WorldWideScience

Sample records for cruzi infection based

  1. Trans-sialidase-based vaccine candidate protects against Trypanosoma cruzi infection, not only inducing an effector immune response but also affecting cells with regulatory/suppressor phenotype

    Science.gov (United States)

    Prochetto, Estefanía; Roldán, Carolina; Bontempi, Iván A.; Bertona, Daiana; Peverengo, Luz; Vicco, Miguel H.; Rodeles, Luz M.; Pérez, Ana R.; Marcipar, Iván S.; Cabrera, Gabriel

    2017-01-01

    Prophylactic and/or therapeutic vaccines have an important potential to control Trypanosoma cruzi (T. cruzi)infection. The involvement of regulatory/suppressor immune cells after an immunization treatment and T. cruzi infection has never been addressed. Here we show that a new trans-sialidase-based immunogen (TSf) was able to confer protection, correlating not only with beneficial changes in effector immune parameters, but also influencing populations of cells related to immune control. Regarding the effector response, mice immunized with TSf showed a TS-specific antibody response, significant delayed-type hypersensitivity (DTH) reactivity and increased production of IFN-γ by CD8+ splenocytes. After a challenge with T. cruzi, TSf-immunized mice showed 90% survival and low parasitemia as compared with 40% survival and high parasitemia in PBS-immunized mice. In relation to the regulatory/suppressor arm of the immune system, after T. cruzi infection TSf-immunized mice showed an increase in spleen CD4+ Foxp3+ regulatory T cells (Treg) as compared to PBS-inoculated and infected mice. Moreover, although T. cruzi infection elicited a notable increase in myeloid derived suppressor cells (MDSC) in the spleen of PBS-inoculated mice, TSf-immunized mice showed a significantly lower increase of MDSC. Results presented herein highlight the need of studying the immune response as a whole when a vaccine candidate is rationally tested. PMID:28938533

  2. Trypanosoma cruzi infection in neotropical wild carnivores (Mammalia: Carnivora: at the top of the T. cruzi transmission chain.

    Directory of Open Access Journals (Sweden)

    Fabiana Lopes Rocha

    Full Text Available Little is known on the role played by Neotropical wild carnivores in the Trypanosoma cruzi transmission cycles. We investigated T. cruzi infection in wild carnivores from three sites in Brazil through parasitological and serological tests. The seven carnivore species examined were infected by T. cruzi, but high parasitemias detectable by hemoculture were found only in two Procyonidae species. Genotyping by Mini-exon gene, PCR-RFLP (1f8/Akw21I and kDNA genomic targets revealed that the raccoon (Procyon cancrivorus harbored TcI and the coatis (Nasua nasua harbored TcI, TcII, TcIII-IV and Trypanosoma rangeli, in single and mixed infections, besides four T. cruzi isolates that displayed odd band patterns in the Mini-exon assay. These findings corroborate the coati can be a bioaccumulator of T. cruzi Discrete Typing Units (DTU and may act as a transmission hub, a connection point joining sylvatic transmission cycles within terrestrial and arboreal mammals and vectors. Also, the odd band patterns observed in coatis' isolates reinforce that T. cruzi diversity might be much higher than currently acknowledged. Additionally, we assembled our data with T. cruzi infection on Neotropical carnivores' literature records to provide a comprehensive analysis of the infection patterns among distinct carnivore species, especially considering their ecological traits and phylogeny. Altogether, fifteen Neotropical carnivore species were found naturally infected by T. cruzi. Species diet was associated with T. cruzi infection rates, supporting the hypothesis that predator-prey links are important mechanisms for T. cruzi maintenance and dispersion in the wild. Distinct T. cruzi infection patterns across carnivore species and study sites were notable. Musteloidea species consistently exhibit high parasitemias in different studies which indicate their high infectivity potential. Mesocarnivores that feed on both invertebrates and mammals, including the coati, a host that

  3. Course of Chronic Trypanosoma cruzi Infection after Treatment Based on Parasitological and Serological Tests: A Systematic Review of Follow-Up Studies.

    Directory of Open Access Journals (Sweden)

    Yanina Sguassero

    and 48 cohort studies were included. The smoothed curves for positive xenodiagnosis and positive polymerase chain reaction (PCR were characterized by a sharp decrease at twelve month posttreatment. Afterwards, they reached 10-20% and 40% for xenodiagnosis and PCR, respectively. The smoothed curves for negative conventional serological tests increased up to 10% after 48 months of treatment. In the long-term, the rate of negativization was between 20% and 45%. The main sources of bias identified across cohort studies were the lack of control for confounding and attrition bias. In general, RCTs were judged as low risk of bias in all domains. The level of heterogeneity across included studies was moderate to high. Additional analysis were incomplete because of the limited availability of data. In this regard, the country of origin of study participants might affect the results of parasitological and molecular tests, while the level of risk of bias might affect serological outcomes. Subgroup analysis suggested that seronegativization occurs earlier in children compared to adults.We acknowledge that there is a dynamic pattern of response based on parasitological, molecular and serological tests in subjects chronically infected with T. cruzi after treatment. Our findings suggest a trypanocidal effect in the long-term follow-up. Further research is needed to explore potential sources of heterogeneity and to conduct reliable subgroup analysis.

