures. Several investigations have demonstrated that differentiation of early findings, such as tendinopathy versus partial tears, may be difficult with MR imaging. However, reproducibility for fullthickness tears appears to be higher than for sonography. Moreover, specificity appears to be superior to sonography. MR arthrography is not universally accepted. However, it allows for more exact differentiation of discrete findings and may be indicated in preoperative planning. Standard arthrography and CT have a limited role in the current assessment of the rotator cuff. (orig.) [de

  4. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  5. Hydrodynamics and PIV study in the impingement zone formed by a droplet train

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza; Zhang, Taolue; Muthusamy, Jayaveera; Alvarado, Jorge; Texas A; M University at Qatar Collaboration; Texas A; M University College Station Collaboration

    2016-11-01

    Droplet impingement is encountered in numerous technical applications, such as ink jet printing, spray cooling, and fuel injection in internal combustion engines. Even though many studies in droplet impingement were conducted in past, not many have measured the near-wall velocities in the droplet impingement zone. With the goal of gaining a better understanding of the hydrodynamics in the impingement zone, well-controlled experiments are performed in combination with micro-PIV measurements and numerical simulations. Hydrodynamics of HFE-7100 droplets generated using a piezoelectric droplet generator, impinging on a pre-wetted surface is investigated. Micro-PIV studies in the high-velocity impingement zone are performed using one-micron meter fluorescent particles dispersed in HFE-7100 along with the double exposed images. Three-dimensional and 2D-axisymmetric numerical modeling for a transient droplet crown development is performed. The interface between the gas and the liquid is modeled using a Volume of Fluid (VOF) method. Numerical simulation results obtained are observed to be in good agreement with that of the experimental observations. Supported by National Priority Research Program (NPRP) of Qatar National Research Fund (QNRF), Grant No.: NPRP 6-1304-2-525.

  6. The influence of material hardness on liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Yamagata, Takayuki; Takano, Shotaro; Saito, Kengo; Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio

    2015-01-01

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5

  7. The influence of material hardness on liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Takano, Shotaro; Saito, Kengo [Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181 (Japan); Morita, Ryo; Fujiwara, Kazutoshi; Inada, Fumio [Central Research Institute of Electric Power Industry, 2-11-1, Iwatokita, Komae, Tokyo 201-8511 (Japan)

    2015-07-15

    Highlights: • Liquid droplet impingement erosion is studied for various metal materials. • Average power dependency on droplet velocity is found as 7. • Power dependency on Vickers hardness is found as −4.5. • An empirical formula is constructed for erosion rates of metal materials. • Predicted erosion rate is well correlated with experiment within a factor of 1.5. - Abstract: This paper describes the experimental study on the liquid droplet impingement erosion of metal materials to understand the influence of material hardness on the erosion rate. The experiment is carried out using a water spray jet apparatus with a condition of relatively thin liquid film thickness. The metal materials tested are pure aluminum, aluminum alloy, brass, mild steel, carbon steel and stainless steel. The liquid droplets considered are 30 ± 5 μm in volume average diameter of water, which is the same order of droplet diameter in the actual pipeline in nuclear/fossil power plants. In order to understand the influence of material hardness on the liquid droplet impingement erosion, the scanning electron microscope (SEM) observation on the eroded surface and the measurement of erosion rate are carried out in the terminal stage of erosion. The experimental results indicate that the erosion rates are expressed by the droplet velocity, volume flux, Vickers hardness and the liquid film thickness, which are fundamentals of the liquid droplet impingement erosion. The empirical formula shows that the power index for droplet velocity dependency is found to be 7 with a scattering from 5 to 9 depending on the materials, while the power index for Vickers hardness dependency is found as −4.5.

  8. Rotational effects on impingement cooling

    Science.gov (United States)

    Epstein, A. H.; Kerrebrock, J. L.; Koo, J. J.; Preiser, U. Z.

    1987-01-01

    The present consideration of rotation effects on heat transfer in a radially exhausted, impingement-cooled turbine blade model gives attention to experimental results for Reynolds and Rossby numbers and blade/coolant temperature ratio values that are representative of small gas turbine engines. On the basis of a model that encompasses the effects of Coriolis force and buoyancy on heat transfer, bouyancy is identified as the cause of an average Nusselt number that is 20-30 percent lower than expected from previous nonrotating data. A heuristic model is proposed which predicts that the impingement jets nearest the blade roots should deflect inward, due to a centripetal force generated by their tangential velocity counter to the blade motion. Potentially serious thermal stresses must be anticipated from rotation effects in the course of blade design.

  9. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  10. [Athletic pubalgia and hip impingement].

    Science.gov (United States)

    Berthaudin, A; Schindler, M; Ziltener, J-L; Menetrey, J

    2014-07-16

    Athletic pubalgia is a painful and complex syndrom encountered by athletes involved in pivoting and cutting sports such as hockey and soccer. To date, there is no real consensus on the criteria for a reliable diagnostic, the different investigations, and the appropriate therapy. Current literature underlines intrinsic and extrinsic factors contributing to athletic pubalgia. This review article reports upon two novelties related to the issue: the importance and efficience of prevention program and the association of femoro-acetabular impingement with the pubalgia.

  11. Energy Efficient Cryogenics

    Science.gov (United States)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  12. Cryogenics a textbook

    CERN Document Server

    Thipse, S S

    2013-01-01

    A Textbook covers lucidly various cryogenic applications including cryogenic engines and space and electronic applications. Importance of cryogenic engines in space propulsion, complete thermodynamic analysis of cryogenic systems with special emphasis on cryogenic cycles, Dewar vessels used to store cryogenic fluids and their applications in various industries have also been discussed in detail. Explanation of Superconductivity and its applications with a description of various Cryocoolers used in industry has also been provided with extensive details. Further technical information on cryogens has been specified alongwith the vacuum technology which has been sufficiently described with examples. Science of Cryonics has been elaborated and all aspects of technology related to functioning of cryogenic plants and their construction including valves, pipes has been incorporated in this book.

  13. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  14. Cryogen Safety Course 8876

    Energy Technology Data Exchange (ETDEWEB)

    Glass, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-13

    Cryogenics (from the Greek word κρvoζ, meaning frost or icy cold) is the study of the behavior of matter at very cold temperatures. The purpose of this course is to provide trainees with an introduction to cryogen use, the hazards and potential accidents related to cryogen systems, cryogen safety components, and the requirements that govern the design and use of cryogen systems at Los Alamos National Laboratory (LANL). The knowledge you gain will help you keep your workplace safe for yourself and your coworkers.

  15. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  16. Fish impingement at Lake Michigan power plants

    International Nuclear Information System (INIS)

    Sharma, R.K.; Freeman, R.F.; Spigarelli, S.A.

    1976-01-01

    A study was initiated in 1974 to survey the magnitude and to evaluate the impact of fish impingement at 20 power plants on the Great Lakes. Data on impingement rates, site characteristics, intake designs and operational features have been collected and analyzed. Interpretive analyses of these data are in progress. The objectives of this study were: to summarize fish impingement data for Lake Michigan (16/20 plants surveyed are on Lake Michigan); to assess the significance of total and source-related mortalities on populations of forage and predator species; and to expand the assessment of power plant impingement to include all water intakes on Lake Michigan. Data are tabulated

  17. Diagnostic imaging of shoulder impingement

    International Nuclear Information System (INIS)

    Merl, T.; Weinhardt, H.; Oettl, G.; Lenz, M.; Riel, K.A.

    1996-01-01

    Magnetic resonance imaging is a method that has been advancing in the last few years to the modality of choice for diagnostic evaluation of the bone joints, as the method is capable of imaging not only the ossous but also the soft tissue components of the joint. MRI likewise has become an accepted method for diagnostic evaluation of syndromes of the shoulder, with high diagnostic accuracy in detecting rotator cuff lesions, or as an efficient MRI arthrography for evaluation of the instability or lesions of the labrocapsular complex. In the evaluation of early stages of shoulder impingement, the conventional MRI technique as a static technique yields indirect signs which in many cases do not provide the diagnostic certainty required in order to do justice to the functional nature of the syndrome. In these cases, functional MRI for imaging of the arm in abducted position and in rotational movement may offer a chance to early detect impingement and thus identify patients who will profit from treatment at an early stage [de

  18. Fluorescence Imaging Study of Impinging Underexpanded Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.

    2008-01-01

    An experiment was designed to create a simplified simulation of the flow through a hole in the surface of a hypersonic aerospace vehicle and the subsequent impingement of the flow on internal structures. In addition to planar laser-induced fluorescence (PLIF) flow visualization, pressure measurements were recorded on the surface of an impingement target. The PLIF images themselves provide quantitative spatial information about structure of the impinging jets. The images also help in the interpretation of impingement surface pressure profiles by highlighting the flow structures corresponding to distinctive features of these pressure profiles. The shape of the pressure distribution along the impingement surface was found to be double-peaked in cases with a sufficiently high jet-exit-to-ambient pressure ratio so as to have a Mach disk, as well as in cases where a flow feature called a recirculation bubble formed at the impingement surface. The formation of a recirculation bubble was in turn found to depend very sensitively upon the jet-exit-to-ambient pressure ratio. The pressure measured at the surface was typically less than half the nozzle plenum pressure at low jet pressure ratios and decreased with increasing jet pressure ratios. Angled impingement cases showed that impingement at a 60deg angle resulted in up to a factor of three increase in maximum pressure at the plate compared to normal incidence.

  19. Impingement jet cooling in gas turbines

    CERN Document Server

    Amano, R S

    2014-01-01

    Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Impingement jet cooling is one of the most effective in terms of cooling, manufacturability and cost. This is the first to book to focus on impingement cooling alone.

  20. Controlled antisolvent precipitation of spironolactone nanoparticles by impingement mixing.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Shen, Shoucang; Kim, Sanggu; Tan, Reginald B H

    2011-05-30

    Continuous antisolvent precipitation of spironolactone nanoparticles were performed by impingement mixing in this work. In the range of Reynolds numbers (Re) 2108-6325 for the antisolvent water stream and 1771-5313 for the solvent stream, i.e. acetonic drug solution, 302-360 nm drug nanoparticles were achieved. Increasing drug concentration from 25 to 50 and 100 mg/ml led to a significant size increase from 279.0±2.6 to 302.7±4.9 and 446.0±17.3 nm, respectively. "Two-step crystallization" was first observed for spironolactone in the water/acetone system: the drug was precipitated initially as spherical cluster, which rearranged into ordered cuboidal nanocrystals finally. The nanoformulation showed faster dissolution rate in comparison with the raw drug. By combining the impingement mixing and an on-line spray drying, a fully continuous process may be developed for mass-production of dried drug nanoparticles. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Fish impingement at Montecello Nuclear Plant

    International Nuclear Information System (INIS)

    Grotbeck, L.M.; Bechthold, J.L.

    1975-01-01

    To properly evaluate total impact of power generation facilities on aquatic systems, it is necessary to perform site specific fish impingement studies. Intake and screen approach velocities should not be averaged when considering potential screen impingement problems because of wide vertical and horizontal variation in velocity which tend to trap fish. It was estimated that 2,952 fish were impinged during 4 months of sampling with 90.9% of these comprised of black bullheads (Ictalurus melas) and black crappies (Pomoxis nigromaculatus). Distinct relationships can be found between number of impinging fish and river flow, percentage river diverted through the plant, water temperature, and the time of year. For the months of June, July, August, and September, approx 55% of all impingement occurs in June

  2. Properties of Supersonic Impinging Jets

    Science.gov (United States)

    Alvi, F. S.; Iyer, K. G.; Ladd, J.

    1999-11-01

    A detailed study examining the behavior of axisymmetric supersonic jets impinging on a ground plane is described. Our objective is to better understand the aeroacoustics governing this complex flowfield which commonly occurs in the vicinity of STOVL aircraft. Flow issuing through a Mach 1.5 C-D and a converging sonic nozzle is examined over a wide parametric range. For some cases a large diameter circular 'lift' plate, with an annular hole through which the jet is issued, is attached at the nozzle exit to simulate a generic airframe. The impinging jet flowfield was examined using Particle Image Velocimetry (PIV), which provides the velocity field for the entire region and shadowgraph visualization techniques. Near-field acoustic, as well as, mean and unsteady pressure measurements on the ground and lift plate surfaces were also obtained. The velocity field data, together with the surface flow measurements have resulted in a much better understanding of this flow from a fundamental standpoint while also identifying critical regions of interest for practical applications. Some of these findings include the presence of a stagnation bubble with recirculating flow; a very high speed (transonic/supersonic) radial wall jet; presence of large, spatially coherent turbulent structures in the primary jet and wall jet and high unsteady loads on the ground plane and lift plates. The results of a companion CFD investigation and its comparison to the experimental data will also be presented. Very good agreement has been found between the computational and experimental results thus providing confidence in the development of computational tools for the study of such flows.

  3. Introduction to cryogenic engineering

    CERN Multimedia

    CERN. Geneva; Vandoni, Giovanna; Niinikoski, Tapio O

    2005-01-01

    Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning.

  4. Cryogenics for LDR

    Science.gov (United States)

    Kittel, Peter

    1988-01-01

    Three cryogenic questions of importance to Large Deployable Reflector (LDR) are discussed: the primary cooling requirement, the secondary cooling requirement, and the instrument changeout requirement.

  5. Rewetting of a hot metallic wall by liquid spray

    International Nuclear Information System (INIS)

    Castiglia, F.; Giardina, M.; Lombardo, C.

    2005-01-01

    Full text of publication follows: Rewetting is the re-establishment of liquid in contact with a hot dried surface, whose initial temperature is higher than the so-called 'rewetting temperature'. This phenomenology is of interest in many industrial processes, for example: in metallurgical quenching, in electronic equipments cooling, in cryogenic processes, in preserving the integrity of toxic and dangerous substances metallic containers endangered by a hypothetical fire. Moreover it is essential for the re-establishment of normal and safe temperature levels following rod cluster dryout or hypothesized loss of coolant accidents (LOCAs) in nuclear reactors. In spite of the large amount of experimental and theoretical work done in the past decades, the above depicted phenomenology still deserves further clarifications and deepening. For this reason, recently at the Institute of Energetic Thermal-Fluid Dynamics of ENEA (Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, at Casaccia, Italy), experimental researches have been carried out on the rewetting of vertical surfaces, at ambient pressure and various water flow rates by spraying subcooled water at the top. Spraying devices of various configuration, able to supply water drops of uniform diameter, have been used [1]. As it is known when, following the drops impact in some region at the top of the surface the temperature is lowered below the rewetting temperature, a liquid falling film forms, the front of which advances with a velocity ( the so called 'rewetting velocity'), limited by the rapidity by which the heat is conducted into the solid (conduction controlled rewetting). In the past, about the rewetting the researchers of Department of Nuclear Engineering of the University of Palermo have carried out an extensive theoretical work and more recently, have proposed a semi-theoretical model which proved successful in correlating a lot of experimental data [2]. This model has been suitably modified in order to

  6. Rewetting of a hot metallic wall by liquid spray

    Energy Technology Data Exchange (ETDEWEB)

    Castiglia, F.; Giardina, M.; Lombardo, C. [University of Palermo, Department of Nuclear Engineering, V.le delle Scienze, 90128 Palermo (Italy)

    2005-07-01

    Full text of publication follows: Rewetting is the re-establishment of liquid in contact with a hot dried surface, whose initial temperature is higher than the so-called 'rewetting temperature'. This phenomenology is of interest in many industrial processes, for example: in metallurgical quenching, in electronic equipments cooling, in cryogenic processes, in preserving the integrity of toxic and dangerous substances metallic containers endangered by a hypothetical fire. Moreover it is essential for the re-establishment of normal and safe temperature levels following rod cluster dryout or hypothesized loss of coolant accidents (LOCAs) in nuclear reactors. In spite of the large amount of experimental and theoretical work done in the past decades, the above depicted phenomenology still deserves further clarifications and deepening. For this reason, recently at the Institute of Energetic Thermal-Fluid Dynamics of ENEA (Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, at Casaccia, Italy), experimental researches have been carried out on the rewetting of vertical surfaces, at ambient pressure and various water flow rates by spraying subcooled water at the top. Spraying devices of various configuration, able to supply water drops of uniform diameter, have been used [1]. As it is known when, following the drops impact in some region at the top of the surface the temperature is lowered below the rewetting temperature, a liquid falling film forms, the front of which advances with a velocity ( the so called 'rewetting velocity'), limited by the rapidity by which the heat is conducted into the solid (conduction controlled rewetting). In the past, about the rewetting the researchers of Department of Nuclear Engineering of the University of Palermo have carried out an extensive theoretical work and more recently, have proposed a semi-theoretical model which proved successful in correlating a lot of experimental data [2]. This model has been

  7. Breakup characteristics of power-law liquid sheets formed by two impinging jets

    International Nuclear Information System (INIS)

    Bai, Fuqiang; Diao, Hai; Chang, Qing; Wang, Endong; Du, Qing; Zhang, Mengzheng

    2014-01-01

    The breakup characteristics of the shear-thinning power-law liquid sheets formed by two impinging jets have been investigated with the shadowgraph technique. This paper focuses on the effects of spray parameters (jet velocity), physical parameters (viscosity) and geometry parameters (impinging angle and nozzle cross-sectional shape) on the breakup behaviors of liquid sheets. The breakup mode, sheet length and expansion angle of the sheet are extracted from the spray images obtained by a high speed camera. Impinging angle and Weber number play the similar roles in promoting the breakup of liquid sheets. With the increase of jet velocity, five different breakup modes are observed and the expansion angle increases consistently after the closed-rim mode while the sheet length first increases and then decreases. But there exists a concave consisting of a fierce drop and a second rising process on the sheet length curve for the fluid with smaller viscosity. Different nozzle cross-sectional shapes emphasize significant effects on the sheet length and expansion angle of liquid sheets. At a fixed Weber number, the liquid sheet with greater viscosity has a greater sheet length and a smaller expansion angle due to the damping effect of viscosity. (papers)

  8. MOSFET's for Cryogenic Amplifiers

    Science.gov (United States)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  9. MFTF magnet cryogenics

    International Nuclear Information System (INIS)

    VanSant, J.H.

    1981-07-01

    The prime requirement of the cryogenics of the magnets is to assure a superconducting state for the magnet coils, a large task considering their enormous size. The following presentation addresses the principal topics that have been considered in this cryogenic design

  10. Modelling of soft impingement during solidification

    Indian Academy of Sciences (India)

    TECS

    soft impingement problem and related to shape instability by constitutional supercooling theory. This analysis ... the context of the stir casting process, it has been pointed ... This transformation when applied to Fick's second law gives the ...

  11. Hip arthroscopy for femoroacetabular impingement

    Science.gov (United States)

    Nasser, Rima; Domb, Benjamin

    2018-01-01

    The purpose of this article is to give a general overview of femoroacetabular impingement (FAI) and how it could be treated arthroscopically, with some details about indications, the procedure itself and some of the complications associated with the surgery. FAI is a dynamic condition of the hip that can be a source of pain and disability and could potentially lead to arthritis. When symptomatic, and if conservative treatment fails, FAI can be addressed surgically. The goal of surgical treatment for FAI is to recreate the spherical contour of the femoral head, improve femoral offset, normalize coverage of the acetabulum, repair/reconstruct chondral damage and repair/reconstruct the labrum to restore normal mechanics and joint sealing. Advances in equipment and technique have contributed to an increase in the number of hip arthroscopy procedures performed worldwide and have made it one of the more common treatment options for symptomatic FAI. Hip arthroscopy is a procedure with an extremely steep and long learning curve. Cite this article: EFORT Open Rev 2018;3:121-129. DOI: 10.1302/2058-5241.3.170041 PMID:29780619

  12. Radiological diagnosis of femoroacetabular impingement

    International Nuclear Information System (INIS)

    Mamisch, T.C.; Werlen, S.; Trattnig, S.; Zilkens, C.; Kim, Y.J.; Siebenrock, K.A.; Bittersohl, B.

    2009-01-01

    Femoroacetabular impingements (FAI) are due to an anatomical disproportion between the proximal femur and the acetabulum which causes premature wear of the joint surfaces. An operation is often necessary in order to relieve symptoms such as limited movement and pain as well as to prevent or slow down the degenerative process. The result is dependent on the preoperative status of the joint with poor results for advanced arthritis of the hip joint. This explains the necessity for an accurate diagnosis in order to recognize early stages of damage to the joint. The diagnosis of FAI includes clinical examination, X-ray examination and magnetic resonance imaging (MRI). The standard X-radiological examination for FAI is carried out using two X-ray images, an anterior-posterior view of the pelvis and a lateral view of the proximal femur, such as the cross-table lateral or Lauenstein projections. It is necessary that positioning criteria are adhered to in order to avoid distortion artifacts. MRI permits an examination of the pelvis on three levels and should also include radial planned sequences for improved representation of peripheral structures, such as the labrum and peripheral cartilage. The use of contrast medium for a direct MR arthrogram has proved to be advantageous particularly for representation of labrum damage. The data with respect to cartilage imaging are still unclear. Further developments in technology, such as biochemical-sensitive MRI applications, will be able to improve the diagnosis of the pelvis in the near future. (orig.) [de

  13. Internal Impingement of the Shoulder: A Risk of False Positive Test Outcomes in External Impingement Tests?

    Directory of Open Access Journals (Sweden)

    Tim Leschinger

    2017-01-01

    Full Text Available Background. External impingement tests are considered as being particularly reliable for identifying subacromial and coracoid shoulder impingement mechanisms. The purpose of the present study was to evaluate if these tests are likely to provoke an internal shoulder impingement mechanism which, in cases of a pathologic condition, can lead to a positive test result. Method. In 37 subjects, the mechanical contact between the glenoid rim and the rotator cuff (RC was measured quantitatively and qualitatively in external impingement test positions using an open MRI system. Results. Mechanical contact of the supraspinatus with the posterosuperior glenoid was present in 30 subjects in the Neer test. In the Hawkins test, the subscapularis was in contact with the anterosuperior glenoid in 33 subjects and the supraspinatus in 18. In the horizontal impingement test, anterosuperior contact of the supraspinatus with the glenoid was identified in 35 subjects. Conclusion. The Neer, Hawkins, and horizontal impingement tests are likely to provoke the mechanism of an internal shoulder impingement. A posterosuperior internal impingement mechanism is being provoked predominately in the Neer test. The Hawkins test narrows the distance between the insertions of the subscapularis and supraspinatus and the anterosuperior labrum, which leads to an anterosuperior impingement mechanism.

  14. Pelvic morphology in ischiofemoral impingement

    International Nuclear Information System (INIS)

    Bredella, Miriam A.; Azevedo, Debora C.; Oliveira, Adriana L.; Simeone, Frank J.; Chang, Connie Y.; Torriani, Martin; Stubbs, Allston J.

    2015-01-01

    To assess MRI measures to quantify pelvic morphology that may predispose to ischiofemoral impingement (IFI). We hypothesized that patients with IFI have a wider interischial distance and an increased femoral neck angle compared with normal controls. The study was IRB-approved and complied with HIPAA guidelines. IFI was diagnosed based on clinical findings (hip or buttock pain) and ipsilateral edema of the quadratus femoris muscle on MRI. Control subjects did not report isolated hip/buttock pain and underwent MRI for surveillance of neoplasms or to exclude pelvic fractures. Two MSK radiologists measured the ischiofemoral (IF) and quadratus femoris (QF) distance, the ischial angle as a measure of inter-ischial distance, and the femoral neck angle. The quadratus femoris muscle was evaluated for edema. Groups were compared using ANOVA. Multivariate standard least-squares regression modeling was used to control for age and gender. The study group comprised 84 patients with IFI (53 ± 16 years, 73 female, 11 male) and 51 controls (52 ± 16 years, 33 female, 18 male). Thirteen out of 84 patients (15 %) had bilateral IFI. Patients with IFI had decreased IF and QF distance (p < 0.0001), increased ischial angle (p = 0.004), and increased femoral neck angle (p = 0.02) compared with controls, independent of age and gender. Patients with IFI have increased ischial and femoral neck angles compared with controls. These anatomical variations in pelvic morphology may predispose to IFI. MRI is a useful method of not only assessing the osseous and soft-tissue abnormalities associated with IFI, but also of quantifying anatomical variations in pelvic morphology that can predispose to IFI. (orig.)

  15. Pelvic morphology in ischiofemoral impingement

    Energy Technology Data Exchange (ETDEWEB)

    Bredella, Miriam A.; Azevedo, Debora C.; Oliveira, Adriana L.; Simeone, Frank J.; Chang, Connie Y.; Torriani, Martin [Massachusetts General Hospital, Department of Radiology, Musculoskeletal Imaging and Intervention, Boston, MA (United States); Stubbs, Allston J. [Wake Forest University School of Medicine, Department of Orthopedic Surgery, Division of Sports Medicine, Winston-Salem, NC (United States)

    2014-11-06

    To assess MRI measures to quantify pelvic morphology that may predispose to ischiofemoral impingement (IFI). We hypothesized that patients with IFI have a wider interischial distance and an increased femoral neck angle compared with normal controls. The study was IRB-approved and complied with HIPAA guidelines. IFI was diagnosed based on clinical findings (hip or buttock pain) and ipsilateral edema of the quadratus femoris muscle on MRI. Control subjects did not report isolated hip/buttock pain and underwent MRI for surveillance of neoplasms or to exclude pelvic fractures. Two MSK radiologists measured the ischiofemoral (IF) and quadratus femoris (QF) distance, the ischial angle as a measure of inter-ischial distance, and the femoral neck angle. The quadratus femoris muscle was evaluated for edema. Groups were compared using ANOVA. Multivariate standard least-squares regression modeling was used to control for age and gender. The study group comprised 84 patients with IFI (53 ± 16 years, 73 female, 11 male) and 51 controls (52 ± 16 years, 33 female, 18 male). Thirteen out of 84 patients (15 %) had bilateral IFI. Patients with IFI had decreased IF and QF distance (p < 0.0001), increased ischial angle (p = 0.004), and increased femoral neck angle (p = 0.02) compared with controls, independent of age and gender. Patients with IFI have increased ischial and femoral neck angles compared with controls. These anatomical variations in pelvic morphology may predispose to IFI. MRI is a useful method of not only assessing the osseous and soft-tissue abnormalities associated with IFI, but also of quantifying anatomical variations in pelvic morphology that can predispose to IFI. (orig.)

  16. Integrated cryogenic sensors

    International Nuclear Information System (INIS)

    Juanarena, D.B.; Rao, M.G.

    1991-01-01

    Integrated cryogenic pressure-temperature, level-temperature, and flow-temperature sensors have several advantages over the conventional single parameter sensors. Such integrated sensors were not available until recently. Pressure Systems, Inc. (PSI) of Hampton, Virginia, has introduced precalibrated precision cryogenic pressure sensors at the Los Angeles Cryogenic Engineering Conference in 1989. Recently, PSI has successfully completed the development of integrated pressure-temperature and level-temperature sensors for use in the temperature range 1.5-375K. In this paper, performance characteristics of these integrated sensors are presented. Further, the effects of irradiation and magnetic fields on these integrated sensors are also reviewed

  17. Cryogenics will cool LHC

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    Results of the investigation into the cryogenic regulating line (QRL) performed by the LHC laboratory are presented. It is projected that eight cryogenic units located in five places around the LHC ring will provide superconducting magnets by liquid helium through eight cryogenic regulating lines of 3.2 km each. All QRL zones remain to be independent. CERN uses three test units with the aim of the certification of chosen constructions and verification of their thermal and mechanical efficiency before starting full-scale production [ru

  18. Fundamentals of cryogenic engineering

    CERN Document Server

    Mukhopadhyay, Mamata

    2014-01-01

    The author, with her vast and varied experience in teaching and allied fields, clearly enunciates the behaviour and various properties of common cryogenic fluids, methods of liquefaction, and separation and applications of cryogens with thermodynamic analysis for process selection. This profusely illustrated study with clear-cut diagrams and process charts, should serve not only as a textbook for students but also as an excellent reference for researchers and practising engineers on design of cryogenic refrigeration, and liquefaction and separation process plants for various applications.

  19. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  20. FRIB Cryogenic Plant Status

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Kelly D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ganni, Venkatarao [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Knudsen, Peter N. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Casagranda, Fabio [Michigan State Univ., East Lansing, MI (United States)

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  1. Cryogenics theory, processes and applications

    CERN Document Server

    Hayes, Allyson E

    2011-01-01

    Cryogenics is the study of the production of very low temperature (below -150 -C, -238 -F or 123 K) and the behaviour of materials at those temperatures. This book presents current research from across the globe in the study of cryogenics, including the effect of cryogenic treatment on microstructure and mechanical properties of light weight alloys; the application of Fiber Bragg grating sensors at cryogenic temperatures; cryogenic grinding; liquid oxygen magnetohydrodynamics; and, genetic engineering techniques used to improve tolerance to cryopreservation.

  2. Cryogenics for LHC experiments

    CERN Multimedia

    2001-01-01

    Cryogenic systems will be used by LHC experiments to maximize their performance. Institutes around the world are collaborating with CERN in the construction of these very low temperature systems. The cryogenic test facility in hall 180 for ATLAS magnets. High Energy Physics experiments have frequently adopted cryogenic versions of their apparatus to achieve optimal performance, and those for the LHC will be no exception. The two largest experiments for CERN's new flagship accelerator, ATLAS and CMS, will both use large superconducting magnets operated at 4.5 Kelvin - almost 270 degrees below the freezing point of water. ATLAS also includes calorimeters filled with liquid argon at 87 Kelvin. For the magnets, the choice of a cryogenic version was dictated by a combination economy and transparency to emerging particles. For the calorimeters, liquid argon was selected as the fluid best suited to the experiment's physics requirements. High Energy Physics experiments are the result of worldwide collaborations and...

  3. Advances in Cryogenic Principles

    Science.gov (United States)

    Barron, R. F.

    During the past 50 years, the use of digital computers has significantly influenced the design and analysis of cryogenic systems. At the time when the first Cryogenic Engineering Conference was held, thermodynamic data were presented in graphical or tabular form (the "steam table" format), whereas thermodynamic data for cryogenic system design is computer generated today. The thermal analysis of cryogenic systems in the 1950s involved analytical solutions, graphical solutions, and relatively simple finite-difference approaches. These approaches have been supplanted by finite-element numerical programs which readily solve complicated thermal problems that could not be solved easily using the methods of the 1950s. In distillation column design, the use of the McCabe-Thiele graphical method for determination of the number of theoretical plates has been replaced by numerical methods that allow consideration of several different components in the feed and product streams.

  4. Imaging findings of femoroacetabular impingement syndrome

    International Nuclear Information System (INIS)

    Beall, Douglas P.; Sweet, Clifford F.; Martin, Hal D.; Lastine, Craig L.; Grayson, David E.; Ly, Justin Q.; Fish, Jon R.

    2005-01-01

    Femoroacetabular impingement syndrome (FAI) is a pathologic entity which can lead to chronic symptoms of pain, reduced range of motion in flexion and internal rotation, and has been shown to correlate with degenerative arthritis of the hip. History, physical examination, and supportive radiographic findings such as evidence of articular cartilage damage, acetabular labral tearing, and early-onset degenerative changes can help physicians diagnose this entity. Several pathologic changes of the femur and acetabulum are known to predispose patients to develop FAI and recognition of these findings can ultimately lead to therapeutic interventions. The two basic mechanisms of impingement - cam impingement and pincer impingement - are based on the type of anatomic anomaly contributing to the impingement process. These changes can be found on conventional radiography, MR imaging, and CT examinations. However, the radiographic findings of this entity are not widely discussed and recognized by physicians. In this paper, we will introduce these risk factors, the proposed supportive imaging criteria, and the ultimate interventions that can help alleviate patients' symptoms. (orig.)

  5. Imaging findings of femoroacetabular impingement syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Beall, Douglas P.; Sweet, Clifford F.; Martin, Hal D.; Lastine, Craig L.; Grayson, David E.; Ly, Justin Q.; Fish, Jon R. [University of Oklahoma Health Sciences Center, Department of Radiologal Sciences, Oklahoma City (United States)

    2005-11-01

    Femoroacetabular impingement syndrome (FAI) is a pathologic entity which can lead to chronic symptoms of pain, reduced range of motion in flexion and internal rotation, and has been shown to correlate with degenerative arthritis of the hip. History, physical examination, and supportive radiographic findings such as evidence of articular cartilage damage, acetabular labral tearing, and early-onset degenerative changes can help physicians diagnose this entity. Several pathologic changes of the femur and acetabulum are known to predispose patients to develop FAI and recognition of these findings can ultimately lead to therapeutic interventions. The two basic mechanisms of impingement - cam impingement and pincer impingement - are based on the type of anatomic anomaly contributing to the impingement process. These changes can be found on conventional radiography, MR imaging, and CT examinations. However, the radiographic findings of this entity are not widely discussed and recognized by physicians. In this paper, we will introduce these risk factors, the proposed supportive imaging criteria, and the ultimate interventions that can help alleviate patients' symptoms. (orig.)

  6. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  7. Calculations of slurry pump jet impingement loads

    International Nuclear Information System (INIS)

    Wu, T.T.

    1996-01-01

    This paper presents a methodology to calculate the impingement load in the region of a submerged turbulent jet where a potential core exits and the jet is not fully developed. The profile of the jet flow velocities is represented by a piece-wise linear function which satisfies the conservation of momentum flux of the jet flow. The adequacy of the of the predicted jet expansion is further verified by considering the continuity of the jet flow from the region of potential core to the fully developed region. The jet impingement load can be calculated either as a direct impingement force or a drag force using the jet velocity field determined by the methodology presented

  8. TPC magnet cryogenic system

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system

  9. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  10. Cryogenic Moisture Uptake in Foam Insulation for Space Launch Vehicles

    Science.gov (United States)

    Fesmire, James E.; ScholtensCoffman, Brekke E.; Sass, Jared P.; Williams, Martha K.; Smith, Trent M.; Meneghelli, Barrry J.

    2008-01-01

    Rigid polyurethane foams and rigid polyisocyanurate foams (spray-on foam insulation), like those flown on Shuttle, Delta IV, and will be flown on Ares-I and Ares-V, can gain an extraordinary amount of water when under cryogenic conditions for several hours. These foams, when exposed for eight hours to launch pad environments on one side and cryogenic temperature on the other, increase their weight from 35 to 80 percent depending on the duration of weathering or aging. This effect translates into several thousand pounds of additional weight for space vehicles at lift-off. A new cryogenic moisture uptake apparatus was designed to determine the amount of water/ice taken into the specimen under actual-use propellant loading conditions. This experimental study included the measurement of the amount of moisture uptake within different foam materials. Results of testing using both aged specimens and weathered specimens are presented. To better understand cryogenic foam insulation performance, cryogenic moisture testing is shown to be essential. The implications for future launch vehicle thermal protection system design and flight performance are discussed.

  11. Cryogen therapy of skin cancer

    International Nuclear Information System (INIS)

    Zikiryakhodjaev, D.Z.; Sanginov, D.R.

    2001-01-01

    In this chapter authors studied the cure of skin cancer in particular cryogen therapy of skin cancer. They noted that cryogen therapy of skin cancer carried new possibilities and improved results of neoplasms treatment

  12. Surgical criteria for femoroacetabular impingement syndrome

    DEFF Research Database (Denmark)

    Peters, Scott; Laing, Alisha; Emerson, Courtney

    2017-01-01

    BACKGROUND: The purpose of this review was to analyse and report criteria used for open and arthroscopic surgical treatment of femoroacetabular impingement syndrome (FAIS). METHODS: A librarian-assisted computer search of Medline, CINAHL and Embase for studies related to criterion for FAIS surgery...

  13. Cryogenic process simulation

    International Nuclear Information System (INIS)

    Panek, J.; Johnson, S.

    1994-01-01

    Combining accurate fluid property databases with a commercial equation-solving software package running on a desktop computer allows simulation of cryogenic processes without extensive computer programming. Computer simulation can be a powerful tool for process development or optimization. Most engineering simulations to date have required extensive programming skills in languages such as Fortran, Pascal, etc. Authors of simulation code have also usually been responsible for choosing and writing the particular solution algorithm. This paper describes a method of simulating cryogenic processes with a commercial software package on a desktop personal computer that does not require these traditional programming tasks. Applications include modeling of cryogenic refrigerators, heat exchangers, vapor-cooled power leads, vapor pressure thermometers, and various other engineering problems

  14. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    1995-01-01

    The CEBAF cryogenic system consists of 3 refrigeration systems: Cryogenic Test Facility (CTF), Central Helium Liquefier (CHL), and End Station Refrigerator (ESR). CHL is the main cryogenic system for CEBAF, consisting of a 4.8 kW, 2.0 K refrigerator and transfer line system to supply 2.0 K and 12 kW of 50 K shield refrigeration for the Linac cavity cryostats and 10 g/s of liquid for the end stations. This paper describes the 9-year effort to commission these systems, concentrating on CHL with the cold compressors. The cold compressors are a cold vacuum pump with an inlet temperature of 3 K which use magnetic bearings, thereby eliminating the possibility of air leaks into the subatmospheric He

  15. Impingement syndrome of the shoulder; Schulterimpingement

    Energy Technology Data Exchange (ETDEWEB)

    Mayerhoefer, M.E. [Klinische Abteilung fuer Osteologie, Klinik fuer Radiodiagnostik der Universitaet Wien (Austria); Klinische Abteilung Radiodiagnostik fuer chirurgische Faecher, Klinik fuer Radiodiagnostik der Universitaet Wien (Austria); Klinische Abteilung fuer Osteologie, Klinik fuer Radiodiagnostik der Universitaet, Waehringer Guertel 18-20, 1090, Wien (Austria); Breitenseher, M.J. [Klinische Abteilung fuer Osteologie, Klinik fuer Radiodiagnostik der Universitaet Wien (Austria); Waldviertelklinikum Horn (Austria)

    2004-06-01

    The impingement syndrome is a clinical entity characterized by shoulder pain due to primary or secondary mechanical irritation of the rotator cuff. The primary factors for the development of impingement are a curved or hook-shaped anterior acromion as well as subacromial osteophytes, which may lead to tearing of the supraspinatus tendon. Secondary impingement is mainly caused by calcific tendinopathy, glenohumeral instability, os acromiale and degenerative changes of the acromioclavicular joint. Conventional radiographs are initially obtained, mainly for evaluation of the bony structures of the shoulder. If available, sonography can be used for detection of lesions and tears of the rotator cuff. Finally, MR-imaging provides detailed information about the relationship of the acromion and the acromioclavicular joint to the rotator cuff itself. In many cases however, no morphologic cause for impingement syndrome can be found. While patients are initially treated conservatively, chronic disease usually requires surgical intervention. (orig.) [German] Das Impingementsyndrom ist ein klinisches Krankheitsbild multifaktorieller Genese, bei dem es primaer oder sekundaer zu einer schmerzhaften mechanischen Beeintraechtigung der Rotatorenmanschette kommt. Als primaere Faktoren gelten ein gebogener oder hakenfoermiger Vorderrand des Akromions oder von diesem entspringende Osteophyten, was zu Laesionen der Supraspinatussehne fuehren kann. Zu den sekundaeren Faktoren zaehlt man v. a. eine Tendinitis calcarea, eine glenohumerale Instabilitaet, ein Os acromiale sowie degenerative Veraenderungen im Bereich des Akromioklavikulargelenks. Bildgebend steht an erster Stelle ein Nativroentgen, mit dem sich die knoechernen Strukturen gut darstellen lassen. Falls vorhanden, kann in weiterer Folge die Sonographie Auskunft ueber den Zustand der Rotatorenmanschette geben. Mit der MRT schliesslich laesst sich die Beziehung von Akromion und gelenkassoziierten Strukturen zur Rotatorenmanschette

  16. Cryogenic support member

    International Nuclear Information System (INIS)

    Niemann, R.C.; Gonczy, J.D.; Nicol, T.H.

    1987-01-01

    A cryogenic support member is described for restraining a cryogenic system comprising; a rod having a depression at a first end. The rod is made of non-metallic material. The non-metallic material has an effectively low thermal conductivity; a metallic plug; and a metallic sleeve. The plug and the sleeve are shrink-fitted to the depression in the rod and assembled thereto such that the plug is disposed inside the depression of the rod. The sleeve is disposed over the depression in the rod and the rod is clamped therebetween. The shrink-fit clamping the rod is generated between the metallic plug and the metallic sleeve

  17. Impingement of juvenile and adult fishes during cooling water withdrawal

    International Nuclear Information System (INIS)

    McFarlane, R.W.