  4. Targeted screening strategies to detect Trypanosoma cruzi infection in children.

    Directory of Open Access Journals (Sweden)

    Michael Z Levy

    2007-12-01

    Full Text Available Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy.We performed a serological survey in children 2-18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4-7.9] children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child's risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child's house. Receiver operator characteristic (ROC plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children.We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings.

  5. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  6. Trans-sialidase inhibition assay detects Trypanosoma cruzi infection in different wild mammal species.

    Science.gov (United States)

    Sartor, Paula A; Ceballos, Leonardo A; Orozco, Marcela M; Cardinal, Marta V; Gürtler, Ricardo E; Leguizamón, María S

    2013-08-01

    The detection of Trypanosoma cruzi infection in mammals is crucial for understanding the eco-epidemiological role of the different species involved in parasite transmission cycles. Xenodiagnosis (XD) and hemoculture (HC) are routinely used to detect T. cruzi in wild mammals. Serological methods are much more limited because they require the use of specific antibodies to immunoglobulins of each mammalian species susceptible to T. cruzi. In this study we detected T. cruzi infection by trans-sialidase (TS) inhibition assay (TIA). TIA is based on the antibody neutralization of a recombinant TS that avoids the use of anti-immunoglobulins. TS activity is not detected in the co-endemic protozoan parasites Leishmania spp and T. rangeli. In the current study, serum samples from 158 individuals of nine wild mammalian species, previously tested by XD, were evaluated by TIA. They were collected from two endemic areas in northern Argentina. The overall TIA versus XD co-reactivity was 98.7% (156/158). All 18 samples from XD-positive mammals were TIA-positive (co-positivity, 100%) and co-negativity was 98.5% (138/140). Two XD-negative samples from a marsupial (Didelphis albiventris) and an edentate (Dasypus novemcinctus) were detected by TIA. TIA could be used as a novel tool for serological detection of Trypanosoma cruzi in a wide variety of sylvatic reservoir hosts.

  7. High Trypanosoma cruzi infection prevalence associated with minimal cardiac pathology among wild carnivores in central Texas

    Directory of Open Access Journals (Sweden)

    Rachel Curtis-Robles

    2016-08-01

    Full Text Available Infection with the zoonotic vector-borne protozoal parasite Trypanosoma cruzi causes Chagas disease in humans and dogs throughout the Americas. Despite the recognized importance of various wildlife species for perpetuating Trypanosoma cruzi in nature, relatively little is known about the development of cardiac disease in infected wildlife. Using a cross-sectional study design, we collected cardiac tissue and blood from hunter-donated wildlife carcasses- including raccoon (Procyon lotor, coyote (Canis latrans, gray fox (Urocyon cinereoargenteus, and bobcat (Lynx rufus – from central Texas, a region with established populations of infected triatomine vectors and increasing diagnoses of Chagas disease in domestic dogs. Based on PCR analysis, we found that 2 bobcats (14.3%, 12 coyotes (14.3%, 8 foxes (13.8%, and 49 raccoons (70.0% were positive for T. cruzi in at least one sample (right ventricle, apex, and/or blood clot. Although a histologic survey of right ventricles showed that 21.1% of 19 PCR-positive hearts were characterized by mild lymphoplasmocytic infiltration, no other lesions and no amastigotes were observed in any histologic section. DNA sequencing of the TcSC5D gene revealed that raccoons were infected with T. cruzi strain TcIV, and a single racoon harbored a TcI/TcIV mixed infection. Relative to other wildlife species tested here, our data suggest that raccoons may be important reservoirs of TcIV in Texas and a source of infection for indigenous triatomine bugs. The overall high level of infection in this wildlife community likely reflects high levels of vector contact, including ingestion of bugs. Although the relationship between the sylvatic cycle of T. cruzi transmission and human disease risk in the United States has yet to be defined, our data suggest that hunters and wildlife professionals should take precautions to avoid direct contact with potentially infected wildlife tissues.

  8. The resting electrocardiogram of t. cruzi-infected rats

    Directory of Open Access Journals (Sweden)

    Reinaldo B. Bestetti

    1987-08-01

    Full Text Available A total of 125 rats were infected with the Colômbia strain of T. cruzi (2000 parasites/g shortly after weaning. Of these, 58 survived the acute phase and were used in the present experiment. Twenty eight similar but not infected rats served as controls. All rats were submitted to the resting ECG When they were 6 months old. Classic and 3 precordial leads were employed in order to record the ECG as completely as possible. Electrocardiographic changes similar to those found in human chronic Chagas' heart disease and not previously described in this model were found in 44% of the T. cruzi-infected rats: left axis deviation (22%, right axis deviation (7%, lengthened and bizarre QRS complex (14% and abnormal J point elevation (3%. On the basis of these results, we believe that the resting ECG constitutes a valuable tool for studying experimental chronic Chagas' heart disease in rats.

  9. Differential expression profiles in the midgut of Triatoma infestans infected with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Diego S Buarque

    Full Text Available Chagas disease, or American trypanosomiasis, is a parasitic disease caused by the protozoan Trypanosoma cruzi and is transmitted by insects from the Triatominae subfamily. To identify components involved in the protozoan-vector relationship, we constructed and analyzed cDNA libraries from RNA isolated from the midguts of uninfected and T. cruzi-infected Triatoma infestans, which are major vectors of Chagas disease. We generated approximately 440 high-quality Expressed Sequence Tags (ESTs from each T. infestans midgut cDNA library. The sequences were grouped in 380 clusters, representing an average length of 664.78 base pairs (bp. Many clusters were not classified functionally, representing unknown transcripts. Several transcripts involved in different processes (e.g., detoxification showed differential expression in response to T. cruzi infection. Lysozyme, cathepsin D, a nitrophorin-like protein and a putative 14 kDa protein were significantly upregulated upon infection, whereas thioredoxin reductase was downregulated. In addition, we identified several transcripts related to metabolic processes or immunity with unchanged expressions, including infestin, lipocalins and defensins. We also detected ESTs encoding juvenile hormone binding protein (JHBP, which seems to be involved in insect development and could be a target in control strategies for the vector. This work demonstrates differential gene expression upon T. cruzi infection in the midgut of T. infestans. These data expand the current knowledge regarding vector-parasite interactions for Chagas disease.

  10. Heterogeneous infectiousness in guinea pigs experimentally infected with Trypanosoma cruzi.

    Science.gov (United States)

    Castillo-Neyra, Ricardo; Borrini Mayorí, Katty; Salazar Sánchez, Renzo; Ancca Suarez, Jenny; Xie, Sherrie; Náquira Velarde, Cesar; Levy, Michael Z

    2016-02-01

    Guinea pigs are important reservoirs of Trypanosoma cruzi, the causative parasite of Chagas disease, and in the Southern Cone of South America, transmission is mediated mainly by the vector Triatoma infestans. Interestingly, colonies of Triatoma infestans captured from guinea pig corrals sporadically have infection prevalence rates above 80%. Such high values are not consistent with the relatively short 7-8 week parasitemic period that has been reported for guinea pigs in the literature. We experimentally measured the infectious periods of a group of T. cruzi-infected guinea pigs by performing xenodiagnosis and direct microscopy each week for one year. Another group of infected guinea pigs received only direct microscopy to control for the effect that inoculation by triatomine saliva may have on parasitemia in the host. We observed infectious periods longer than those previously reported in a number of guinea pigs from both the xenodiagnosis and control groups. While some guinea pigs were infectious for a short time, other "super-shedders" were parasitemic up to 22 weeks after infection, and/or positive by xenodiagnosis for a year after infection. This heterogeneity in infectiousness has strong implications for T. cruzi transmission dynamics and control, as super-shedder guinea pigs may play a disproportionate role in pathogen spread. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Genetically different isolates of Trypanosoma cruzi elicit different infection dynamics in raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana).

    Science.gov (United States)

    Roellig, Dawn M; Ellis, Angela E; Yabsley, Michael J

    2009-12-01

    Trypanosoma cruzi is a genetically and biologically diverse species. In the current study we determined T. cruzi infection dynamics in two common North American reservoirs, Virginia opossums (Didelphis virginiana) and raccoons (Procyon lotor). Based on previous molecular and culture data from naturally-exposed animals, we hypothesised that raccoons would have a longer patent period than opossums, and raccoons would be competent reservoirs for both genotypes T. cruzi I (TcI) and TcIIa, while opossums would only serve as hosts for TcI. Individuals (n=2 or 3) of each species were inoculated with 1x10(6) culture-derived T. cruzi trypomastigotes of TcIIa (North American (NA) - raccoon), TcI (NA - opossum), TcIIb (South American - human), or both TcI and TcIIa. Parasitemias in opossums gradually increased and declined rapidly, whereas parasitemias peaked sooner in raccoons and they maintained relatively high parasitemia for 5weeks. Raccoons became infected with all three T. cruzi strains, while opossums only became infected with TcI and TcIIb. Although opossums were susceptible to TcIIb, infection dynamics were dramatically different compared with TcI. Opossums inoculated with TcIIb seroconverted, but parasitemia duration was short and only detectable by PCR. In addition, raccoons seroconverted sooner (3-7days post inoculation) than opossums (10days post inoculation). These data suggest that infection dynamics of various T. cruzi strains can differ considerably in different wildlife hosts.