    1978-01-01

    Juvenile and adult fishes are impinged upon trash removal screens as Savannah River water is withdrawn for use on the Savannah River Plant (SRP). Thirty-six species of fish, representing half of all riverine species known from the area, were impinged on the screens at three SRP pumping stations during 1977. Based on the average of 11.2 fish impinged per day, annual impingement is estimated to be 4088 fish. SRP thus ranks third lowest for impingement recently reported for 33 electric power plants

  18. Cryogenic vacuum pump design

    International Nuclear Information System (INIS)

    Bartlett, A.J.; Lessard, P.A.

    1984-01-01

    This paper is a review of the problems and tradeoffs involved in cryogenic vacuum pump analysis, design and manufacture. Particular attention is paid to the several issues unique to cryopumps, e.g., radiation loading, adsorption of noncondensible gases, and regeneration. A general algorithm for cryopump design is also proposed. 12 references

  19. Cryogenic current leads

    Energy Technology Data Exchange (ETDEWEB)

    Zizek, F.

    1982-01-01

    Theoretical, technical and design questions are examined of cryogenic current leads for SP of magnetic systems. Simplified mathematical models are presented for the current leads. To illustrate modeling, the calculation is made of the real current leads for 500 A and three variants of current leads for 1500 A for the enterprise ''Shkoda.''

  20. Systematic Investigation on the Influence of Spray Parameters on the Mechanical Properties of Atmospheric Plasma-Sprayed YSZ Coatings

    Science.gov (United States)

    Mutter, Markus; Mauer, Georg; Mücke, Robert; Guillon, Olivier; Vaßen, Robert

    2018-04-01

    In the atmospheric plasma spray (APS) process, micro-sized ceramic powder is injected into a thermal plasma where it is rapidly heated and propelled toward the substrate. The coating formation is characterized by the subsequent impingement of a large number of more or less molten particles forming the so-called splats and eventually the coating. In this study, a systematic investigation on the influence of selected spray parameters on the coating microstructure and the coating properties was conducted. The investigation thereby comprised the coating porosity, the elastic modulus, and the residual stress evolution within the coating. The melting status of the particles at the impingement on the substrate in combination with the substrate surface condition is crucial for the coating formation. Single splats were collected on mirror-polished substrates for selected spray conditions and evaluated by identifying different types of splats (ideal, distorted, weakly bonded, and partially molten) and their relative fractions. In a previous study, these splat types were evaluated in terms of their effect on the above-mentioned coating properties. The particle melting status, which serves as a measure for the particle spreading behavior, was determined by in-flight particle temperature measurements and correlated to the coating properties. It was found that the gun power and the spray distance have a strong effect on the investigated coating properties, whereas the feed rate and the cooling show minor influence.

  1. A novel particle engineering technology to enhance dissolution of poorly water soluble drugs: spray-freezing into liquid.

    Science.gov (United States)

    Rogers, True L; Nelsen, Andrew C; Hu, Jiahui; Brown, Judith N; Sarkari, Marazban; Young, Timothy J; Johnston, Keith P; Williams, Robert O

    2002-11-01

    A novel cryogenic spray-freezing into liquid (SFL) process was developed to produce microparticulate powders consisting of an active pharmaceutical ingredient (API) molecularly embedded within a pharmaceutical excipient matrix. In the SFL process, a feed solution containing the API was atomized beneath the surface of a cryogenic liquid such that the liquid-liquid impingement between the feed and cryogenic liquids resulted in intense atomization into microdroplets, which were frozen instantaneously into microparticles. The SFL micronized powder was obtained following lyophilization of the frozen microparticles. The objective of this study was to develop a particle engineering technology to produce micronized powders of the hydrophobic drug, danazol, complexed with hydroxypropyl-beta-cyclodextrin (HPbetaCD) and to compare these SFL micronized powders to inclusion complex powders produced from other techniques, such as co-grinding of dry powder mixtures and lyophilization of bulk solutions. Danazol and HPbetaCD were dissolved in a water/tetrahydrofuran cosolvent mixture prior to SFL processing or slow freezing. Identical quantities of the API and HPbetaCD used in the solutions were co-ground in a mortar and pestle and blended to produce a co-ground physical mixture for comparison. The powder samples were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy, surface area analysis, and dissolution testing. The results provided by DSC, XRD, and FTIR suggested the formation of inclusion complexes by both slow-freezing and SFL. However, the specific surface area was significantly higher for the latter. Dissolution results suggested that equilibration of the danazol/HPbetaCD solution prior to SFL processing was required to produce the most soluble conformation of the resulting inclusion complex following SFL. SFL micronized powders exhibited better dissolution

  2. Optical fuel spray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hillamo, H.

    2011-07-01

    Diesel fuel sprays, including fuel/air mixing and the physics of two-phase jet formation, are discussed in the thesis. The fuel/air mixing strongly affects emissions formation in spray combustion processes where the local combustion conditions dictate the emission formation. This study comprises optical measurements both in pressurized spray test rigs and in a running engine.The studied fuel injection was arranged with a common rail injection system and the injectors were operated with a solenoid-based injection valve. Both marine and heavy-duty diesel engine injectors were used in the study. Optical fuel spray measurements were carried out with a laser-based double-framing camera system. This kind of equipments is usually used for flow field measurements with Particle Image Velocimetry technique (PIV) as well as for backlight imaging. Fundamental fuel spray properties and spray formation were studied in spray test rigs. These measurements involved studies of mixing, atomization, and the flow field. Test rig measurements were used to study the effect of individual injection parameters and component designs. Measurements of the fuel spray flow field, spray penetration, spray tip velocity, spray angle, spray structure, droplet accumulation, and droplet size estimates are shown. Measurement campaign in a running optically accessible large-bore medium-speed engine was also carried out. The results from engine tests were compared with equivalent test rig measurements, as well as computational results, to evaluate the level of understanding of sprays. It was shown that transient spray has an acceleration and a deceleration phase. Successive flow field measurements (PIV) in optically dense diesel spray resulted in local and average velocity data of diesel sprays. Processing fuel spray generates a flow field to surrounding gas and entrainment of surrounding gas into fuel jet was also seen at the sides of the spray. Laser sheet imaging revealed the inner structure of diesel

  3. Temporally stratified sampling programs for estimation of fish impingement

    International Nuclear Information System (INIS)

    Kumar, K.D.; Griffith, J.S.

    1977-01-01

    Impingement monitoring programs often expend valuable and limited resources and fail to provide a dependable estimate of either total annual impingement or those biological and physicochemical factors affecting impingement. In situations where initial monitoring has identified ''problem'' fish species and the periodicity of their impingement, intensive sampling during periods of high impingement will maximize information obtained. We use data gathered at two nuclear generating facilities in the southeastern United States to discuss techniques of designing such temporally stratified monitoring programs and their benefits and drawbacks. Of the possible temporal patterns in environmental factors within a calendar year, differences among seasons are most influential in the impingement of freshwater fishes in the Southeast. Data on the threadfin shad (Dorosoma petenense) and the role of seasonal temperature changes are utilized as an example to demonstrate ways of most efficiently and accurately estimating impingement of the species

  4. Fixed automated spray technology.

    Science.gov (United States)

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  5. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  6. Impinging jets controlled by fluidic input signal

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Trávníček, Zdeněk; Peszyński, K.

    2016-01-01

    Roč. 249, October (2016), s. 85-92 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S; GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : fluidics * jets * impinging jets * coanda effect Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://www.sciencedirect.com/science/article/pii/S0924424716303880

  7. Gas turbine bucket with impingement cooled platform

    Science.gov (United States)

    Jones, Raphael Durand

    2002-01-01

    In a turbine bucket having an airfoil portion and a root portion, with a substantially planar platform at an interface between the airfoil portion and root portion, a platform cooling arrangement including at least one bore in the root portion and at least one impingement cooling tube seated in the bore, the tube extending beyond the bore with an outlet in close proximity to a targeted area on an underside of the platform.

  8. On the prediction of spray angle of liquid-liquid pintle injectors

    Science.gov (United States)

    Cheng, Peng; Li, Qinglian; Xu, Shun; Kang, Zhongtao

    2017-09-01

    The pintle injector is famous for its capability of deep throttling and low cost. However, the pintle injector has been seldom investigated. To get a good prediction of the spray angle of liquid-liquid pintle injectors, theoretical analysis, numerical simulations and experiments were conducted. Under the hypothesis of incompressible and inviscid flow, a spray angle formula was deduced from the continuity and momentum equations based on a control volume analysis. The formula was then validated by numerical and experimental data. The results indicates that both geometric and injection parameters affect the total momentum ratio (TMR) and then influence the spray angle formed by liquid-liquid pintle injectors. TMR is the pivotal non-dimensional number that dominates the spray angle. Compared with gas-gas pintle injectors, spray angle formed by liquid-liquid injectors is larger, which benefits from the local high pressure zone near the pintle wall caused by the impingement of radial and axial sheets.

  9. Remotely controlled spray gun

    Science.gov (United States)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  10. Ischiofemoral impingement syndrome: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Adam D.; Subhawong, Ty K.; Jose, Jean; Tresley, Jonathan; Clifford, Paul D. [Jackson Memorial Hospital, Department of Diagnostic Radiology, Section of Musculoskeletal Imaging, Miami, FL (United States)

    2015-06-01

    The aims of this article are to review the imaging characteristics of ischiofemoral impingement (IFI), summarize measurement thresholds for radiologic diagnosis based on a meta-analysis of the literature and raise awareness among radiologists and clinicians of this entity. A PubMed search restricted to the English language containing the keywords ''ischiofemoral impingement'' and ''quadratus femoris MRI'' was performed, and citations in these articles were also used to identify a total of 27 studies discussing ischiofemoral impingement. After excluding case reports and non-representative studies, there were five remaining articles including 193 hip MRIs of IFI in 154 subjects (133 female, 21 male) and 135 asymptomatic control hip MRIs from 74 subjects (55 female, 19 male). Additionally, we performed a retrospective database search of pelvic and hip MRI reports from our institution including the terms ''quadratus femoris'' or ''ischiofemoral impingement'' from a 9-year period and 24 hip MRIs from 21 patients (18 female, 3 male) with IFI with 5 asymptomatic contralateral control hip MRIs identified. In all, 217 hip MRIs of IFI and 140 control cases were included. A meta-analysis of these hip MRIs was conducted to determine optimal thresholds of the ischiofemoral space (IFS) and quadratus femoris space (QFS) for identifying IFI. Cases of IFI showed significantly smaller IFS and QFS compared to controls (14.91 ± 4.8 versus 26.01 ± 7.98 and 9.57 ± 3.7 versus 15.97 ± 6.07, measured in mm, respectively, p < 0.0001 for both). Pooled analysis revealed that for IFS, using a cutoff of ≤15 mm yielded a sensitivity of 76.9 %, specificity of 81.0 % and overall accuracy of 78.3 %. For QFS, a cutoff of ≤ 10.0 mm resulted in 78.7 % sensitivity, 74.1 % specificity and 77.1 % overall accuracy. IFI is a potential cause of hip pain that can be accurately diagnosed with MRI in conjunction with

  11. Characteristics of wetting temperature during spray cooling

    International Nuclear Information System (INIS)

    Mitsutake, Yuichi; Monde, Masanori; Hidaka, Shinichirou

    2006-01-01

    An experimental study has been done to elucidate the effects of mass flux and subcooling of liquid and thermal properties of solid on the wetting temperature during cooling of a hot block with spray. A water spray was impinged at one of the end surfaces of a cylindrical block initially heated at 400 or 500degC. The experimental condition was mass fluxes G=1-9 kg/m 2 s and degrees of subcooling ΔT sub =20, 50, 80 K. Three blocks of copper, brass and carbon steel were prepared. During spray cooling internal block temperature distribution and sputtering sound pressure level were recorded and the surface temperature and heat flux were evaluated with 2D inverse heat conducting analysis. Cooling process on cooling curves is divided into four regimes categorized by change in a flow situation and the sound level. The wetting temperature defined as the wall temperature at a minimum heat flux point was measured over an extensive experimental range. The wetting wall temperature was correlated well with the parameter of GΔT sub . The wetting wall temperature increases as GΔT sub increases and reaches a constant value depending on the material of the surface at higher region of GΔT sub . (author)

  12. Hip morphology predicts posterior hip impingement in a cadaveric model.

    Science.gov (United States)

    Morris, William Z; Fowers, Cody A; Weinberg, Douglas S; Millis, Michael B; Tu, Leigh-Anne; Liu, Raymond W

    2018-05-01

    Posterior hip impingement is a recently-identified cause of hip pain. The purpose of this study is to characterise posterior femoroacetabular and ischiofemoral impingement and identify its predisposing morphologic traits. Two hundred and six cadaveric hips were randomly selected and taken through controlled motion in two pure axes associated with posterior hip impingement: external rotation (through the mechanical axis) and adduction (coronal plane). The range of motion and location of impingement was noted for each specimen. Morphologic traits including femoral/acetabular version, and true neck-shaft angle (TNSA) were also measured. External rotation impingement occurred between the femoral neck and acetabulum in 83.0% of hips, and between the lesser trochanter and ischial tuberosity in 17.0%. Adduction impingement occurred between the lesser trochanter and ischial tuberosity in 78.6% of hips, and between the femoral neck and acetabulum in 21.4%. Multiple regression revealed that increased femoral/acetabular version predicted earlier external rotation and adduction impingement. Unstandardised betas ranging from -0.39 to -0.64 reflect that each degree of increased femoral/acetabular version individually accounts for a loss of external rotation or adduction of approximately half a degree before impingement ( p < 0.001 for each). Increased TNSA was associated with earlier adduction impingement only (unstandardised beta -0.35, p = 0.005). Relative femoral/acetabular anteversion was associated with earlier posterior hip impingement. Coxa valga was associated with earlier adduction impingement, but protective against external rotation impingement. These findings highlight the importance of monitoring correction during femoral/acetabular osteotomies, as overcorrection of retroversion may predispose to earlier posterior impingement.

  13. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  14. Flexible cryogenic conduit

    International Nuclear Information System (INIS)

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament

  15. Cryogenics for SMES

    International Nuclear Information System (INIS)

    McIntosh, G.E.

    1981-01-01

    A wide-ranging study of superconducting magnetic energy storage (SMES) structural and cryogenic requirements was made. Concepts and computational methods have been developed for all of the major problems in these areas. Design analyses have been made to provide more detailed information on some items and experimental work has been performed to create data bases in the areas of superfluid heat transfer, superfluid dielectric properties, heat transfer from conductors, and in the thermal and mechanical properties of materials at low temperatures. In most cases optimum solutions have not been made because of the developing nature of the overall study but methodology for optimization has been worked out for essentially all SMES cryogenic and structural elements. The selection of 1.8 K cooling and all aluminum systems in bedrock continues to be the best choice

  16. Cryogenic treatment of gas

    Science.gov (United States)

    Bravo, Jose Luis [Houston, TX; Harvey, III, Albert Destrehan; Vinegar, Harold J [Bellaire, TX

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  17. Chemiluminescence in cryogenic matrices

    Science.gov (United States)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  18. Cryogenic cooler thermal coupler

    International Nuclear Information System (INIS)

    Green, K.E.; Talbourdet, J.A.

    1984-01-01

    A thermal coupler assembly mounted to the coldfinger of a cryogenic cooler which provides improved thermal transfer between the coldfinger and the detector assembly mounted on the dewar endwell. The thermal coupler design comprises a stud and spring-loaded cap mounted on the coldfinger assembly. Thermal transfer is made primarily through the air space between the cap and coldwell walls along the radial surfaces. The cap is spring loaded to provide thermal contact between the cap and endwell end surfaces

  19. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  20. CEBAF cryogenic system

    International Nuclear Information System (INIS)

    Brindza, P.; Rode, C.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. These accelerating cavities are arranged in pairs in a cryounit. The ensemble of four cryounits (8 cavities) together with their end caps makes up a complete cryostat called a cryogenic module. The four cryounit helium vessels are cross connected to each other and share a common cryogen supply, radiation shield and insulating vacuum. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2 K and the 4.5 K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0 K at .031 ATM and 4.4 K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  1. Cryogenics in nuclear reactor technology

    International Nuclear Information System (INIS)

    Dharmadurai, G.

    1982-01-01

    The cryogenic technology has significantly contributed to the development of several proven techniques for use in the nuclear power industry. A noteworthy feature is the unique role of cryogenics in minimising the release of radioactive and some chemical pollutants to the environment during the operation of various plants associated with this industry. The salient technological features of several cryogenic processes relevant to the nuclear reactor technology are discussed. (author)

  2. Surface Tension Confines Cryogenic Liquid

    Science.gov (United States)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  3. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  4. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  5. Flow Characteristics of Rectangular Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru YAGA; Yoshio KINJO; Masumi TAMASHIRO; Kenyu OYAKAWA

    2006-01-01

    In this paper, the flow fields of underexpanded impinging jet issued from rectangular nozzles of aspect ratio 1,3 and 5 are numerically and experimentally studied. Two dimensional temperature and pressure distributions are measured by using infrared camera and the combination of a pressure scanning device and a stepping motor, respectively. The variation of the stagnation pressure on the impinging plate reveals that a hystcretic phenomenon exists during the increasing and decreasing of the pressure ratio for the aspect ratio of 3.0 and 5.0. It is also found that the nozzle of aspect ratio 1.0 caused the largest total pressure loss pc/p0 = 0.27 at the pressure ratio of p0/pb, = 6.5, where pc is the stagnation center pressure on the wall, p0 the upstream stagnation pressure, pb the ambient pressure. The other two nozzles showed that the pressure loss pc / p0=0.52 and 0.55 were achieved by the nozzles of the aspect ratio 3,0 and 5.0, respectively. The comparison between the calculations and experiments is fairly good, showing the three dimensional streamlines and structures of the shock waves in the jets. However, the hysteresis of the pressure variations observed in the experiments between the pressure ratio of 3.5 and 4.5 cannot be confirmed in the calculations.

  6. Cryogenic implications for DT

    International Nuclear Information System (INIS)

    Souers, P.C.

    1977-10-01

    Cryogenic hydrogen data is being compiled for magnetic fusion engineering. Many physical properties of DT can be extrapolated from H 2 and D 2 values. The phase diagram properties of the D 2 -DT-T 2 mixture are being measured. Three properties which will be greatly affected by tritium should be measured. In order of their perceived importance, they are: (1) solid thermal conductivity, (2) solid mechanical strength, and (3) gaseous electrical conductivity. The most apparent need for DT data is in Tokomak fuel pellet injection. Cryopumping and distillation applications are also considered

  7. Kodak AMSD Cryogenic Test Plans

    Science.gov (United States)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  8. Cryogenic forced convection refrigerating system

    International Nuclear Information System (INIS)

    Klee, D.J.

    1988-01-01

    This patent describes the method of refrigerating products by contact with a refrigerating gas which comprises introducing product into a refrigeration zone, contacting the product with the refrigerating gas for a sufficient time to refrigerate it to the appropriate extent and removing the refrigerated product. The improvement for producing the refrigeration gas from a liquid cryogen such that essentially all of the liquid cryogen is fully vaporized before contacting the product comprises: (a) introducing the liquid cryogen, selected from the group consisting of liquid air and liquid nitrogen, at elevated pressure into an ejector as the motive fluid to accelerate a portion of a warm refrigerating gas through the ejector while mixing the cryogen and gas to effect complete vaporization of the liquid cryogen and substantial cooling of the portion of the refrigerating gas resulting in a cold discharge gas which is above the liquefaction temperature of the cryogen; (b) introducing the cold discharge gas into a forced circulation pathway of refrigerating gas and producing a cold refrigerating gas which contacts and refrigerates product and is then at least partially recirculated; (c) sensing the temperature of the refrigerating gas in the forced circulation pathway and controlling the introduction of liquid cryogen with regard to the sensed temperature to maintain the temperature of the discharge gas above the liquefacton temperature of the cryogen utilized

  9. Cryogenics in CEBAF HMS dipole

    International Nuclear Information System (INIS)

    Bogensberger, P.; Ramsauer, F.; Brindza, P.; Wines, R.; Koefler, H.

    1994-01-01

    The paper will report upon the final design, manufacturing and tests of CEBAF's HMS Dipole cryogenic equipment. The liquid nitrogen circuits, the helium circuits and thermal insulation of the magnet will be addressed. The cryogenic reservoir and control module as an integral part of the HMS Dipole magnet will be presented. The construction, manufacturing, tests and final performance of the HMS Dipole cryogenic system will be reported. The LN 2 circuit and the He circuit are tied together by the control system for cool down, normal operation and standby. This system monitors proper temperature differences between both circuits and controls the cryogenic supply to meet the constraints. Implementation of the control features for the cryogenic system into the control system will be reported

  10. Shouldering the blame for impingement: the rotator cuff continuum ...

    African Journals Online (AJOL)

    The aim of this article was to summarise recent research on shoulder impingement and rotator cuff pathology. A continuum model of rotator cuff pathology is described, and the challenges of accurate clinical diagnosis, imaging and best management discussed. Keywords: shoulder impingement syndrome, subacromial ...

  11. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Hee; Yang, Gi Dong; Lee, Dong Yoon; Kim, Tae Gon; Lee, Seok Woo [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Suhaimi, M. A. [Universiti Teknologi Malaysia, Johor Bahru (Malaysia); Kim, Dong Won [Chonbuk National University, Jeonju (Korea, Republic of)

    2015-11-15

    The cooling down of cutting temperature in machining is very important for the improvement of tool life, especially when dealing with work materials that have low thermal conductivity such as titanium alloy. In this study designed to investigate the machining performance of a variety of cooling methods, cryogenic, Minimum quantity lubrication (MQL), and flood cooling are performed on solid end milling of titanium alloy, Ti-6Al-4V. In particular, the effect of internal and external spray methods on cryogenic machining is analyzed with a specially designed liquid nitrogen spraying system by evaluating tool wear and cutting force at cutting conditions. The cutting force is also analyzed for tool breakage detection. As a result, the combination of MQL and internal cryogenic cooling improves tool life by up to 32% compared to conventional cooling methods. The cutting force is also reduced significantly by this combination of cooling and lubrication strategy of side end milling.

  12. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V

    International Nuclear Information System (INIS)

    Park, Kyung Hee; Yang, Gi Dong; Lee, Dong Yoon; Kim, Tae Gon; Lee, Seok Woo; Suhaimi, M. A.; Kim, Dong Won

    2015-01-01

    The cooling down of cutting temperature in machining is very important for the improvement of tool life, especially when dealing with work materials that have low thermal conductivity such as titanium alloy. In this study designed to investigate the machining performance of a variety of cooling methods, cryogenic, Minimum quantity lubrication (MQL), and flood cooling are performed on solid end milling of titanium alloy, Ti-6Al-4V. In particular, the effect of internal and external spray methods on cryogenic machining is analyzed with a specially designed liquid nitrogen spraying system by evaluating tool wear and cutting force at cutting conditions. The cutting force is also analyzed for tool breakage detection. As a result, the combination of MQL and internal cryogenic cooling improves tool life by up to 32% compared to conventional cooling methods. The cutting force is also reduced significantly by this combination of cooling and lubrication strategy of side end milling.

  13. Spray drying of budesonide, formoterol fumarate and their composites-II. Statistical factorial design and in vitro deposition properties.

    Science.gov (United States)

    Tajber, L; Corrigan, O I; Healy, A M

    2009-02-09

    The aim of this study was to investigate the effect of changing spray drying parameters on the production of a budesonide/formoterol fumarate 100:6 (w/w) composite. The systems were spray dried as solutions from 95% ethanol/5% water (v/v) using a Büchi 191-Mini Spray Dryer. A 2(5-1) factorial design study was undertaken to assess the consequence of altering spray drying processing variables on particle characteristics. The processing parameters that were studied were inlet temperature, spray drier airflow rate, pump rate, aspirator setting and feed concentration. Each batch of the resulting powder was characterised in terms of thermal and micromeritic properties as well as an in vitro deposition by twin impinger analysis. Overall, the parameter that had the greatest influence on each response investigated was production yield - airflow (higher airflow giving greater yields), median particle size - airflow (higher airflow giving smaller particle sizes) and Carr's compressibility index - feed concentration (lower feed concentration giving smaller Carr's indices). A six- to seven-fold difference in respirable fraction can be observed by changing the spray drying process parameters. The co-spray dried composite system which displayed best in vitro deposition characteristics, showed a 2.6-fold increase in respirable fraction in the twin impinger experiments and better dose uniformity compared with the physical mix of micronised powders.

  14. Large and Small Droplet Impingement Data on Airfoils and Two Simulated Ice Shapes

    Science.gov (United States)

    Papadakis, Michael; Wong, See-Cheuk; Rachman, Arief; Hung, Kuohsing E.; Vu, Giao T.; Bidwell, Colin S.

    2007-01-01

    Water droplet impingement data were obtained at the NASA Glenn Icing Research Tunnel (IRT) for four wings and one wing with two simulated ice shapes. The wings tested include three 36-in. chord wings (MS(1)-317, GLC-305, and a NACA 652-415) and a 57-in. chord Twin Otter horizontal tail section. The simulated ice shapes were 22.5- and 45-min glaze ice shapes for the Twin Otter horizontal tail section generated using the LEWICE 2.2 ice accretion program. The impingement experiments were performed with spray clouds having median volumetric diameters of 11, 21, 79, 137, and 168 mm. Comparisons to the experimental data were generated which showed good agreement for the clean wings and ice shapes at lower drop sizes. For larger drop sizes LEWICE 2.2 over predicted the collection efficiencies due to droplet splashing effects which were not modeled in the program. Also for the more complex glaze ice shapes interpolation errors resulted in the over prediction of collection efficiencies in cove and shadow regions of ice shapes.

  15. Performance of jet impingement in unglazed air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Belusko, M.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia)

    2008-05-15

    Jet impingement is effective at improving the heat transfer between air and a heated surface. Studies have shown that jet impingement can marginally improve the thermal efficiency of a glazed collector. However, little attention has been placed on applying jet impingement to an unglazed solar air collector. This paper presents a theoretical and experimental investigation identifying the performance characteristics of jet impingement. Overall, jet impingement was able to improve the thermal efficiency of the collector by 21%. An increase in the pressure loss was also measured but found to be small. The flow distribution of jets along the collector was the most significant factor in determining the efficiency. Increasing the hole spacing was found to improve the efficiency. (author)

  16. Droplet impaction on solid surfaces exposed to impinging jet fires

    Energy Technology Data Exchange (ETDEWEB)

    Kazemi, Zia

    2005-12-15

    The thermal response of hot surfaces exposed to impinging jet fire and subsequent impacting water droplets is investigated. The research was done mainly experimentally by utilizing three different concepts. This included experiments on a laboratory scale steel plate and large outdoor fire tests with a quadratic steel channel and steel plates. Besides the horizontal jet flame itself was characterized in a comprehensive study. As a comparative study, the last three types of the experiment were additionally modeled by the CFD-code Kameleon FireEx for validation of results. The purpose of the experiments done on bench scale steel plate (L x W x T : 300 x 200 x 8 mm) was mainly to map data on wetting temperature, water droplet size, droplet impingement angle, and droplet velocity prior to large scale jet fire tests. The droplet release angle normal to hot surface gives best cooling effect, when the surface is oriented in upright position. The partial wetting begins at about 165 degrees C. When the surface is positioned in horizontal plane, the droplet of about 5 mm in diameter wets the hot surface partially at around 240-250 degrees C within an impaction distance of 20 cm. At about 150 degrees C, the droplet is entirely attached to the surface with almost zero contact angle, and cools down the solid at a critical heat flux equivalent to 1750 kW/m{sup 2}. The cooling effectiveness is about 8 % with a Weber number of 68. Although in the event of horizontal channel (L x W x T : 1000 x 200 x 8 mm) water droplets were not applied, however, the knowledge gained with jet fire tests gave valuable information about temperature progress in solids (steels and insulation) and their response to impinging jet fire during long duration experiments. The temperature of the insulated area of the channel keeps 200 degrees C below that of the exposed surface, as long as the insulation material remained intact. Upon long test fire durations, the insulation either burns or degrades despite

  17. Numerical investigation of micro-pore formation during substrate impact of molten droplets in spraying processes

    International Nuclear Information System (INIS)

    Liu, H.; Lavernia, E.J.; Rangel, R.H.; Muehlberger, E.; Sickinger, A.

    1994-01-01

    The porosity that is commonly associated with discrete droplet processes, such as plasma spraying and spray deposition, effectively degrades the quality of the sprayed material. In the present study, micro-pore formation during the deformation and interaction of molten tungsten droplets impinging onto a flat substrate in spraying processes is numerically investigated. The numerical simulation is accomplished on the basis of the full Navier-Stokes equations and the Volume Of Fluid (VOF) function by using a 2-domain method for the thermal field and solidification problem and a two-phase flow continuum model for the flow problem with a growing solid layer. The possible mechanisms governing the formation of micro-pores are discussed. The effects of important processing parameters, such as droplet impact velocity, droplet temperature, substrate temperature, and droplet viscosity, on the micro-pore formation are addressed

  18. Cryogenic Preamplifiers for Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Johansen, Daniel H.; Sanchez-Heredia, Juan D.; Petersen, Jan R.

    2018-01-01

    Pursuing the ultimate limit of detection in magnetic resonance imaging (MRI) requires cryogenics to decrease the thermal noise of the electronic circuits. As cryogenic coils for MRI are slowly emerging cryogenic preamplifiers are required to fully exploit their potential. A cryogenic preamplifier...

  19. The Natural History of Femoroacetabular Impingement

    Directory of Open Access Journals (Sweden)

    Benjamin D. Kuhns

    2015-11-01

    Full Text Available Femoroacetabular impingement (FAI is a clinical syndrome resulting from abnormal hip joint morphology and is a common cause of hip pain in young adults. FAI has been posited as a precursor to hip osteoarthritis, however, conflicting evidence exists and the true natural history of the disease is unclear. The purpose of this article is to review the current understanding of how FAI damages the hip joint by highlighting its pathomechanics and etiology. We then review the current evidence relating FAI to osteoarthritis. Lastly, we will discuss the potential of hip preservation surgery to alter the natural history of FAI, reduce the risk of developing osteoarthritis and the need for future arthroplasty.

  20. Cam and Pincer Type of Femoroacetabular Impingement.

    Science.gov (United States)

    Ersoy, Hale; Trane, R Nicholas; Pomeranz, Stephen J

    Femoroacetabular impingement (FAI) has gained considerable attention for the past 20 years and has been accepted as a predisposing factor for early osteoarthritis in young patients, particularly in the population participating in sports. Patients with FAI typically present with deep, intermittent groin discomfort during or after activities involving repetitive or persistent hip flexion. Symptomatic improvement can be achieved from arthroscopic debridement of unstable cartilage flaps, shaving of cartilage irregularities, and surgical correction of deformity of the femoral head\\endash neck junction. Early and correct diagnosis of FAI has paramount importance for appropriate and timely management of the disorder before the development of osteoarthritis. Magnetic resonance (MR) imaging offers a noninvasive means of assessing the degree of damage to cartilage and adjacent labrum and bone and also evaluating the effectiveness of treatment. This article describes the morphologic types of FAI with emphasis on MR findings.

  1. Cold spray nozzle design

    Science.gov (United States)

    Haynes, Jeffrey D [Stuart, FL; Sanders, Stuart A [Palm Beach Gardens, FL

    2009-06-09

    A nozzle for use in a cold spray technique is described. The nozzle has a passageway for spraying a powder material, the passageway having a converging section and a diverging section, and at least the diverging section being formed from polybenzimidazole. In one embodiment of the nozzle, the converging section is also formed from polybenzimidazole.

  2. Characteristics of steam jet impingement on annulus

    International Nuclear Information System (INIS)

    Yoon, Sang H.; Kim, Won J.; Suh, Kune Y.; Song, Chul H.

    2004-01-01

    The steam jet impingement occurs when the steam through the cold leg from the steam generator strikes the inner reactor barrel during the reflood phase of a loss-of-coolant accident (LOCA), which is a characteristic behavior for the APR1400 (Advanced Power Reactor 1400 MWe). In the cold leg break LOCA, the steam and water flows in the downcomer are truly multidimensional. The azimuthal velocity distribution of the steam flow has an important bearing on the thermal hydraulic phenomena such as the emergency coolant water direct bypass, sweepout, steam condensation, and so forth. The investigation of jet flow is required to determine the steam path and momentum reduction rate after the impingement. For the observation of the steam behavior near the break, the computational fluid dynamic (CFD) analysis has been carried out using CFX5.6. The flow visualization and analysis demonstrate the velocity profiles of the steam flow in the annulus region for the same boundary conditions. Pursuant to the CFD results, the micro-Pitot tubes were positioned at varying angles, and corrected for their sensitivity. The experiments were carried out to directly measure the pressure differential and to visualize the flow utilizing a smoke injection method. Results from this study are slated to be applied to MARS, which is a thermal hydraulic system code for the best-estimate analysis. The current one- or two-dimensional analysis in MARS was known to distort the local flow behavior. To enhance prediction capability of MARS, it is necessary to inspect the steam path in the break flow and mechanically simulate the momentum variation. The present experimental and analytical results can locally be applied to developing the engineering models of specific and essential phenomena. (author)

  3. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  4. Flowfield Behavior of Supersonic Impinging Jets

    Science.gov (United States)

    Iyer, K. G.; Alvi, F. S.

    1998-11-01

    A detailed study is being conducted which examines the behavior of normally impinging, supersonic jets, issuing from axisymmetric a Mach 1.5 C-D and a sonic nozzle. Our goal is to understand the physics of this flowfield (commonly observed in STOVL aircraft) and its influence on the acoustic and aerodynamic loading on the ground plane and the airframe. The airframe is simulated by a circular disc ('lift' plate) with an annular hole from which the jet is issued. Tests are carried out for a wide range of pressure ratios and the ground plane distance is varied from 1.5 to 60 nozzle diameters. Flowfield measurements include Particle Image Velocimetry (PIV) and schlieren/shadowgraph visualization. Surface measurements on the ground and lift plates include mean and unsteady surface pressure distributions and the surface streamline visualization. Near-field acoustic measurements using a microphone are also obtained. For certain cases, the PIV measurements -- first of their kind, to our knowledge -- clearly show the presence of large-scale coherent turbulent structures which, upon jet impingement, propagate into the resulting wall jet. These structures are believed to generate very high unsteady pressure loads on the ground plane thus leading to ground erosion. They are also suspected to be the source of acoustic waves which lead to a feedback loop causing violent oscillations of the primary jet and can result in increased acoustic loading and subsequent damage to the aircraft. As a result of this detailed study over a wide parametric space, we hope to gain a much better understanding of the physical mechanisms governing this complex flow.

  5. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  6. Cryogenic Cam Butterfly Valve

    Science.gov (United States)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  7. Effect of cryogenic cooling on corrosion of friction stir welded AA7010-T7651

    DEFF Research Database (Denmark)

    Jariyaboon, Manthana; Davenport, A. J.; Ambat, Rajan

    2010-01-01

    Purpose - The purpose of this paper is to study how cryogenic CO2 cooling during the welding process affects corrosion behaviour of friction stir welding (FSW) AA7010-T7651. Design/methodology/approach - Friction stir welded AA7010-17651 was produced with a rotation speed of 288 rpm and a travel...... speed of 58 mm/min. The liquid CO2 was sprayed onto the weld centre line immediately after the toolpiece. The microstructures of welds in different regions were observed using Field Emission Gun Scanning Electron Microscope (FEG-SEM). The effect on the corrosion susceptibility was investigated using...... a gel visualisation test and potentiodynamic polarisation measurements using a micro-electrochemical technique. Findings - The main corrosion region for both FSWs AA7010-T7651 produced with and without cryogenic CO2 cooling is in the HAZ region, which exhibited intergranular attack. Cryogenic cooling...

  8. Cryogenic Propellant Storage and Transfer

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Flight Demonstration development has been canceled in favor of a ground test bed development for of passive/active cryogenic propellant storage, transfer, and...

  9. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  10. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  11. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  12. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  13. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  14. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  15. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  16. Reactor container spray device

    International Nuclear Information System (INIS)

    Yanai, Ryoichi.

    1980-01-01

    Purpose: To enable decrease in the heat and the concentration of radioactive iodine released from the reactor vessel into the reactor container in the spray device of BWR type reactors. Constitution: A plurality of water receiving trays are disposed below the spray nozzle in the dry well and communicated to a pressure suppression chamber by way of drain pipeways passing through a diaphragm floor. When the recycling system is ruptured and coolants in the reactor vessel and radioactive iodine in the reactor core are released into the dry well, spray water is discharged from the spray nozzle to eliminate the heat and the radioactive iodine in the dry well. In this case, the receiving trays collect the portions of spray water whose absorption power for the heat and radioactive iodine is nearly saturated and falls them into the pool water of the pressure suppression chamber. Consequently, other portions of the spray water that still possess absorption power can be jetted with no hindrance, to increase the efficiency for the removal of the heat and iodine of the spray droplets. (Horiuchi, T.)

  17. Experimental and Computational Study of Underexpanded Jet Impingement Heat Transfer

    Science.gov (United States)

    Rufer, Shann J.; Nowak, Robert J.; Daryabeigi, Kamran; Picetti, Donald

    2009-01-01

    An experiment was performed to assess CFD modeling of a hypersonic-vehicle breach, boundary-layer flow ingestion and internal surface impingement. Tests were conducted in the NASA Langley Research Center 31-Inch Mach 10 Tunnel. Four simulated breaches were tested and impingement heat flux data was obtained for each case using both phosphor thermography and thin film gages on targets placed inside the model. A separate target was used to measure the surface pressure distribution. The measured jet impingement width and peak location are in good agreement with CFD analysis.

  18. MR imaging of nerve root impingement in the lumbar spine

    International Nuclear Information System (INIS)

    Teresi, L.M.; Bradley, W.G. Jr.; Bloze, A.E.; Davis, S.J.; Amster, J.; Berger, P.E.

    1990-01-01

    This paper determines the relationship between MR imaging findings of nerve root impingement, presenting symptoms, and physical examination findings, and physiologic data (DSEP and EMG) in a population of patients presented with classic radicular symptoms. Fifty-eight patients presenting with classic radicular pain were studied with MR imaging, DSER, and EMG, MR imaging was performed with a GE Signa imaging system with use of T1- and T2-weighted sequences and 5-mm-thick sections. Nerve root impingement in the subarticular recess (the root exiting the next lowest level) was distinguished from nerve root impingement in the superior intervertebral foramen (the root exiting the same level)

  19. Effect of the spraying conditions and nozzle design on the shape and size distribution of particles obtained with supercritical fluid drying

    NARCIS (Netherlands)

    Bouchard, Andreanne; Jovanovic, Natasa; de Boer, Anne H.; Martin, Angel; Jiskoot, Wim; Crommelin, Daan J. A.; Hofland, Gerard W.; Witkamp, Geert-Jan

    In the perspective of production of dry therapeutic protein formulations, spray drying of lysozyme (as a model protein) into Supercritical carbon dioxide was studied. The effects of the nozzle (i.e., co-current coaxial converging and converging-diverging, and T-mixer impinging) and process

  20. On the Numerical and Experimental Study of Spray Cooling

    Directory of Open Access Journals (Sweden)

    M.R. Guechi

    2013-12-01

    Full Text Available The spraying of an impinging jet is an effective way to cool heated surfaces. The objective of this study is to develop a numerical model to predict the heat transfer with phase change between a hot plate surface and a two-phase impinging jet. Different two-phase modeling approaches (Lagrangian and Eulerian methods are compared. The influence of the spray nozzle operating conditions and of the distance between the nozzle exit and the surface impact is analyzed. The numerical results are compared with measurements obtained on an experimental test bench. The confrontation numerical/experimental is carried out by comparing the distribution of temperature at the surface of the plate and the heat transfer coefficient. This comparison shows that it is the Eulerian model which seems most capable to take into account the evaporation of the droplets in contact with the heated plate. However, the simulation performed with this model show a strong dependence of the results to the turbulence model used.

  1. Active Control of Supersonic Impinging Jets Using Supersonic Microjets

    National Research Council Canada - National Science Library

    Alvi, Farrukh

    2005-01-01

    .... Supersonic impinging jets occur in many applications including in STOVL aircraft where they lead to a highly oscillatory flow with very high unsteady loads on the nearby aircraft structures and the landing surfaces...

  2. Trochanteric impingement: is it a source of pain after THR?

    Directory of Open Access Journals (Sweden)

    Mark J. Isaacson, DO

    2015-09-01

    Full Text Available While uncommon, trochanteric-pelvic impingement may lead to significant lateral hip pain. We defined “impingement distance” as the radiographic distance from the medial aspect of the greater trochanter and the corresponding lateral edge of the acetabular bone or component and compared this to the contralateral normal hip. We present two painful total hip replacement (THR cases, each featuring a patient with severe lateral hip pain when walking and sitting. Both patients had diminished femoral offset and trochanteric-pelvic clearance, compared to the contralateral normal hip. The impingement distance was increased an average of 10 mm with the exchange to a longer femoral head. Both patients had immediate and complete pain relief with operative treatment to increase the impingement distance.

  3. Surgical hip dislocation for treatment of cam femoroacetabular impingement

    Directory of Open Access Journals (Sweden)

    Milind M Chaudhary

    2015-01-01

    Conclusion: Cam femoroacetabular Impingement causing pain and limitation of hip movements was treated by open osteochondroplasty after surgical hip dislocation. This reduced pain, improved hip motion and gave good to excellent results in the short term.

  4. Impact of impingement on the Hudson River white perch population

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Van Winkle, W.

    1980-01-01

    The impact of power plant impingement on the 1974 and 1975 year classes of the Hudson River white perch population is assessed using a simple model derived from Ricker's theory of fisheries dynamics. The impact of impingement is expressed in the model as the conditional mortality rate, rather than as the more commonly used exploitation rate. Since the calculated impact is sensitive to errors in the estimation of population size and total mortality, ranges of probable values of these quantities are used to compute upper and lower bounds on the fractional reduction in abundance of each year class. Best estimates of abundance and mortality are used to compute the conditional impingement mortality rate separately for each plant and month. The results are used to assess the relative impacts of white perch impingement at six Hudson River power plants and to identify the seasons during which the impact is highest

  5. Dynamics of flare sprays

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Hansen, R.T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable pass-band filters, multi-slit spectroscopy and extended angular field coronographs). From combined analysis of 13 well-observed sprays which occured between 1969-1974 we conclude that (i) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (ii) the spray material is confined within a steadily expanding, loop-shaped (presumably magnetically controlled) envelope with part of the material draining back down along one or both legs of the loop. (orig.)

  6. Triamcinolone Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... 5 sprays into the air away from the face. If you have not used it for 2 ...

  7. Beclomethasone Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... your thumb. Point the applicator away from your face. If you are using the spray for the ...

  8. Flunisolide Nasal Spray

    Science.gov (United States)

    ... class of medications called corticosteroids. It works by blocking the release of certain natural substances that cause ... your thumb. Point the applicator away from your face. If you are using the spray for the ...

  9. Theophylline cocrystals prepared by spray drying: physicochemical properties and aerosolization performance.

    Science.gov (United States)

    Alhalaweh, Amjad; Kaialy, Waseem; Buckton, Graham; Gill, Hardyal; Nokhodchi, Ali; Velaga, Sitaram P

    2013-03-01

    The purpose of this work was to characterize theophylline (THF) cocrystals prepared by spray drying in terms of the physicochemical properties and inhalation performance when aerosolized from a dry powder inhaler. Cocrystals of theophylline with urea (THF-URE), saccharin (THF-SAC) and nicotinamide (THF-NIC) were prepared by spray drying. Milled THF and THF-SAC cocrystals were also used for comparison. The physical purity, particle size, particle morphology and surface energy of the materials were determined. The in vitro aerosol performance of the spray-dried cocrystals, drug-alone and a drug-carrier aerosol, was assessed. The spray-dried particles had different size distributions, morphologies and surface energies. The milled samples had higher surface energy than those prepared by spray drying. Good agreement was observed between multi-stage liquid impinger and next-generation impactor in terms of assessing spray-dried THF particles. The fine particle fractions of both formulations were similar for THF, but drug-alone formulations outperformed drug-carrier formulations for the THF cocrystals. The aerosolization performance of different THF cocrystals was within the following rank order as obtained from both drug-alone and drug-carrier formulations: THF-NIC>THF-URE>THF-SAC. It was proposed that micromeritic properties dominate over particle surface energy in terms of determining the aerosol performance of THF cocrystals. Spray drying could be a potential technique for preparing cocrystals with modified physical properties.

  10. THE INTERACTION OF A COLD ATOMISED SPRAY WITH A CIRCULAR CYLINDER

    Directory of Open Access Journals (Sweden)

    A. AROUSSI

    2010-09-01

    Full Text Available The development of non-intrusive diagnostic techniques has significantly increased with the introduction of lasers. Laser based anemometry, such as Laser Doppler (LDA, Phase Doppler (PDA, and Particle Image Velocimetery (PIV can provide an accurate description of flows without interference. This study determines experimentally the fluid motion resulting from the interaction of a liquid spray with a circular cylinder. Two experimental settings were examined: the first is a discharging spray into free air and the second is a spray impinging on a circular cylinder placed 25 cylinder diameters downstream of the nozzle. These sprays were quantified using PIV. A non-intrusive droplet sizing technique was used to characterise the spray. This has shown that, within the spray, the average droplet diameter increases when the circular cylinder is introduced and so does the frequency of occurrence of these large droplets. In the wake behind the cylinder, the smaller droplets were quickly entrained and recirculated, while the larger droplets continued in the general direction of the spray cone.

  11. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  12. Cryogenic Permanent Magnet Undulators

    International Nuclear Information System (INIS)

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-01-01

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm 2 Co 17 or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  13. CEBAF cryogenic system design

    International Nuclear Information System (INIS)

    Rode, C.; Brindza, P.

    1986-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a standing wave superconducting linear accelerator with a maximum energy of 4 GeV and 200 μA beam current. The 418 Cornell/CEBAF superconducting niobium accelerating cavities are arranged in two 0.5 GeV linacs with magnetic recirculating arcs at each end. There is one recirculating arc for each energy beam that is circulating and any three of the four correlated energies may be supplied to any of the three experimental halls. The cryogenics system for CEBAF consists of a 5kW central helium refrigerator and a transfer line system to supply 2.2 K 2.8 ATM helium to the cavity cryostats, 40 K helium at 3.5 ATM to the radiation shields and 4.5K helium at 2.8 ATM to the superconducting magnetic spectrometers in the experimental halls. Both the 2.2K and the 4.5K helium are expanded by Joule-Thompson (JT) valves in the individual cryostats yielding 2.0K at .031 ATM and 4.4K at 1.2 ATM respectively. The Central Helium Refrigerator is located in the center of the CEBAF racetrack with the transfer lines located in the linac tunnels

  14. ROTARY SPRAY DUSTER

    Directory of Open Access Journals (Sweden)

    E. S. Nechaeva

    2013-01-01

    Full Text Available Results of researches of hydraulic resistance, ablation of splashes and efficiency of dedusting in the rotor spray dust collector are given. Influence of frequency of rotation of the spray, the specified speed of gas and diameter of spattering holes on hydraulic resistance, size ablation of splashes and efficiency of a dedusting the device by diameter 0,25 m is investigated. As model liquid water is used. Results of mathematical processing are presented.

  15. Open and Arthroscopic Surgical Treatment of Femoroacetabular Impingement

    Directory of Open Access Journals (Sweden)

    Benjamin D. Kuhns

    2015-12-01

    Full Text Available Femoroacetabular impingement (FAI is a common cause of hip pain, and when indicated, can be successfully managed through open surgery or hip arthroscopy. The goal of this review is to describe the different approaches to the surgical treatment of FAI. We present the indications, surgical technique, rehabilitation, and complications associated with (1 open hip dislocation, (2 reverse peri-acetabular osteotomy, (3 the direct anterior mini-open approach, and (4 arthroscopic surgery for femoroacetabular impingement.

  16. Supersonic impinging jet noise reduction using a hybrid control technique

    Science.gov (United States)

    Wiley, Alex; Kumar, Rajan

    2015-07-01

    Control of the highly resonant flowfield associated with supersonic impinging jet has been experimentally investigated. Measurements were made in the supersonic impinging jet facility at the Florida State University for a Mach 1.5 ideally expanded jet. Measurements included unsteady pressures on a surface plate near the nozzle exit, acoustics in the nearfield and beneath the impingement plane, and velocity field using particle image velocimetry. Both passive control using porous surface and active control with high momentum microjet injection are effective in reducing nearfield noise and flow unsteadiness over a range of geometrical parameters; however, the type of noise reduction achieved by the two techniques is different. The passive control reduces broadband noise whereas microjet injection attenuates high amplitude impinging tones. The hybrid control, a combination of two control methods, reduces both broadband and high amplitude impinging tones and surprisingly its effectiveness is more that the additive effect of the two control techniques. The flow field measurements show that with hybrid control the impinging jet is stabilized and the turbulence quantities such as streamwise turbulence intensity, transverse turbulence intensity and turbulent shear stress are significantly reduced.

  17. Investigation of impingement attack mechanism of copper alloy condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Takuya; Nakajima, Nobuo; Arioka, Koji; Totsuka, Nobuo; Nakagawa, Tomokazu [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In order to investigate generation and growth mechanisms of impingement attacks of sea water against copper alloy condenser tubes used in condensers of nuclear power plants, we took out condenser tubes from actual condensers, cut them into several pieces and carried out several material tests mainly for impinged spots. In addition water flow inside of a pit was analyzed. From the results of the investigation, it was found that all of impingement attacks were found in the marks left by sessile organisms and none were found in downstream of the marks as frequently proposed so far. At the pits generated inside the marks, iron coating was striped and zinc content was deficient in some cases. Combining these data and the result of flow analysis, we considered the following mechanism of the impingement attacks: sessile organisms clinging to the surface of the condenser tube and growth, occlusion of the tube, extinction and decomposition of sessile organisms, pollution corrosion under the organisms and cavity formation, occlusion removal by the cleaning, generation of impingement attacks by flow collision inside the cavity, growth of the impingement attacks. (author)

  18. Cryogenics bringing the temperature down, underground

    CERN Multimedia

    2005-01-01

    The first 600m of the LHC cryogenic distribution line (QRL), which will feed the accelerator's superconducting magnets, has passed initial validating tests of its mechanical design at room and cryogenic temperatures.

  19. Planar measurements of spray-induced wall cooling using phosphor thermometry

    Science.gov (United States)

    Dragomirov, Plamen; Mendieta, Aldo; Abram, Christopher; Fond, Benoît; Beyrau, Frank

    2018-03-01

    The wall cooling induced by spray impingement is investigated using phosphor thermometry. Thin coatings of zinc oxide (ZnO) phosphor were applied with a transparent chemical binder onto a steel surface. Instantaneous spatially resolved temperatures were determined using the spectral intensity ratio method directly after the injection of UV-grade hexane onto the surface using a commercial gasoline injector. The investigations showed that 2D temperature measurements with high spatial and shot-to-shot precision of, respectively, 0.5 and 0.6 K can be achieved, allowing the accurate resolution of the cooling induced by the spray. The presence of a liquid film over the phosphor coating during measurements showed no noticeable influence on the measured temperatures. However, in some cases a change in the intensity ratio at the spray impingement area, in the form of a permanent "stain", could be observed after multiple injections. The formation of this stain was less likely with increasing annealing time of the coating as well as lower plate operating temperatures during the injection experiments. Finally, the experimental results indicate a noticeable influence of the thickness of the phosphor coating on the measured spray-induced wall cooling history. Hence, for quantitative analysis, a compromise between coating thickness and measurement accuracy needs to be considered for similar applications where the heat transfer rates are very high.

  20. Cryogenic safety organisation at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    With Safety being a top priority of CERN’s general policy, the Organisation defines and implements a Policy that sets out the general principles governing Safety at CERN. To the end of the attainment of said Safety objectives, the organic units (owners/users of the equipment) are assigned the responsibility for the implementation of the CERN Safety Policy at all levels of the organization, whereas the Health and Safety and Environmental Protection Unit (HSE) has the role of providing assistance for the implementation of the Safety Policy, and a monitoring role related to the implementation of continuous improvement of Safety, compliance with the Safety Rules and the handling of emergency situations. This talk will elaborate on the roles, responsibilities and organisational structure of the different stakeholders within the Organization with regards to Safety, and in particular to cryogenic safety. The roles of actors of particular importance such as the Cryogenic Safety Officers (CSOs) and the Cryogenic Sa...

  1. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  2. Four-jet impingement: Noise characteristics and simplified acoustic model

    International Nuclear Information System (INIS)

    Brehm, C.; Housman, J.A.; Kiris, C.C.; Barad, M.F.; Hutcheson, F.V.

    2017-01-01

    Highlights: • Large eddy simulation of unique four jet impingement configuration. • Characterization of flow features using POD, FFT, and wavelet decomposition. • Noise source identification utilizing causality method. • Development of simplified acoustic model utilizing equivalent source method. • Comparison with experimental data from BENS experiment. - Abstract: The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order weighted essentially non-oscillatory scheme. Although these types of impinging jet configurations have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortical flow structures in the center of the four-jet impingement region. The causality method based on Lighthills acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a simplified acoustic model of the four-jet impingement device by utilizing the equivalent source method. Finally, three linear acoustic four-jet impingement models of the four-jet impingement device are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data.

  3. Radiotherapy for shoulder impingement; Bestrahlung beim Impingementsyndrom des Schultergelenks

    Energy Technology Data Exchange (ETDEWEB)

    Adamietz, B. [Universitaetsklinikum Erlangen (Germany). Inst. fuer Radiologie; Sauer, R.; Keilholz, L. [Universitaetsklinikum Erlangen (Germany). Strahlentherapeutische Klinik

    2008-05-15

    Background and Purpose: Up to now, degenerative shoulder diseases were summarized by the term 'periarthritis humeroscapularis'. Actual shoulder diseases can be differentiated etiopathologically according to a primary and secondary impingement syndrome. Narrowing of the subacromial space, which is caused by an osseous shape variant, leads to primary impingement. Secondary impingement develops, when the subacromial space is reduced by swelling tissue below the osseous shoulder roof. This study aimed for the exact diagnosis to indicate therapy and to classify the results according to the Constant score. Patients and Methods: From August 1999 to September 2002, 102 patients with 115 shoulder joint conditions underwent radiation therapy (RT). All joints received two RT series (6 x 0.5 Gy/series) applied in two to three weekly fractions, totaling a dosage of 6.0 Gy (250 kV, 15 mAs, 1-mm Cu filter). The second RT course started 6 weeks after the end of the first. 115 shoulders were examined before RT, 6 weeks after the second RT course and, finally, during the follow-up from January to May 2003. Results: Pain relief was achieved in 94/115 shoulder joints (82%) after 18-month follow-up (median). A significant difference existed between secondary impingement and primary/non-impingement according to response. Tendinosis calcarea, bursitis subdeltoidea, tendovaginitis of the long biceps tendon, and capsulitis adhaesiva responded well to therapy. Conclusion: Shoulder diseases of secondary impingement demonstrate a good response to RT. Less or no benefit was found in primary impingement syndrome or complete rotator cuff disruption and acute shoulder injuries, respectively. (orig.)

  4. Spray boom for selectively spraying a herbicidal composition onto dicots

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a method and spray boom for discriminating cereal crop (monocot) and weeds (dicots). The spray boom includes means for digitally recording an image of a selected area to be treated by a nozzle on the spray boom, whereby a plant material is identified based on a segmentation proc...

  5. Arthroscopy Up to Date: Hip Femoroacetabular Impingement.

    Science.gov (United States)

    Khan, Moin; Habib, Anthony; de Sa, Darren; Larson, Christopher M; Kelly, Bryan T; Bhandari, Mohit; Ayeni, Olufemi R; Bedi, Asheesh

    2016-01-01

    To provide a comprehensive review and summary of the research published in Arthroscopy: The Journal of Arthroscopic and Related Surgery and The American Journal of Sports Medicine (AJSM) related to hip arthroscopy for femoroacetabular impingement (FAI). A comprehensive review was conducted in duplicate of Arthroscopy and AJSM from February 2012 to February 2015 for all articles related to FAI, and a quality assessment was completed for all included studies. Clinical outcomes were dichotomized into short-term (Arthroscopy and 44 studies in AJSM, primarily from North America (78.8%), that predominantly assessed clinical outcomes after arthroscopic hip surgery (46.1%). Seventy-one percent of Arthroscopy studies and 20.5% of AJSM studies were Level IV evidence. The modified Harris Hip Score (mHHS) was used by 81.5% of included studies. Pooled weighted mean mHHS values after arthroscopic surgery for FAI showed improvements at the midterm from 60.5 points (range, 56.6 to 83.6 points) to 80.5 points (range, 72.1 to 98.0 points) out of a possible 100 points. Pooled weighted outcomes for labral repair showed mean mHHS improvements from 63.8 points (range, 62.5 to 69.0 points) preoperatively to 86.9 points (range, 85.5 to 89.9 points) up to 24 months postoperatively. This comprehensive review of research published in Arthroscopy and AJSM over the past 3 years identified a number of key findings. Arthroscopic intervention results in improvements in functional outcomes at both the short-term and midterm for patients with symptomatic FAI in the absence of significant existing degenerative changes. Labral repair may result in improvements over labral debridement. The most commonly used outcome score was the mHHS for objective assessment of surgical success. There is a need for continued focus on improvement of methodologic quality and reporting of research pertaining to FAI. Level IV, systematic review of Level IV studies. Copyright © 2016 Arthroscopy Association of North

  6. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  7. Shear layer characteristics of supersonic free and impinging jets

    Science.gov (United States)

    Davis, T. B.; Kumar, R.

    2015-09-01

    The initial shear layer characteristics of a jet play an important role in the initiation and development of instabilities and hence radiated noise. Particle image velocimetry has been utilized to study the initial shear layer development of supersonic free and impinging jets. Microjet control employed to reduce flow unsteadiness and jet noise appears to affect the development of the shear layer, particularly near the nozzle exit. Velocity field measurements near the nozzle exit show that the initially thin, uncontrolled shear layer develops at a constant rate while microjet control is characterized by a rapid nonlinear thickening that asymptotes downstream. The shear layer linear growth rate with microjet control, in both the free and the impinging jet, is diminished. In addition, the thickened shear layer with control leads to a reduction in azimuthal vorticity for both free and impinging jets. Linear stability theory is used to compute unstable growth rates and convection velocities of the resultant velocity profiles. The results show that while the convection velocity is largely unaffected, the unstable growth rates are significantly reduced over all frequencies with microjet injection. For the case of the impinging jet, microjet control leads to near elimination of the impingement tones and an appreciable reduction in broadband levels. Similarly, for the free jet, significant reduction in overall sound pressure levels in the peak radiation direction is observed.

  8. Thermal-hydraulic performance of convective boiling jet array impingement

    International Nuclear Information System (INIS)

    Jenkins, R; De Brún, C; Kempers, R; Lupoi, R; Robinson, A J

    2016-01-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7 o C. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux. (paper)

  9. Heat switch technology for cryogenic thermal management

    Science.gov (United States)

    Shu, Q. S.; Demko, J. A.; E Fesmire, J.

    2017-12-01

    Systematic review is given of development of novel heat switches at cryogenic temperatures that alternatively provide high thermal connection or ideal thermal isolation to the cold mass. These cryogenic heat switches are widely applied in a variety of unique superconducting systems and critical space applications. The following types of heat switch devices are discussed: 1) magnetic levitation suspension, 2) shape memory alloys, 3) differential thermal expansion, 4) helium or hydrogen gap-gap, 5) superconducting, 6) piezoelectric, 7) cryogenic diode, 8) magneto-resistive, and 9) mechanical demountable connections. Advantages and limitations of different cryogenic heat switches are examined along with the outlook for future thermal management solutions in materials and cryogenic designs.

  10. Sprayed concrete linings

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-12-01

    Sprayed concrete, or shotcrete, was invented in the 1920s for preserving dinosaur skeletons and was used underground initially in coalmines for the preservation and fine proofing of timber supports. Its use as a support lining in rock tunnelling was developed in the 1950s and 60s. The article surveys equipment available from major manufacturers and suppliers of concrete spraying equipment (Aliva, Cifa, GIA, Industri, Ingersoll Rand, etc.), specialist cement and additive manufacturers (Castle, Cement, Moria Carbotech). manufacturers of lattice girders and fibre reinforcement, and manufacturers of instrumentation for tunnel linings. 5 tabs., 9 photos.

  11. SPRAY code user's report

    International Nuclear Information System (INIS)

    Shire, P.R.

    1977-03-01

    The SPRAY computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping within containment chambers. The calculation method utilizes gas convection, heat transfer and droplet combustion theory to calculate the pressure and temperature effects within the enclosure. The applicable range is 0-21 mol percent oxygen and .02-.30 inch droplets with or without humidity. Droplet motion and large sodium surface area combine to produce rapid heat release and pressure rise within the enclosed volume

  12. Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment

    Science.gov (United States)

    Golliher, Eric L.; Yao, S. C.

    2015-01-01

    Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.

  13. Superconducting magnets and cryogenics: proceedings

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1986-01-01

    Separate abstracts were prepared for 70 papers in these workshop proceeedings. Topics covered include: superconducting accelerator magnet research and development; superconductor development; electrical measurements; magnet design and construction methods; field correction methods; power schemes and quench protection; cryogenic systems; and magnet measurements

  14. Operation of large cryogenic systems

    International Nuclear Information System (INIS)

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab

  15. Radiation hard cryogenic silicon detectors

    International Nuclear Information System (INIS)

    Casagrande, L.; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D'Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O'Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M.

    2002-01-01

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors

  16. LHC Cryogenics on the mend

    CERN Multimedia

    2004-01-01

    On 29 September, repairs began on the LHC cryogenic distribution line, or QRL, to replace a faulty part that occurs in the hundreds of elements of the line that are already on-site. The Accelerator Technology Department is designing a work programme to finish the repairs as soon as possible and minimize delays to the rest of the LHC project.

  17. Champagne for the cryogenics teams

    CERN Multimedia

    2005-01-01

    Christmas has come early for the LHC as a complete sector of the cryogenic distribution line has been operating at 10 degrees Kelvin (-263°C) for the past two weeks, just a few degrees above the machine's nominal operating temperature.

  18. Cryogenic detectors for particle physics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1988-11-01

    A comprehensive introduction to cryogenic detector developments for particle physics is presented, covering conventional detectors cooled to low temperature (scintillators and semiconductors), superconductive and thermal sensitive devices, as well as the basics of cold electronics. After giving a critical overview of current work, we elaborate on possible new ways for further improvements and briefly evaluate the feasibility of the main proposed applications

  19. ARTHROSCOPIC TREATMENT OF ANTERIOR IMPINGEMENT IN THE ANKLE

    Directory of Open Access Journals (Sweden)

    Martin Mikek

    2004-12-01

    Full Text Available Background. Anterior soft tissue impingement is a common cause of chronic pain in the ankle. The preferred method of operative treatment is an arthroscopic excision of hypertrophic fibrous and synovial tissue in the anterior part of the ankle joint.Methods. We present the results of arthroscopic treatment of anterior ankle impingement in group of 14 patients.Results. Subjective improvement after the procedure was observed in all patients and 13 of them (93% were without any symptoms after the operation. One patient reported of intermittent pain, especially when walking on uneven grounds.Conclusions. We conclude that arthroscopic excision of hypertrophic synovial tissue in the anterior part of the ankle which causes the symptoms of impingement is a minimally invasive procedure that is both safe and reliable. When used for appropriate indications, an improvement can be expected in over 90% of patients.

  20. The jet impingement phase of molten core-concrete interactions

    International Nuclear Information System (INIS)

    Sienicki, J.J.; Spencer, B.W.

    1986-01-01

    Scoping calculations have been carried out demonstrating that a significant and abrupt reduction in the corium temperature may be realized when molten corium drains as a jet from a localized breach in the RPV lower head to impinge upon the concrete basemat. The temperature decrease may range from a value of ∼170 K (∼140 K) for limestone (basaltic) aggregate concrete to a value approaching the initial corium superheat depending upon whether the forced convection impingement heat flux is assumed to be controlled by either thermal conduction across a slag film layer or the temperature boundary condition represented by a corium crust. The magnitude of the temperature reduction remains significant as the initial corium temperature, impinging corium mass, and initial localized breach size are varied over their range of potential values

  1. Clinical radiation diagnostics of shoulder joint impingement syndrome

    International Nuclear Information System (INIS)

    Litvin, Yu.P.; Logvinenko, V.V.

    2014-01-01

    46 patients about an impingement are investigated by a syndrome of a humeral joint. Among them men was 28 (60,9 %) the person, women 18 (39,1 %). Middle age of the surveyed has made 52,6 ± 2,0 year. The traditional roentgenography is executed to all patients, a spiral computer tomography - 5 (10,9 %), an ultrasonography - 44 (95,7 %), a magnetic resonance imaging - 11 (23,9 %). Operative treatment is spent 16 (34,8 %) by the patient. Direct radial symptoms are what specify an impingement of a syndrome of a humeral joint in the reasons, indirect - symptoms of an inflammation both degenerate and dystrophic changes of structures of area of a humeral joint which are involved in pathological process. The best results are given by complex radial research at which it is possible to find out direct and indirect symptoms a syndrome impingement

  2. Analysis of impingement impacts on Hudson River fish populations

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; van Winkle, W.

    1988-01-01

    Impacts of impingement, expressed as reductions in year-class abundance, were calculated for six Hudson River fish populations. Estimates were made for the 1974 and 1975 year classes of white perch, striped bass, Atlantic tomcod, and American shad, and the 1974 year classes of alewife and blueback herring. The maximum estimated reductions in year-class abundance were less than 5% for all year classes except the 1974 and 1975 white perch year classes and the 1974 striped bass year class. Only for white perch were the estimates greater than 10% per year. For striped bass, the 146,000 fish from the 1974 year class that were killed by impingement could have produced 12,000-16,000 5-year-old fish or 270-300 10-year-olds. Also estimated were the reductions in mortality that could have been achieved had closed-cycle cooling systems been installed at one or more of three power plants (Bowline point, Indian Point, and Roseton) and had the screen-wash systems at Bowline Point and Indian Point been modified to improve the survival of impinged fish. Closed-cycle cooling at all three plants would have reduced impingement impacts on white perch, striped bass, and Atlantic tomcod by 75% or more; installation of closed-cycle cooling at Indian Point alone would have reduced impingement impacts on white perch and Atlantic tomcod by 50%-80%. Modified traveling screens would have been less effective than closed-cycle cooling, but still would have reduced impingement impacts on white perch by roughly 20%. 23 refs., 1 fig., 3 tabs

  3. Thermal-fluid assessment of multijet atomization for spray cooling applications

    International Nuclear Information System (INIS)

    Panao, Miguel R.O.; Moreira, Antonio L.N.; Durao, Diamantino F.G.

    2011-01-01

    Thermal management is a particularly difficult challenge to the miniaturization of electronic components because it requires high performance cooling systems capable of removing large heat loads at fast rates in order to keep the operating temperature low and controlled. To meet this challenge, the Intermittent Spray Cooling (ISC) concept has been suggested as a promising technology which uses a proper match between the frequency and duration of consecutive injection cycles to control heat transfer. This concept also depends on: the atomization strategy; a homogeneous dispersion of droplets impinging on the hot surface; and the quantitative control of the liquid deposited, avoiding excessive secondary atomization or pre-impingement-evaporation. In this work, the use of liquid atomization by multiple jets impact, also referred as multijet atomization, is the subject of a thermal-fluid assessment using heat transfer correlations previously derived for intermittent sprays. Simultaneous measurements of droplet size and velocity are provided as input for the correlations and the analysis explores the influence of the number of impinging jets on the heat removal pattern and magnitude. Emphasis is put on the promising applicability of multijet atomization for promoting an intelligent use of energy in the thermal management of electronic devices.

  4. Thermal spray for commercial shipbuilding

    Science.gov (United States)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  5. Cryogenic systems for detectors and particle accelerators

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1988-01-01

    It's been one hundred years since the first successful experiments were carried out leading to the liquefaction of oxygen which birthed the field of cryogenics and about sixty years since cryogenics went commercial. Originally, cryogenics referred to the technology and art of producing low temperatures but today the definition adopted by the XII Congress of the International Institute of Refrigeration describes cryogenics as the study of phenomena, techniques, and concepts occurring at our pertaining to temperatures below 120 K. Modern acceptance of the importance and use of cryogenic fluids continues to grow. By far, the bulk of cryogenic products are utilized by industry for metal making, agriculture, medicine, food processing and as efficient storage of fuels. Cryogenics has found many uses in the scientific community as well, enabling the development of ultra low noise amplifiers, fast cold electronics, cryopumped ultra high vacuums, the production of intense magnetic fields and low loss power transmission through the sue of cryogenically cooled superconductors. High energy physic research has been and continues to use cryogenic hardware to produce liquids used as detector targets and to produce refrigeration necessary to cool superconducting magnets to design temperature for particle accelerator applications. In fact, today's super accelerators achieve energies that would be impossible to reach with conventional copper magnets, demonstrating that cryogenics has become an indispensable ingredient in today's scientific endeavors

  6. Physiotherapy improves patient reported shoulder function and health status in patients with subacromial impingement syndrome

    DEFF Research Database (Denmark)

    Storgaard, Filip Holst; Pedersen, Christina Gravgaard; Jensen, Majbritt Lykke

    Physiotherapy improves patient reported shoulder function and health status in patients with subacromial impingement syndrome.......Physiotherapy improves patient reported shoulder function and health status in patients with subacromial impingement syndrome....

  7. Anterior internal impingement of the shoulder in rugby players and other overhead athletes

    Directory of Open Access Journals (Sweden)

    Siddharth R. Shah, MBBS, MSc Sports Medicine (UK, MRCS-Ed

    2017-04-01

    Conclusion: This series of anterior internal impingement, which we believe is the largest in the literature to date, demonstrates the value of an to assess and successfully treat overhead athletes with anterior impingement syndrome.

  8. Impingement studies at the 100-N reactor water intake

    International Nuclear Information System (INIS)

    Page, T.L.; Neitzel, D.A.; Gray, R.H.

    1977-09-01

    Fish impingement and traveling screen passage were studied at the 100-N reactor water intake structure, Columbia River mile 380, from late April to August 1977. Species and numbers of fish affected were determined and compared to those at the adjacent Hanford Generating Project (HGP). Fish protection procedures previously developed for HGP were evaluated for application at 100-N

  9. Open versus arthroscopic treatment of chronic rotator cuff impingement

    NARCIS (Netherlands)

    Schröder, J.; van Dijk, C. N.; Wielinga, A.; Kerkhoffs, G. M.; Marti, R. K.

    2001-01-01

    We report the results of 238 consecutive patients who underwent in total 261 acromioplasties because of chronic rotator cuff impingement. The procedure was performed either in conventional open technique (80) or arthroscopically (181). Two years (1-10) after the operation 68% of the patients treated

  10. Quantifying cell adhesion through impingement of a controlled microjet

    NARCIS (Netherlands)

    Visser, C.W.; Gielen, Marise V.; Gielen, Marise Vera; Hao, Zhenxia; le Gac, Severine; Lohse, Detlef; Sun, Chao

    2015-01-01

    The impingement of a submerged, liquid jet onto a cell-covered surface allows assessing cell attachment on surfaces in a straightforward and quantitative manner and in real time, yielding valuable information on cell adhesion. However, this approach is insufficiently characterized for reliable and

  11. Electromagnetic dampers for cryogenic applications

    Science.gov (United States)

    Brown, Gerald V.; Dirusso, Eliseo

    1988-01-01

    Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.

  12. Cryogenic moderator simulations: confronting reality

    International Nuclear Information System (INIS)

    Iverson, E. B.

    1999-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities

  13. COOLING STAGES OF CRYOGENIC SYSTEMS

    OpenAIRE

    Троценко, А. В.

    2011-01-01

    The formalized definition for cooling stage of low temperature system is done. Based on existing information about the known cryogenic unit cycles the possible types of cooling stages are single out. From analyses of these stages their classification by various characteristics is suggested. The results of thermodynamic optimization of final throttle stage of cooling, which are used as working fluids helium, hydrogen and nitrogen, are shown.

  14. Composite materials for cryogenic structures

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1978-01-01

    The paper is concerned with the composition, mechanical properties and capabilities of various types of composite materials for cryogenic structures. Attention is given to high-pressure plastic laminates, low-pressure plastic laminates, metal-matrix laminates, and aggregates (low-temperature concretes). The ability of these materials to match the strength and modulus of stainless steels suggests that their usage will substantially increase as alloying elements become scarce and more expensive

  15. The influence of cavitation on the flow characteristics of liquid nitrogen through spray nozzles: A CFD study

    Science.gov (United States)

    Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu

    2017-09-01

    Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.

  16. Surface tension confined liquid cryogen cooler

    International Nuclear Information System (INIS)

    Castles, S.H.; Schein, M.E.

    1989-01-01

    A cryogenic cooler is described for use in craft such as launch, orbital and space vehicles subject to changes in orientation and conditions of vibration and weightlessness comprising: an insulated tank; a porous open celled sponge-like material disposed substantially throughout the contained volume of the insulated tank; a cryogenic fluid disposed within the sponge-like material; a cooling finger immersed in the cryogenic fluid, the finger extending from inside the insulated tank externally to an outside source such as an instrument detector for the purpose of transmitting heat from the outside source into the cryogenic fluid; means for filling the insulated tank with cryogenic fluid; and means for venting vaporized cryogenic fluid from the insulated tank

  17. Room temperature cryogenic test interface

    International Nuclear Information System (INIS)

    Faris, S. M.; Davidson, A.; Moskowitz, P. A.; Sai-Halasz, G. A.

    1985-01-01

    This interface permits the testing of high speed semiconductor devices (room-temperature chips) by a Josephson junction sampling device (cryogenic chip) without intolerable loss of resolution. The interface comprises a quartz pass-through plug which includes a planar transmission line interconnecting a first chip station, where the cryogenic chip is mounted, and a second chip station, where the semiconductor chip to be tested is temporarily mounted. The pass-through plug has a cemented long half-cylindrical portion and short half-cylindrical portion. The long portion carries the planar transmission line, the ends of which form the first and second chip mounting stations. The short portion completes the cylinder with the long portion for part of its length, where a seal can be achieved, but does not extend over the chip mounting stations. Sealing is by epoxy cement. The pass-through plug is sealed in place in a flange mounted to the chamber wall. The first chip station, with the cryogenic chip attached, extends into the liquid helium reservoir. The second chip station is in the room temperature environment required for semiconductor operation. Proper semiconductor operating temperature is achieved by a heater wire and control thermocouple in the vicinity of each other and the second chip mounting station. Thermal isolation is maintained by vacuum and seals. Connections for power and control, for test result signals, for temperature control and heating, and for vacuum complete the test apparatus

  18. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  19. Acromion types and role of corticosteroid with shoulder impingement syndrome

    International Nuclear Information System (INIS)

    Akram, M.; Gillani, S.F.U.S.; Awais, S.M.

    2016-01-01

    To determine the association between shoulder impingement and morphological characteristics of acromion and the role of sub-acromial injection of methylprednisolone in the short-term treatment for relieving pain and improve functional disability of these patients. Study Design: A descriptive study. Place and Duration of Study: Department of Orthopedic Surgery and Traumatology Unit-I (DOST-I), Mayo Hospital, Lahore, between November 2013 to June 2014. Methodology: All patients presented in OPD with shoulder pain were included as subjects and evaluated by clinical test and categorised using X-ray scapula Y-view. Patients with impingement syndrome were correlated with Bigliani types and offered intra-lesional injection into sub-acromial space with 2ml of xylocaine 2% and 40 mg of methylprednisolone using 22 gauge needle. The effectiveness was assessed in terms of relieving pain and good functional outcomes; and rotator cuff tear was clinically assessed among impingement positive patient. The pain was assessed using visual analogue score before and after the administration of the injection. Demographic variables for frequencies and their associations were analysed using SPSS version 20.0. Significance level was p<0.05. Among the 101 cases, there was no case of tear of rotator cuff tendon on clinical assessment. Majority of the patients (58.4%) were females with mean age of 31.38 +-1.13 years. Majority 57 (56.4%) of the patients had acromion type II (curved), which was the most common cause of shoulder impingement. Most had moderate pain. Thirty-four patients required intralesional steroid, which relieved the pain in 31 of them. Conclusion: Shoulder impingement syndrome without tear of rotator cuff tendon was found in younger age group between 40 to 45 years, which was relieved by intralesional corticosteroid administration. These patients had type II (curved) acromion, according to Bigliani classification. (author)

  20. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  1. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  2. The evolution of cryogenic safety at Fermilab

    International Nuclear Information System (INIS)

    Stanek, R.; Kilmer, J.

    1992-12-01

    Over the past twenty-five years, Fermilab has been involved in cryogenic technology as it relates to pursuing experimentation in high energy physics. The Laboratory has instituted a strong cryogenic safety program and has maintained a very positive safety record. The solid commitment of management and the cryogenic community to incorporating safety into the system life cycle has led to policies that set requirements and help establish consistency for the purchase and installation of equipment and the safety analysis and documentation

  3. Plasma sprayed thermoregulating coatings

    International Nuclear Information System (INIS)

    Kudinov, V.V.; Puzanov, A.A.; Zambrzhitskij, A.P.; Soboleva, V.V.

    1979-01-01

    Shown is the possibility of plasma spraying application for thermoregulating coating formation. Given are test results of service properties of BeO, Al 2 O 2 plasma coatings on the substrates of the MA2-1 magnesium alloy. Described is a device for studying durability of coating optical parameters under ultraviolet irradiation in deep vacuum. Dynamics of absorption coefficient, growth caused by an increase in absorption centers amount under such irradiation is investigated

  4. Emulsions from Aerosol Sprays

    Science.gov (United States)

    Hengelmolen; Vincent; Hassall

    1997-12-01

    An electrostatic emulsification apparatus has been designed for the purpose of studying diffusion from oil droplets which have a mean size in the range of approximately 1.5-3.5 &mgr;m, with standard deviations of 40-50%. The emulsification technique involves the collection of a spray of electrically charged oil droplets onto a rotating water film which is sustained from a reservoir. In this way, emulsions with volume fractions of approximately 10(-3) are produced within several minutes at oil flow rates of around 10(-2) ml min-1. Phase-Doppler anemometry (PDA) was used to assess droplet size distributions for the sprays and emulsions. Results show that the mean emulsion droplet size was smaller than the mean spray droplet size by several orders of magnitude. At flow rates around 10(-2) ml min-1, the spray droplet size distribution was little affected by the applied potential between about -4.20 and -4.65 kV (mean droplet size between approximately 7.6 and 7.8 &mgr;m, with standard deviations of approximately 20%), whereas the mean droplet size of the corresponding emulsion decreased more rapidly with applied potential. Above an applied potential of approximately -4.30 kV, which corresponded to an emulsion droplet size below approximately 2 &mgr;m, the measured volume fraction of the emulsion decreased with respect to the volume fraction as calculated on the basis of total amount of injected oil. Copyright 1997 Academic Press. Copyright 1997Academic Press

  5. Radiolysis of spray solutions

    International Nuclear Information System (INIS)

    Habersbergerova, A.; Janovsky, I.

    1985-01-01

    The factors were studied affecting thiosulfate radiolysis in the so-called spray solution for nuclear power plant containments. The reaction mechanism of primary radiolytic reactions leading to thiosulfate decomposition was studied using pulse radiolysis. Also measured was hydrazine loss in the irradiation of the bubbling solution intended for the capture of volatile chemical forms of radioiodine. Pulse radiolysis was used to study the kinetics of hydrazine reaction with elemental iodine. (author)

  6. The cryogenic control system of EAST

    International Nuclear Information System (INIS)

    Zhuang, M.; Hu, L.B.; Zhow, Z.W.; Xia, G.H.

    2012-01-01

    Highlights: ► A reliable and flexible duplex control system is required for cryogenic system. ► The cryogenic control system is based on Delta-V DCS. ► It has been proved to be an effective way to control cryogenic process. ► It will provide useful experience and inspiration for the development in the cryogenic control engineering. - Abstract: A large scale helium cryogenic system is one of the key components for the EAST tokamak device for the cooling of PF and TF coils, structures, thermal shields, buslines, current leads and cryopumps. Since the cooling scheme of the EAST cryogenic system is fairly complicated, a reliable and flexible control system is required for cryogenic system. The cryogenic control system is based on DeltaV DCS which is the process control software developed by Emerson Company. The EAST cryogenic system has been in operation for four years and has been proved to be safe, stable and energy saving by the past 7 experiments. This paper describes the redundant control network, hardware configuration, software structure, auxiliary system and the new development in the future.