  12. Protein 3-nitrotyrosine formation during Trypanosoma cruzi infection in mice

    Directory of Open Access Journals (Sweden)

    M. Naviliat

    2005-12-01

    Full Text Available Nitric oxide (·NO is a diffusible messenger implicated in Trypanosoma cruzi resistance. Excess production of ·NO and oxidants leads to the generation of nitrogen dioxide (·NO2, a strong nitrating agent. Tyrosine nitration is a post-translational modification resulting from the addition of a nitro (-NO2 group to the ortho-position of tyrosine residues. Detection of protein 3-nitrotyrosine is regarded as a marker of nitro-oxidative stress and is observed in inflammatory processes. The formation and role of nitrating species in the control and myocardiopathy of T. cruzi infection remain to be studied. We investigated the levels of ·NO and protein 3-nitrotyrosine in the plasma of C3H and BALB/c mice and pharmacologically modulated their production during the acute phase of T. cruzi infection. We also looked for protein 3-nitrotyrosine in the hearts of infected animals. Our results demonstrated that C3H animals produced higher amounts of ·NO than BALB/c mice, but their generation of peroxynitrite was not proportionally enhanced and they had higher parasitemias. While N G-nitro-arginine methyl ester treatment abolished ·NO production and drastically augmented the parasitism, mercaptoethylguanidine and guanido-ethyl disulfide, at doses that moderately reduced the ·NO and 3-nitrotyrosine levels, paradoxically diminished the parasitemia in both strains. Nitrated proteins were also demonstrated in myocardial cells of infected mice. These data suggest that the control of T. cruzi infection depends not only on the capacity to produce ·NO, but also on its metabolic fate, including the generation of nitrating species that may constitute an important element in parasite resistance and collateral myocardial damage.

  13. [Esophageal motor disorders in asymptomatic subjects with Trypanosoma cruzi infection].

    Science.gov (United States)

    Torres-Aguilera, M; Remes-Troche, J M; Roesch-Dietlen, F; Vázquez-Jiménez, J G; De la Cruz-Patiño, E; Grube-Pagola, P; Ruiz-Juárez, I

    2011-01-01

    The indeterminate chronic or "asymptomatic" phase of Trypanosoma cruzi (Chagas' disease) infection is characterized by the absence of gastrointestinal symptoms, and has an estimated duration of 20 to 30 years. However, the intramural denervation that induces dysfunction of the gastrointestinal tract is progressive. Recently, epidemiological studies have shown that the seroprevalence for this infection in our area ranges between 2% and 3% of the population. To detect the presence of esophageal motor disorders in asymptomatic individuals chronically infected with Trypanosoma cruzi using standard esophageal manometry. A cross sectional study in 28 asymptomatic subjects (27 men, age 40.39 ± 10.79) with serological evidence of infection with Trypanosoma cruzi was performed. In all cases demographic characteristics, gastrointestinal symptoms and esophageal motility disorders using conventional manometry were analyzed. In this study 54% (n = 15) of asymptomatic subjects had an esophageal motor disorder: 5 (18%) had nutcracker esophagus, 5 (18%) nonspecific esophageal motor disorders, 3 (11%) hypertensive lower esophageal sphincter (LES), 1 (4%) an incomplete relaxation of the LES and 1 (4%) had chagasic achalasia. More than half of patients that course with Chagas' disease in the indeterminate phase and that are apparently asymptomatic have impaired esophageal motility. Presence of hypertensive LES raises the possibility that this alteration represents an early stage in the development of chagasic achalasia.

  14. Antibody Maturation in Trypanosoma cruzi-Infected Rats

    Science.gov (United States)

    Marcipar, Iván S.; Risso, Marikena G.; Silber, Ariel M.; Revelli, Silvia; Marcipar, Alberto J.

    2001-01-01

    The study of antibody avidity changes during infection has improved the understanding of the pathologic processes involved in several infectious diseases. In some infections, like toxoplasmosis, this information is being used for diagnostic purposes. Results of the evolution of antibody avidity for different specific antigens in Trypanosome cruzi-infected rats are presented. A Western blotting technique, combined with avidity analysis to identify antigens that elicit high-avidity antibodies, is suggested. In this system, antibodies showed high avidity values only during the chronic phase of infection and only in relation to antibodies against 21-, 33-, 41-, 42-, 56-, 58-, 66-, and 72-kDa antigens. Finally, a 97-kDa T. cruzi antigen, which was recognized by high-avidity antibodies and occurred in noninfected rats, was identified. These results allow us to evaluate the different antigens in chagasic infection. Our results show that with the correct choice of antigen it is possible to detect differences in maturation of antibodies and to discriminate, in an experimental model, between recent (acute) and chronic infections. PMID:11427430

  15. 4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection.