  7. Modeling skin cooling using optical windows and cryogens during laser induced hyperthermia in a multilayer vascularized tissue

    International Nuclear Information System (INIS)

    Singh, Rupesh; Das, Koushik; Okajima, Junnosuke; Maruyama, Shigenao; Mishra, Subhash C.

    2015-01-01

    This article deals with the spatial and the temporal evolution of tissue temperature during skin surface cooled laser induced hyperthermia. Three different skin surface cooling methodologies viz., optical window contact cooling, cryogenic spray cooling and cryogen cooled optical window contact cooling are considered. Sapphire, yttrium aluminum garnet, lithium tantalate, and magnesium oxide doped lithium niobate are the considered optical windows. The cryogens considered are liquid CO_2 and R1234yf. Heat transfer in the multilayer skin tissue embedded with thermally significant blood vessels pairs is modeled using the Pennes and Weinbaum–Jiji bioheat equations. Weinbaum–Jiji bioheat equation is used for the vascularized tissue. Laser transport in the tissue is modeled using the radiative transfer equation. Axial and radial (skin surface) temperature distributions for different combinations of optical windows and cryogens are analyzed. Liquid CO_2 cooled yttrium aluminum garnet is found to be the best surface cooling mechanism. - Highlights: • Skin surface cooled laser induced hyperthermia is studied. • A multi-layer 2-D cylindrical tissue geometry is considered. • Both Pennes and Weinbaum–Jiji bioheat models are considered. • Laser transport in the tissue is modeled using discrete ordinate method. • Results for 4 optical windows and 2 cryogens for skin cooling are presented.

  8. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    Science.gov (United States)

    Ravex, Alain; Flachbart, Robin; Holt, Barney

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. TVS performance testing demonstrated that the spray bar was effective in providing tank pressure control within a 6

  9. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  10. A Cryogenic Infrared Calibration Target

    Science.gov (United States)

    Wollack, E. J.; Kinzer, R. E., Jr.; Rinehart, S. A.

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to approx.4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented

  11. The Cryogenic Storage Ring CSR

    OpenAIRE

    von Hahn, Robert; Becker, Arno; Berg, Felix; Blaum, Klaus; Breitenfeldt, Christian; Fadil, Hisham; Fellenberger, Florian; Froese, Michael; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth A.; Heber, Oded; Herwig, Philipp

    2016-01-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion a...

  12. Cryogenic fluid management program flight concept definition

    Science.gov (United States)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  13. Spray-formed tooling

    Science.gov (United States)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  14. MR imaging in the diagnosis of impingement syndrome

    International Nuclear Information System (INIS)

    Seeger, L.L.; Gold, R.H.; Bassett, L.W.; Ellman, H.

    1986-01-01

    The impingement syndrome is entrapment of the supraspinatus tendon by either the acromion, or a subacromial or acromioclavicular spur. Arthrography is normal during stages I (tendon inflammation) and II (fibrosis). The lack of objective findings often delays diagnosis until stage III (ischemic rotator cuff tear) is present. The purpose was to determine if MR imaging is useful in diagnosing this condition. T1-weighted surface coil scans were obtained on eight patients using a 0.3-T MR system. An axial scout allowed oblique alignment for imaging the osseous-soft tissue relationship and the supraspinatus tendon. MR is capable of displaying the specific pathologic anatomy of this disorder. Impinging spurs can be seen, and the adjacent tendon shows inferior displacement and abnormal signal intensity

  15. Microplasma sprayed hydroxyapatite coatings

    CERN Document Server

    Dey, Arjun

    2015-01-01

    ""This unique book on development of microplasma sprayed HAp coating has been organized in a very compact yet comprehensive manner. This book also highlights the horizons of future research that invites the attention of global community, particularly those in bio-medical materials and bio-medical engineering field. This book will surely act as a very useful reference material for both graduate/post-graduate students and researchers in the field of biomedical, orthopedic and manufacturing engineering and research. I truly believ that this is the first ever effort which covers almost all the

  16. Reliability, Readability and Quality of Online Information about Femoracetabular Impingement

    Directory of Open Access Journals (Sweden)

    Fatih Küçükdurmaz

    2015-07-01

    Conclusion: According to our results, the websites intended to attract patients searching for information regarding femoroacetabular impingement are providing a highly accessible, readable information source, but do not appear to apply a comparable amount of rigor to scientific literature or healthcare practitioner websites in regard to matters such as citing sources for information, supplying methodology and including a publication date. This indicates that while these resources are easily accessed by patients, there is potential for them to be a source of misinformation.

  17. Annular Impinging Jet Controlled by Radial Synthetic Jets

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Tesař, Václav; Broučková, Zuzana; Peszyński, K.

    2014-01-01

    Roč. 35, 16-17 (2014), s. 1450-1461 ISSN 0145-7632 R&D Projects: GA ČR GA14-08888S; GA AV ČR(CZ) IAA200760801 Institutional support: RVO:61388998 Keywords : impinging jet * hybrid synthetic jet * flow control Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 0.814, year: 2014 http://dx.doi.org/10.1080/01457632.2014.889467

  18. Radiographic Evidence of Femoroacetabular Impingement in Athletes With Athletic Pubalgia

    OpenAIRE

    Economopoulos, Kostas J.; Milewski, Matthew D.; Hanks, John B.; Hart, Joseph M.; Diduch, David R.

    2014-01-01

    Background: Two of the most common causes of groin pain in athletes are femoroacetabular impingement (FAI) and athletic pubalgia. An association between the 2 is apparent, but the prevalence of radiographic signs of FAI in patients undergoing athletic pubalgia surgery remains unknown. The purpose of this study was to determine the prevalence of radiologic signs of FAI in patients with athletic pubalgia. Hypothesis: We hypothesized that patients with athletic pubalgia would have a high prevale...

  19. Excitational metamorphosis of surface flowfield under an impinging annular jet

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Trávníček, Zdeněk

    2008-01-01

    Roč. 144, č. 2 (2008), s. 312-316 ISSN 1385-8947 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * impinging jets * flow topology * annular jets * stagnation points Subject RIV: BK - Fluid Dynamics Impact factor: 2.813, year: 2008 http://www.sciencedirect.com/

  20. Advanced Imaging in Femoroacetabular Impingement: Current State and Future Prospects

    OpenAIRE

    Bittersohl, Bernd; Hosalkar, Harish S.; Hesper, Tobias; Tiderius, Carl Johan; Zilkens, Christoph; Krauspe, R?diger

    2015-01-01

    Symptomatic femoroacetabular impingement (FAI) is now a known precursor of early osteoarthritis (OA) of the hip. In terms of clinical intervention, the decision between joint preservation and joint replacement hinges on the severity of articular cartilage degeneration. The exact threshold during the course of disease progression when the cartilage damage is irreparable remains elusive. The intention behind radiographic imaging is to accurately identify the morphology of osseous structural abn...

  1. Methods on simple radiogaphy of impingement syndrome in shoulder joint

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Kim, Moon Sun; Kim, Yong Seob; Chung, Kyung Mo

    2000-01-01

    To evaluation of patients who have shoulder impingement syndrome is by diagnostic radiography. Shoulder impingement is a problem which occurs in young, active individuals as well as older individuals. In fact, the pain is probably caused by repetitive stress placed on the shoulder joint either through recreational activities of your occupation. Impingement series approach to radiographic examination of the shoulder is take five projections. First anteroposterior oblique projection. Second standard anteroposterior projection. Third superoinferior axial projection. Fourth supraspinatus outlet projection offers a view of the outlet of the supraspinatus tendon unit as it passes under the coraacromial arch. Fifth anteroposterior 30 deg caudal projection will adequately demonstrate the anterior acromial spur or ossification in the coraacromial ligament and more reliable to demonstrate spurring of the anterior acromion than supraspinatus outlet projection. This decreased the need for additional radiographic veiws, reduces the patient's exposure to x-ray radiation and decreases use of film. This can lower the cost of the evaluation and improve patient satisfaction.=20

  2. Methods on simple radiogaphy of impingement syndrome in shoulder joint

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol; Kim, Moon Sun; Kim, Yong Seob; Chung, Kyung Mo [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2000-06-01

    To evaluation of patients who have shoulder impingement syndrome is by diagnostic radiography. Shoulder impingement is a problem which occurs in young, active individuals as well as older individuals. In fact, the pain is probably caused by repetitive stress placed on the shoulder joint either through recreational activities of your occupation. Impingement series approach to radiographic examination of the shoulder is take five projections. First anteroposterior oblique projection. Second standard anteroposterior projection. Third superoinferior axial projection. Fourth supraspinatus outlet projection offers a view of the outlet of the supraspinatus tendon unit as it passes under the coraacromial arch. Fifth anteroposterior 30 deg caudal projection will adequately demonstrate the anterior acromial spur or ossification in the coraacromial ligament and more reliable to demonstrate spurring of the anterior acromion than supraspinatus outlet projection. This decreased the need for additional radiographic veiws, reduces the patient's exposure to x-ray radiation and decreases use of film. This can lower the cost of the evaluation and improve patient satisfaction.=20.

  3. Role of coherent structures in supersonic impinging jetsa)

    Science.gov (United States)

    Kumar, Rajan; Wiley, Alex; Venkatakrishnan, L.; Alvi, Farrukh

    2013-07-01

    This paper describes the results of a study examining the flow field and acoustic characteristics of a Mach 1.5 ideally expanded supersonic jet impinging on a flat surface and its control using steady microjets. Emphasis is placed on two conditions of nozzle to plate distances (h/d), of which one corresponds to where the microjet based active flow control is very effective in reducing flow unsteadiness and near-field acoustics and the other has minimal effectiveness. Measurements include unsteady pressures, nearfield acoustics using microphone and particle image velocimetry. The nearfield noise and unsteady pressure spectra at both h/d show discrete high amplitude impinging tones, which in one case (h/d = 4) are significantly reduced with control but in the other case (h/d = 4.5) remain unaffected. The particle image velocimetry measurements, both time-averaged and phase-averaged, were used to better understand the basic characteristics of the impinging jet flow field especially the role of coherent vortical structures in the noise generation and control. The results show that the flow field corresponding to the case of least control effectiveness comprise well defined, coherent, and symmetrical vortical structures and may require higher levels of microjet pressure supply for noise suppression when compared to the flow field more responsive to control (h/d = 4) which shows less organized, competing (symmetrical and helical) instabilities.

  4. Apollo Video Photogrammetry Estimation Of Plume Impingement Effects

    Science.gov (United States)

    Immer, Christopher; Lane, John; Metzger, Philip T.; Clements, Sandra

    2008-01-01

    The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing in order to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modem photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1-3 degrees. The lofted particle density is estimated at 10(exp 8)- 10(exp 13) particles per cubic meter. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.

  5. Subacromial Impingement Syndrome Caused by a Voluminous Subdeltoid Lipoma

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Murray

    2014-01-01

    Full Text Available Subacromial impingement syndrome is a clinical diagnosis encompassing a spectrum of possible etiologies, including subacromial bursitis, rotator cuff tendinopathy, and partial- to full-thickness rotator cuff tears. This report presents an unusual case of subdeltoid lipoma causing extrinsic compression and subacromial impingement syndrome. The patient, a 60-year-old man, presented to our institution with a few years' history of nontraumatic, posteriorly localized throbbing pain in his right shoulder. Despite a well-followed 6-months physiotherapy program, the patient was still suffering from his right shoulder. The MRI scan revealed a well-circumscribed 6 cm × 2 cm × 5 cm homogenous lesion compatible with a subdeltoid intermuscular lipoma. The mass was excised en bloc, and subsequent histopathologic examination confirmed a benign lipoma. At 6-months follow-up, the patient was asymptomatic with a complete return to his activities. Based on this case and a review of the literature, a subacromial lipoma has to be included in the differential diagnosis of a subacromial impingement syndrome refractory to nonoperative treatment. Complementary imaging modalities are required only after a failed conservative management to assess the exact etiology and successfully direct the surgical treatment.

  6. Study on pipe wastage mechanism by liquid droplet impingement erosion

    International Nuclear Information System (INIS)

    Higashi, Yuma; Narabayashi, Tadashi; Shimazu, Yoichiro; Tsuji, Masashi; Ohmori, Shuichi; Mori, Michitsugu; Tezuka, Kenichi

    2009-01-01

    Evaluation of wastage speed for nuclear power plant maintains plant reliability and power up rating is important. There are two main cause of wastage flow accelerated corrosion (FAC) and mechanical erosion. This study is to develop evaluating the wastage speed by liquid droplet impingement erosion (LDIE). LDIE often occurs at downstream of corner of pipe or orifice. In this study, the liquid drop impinging tests were conducted with the test pieces mounted on a high speed rotating disk that cross thin water down jet and produced LDIE phenomena. The amount of the wastage by LDIE was evaluated by changing the rotational speed, the impingement frequency, and test piece materials. In addition, the generation mechanism of erosion was investigated by observing the surface of the test piece with a microscope. There is a method of evaluating by the mass difference before and after experiments. But this method is not correct because error becomes larger for mass measurement in the experiment, for the lost mass by LDIE is very little amount. Therefore, the method was developed to measure the volume in the erosion part. In this method, depth of LDIE was measured by the accuracy of ±0.01μm; therefore accurate measurement of the wastage can be improved. (author)

  7. Shoulder impingement syndrome : evaluation of the causes with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ho; Song, In Sup; Chung, Hun Young; Yoon, Sang Jin; Kim, Yang Soo; Shim, Hyung Jin; Choi, Young Hee; Lee, Jong Beum; Lee, Yong Chul; Kim, Kun Sang [Chungang Univ. College of Medicine, Seoul (Korea, Republic of); Choi, Yun Sun [Eulji Hospital, College of Medicine, Seoul (Korea, Republic of)

    1999-12-01

    Various mechanical causes which induce shoulder impingement syndrome have been identified with the help of MRI. The aim of this study is to evaluate the incidence of such causes. A total of 54 patients with clinically confirmed shoulder impingement syndrome and a normal control group(n=20) without symptoms were included. We evaluated the incidence of hook shaped acromion, low lying acromion, downward slope of the acromion, subacromial spur, acromioclavicular joint hypertrophy, coracoacromial ligament hypertrophy, high cuff muscle bulk, and os acromiale. Among the 54 patients, the following conditions were present: acromioclavicular joint hypertrophy(n=36), coracoacromial ligament hypertrophy(n=20), subacromial spur(n=18), downward sloping of the acromion(n=16), hook shaped acromion(n=11), relatively high cuff muscle bulk(n=6), low lying acromion relative to the clavicle(n=3), and os acromiale(n=1). In the normal control group there were nine cases of acromioclavicular joint hypertrophy, nine of coracoacromial ligament hypertrophy, nine of downward sloping acromion, and three of low lying acromion, but hook shaped acromion, high cuff muscle bulk, and os acromiale were not found. Among 54 patients, the syndrome was due to five simultancous causes in one patient, four causes in two, three causes in 12, two causes in 22, and one cause in 17. Hook shaped acromion and subacromial spur are the statistically significant causes of shoulder impingement syndrome. In 69% of patients, the condition was due to more than one cause.

  8. Shoulder impingement syndrome : evaluation of the causes with MRI

    International Nuclear Information System (INIS)

    Choi, Yong Ho; Song, In Sup; Chung, Hun Young; Yoon, Sang Jin; Kim, Yang Soo; Shim, Hyung Jin; Choi, Young Hee; Lee, Jong Beum; Lee, Yong Chul; Kim, Kun Sang; Choi, Yun Sun

    1999-01-01

    Various mechanical causes which induce shoulder impingement syndrome have been identified with the help of MRI. The aim of this study is to evaluate the incidence of such causes. A total of 54 patients with clinically confirmed shoulder impingement syndrome and a normal control group(n=20) without symptoms were included. We evaluated the incidence of hook shaped acromion, low lying acromion, downward slope of the acromion, subacromial spur, acromioclavicular joint hypertrophy, coracoacromial ligament hypertrophy, high cuff muscle bulk, and os acromiale. Among the 54 patients, the following conditions were present: acromioclavicular joint hypertrophy(n=36), coracoacromial ligament hypertrophy(n=20), subacromial spur(n=18), downward sloping of the acromion(n=16), hook shaped acromion(n=11), relatively high cuff muscle bulk(n=6), low lying acromion relative to the clavicle(n=3), and os acromiale(n=1). In the normal control group there were nine cases of acromioclavicular joint hypertrophy, nine of coracoacromial ligament hypertrophy, nine of downward sloping acromion, and three of low lying acromion, but hook shaped acromion, high cuff muscle bulk, and os acromiale were not found. Among 54 patients, the syndrome was due to five simultancous causes in one patient, four causes in two, three causes in 12, two causes in 22, and one cause in 17. Hook shaped acromion and subacromial spur are the statistically significant causes of shoulder impingement syndrome. In 69% of patients, the condition was due to more than one cause

  9. Impingement wastage experiments with 9Cr 1Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, S., E-mail: skishore@igcar.gov.in [IGCAR (India); Beauchamp, François; Allou, Alexandre [CEA (France); Kumar, A. Ashok; Chandramouli, S.; Rajan, K.K. [IGCAR (India)

    2016-02-15

    Highlights: • Sodium heated steam generators are crucial components of fast breeder reactors. • A leak in steam generator tube will cause sodium water reaction that damages the tubes. • A collaborative study by CEA and IGCAR was conducted to quantify the extent of damage on 9Cr 1Mo tube due to a steam/water leak. • It was compared against the predictions of PROPANA code. - Abstract: Steam Generator (SG) is one of the vital components of sodium cooled fast reactor (SFR). The main safety concern with SG is a probable sodium–water reaction. In case, one of its water/steam carrying tubes leaks, water/steam gets into contact with sodium causing sodium-water reaction, which is highly exothermic and producing corrosive NaOH and hydrogen. The ejecting reaction products at high temperature, impinges upon adjacent tubes by a process called impingement wastage. It could damage one of the neighboring tubes in a short time, if the detection and protection systems are failing. IGCAR and CEA carried out a collaborative study on impingement wastage of 9Cr 1Mo steel, which is one of the candidate materials for SFR SG tubes. The studies comprise of experimental works at IGCAR and simulation works with PROPANA code at CEA. This paper brings out the data and experience gained through this cooperative work.

  10. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  11. Characterization of Sodium Spray Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. T.; Koontz, R. L.; Silberberg, M. [Atomics International, North American Rockwell Corporation, Canoga Park, CA (United States)

    1968-12-15

    The consequences of pool and spray fires require evaluation in the safety analysis of liquid metal-cooled fast breeder reactors. Sodium spray fires are characterized by high temperature and pressure, produced during the rapid combustion of sodium in air. Following the initial energy release, some fraction of the reaction products are available as aerosols which follow the normal laws of agglomeration, growth, settling, and plating. An experimental study is underway at Atomics International to study the characteristics of high concentration sprays of liquid sodium in reduced oxygen atmospheres and in air. The experiments are conducted in a 31.5 ft{sup 3} (2 ft diam. by 10 ft high) vessel, certified for a pressure of 100 lb/in{sup 2} (gauge). The spray injection apparatus consists of a heated sodium supply pot and a spray nozzle through which liquid sodium is driven by nitrogen pressure. Spray rate and droplet size can be varied by the injection velocity (nozzle size, nitrogen pressure, and sodium temperature). Aerosols produced in 0, 4, and 10 vol. % oxygen environments have been studied. The concentration and particle size distribution of the material remaining in the air after the spray injection and reaction period are measured. Fallout rates are found to be proportional to the concentration of aerosol which remains airborne following the spray period. (author)

  12. Substrate system for spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  13. Cryogen-free dilution refrigerators

    International Nuclear Information System (INIS)

    Uhlig, K

    2012-01-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4 He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4 He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  14. Cryogen-free dilution refrigerators

    Science.gov (United States)

    Uhlig, K.

    2012-12-01

    We review briefly our first cryogen-free dilution refrigerator (CF-DR) which was precooled by a GM cryocooler. We then show how today's dry DRs with pulse tube precooling have developed. A few examples of commercial DRs are explained and noteworthy features pointed out. Thereby we describe the general advantages of cryogen-free DRs, but also show where improvements are still desirable. At present, our dry DR has a base temperature of 10 mK and a cooling capacity of 700 μW at a mixing chamber temperature of 100 mK. In our cryostat, in most recent work, an additional refrigeration loop was added to the dilution circuit. This 4He circuit has a lowest temperature of about 1 K and a refrigeration capacity of up to 100 mW at temperatures slightly above 1 K; the dilution circuit and the 4He circuit can be run separately or together. The purpose of this additional loop is to increase the cooling capacity for experiments where the cooling power of the still of the DR is not sufficient to cool cold amplifiers and cables, e.g. in studies on superconducting quantum circuits or astrophysical applications.

  15. Cryogenics for HL-LHC

    Science.gov (United States)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  16. The cryogenic storage ring CSR

    Science.gov (United States)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  17. The cryogenic storage ring CSR.

    Science.gov (United States)

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  18. The cryogenic storage ring CSR

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. von; Becker, A.; Berg, F.; Blaum, K.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); and others

    2016-06-15

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm{sup −3} is derived, equivalent to a room-temperature pressure below 10{sup −14} mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  19. The flow and spray characteristics of gelled fluids; Die Stroemungs- und Verspruehungseigenschaften gelfoermiger Fluide

    Energy Technology Data Exchange (ETDEWEB)

    Madlener, K.

    2008-07-01

    In the present study gelled fluids are investigated concerning their application as propellants in storable and thrust controllable rocket propulsion systems. The correlations between the non-Newtonian viscosity properties and the flow and spray characteristics are discussed. Based on the proposed viscosity model Herschel-Bulkley-Extended (HBE) the laminar pipe flow is calculated for the investigated propellants. With the introduction of a generalized form of the Reynolds number and the presentation of a possibility to determine the critical values of this number it is possible to calculate the laminar-turbulent transition in a pipe flow. The theoretical results are evaluated with experimental data. The spray characteristics of various gelled fluids are examined using an experimental setup with impinging-jet-injectors. (orig.)

  20. A real-time assessment of measurement uncertainty in the experimental characterization of sprays

    International Nuclear Information System (INIS)

    Panão, M R O; Moreira, A L N

    2008-01-01

    This work addresses the estimation of the measurement uncertainty of discrete probability distributions used in the characterization of sprays. A real-time assessment of this measurement uncertainty is further investigated, particularly concerning the informative quality of the measured distribution and the influence of acquiring additional information on the knowledge retrieved from statistical analysis. The informative quality is associated with the entropy concept as understood in information theory (Shannon entropy), normalized by the entropy of the most informative experiment. A new empirical correlation is derived between the error accuracy of a discrete cumulative probability distribution and the normalized Shannon entropy. The results include case studies using: (i) spray impingement measurements to study the applicability of the real-time assessment of measurement uncertainty, and (ii) the simulation of discrete probability distributions of unknown shape or function to test the applicability of the new correlation

  1. Diagnosis of shoulder impingement syndrome; Diagnostik des Schulterimpingementsyndroms

    Energy Technology Data Exchange (ETDEWEB)

    Hodler, J. [Orthopaedische Universitaetsklinik Balgrist, Zuerich (Switzerland)

    1996-12-01

    This article reviews the pathogenesis and clinical and imaging findings in shoulder impingement syndrome. Different stages of impingement syndrome are described. Stage I relates to edema and hemorrhage of the supraspinatus tendon. Stage II is characterized by bursal inflammation and fibrosis, as well as tendinopathy. In stage III there is a tear of the rotator cuff. Clinical signs many overlap. Moreover, calcifying tendinitis, fractures and pain originating from the cervical spine may mimic shoulder impingement syndrome. Imaging is important for the exact diagnosis. Standard radiographs are the basis of imaging in shoulder impingement syndrome. They may demonstrate subchondral sclerosis of the major tuberosity, subacromial spurs, and form anomalies of the acromion. They are also important in the differential diagnosis of shoulder impingement syndrome and demonstrate calcifying tendinitis, fractures and neoplasm. Ultrasonography has found acceptance as a screening tool and even as a final diagnostic method by many authors. However, there is a high interobserver variability in the demonstration of rotator cuff tears. Its usefulness has therefore been questioned. MR imaging is probably the method of choice in the evaluation of the rotator cuff and surrounding structures. Several investigations have demonstrated that differentiation of early findings, such as tendinopathy versus partial tears, may be difficult with MR imaging. However, reproducibility for fullthickness tears appears to be higher than for sonography. Moreover, specificity appears to be superior to sonography. MR arthrography is not universally accepted. However, it allows for more exact differentiation of discrete findings and may be indicated in preoperative planning. Standard arthrography and CT have a limited role in the current assessment of the rotator cuff. (orig.) [Deutsch] Grundlage des Impingementsyndroms ist eine Kompression des Supraspinatus am akromioklavikularen Bogen vor allem bei Flexion

  2. Spray deposition and spray drift in orchard spraying by multiple row sprayers

    NARCIS (Netherlands)

    Wenneker, M.; Zande, van de J.C.; Michielsen, J.G.P.; Stallinga, H.; Velde, van P.

    2016-01-01

    The evaluation of the latest data on spray drift in orchard spraying in the Netherlands, and measurements of surface water quality parameters show that the current legislation and measures are insufficient to protect the surface water. To meet the national and European objectives regarding surface

  3. Cryogenic refrigeration. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning cryogenic refrigeration or cryocooling. Design, development, testing, and evaluation of cryogenic cooling systems are discussed. Design applications in spacecraft, magnet cooling, superconductors, liquid fuel storage, radioastronomy, and medicine are presented. Material properties at cryogenic temperatures and cryogenic rocket propellants are considered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  4. Physicochemical and in vitro deposition properties of salbutamol sulphate/ipratropium bromide and salbutamol sulphate/excipient spray dried mixtures for use in dry powder inhalers.

    Science.gov (United States)

    Corrigan, Deirdre O; Corrigan, Owen I; Healy, Anne Marie

    2006-09-28

    The physicochemical and aerodynamic properties of spray dried powders of the drug/drug mixture salbutamol sulphate/ipratropium bromide were investigated. The in vitro deposition properties of spray dried salbutamol sulphate and the spray dried drug/excipient mixtures salbutamol sulphate/lactose and salbutamol sulphate/PEG were also determined. Spray drying ipratropium bromide monohydrate resulted in a crystalline material from both aqueous and ethanolic solution. The product spray dried from aqueous solution consisted mainly of ipratropium bromide anhydrous. There was evidence of the presence of another polymorphic form of ipratropium bromide. When spray dried from ethanolic solution the physicochemical characterisation suggested the presence of an ipratropium bromide solvate with some anhydrous ipratropium bromide. Co-spray drying salbutamol sulphate with ipratropium bromide resulted in amorphous composites, regardless of solvent used. Particles were spherical and of a size suitable for inhalation. Twin impinger studies showed an increase in the fine particle fraction (FPF) of spray dried salbutamol sulphate compared to micronised salbutamol sulphate. Co-spray dried salbutamol sulphate:ipratropium bromide 10:1 and 5:1 systems also showed an increase in FPF compared to micronised salbutamol sulphate. Most co-spray dried salbutamol sulphate/excipient systems investigated demonstrated FPFs greater than that of micronised drug alone. The exceptions to this were systems containing PEG 4000 20% or PEG 20,000 40% both of which had FPFs not significantly different from micronised salbutamol sulphate. These two systems were crystalline unlike most of the other spray dried composites examined which were amorphous in nature.

  5. A study on the particle melting by plasma spraying

    International Nuclear Information System (INIS)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I.

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size

  6. A study on the particle melting by plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Jung, In Ha; Ji, C. G.; Bae, S. O.; Yoon, J. H.; Kwon, H. I

    2001-12-01

    As a preliminary study for fabricating a thick and dense free standing type deposit, powder melting studies were carried out. Various morphologies and sizes of powder having the same chemical compositions were applied in particle melting experiments with varying systematic parameters. Through the study of powder melting by inductively coupled plasma, we can conclude as followings: Argon-hydrogen plasma gas with a higher plasma power gave good quality of splats and shown a higher density with a higher build-up rate. Reproducibility of the experiments appeared in the range of 99%. Degree of particle melting and its density just before impinging played a predominant role in the density of a deposit. Chamber pressure has an effect on degree of deformation of the splats, i.e. on the particle momentum. Completely melted particle showed a high deformation appearance. Build-up rate had a relation with a fraction of the fully melted particle, and this also closely associates with productivity and economical efficiency. For increasing the fraction of the fully melted particle, either increasing the power or limiting the particle size was recommended. Mean pore size and its distribution of a deposit seemed to have a relation with a viscosity of the melted powder, i.e. particle temperature, and also with a chamber pressure and spraying distances. Particle temperature may be governed by a plasma power, plasma gas property, probe position, and spraying distance in the present experimental range. Some results might be appeared with mutual interactions of the effects, for example, particle residence time and momentum with chamber pressure, particle temperature with chamber pressure, spraying distance and its size.

  7. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  8. Cryogenic system for TRISTAN superconducting RF cavity

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Yuuji; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Ishimaru, Y.

    1990-01-01

    A cryogenic system consisting of a helium refrigerator (4 kW at 4.4 K) and a liquid helium distribution transfer system for TRISTAN 508 MHz 32 x 5-cell superconducting RF cavities was designed and constructed. After the performance test of the cryogenic system, 16 x 5-cell superconducting RF cavities in 8 cryostats were installed in underground TRISTAN electron-positron collider and connected to the helium refrigerator on the ground level through the transfer line (total length about 330 m) and cooled by liquid helium pool boiling in parallel. The cryogenic system and its operation experience are described. (author)

  9. Experimental study on boiling heat transfer to an impinging jet on a hot block

    International Nuclear Information System (INIS)

    Kamata, Choko

    1997-01-01

    Previous studies on boiling heat transfer by impinging jets are mainly concerned with the impinging point by using small heat transfer surfaces of about 20 mm. An experimental study of the boiling heat transfer to an impinging water jet on a massive hot block is made. The upward heating surface is made of copper. Its diameter and nozzle diameter are 80 mm and 2.2 mm, respectively. The velocity of the impinging jet was varied from 0.6 to 2.1 m/s. Saturated water normally impinged on the heating surface, flowed radially, and subsequently dispersed into the atmosphere. The present study clarifies that heat transfer characteristics vary with the temperature of heat transfer surface, and also with the distance from the impinging point. (author)

  10. Cryogenic polarized target facility: status

    International Nuclear Information System (INIS)

    Gould, C.; Nash, H.K.; Roberson, N.; Schneider, M.; Seagondollar, W.; Soderstrum, J.

    1985-01-01

    The TUNL cryogenically polarized target facility consists of a 3 He- 4 He dilution refrigerator and a superconducting magnet, together capable of maintaining samples at between 10 and 20 mK in magnetic fields up to 7 Tesla. At these temperatures and magnetic fields brute-force nuclear orientation occurs. Polarizations from 20 to 60% are attainable in about twenty nonzero spin nuclei. Most are metals, ranging in mass from 6 Li to 209 Bi, but the nuclei 1 H and 3 He are also polarizable via this method. The main effort is directed towards a better determination of the effective spin-spin force in nuclei. These experiments are briefly described and the beam stabilization system, cryostat and polarized 3 He targets are discussed

  11. The Nuclear Cryogenic Propulsion Stage

    Science.gov (United States)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  12. Computed tomography of cryogenic cells

    International Nuclear Information System (INIS)

    Schneider, Gerd; Anderson, E.; Vogt, S.; Knochel, C.; Weiss, D.; LeGros, M.; Larabell, C.

    2001-01-01

    Due to the short wavelengths of X-rays and low numerical aperture of the Fresnel zone plates used as X-ray objectives, the depth of field is several microns. Within the focal depth, imaging a thick specimen is to a good approximation equivalent to projecting the specimen absorption. Therefore, computed tomography based on a tilt series of X-ray microscopic images can be used to reconstruct the local linear absorption coefficient and image the three-dimensional specimen structure. To preserve the structural integrity of biological objects during image acquisition, microscopy is performed at cryogenic temperatures. Tomography based on X-ray microscopic images was applied to study the distribution of male specific lethal 1 (MSL-1), a nuclear protein involved in dosage compensation in Drosophila melanogaster, which ensures that males with single X chromosome have the same amount of most X-linked gene products as females with two X chromosomes. Tomographic reconstructions of X-ray microscopic images were used to compute the local three-dimensional linear absorption coefficient revealing the arrangement of internal structures of Drosophila melanogaster cells. Combined with labelling techniques, nanotomography is a new technique to study the 3D distribution of selected proteins inside whole cells. We want to improve this technique with respect to resolution and specimen preparation. The resolution in the reconstruction can be significantly improved by reducing the angular step size to collect more viewing angles, which requires an automated data acquisition. In addition, fast-freezing with liquid ethane instead of cryogenic He gas will be applied to improve the vitrification of the hydrated samples. We also plan to apply cryo X-ray nanotomography in order to study different types of cells and their nuclear protein distributions

  13. Comparison of Endotoxin Exposure Assessment by Bioaerosol Impinger and Filter-Sampling Methods

    OpenAIRE

    Duchaine, Caroline; Thorne, Peter S.; Mériaux, Anne; Grimard, Yan; Whitten, Paul; Cormier, Yvon

    2001-01-01

    Environmental assessment data collected in two prior occupational hygiene studies of swine barns and sawmills allowed the comparison of concurrent, triplicate, side-by-side endotoxin measurements using air sampling filters and bioaerosol impingers. Endotoxin concentrations in impinger solutions and filter eluates were assayed using the Limulus amebocyte lysate assay. In sawmills, impinger sampling yielded significantly higher endotoxin concentration measurements and lower variances than filte...

  14. Development of Augmented Spark Impinging Igniter System for Methane Engines

    Science.gov (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.

  15. Study of Plume Impingement Effects in the Lunar Lander Environment

    Science.gov (United States)

    Marichalar, Jeremiah; Prisbell, A.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects from the descent and ascent engine firings of the Lunar Lander were analyzed in support of the Lunar Architecture Team under the Constellation Program. The descent stage analysis was performed to obtain shear and pressure forces on the lunar surface as well as velocity and density profiles in the flow field in an effort to understand lunar soil erosion and ejected soil impact damage which was analyzed as part of a separate study. A CFD/DSMC decoupled methodology was used with the Bird continuum breakdown parameter to distinguish the continuum flow from the rarefied flow. The ascent stage analysis was performed to ascertain the forces and moments acting on the Lunar Lander Ascent Module due to the firing of the main engine on take-off. The Reacting and Multiphase Program (RAMP) method of characteristics (MOC) code was used to model the continuum region of the nozzle plume, and the Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC) was used to model the impingement results in the rarefied region. The ascent module (AM) was analyzed for various pitch and yaw rotations and for various heights in relation to the descent module (DM). For the ascent stage analysis, the plume inflow boundary was located near the nozzle exit plane in a region where the flow number density was large enough to make the DSMC solution computationally expensive. Therefore, a scaling coefficient was used to make the DSMC solution more computationally manageable. An analysis of the effectiveness of this scaling technique was performed by investigating various scaling parameters for a single height and rotation of the AM. Because the inflow boundary was near the nozzle exit plane, another analysis was performed investigating three different inflow contours to determine the effects of the flow expansion around the nozzle lip on the final plume impingement results.

  16. Numerical study of a confined slot impinging jet with nanofluids

    Directory of Open Access Journals (Sweden)

    Manca Oronzio

    2011-01-01

    Full Text Available Abstract Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4

  17. Modifications Of A Commercial Spray Gun

    Science.gov (United States)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  18. The impact of atomization on the surface composition of spray-dried milk droplets.

    Science.gov (United States)

    Foerster, Martin; Gengenbach, Thomas; Woo, Meng Wai; Selomulya, Cordelia

    2016-04-01

    The dominant presence of fat at the surface of spray-dried milk powders has been widely reported in the literature and described as resulting in unfavourable powder properties. The mechanism(s) causing this phenomenon are yet to be clearly identified. A systematic investigation of the component distribution in atomized droplets and spray-dried particles consisting of model milk systems with different fat contents demonstrated that atomization strongly influences the final surface composition. Cryogenic flash-freezing of uniform droplets from a microfluidic jet nozzle directly after atomization helped to distinguish the influence of the atomization stage from the drying stage. It was confirmed that the overrepresentation of fat on the surface is independent of the atomization technique, including a pressure-swirl single-fluid spray nozzle and a pilot-scale rotary disk spray dryer commonly used in industry. It is proposed that during the atomization stage a disintegration mechanism along the oil-water interface of the fat globules causes the surface predominance of fat. X-ray photoelectron spectroscopic measurements detected the outermost fat layer and some adjacent protein present on both atomized droplets and spray-dried particles. Confocal laser scanning microscopy gave a qualitative insight into the protein and fat distribution throughout the cross-sections, and confirmed the presence of a fat film along the particle surface. The film remained on the surface in the subsequent drying stage, while protein accumulated underneath, driven by diffusion. The results demonstrated that atomization induces component segregation and fat-rich surfaces in spray-dried milk powders, and thus these cannot be prevented by adjusting the spray drying conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Impinging jets - a short review on strategies for heat transfer enhancement

    Science.gov (United States)

    Nastase, Ilinca; Bode, Florin

    2018-02-01

    In industrial applications, heat and mass transfer can be considerably increased using impinging jets. A large number of flow phenomena will be generated by the impinging flow, such as: large scale structures, large curvature involving strong shear and normal stresses, stagnation in the wall boundary layers, heat transfer with the impinged wall, small scale turbulent mixing. All these phenomena are highly unsteady and even if nowadays a substantial number of studies in the literature are dedicated, the impinging jets are still not fully understood due to the highly unsteady nature and more over due to great difficulty of performing detailed numerical and experimental investigations.

  20. Experimental investigation of submerged single jet impingement using Cu–water nanofluid

    International Nuclear Information System (INIS)

    Li Qiang; Xuan Yimin; Yu Feng

    2012-01-01

    Jet impingement cooling is a vital technique for thermal management of electronic devices of high-heat-flux by impinging fluid on a heater surface due to its high local heat transfer rates. In this paper, two types of Cu–water nanofluids (Cu particles with 25 nm diameter or 100 nm) are introduced into submerged single jet impingement cooling system as the working fluid. The heat transfer features of the nanofluids were experimentally investigated. The effects of the nanoparticle concentration, Reynolds number, nozzle-to-plate distance, fluid temperature, and nanoparticle diameter on the heat transfer performances of the jet impingement of nanofluids are discussed. The experimental results show that the suspended nanoparticles remarkably increase the convective heat transfer coefficient of the base fluid. The convective heat transfer coefficient of Cu–water nanofluid with the volume fraction of 3.0% has 52% higher than the pure water. The experiments also revealed that the suspended nanoparticles brought almost no extra addition of pressure drop in both submerged single jet impingement. In addition, by considering the effects of the suspended nanoparticles as well as the condition of impinging jet, a new heat transfer correlation of nanofluids for the submerged single jet impingement has been proposed. - Highlights: ► Cu–water nanofluids are introduced into submerged single jet impingement. ► The affecting parameters on the heat transfer performances of nanofluids are discussed. ► New heat transfer correlation of nanofluid for single jet impingement is proposed.

  1. Multiple flow patterns and heat transfer in confined jet impingement

    International Nuclear Information System (INIS)

    Li Xianchang; Gaddis, J. Leo; Wang Ting

    2005-01-01

    The flow field of a 2-D laminar confined impinging slot jet is investigated. Numerical results indicate that there exist two different solutions in some range of geometric and flow parameters. The two steady flow patterns are obtained under identical boundary conditions but only with different initial flow fields. Two different exit boundary conditions are investigated with two commercial software packages to eliminate artificial or computational effects. The different flow patterns are observed to significantly affect the heat transfer. A flow visualization experiment is carried out to verify the computational results and both flow patterns are observed. The bifurcation mechanism is interpreted and discussed

  2. Os acromiale causing shoulder impingement syndrome: a case report

    International Nuclear Information System (INIS)

    Romero, I.; Rodriguez, A.; Roca, M.; Garcia, Y.