    Science.gov (United States)

    Calvet, Claudia Magalhaes; Choi, Jun Yong; Thomas, Diane; Suzuki, Brian; Hirata, Ken; Lostracco-Johnson, Sharon; de Mesquita, Liliane Batista; Nogueira, Alanderson; Meuser-Batista, Marcelo; Silva, Tatiana Araujo; Siqueira-Neto, Jair Lage; Roush, William R; de Souza Pereira, Mirian Claudia; McKerrow, James H; Podust, Larissa M

    2017-12-01

    Chagas disease, caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America. The clinical treatment of Chagas disease is limited to two 60 year-old drugs, nifurtimox and benznidazole, that have variable efficacy against different strains of the parasite and may lead to severe side effects. CYP51 is an enzyme in the sterol biosynthesis pathway that has been exploited for the development of therapeutics for fungal and parasitic infections. In a target-based drug discovery program guided by x-ray crystallography, we identified the 4-aminopyridyl-based series of CYP51 inhibitors as being efficacious versus T.cruzi in vitro; two of the most potent leads, 9 and 12, have now been evaluated for toxicity and efficacy in mice. Both acute and chronic animal models infected with wild type or transgenic T. cruzi strains were evaluated. There was no evidence of toxicity in the 28-day dosing study of uninfected animals, as judged by the monitoring of multiple serum and histological parameters. In two acute models of Chagas disease, 9 and 12 drastically reduced parasitemia, increased survival of mice, and prevented liver and heart injury. None of the compounds produced long term sterile cure. In the less severe acute model using the transgenic CL-Brenner strain of T.cruzi, parasitemia relapsed upon drug withdrawal. In the chronic model, parasitemia fell to a background level and, as evidenced by the bioluminescence detection of T. cruzi expressing the red-shifted luciferase marker, mice remained negative for 4 weeks after drug withdrawal. Two immunosuppression cycles with cyclophosphamide were required to re-activate the parasites. Although no sterile cure was achieved, the suppression of parasitemia in acutely infected mice resulted in drastically reduced inflammation in the heart. The positive outcomes achieved in the absence of sterile cure suggest that the target product profile in anti-Chagasic drug discovery should be revised in favor of

  16. Trypanosoma cruzi strain TcIV infects raccoons from Illinois

    Directory of Open Access Journals (Sweden)

    Cailey Vandermark

    Full Text Available BACKGROUND The northern limits of Trypanosoma cruzi across the territory of the United States remain unknown. The known vectors Triatoma sanguisuga and T. lecticularia find their northernmost limits in Illinois; yet, earlier screenings of those insects did not reveal the presence of the pathogen, which has not been reported in vectors or reservoir hosts in this state. OBJECTIVES Five species of medium-sized mammals were screened for the presence of T. cruzi. METHODS Genomic DNA was isolated from heart, spleen and skeletal muscle of bobcats (Lynx rufus, n = 60, raccoons (Procyon lotor, n = 37, nine-banded armadillos (Dasypus novemcinctus, n = 5, Virginia opossums (Didelphis virginiana, n = 3, and a red fox (Vulpes vulpes. Infections were detected targeting DNA from the kinetoplast DNA minicircle (kDNA and satellite DNA (satDNA. The discrete typing unit (DTU was determined by amplifying two gene regions: the Spliced Leader Intergenic Region (SL, via a multiplex polymerase chain reaction, and the 24Sα ribosomal DNA via a heminested reaction. Resulting sequences were used to calculate their genetic distance against reference DTUs. FINDINGS 18.9% of raccoons were positive for strain TcIV; the rest of mammals tested negative. MAIN CONCLUSIONS These results confirm for the first time the presence of T. cruzi in wildlife from Illinois, suggesting that a sylvatic life cycle is likely to occur in the region. The analyses of sequences of SL suggest that amplicons resulting from a commonly used multiplex reaction may yield non-homologous fragments.

  17. Experimental infection of two South American reservoirs with four distinct strains of Trypanosoma cruzi

    Science.gov (United States)

    Roellig, Dawn M.; McMillan, Katherine; Ellis, Angela E.; Vandeberg, John L.; Champagne, Donald E.; Yabsley, Michael J.

    2010-01-01

    SUMMARY Trypanosoma cruzi (Tc), the causative agent of Chagas disease, is a diverse species with 2 primary genotypes, TcI and TcII, with TcII further subdivided into 5 subtypes (IIa–e). This study evaluated infection dynamics of 4 genetically and geographically diverse T. cruzi strains in 2 South American reservoirs, degus (Octodon degus) and grey short-tailed opossums (Monodelphis domestica). Based on prior suggestions of a genotype-host association, we hypothesized that degus (placental) would more readily become infected with TcII strains while short-tailed opossums (marsupial) would be a more competent reservoir for a TcI strain. Individuals (n = 3) of each species were intraperitoneally inoculated with T. cruzi trypomastigotes of TcIIa [North America (NA)-raccoon (Procyon lotor) origin], TcI [NA-Virginia opossum (Didelphis virginiana)], TcIIb [South America (SA)-human], TcIIe (SA-Triatoma infestans), or both TcI and TcIIa. Parasitaemias in experimentally infected degus peaked earlier (7–14 days post-inoculation (p.i.)) compared with short-tailed opossums (21–84 days p.i.). Additionally, peak parasitaemias were higher in degus; however, the duration of detectable parasitaemias for all strains, except TcIIa, was greater in short-tailed opossums. Infections established in both host species with all genotypes, except for TcIIa, which did not establish a detectable infection in short-tailed opossums. These results indicate that both South American reservoirs support infections with these isolates from North and South America; however, infection dynamics differed with host and parasite strain. PMID:20128943