    2001-01-01

    Shoulder impingement syndrome is caused by repeated mechanical trauma to the rotator cuff due to encroachment of the coracoacromial ligament; in most cases, it is a primary lesion. Os acromiale, an anatomic variant of the shoulder structures, is one of the predisposing factors for the development of this entity. We present a case of os acromiale complicated by complete rupture of the tendon of the supraspinatus muscle and luxation of the long head of the biceps tendon. We stress the importance of magnetic resonance in the study of this anatomic variant and in the detection of complications or associated lesions. (Author) 10 refs

  3. MAGNETIC RESONANCE IMAGING EVALUATION OF ROTATOR CUFF IMPINGEMENT

    Directory of Open Access Journals (Sweden)

    Chandrakanth K. S

    2017-06-01

    Full Text Available BACKGROUND Shoulder pain is a common clinical problem. Impingement syndrome of the shoulder is believed to be the most common cause of shoulder pain. The term ‘impingement syndrome’ was first used by Neer to describe a condition of shoulder pain associated with chronic bursitis and partial thickness tear of Rotator Cuff (RC. The incidence of Rotator Cuff (RC tear is estimated to be about 20.7% in the general population. This study is intended to analyse various extrinsic and intrinsic causes of shoulder impingement. MATERIALS AND METHODS 110 consecutive patients referred for MRI with clinical suspicion of shoulder impingement were prospectively studied. All the patients were evaluated for Rotator Cuff (RC degeneration and various extrinsic factors that lead to degeneration like acromial shape, down-sloping acromion, Acromioclavicular (AC joint degeneration and acromial enthesophyte. Intrinsic factors like degeneration and its correlation with age of the patients were evaluated. RESULTS Of the total 110 patients, 19 (17.3% patients had FT RC tear and 31 (28.2% had PT (both bursal and articular surface tears. There was no statistically significant correlation (p=0.76 between acromion types and RC tear. Down-sloping acromion and enthesophytes had statistically significant association with RC tear (p=0.008 and 0.008, respectively. Statistically significant (0.008 correlation between the severity of AC joint degeneration and RC tears was noted. AC joint degeneration and RC pathologies also showed a correlation with the age of the patients with p values of <0.001 and 0.001, respectively. CONCLUSION No statistically significant correlation between RC pathologies with hooked acromion was found, that makes the role played by hooked acromion in FT RC tear questionable. AC joint degeneration association with RC tear is due to the association of both RC tear and AC joint degeneration with age of the patient. Down-sloping acromion, AC joint degeneration

  4. Femoroacetabular impingement mimicking avascular osteonecrosis on bone scintigraphy

    International Nuclear Information System (INIS)

    Suarez, Juan Pablo; Domínguez, María Luz; Nogareda, Zulema; Gómez, María Asunción; Muñoz, Jose

    2016-01-01

    Femoroacetabular impingement (FAI) is a structural abnormality of proximal femur and/or acetabulum. It has been recently described, and there are limited reports in nuclear medicine literature because bone scintigraphy is not listed in its diagnostic protocol, but it should be included on differential diagnosis when evaluating patients, with hip-related symptoms because it may be misinterpreted as degenerative changes or avascular necrosis, and its early treatment avoid progression to osteoarthritis. We describe the case of a male who suffered from hip pain. Bone planar scintigraphic appearance mimicked avascular necrosis, but single photon emission computed tomography (CT) imaging and CT examination confirmed the diagnosis of FAI

  5. Cryogenic Safety Rules and Guidelines at CERN

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    CERN defines and implements a Safety Policy that sets out the general principles governing safety at CERN. As an intergovernmental organisation, CERN further establishes its own Safety Rules as necessary for its proper functioning. In this process, it takes into account the laws and regulation of the Host States (France and Switzerland), EU regulations and directives, as well as international regulations, standards and directives. For the safety of cryogenic equipment, this is primarily covered by the Safety Regulation for Mechanical Equipment and the General Safety Instruction for Cryogenic Equipment. In addition, CERN has also developed Safety Guidelines to support the implementation of these safety rules, covering cryogenic equipment and oxygen deficiency hazard assessment and mitigation. An overview of the cryogenic safety rules and these safety guidelines will be presented.

  6. Temperature Stratification in a Cryogenic Fuel Tank

    Data.gov (United States)

    National Aeronautics and Space Administration — A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It...

  7. The cryogenic control system of BEPCⅡ

    Institute of Scientific and Technical Information of China (English)

    LI Gang; WANG Ke-Xiang; ZHAO Ji-Jiu; YUE Ke-Juan; DAI Ming-Sui; HUANG Yi-Ling; JIANG Bo

    2008-01-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron-Positron Collider Upgrade Project(BEPCⅡ).The system consists of a Siemens PLC(ST-PLC,Programmable Logic Controller)for the compressor control,an Allen Bradley(AB)PLC for the cryogenic equipments,and the Experimental Physics and Industrial Control System(EPICS)that integrates the PLCs.The system fully automates the superconducting cryogenic control with process control,PID(Proportional-Integral-Differential)control loops,real-time data access and data storage,alarm handler and human machine interface.It is capable of automatic recovery as well.This paper describes the BEPCⅡ cryogenic control system,data communication between ST-PLC and EPICS Input/Output Controllers(IOCs),and the integration of the flow control,the low level interlock,the AB-PLC,and EPICS.

  8. Cryogenic Insulation Standard Data and Methodologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of...

  9. Status of the LBNF Cryogenic System

    CERN Document Server

    Montanari, D; Bremer, J; Delany, M; Diaz, A; Doubnik, R; Haaf, K; Henstchel, S; Norris, B; Voirin, E

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  10. Cryogenic target formation using cold gas jets

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1980-01-01

    A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets, are described. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member

  11. Cryogenic MEMS Pressure Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A directly immersible cryogenic MEMS pressure sensor will be developed. Each silicon die will contain a vacuum-reference and a tent-like membrane. Offsetting thermal...

  12. Status of the LBNF Cryogenic System

    Science.gov (United States)

    Montanari, D.; Adamowski, M.; Bremer, J.; Delaney, M.; Diaz, A.; Doubnik, R.; Haaf, K.; Hentschel, S.; Norris, B.; Voirin, E.

    2017-12-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  13. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  14. Magnesium Repair by Cold Spray

    National Research Council Canada - National Science Library

    Champagne, V. K; Leyman, P.F; Helfritch, D. J

    2008-01-01

    .... Army Research Laboratory has developed a cold spray process to reclaim magnesium components that shows significant improvement over existing methods and is in the process of qualification for use on rotorcraft...

  15. Below-Ambient and Cryogenic Thermal Testing

    Science.gov (United States)

    Fesmire, James E.

    2016-01-01

    Thermal insulation systems operating in below-ambient temperature conditions are inherently susceptible to moisture intrusion and vapor drive toward the cold side. The subsequent effects may include condensation, icing, cracking, corrosion, and other problems. Methods and apparatus for real-world thermal performance testing of below-ambient systems have been developed based on cryogenic boiloff calorimetry. New ASTM International standards on cryogenic testing and their extension to future standards for below-ambient testing of pipe insulation are reviewed.

  16. Neutron detection with cryogenics and semiconductors

    International Nuclear Information System (INIS)

    Bell, Zane W.; Carpenter, D.A.; Cristy, S.S.; Lamberti, V.E.; Burger, Arnold; Woodfield, Brian F.; Niedermayr, Thomas; Dragos Hau, I.; Labov, Simon E.; Friedrich, Stephan; Geoffrey West, W.; Pohl, Kenneth R.; Berg, Lodewijk van den

    2005-01-01

    The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI 2 for direct detection of neutrons. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Fundamental of cryogenics (for superconducting RF technology)

    CERN Document Server

    Pierini, Paolo

    2013-01-01

    This review briefly illustrates a few fundamental concepts of cryogenic engineering, the technological practice that allows reaching and maintaining the low-temperature operating conditions of the superconducting devices needed in particle accelerators. To limit the scope of the task, and not to duplicate coverage of cryogenic engineering concepts particularly relevant to superconducting magnets that can be found in previous CAS editions, the overview presented in this course focuses on superconducting radio-frequency cavities.

  18. Surface tension confined liquid cryogen cooler

    Science.gov (United States)

    Castles, Stephen H. (Inventor); Schein, Michael E. (Inventor)

    1989-01-01

    A cryogenic cooler is provided for use in craft such as launch, orbital, and space vehicles subject to substantial vibration, changes in orientation, and weightlessness. The cooler contains a small pore, large free volume, low density material to restrain a cryogen through surface tension effects during launch and zero-g operations and maintains instrumentation within the temperature range of 10 to 140 K. The cooler operation is completely passive, with no inherent vibration or power requirements.

  19. A hall for assembly and cryogenic tests

    International Nuclear Information System (INIS)

    Beaunier, J.; Buhler, S.; Caruette, A.; Chevrollier, R.; Junquera, T.; Le Scornet, J.C.

    1999-01-01

    Cryodrome, an assembly hall and the testing ground for cryogenic equipment and R and D experiments for the superconducting cavities is going to be transformed for its future missions. The cryogenic utilities, especially the He low pressure pumping capacity, was rearranged and extended to a new area. Space was provided to install CRYHOLAB, a new horizontal cryostat for cavity testing. Automatic control and supervision of the utilities and the experimental area are rebuilt and updated. (authors)

  20. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, huge detectors and accelerators. With the termination of the LHC, CERN will in fact become the world’s largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. Monday 5.12.2005 Introduction: From History to Modern Refrigeration Cycles (Goran Perinic) Tuesday 6.12.2005 Refrigerants, Standard Cryostats, Cryogenic Des...

  1. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. From history to modern refrigeration cycles (1/5) Refrigerants, standard cryostats, cryogenic design (2/5) Heat transfer and insulation (3/5) Safety in cryoge...

  2. Current UK practices in the management of subacromial impingement

    Science.gov (United States)

    Drury, Colin; Tait, Gavin R

    2015-01-01

    Background Controversy presently exists surrounding the management of patients with subacromial impingement. This study aims to highlight current UK practices in the management of these patients. Methods BESS members were invited to complete a questionnaire and responses were received from 157 consultant shoulder surgeons. Results Physiotherapy is an integral part of management for 93% of surgeons with a minimum period of 12 weeks being most popular prior to consideration of arthroscopic subacromial decompression. Subacromial steroid injection is used by 95% and 86% repeat this if the patient has failed to respond to a previous injection by the general practioner. From initial presentation, 77% felt there should be at least 3 months of conservative management before proceeding to surgery. Good but transient response to subacromial injection was considered the best predictor of good surgical outcome by 77%. The coracoacromial ligament is fully released by 78%, although there was greater variation in how aggressive surgeons were with acromioplasty. Most (59%) do not include the nontender acromioclavicular joint to any extent in routine acromioplasty. Hospital physiotherapy protocols are used by 63% for postoperative rehabilitation. Conclusions Variation exists in the management regimes offered to patients with subacromial impingement, but most employ a minimum period of 12 weeks of conservative management incorporating physiotherapy and at least 2 subacromial steriod injections. PMID:27582972

  3. Single-phase liquid jet impingement heat transfer

    International Nuclear Information System (INIS)

    Webb, B.W.; Ma, C.F.

    1995-01-01

    Impinging liquid jets have been demonstrated to be an effective means of providing high heat/mass transfer rates in industrial transport processes. When a liquid jet strikes a surface, thin hydrodynamic and thermal boundary layers from in the region directly beneath due to the jet deceleration and the resulting increase in pressure. The flow is then forced to accelerate in a direction parallel to the target surface in what is termed the wall jet or parallel flow zone. The thickness of the hydrodynamic and thermal boundary layers in the stagnation region may be of the order of tens of micrometers. Consequently, very high heat/mass transfer coefficients exist in the stagnation zone directly under the jet. Transport coefficients characteristic of parallel flow prevail in the wall jet region. The high heat transfer coefficients make liquid jet impingement an attractive cooling option where high heat fluxes are the norm. Some industrial applications include the thermal treatment of metals, cooling of internal combustion engines, and more recently, thermal control of high-heat-dissipation electronic devices. Both circular and planar liquid jets have attracted research attention. 180 refs., 35 figs., 11 tabs

  4. Experimentally induced cam impingement in the sheep hip.

    Science.gov (United States)

    Siebenrock, Klaus A; Fiechter, Ruth; Tannast, Moritz; Mamisch, Tallal C; von Rechenberg, Brigitte

    2013-04-01

    Sheep hips have a natural non-spherical femoral head similar to a cam-type deformity in human beings. By performing an intertrochanteric varus osteotomy, cam-type femoro-acetabular impingement (FAI) during flexion can be created. We tested the hypotheses that macroscopic lesions of the articular cartilage and an increased Mankin score (MS) can be reproduced by an experimentally induced cam-type FAI in this ovine in vivo model. Furthermore, we hypothesized that the MS increases with longer ambulatory periods. Sixteen sheep underwent unilateral intertrochanteric varus osteotomy of the hip with the non-operated hip as a control. Four sheep were sacrificed after 14, 22, 30, and 38-weeks postoperatively. We evaluated macroscopic chondrolabral alterations, and recorded the MS, based on histochemical staining, for each ambulatory period. A significantly higher prevalence of macroscopic chondrolabral lesions was found in the impingement zone of the operated hips. The MS was significantly higher in the acetabular/femoral cartilage of the operated hips. Furthermore, these scores increased as the length of the ambulatory period increased. Cam-type FAI can be induced in an ovine in vivo model. Localized chondrolabral degeneration of the hip, similar to that seen in humans (Tannast et al., Clin Orthop Relat Res 2008; 466: 273-280; Beck et al., J Bone Joint Surg Br 2005; 87: 1012-1018), can be reproduced. This experimental sheep model can be used to study cam-type FAI. Copyright © 2012 Orthopaedic Research Society.

  5. Preliminary study of image findings of femoroacetabular impingement

    International Nuclear Information System (INIS)

    Guo Zhe; Zhang Jing; Hong Nan; Cheng Xiaoguang

    2010-01-01

    Objective: To assess the image findings of femoroacetabular impingement (FAI). Methods: Image findings of 9 patients with surgically proved femoroacetabular impingement were retrospectively reviewed for characteristic image findings of FAI. All 9 patients underwent X-ray examinations and MRI of affected hip, and 1 patient underwent MR arthrography (MRA) additionally. Results: X-ray examinations of all 9 patients showed bump at femoral head-neck junction or overcoverage of the acetabular. MRI showed various degrees of injury of anterosuperior labrum in all 9 patients. The injuries were stage Ⅰ A in 2 cases, stage Ⅰ B in 3, stage Ⅱ A in 2, and stage Ⅱ B in 2. MRA of the case showed tears of anterosuperior labrum, with contrast media entering into the teared labrum. There were sclerosis and cystic degeneration of subchondral bone of femoral head in 2 cases, and these findings were confirmed as cartilage delamination by surgery. Conclusions: MRI can display the injures of labrum and articular cartilage, which is helpful to the early diagnosis of' FAI. (authors)

  6. Global mode decomposition of supersonic impinging jet noise

    Science.gov (United States)

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2015-11-01

    We apply global stability analysis to an ideally expanded, Mach 1.5, turbulent jet that impinges on a flat surface. The analysis extracts axisymmetric and helical instability modes, involving coherent vortices, shocks, and acoustic feedback, which we use to help explain and predict the effectiveness of microjet control. High-fidelity large eddy simulations (LES) were performed at nozzle-to-wall distances of 4 and 4.5 throat diameters with and without sixteen microjets positioned uniformly around the nozzle lip. These flow configurations conform exactly to experiments performed at Florida State University. Stability analysis about LES mean fields predicted the least stable global mode with a frequency that matched the impingement tone observed in experiments at a nozzle-to-wall distance of 4 throat diameters. The Reynolds-averaged Navier-Stokes (RANS) equations were solved at five nozzle-to-wall distances to create base flows that were used to investigate the influence of this parameter. A comparison of the eigenvalue spectra computed from the stability analysis about LES and RANS base flows resulted in good agreement. We also investigate the effect of the boundary layer state as it emerges from the nozzle using a multi-block global mode solver. Computational resources were provided by the Argonne Leadership Computing Facility.

  7. Visualization and modeling of the hydrodynamics of an impinging microjet.

    Science.gov (United States)

    Bitziou, Eleni; Rudd, Nicola C; Edwards, Martin A; Unwin, Patrick R

    2006-03-01

    The use of fluorescence confocal laser scanning microscopy (CLSM) for flow visualization is described, with a focus on elucidating the pattern of flow in the microjet electrode (MJE). The MJE employs a nozzle, formed from a fine glass capillary, with an inner diameter of approximately 100 microm, to direct solution at an electrode surface, using high velocity but at moderate volume flow rates. For CLSM visualization, the jetted solution contains a fluorescent probe, fluorescein at high pH, which flows into a solution buffered at low pH, where the fluorescence is extinguished, thereby highlighting the flow field of the impinging microjet. The morphology of the microjet and the hydrodynamic boundary layer are shown to be highly sensitive to the volume flow rate, with a collimated jet and thin boundary layer formed at the faster flow rates (approximately 1 cm(3) min(-1)). In contrast, at lower flow rates and for relatively large substrates, an unusual recirculation zone is observed experimentally for the first time. This effect can be eliminated by employing small substrates. The experimental observations have been quantified through numerical solution of the Navier-Stokes equations of continuity and momentum balance. The new insights provided by CLSM imaging demonstrate that flow in the MJE, and impinging jets in general, are more complex than predicted by classical models but are well-defined and quantifiable.

  8. Current UK practices in the management of subacromial impingement.

    Science.gov (United States)

    Bryceland, James K; Drury, Colin; Tait, Gavin R

    2015-07-01

    Controversy presently exists surrounding the management of patients with subacromial impingement. This study aims to highlight current UK practices in the management of these patients. BESS members were invited to complete a questionnaire and responses were received from 157 consultant shoulder surgeons. Physiotherapy is an integral part of management for 93% of surgeons with a minimum period of 12 weeks being most popular prior to consideration of arthroscopic subacromial decompression. Subacromial steroid injection is used by 95% and 86% repeat this if the patient has failed to respond to a previous injection by the general practioner. From initial presentation, 77% felt there should be at least 3 months of conservative management before proceeding to surgery. Good but transient response to subacromial injection was considered the best predictor of good surgical outcome by 77%. The coracoacromial ligament is fully released by 78%, although there was greater variation in how aggressive surgeons were with acromioplasty. Most (59%) do not include the nontender acromioclavicular joint to any extent in routine acromioplasty. Hospital physiotherapy protocols are used by 63% for postoperative rehabilitation. Variation exists in the management regimes offered to patients with subacromial impingement, but most employ a minimum period of 12 weeks of conservative management incorporating physiotherapy and at least 2 subacromial steriod injections.

  9. Cryogenic ion chemistry and spectroscopy.

    Science.gov (United States)

    Wolk, Arron B; Leavitt, Christopher M; Garand, Etienne; Johnson, Mark A

    2014-01-21

    The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to

  10. Empirical model of impingement impact. Environmental Sciences Division publication No. 1289

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; DeAngelis, D.L.; Christensen, S.W.

    1979-01-01

    A simple model, derived from Ricker's (1975) theory of fisheries dynamics, that can be used to estimate the impact of impingement of juvenile fish by power plants on year-class abundance in vulnerable species is described. The only data required are estimates of the initial number of impingeable juveniles, the number impinged, and the rate of total mortality during the period of vulnerability. The impact of impingement is expressed in the model as the conditional mortality rate, rather than the more commonly used exploitation rate. The conditional mortality rate is superior as a measure of impact for two reasons: it accounts for the differential impact of impinging fish of different ages, and it is numerically equivalent to the fractional reduction in year-class abundance due to impingement. We present an application of the model using the 1974 year-class of the Hudson River striped bass population as an example. We then show how the model can be modified to account for seasonal fluctuations in the rate of impingement, discuss the effect of these fluctuations on the calculated impact, and discuss the influence on model output of errors in the measurement of abundance, impingement, and total mortality. It is evident from this analysis that estimates of impingement impact are as sensitive to errors in estimates of population size and mortality as to estimates of the number of fish impinged. Thus, it is not possible to reliably estimate the impact of impingement on a vulnerable fish species unless a substantial effort is devoted to population studies

  11. Spray Lakes reclamation project

    International Nuclear Information System (INIS)

    Zacaruk, M.R.

    1996-01-01

    When the level of the Spray Lakes (Alberta) reservoir was lowered by four metres, 208 ha of shoreline was exposed offering little to no wildlife benefit and only limited recreation potential. A reclamation plan for 128 ha of shoreline was therefore developed. A wild life-palatable, self-sustaining vegetation cover was established. Approximately 90 ha was scarified, and/or had tree stumps removed prior to seeding, while approximately 40 ha was seeded and fertilized only. The remaining 80 ha of shoreline was not revegetated due to limited access; these areas will be allowed to re-establish naturally from the forested edge. The species were selected based on their adaptation to alkaline soils, drought tolerance, persistence in a stand and rooting characteristics, as well as palatability to wildlife. Alfalfa, white clover and fall rye were seeded. In general, all areas of the reclamation plan are successfully revegetated. Areas which were recontoured are stable and non-eroding. Success was most significant in areas which had been scarified, then seeded and trackpacked. Areas that were seeded and fertilized only were less well established at the end of the first year, but showed improvement in the second and third years. The area will be monitored to ensure the reclaimed vegetation is self-sustaining

  12. Slurry spray distribution within a simulated laboratory scale spray dryer

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1979-01-01

    It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 to 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations

  13. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    International Nuclear Information System (INIS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  14. Device for delivering cryogen to rotary super-conducting winding of cryogen-cooled electrical machine

    International Nuclear Information System (INIS)

    Filippov, I.F.; Gorbunov, G.S.; Khutoretsky, G.M.; Popov, J.S.; Skachkov, J.V.; Vinokurov, A.A.

    1980-01-01

    A device is disclosed for delivering cryogen to a superconducting winding of a cryogen-cooled electrical machine comprising a pipe articulated along the axis of the electrical machine and intended to deliver cryogen. One end of said pipe is located in a rotary chamber which communicates through channels with the space of the electrical machine, and said space accommodating its superconducting winding. The said chamber accommodates a needle installed along the chamber axis, and the length of said needle is of sufficient length such that in the advanced position of said cryogen delivering pipe said needle reaches the end of the pipe. The layout of the electrical machine increases the reliability and effectiveness of the device for delivering cryogen to the superconducting winding, simplifies the design of the device and raises the efficiency of the electrical machine

  15. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  16. Cryogenic Deflashing for Rubber Products

    Directory of Open Access Journals (Sweden)

    Abhilash M.

    2018-01-01

    Full Text Available Deflashing is the process of removal of excess flashes from the rubber products. Initially deflashing was a manual operation where dozen of workers, seated at small work stations would take each part and trim the excess rubber off with scissors, knives or by grinding. Still the same method is employed in most of the rubber industry. The drawbacks of this method are demand inconsistent and repeatable quality. Work done by hand is often inconsistent. There are commercially available cryogenic deflashing machine but they are too expensive hence cost effectiveness is also a prime factor. The objective of this paper is to develop a technique, to identify the media through which the flashes can be removed easily and effectively. Based on the test results obtained from testing of five different types of media, ABCUT Steel media gave best results. The testing of the ABCUT Steel media on rubber samples like O-rings, grommet tail door, bottom bush etc. shows good results.

  17. Cryogenic helium gas convection research

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1994-10-01

    This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so

  18. A cryogenic infrared calibration target

    Science.gov (United States)

    Wollack, E. J.; Kinzer, R. E.; Rinehart, S. A.

    2014-04-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R ⩽ 0.003, from 800 to 4800 cm-1 (12 - 2 μm). Upon expanding the spectral range under consideration to 400-10 000 cm-1 (25 - 1 μm) the observed performance gracefully degrades to R ⩽ 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to ˜4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials—Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder—are characterized and presented.

  19. Drop Characteristics of non-Newtonian Impinging Jets at High Generalized Bird-Carreau Jet Reynolds Numbers

    Science.gov (United States)

    Sojka, Paul E.; Rodrigues, Neil S.

    2015-11-01

    The current study investigates the drop characteristics of three Carboxymethylcellulose (CMC) sprays produced by the impingement of two liquid jets. The three water-based solutions used in this work (0.5 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, and 1.4 wt.-% CMC-7MF) exhibited strong shear-thinning, non-Newtonian behavior - characterized by the Bird-Carreau rheological model. A generalized Bird-Carreau jet Reynolds number was used as the primary parameter to characterize the drop size and the drop velocity, which were measured using Phase Doppler Anemometry (PDA). PDA optical configuration enabled a drop size measurement range of approximately 2.3 to 116.2 μm. 50,000 drops were measured at each test condition to ensure statistical significance. The arithmetic mean diameter (D10) , Sauter mean diameter (D32) , and mass median diameter (MMD) were used as representative diameters to characterize drop size. The mean axial drop velocity Uz -mean along with its root-mean square Uz -rms were used to characterize drop velocity. Incredibly, measurements for all three CMC liquids and reference DI water sprays seemed to follow a single curve for D32 and MMD drop diameters in the high generalized Bird-Carreau jet Reynolds number range considered in this work (9.21E +03

  20. Physics of Particle Entrainment Under the Influence of an Impinging Jet

    Science.gov (United States)

    2008-12-01

    Approved for public release; distribution unlimited 1 PHYSICS OF PARTICLE ENTRAINMENT UNDER THE INFLUENCE OF AN IMPINGING JET Robert Haehnel...Ing. Wesen. Heft 361). Phares, D.J., Smedley , G.T. and Flagan, R.C. (2000) "The wall shear stress produced by the normal impingement of a jet on a

  1. Effect of applied potential on passivation and erosion–corrosion of a Fe-based amorphous metallic coating under slurry impingement

    International Nuclear Information System (INIS)

    Zheng, Z.B.; Zheng, Y.G.; Sun, W.H.; Wang, J.Q.

    2014-01-01

    Highlights: • The passive current density of coating increases with the increasing potential. • Preferential dissolution of high-valence oxides happens at high applied potential. • More chlorides exist in the passive film at high film formation potential. • Critical flow velocity under impingement is related to resistance of passive film. - Abstract: The passive behaviour and erosion–corrosion behaviour of a HVOF sprayed Fe-based amorphous metallic coating have been investigated in 3.5 wt.% NaCl solution by using potentiostatic polarisation, X-ray photoelectron spectroscopy and Mott–Schottky analysis. The fact that passive current density increased with rising potential might result from the preferential dissolution of high-valence oxides and the existence of more chlorides at a higher potential. The critical flow velocity decreased with rising potential because of the lower resistance of passive film at a higher potential. The reason why passive current density changed under jet impingement was discussed by a simple formula

  2. Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements

    Science.gov (United States)

    Lee, Ching-Pang; Heneveld, Benjamin E.; Brown, Glenn E.; Klinger, Jill

    2015-05-26

    A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.

  3. An experimental study of the supersonic, dual, coaxial jets impinging on an inclined flat plate

    International Nuclear Information System (INIS)

    Kim, Jung Bae; Lee, Jun Hee; Woo, Sun Hoon; Kim, Heuy Dong

    2002-01-01

    The impinging supersonic jets have been applied for rocket launching system, thrust control, gas turbine blade cooling, etc. Recently the supersonic, dual, coaxial jets are being extensively used in many diverse fields of industrial processes since they lead to more improved performance, compared with the conventional supersonic jets impinging on an object. In the present study, experimentation is carried out to investigate the supersonic, dual, coaxial jets impinging on an inclined flat plate. A convergent-divergent nozzle with a design Mach number of 2.0 and annular sonic nozzle are used to make the dual, coaxial jet flows. The angle of the impinging flat plate is varied from 30 .deg. to 60 .deg. and the distance between the dual coaxial nozzle and flat plate is also varied. Detailed pressures on the impinging plate are measured to analyze the flow fields, which are also visualized using Schlieren optical method

  4. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  5. The Future with Cryogenic Fluid Dynamics

    Science.gov (United States)

    Scurlock, R. G.

    The applications of cryogenic systems have expanded over the past 50 years into many areas of our lives. During this time, the impact of the common features of Cryogenic Fluid Dynamics, CryoFD, on the economic design of these cryogenic systems, has grown out of a long series of experimental studies carried out by teams of postgraduate students at Southampton University.These studies have sought to understand the heat transfer and convective behavior of cryogenic liquids and vapors, but they have only skimmed over the many findings made, on the strong convective motions of fluids at low temperatures. The convection takes place in temperature gradients up to 10,000 K per meter, and density gradients of 1000% per meter and more, with rapid temperature and spatially dependent changes in physical properties like viscosity and surface tension, making software development and empirical correlations almost impossible to achieve. These temperature and density gradients are far larger than those met in other convecting systems at ambient temperatures, and there is little similarity. The paper will discuss the likely impact of CryoFD on future cryogenic systems, and hopefully inspire further research to support and expand the use of existing findings, and to improve the economy of present-day systems even more effectively. Particular examples to be mentioned include the following. Doubling the cooling power of cryo-coolers by a simple use of CryoFD. Reducing the boil-off rate of liquid helium stored at the South Pole, such that liquid helium availability is now all-the-year-round. Helping to develop the 15 kA current leads for the LHC superconducting magnets at CERN, with much reduced refrigeration loads. Improving the heat transfer capability of boiling heat transfer surfaces by 10 to 100 fold. This paper is an edited text of an invited plenary presentation at ICEC25/ICMC2014 by Professor Scurlock on the occasion of his being presented with the ICEC Mendelssohn Award for his

  6. Plasma spraying process of disperse carbides for spraying and facing

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Vishnevetskaya, I.A.; Kostyukovich, T.G.; Ostapovich, A.O.

    1989-01-01

    A possibility to metallize carbides in plasma of impulsing capacitor discharge is considered. Powders granulation occurs during plasma spraying process, ceramic core being completely capped. X-ray phase and chemical analyses of coatings did not show considerable changes of carbon content in carbides before and after plasma processing. This distinguishes the process of carbides metallization in impulsing plasma from the similar processing in arc and high-frequency plasma generator. Use of powder composites produced in the impulsing capacitor discharge, for plasma spraying and laser facing permits 2-3 times increasing wear resistance of the surface layer as against the coatings produced from mechanical powders mixtures

  7. Development of a clinically relevant impingement test method for a mobile bearing lumbar total disc replacement.

    Science.gov (United States)

    Siskey, Ryan; Peck, Jonathan; Mehta, Hitesh; Kosydar, Allison; Kurtz, Steven; Hill, Genevieve

    2016-09-01

    Total disc arthroplasty is an alternative therapy to spinal fusion for the treatment of neck or low back pain and is hypothesized to reduce the risk of disease progression to the adjacent spinal levels. Radiographic and retrieval analyses of various total disc replacements (TDRs) have shown evidence of impingement damage. Impingement of TDRs can occur when the device reaches the limits of its functional range of motion, causing contact between peripheral regions of the device. Impingement can be associated with increased wear and mechanical damage; however, impingement conditions are not simulated in current standardized mechanical bench test methods. This study explored the test conditions necessary to apply clinically relevant impingement loading to a lumbar TDR in vitro. An experimental protocol was developed and evaluated using in vivo retrievals for qualitative and quantitative validation. Retrieval analysis was conducted on a set of 11 size 3 retrieved Charité devices using American Society for Testing and Materials F561 as a guide. The impingement range of motion was determined using a combination of modeling and experiments, and was used as an input in vitro testing. A 1-million cycle in vitro test was then conducted, and the in vitro samples were characterized using methods similar to the retreived devices. All in vitro tested samples exhibited impingement regions and damage patterns consistent with retrieved devices. Consistent with the retrievals, the impingement damage on the rim was a combination of abrasive wear and plastic deformation. Micro computed tomography (microCT) was used to quantitatively assess rim damage due to impingement. Rim penetration was statistically lower in the retrievals when compared with both in vitro groups. Rim elongation was comparable among all groups. The simulated-facet group had statistically greater angular rim deformations than the retrieval group and the no-facet group. Results demonstrate that clinically relevant

  8. Entrainment and impingement of aquatic fauna at cooling water system of Madras Atomic Power Station (MAPS)

    International Nuclear Information System (INIS)

    Barath Kumar, S.; Das, N.P.I.; Satpathy, K.K.

    2015-01-01

    Marine organisms get impinged to the intake screens of Madras Atomic Power Station (MAPS) due to the suction force of the cooling water system of the power plant. The present work has studied the loss of aquatic organism at MAPS due to impingement at cooling water screens. In total 67 species of marine faunas impinged on the water intake screens of MAPS during the study. The proportion of fish, shrimp, crab, jellyfish and others, with respect to the total biomass of impinged organisms are 1.59 % (33 species), 0.30% (9), 2.77 % (16), 95.10% (3) and 0.24% (4), respectively. Jellyfishes were observed to be the largest entrained group covering around 44.85% of individual and constituting almost 94.82 % of biomass recorded during the study period and sea nettle jelly (Chrysaora quinquecirrha) was impinged with highest frequency. The diel study shows higher impingement occurred during night time, on full moon day and at low tides in contrast to their counterparts. Fishes accounts for 14.84 % of individual count and mere 1.67 % of biomass. Totally 33 number of fish species were observed. The highest impinged species were pony fishes (Secutor ruconius, Secutor insidiator, Photopectoralis bindus, Alepes kleinii and Leiognathus equulus) (21% occurrence). These few entrained fishes are mostly very small in size and have less commercial value. The total loss of marine fauna by impingement during study period was estimated to be 4779 (or 463.46 kg). The present data when compared with the impingement data from other coastal power plants, shows that the impinged fish biomass at MAPS cooling water system is much less than the other temperate and tropical power plants. (author)

  9. Cryogenic systems for inertial fusion energy

    International Nuclear Information System (INIS)

    Chatain, D.; Perin, J.P.; Bonnay, P.; Bouleau, E.; Chichoux, M.; Communal, D.; Manzagol, J.; Viargues, F.; Brisset, D.; Lamaison, V.; Paquignon, G.

    2008-01-01

    The Low Temperatures Laboratory of CEA/Grenoble (France) is involved in the development of cryogenic systems for inertial fusion since a ten of years. A conceptual design for the cryogenic infrastructure of the Laser MegaJoule (LMJ) facility has been proposed. Several prototypes have been designed, built and tested like for example the 1500 bars cryo-compressor for the targets filling, the target positioner and the thermal shroud remover. The HIPER project will necessitate the development of such equipments. The main difference is that this time, the cryogenic targets are direct drive targets. The first phase of HIPER experiments is a single shot period. Based oil the experience gained the last years, not only by our laboratory but also by Omega and G.A teams, we could design the new HIPER equipments for this phase. Some experimental results obtained with the prototypes of the LMJ cryogenic system are given and a first conceptual design for the HIPER single shot cryogenic system is shown. (authors)

  10. Status of the Cryogenic Storage Ring (CSR)

    Energy Technology Data Exchange (ETDEWEB)

    Menk, Sebastian; Becker, Arno; Berg, Felix; Blaum, Klaus; Fellenberger, Florian; Froese, Michael; Goullon, Johannes; Grieser, Manfred; Krantz, Claude; Lange, Michael; Laux, Felix; Repnow, Roland; Schornikov, Andrey; Hahn, Robert von; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik (MPIK), 69117 Heidelberg (Germany); Spruck, Kaija [Institut fuer Atom- und Molekuelphysik Justus-Liebig-Universitaet, 35392 Giessen (Germany)

    2012-07-01

    A novel cryogenic storage ring is currently under construction at the MPIK. By electrostatic ion optical elements, the 35 m circumference Cryogenic Storage Ring will be able to store ions at energies of up to 300 keV per charge unit without any mass limitations. The CSR consists of a cryogenic ({proportional_to}5 K) beam pipe surrounded by two radiation shields (40 and 80 K) in a large outer, thermal insulation vacuum. Extreme vacuum (density {proportional_to}10{sup 3} cm{sup -3}) will be achieved by 2 K cryopumping as demonstrated in a prototype ion beam trap. The ion optics was completely assembled within the precision cryogenic mounting and shielding structure of the first corner. There, cooldown tests to {proportional_to}40 K were performed which confirmed the required sub-millimeter accuracy of the specially designed electrode positioning under large temperature changes. The high-voltage connections to the cryogenic electrodes were installed and breakdown tests will be reported. Based on the test results the beam pipe, electrode mounting and shielding structures are under final construction for mounting during 2012.

  11. Experimental studies on transient water-steam impinging jet

    International Nuclear Information System (INIS)

    Kitade, Kozo; Nakatogawa, Tetsundo; Nishikawa, Hideo; Kawanishi, Kohei; Tsuruto, Chuichi.

    1980-01-01

    Blowdown experiments were carried out in order to clarify pipe reaction forces and jet forces at hypothetical pipe break accident in PWR. The experiments were carried out at the initial pressure of about 70 and 150 kg/cm 2 .G with subcooling temperature of 13 -- 41 0 C. The reaction force has a maximum value just after the rupture in such a manner to attain abruptly to a peak and gradually decreases after that time in proportion to the inner pressure of the pipe. A plane board was used as a target, on which two-phase flow jet impinged vertically. A distribution of pressure on the target is most wide just after break. On the other hand, the pressure has a maximum value after a short period of time from the rupture. (author)

  12. The Use of Physiotherapy among Patients with Subacromial Impingement Syndrome

    DEFF Research Database (Denmark)

    Christiansen, David Høyrup; Frost, Poul; Frich, Lars Henrik

    2016-01-01

    BACKGROUND: Physiotherapy with exercises is generally recommended in the treatment of patients with subacromial impingement syndrome (SIS). OBJECTIVE: We aimed to investigate the use of physiotherapy in patients with SIS in Danish hospital settings as part of initial non-surgical treatment...... and after SIS-related surgery and to evaluate to which extent sex, socio-demographic and clinical factors predict the use of physiotherapy. METHODS: Using national health registers, we identified 57,311 patients who had a first hospital contact with a diagnosis of ICD-10, groups M75.1-75.9, 1 July 2007...... to 30 June 2011. Records of physiotherapy were extracted within 52 weeks after first contact (or until surgery), and for surgically treated patients within 26 weeks after surgery. Predictors of the use of physiotherapy after first contact and after surgery were analysed as time-to-event. RESULTS: Within...

  13. Muscle impingement: MR imaging of a painful complication of osteochondromas

    Energy Technology Data Exchange (ETDEWEB)

    Uri, D.S. [Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (United States); Dalinka, M.K. [Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (United States); Kneeland, J.B. [Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104 (United States)

    1996-10-01

    The purpose of this study was to describe the magnetic resonance (MR) appearance of a newly recognized complication of osteochondromas. Two patients presented with pain and swelling over known osteochondromas. Plain radiographic studies were unrevealing. MR examinations were obtained to characterize the exostoses further and evaluate areas of palpable fullness. Increased signal was present in the muscles on T2-weighted images, which correlated with physical findings and was believed to represent muscle injury due to the osteochondroma. Pain and fullness may result from a number of osteochondroma-related complications, the most worrisome of which is malignant degeneration. Muscular impingement and injury should be considered in the differential diagnosis of pain and swelling in the region of an exostosis. MR imaging allows distinction of this entity, which may be radiographically occult and confused clinically with fracture, bursitis, or malignant degeneration. (orig.). With 2 figs.

  14. Muscle impingement: MR imaging of a painful complication of osteochondromas

    International Nuclear Information System (INIS)

    Uri, D.S.; Dalinka, M.K.; Kneeland, J.B.

    1996-01-01

    The purpose of this study was to describe the magnetic resonance (MR) appearance of a newly recognized complication of osteochondromas. Two patients presented with pain and swelling over known osteochondromas. Plain radiographic studies were unrevealing. MR examinations were obtained to characterize the exostoses further and evaluate areas of palpable fullness. Increased signal was present in the muscles on T2-weighted images, which correlated with physical findings and was believed to represent muscle injury due to the osteochondroma. Pain and fullness may result from a number of osteochondroma-related complications, the most worrisome of which is malignant degeneration. Muscular impingement and injury should be considered in the differential diagnosis of pain and swelling in the region of an exostosis. MR imaging allows distinction of this entity, which may be radiographically occult and confused clinically with fracture, bursitis, or malignant degeneration. (orig.). With 2 figs

  15. Hip arthroscopy with labral repair for femoroacetabular impingement

    DEFF Research Database (Denmark)

    Dippmann, Christian; Thorborg, Kristian; Kraemer, Otto

    2014-01-01

    PURPOSE: The purpose of this study was to examine the progression of clinical outcomes 3, 6 and 12 months after hip arthroscopy with labral repair for femoroacetabular impingement (FAI). METHODS: From May 2009 to December 2011, 87 consecutive patients [55 females (median age 38, range 17-63) and 32...... males (median age 38, range 15-59)] underwent hip arthroscopy and labral repair, by the same experienced surgeon. Standardised, but unstructured, post-operative rehabilitation instructions were provided. Function and pain were evaluated using modified Harris Hip Score (mHHS) and visual analogue scale...... months with no additional changes from 6 to 12 months [22.6 (2.6)-27.9 (2.6), (n.s.)]. CONCLUSIONS: Improvements in function (mHHS) and pain (VAS) were seen in patients after hip arthroscopy with labral repair for FAI at 3, 6, and 12 months. While significant improvements occurred from 3 to 6 months...

  16. Current concepts in the diagnosis and treatment of shoulder impingement

    Directory of Open Access Journals (Sweden)

    Bijayendra Singh

    2017-01-01

    Full Text Available Subacromial impingement syndrome (SIS is a very common cause of shoulder pain in the young adults. It can cause debilitating pain, dysfunction, and affects the activities of daily living. It represents a spectrum of pathology ranging from bursitis to rotator cuff tendinopathy which can ultimately lead to degenerative tear of the rotator cuff. Various theories and concepts have been described and it is still a matter of debate. However, most published studies suggest that both extrinsic and intrinsic factors have a role in the development of SIS. The management is controversial as both nonoperative and operative treatments have shown to provide good results. This article aims to provide a comprehensive current concepts review of the pathogenesis, etiologies, clinical diagnosis, appropriate use of investigations, and discussion on the management of SIS.

  17. Impingement and entrainment: an updated annotated bibliography. Final report

    International Nuclear Information System (INIS)

    Yost, F.E.; Uziel, M.S.

    1981-05-01

    Presented as an annotated bibliography are 1343 references dealing with entrainment and impingement effects on aquatic organisms passing through the cooling systems of thermal power plants. The references were obtained from open literature and from environmental reports and impact statements prepared by or for the electric utility industry. Two earlier bibliographies contain literature from 1950 through 1976. This update contains additional literature acquired since 1976. Topics covered are site-specific field studies at facilities located on lakes, reservoirs, rivers, or estuaries. The studies include special engineering studies, laboratory studies, studies of biological effects, reviews and methodologies, and studies of the mitigation of effects. References are arranged alphabetically by author, and indexes are provided to personal and corporate authors, and to facility, waterbody, and taxonomic names

  18. Radiologic analysis of femoral acetabular impingement: from radiography to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dwek, Jerry R. [University of California at San Diego, Department of Radiology, Rady Children' s Hospital and Health Center, San Diego, CA (United States); San Diego Imaging, San Diego, CA (United States); Monazzam, Shafagh [Rady Children' s Hospital and Health Center, Department of Orthopedics, San Diego, CA (United States); Chung, Christine B. [University of California at San Diego, Department of Radiology, San Diego, CA (United States)

    2013-03-15

    Femoral acetabular impingement is a set of morphologic abnormalities that are considered to be a major cause of degenerative disease in the hip joint. Early changes are already present in adolescence when it is the pediatric radiologist who must assess current damage with the aim of averting progression to more severe and debilitating osteoarthritis. A multimodality approach is used for diagnosis, that includes conventional radiography and CT to assess the osseous structures. MR arthrography is the primary advanced imaging modality for assessment of morphologic changes as well as injuries of the labrum and articular cartilage. Details of radiologic imaging are offered to guide the radiologist and provide an avenue for the accurate description of the osseous and articular alterations and injury. (orig.)

  19. Sports hernia and femoroacetabular impingement in athletes: A systematic review.

    Science.gov (United States)

    Munegato, Daniele; Bigoni, Marco; Gridavilla, Giulia; Olmi, Stefano; Cesana, Giovanni; Zatti, Giovanni

    2015-09-16

    To investigate the association between sports hernias and femoroacetabular impingement (FAI) in athletes. PubMed, MEDLINE, CINAHL, Embase, Cochrane Controlled Trials Register, and Google Scholar databases were electronically searched for articles relating to sports hernia, athletic pubalgia, groin pain, long-standing adductor-related groin pain, Gilmore groin, adductor pain syndrome, and FAI. The initial search identified 196 studies, of which only articles reporting on the association of sports hernia and FAI or laparoscopic treatment of sports hernia were selected for systematic review. Finally, 24 studies were reviewed to evaluate the prevalence of FAI in cases of sports hernia and examine treatment outcomes and evidence for a common underlying pathogenic mechanism. FAI has been reported in as few as 12% to as high as 94% of patients with sports hernias, athletic pubalgia or adductor-related groin pain. Cam-type impingement is proposed to lead to increased symphyseal motion with overload on the surrounding extra-articular structures and muscle, which can result in the development of sports hernia and athletic pubalgia. Laparoscopic repair of sports hernias, via either the transabdominal preperitoneal or extraperitoneal approach, has a high success rate and earlier recovery of full sports activity compared to open surgery or conservative treatment. For patients with FAI and sports hernia, the surgical management of both pathologies is more effective than sports pubalgia treatment or hip arthroscopy alone (89% vs 33% of cases). As sports hernias and FAI are typically treated by general and orthopedic surgeons, respectively, a multidisciplinary approach for diagnosis and treatment is recommended for optimal treatment of patients with these injuries. The restriction in range of motion due to FAI likely contributes to sports hernias; therefore, surgical treatment of both pathologies represents an optimal therapy.

  20. In-Space Cryogenic VOST Connect/Disconnect, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel cryogenic couplings will be designed, fabricated and tested. Intended for in-space use at cryogenic propellant depots, the couplings are based on patented...

  1. A cryogenic slab CO laser

    International Nuclear Information System (INIS)

    Ionin, Andrei A; Kozlov, A Yu; Seleznev, L V; Sinitsyn, D V

    2009-01-01

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 → V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 μm. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of ∼12 W was obtained for this laser operating on fundamental bands and its efficiency achieved ∼14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at ∼ 100 laser lines in the spectral region from 5.0 to 6.5 μm with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 → V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 μm. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than ±10 %) was stable for more than an hour. (lasers)

  2. Center for Cold Spray Research and Development

    Data.gov (United States)

    Federal Laboratory Consortium — This is the only DoD facility capable of cold spray research and development, production, and field-repair. It features three stationary cold spray systems used for...

  3. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  4. Spray casting project final report

    International Nuclear Information System (INIS)

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step

  5. A Reference Guide for Cryogenic Properties of Materials

    Energy Technology Data Exchange (ETDEWEB)

    Weisend, John G

    2003-09-16

    A thorough knowledge of the behavior of materials at cryogenic temperatures is critical for the design of successful cryogenic systems. Over the past 50 years, a tremendous amount of material properties at cryogenic temperatures have been measured and published. This guide lists resources for finding these properties. It covers online databases, computer codes, conference proceedings, journals, handbooks, overviews and monographs. It includes references for finding reports issued by government laboratories and agencies. Most common solids and fluids used in cryogenics are covered.

  6. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  7. Long-term cryogenic space storage system

    Science.gov (United States)

    Hopkins, R. A.; Chronic, W. L.

    1973-01-01

    Discussion of the design, fabrication and testing of a 225-cu ft spherical cryogenic storage system for long-term subcritical applications under zero-g conditions in storing subcritical cryogens for space vehicle propulsion systems. The insulation system design, the analytical methods used, and the correlation between the performance test results and analytical predictions are described. The best available multilayer insulation materials and state-of-the-art thermal protection concepts were applied in the design, providing a boiloff rate of 0.152 lb/hr, or 0.032% per day, and an overall heat flux of 0.066 Btu/sq ft hr based on a 200 sq ft surface area. A six to eighteen month cryogenic storage is provided by this system for space applications.

  8. Cryogenic Thermometer Calibration Facility at CERN

    CERN Document Server

    Balle, C; Thermeau, J P

    1998-01-01

    A cryogenic thermometer calibration facility has been designed and is being commissioned in preparation for the very stringent requirements on the temperature control of the LHC superconducting magnets. The temperature is traceable in the 1.5 to 30 K range to standards maintained in a national metrological laboratory by using a set of Rhodium-Iron temperature sensors of metrological quality. The calibration facility is designed for calibrating simultaneously 60 industrial cryogenic thermometers in the 1.5 K to 300 K temperature range, a thermometer being a device that includes both a temperature sensor and the wires heat-intercept. The thermometers can be calibrated in good and degraded vacuum or immersed in the surrounding fluid and at different Joule self-heating conditions that match those imposed by signal conditioners used in large cryogenic machinery. The calibration facility can be operated in an automatic mode and all the control and safety routines are handled by a Programmable Logic Controller (PLC)...

  9. The Management of Cryogens at CERN

    CERN Document Server

    Delikaris, D; Passardi, Giorgio; Serio, L; Tavian, L

    2005-01-01

    CERN is a large user of industrially procured cryogens essentially liquid helium and nitrogen. Recent contracts have been placed by the Organization for the delivery of quantities up to 280 tons of liquid helium over four years and up to 50000 tons of liquid nitrogen over three years. Main users are the very large cryogenic system of the LHC accelerator complex, the physics experiments using superconducting magnets and liquefied gases and all the related test facilities whether industrial or laboratory scale. With the commissioning of LHC, the need of cryogens at CERN will considerably increase and the procurement policy must be adapted accordingly. In this paper, we discuss procurement strategy for liquid helium and nitrogen, including delivery rates, distribution methods and adopted safety standards. Global turnover, on site re-liquefaction capacity, operational consumption, accidental losses, purification means and storage capacity will be described. Finally, the short to medium term evolution of the Orga...

  10. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    Tarata, Daniela Florentina

    1999-01-01

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  11. Technical presentation: BGM Cryogenic Engineering Limited

    CERN Multimedia

    Caroline Laignel - FI Department

    2006-01-01

    13 - 14 June 2006 TECHNICAL PRESENTATION BGM Cryogenic Engineering Limited 09:00 - 18:00, 60-2-016, Main Building. Presentation on BGM: 11:00 - 12:00, 60-2-016, Main Building. BGM Cryogenic Engineering Limited manufactures assemblies, sub-assemblies and machined components for the cryogenic technology sector. The primary markets served include superconducting magnets used in the healthcare sector (eg MRI body scanners), spectroscopy and NMR equipment for numerous R & D and technology applications, high vacuum applications and particle physics research. BGM has specialist assembly capability including stainless steel and aluminium welding, vacuum testing, electromechanical assembly and metal finishing. BGM offers a ‘one stop shop'facility to satisfy any customer requirement. Through our design partner we can offer a full design and modelling service, including 3D modelling and production of 2D drawings on your own borders. We can conduct heat load and force calculations and advise on the best...

  12. Designs of pulsed power cryogenic transformers

    International Nuclear Information System (INIS)

    Singh, S.K.; Heyne, C.J.; Hackowrth, D.T.; Shestak, E.J.; Eckels, P.W.; Rogers, J.D.

    1988-01-01

    The Westinghouse Electric Corporation has completed designs of three pulsed power cryogenic transformers of three pulsed power cryogenic transformers for the Los Alamos National Laboratory. These transformers will be configured to transfer their stored energy sequentially to an electro-magnetic launcher and form a three-stage power supply. The pulse transformers will act as two winding energy storage solenoids which provide a high current and energy pulse compression by transforming a 50 kA power supply into a megamp level power supply more appropriate for the electromagnetic launcher duty. This system differs from more traditional transformer applications in that significant current levels do not exists simultaneously in the two windings of the pulse transformer. This paper describes the designs of the pulsed power cryogenic transformers

  13. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  14. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  15. Physics of cryogenics an ultralow temperature phenomenon

    CERN Document Server

    Zohuri, Bahman

    2018-01-01

    Physics of Cryogenics: An Ultralow Temperature Phenomenon discusses the significant number of advances that have been made during the last few years in a variety of cryocoolers, such as Brayton, Joule-Thomson, Stirling, pulse tube, Gifford-McMahon and magnetic refrigerators. The book reviews various approaches taken to improve reliability, a major driving force for new research areas. The advantages and disadvantages of different cycles are compared, and the latest improvements in each of these cryocoolers is discussed. The book starts with the thermodynamic fundamentals, followed by the definition of cryogenic and the associated science behind low temperature phenomena and properties. This book is an ideal resource for scientists, engineers and graduate and senior undergraduate students who need a better understanding of the science of cryogenics and related thermodynamics.

  16. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  17. CONCHAS-SPRAY, Reactive Flows with Fuel Sprays

    International Nuclear Information System (INIS)

    Cloutman, L.D.; Dukowicz, J.K.; Ramshaw, J.D.; Amsden, A.A.

    2001-01-01

    Description of program or function: CONCHAS-SPRAY solves the equations of transient, multicomponent, chemically reactive fluid dynamics, together with those for the dynamics of an evaporating liquid spray. The program was developed with applications to internal combustion engines in mind. The formulation is spatially two-dimensional, and encompasses both planar and axisymmetric geometries. In the latter case, the flow is permitted to swirl about the axis of symmetry. CONCHAS-SPRAY is a time-marching, finite- difference program that uses a partially implicit numerical scheme. Spatial differences are formed with respect to a generalized two- dimensional mesh of arbitrary quadrilaterals whose corner locations are specified functions of time. This feature allows a Lagrangian, Eulerian, or mixed description, and is particularly useful for representing curved or moving boundary surfaces. Arbitrary numbers of species and chemical reactions are allowed. The latter are subdivided into kinetic and equilibrium reactions, which are treated by different algorithms. A turbulent law-of-the-wall boundary layer option is provided. CONCHAS-SPRAY calls a number of LANL system subroutines to display graphic or numerical information on microfiche. These routines are not included, but are described in the reference report. Several routines called from LINPACK and SLATEC1.0 are included

  18. Albendazole Microparticles Prepared by Spray Drying Technique ...

    African Journals Online (AJOL)

    Purpose: To enhance the dissolution of albendazole (ABZ) using spray-drying technique. Method: ABZ binary mixtures with Kollicoat IR® (KL) and polyvinyl pyrrolidone (PVP) in various drug to polymer ratios (1: 1, 1: 2 and 1; 4) were prepared by spray-drying. The spray-dried particles were characterized for particle shape, ...

  19. 14 CFR 23.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 23.239 Section 23.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Handling Characteristics § 23.239 Spray characteristics. Spray may not dangerously obscure the vision of...

  20. 14 CFR 29.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 29.239 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  1. 14 CFR 27.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 27.239 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  2. 49 CFR 173.316 - Cryogenic liquids in cylinders.

    Science.gov (United States)

    2010-10-01

    ... filling density for hydrogen, cryogenic liquid is defined as the percent ratio of the weight of lading in... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in...

  3. Characterization of a cryogenic ion guide at IGISOL

    NARCIS (Netherlands)

    Saastamoinen, A.; Moore, I. D.; Ranjan, M.; Dendooven, P.; Penttila, H.; Perajarvi, K.; Popov, A.; Aysto, J.

    2012-01-01

    A small volume cryogenic ion guide has been characterized at the IGISOL facility, Jyvaskyla, as a prototype to verify whether there are any major obstacles to the use of high-density cryogenic helium gas for the stopping and extraction of high-energy ions from a large volume cryogenic ion catcher.

  4. Cryogenic propulsion for lunar and Mars missions

    Science.gov (United States)

    Redd, Larry

    1988-01-01

    Future missions to the moon and Mars have been investigated with regard to propulsion system selection. The results of this analysis show that near state-of-the-art LO2/LH2 propulsion technology provides a feasible means of performing lunar missions and trans-Mars injections. In other words, existing cryogenic space engines with certain modifications and product improvements would be suitable for these missions. In addition, present day cryogenic system tankage and structural weights appear to scale reasonably when sizing for large payload and high energy missions such as sending men to Mars.

  5. Computer automation of a dilution cryogenic system

    International Nuclear Information System (INIS)

    Nogues, C.

    1992-09-01

    This study has been realized in the framework of studies on developing new technic for low temperature detectors for neutrinos and dark matter. The principles of low temperature physics and helium 4 and dilution cryostats, are first reviewed. The cryogenic system used and the technic for low temperature thermometry and regulation systems are then described. The computer automation of the dilution cryogenic system involves: numerical measurement of the parameter set (pressure, temperature, flow rate); computer assisted operating of the cryostat and the pump bench; numerical regulation of pressure and temperature; operation sequence full automation allowing the system to evolve from a state to another (temperature descent for example)

  6. Cryogenic test facility at VECC, Kolkata

    International Nuclear Information System (INIS)

    Sarkar, Amit; Bhunia, Uttam; Pradhan, J.; Sur, A.; Bhandari, R.K.; Ranganathan, R.

    2003-01-01

    In view of proposed K-500 superconducting cyclotron project, cryogenic test facility has been set up at the centre. The facility can broadly be categorized into two- a small scale test facility and a large scale test facility. This facility has been utilized for the calibration of liquid helium level probe, cryogenic temperature probe, and I-B plot for a 7 T superconducting magnet. Spiral-shaped superconducting short sample with specific dimension and specially designed stainless steel sample holder has already been developed for the electrical characterisation. The 1/5 th model superconducting coil along with its quench detection circuit and dump resistor has also been developed

  7. Compact insert design for cryogenic pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, Salvador M.; Ledesma-Orozco, Elias Rigoberto; Espinosa-Loza, Francisco; Petitpas, Guillaume; Switzer, Vernon A.

    2017-06-14

    A pressure vessel apparatus for cryogenic capable storage of hydrogen or other cryogenic gases at high pressure includes an insert with a parallel inlet duct, a perpendicular inlet duct connected to the parallel inlet. The perpendicular inlet duct and the parallel inlet duct connect the interior cavity with the external components. The insert also includes a parallel outlet duct and a perpendicular outlet duct connected to the parallel outlet duct. The perpendicular outlet duct and the parallel outlet duct connect the interior cavity with the external components.

  8. Cryogenic system for liquid hydrogen polarimeter

    International Nuclear Information System (INIS)

    Kitami, T.; Chiba, M.; Hirabayashi, H.; Ishii, T.; Kato, S.

    1979-01-01

    A cryogenic system has been constructed for a liquid hydrogen polarimeter in order to measure polarization of high energy proton at the 1.3 GeV electron synchrotron of Institute for Nuclear Study, University of Tokyo. The system principally consists of a cryogenerator with a cryogenic transfer line, a liquid hydrogen cryostat, and a 14.5 l target container of thin aluminum alloy where liquid hydrogen is served for the experiment. The refrigeration capacity is about 54 W at 20.4 K without a target container. (author)

  9. Comparative analysis of arthroscopic debridement in osseous versus soft tissue anterior ankle impingement.

    Science.gov (United States)

    Devgan, Ashish; Rohilla, Rajesh; Tanwar, Milind; Jain, Aditya; Siwach, Karan; Devgan, Radika

    2016-01-01

    Arthroscopic debridement has been a gold standard procedure for anterior ankle impingement, both in cases of osseous and soft tissue impingement. There is sparse literature on comparative outcome with respect to functional results between the two types of impingement post-arthroscopic debridement. Our study included 14 patients diagnosed as cases of anterior ankle impingement on the basis of clinical and radiological examination. They were segregated into two groups (on the basis of cause of impingement (osseous versus soft tissue)). Both groups were treated by arthroscopic debridement. Primary outcome was patient satisfaction, which was assessed by Likert scale and clinical outcomes were measured using AOFAS ankle-hind foot scale, VAS score, range of motion and time to return to pre-injury activity level in both groups. Mean follow-up was of 15 months where eleven patients reported an excellent recovery, two patients had good recovery while one patient reported poor outcome. Mean AOFAS ankle hind foot scale improved from 50.5 preoperatively to 85.71 postoperatively (statistically significant; p value - 0.0001). Mean Likert scale value post-operative was 4.21. VAS score showed significant improvement in patients of both the groups. Range of motion was slightly better in soft tissue impingement type with a relatively shorter time to return to sports or preinjury activity level as compared to osseous impingement group. The patients in both the groups had comparable outcomes with no statistically significant difference with regard to patient satisfaction and clinical outcome.

  10. Shoulder Girdle Muscles Endurance in Subjects with and without Impingement Syndrome

    Directory of Open Access Journals (Sweden)

    Afsoun Nodehi-Moghadam

    2011-07-01

    Full Text Available Objective: Any minimal alteration in performance and coordination of scapular and glenohumeral muscles has the potential to lead to shoulder joint dysfunction. The impingement syndrome has been reported as is the most common diagnosis of shoulder pain. The purpose of this study was to determine whether endurance deficits could be detected in patients with shoulder impingement. Materials & Methods: By convenient sampling 15 patients with impingement syndrome at average of 45.3 years of age and 15 healthy persons (age 45.8 years through a case–control design participated in the study. Endurance of glenohumeral and scapulothoracic muscles were tested with a hand held dynamometer. Independent t–test was used to statistically analyze different groups. Results: Compared to non–impaired subjects, those with impingement syndrome demonstrated a significantly lower endurance of external rotation, scaption and scapular abduction and upward rotation movements (P<0.05. In impingement syndrome patients, the external–to–internal rotator muscles endurance ratio was significantly lower than the control group (P<0.05. Conclusion: The result of the study suggests that endurance deficit of rotator cuff and scapular upward rotator muscles may be an important aspect of the impingement syndrome. Shoulder girdle muscles endurance should be considered in evaluation and physical therapy of impingement syndrome patients.

  11. Noise characteristics and flow field of an impinging jet on a conical obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin; Xie, Junlong; Shu, Shuiming; Zhang, Yi, E-mail: hustxjl@163.com [School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2017-12-15

    The noise characteristics and flow field of a low-speed impinging jet on a conical obstacle have been numerically simulated using the kinetic energy transport subgrid-scale model of the large-eddy simulation method. Noise measurement is carried out to validate the proposed simulation method. The effects of the impinging distance on the development, separation and diffusion of vortices on the back of the conical obstacle are investigated. The jet structure is better preserved and the vorticity value becomes larger as the impinging distance increases. Simulation results of the noise spectrums and overall sound pressure level (OASPL) agree well with the experimental data. The noise spectrums are analyzed and combined with simulation results for the flow field. When the impinging distance is small, the main acoustic sources with the broadband characteristic consist of the dipole source produced by pressure fluctuation on the surface of the obstacle, and the quadrupole source produced by vortices. As the impinging distance increases, the quadrupole source becomes the major acoustic source with low-frequency characteristics. In addition, the OASPL of the impinging jet is obtained at different impinging distances. (paper)

  12. Inhalation exposure to isocyanates of car body repair shop workers and industrial spray painters.

    Science.gov (United States)

    Pronk, Anjoeka; Tielemans, Erik; Skarping, Gunnar; Bobeldijk, Ivana; VAN Hemmen, Joop; Heederik, Dick; Preller, Liesbeth

    2006-01-01

    As part of a large-scale epidemiological study, occupational isocyanate exposure was assessed in spray-painting environments. The aim was to assess which compounds contribute to isocyanate exposure in car body repair shops and industrial painting companies, and to identify tasks with high risk of isocyanate exposure. Mainly personal task-based samples (n = 566) were collected from 24 car body repair shops and five industrial painting companies using impingers with DBA in toluene. Samples were analysed by LC-MS for isocyanate monomers, oligomers and products of thermal degradation. From the 23 analysed compounds, 20 were detected. Exploratory factor analysis resulted in a HDI, TDI and MDI factor with the thermal degradation products divided over the TDI and MDI factors. The HDI factor mainly consisted of HDI oligomers and was dominant in frequency and exposure levels in both industries. Spray painting of PU lacquers resulted in the highest exposures for the HDI factor (car body repair shops than in industrial painting companies. Exposure levels were low (car body repair shops (spraying. However, since respiratory protection is less extensively used during other tasks, lower level exposure during these other tasks may significantly contribute to the internal dose.

  13. Application of cyclodextrins in antibody microparticles: potentials for antibody protection in spray drying.

    Science.gov (United States)

    Ramezani, Vahid; Vatanara, Alireza; Seyedabadi, Mohammad; Nabi Meibodi, Mohsen; Fanaei, Hamed

    2017-07-01

    Dry powder formulations are extensively used to improve the stability of antibodies. Spray drying is one of important methods for protein drying. This study investigated the effects of trehalose, hydroxypropyl beta cyclodextrin (HPBCD) and beta cyclodextrin (BCD) on the stability and particle properties of spray-dried IgG. D-optimal design was employed for both experimental design and analysis and optimization of the variables. The size and aerodynamic behavior of particles were determined using laser light scattering and glass twin impinger, respectively. In addition, stability, ratio of beta sheets and morphology of antibody were analyzed using size exclusion chromatography, IR spectroscopy and electron microscopy, respectively. Particle properties and antibody stability were significantly improved in the presence of HPBCD. In addition, particle aerodynamic behavior, in terms of fine-particle fraction (FPF), enhanced up to 52.23%. Furthermore, antibody was better preserved not only during spray drying, but also during long-term storage. In contrast, application of BCD resulted in the formation of larger particles. Although trehalose caused inappropriate aerodynamic property, it efficiently decreased antibody aggregation. HPBCD is an efficient excipient for the development of inhalable protein formulations. In this regard, optimal particle property and antibody stability was obtained with proper combination of cyclodextrins and simple sugars, such as trehalose.

  14. Spray Characteristic of Multi-hole Injector for In-cylinder DI Gasoline Engine%缸内直喷汽油机多孔喷油器喷雾特性试验研究

    Institute of Scientific and Technical Information of China (English)

    尉庆国; 王艳华; 刘新华; 李波

    2012-01-01

    In order to study the spray characteristic of multi-hole injector on in-cylinder direct injection gasoline engine, the constant volume spray experimental device was built. The processes of free spray and impingement wall spray were shot under the conditions of different ambient pressure and injection pressure. The influences of wall distance and wall inclination on spray characteristic were analyzed. It was found that there existed a big difference of spray characteristic between the traditional swirl injector and the multi-hole injector. The spray cone angle of multi-hole injector was little influenced by ambient pressure. With the increase of ambient pressure, the spray penetration and spray cone angle first increased and then decreased. With the increase of injection pressure, the spray cone angle slightly increased. In the process of impingement wall spray, the contact areas between spray beam and wall were close under different ambient pressures. With the increase of wall distance, the spray height after wall impingement decreased step by step and fluctuated. With the increase of wall inclination, the summation of spray height increased. During this process, the spray radius after wall impingement was influenced by many factors and showed a complex variation. The above research provided the theoretical reference for multi-hole injector design and combustion chamber match.%为了研究缸内直喷汽油机多孔喷油器的喷雾特性,建立了定容喷雾试验装置,对不同环境压力和不同喷油压力条件下的自由喷雾和碰壁喷雾过程进行了拍摄,分析了壁面距离和壁面倾角对喷雾特性的影响.研究发现:多孔喷油器与传统的旋流式喷油器的喷雾特性存在较大差异.多孔喷油器的喷雾锥角受环境压力影响较小;随着环境背压的增大,贯穿距离和喷雾锥角呈现先增大后减小的特点;喷雾锥角随着喷射压力的提高略有增加.在碰壁喷雾发展过程中,不同环

  15. Spray solidification of nuclear waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-08-01

    The spray calciner is a relatively simple machine. Operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of high-level and mixed high- and intermediate-level liquid wastes has been demonstrated. Waste concentrations of from near infinite dilution to less than 225 liters per tonne of fuel are calcinable. Wastes have been calcined containing over 2M sodium. Feed concentration, composition, and flowrate can vary rapidly by over a factor of two without requiring operator action. Wastes containing mainly sodium cations can be spray calcined by addition of finely divided silica to the feedstock. A remotely replaceable atomizing nozzle has been developed for use in plant-scale equipment. Calciner capacity of over 75 l/h has been demonstrated in pilot-scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. The volume of recycle required from the effluent treatment system is very small. Vibrator action maintains the calcine holdup in the calciner at less than 1 kg. Successful remote operation and maintenance of a heated-wall spray calciner have been demonstrated while processing high-level waste. Radionuclide volatilization was acceptably low

  16. Transdermal Spray in Hormone Delivery

    African Journals Online (AJOL)

    market for the delivery system and ongoing development of transdermal sprays for hormone ... (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts ... patches and gels have been very popular owing ... This product was developed for ... In a safety announcement, the US Food and.

  17. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  18. Shoulder impingement syndrome: diagnostic accuracy of magnetic resonance imaging and radiographic signs

    International Nuclear Information System (INIS)

    Williamson, M.P.; Chandnani, V.P.; Baird, D.E.; Deberardino, T.M.; Swenson, G.W.; Hansen, M.F.

    1994-01-01

    Shoulder impingement syndrome is commonly encountered in orthopaedics. In a blinded retrospective study, magnetic resonance imaging and roentgenographic signs in 41 patients with clinical signs of impingement syndrome were compared with 40 control patients. Statistically significant differences between the groups included the absence of subacromial fat, as well as the presence of a supraspinatus tear, subacromial osteophytes, and a decreased coracohumeral distance. Other signs reported to occur in patients with impingement syndrome did not vary significantly in the population studied. 20 refs., 12 figs

  19. Sampling designs and methods for estimating fish-impingement losses at cooling-water intakes

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.

    1977-01-01

    Several systems for estimating fish impingement at power plant cooling-water intakes are compared to determine the most statistically efficient sampling designs and methods. Compared to a simple random sampling scheme the stratified systematic random sampling scheme, the systematic random sampling scheme, and the stratified random sampling scheme yield higher efficiencies and better estimators for the parameters in two models of fish impingement as a time-series process. Mathematical results and illustrative examples of the applications of the sampling schemes to simulated and real data are given. Some sampling designs applicable to fish-impingement studies are presented in appendixes

  20. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    International Nuclear Information System (INIS)

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-01-01

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented

  1. Study of Spray Disintegration in Accelerating Flow Fields

    Science.gov (United States)

    Nurick, W. H.

    1972-01-01

    An analytical and experimental investigation was conducted to perform "proof of principlem experiments to establish the effects of propellant combustion gas velocity on propella'nt atomization characteristics. The propellants were gaseous oxygen (GOX) and Shell Wax 270. The fuel was thus the same fluid used in earlier primary cold-flow atomization studies using the frozen wax method. Experiments were conducted over a range in L* (30 to 160 inches) at two contraction ratios (2 and 6). Characteristic exhaust velocity (c*) efficiencies varied from SO to 90 percent. The hot fire experimental performance characteristics at a contraction ratio of 6.0 in conjunction with analytical predictions from the drovlet heat-up version of the Distributed Energy Release (DER) combustion computer proDam showed that the apparent initial dropsize compared well with cold-flow predictions (if adjusted for the gas velocity effects). The results also compared very well with the trend in perfomnce as predicted with the model. significant propellant wall impingement at the contraction ratio of 2.0 precluded complete evaluation of the effect of gross changes in combustion gas velocity on spray dropsize.

  2. Analysis of factors influencing the impingement of threadfin shad (Dorosoma pretenense) at power plants in the southeastern United States

    International Nuclear Information System (INIS)

    Loar, J.M.; Griffith, J.S.; Kumar, K.D.

    1977-01-01

    Data on intake design and location, plant operating procedures, water quality, numbers of fish impinged, and sampling procedures were analyzed for 27 fossil-fueled and 5 nuclear power plants located on inland waters in the southeastern United States. Small (less than 9 cm) clupeids, especially threadfin shad (Dorosoma pretenense), comprised the majority of the fish impinged at these facilities. The parameter that was most strongly associated with shad impingement was water temperature. Maximum impingement rates occurred during the winter when intake temperatures dropped below 10 0 C. Analyses of differences in impingement rates between plants failed to adequately demonstrate that the magnitude of impingement at a particular plant was the result of any site-specific characteristics associated with intake design or location. High approach velocities at the traveling screens did not necessarily result in high levels of impingement. Results obtained from inter-unit comparisons at several plants indicate that unit and screen differences do exist, but it is unclear from existing data whether or not such inter-unit differences determine the magnitude of impingement losses or merely affect the distribution of impinged fish at a given intake structure. Recommendations for monitoring fish impingement include the identification of impinged fish by species, collection of data on water temperatures and various plant operational parameters, periodic analyses of localized velocity regimes near the intake, and frequent estimates of the relative density of the fish population in the vicinity of the intake

  3. Prevalence of Cam Morphology in Females with Femoroacetabular Impingement

    Directory of Open Access Journals (Sweden)

    David M Levy

    2015-12-01

    Full Text Available Cam and pincer are two common morphologies responsible for femoroacetabular impingement. Previous literature has reported that cam deformity is predominantly a male morphology, while being significantly less common in females. The purpose of this study was to determine the prevalence of cam morphology in female subjects diagnosed with symptomatic FAI. All females presenting to the senior author’s clinic diagnosed with symptomatic FAI between December 2006 and Cam and pincer are two common morphologies responsible for femoroacetabular impingement. Previous literature has reported that cam deformity is predominantly a male morphology, while being significantly less common in females. Cam morphology is commonly assessed with the alpha angle, measured on radiographs. The purpose of this study was to determine the prevalence of cam morphology utilizing the alpha angle in female subjects diagnosed with symptomatic FAI. All females presenting to the senior author’s clinic diagnosed with symptomatic FAI between December 2006 and January 2013 were retrospectively reviewed. Alpha (α angles were measured on AP (anteroposterior and lateral (Dunn 90°, cross-table lateral, and/or frog-leg lateral plain radiographs by two blinded physicians, and the largest measured angle was used. Using Gosvig et al.’s classification, alpha angle was characterized as (pathologic > 57°, borderline (51-56°, subtle (46-50°, very subtle (43-45°, or normal (≤42°. Three hundred and ninety-one patients (438 hips were analyzed (age 36.2 ± 12.3 years. Among the hips included, 35.6% were normal, 14.6% pathologic, 15.1% borderline, 14.6% subtle, and 20.1% very subtle. There was no correlation between alpha angle and patient age (R = 0.17 or body mass index (BMI (R = 0.05. The intraclass correlation coefficient (ICC for α-angle measurements was 0.84. Sixty-four percent of females in this cohort had an alpha angle > 42°. Subtle cam deformity plays a significant role in

  4. Anterolateral ankle impingement: findings and diagnostic accuracy with ultrasound imaging

    International Nuclear Information System (INIS)

    McCarthy, C.L.; Wilson, D.J.; Coltman, T.P.

    2008-01-01

    The objective was to evaluate the findings and diagnostic accuracy of ultrasound in antero-lateral ankle impingement (ALI) with clinical and arthroscopic correlation. Seventeen elite footballers with chronic ankle pain were referred for ultrasound with a clinical diagnosis of ALI (n = 8) or a control condition (n = 9; lateral mechanical instability, osteochondral defect, intra-articular bodies and osteoarthritis). Ultrasound examination included the antero-lateral gutter for abnormal synovial tissue (synovitic lesion), lateral ligament integrity, tibiotalar joint and osseous spurs of the distal tibia and talus. Ultrasound findings were correlated with subsequent arthroscopic appearance. Ultrasound examination detected a synovitic mass in the antero-lateral gutter in all 8 footballers with clinical ALI (100%) and in 2 patients with a control diagnosis (22%). Arthroscopic correlation of antero-lateral synovitis and fibrosis was present in all 10 cases (100%). The synovitic lesion was seen at ultrasound as a nodular soft tissue mass of mixed echogenicity within the antero-lateral gutter, which extruded anteriorly with manual compression of the distal fibula against the tibia. Increased blood supply was detected using power Doppler imaging in only 1 patient. The synovitic lesion measured >10 mm in its maximum dimension in 7 footballers with clinical ALI and <10 mm in the control group. Additional ultrasound findings in patients with abnormal antero-lateral synovial tissue included an anterior talofibular ligament injury in all patients (n = 10), a tibiotalar joint effusion (n = 6) and osseous spurs (n = 4). Antero-lateral synovitic tissue was accurately identified at ultrasound in the absence of an effusion (n = 4). No synovitic lesion was detected at ultrasound or arthroscopy in the remaining 7 patients with a control diagnosis. Ultrasound is accurate in detecting synovitic lesions within the antero-lateral gutter, demonstrating associated ligamentous injuries and in

  5. Impact resistance cryogenic bunker fuel tanks

    NARCIS (Netherlands)

    Voormeeren, L.O.; Atli-Veltin, B.; Vredeveldt, A.W.

    2014-01-01

    The increasing use of liquefied natural gas (LNG) as bunker fuel in ships, calls for an elaborate study regarding the risks involved. One particular issue is the vulnerability of cryogenic LNG storage tanks with respect to impact loadings, such as ship collisions and dropped objects. This requires

  6. The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD

    Science.gov (United States)

    Thienel, Lee; Stouffer, Chuck

    1995-09-01

    This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

  7. Nuclear heat sources for cryogenic refrigerator applications

    International Nuclear Information System (INIS)

    Raab, B.; Schock, A.; King, W.G.; Kline, T.; Russo, F.A.

    1975-01-01

    Spacecraft cryogenic refrigerators require thermal inputs on the order of 1000 W. First, the characteristics of solar-electric and radioisotope heat source systems for supplying this thermal input are compared. Then the design of a 238 Pu heat source for this application is described, and equipment for shipping and handling the heat source is discussed. (LCL)

  8. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  9. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  10. Comparison of cryogenic low-pass filters

    Science.gov (United States)

    Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  11. Comparison of cryogenic low-pass filters.

    Science.gov (United States)

    Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T

    2017-11-01

    Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.

  12. Cryogenic refrigeration for cold neutron sources

    International Nuclear Information System (INIS)

    Gistau-Baguer, Guy

    1998-01-01

    Neutron moderation by means of a fluid at cryogenic temperature is a very interesting way to obtain cold neutrons. Today, a number of nuclear research reactors are using this technology. This paper deals with thermodynamics and technology which are used for cooling Cold Neutron Sources

  13. Cryogenic Fuel Tank Draining Analysis Model

    Science.gov (United States)

    Greer, Donald

    1999-01-01

    One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

  14. Cryogenic Filters for RFI Mitigation in Radioastronomy

    OpenAIRE

    Tuccari, G.; Caddemi, A.; Barbarino, S.; Nicotra, G.; Consoli, F.; Schilliro, F.; Catalfamo, F.

    2005-01-01

    RFI mitigation in Radioastronomy can be achieved adopting cryogenic filters in appropriate typologies. A study has been conducted in L, C and X band with the evaluation of the filter architecture in copper, with theoretical estimation, computer simulations, prototypes realization, laboratory measurements. Such work has been preliminary to the realization of HTS samples with the purpose of a similar complete characterization approach.

  15. Cryogenics Testbed Laboratory Flange Baseline Configuration

    Science.gov (United States)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  16. Cryogenic Liquid Fluctuations in a Motionless Tank

    Directory of Open Access Journals (Sweden)

    Min Vin Ai

    2014-01-01

    Full Text Available The article considers approximate numerical methods to determine own frequencies of cryogenic liquid fluctuations stratification of which changes under any law. The increasing use of cryogenic liquids, liquefied gas, superfluid solutions, and slush liquids in modern mechanical engineering define relevance of a perspective. Interest in the considered problem is also caused by the fact that in cryogenic liquid along with superficial waves there can be internal wave movements penetrating all thickness of liquid in a tank and therefore playing important role in many hydro-dynamic processes.This article considers problems of determining the own frequencies of cryogenic liquid fluctuations, partially filling cylindrical tank of any cross section. It is supposed that the change of the liquid particles density due to thermal stratification of entire liquid mass can proceed continuously under any law. To solve numerically a similar problem, a method of trigonometric series (MTS and a method of final elements (MFE were used. When using the MTS method the unknown solution and variable coefficients of the equation were presented in the form of trigonometric series. Further, after multiplication of series and the subsequent mathematical operations the frequency equation was obtained. Bubnov-Galyorkin's approach was used to obtain solutions by the MFE method. Reliability of received numerical results is confirmed by coincidence with frequency results calculated by analytical formulas of solutions of differential equations with constant frequency of buoyancy.