  18. Is the anti-tumor property of Trypanosoma cruzi infection mediated by its Calreticulin?

    Directory of Open Access Journals (Sweden)

    Galia Andrea Ramírez-Toloza

    2016-07-01

    Full Text Available Eight to 10 million people in 21 endemic countries are infected with Trypanosoma cruzi. However, only 30% of those infected develop symptoms of Chagas’ disease, a chronic, neglected tropical disease worldwide. Similar to other pathogens, T. cruzi has evolved to resist the host immune response. Studies, performed 80 years ago in the Soviet Union, proposed that T. cruzi infects tumor cells with similar capacity to that displayed for target tissues such as cardiac, aortic or digestive. An antagonistic relationship between T. cruzi infection and cancer development was also proposed, but the molecular mechanisms involved have remained largely unknown. Probably, a variety of T. cruzi molecules is involved. This review focuses on how T. cruzi calreticulin (TcCRT, exteriorized from the endoplasmic reticulum, targets the first classical complement component C1 and negatively regulates the Classical Complement activation cascade, promoting parasite infectivity. We propose that this C1-dependent TcCRT-mediated virulence is critical to explain, at least an important part, of the parasite capacity to inhibit tumor development. We will discuss how TcCRT, by directly interacting with venous and arterial endothelial cells, inhibits angiogenesis and tumor growth. Thus, these TcCRT functions not only illustrate T. cruzi interactions with the host immune defensive strategies, but also illustrate a possible co-evolutionary adaptation to privilege a prolonged interaction with its host.

  19. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    Science.gov (United States)

    Fernández, Esteban R; Olivera, Gabriela C; Quebrada Palacio, Luz P; González, Mariela N; Hernandez-Vasquez, Yolanda; Sirena, Natalia María; Morán, María L; Ledesma Patiño, Oscar S; Postan, Miriam

    2014-01-01

    Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  20. Altered distribution of peripheral blood memory B cells in humans chronically infected with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Esteban R Fernández

    Full Text Available Numerous abnormalities of the peripheral blood T cell compartment have been reported in human chronic Trypanosoma cruzi infection and related to prolonged antigenic stimulation by persisting parasites. Herein, we measured circulating lymphocytes of various phenotypes based on the differential expression of CD19, CD4, CD27, CD10, IgD, IgM, IgG and CD138 in a total of 48 T. cruzi-infected individuals and 24 healthy controls. Infected individuals had decreased frequencies of CD19+CD27+ cells, which positively correlated with the frequencies of CD4+CD27+ cells. The contraction of CD19+CD27+ cells was comprised of IgG+IgD-, IgM+IgD- and isotype switched IgM-IgD- memory B cells, CD19+CD10+CD27+ B cell precursors and terminally differentiated CD19+CD27+CD138+ plasma cells. Conversely, infected individuals had increased proportions of CD19+IgG+CD27-IgD- memory and CD19+IgM+CD27-IgD+ transitional/naïve B cells. These observations prompted us to assess soluble CD27, a molecule generated by the cleavage of membrane-bound CD27 and used to monitor systemic immune activation. Elevated levels of serum soluble CD27 were observed in infected individuals with Chagas cardiomyopathy, indicating its potentiality as an immunological marker for disease progression in endemic areas. In conclusion, our results demonstrate that chronic T. cruzi infection alters the distribution of various peripheral blood B cell subsets, probably related to the CD4+ T cell deregulation process provoked by the parasite in humans.

  1. Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection

    CSIR Research Space (South Africa)

    Genovesio, A

    2011-05-01

    Full Text Available The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy...

  2. The Ly49E receptor inhibits the immune control of acute Trypanosoma cruzi infection

    Directory of Open Access Journals (Sweden)

    Jessica Filtjens

    2016-11-01

    Full Text Available The protozoan parasite Trypanosoma cruzi (T. cruzi circulates in the blood upon infection and invades a variety of cells. Parasites intensively multiply during the acute phase of infection and persist lifelong at low levels in tissues and blood during the chronic phase. Natural killer (NK and NKT cells play an important role in the immune control of T. cruzi infection, mainly by releasing the cytokine IFN-γ that activates the microbicidal action of macrophages and other cells and shapes a protective type 1 immune response. The mechanisms by which immune cells are regulated to produce IFN-γ during T. cruzi infection are still incompletely understood. Here, we show that urokinase plasminogen activator (uPA is induced early upon T. cruzi infection, and remains elevated until day 20 post inoculation. We previously demonstrated that the inhibitory receptor Ly49E, which is expressed, among others, on NK and NKT cells, is triggered by uPA. Therefore, we compared wild type (WT to Ly49E knockout (KO mice for their control of experimental T. cruzi infection. Our results show that young, i.e. 4- and 6-week-old, Ly49E KO mice control the infection better than WT mice, indicated by a lower parasite load and less cachexia. The beneficial effect of Ly49E depletion is more obvious in 4-week-old male than in female mice and weakens in 8-week-old mice. In young mice, the lower T. cruzi parasitemia in Ly49E KO mice is paralleled by higher IFN-γ production compared to their WT controls. Our data indicate that Ly49E receptor expression inhibits the immune control of T. cruzi infection. This is the first demonstration that the inhibitory Ly49E receptor can interfere with the immune response to a pathogen in vivo.