  17. A glyphosate-based pesticide impinges on transcription

    International Nuclear Information System (INIS)

    Marc, Julie; Le Breton, Magali; Cormier, Patrick; Morales, Julia; Belle, Robert; Mulner-Lorillon, Odile

    2005-01-01

    Widely spread chemicals used for human benefits may exert adverse effects on health or the environment, the identification of which are a major challenge. The early development of the sea urchin constitutes an appropriate model for the identification of undesirable cellular and molecular targets of pollutants. The widespread glyphosate-based pesticide affected sea urchin development by impeding the hatching process at millimolar range concentration of glyphosate. Glyphosate, the active herbicide ingredient of Roundup, by itself delayed hatching as judged from the comparable effect of different commercial glyphosate-based pesticides and from the effect of pure glyphosate addition to a threshold concentration of Roundup. The surfactant polyoxyethylene amine (POEA), the major component of commercial Roundup, was found to be highly toxic to the embryos when tested alone and therefore could contribute to the inhibition of hatching. Hatching, a landmark of early development, is a transcription-dependent process. Correlatively, the herbicide inhibited the global transcription, which follows fertilization at the 16-cell stage. Transcription inhibition was dose-dependent in the millimolar glyphosate range concentration. A 1257-bp fragment of the hatching enzyme transcript from Sphaerechinus granularis was cloned and sequenced; its transcription was delayed by 2 h in the pesticide-treated embryos. Because transcription is a fundamental basic biological process, the pesticide may be of health concern by inhalation near herbicide spraying at a concentration 25 times the adverse transcription concentration in the sprayed microdroplets

  18. Cryogenics system: strategy to achieve nominal performance and reliable operation

    CERN Document Server

    Bremer, J; Casas, J; Claudet, S; Delikaris, D; Delruelle, N; Ferlin, G; Fluder, C; Perin, A; Perinic, G; Pezzetti, M; Pirotte, O; Tavian, L; Wagner, U

    2012-01-01

    During the LHC operation in 2010 and 2011, the cryogenic system has achieved an availability level fulfilling the overall requirement. To reach this level, the cryogenic system has profited like many other beam-dependent systems from the reduced beam parameters. Therefore, impacts of some failures occurred during the LHC operation were mitigated by using the overcapacity margin, the existing built-in redundancy in between adjacent sector cryogenic plants and the "cannibalization" of spares on two idle cryogenic plants. These two first years of operation were also crucial to identify the weaknesses of the present cryogenic maintenance plan and new issues like SEUs. After the LS1, nominal beam parameters are expected and the mitigated measures will be less effective or not applicable at all. Consequently, a consolidation plan to improve the MTBF and the MTTR of the LHC cryogenic system is under definition. Concerning shutdown periods, the present cryogenic sectorization imposes some restrictions in the type of ...

  19. Cryogenic phonon-mediated particle detectors for dark matter searches and neutrino physics

    International Nuclear Information System (INIS)

    Lee, A.T.J.

    1993-01-01

    This work describes the development of cryogenic phonon-mediated particle detectors for dark matter searches and neutrino detection. The detectors described in this work employ transition-edge sensors, which consist of a meander pattern of thin-film superconductor on a silicon substrate. When phonons from a particle interaction in the crystal impinge on the sensor in sufficient density, sections of the line are driven normal and provide a measurable resistance. A large fraction of the thesis describes work to fully characterize the phonon flux from particle interactions. In one set of experiments, ∼25% of the phonon energy from 59.54 keV gamma-ray events was found to propagate open-quotes ballisticallyclose quotes (i.e., with little or no scattering) across a 300 μm thick crystal of silicon. Gamma-rays produce electron recoils in silicon whereas with dark matter and neutrino experiments nuclear recoils are also of interest. Two experiments were done to measure the ballistic component that arises from neutron events, which interact via nuclear recoil. Measurements indicate that the fraction of energy that is ballistic is ∼50% greater for nuclear recoils than for electron recoils. Two novel detectors were fabricated and tested in an attempt to improve the sensitivity of the detectors. In the first detector, relatively large Al pads were linked by 2 μm wide Ti lines in a meander pattern. Phonons impinging on the Al pads create quasiparticles which diffuse in the Al pad until they are trapped in the lower gap Tl links. The sensitivity of the detector was found to be increased by this open-quotes funnelingclose quotes action. A second detector was built that incorporates 0.25 μm wide lines defined by direct electron-beam exposure of the photoresist. If the superconducting line is sufficiently narrow, single phonons are capable of driving sections normal which should improve the sensitivity and linearity of the detector

  20. Diagnostic accuracy of clinical tests for the diagnosis of hip femoroacetabular impingement/labral tear

    DEFF Research Database (Denmark)

    Reiman, M P; Goode, A P; Cook, C E

    2015-01-01

    BACKGROUND: Surgery for hip femoroacetabular impingement/acetabular labral tear (FAI/ALT) is exponentially increasing despite lacking investigation of the accuracy of various diagnostic measures. Useful clinical utility of these measures is necessary to support diagnostic imaging and subsequent...

  1. Important clinical descriptors to include in the examination and assessment of patients with femoroacetabular impingement syndrome

    DEFF Research Database (Denmark)

    Reiman, M P; Thorborg, K; Covington, K

    2017-01-01

    PURPOSE: Determine which examination findings are key clinical descriptors of femoroacetabular impingement syndrome (FAIS) through use of an international, multi-disciplinary expert panel. METHODS: A three-round Delphi survey utilizing an international, multi-disciplinary expert panel operationally...

  2. Experimental and Numerical Study of Twin Underexpanded Impinging Jets

    Institute of Scientific and Technical Information of China (English)

    Minoru Yaga; Minoru Okano; Masumi Tamashiro; Kenyu Oyakawa

    2003-01-01

    In this paper, the dual underexpanded impinging jets are experimentally and numerically studied. The experiments were performed by measuring the unsteady and averaged wall static pressures and by visualizing density fields using schlieren method. Numerical calculations were also conducted by solving unsteady three dimensional compressible Navier-Stokes equations with Baldwin-Lomax turbulence model. The main parameters for the dual jets are the non-dimensional distance between the two nozzle centers H/D covering 1.5, 2.0, the nozzle to plate separation L/D 2.0, 3.0,4.0 and 5.0 and the pressure ratio defined by Po/Pb 1.0~6.0, where D is the diameter of each nozzle exit, Po the stagnation pressure and Pb the back pressure. It is found that the agreement between the experiments and the calculations is good. The fountain flow at the middle of the two jets is observed both in the experiments and the calculation. According to FFT analysis of the experiments for the twin jets,relatively low frequency (up to 5 kHz) is dominant for H/D =1.5, L/D =2.0 and pressure ratio Po/Pb =3.0 and 5.0,which is confirmed by the experiments.

  3. Magnetic resonance imaging findings in anterolateral impingement of the ankle

    International Nuclear Information System (INIS)

    Jordan, L.K. III.; Cooperman, A.E.; Helms, C.A.; Speer, K.P.

    2000-01-01

    Objective. To demonstrate the MR imaging findings of anterolateral impingement (ALI) of the ankle.Design and patients. Nine patients with a history of ankle inversion injury and chronic lateral ankle pain were imaged with MR imaging, and the findings correlated with the results of arthroscopy. Three additional patients with clinically suspected ALI of the ankle were also included. Ankle MR imaging studies from 20 control patients in whom ALI was not suspected clinically were examined for similar findings to the patient group.Results. MR imaging findings in the patients with ALI included a soft tissue signal mass in the anterolateral gutter of the ankle in 12 of 12 (100%) cases, corresponding to the synovial hypertrophy and soft tissue mass found at arthroscopy in the nine patients who underwent arthroscopy. Disruption, attenuation, or marked thickening of the anterior talofibular ligament was seen in all cases. Additional findings included signs of synovial hypertrophy elsewhere in the tibiotalar joint in seven of 12 patients (58%) and bony and cartilaginous injuries to the tibiotalar joint in five of 12 (42%). None of the control patients demonstrated MR imaging evidence of a soft tissue mass in the anterolateral gutter.Conclusions. ALI of the ankle is a common cause for chronic lateral ankle pain. It has been well described in the orthopedic literature but its imaging findings have not been clearly elucidated. The MR imaging findings, along with the appropriate clinical history, can be used to direct arthroscopic examination and subsequent debridement. (orig.)

  4. Impaired hip muscle strength in patients with femoroacetabular impingement syndrome.

    Science.gov (United States)

    Kierkegaard, Signe; Mechlenburg, Inger; Lund, Bent; Søballe, Kjeld; Dalgas, Ulrik

    2017-12-01

    Patients with femoroacetabular impingement (FAI) experience hip pain as well as decreased function and lowered quality of life. The aim was to compare maximal isometric and isokinetic muscle strength (MVC) during hip flexion and extension and rate of force development (RFD) during extension between patients with FAI and a matched reference group. Secondary, the aim was to compare patient hips and subgroups defined by gender and age as well as to investigate associations between hip muscle strength and self-reported outcomes. Design Cross-sectional, comparative study Methods Sixty patients (36±9 years, 63% females) and 30 age and gender matched reference persons underwent MVC tests in an isokinetic dynamometer. During hip flexion and extension, patients' affected hip showed a strength deficit of 15-21% (phip of the patients was significantly weaker than their contralateral hip. RFD was significantly decreased for both patient hips compared to the reference group (phip muscle strength. Patients with FAI demonstrate decreased hip flexion and extension strength when compared to (1) reference persons and (2) their contralateral hip. There seems to be a gender specific affection which should be investigated further and addressed when planning training protocols. Furthermore, self-reported measures were associated with isometric muscle strength, which underlines the clinical importance of the reduced muscle strength. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. [Effectiveness of physiotherapy on painful shoulder impingement syndrome].

    Science.gov (United States)

    Gomora-García, Mónica; Rojano-Mejía, David; Solis-Hernández, José Luis; Escamilla-Chávez, Carolina

    2016-01-01

    Painful shoulder impingement syndrome is one of the first reasons for care in rehabilitation centres. As the evidence regarding the effectiveness of physical measures as adjuvant treatment is limited, the aim of this study was to determine the effectiveness of physiotherapy on shoulder pain. A retrospective and analytical study was conducted using the medical records of patients with shoulder pain who attended in a rehabilitation centre from October 2010 to September 2011. The demographic and clinical data were collected, and the clinical improvement was determined as: complete, incomplete, or no improvement. Chi squared was used to determine whether there were differences between the different modalities of physiotherapy, as well as the level of improvement. The study included a total of 181 patients, with a mean age of 54.3 years, and a mean of 4.6 months of onset of pain. The physiotherapy treatments included: warm compresses plus interferential current (60.2%), and warm compresses plus ultrasound (17.1%). Just over half (53.6%) obtained a moderate recovery, 36.4% slight improvement, and 9.9% no improvement. No significant differences were found between the different forms of therapy. The supervised rehabilitation program consists of 9 sessions of physiotherapy. A functional improvement of 90% was obtained, without finding any statistical differences between the therapies used. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  6. Herniation pits and their renaissance in association with femoroacetabular impingement

    International Nuclear Information System (INIS)

    Panzer, Stephonie; Augat, P.; Paracelsus Univ. Salzburg; Scheidler, J.

    2010-01-01

    Hernitation pits (HPs) of the femoral neck were first described in 1982. The purpose of this paper is to summarize the information concerning HPs published since then and to show their association with the diagnosis of femoroacetabular impingement (FAI) which has occurred within the last years. HPs are predominantly located at the anterior-superior femoral neck with a typical radiological appearance, which makes it possible to differentiate them from the numerous differential diagnoses mentioned. In the early publications HPs were described as a separate entity, while recent studies increasingly assign them to intra-osseous ganglia. In contrast to the early publications depicting HPs as an incidental finding, they are currently mainly mentioned in association with FAI and at the same time are partly considered to be a radiological indicator of FAI. In summary, HPs should always be recognized and documented because they may contribute to the diagnosis of FAI which is essential for preventing or delaying osteoarthritis of the hip joint in the early stage. (orig.)

  7. Hip arthroscopy versus open surgical dislocation for femoroacetabular impingement

    Science.gov (United States)

    Zhang, Dagang; Chen, Long; Wang, Guanglin

    2016-01-01

    Abstract Background: This meta-analysis aims to evaluate the efficacy and safety of hip arthroscopy versus open surgical dislocation for treating femoroacetabular impingement (FAI) through published clinical trials. Methods: We conducted a comprehensive literature search using PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials databases for relevant studies on hip arthroscopy and open surgical dislocation as treatment options for FAI. Results: Compared with open surgical dislocation, hip arthroscopy resulted in significantly higher Nonarthritic Hip Scores (NAHS) at 3- and 12-month follow-ups, a significant improvement in NAHS from preoperation to 3 months postoperation, and a significantly lower reoperation rate. Open surgical dislocation resulted in a significantly improved alpha angle by the Dunn view in patients with cam osteoplasty from preoperation to postoperation, compared with hip arthroscopy. This meta-analysis demonstrated no significant differences in the modified Harris Hip Score, Hip Outcome Score-Activities of Daily Living, or Hip Outcome Score-Sport Specific Subscale at 12 months of follow-up, or in complications (including nerve damage, wound infection, and wound dehiscence). Conclusion: Hip arthroscopy resulted in higher NAHS and lower reoperation rates, but had less improvement in alpha angle in patients with cam osteoplasty, than open surgical dislocation. PMID:27741133

  8. A Novel Association between Femoroacetabular Impingement and Anterior Knee Pain.

    Science.gov (United States)

    Sanchis-Alfonso, Vicente; Tey, Marc; Monllau, Joan Carles

    2015-01-01

    Background. For a long time it has been accepted that the main problem in the anterior knee pain (AKP) patient is in the patella. Currently, literature supports the link between abnormal hip function and AKP. Objective. Our objective is to investigate if Cam femoroacetabular impingement (FAI) resolution is related to the outcome in pain and disability in patients with chronic AKP recalcitrant to conservative treatment associated with Cam FAI. Material and Methods. A retrospective study on 7 patients with chronic AKP associated with FAI type Cam was performed. Knee and hip pain were measured with the visual analogue scale (VAS), knee disability with the Kujala scale, and hip disability with the Nonarthritic Hip Score (NAHS). Results. The VAS knee pain score and VAS hip pain score had a significant improvement postoperatively. At final follow-up, there was significant improvement in all functional scores (Kujala score and NAHS). Conclusion. Our finding supports the link between Cam FAI and AKP in some young patients. Assessment of Cam FAI should be considered as a part of the physical examination of patients with AKP, mainly in cases with pain recalcitrant to conservative treatment.

  9. A Novel Association between Femoroacetabular Impingement and Anterior Knee Pain

    Directory of Open Access Journals (Sweden)

    Vicente Sanchis-Alfonso

    2015-01-01

    Full Text Available Background. For a long time it has been accepted that the main problem in the anterior knee pain (AKP patient is in the patella. Currently, literature supports the link between abnormal hip function and AKP. Objective. Our objective is to investigate if Cam femoroacetabular impingement (FAI resolution is related to the outcome in pain and disability in patients with chronic AKP recalcitrant to conservative treatment associated with Cam FAI. Material and Methods. A retrospective study on 7 patients with chronic AKP associated with FAI type Cam was performed. Knee and hip pain were measured with the visual analogue scale (VAS, knee disability with the Kujala scale, and hip disability with the Nonarthritic Hip Score (NAHS. Results. The VAS knee pain score and VAS hip pain score had a significant improvement postoperatively. At final follow-up, there was significant improvement in all functional scores (Kujala score and NAHS. Conclusion. Our finding supports the link between Cam FAI and AKP in some young patients. Assessment of Cam FAI should be considered as a part of the physical examination of patients with AKP, mainly in cases with pain recalcitrant to conservative treatment.

  10. Experiments and analyses on melt jet impingement during severe accidents

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Green, J.A.; Dinh, T.N.; Dong, W.

    1997-01-01

    Relocation of melt from the core region, during a nuclear reactor severe accident, presents the potential for erosion of the reactor pressure vessel (RPV) wall as a result of melt jet impingement. The extent of vessel erosion will depend upon a variety of parameters, including jet diameter, velocity, composition, superheat, angle of inclination, and the presence of an overlying water or melt pool. Experiments have been conducted at the Royal Institute of Technology Division of Nuclear Power Safety (RIT/NPS) which employ a variety of melt and pressure vessel simulant materials, such as water, salt-ice, Cerrobend alloy and molten salt. These experiments have revealed that the erosion depth of the vessel simulant in the jet stagnation zone can be adequately predicted by the Saito correlation, which is based on turbulent heat transfer, while initial erosion rates are seen to be in line with the laminar-stagnation-zone model. A transition between the laminar and turbulent regimes was realized in most cases and is attributed to the roughness of the surface in the eroded cavity formed

  11. Microstructural Effects and Properties of Non-line-of-Sight Coating Processing via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2017-08-01

    Plasma spray-physical vapor deposition (PS-PVD) is a unique processing method that bridges the gap between conventional thermal spray and vapor phase methods, and enables highly tailorable coatings composed of a variety of materials in thin, dense layers or columnar microstructures with modification of the processing conditions. The strengths of this processing technique are material and microstructural flexibility, deposition speed, and potential for non-line-of-sight (NLOS) capability by vaporization of the feedstock material. The NLOS capability of PS-PVD is investigated here using yttria-stabilized zirconia and gadolinium zirconate, which are materials of interest for turbine engine applications. PS-PVD coatings were applied to static cylindrical substrates approximately 6-19 mm in diameter to study the coating morphology as a function of angle. In addition, coatings were deposited on flat substrates under various impingement configurations. Impingement angle had significant effects on the deposition mode, and microscopy of coatings indicated that there was a shift in the deposition mode at approximately 90° from incidence on the cylindrical samples, which may indicate the onset of more turbulent flow and PVD-like growth. Coatings deposited at non-perpendicular angles exhibited a higher density and nearly a 2× improvement in erosion performance when compared to coatings deposited with the torch normal to the surface.

  12. Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement.

    OpenAIRE

    Terzieva, S; Donnelly, J; Ulevicius, V; Grinshpun, S A; Willeke, K; Stelma, G N; Brenner, K P

    1996-01-01

    Bacterial agents and cell components can be spread as bioaerosols, producing infections and asthmatic problems. This study compares four methods for the detection and enumeration of aerosolized bacteria collected in an AGI-30 impinger. Changes in the total and viable concentrations of Pseudomonas fluorescens in the collection fluid with respect to time of impingement were determined. Two direct microscopic methods (acridine orange and BacLight) and aerodynamic aerosol-size spectrometry (Aeros...

  13. Computed tomography assessment of hip joints in asymptomatic individuals in relation to femoroacetabular impingement.

    Science.gov (United States)

    Kang, Alan C L; Gooding, Andrew J; Coates, Mark H; Goh, Tony D; Armour, Paul; Rietveld, John

    2010-06-01

    Femoroacetabular impingement has become a well-recognized entity predisposing to acetabular labral tears and chondral damage, and subsequently development of osteoarthritis of the hip joint. In the authors' experience, it is common to see bony abnormalities predisposing to femoroacetabular impingement in the contralateral asymptomatic hips in patients with unilateral femoroacetabular impingement. This study was undertaken to investigate the prevalence of bony abnormalities predisposing to femoroacetabular impingement in asymptomatic individuals without exposing study participants to unnecessary radiation. Cross-sectional study; Level of evidence, 4. Fifty individuals (100 hip joints), ranging from 15 to 40 years of age, who were seen at a local hospital between March and August 2008 with abdominal trauma or nonspecific abdominal pain in whom abdominal computed tomography was performed to aid diagnosis were prospectively studied. These patients were not known to have any history of hip-related problems. Raw data from the abdominal computed tomography scan, performed on a 64-slice multidetector computed tomography scanner, were reformatted using bone algorithm into several different planes. Several measurements and observations of the hip joints were made in relation to femoroacetabular impingement. The 100 hip joints from 50 patients with no history of hip problems demonstrated that 39% of the joints (31% of female, 48% of male joints) have at least 1 morphologic aspect predisposing to femoroacetabular impingement. The majority (66% to 100% ) of the findings were bilateral; 33% of female and 52% of male asymptomatic participants in our study had at least 1 predisposing factor for femoroacetabular impingement in 1 or both of their hip joints. Based on the data collected from this study, the acetabular crossover sign had a 71% sensitivity and 88% specificity for detecting acetabular retroversion. Nonquantitative assessment of the femoral head at the anterior

  14. Liquid Transfer Cryogenic Test Facility: Initial hydrogen and nitrogen no-vent fill data

    Science.gov (United States)

    Moran, Matthew E.; Nyland, Ted W.; Papell, S. Stephen

    1990-01-01

    The Liquid Transfer Cryogenic Test Facility is a versatile testbed for ground-based cryogenic fluid storage, handling, and transfer experimentation. The test rig contains two well instrumented tanks, and a third interchangeable tank, designed to accommodate liquid nitrogen or liquid hydrogen testing. The internal tank volumes are approx. 18, 5, and 1.2 cu. ft. Tank pressures can be varied from 2 to 30 psia. Preliminary no vent fill tests with nitrogen and hydrogen were successfully completed with the test rig. Initial results indicate that no vent fills of nitrogen above 90 percent full are achievable using this test configuration, in a 1-g environment, and with inlet liquid temperatures as high as 143 R, and an average tank wall temperature of nearly 300 R. This inlet temperature corresponds to a saturation pressure of 19 psia for nitrogen. Hydrogen proved considerably more difficult to transfer between tanks without venting. The highest temperature conditions resulting in a fill level greater than 90 percent were with an inlet liquid temperature of 34 R, and an estimated tank wall temperature of slightly more than 100 R. Saturation pressure for hydrogen at this inlet temperature is 10 psia. All preliminary no vent fill tests were performed with a top mounted full cone nozzle for liquid injection. The nozzle produces a 120 degree conical droplet spray at a differential pressure of 10 psi. Pressure in the receiving tank was held to less than 30 psia for all tests.

  15. Subacromial impingement in patients with whiplash injury to the cervical spine

    Directory of Open Access Journals (Sweden)

    Giddins Grey E

    2008-06-01

    Full Text Available Abstract Background Impingement syndrome and shoulder pain have been reported to occur in a proportion of patients following whiplash injuries to the neck. In this study we aim to examine these findings to establish the association between subacromial impingement and whiplash injuries to the cervical spine. Methods and results We examined 220 patients who had presented to the senior author for a medico-legal report following a whiplash injury to the neck. All patients were assessed for clinical evidence of subacromial impingement. 56/220 patients (26% had developed shoulder pain following the injury; of these, 11/220 (5% had clinical evidence of impingement syndrome. Only 3/11 patients (27% had the diagnosis made prior to evaluation for their medico-legal report. In the majority, other clinicians had overlooked the diagnosis. The seatbelt shoulder was involved in 83% of cases (p Conclusion After a neck injury a significant proportion of patients present with shoulder pain, some of whom have treatable shoulder pathology such as impingement syndrome. The diagnosis is, however, frequently overlooked and shoulder pain is attributed to pain radiating from the neck resulting in long delays before treatment. It is important that this is appreciated and patients are specifically examined for signs of subacromial impingement after whiplash injuries to the neck. Direct seatbelt trauma to the shoulder is one possible explanation for its aetiology.

  16. Impingement and entrainment of fishes at the Savannah River Plant: an NPDES 316b demonstration

    International Nuclear Information System (INIS)

    McFarlane, R.W.; Frietsche, R.F.; Miracle, R.D.

    1978-02-01

    Environmental impacts of the Savannah River Plant's withdrawal of Savannah River water include impingement of juvenile and adult fish on trash removal screens, and entrainment of planktonic fish eggs and larval fish into the pumping system. The Savannah River Plant (SRP) has the capacity to pump 3.6 million cubic meters of water per day--25% of the minimal river discharge--for cooling and other purposes. Present removal is 7% of the actual river discharge. In the river and intake canals reside sixty-nine species of fishes. The species composition of the resident fish community of the intake canals is similar to the species composition in the river, but different in relative species abundance. The dominant sunfishes tend to reside in the canals for long periods and seldom go from canal to canal. The fish impingement rate at the plant ranks very low in comparison with electric power plants on inland waters. Thirty-five species of fishes were impinged during 1977. The average impingement rate of 7.3 fish per day extrapolates to 2,680 fish per year. No single species comprised more than 10% of the sample. The most commonly impinged species were bluespotted sunfish, warmouth, channel catfish, and yellow perch. The relative abundance of those species impinged deviates from their relative abundance in the canal fish population

  17. Reliability of impingement sampling designs: An example from the Indian Point station

    International Nuclear Information System (INIS)

    Mattson, M.T.; Waxman, J.B.; Watson, D.A.

    1988-01-01

    A 4-year data base (1976-1979) of daily fish impingement counts at the Indian Point electric power station on the Hudson River was used to compare the precision and reliability of three random-sampling designs: (1) simple random, (2) seasonally stratified, and (3) empirically stratified. The precision of daily impingement estimates improved logarithmically for each design as more days in the year were sampled. Simple random sampling was the least, and empirically stratified sampling was the most precise design, and the difference in precision between the two stratified designs was small. Computer-simulated sampling was used to estimate the reliability of the two stratified-random-sampling designs. A seasonally stratified sampling design was selected as the most appropriate reduced-sampling program for Indian Point station because: (1) reasonably precise and reliable impingement estimates were obtained using this design for all species combined and for eight common Hudson River fish by sampling only 30% of the days in a year (110 d); and (2) seasonal strata may be more precise and reliable than empirical strata if future changes in annual impingement patterns occur. The seasonally stratified design applied to the 1976-1983 Indian Point impingement data showed that selection of sampling dates based on daily species-specific impingement variability gave results that were more precise, but not more consistently reliable, than sampling allocations based on the variability of all fish species combined. 14 refs., 1 fig., 6 tabs

  18. Sprays and Cartan projective connections

    Science.gov (United States)

    Saunders, D. J.

    2004-10-01

    Around 80 years ago, several authors (for instance H. Weyl, T.Y. Thomas, J. Douglas and J.H.C. Whitehead) studied the projective geometry of paths, using the methods of tensor calculus. The principal object of study was a spray, namely a homogeneous second-order differential equation, or more generally a projective equivalence class of sprays. At around the same time, E. Cartan studied the same topic from a different point of view, by imagining a projective space attached to a manifold, or, more generally, attached to a `manifold of elements'; the infinitesimal `glue' may be interpreted in modern language as a Cartan projective connection on a principal bundle. This paper describes the geometrical relationship between these two points of view.

  19. Spray calcination of nuclear wastes

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-01-01

    The spray calciner is a relatively simple machine; operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of all commercial fuel reprocessor high-level liquid wastes and mixed high and intermediate-level wastes have been demonstrated. Wastes have been calcined containing over 2M sodium. Thus waste generated during plant startup and shutdown can be blended with normal waste and calcined. Spray calcination of ILLW has also been demonstrated. A remotely replaceable atomizing nozzle has been developed for use in plant scale equipment. The 6 mm (0.25 inch) orifice and ceramic tip offer freedom from plugging and erosion thus nozzle replacement should be required only after several months operation. Calciner capacity of over 75 l/h (20 gal/h) has been demonstrated in pilot scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. Since such a small amount of radionuclides escape the calciner the volume of recycle required from the effluent treatment system is very small. The noncondensable off-gas volume is also low, less than 0.5 m 3 /min (15 scfm) for a liquid feedrate of 75 l/hr (20 gal/hr). Calcine holdup in the calciner is less than 1 kg, thus the liquid feedrate is directly relatable to calcine flowrate. The calcine produced is very fine and reactive. Successful remote operation and maintenance of a heated wall spray calciner has been demonstrated while processing actual high-level waste. During these operations radionuclide volatilization from the calciner was acceptably low. 8 figures

  20. The 2016 Thermal Spray Roadmap

    Czech Academy of Sciences Publication Activity Database

    Vardelle, A.; Moreau, Ch.; Akedo, J.; Ashrafizadeh, H.; Berndt, C. C.; Berghaus-Oberste, J.; Boulos, M.; Brogan, J.; Bourtsalas, A.C.; Dolatabadi, A.; Dorfman, M.; Eden, T.J.; Fauchais, P.; Fisher, G.; Gaertner, F.; Gindrat, M.; Henne, R.; Hyland, M.; Irissou, E.; Jordan, E.H.; Khor, K.A.; Killinger, A.; Lau, Y.C.; Li, C.-J.; Li, L.; Longtin, J.; Markocsan, N.; Masset, P.J.; Matějíček, Jiří; Mauer, G.; McDonald, A.; Mostaghimi, J.; Sampath, S.; Schiller, G.; Shinoda, K.; Smith, M.F.; Syed, A.A.; Themelis, N.J.; Toma, F.-L.; Trelles, J.P.; Vassen, R.; Vuoristo, P.

    2016-01-01

    Roč. 25, č. 8 (2016), s. 1376-1440 ISSN 1059-9630 Institutional support: RVO:61389021 Keywords : anti-wear and anti-corrosion coatings * biomedical * electronics * energy generation * functional coatings * gas turbines * thermal spray processes Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://dx.doi.org/10.1007/s11666-016-0473-x

  1. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  2. Structure and temperature distribution of a stagnation-point Diesel spray premixed flame

    International Nuclear Information System (INIS)

    Lin, J.-C.; Lin, Ta-Hui

    2005-01-01

    We experimentally examine the flow and flame characteristics of a stagnation point premixed flame influenced by Diesel sprays. In the experiment, distributions of drop size, drop axial velocity and its fluctuation as well as the gas phase temperature are measured by using the phase-doppler particle analyzer and a thin thermocouple. As might be expected, similar to the gasoline spray flame, the partially prevaporized Diesel spray flame is composed of a weak blue flame zone, indicating the burning of methane fuel, and a strongly luminous zone containing many bright yellow lines showing the passages of burning Diesel drops. It is found that the axial temperature profiles at various radial positions consist of an upstream preheat region, a maximum temperature downstream of the blue flame and a downstream region with a declined temperature curve because of the heat loss to the quartz plate. The SMD of the drops increases from the upstream preheat region to a maximum near the blue flame and then decreases in the downstream burning zone. Along the axial position, the drops are decelerated in front of the flame but accelerated when passing through the blue flame. It is also interesting to note that the radial distributions of SMD and number density of drops in the upstream region are mainly influenced by small drops flowing outward, since the upstream vaporization of Diesel drops is very limited; while those in the downstream region should be influenced by both small drops flowing outward and Diesel drops burning. From the experimental observations, there are impinging and bouncing of Diesel drops downstream of the spray flame near the quartz plate, resulting in a small amount of soot and carbon deposits on the wall. These interesting phenomena will be reported in the near future

  3. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  4. 1994 Thermal spray industrial applications: Proceedings

    International Nuclear Information System (INIS)

    Berndt, C.C.; Sampath, S.

    1994-01-01

    The 7th National Thermal Spray Conference met on June 20--24, 1994, in Boston, Massachusetts. The conference was sponsored by the Thermal Spray Division of ASM International and co-sponsored by the American Welding Society, Deutscher Verband fur Schweisstechnik e.V., High Temperature Society of Japan, International Thermal Spray Association, and Japanese Thermal Spraying Society. The conference covered applications for automobiles, aerospace, petrochemicals, power generation, and biomedical needs. Materials included metals, ceramics, and composites with a broad range of process developments and diagnostics. Other sections included modeling and systems control; spray forming and reactive spraying; post treatment; process, structure and property relationships; mechanical properties; and testing, characterization and wear. One hundred and seventeen papers have been processed separately for inclusion on the data base

  5. Effectiveness of containment sprays in containment management

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.; Perez, S.E.; Lehner, J.R.

    1993-05-01

    A limited study has been performed assessing the effectiveness of containment sprays-to mitigate particular challenges which may occur during a severe accident. Certain aspects of three specific topics related to using sprays under severe accident conditions were investigated. The first was the effectiveness of sprays connected to an alternate water supple and pumping source because the actual containment spray pumps are inoperable. This situation could occur during a station blackout. The second topic concerned the adverse as well as beneficial effects of using containment sprays during severe accident scenario where the containment atmosphere contains substantial quantities of hydrogen along with steam. The third topic was the feasibility of using containment sprays to moderate the consequences of DCH

  6. Multiphysics modelling of the spray forming process

    International Nuclear Information System (INIS)

    Mi, J.; Grant, P.S.; Fritsching, U.; Belkessam, O.; Garmendia, I.; Landaberea, A.

    2008-01-01

    An integrated, multiphysics numerical model has been developed through the joint efforts of the University of Oxford (UK), University of Bremen (Germany) and Inasmet (Spain) to simulate the spray forming process. The integrated model consisted of four sub-models: (1) an atomization model simulating the fragmentation of a continuous liquid metal stream into droplet spray during gas atomization; (2) a droplet spray model simulating the droplet spray mass and enthalpy evolution in the gas flow field prior to deposition; (3) a droplet deposition model simulating droplet deposition, splashing and re-deposition behavior and the resulting preform shape and heat flow; and (4) a porosity model simulating the porosity distribution inside a spray formed ring preform. The model has been validated against experiments of the spray forming of large diameter IN718 Ni superalloy rings. The modelled preform shape, surface temperature and final porosity distribution showed good agreement with experimental measurements

  7. Methodological quality of systematic reviews addressing femoroacetabular impingement.

    Science.gov (United States)

    Kowalczuk, Marcin; Adamich, John; Simunovic, Nicole; Farrokhyar, Forough; Ayeni, Olufemi R

    2015-09-01

    As the body of literature on femoroacetabular impingement (FAI) continues to grow, clinicians turn to systematic reviews to remain current with the best available evidence. The quality of systematic reviews in the FAI literature is currently unknown. The goal of this study was to assess the quality of the reporting of systematic reviews addressing FAI over the last 11 years (2003-2014) and to identify the specific methodological shortcomings and strengths. A search of the electronic databases, MEDLINE, EMBASE and PubMed, was performed to identify relevant systematic reviews. Methodological quality was assessed by two reviewers using the revised assessment of multiple systematic reviews (R-AMSTAR) scoring tool. An intraclass correlation coefficient (ICC) with 95 % confidence intervals (CI) was used to determine agreement between reviewers on R-AMSTAR quality scores. A total of 22 systematic reviews were assessed for methodological quality. The mean consensus R-AMSTAR score across all studies was 26.7 out of 40.0, indicating fair methodological quality. An ICC of 0.931, 95 % CI 0.843-0.971 indicated excellent agreement between reviewers during the scoring process. The systematic reviews addressing FAI are generally of fair methodological quality. Use of tools such as the R-AMSTAR score or PRISMA guidelines while designing future systematic reviews can assist in eliminating methodological shortcomings identified in this review. These shortcomings need to be kept in mind by clinicians when applying the current literature to their patient populations and making treatment decisions. Systematic reviews of highest methodological quality should be used by clinicians when possible to answer clinical questions.

  8. A computational study of highly viscous impinging jets

    International Nuclear Information System (INIS)

    Silva, M.W.

    1998-11-01

    Two commercially-available computational fluid dynamics codes, FIDAP (Fluent, Inc., Lebanon, NH) and FLOW-3D (Flow Science, Inc., Los Alamos, NM), were used to simulate the landing region of jets of highly viscous fluids impinging on flat surfaces. The volume-of-fluid method was combined with finite difference and finite element approaches to predict the jet behavior. Several computational models with varying degrees of physical realism were developed, and the results were compared with experimental observations. In experiments, the jet exhibited several complex behaviors. As soon as it exited the nozzle, the jet began to neck down and become narrower. When it impacted the solid surface, the jet developed an instability near the impact point and buckled to the side. This buckling became a spiraling motion, and the jet spiraled about the impact point. As the jet spiraled around, a cone-shaped pile was build up which eventually became unstable and slumped to the side. While all of these behaviors were occurring, air bubbles, or voids, were being entrapped in the fluid pool. The results obtained from the FLOW-3D models more closely matched the behavior of real jets than the results obtained from /the FIDAP models. Most of the FLOW-3D models predicted all of the significant jet behaviors observed in experiments: necking, buckling, spiraling, slumping, and void entrapment. All of the FIDAP models predicted that the jet would buckle relatively far from the point of impact, whereas the experimentally observed jet behavior indicates that the jets buckle much nearer the impact point. Furthermore, it was shown that FIDAP is incapable of incorporating heat transfer effects into the model, making it unsuitable for this work

  9. Patient Satisfaction Reporting for the Treatment of Femoroacetabular Impingement.

    Science.gov (United States)

    Kahlenberg, Cynthia A; Nwachukwu, Benedict U; Schairer, William W; McCormick, Frank; Ranawat, Anil S

    2016-08-01

    The purpose of this study was to evaluate how patient satisfaction after surgical femoroacetabular impingement (FAI) treatment is measured and reported in the current evidence base. A review of the MEDLINE database was performed. Clinical outcome studies of FAI that reported a measure of patient satisfaction were included. Patient demographics, clinical outcome scores, and patient satisfaction measures were extracted. The NewCastle Ottawa Scale (NOS) was used to grade quality. Statistical analysis was primarily descriptive. Twenty-six studies met inclusion criteria; the mean NOS score among included studies was 5.7. Most studies were level 3 or 4 (n = 25, 96.1%). A 0 to 10 numeric scale, described by some studies as a visual analog scale, was the most commonly used method to assess satisfaction (n = 21; 80.8%), and mean reported scores ranged from 6.8 to 9.2 out of 10. Four studies (15.4%) used an ordinal scale, and 1 study (3.8%) used willingness to undergo surgery again as the measure of satisfaction. None of the included studies assessed preoperative satisfaction or patient expectation. Pooled cohort analysis was limited by significant overlapping study populations. Predictors of patients' satisfaction identified in included studies were presence of arthritis and postoperative outcome scores. Patient satisfaction was not uniformly assessed in the literature. Most studies used a 0- to 10-point satisfaction scale, but none distinguished between the process of care and the outcome of care. Although satisfaction scores were generally high, the quality of the methodologies in the studies that reported satisfaction was low, and the studies likely included overlapping patient populations. More work needs to be done to develop standardized ways for assessing patient satisfaction after arthroscopic hip surgery and other procedures in orthopaedic sports medicine. Level III, systematic review of Level III studies. Copyright © 2016 Arthroscopy Association of North

  10. Surgical criteria for femoroacetabular impingement syndrome: a scoping review.

    Science.gov (United States)

    Peters, Scott; Laing, Alisha; Emerson, Courtney; Mutchler, Kelsey; Joyce, Thomas; Thorborg, Kristian; Hölmich, Per; Reiman, Michael

    2017-11-01

    The purpose of this review was to analyse and report criteria used for open and arthroscopic surgical treatment of femoroacetabular impingement syndrome (FAIS). A librarian-assisted computer search of Medline, CINAHL and Embase for studies related to criterion for FAIS surgery was used in this study. Inclusion criteria included studies with the primary purpose of surgery or surgical outcomes for treatment of FAIS with and without labral tear, and reporting criteria for FAIS surgery. Diagnostic imaging was a criterion for surgery in 92% of the included studies, with alpha angle the most frequently reported (68% of studies) criterion. Reporting of symptoms was a criterion for surgery in 75%, and special tests a criterion in 70% of studies. Range-of-motion limitations were only a required criterion in 30%, only 12% of studies required intra-articular injection and 44% of studies described previously failed treatment (non-surgical or physiotherapist-led rehabilitation) as a criterion for surgery. Only 56% of included studies utilised the combination of symptoms, clinical signs and diagnostic imaging combined for diagnosis of FAIS as suggested by the Warwick Agreement on FAIS meeting. Diagnostic imaging evidence of FAIS was the most commonly reported criterion for surgery. Only 56% of included studies utilised the combination of symptoms, clinical signs and diagnostic imaging for diagnosis of FAIS as suggested by the Warwick Agreement on FAIS meeting, and only 44% of studies had failed non-surgical treatment (and 18% a failed trial of physiotherapy) as a criterion for surgery. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. A computational study of highly viscous impinging jets

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.W. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering

    1998-11-01

    Two commercially-available computational fluid dynamics codes, FIDAP (Fluent, Inc., Lebanon, NH) and FLOW-3D (Flow Science, Inc., Los Alamos, NM), were used to simulate the landing region of jets of highly viscous fluids impinging on flat surfaces. The volume-of-fluid method was combined with finite difference and finite element approaches to predict the jet behavior. Several computational models with varying degrees of physical realism were developed, and the results were compared with experimental observations. In experiments, the jet exhibited several complex behaviors. As soon as it exited the nozzle, the jet began to neck down and become narrower. When it impacted the solid surface, the jet developed an instability near the impact point and buckled to the side. This buckling became a spiraling motion, and the jet spiraled about the impact point. As the jet spiraled around, a cone-shaped pile was build up which eventually became unstable and slumped to the side. While all of these behaviors were occurring, air bubbles, or voids, were being entrapped in the fluid pool. The results obtained from the FLOW-3D models more closely matched the behavior of real jets than the results obtained from /the FIDAP models. Most of the FLOW-3D models predicted all of the significant jet behaviors observed in experiments: necking, buckling, spiraling, slumping, and void entrapment. All of the FIDAP models predicted that the jet would buckle relatively far from the point of impact, whereas the experimentally observed jet behavior indicates that the jets buckle much nearer the impact point. Furthermore, it was shown that FIDAP is incapable of incorporating heat transfer effects into the model, making it unsuitable for this work.