  3. Development of an aptamer-based concentration method for the detection of Trypanosoma cruzi in blood.

    Directory of Open Access Journals (Sweden)

    Rana Nagarkatti

    Full Text Available Trypanosoma cruzi, a blood-borne parasite, is the etiological agent of Chagas disease. T. cruzi trypomastigotes, the infectious life cycle stage, can be detected in blood of infected individuals using PCR-based methods. However, soon after a natural infection, or during the chronic phase of Chagas disease, the number of parasites in blood may be very low and thus difficult to detect by PCR. To facilitate PCR-based detection methods, a parasite concentration approach was explored. A whole cell SELEX strategy was utilized to develop serum stable RNA aptamers that bind to live T. cruzi trypomastigotes. These aptamers bound to the parasite with high affinities (8-25 nM range. The highest affinity aptamer, Apt68, also demonstrated high specificity as it did not interact with the insect stage epimastigotes of T. cruzi nor with other related trypanosomatid parasites, L. donovani and T. brucei, suggesting that the target of Apt68 was expressed only on T. cruzi trypomastigotes. Biotinylated Apt68, immobilized on a solid phase, was able to capture live parasites. These captured parasites were visible microscopically, as large motile aggregates, formed when the aptamer coated paramagnetic beads bound to the surface of the trypomastigotes. Additionally, Apt68 was also able to capture and aggregate trypomastigotes from several isolates of the two major genotypes of the parasite. Using a magnet, these parasite-bead aggregates could be purified from parasite-spiked whole blood samples, even at concentrations as low as 5 parasites in 15 ml of whole blood, as detected by a real-time PCR assay. Our results show that aptamers can be used as pathogen specific ligands to capture and facilitate PCR-based detection of T. cruzi in blood.

  4. Mechanism of Trypanosoma cruzi Placenta Invasion and Infection: The Use of Human Chorionic Villi Explants

    Directory of Open Access Journals (Sweden)

    Ricardo E. Fretes

    2012-01-01

    Full Text Available Congenital Chagas disease, a neglected tropical disease, endemic in Latin America, is associated with premature labor and miscarriage. During vertical transmission the parasite Trypanosoma cruzi (T. cruzi crosses the placental barrier. However, the exact mechanism of the placental infection remains unclear. We review the congenital transmission of T. cruzi, particularly the role of possible local placental factors that contribute to the vertical transmission of the parasite. Additionally, we analyze the different methods available for studying the congenital transmission of the parasite. In that context, the ex vivo infection with T. cruzi trypomastigotes of human placental chorionic villi constitutes an excellent tool for studying parasite infection strategies as well as possible local antiparasitic mechanisms.

  5. Immunization with Hexon modified adenoviral vectors integrated with gp83 epitope provides protection against Trypanosoma cruzi infection.

    Directory of Open Access Journals (Sweden)

    Anitra L Farrow

    2014-08-01

    Full Text Available Trypanosoma cruzi is the causative agent of Chagas disease. Chagas disease is an endemic infection that affects over 8 million people throughout Latin America and now has become a global challenge. The current pharmacological treatment of patients is unsuccessful in most cases, highly toxic, and no vaccines are available. The results of inadequate treatment could lead to heart failure resulting in death. Therefore, a vaccine that elicits neutralizing antibodies mediated by cell-mediated immune responses and protection against Chagas disease is necessary.The "antigen capsid-incorporation" strategy is based upon the display of the T. cruzi epitope as an integral component of the adenovirus' capsid rather than an encoded transgene. This strategy is predicted to induce a robust humoral immune response to the presented antigen, similar to the response provoked by native Ad capsid proteins. The antigen chosen was T. cruzi gp83, a ligand that is used by T. cruzi to attach to host cells to initiate infection. The gp83 epitope, recognized by the neutralizing MAb 4A4, along with His6 were incorporated into the Ad serotype 5 (Ad5 vector to generate the vector Ad5-HVR1-gp83-18 (Ad5-gp83. This vector was evaluated by molecular and immunological analyses. Vectors were injected to elicit immune responses against gp83 in mouse models. Our findings indicate that mice immunized with the vector Ad5-gp83 and challenged with a lethal dose of T. cruzi trypomastigotes confer strong immunoprotection with significant reduction in parasitemia levels, increased survival rate and induction of neutralizing antibodies.This data demonstrates that immunization with adenovirus containing capsid-incorporated T. cruzi antigen elicits a significant anti-gp83-specific response in two different mouse models, and protection against T. cruzi infection by eliciting neutralizing antibodies mediated by cell-mediated immune responses, as evidenced by the production of several Ig isotypes