  12. Radiographic evidence of femoroacetabular impingement in athletes with athletic pubalgia.

    Science.gov (United States)

    Economopoulos, Kostas J; Milewski, Matthew D; Hanks, John B; Hart, Joseph M; Diduch, David R

    2014-03-01

    Two of the most common causes of groin pain in athletes are femoroacetabular impingement (FAI) and athletic pubalgia. An association between the 2 is apparent, but the prevalence of radiographic signs of FAI in patients undergoing athletic pubalgia surgery remains unknown. The purpose of this study was to determine the prevalence of radiologic signs of FAI in patients with athletic pubalgia. We hypothesized that patients with athletic pubalgia would have a high prevalence of underlying FAI. Case series. Level 4. A retrospective review of all patients evaluated at our institution with athletic pubalgia who underwent surgical treatment (ie, for sports hernia) from 1999 to 2011 was performed. The radiographs of patients with athletic pubalgia were reviewed for radiographic signs of FAI. Alpha angles were measured using frog-leg lateral radiographs. Pincer lesions were identified by measuring the lateral center-edge angle and identifying the presence of a "crossover" sign on anteroposterior radiographs. Phone follow-up was performed 2 years or more after the initial sports hernia surgery to evaluate recurrent symptoms. Forty-three patients underwent 56 athletic pubalgia surgeries. Radiographic evidence of FAI was identified in at least 1 hip in 37 of 43 patients (86%). Cam lesions were identified in 83.7% of the population; the alpha angle averaged 66.7° ± 17.9° for all hips. Pincer lesions were present in 28% of the hips. Eight patients had recurrent groin pain, 3 patients had revision athletic pubalgia surgery, and 1 had hip arthroscopy. The study demonstrates a high prevalence of radiographic FAI in patients with athletic pubalgia. Underlying FAI may be a cause of continued groin pain after athletic pubalgia surgery. Patients with athletic pubalgia should be evaluated closely for FAI.

  13. Water Impingement Erosion of Deep-Rolled Ti64

    Directory of Open Access Journals (Sweden)

    Dina Ma

    2015-08-01

    Full Text Available In this work, the Liquid Impingement Erosion (LIE performances of deep-rolling (DR treated and non-treated Ti64 were investigated. Various erosion stages, from the incubation to the terminal erosion stages, could be observed. A full factorial design of experiments was used to study the effect of DR process parameters (Feed Rate, Spindle Velocity, Number of Passes, Pressure on the residual stress distribution, microhardness and surface roughness of the treated Ti64 specimens. The DR-treated Ti64 specimens exhibited improved surface microhardness, surface roughness, and large magnitude of compressive residual stresses, which were attributed to the amount of cold work induced by the DR process. Although DR improved the mechanical properties of the Ti64, the results showed that the treatment has little or no effect on the LIE performance of Ti64 but different damage modes were observed in these two cases. Evolution of the erosion stages was described based on water-hammer pressure, stress waves, radial wall jetting, and hydraulic penetration modes. The initial erosion stages were mainly influenced by water-hammer pressure and stress waves, whereas the intermediate erosion stages were influenced by the combination of the four modes together. The final erosion stages contain the four modes, however the erosion was greatly driven by the radial jetting and hydraulic penetration modes, where more material was removed. The failure mechanism of the final stages of the LIE test of both DR-treated and non-treated Ti64 was characterized as fatigue fracture. However, a brittle fracture behavior was observed in the initial and intermediate erosion stages of the DR-treated Ti64, whereas a ductile fracture behavior was observed in the non-treated Ti64. This was concluded from the micrographs of the LIE damage through different erosion stages.

  14. An Overview of Spray Modeling With OpenNCC and its Application to Emissions Predictions of a LDI Combustor at High Pressure

    Science.gov (United States)

    Raju, M. S.

    2016-01-01

    The open national combustion code (Open- NCC) is developed with the aim of advancing the current multi-dimensional computational tools used in the design of advanced technology combustors. In this paper we provide an overview of the spray module, LSPRAY-V, developed as a part of this effort. The spray solver is mainly designed to predict the flow, thermal, and transport properties of a rapidly evaporating multi-component liquid spray. The modeling approach is applicable over a wide-range of evaporating conditions (normal, superheat, and supercritical). The modeling approach is based on several well-established atomization, vaporization, and wall/droplet impingement models. It facilitates large-scale combustor computations through the use of massively parallel computers with the ability to perform the computations on either structured & unstructured grids. The spray module has a multi-liquid and multi-injector capability, and can be used in the calculation of both steady and unsteady computations. We conclude the paper by providing the results for a reacting spray generated by a single injector element with 600 axially swept swirler vanes. It is a configuration based on the next-generation lean-direct injection (LDI) combustor concept. The results include comparisons for both combustor exit temperature and EINOX at three different fuel/air ratios.

  15. Development of cryogenic permanent magnet undulator

    International Nuclear Information System (INIS)

    Hara, Toru; Tanaka, Takashi; Shirasawa, Katsutoshi; Kitamura, Hideo; Bizen, Teruhiko; Seike, Takamitsu; Marechal, Xavier; Tsuru, Rieko; Iwaki, Daisuke

    2005-01-01

    A short period undulator increases not only the photon energy of undulator radiation, but also the brilliance due to its increased number of undulator periods. As a result, brilliant undulator radiation becomes available in the photon energy range, which is currently covered by wigglers. In order to develop a short period undulator, high performance magnets are indispensable and superconductive undulators have been actively investigated in recent years. In this paper, however, we propose a new approach, so called a cryogenic permanent magnet undulator using NdFeB magnets at the temperatures around 150 K. The current status of this cryogenic permanent magnet undulator development at SPring-8 is presented including the results of the magnetic field measurements on a prototype undulator. (author)

  16. ODH, oxygen deficiency hazard cryogenic analysis

    International Nuclear Information System (INIS)

    Augustynowicz, S.D.

    1994-01-01

    An oxygen deficiency exists when the concentration of oxygen, by volume, drops to a level at which atmosphere supplying respiratory protection must be provided. Since liquid cryogens can expand by factors of 700 (LN 2 ) to 850 (LH e ), the uncontrolled release into an enclosed space can easily cause an oxygen-deficient condition. An oxygen deficiency hazard (ODH) fatality rate per hour (OE) is defined as: OE = Σ N i P i F i , where N i = number of components, P i = probability of failure or operator error, and F i = fatality factor. ODHs range from open-quotes unclassifiedclose quotes (OE -9 1/h) to class 4, which is the most hazardous (OE>10 -1 1/h). For Superconducting Super Collider Laboratory (SSCL) buildings where cryogenic systems exist, failure rate, fatality factor, reduced oxygen ratio, and fresh air circulation are examined

  17. Cryogenic in situ microcompression testing of Sn

    International Nuclear Information System (INIS)

    Lupinacci, A.; Kacher, J.; Eilenberg, A.; Shapiro, A.A.; Hosemann, P.; Minor, A.M.

    2014-01-01

    Characterizing plasticity mechanisms below the ductile-to-brittle transition temperature is traditionally difficult to accomplish in a systematic fashion. Here, we use a new experimental setup to perform in situ cryogenic mechanical testing of pure Sn micropillars at room temperature and at −142 °C. Subsequent electron microscopy characterization of the micropillars shows a clear difference in the deformation mechanisms at room temperature and at cryogenic temperatures. At room temperature, the Sn micropillars deformed through dislocation plasticity, while at −142 °C they exhibited both higher strength and deformation twinning. Two different orientations were tested, a symmetric (1 0 0) orientation and a non-symmetric (4 5 ¯ 1) orientation. The deformation mechanisms were found to be the same for both orientations

  18. The Cryogenic Supervision System in NSRRC

    CERN Document Server

    Li, Hsing-Chieh; Chiou, Wen-Song; Hsiao, Feng-Zone; Tsai, Zong-Da

    2005-01-01

    The helium cryogenic system in NSRRC is a fully automatic PLC system using the Siemens SIMATIC 300 controller. Modularization in both hardware and software makes it easy in the program reading, the system modification and the problem debug. Based on the Laview program we had developed a supervision system taking advantage of the Internet technology to get system's real-time information in any place. The functions of this supervision system include the real-time data accessing with more than 300 digital/analog signals, the data restore, the history trend display, and the human machine interface. The data is accessed via a Profibus line connecting the PLC system and the supervision system with a maximum baud rate 1.5 Mbit/s. Due to this supervision system, it is easy to master the status of the cryogenic system within a short time and diagnose the problem.

  19. Characterization of titanium alloys for cryogenic applications

    International Nuclear Information System (INIS)

    Reytier, M.; Kircher, F.; Levesy, B.

    2002-01-01

    Titanium alloys are employed in the design of superconducting magnet support systems for their high mechanical strength associated with their low thermal conductivity. But their use requires a careful attention to their crack tolerance at cryogenic temperature. Measurements have been performed on two extra low interstitial materials (Ti-5Al-2.5Sn ELI and Ti-6Al-4V ELI) with different thickness and manufacturing process. The investigation includes the tensile properties at room and liquid helium temperatures using smooth and notched samples. Moreover, the fracture toughness has been determined at 4.2 K using Compact Tension specimens. The microstructure of the different alloys and the various fracture surfaces have also been studied. After a detailed description of the experimental procedures, practical engineering characteristics are given and a comparison of the different titanium alloys is proposed for cryogenic applications

  20. Hydrogen isotope separation by cryogenic distillation method

    International Nuclear Information System (INIS)

    Hayakawa, Nobuo; Mitsui, Jin

    1987-01-01

    Hydrogen isotope separation in fusion fuel cycle and tritium recovery from heavy water reactor are very important, and therefore the early establishment of these separation techniques are desired. The cryogenic distillation method in particular is promising for the separation of hydrogen isotope and the recovery of high concentrated tritium. The studies of hydrogen isotope separation by cryogenic distillation method have been carried out by using the experimental apparatus made for the first time in Japan. The separation of three components (H 2 -HD-D 2 ) under total reflux conditions was got by using the packing tower of 500 mm height. It was confirmed that the Height Equivalent Theoretical Plate (HETP) was 20 - 30 mm for the vapor's line velocity of 20 - 80 mm/s. (author)

  1. Cryogenic Insulation Standard Data and Methodologies Project

    Science.gov (United States)

    Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam

    2015-01-01

    Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system

  2. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  3. Test of a cryogenic helium pump

    International Nuclear Information System (INIS)

    Lue, J.W.; Miller, J.R.; Walstrom, P.L.; Herz, W.

    1981-01-01

    The design of a cryogenic helium pump for circulating liquid helium in a magnet and the design of a test loop for measuring the pump performance in terms of mass flow vs pump head at various pump speeds are described. A commercial cryogenic helium pump was tested successfully. Despite flaws in the demountable connections, the piston pump itself has performed satisfactorily. A helium pump of this type is suitable for the use of flowing supercritical helium through Internally Cooled Superconductor (ICS) magnets. It has pumped supercritical helium up to 7.5 atm with a pump head up to 2.8 atm. The maximum mass flow rate obtained was about 16 g/s. Performance of the pump was degraded at lower pumping speeds

  4. High field conditioning of cryogenic RF cavities

    International Nuclear Information System (INIS)

    Cole, M.; Debiak, T.; Lom, C.; Shephard, W.; Sredniawski, J.

    1993-01-01

    Space-based and other related accelerators have conditioning and operation requirements that are not found in most machines. The use of cryogenic copper, relatively poor vacuum, and limited power storage and operating time put unusual demands on the high-field conditioning process and present some concerns. Two CW cryogenic engineering model open-quotes sparkerclose quotes cavities have been fabricated and tested to fairly high field levels. Tests included initial and repeated conditioning as well as sustained RF operations. The two cavities were an engineering model TDL and an engineering model RFQ. Both cavities operated at 425 MHz. The DTL was conditioned to 46 MV/m at 100% duty factor (CW) at cryogenic temperature. This corresponds to a gap voltage of 433 kV and a real estate accelerating gradient (energy gain/total cavity length) of 6.97 MV/m. The authors believe this to be record performance for cryo CW operation. During cryo pulsed operation, the same cavity reached 48 MV/m with 200 μsec pulses at 0.5% DF. The RFQ was conditioned to 30 MV/m CW at cryo, 85 kV gap voltage. During a brief period of cryo pulsed operation, the RFQ operated at 46 MV/m, or 125 kV gap voltage. Reconditioning experiments were performed on both cavities and no problems were encountered. It should be noted that the vacuum levels were not very stringent during these tests and no special cleanliness or handling procedures were followed. The results of these tests indicate that cavities can run CW without difficulty at cryogenic temperatures at normal conservative field levels. Higher field operation may well be possible, and if better vacuums are used and more attention is paid to cleanliness, much higher fields may be attainable

  5. Uses of cryogenics in power industry

    Energy Technology Data Exchange (ETDEWEB)

    Jungnickel, H

    1975-05-01

    A review of the present and possible future uses of cryogenic engineering and applied superconductivity. The applications discussed cover: transport of natural gas, superconducting N/sub 2/-filled cable for 275 kV. Cable with Ni/Ti conductor, homopolar machines with dix-type superconducting field coils, and superconducting magnetic propulsion. Important references to original works from different countries describing the latest developments are given.

  6. Experiments with a cryogenic torsion balance

    International Nuclear Information System (INIS)

    Newman, R.D.

    1983-01-01

    The torsion balance is a remarkably capable instrument for the measurement of slowly varying exceedingly small forces; indeed its potential abilities are still largely untapped. The author outlines some of the virtues (and limitations) of the torsion balance, and presents a menu of gravitation-related experiments to which it may be applied. He discusses plans for developing torsion balances operating at cryogenic temperatures, and describes an experiment to search for anomalous long-range interactions associated with intrinsic spin. (Auth.)

  7. Strong, Ductile Rotor For Cryogenic Flowmeters

    Science.gov (United States)

    Royals, W. T.

    1993-01-01

    Improved magnetic flowmeter rotor resists cracking at cryogenic temperatures, yet provides adequate signal to magnetic pickup outside flowmeter housing. Consists mostly of stainless-steel alloy 347, which is ductile and strong at low temperatures. Small bead of stainless-steel alloy 410 welded in groove around circumference of round bar of stainless-steel alloy 347; then rotor machined from bar. Tips of rotor blades contain small amounts of magnetic alloy, and passage of tips detected.

  8. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  9. Thermally sprayed coatings: Aluminum on lead

    International Nuclear Information System (INIS)

    Usmani, S.; Czajkowski, C.J.; Zatorski, R.

    1999-01-01

    An experimental program to determine the feasibility of thermally spraying aluminum on a lead substrate was initiated in support of the accelerator production of tritium (APT) Project for the US Department of Energy. The program consisted of two distinct parts: (1) the characterization of the thermally sprayed coatings, including microhardness testing, effects of heating, and microstructure and porosity determinations, and (2) effects of mercury doping and heat treatments on the thermally sprayed composite. The project determined that aluminum could successfully be thermally sprayed onto the lead. The coatings had a dense microstructure, with a Vicker's Pyramid Hardness (VPH) of about 60, and a maximum porosity (found in strips on the samples) of 12%

  10. A breath of fresh air for cryogenics training

    CERN Multimedia

    HSE Unit

    2014-01-01

    Whether you work full-time in a cryogenic installation or are required to handle cryogenic substances temporarily, you need to have followed the appropriate safety training.   Photo: Christoph Balle. Two new training courses are now available in English and French at CERN: “Cryogenic Safety – Fundamentals” (at the Prévessin Training Centre) and “Cryogenic Safety – Helium Transfer” (at the Cryolab). The first covers the content of levels 1 and 2 of the old “Cryogenic Safety” course. The second is a completely new course for CERN: it covers specific aspects of the transfer of liquid helium, such as the evaporation process of helium and the associated risks to human health (asphyxia due to displacement of oxygen), the colour code for gas bottles, etc. These training modules have been rewritten in response to the increase in the number of projects involving cryogenics and following various related incident...

  11. Cryogenic system for TRISTAN superconducting RF cavities

    International Nuclear Information System (INIS)

    Hosoyama, K.; Hara, K.; Kabe, A.; Kojima, Y.; Ogitsu, T.; Sakamoto, Y.; Kawamura, S.; Matsumoto, K.

    1993-01-01

    A large cryogenic system has been designed, constructed and operated in the TRISTAN electron-positron collider at KEK for 508 MHz, 32x5-cell superconducting RF cavities. A 6.5 kW, 4.4 K helium refrigerator with 5 turbo-expanders on the ground level supplies liquid helium in parallel to the 16 cryostats in the TRISTAN tunnel through about 250 m long multichannel transfer line. Two 5-cell cavities are coupled together, enclosed in a cryostat and cooled by about 830 L pool boiling liquid helium. A liquid nitrogen circulation system with a turbo-expander has been adopted for 80 K radiation shields in the multichannel transfer line and the cryostats to reduce liquid nitrogen consumption and to increase the operation stability of the system. The cryogenic system has a total of about 18 000 hours of operating time from the first cool down test in August 1988 to November 1991. The design principle and outline of the cryogenic system and the operational experience are presented. (orig.)

  12. Influence of Thermal Cycling on Cryogenic Thermometers

    CERN Document Server

    Balle, C; Rieubland, Jean Michel; Suraci, A; Togny, F; Vauthier, N

    1999-01-01

    The stringent requirements on temperature control of the superconducting magnets for the Large Hadron Collider (LHC), impose that the cryogenic temperature sensors meet compelling demands such as long-term stability, radiation hardness, readout accuracy better than 5 mK at 1.8 K and compatibility with industrial control equipment. This paper presents the results concerning long-term stability of resistance temperature sensors submitted to cryogenic thermal cycles. For this task a simple test facility has been designed, constructed and put into operation for cycling simultaneously 115 cryogenic thermometers between 300 K and 4.2 K. A thermal cycle is set to last 71/4 hours: 3 hours for either cooling down or warming up the sensors and 1 respectively 1/4 hour at steady temperature conditions at each end of the temperature cycle. A Programmable Logic Controller (PLC) drives automatically this operation by reading 2 thermometers and actuating on 3 valves and 1 heater. The first thermal cycle was accomplished in a...

  13. Temperature Stratification in a Cryogenic Fuel Tank

    Science.gov (United States)

    Daigle, Matthew John; Smelyanskiy, Vadim; Boschee, Jacob; Foygel, Michael Gregory

    2013-01-01

    A reduced dynamical model describing temperature stratification effects driven by natural convection in a liquid hydrogen cryogenic fuel tank has been developed. It accounts for cryogenic propellant loading, storage, and unloading in the conditions of normal, increased, and micro- gravity. The model involves multiple horizontal control volumes in both liquid and ullage spaces. Temperature and velocity boundary layers at the tank walls are taken into account by using correlation relations. Heat exchange involving the tank wall is considered by means of the lumped-parameter method. By employing basic conservation laws, the model takes into consideration the major multi-phase mass and energy exchange processes involved, such as condensation-evaporation of the hydrogen, as well as flows of hydrogen liquid and vapor in the presence of pressurizing helium gas. The model involves a liquid hydrogen feed line and a tank ullage vent valve for pressure control. The temperature stratification effects are investigated, including in the presence of vent valve oscillations. A simulation of temperature stratification effects in a generic cryogenic tank has been implemented in Matlab and results are presented for various tank conditions.

  14. Cryogenic characterization of LEDs for space application

    Science.gov (United States)

    Carron, Jérôme; Philippon, Anne; How, Lip Sun; Delbergue, Audrey; Hassanzadeh, Sahar; Cillierre, David; Danto, Pascale; Boutillier, Mathieu

    2017-09-01

    In the frame of EUCLID project, the Calibration Unit of the VIS (VISible Imager) instrument must provide an accurate and well characterized light source for in-flight instrument calibration without noise when it is switched off. The Calibration Unit consists of a set of LEDs emitting at various wavelengths in the visible towards an integrating sphere. The sphere's output provides a uniform illumination over the entire focal plane. Nine references of LEDs from different manufacturers were selected, screened and qualified under cryogenic conditions. Testing this large quantity of samples led to the implementation of automated testing equipment with complete in-situ monitoring of optoelectronic parameters as well as temperature and vacuum values. All the electrical and optical parameters of the LED have been monitored and recorded at ambient and cryogenic temperatures. These results have been compiled in order to show the total deviation of the LED electrical and electro-optical properties in the whole mission and to select the best suitable LED references for the mission. This qualification has demonstrated the robustness of COTS LEDs to operate at low cryogenic temperatures and in the space environment. Then 6 wavelengths were selected and submitted to an EMC sensitivity test at room and cold temperature by counting the number of photons when LEDs drivers are OFF. Characterizations were conducted in the full frequency spectrum in order to implement solutions at system level to suppress the emission of photons when the LED drivers are OFF. LEDs impedance was also characterized at room temperature and cold temperature.

  15. Properties of strain gages at cryogenic temperature

    International Nuclear Information System (INIS)

    Shibata, Nobuo; Fujiyoshi, Toshimitsu.

    1978-01-01

    At the time of developing superconduction generators, the stress measurement for rotor parts is required to grasp the safety and performance of the rotor at cryogenic temperature, which is cooled with liquid helium. In case of carrying out the stress measurement with strain gages, the problems are as follows. The strain gages and lead wires are exposed to cryogenic temperature from 4 to 10 K and strong magnetic field of about 3T, and subjected to high centrifugal acceleration of about 500G. In order to establish the techniques of the stress measurement under such conditions, the adhesives and damp-proof coatings for strain gages and strain gages themselves in Japan and foreign countries were examined on the properties at cryogenic temperature. As for the properties of strain gages, mainly the apparent strain owing to temperature change was investigated, and the change of the gage factors was studies only at liquid nitrogen temperature. The stress measurement with strain gages at low temperature had been studied in detail down to liquid nitrogen temperature concerning LNG tanks. The experimental apparatus, the samples, the testing methods and the test results of cooling tests on adhesives and damp-proof coatings, and the temperature characteristics of strain gages are reported. The usable adhesives and coatings were found, and correction by accurate temperature measurement is required for apparent strain. (Kako, I.)

  16. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  17. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    Science.gov (United States)

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  18. Mapping of local argon impingement on a virtual surface: an insight for gas injection during FEBID

    Energy Technology Data Exchange (ETDEWEB)

    Wanzenboeck, H.D.; Hochleitner, G.; Mika, J.; Shawrav, M.M.; Gavagnin, M.; Bertagnolli, E. [Vienna University of Technology, Institute for Solid State Electronics, Vienna (Austria)

    2014-12-15

    During the last decades, focused electron beam induced deposition (FEBID) has become a successful approach for direct-write fabrication of nanodevices. Such a deposition technique relies on the precursor supply to the sample surface which is typically accomplished by a gas injection system using a tube-shaped injector nozzle. This precursor injection strategy implies a position-dependent concentration gradient on the surface, which affects the geometry and chemistry of the final nanodeposit. Although simulations already proposed the local distribution of nozzle-borne gas molecules impinging on the surface, this isolated step in the FEBID process has never been experimentally measured yet. This work experimentally investigates the local distribution of impinging gas molecules on the sample plane, isolating the direct impingement component from surface diffusion or precursor depletion by deposition. The experimental setup used in this work maps and quantifies the local impinging rate of argon gas over the sample plane. This setup simulates the identical conditions for a precursor molecule during FEBID. Argon gas was locally collected with a sniffer tube, which is directly connected to a residual gas analyzer for quantification. The measured distribution of impinging gas molecules showed a strong position dependence. Indeed, a 300-μm shift of the deposition area to a position further away from the impingement center spot resulted in a 50 % decrease in the precursor impinging rate on the surface area. With the same parameters, the precursor distribution was also simulated by a Monte Carlo software by Friedli and Utke and showed a good correlation between the empirical and the simulated precursor distribution. The results hereby presented underline the importance of controlling the local precursor flux conditions in order to obtain reproducible and comparable deposition results in FEBID. (orig.)

  19. Mapping of local argon impingement on a virtual surface: an insight for gas injection during FEBID

    International Nuclear Information System (INIS)

    Wanzenboeck, H.D.; Hochleitner, G.; Mika, J.; Shawrav, M.M.; Gavagnin, M.; Bertagnolli, E.

    2014-01-01

    During the last decades, focused electron beam induced deposition (FEBID) has become a successful approach for direct-write fabrication of nanodevices. Such a deposition technique relies on the precursor supply to the sample surface which is typically accomplished by a gas injection system using a tube-shaped injector nozzle. This precursor injection strategy implies a position-dependent concentration gradient on the surface, which affects the geometry and chemistry of the final nanodeposit. Although simulations already proposed the local distribution of nozzle-borne gas molecules impinging on the surface, this isolated step in the FEBID process has never been experimentally measured yet. This work experimentally investigates the local distribution of impinging gas molecules on the sample plane, isolating the direct impingement component from surface diffusion or precursor depletion by deposition. The experimental setup used in this work maps and quantifies the local impinging rate of argon gas over the sample plane. This setup simulates the identical conditions for a precursor molecule during FEBID. Argon gas was locally collected with a sniffer tube, which is directly connected to a residual gas analyzer for quantification. The measured distribution of impinging gas molecules showed a strong position dependence. Indeed, a 300-μm shift of the deposition area to a position further away from the impingement center spot resulted in a 50 % decrease in the precursor impinging rate on the surface area. With the same parameters, the precursor distribution was also simulated by a Monte Carlo software by Friedli and Utke and showed a good correlation between the empirical and the simulated precursor distribution. The results hereby presented underline the importance of controlling the local precursor flux conditions in order to obtain reproducible and comparable deposition results in FEBID. (orig.)

  20. Mapping of local argon impingement on a virtual surface: an insight for gas injection during FEBID

    Science.gov (United States)

    Wanzenboeck, H. D.; Hochleitner, G.; Mika, J.; Shawrav, M. M.; Gavagnin, M.; Bertagnolli, E.

    2014-12-01

    During the last decades, focused electron beam induced deposition (FEBID) has become a successful approach for direct-write fabrication of nanodevices. Such a deposition technique relies on the precursor supply to the sample surface which is typically accomplished by a gas injection system using a tube-shaped injector nozzle. This precursor injection strategy implies a position-dependent concentration gradient on the surface, which affects the geometry and chemistry of the final nanodeposit. Although simulations already proposed the local distribution of nozzle-borne gas molecules impinging on the surface, this isolated step in the FEBID process has never been experimentally measured yet. This work experimentally investigates the local distribution of impinging gas molecules on the sample plane, isolating the direct impingement component from surface diffusion or precursor depletion by deposition. The experimental setup used in this work maps and quantifies the local impinging rate of argon gas over the sample plane. This setup simulates the identical conditions for a precursor molecule during FEBID. Argon gas was locally collected with a sniffer tube, which is directly connected to a residual gas analyzer for quantification. The measured distribution of impinging gas molecules showed a strong position dependence. Indeed, a 300-µm shift of the deposition area to a position further away from the impingement center spot resulted in a 50 % decrease in the precursor impinging rate on the surface area. With the same parameters, the precursor distribution was also simulated by a Monte Carlo software by Friedli and Utke and showed a good correlation between the empirical and the simulated precursor distribution. The results hereby presented underline the importance of controlling the local precursor flux conditions in order to obtain reproducible and comparable deposition results in FEBID.

  1. PIP-II Cryogenic System and the evolution of Superfluid Helium Cryogenic Plant Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Anindya [Fermilab; Rane, Tejas [Fermilab; Klebaner, Arkadiy [Fermilab

    2017-07-06

    The PIP-II cryogenic system consists of a Superfluid Helium Cryogenic Plant (SHCP) and a Cryogenic Distribution System (CDS) connecting the SHCP to the Superconducting (SC) Linac consisting of 25 cryomodules. The dynamic heat load of the SC cavities for continuous wave (CW) as well as pulsed mode of operation has been listed out. The static heat loads of the cavities along with the CDS have also been discussed. Simulation study has been carried out to compute the supercritical helium (SHe) flow requirements for each cryomodule. Comparison between the flow requirements of the cryomodules for the CW and pulsed modes of operation have also been made. From the total computed heat load and pressure drop values in the CDS, the basic specifications for the SHCP, required for cooling the SC Linac, have evolved.

  2. Cryogenic Safety HSE Seminar | 21 - 23 September 2016

    CERN Multimedia

    2016-01-01

    With the LHC being the world’s largest superconducting installation, it’s not surprising that CERN is a world leader in cryogenic safety. On 21 and 22 September, over 100 experts in cryogenic safety will be coming to CERN to take part in CERN’s first Cryogenic Safety Seminar, which aims to stimulate collaboration and further the state of the art in this increasingly important field.  

  3. Some General Principles in Cryogenic Design, Implementation, and Testing

    Science.gov (United States)

    Dipirro, Michael James

    2015-01-01

    Brief Course Description: In 2 hours only the most basic principles of cryogenics can be presented. I will concentrate on the differences between a room temperature thermal analysis and cryogenic thermal analysis, namely temperature dependent properties. I will talk about practical materials for thermal contact and isolation. I will finish by describing the verification process and instrumentation used that is unique to cryogenic (in general less than 100K) systems.

  4. Synthesis of pure ozone by nanosecond discharge at cryogenic temperatures

    International Nuclear Information System (INIS)

    Amirov, R.H.; Asinovsky, E.I.; Samoilov, I.S.

    1996-01-01

    Synthesis of pure ozone by nanosecond discharge at cryogenic temperatures was experimentally examined. The average ozone concentration in the volume of the discharge tube was less at cryogenic temperatures than at room temperatures. The production of condensed ozone have been determined by measuring the ozone concentration when the walls was heated and ozone evaporated. The energy yield of ozone generation at cryogenic temperatures has been calculated. The maximum value was 200 g/kWh

  5. Aerial electrostatic spray deposition and canopy penetration in cotton

    Science.gov (United States)

    Spray deposition on abaxial and adaxial leaf surfaces along with canopy penetration are essential for insect control and foliage defoliation in cotton production agriculture. Researchers have reported that electrostatically charged sprays have increased spray deposit onto these surfaces under widel...

  6. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    Science.gov (United States)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  7. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC)

    OpenAIRE

    Ahed Hameed Jaaz; Husam Abdulrasool Hasan; Kamaruzzaman Sopian; Abdul Amir H. Kadhum; Tayser Sumer Gaaz; Ahmed A. Al-Amiery

    2017-01-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar ce...

  8. Numerical study of heat transfer enhancement due to the use of fractal-shaped design for impingement cooling

    Directory of Open Access Journals (Sweden)

    Cai Lin

    2017-01-01

    Full Text Available This paper describes a numerical analysis of a heat transfer enhancement technique that introduces fractal-shaped design for impingement cooling. Based on the gas turbine combustion chamber cooling, a fractal-shaped nozzle is designed for the constant flow area in a single impingement cooling model. The incompressible Reynolds-averaged Navier-Stokes equations are applied to the system using CFD software. The numerical results are compared with the experiment results for array impingement cooling.

  9. A theoretical and experimental investigation of the interaction between gas molecules and cryogenic surfaces

    International Nuclear Information System (INIS)

    Varlam, M.; Steflea, D.; Chiriloaie, N.

    1992-01-01

    The cryo-pumping performance of a cryo-surface subjected to the impingement of low-pressure, thermal-velocity air flow is experimentally and theoretically investigated. Our purpose is to determine the angular dependence of capture coefficients for gas molecules incident on a cryogenic surface under conditions closely approximating those prevailing in cryo-pumped high vacuum chambers. The classical model for the interaction of gas atoms and the solid surface - the 'soft-tube' model - is developed and the basic assumption are examined. Starting from this theory we have calculated the capture coefficient of the Ag - N system and these values are discussed in terms of principal parameters considered. Despite the many simplifying assumptions, this model has the important attribute that it yields closed-form expressions for the capture coefficient of gas molecules. The molecular beam technique offers a direct experimental method for determining the capture coefficient for molecules with given angles of incidence by measuring the incident and reflected molecular fluxes. An experimental setup is also designed and the method for determining these coefficients is proposed. (Author)

  10. The DFBX cryogenic distribution boxes for the LHC straight sections

    International Nuclear Information System (INIS)

    Zbasnik, Jon P.; Corradi, Carol A.; Green, Michael A.; Kajiyama, Y.; Knolls, Michael J.; LaMantia, Roberto F.; Rasson, Joseph E.; Reavill, Dulie; Turner, William C.

    2002-01-01

    The DFBX distribution boxes are designed to connect the LHC cryogenic distribution system to the interaction region quadrupoles [1] and dipoles for the Large Hadron Collider (LHC). The DFBX distribution boxes also have the current leads for the superconducting interaction region magnets and the LHC interaction region correction coils. The DFBX boxes also connect the magnet and cryogenic instrumentation to the CERN data collection system. The DFBX boxes serve as the cryogenic circulation center and the nerve center for four of the LHC straight sections. This report describes primarily the cryogenic function of the DFBXs

  11. Commissioning the cryogenic system of the first LHC sector

    International Nuclear Information System (INIS)

    Millet, F.; Claudet, S.; Ferlin, G.; Perin, A.; Riddone, G.; Serio, L.; Soubiran, M.; Tavian, L.; CERN; Ronayette, L.; GHMFL, Grenoble; Rabehl, R.; Fermilab

    2007-01-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioning is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test

  12. Thermal Stabilization of Cryogenic System in Superconducting Cyclotron

    International Nuclear Information System (INIS)

    Shin, Seung Jae; Kim, Kyung Min; Cho, Hyung Hee; Hong, Bong Hwan; Kang, Joon Sun; Ahn, Dong Hyun

    2011-01-01

    Radiology has some useful applications for medical purpose. For cancer therapy, the superconducting cyclotron should generate heavy ion beams. It radiates heavy ion beams to cancer patients. In order to make cyclotron system stable, the cryogenic system which makes superconducting state should work constantly. However, radiation heat transfer of cryogenic system should be considered because liquid helium's boiling point is extremely low and there is huge temperature difference between the cryogenic system and ambient temperature. Accordingly, thermal analysis should be carried out. In this paper, the numerical analysis of the cryogenic system in practical superconducting cyclotron show temperature distribution and suggest the number of coolers using ANSYS Workbench program

  13. High Reliability Cryogenic Piezoelectric Valve Actuator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  14. Reduction of spray pressure leads to less emission and better deposition of spray liquid at high-volume spraying in greenhouse tomato

    NARCIS (Netherlands)

    Os, van E.A.; Michielsen, J.M.G.P.; Corver, F.J.M.; Berg, van den J.V.; Bruins, M.A.; Porskamp, H.A.J.; Zande, van de J.C.

    2005-01-01

    In an experimental greenhouse, growing a tomato crop, it was investigated if a reduction in spray pressure could improve the spray result, while, simultaneously, emission to the ground could be reduced. Spray deposition on the leaves and the emission to the ground was evaluated at different spray

  15. Impingement of water droplets on wedges and diamond airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1953-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  16. Hot air impingement on a flat plate using Large Eddy Simulation (LES) technique

    Science.gov (United States)

    Plengsa-ard, C.; Kaewbumrung, M.

    2018-01-01

    Impinging hot gas jets to a flat plate generate very high heat transfer coefficients in the impingement zone. The magnitude of heat transfer prediction near the stagnation point is important and accurate heat flux distribution are needed. This research studies on heat transfer and flow field resulting from a single hot air impinging wall. The simulation is carried out using computational fluid dynamics (CFD) commercial code FLUENT. Large Eddy Simulation (LES) approach with a subgrid-scale Smagorinsky-Lilly model is present. The classical Werner-Wengle wall model is used to compute the predicted results of velocity and temperature near walls. The Smagorinsky constant in the turbulence model is set to 0.1 and is kept constant throughout the investigation. The hot gas jet impingement on the flat plate with a constant surface temperature is chosen to validate the predicted heat flux results with experimental data. The jet Reynolds number is equal to 20,000 and a fixed jet-to-plate spacing of H/D = 2.0. Nusselt number on the impingement surface is calculated. As predicted by the wall model, the instantaneous computed Nusselt number agree fairly well with experimental data. The largest values of calculated Nusselt number are near the stagnation point and decrease monotonically in the wall jet region. Also, the contour plots of instantaneous values of wall heat flux on a flat plate are captured by LES simulation.

  17. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kibar, Ali, E-mail: alikibar@kocaeli.edu.tr [Department of Mechanical and Material Technologies, Kocaeli University, Arslanbey Campus, 41285, Kocaeli (Turkey)

    2017-02-15

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface. (paper)

  18. Investigation of vertical liquid film width upon impingement on flat plate

    International Nuclear Information System (INIS)

    Kim, Won J.; Son, Hyung M.; Suh, Kune Y.

    2003-01-01

    In the early, high pressure phase during a Large-Break Loss-Of-Coolant Accident (LBLOCA), the Emergency Core Cooling (ECC) water of the Direct Vessel Injection (DVI) system is supplied from the Safety Injection Tank (SIT). After the shortage of the SIT, the In-containment Refueling Water Storage Tank (IRWST) supplies water to the safety system. Velocity of the injection flow varies during the process from the initial value of over 10 m/s in the blowdown phase to 2∼3 m/s in the later phase of reflood. During the safety injection, such important phenomena are observed as impingement, bypass, entrainment and sweepout, and condensation. The impingement is referred to the case where the ECC water is injected to strike on the reactor inner vessel. Accordingly, the water generates a liquid film to form a ridge on the wall. The liquid film then flows down the wall due to gravity. This impingement is interrupted by the steam-water mixture bypass flow to the break. The bypass, in turn, is affected by the impingement. This study is intended to understand the impinged water flow behavior neglecting such secondary effects as the temperature-dependent thermodynamic properties and the reactor vessel curvature. An emphasis is put on interpreting the results of visual inspection to understand the underlying mechanism of rather complex turbulent flow in the downcomer

  19. Transverse jet-cavity interactions with the influence of an impinging shock

    International Nuclear Information System (INIS)

    Zare-Behtash, H.; Lo, K.H.; Kontis, K.; Ukai, T.; Obayashi, S.

    2015-01-01

    Highlights: • Experimental study of shock-jet-cavity in a supersonic freestream is conducted. • Shock impingement at the cavity leading edge lifts the shear layer, encouraging momentum transfer. • Shock impingement close to the jet location increases the number of smaller turbulent structures. - Abstract: For high-speed air breathing engines, fuel injection and subsequent mixing with air is paramount for combustion. The high freestream velocity poses a great challenge to efficient mixing both in macroscale and microscale. Utilising cavities downstream of fuel injection locations, as a means to hold the flow and stabilise the combustion, is one mechanism which has attracted much attention, requiring further research to study the unsteady flow features and interactions occurring within the cavity. In this study we combine the transverse jet injection upstream of a cavity with an impinging shock to see how this interaction influences the cavity flow, since impinging shocks have been shown to enhance mixing of transverse jets. Utilising qualitative and quantitative methods: schlieren, oilflow, PIV, and PSP the induced flowfield is analysed. The impinging shock lifts the shear layer over the cavity and combined with the instabilities generated by the transverse jet creates a highly complicated flowfield with numerous vertical structures. The interaction between the oblique shock and the jet leads to a relatively uniform velocity distribution within the cavity

  20. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces

    International Nuclear Information System (INIS)

    Kibar, Ali

    2017-01-01

    Experiments and numerical simulations were carried out to examine the vertical impingement a round liquid jet on the edges of horizontal convex surfaces that were either superhydrophobic or hydrophobic. The experiments examine the effects on the flow behaviour of curvature, wettability, inertia of the jet, and the impingement rate. Three copper pipes with outer diameters of 15, 22, and 35 mm were investigated. The pipes were wrapped with a piece of a Brassica oleracea leaf or a smooth Teflon sheet, which have apparent contact angles of 160° and 113°. The Reynolds number ranged from 1000 to 4500, and the impingement rates of the liquid jets were varied. Numerical results show good agreement with the experimental results for explaining flow and provide detailed information about the impingement on the surfaces. The liquid jet reflected off the superhydrophobic surfaces for all conditions. However, the jet reflected or deflected off the hydrophobic surface, depending on the inertia of the jet, the curvature of the surface, and the impingement rate. The results suggest that pressure is not the main reason for the bending of the jet around the curved hydrophobic surface. (paper)