  6. Aspects of resistance to experimental infection with Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Dias, Viviane Liotti

    2010-01-01

    Chagas disease, a zoonosis caused by the protozoan Trypanosoma cruzi, has a wide distribution in Latin America and extends from the southern part of the United States to Argentina. A number of 10 million of infected people is estimated and another 25 million exposed to the risk. Although discovered over a century, Chagas disease is still a serious infection that causes great socioeconomic impact, with no effective treatment at the chronic phase and in which, a lack of scientific knowledge can be observed. The main goal of this work was that obtaining and using consomic strain of mice, the resistance could be investigated. Consomic strains were produced by programmed mating, in which the animals were monitored with DNA polymorphic markers, and one of his chromosomes was replaced by his homologue from another strain. As parental, were used, the inbred strains C57BL/6/J Unib with resistant phenotype (donor) and as receiver, the A/JUnib strain, that has a susceptible phenotype. These models were used to produce five consomic strains: for the chromosomes 7 (CSs7), 11 (CSs11), 14 (CSs14), 17 (CSs17) and 19 (CSs19), described by Passos et al. (2003) as important in controlling infection caused by the Y strain of T. cruzi. In experimental testing, the consomics were inoculated intraperitoneally at doses of 10 1 , 10 2 , 10 3 and 10 4 using as control, animals from both parental lines. In all consomics, resistance was higher than that observed in the susceptible parental. In a second protocol, the consomics were mated with scheduled associations and the progenies were challenged with inocula employing increasing doses of trypomastigotes. The resistance observed in this group was also higher than that observed in the parental with susceptible phenotype. The observed results demonstrate that the use of the consomic strains that were produced order to assess the contribution of each chromosome in the resistance, as well as the effects of association between chromosomes are an

  7. First Case of Natural Infection in Pigs: Review of Trypanosoma cruzi Reservoirs in Mexico

    Directory of Open Access Journals (Sweden)

    Paz María Salazar-Schettino

    1997-07-01

    Full Text Available An epidemiological research project was performed in the State of Morelos including collection of samples for blood smears and culture, serological tests, and xenodiagnoses from a total of 76 domestic and peridomestic mammals. Two strains of Trypanosoma cruzi were isolated by haemocultures; one from a pig (Sus scrofa, the first case of natural infection reported in Mexico, and the other from a dog (Canis familiaris. This study summarizes current information in Mexico concerning confirmed reservoirs of T. cruzi

  8. Trypanosoma cruzi: partial prevention of the natural infection of guinea pigs with a killed parasite vaccine.

    Science.gov (United States)

    Basombrio, M A

    1990-07-01

    Guinea pigs are natural reservoirs of Chagas' disease. Domestic breeding and local trade of these animals are common practices among andean communities in South America. Infection by Trypanosoma cruzi occurs when the animals live in triatomine-infested houses or yards. The preventive effect of a vaccine consisting of cultured T. cruzi killed by freezing and thawing plus saponin was tested both in mice and in the guinea pig ecosystem. Resistance against T. cruzi challenge in mice was improved by increasing the trypomastigote/epimastigote ratio in live attenuated vaccines but not in killed parasite vaccines. Although the killing of attenuated parasites sharply reduced their immunogenicity for mice, a protective effect against natural T. cruzi infection was detected in guinea pigs. A total of 88 guinea pigs were vaccinated in four intradermal sites on three occasions. Eighty controls received similar inoculations of culture medium plus saponin. All animals were kept in a triatomine-infested yard. Parasitemia was studied with the capillary microhematocrit method. After an exposure time averaging 4 months, natural T. cruzi infection occurred in 55% (44/80) of the controls and in 33% (29/88) of the vaccinated group (P less than 0.01). The number of highly parasitemic guinea pigs was also significantly decreased (6/80 vs 0/88, P less than 0.01). Thus, immunizing protocols which are only partially protective against artificial callenge with T. cruzi may nevertheless constrain the exchange of parasites between natural hosts and vectors.

  9. Heme A synthesis and CcO activity are essential for Trypanosoma cruzi infectivity and replication.

    Science.gov (United States)

    Merli, Marcelo L; Cirulli, Brenda A; Menéndez-Bravo, Simón M; Cricco, Julia A

    2017-06-27

    Trypanosoma cruzi , the causative agent of Chagas disease, presents a complex life cycle and adapts its metabolism to nutrients' availability. Although T. cruzi is an aerobic organism, it does not produce heme. This cofactor is acquired from the host and is distributed and inserted into different heme-proteins such as respiratory complexes in the parasite's mitochondrion. It has been proposed that T. cruzi's energy metabolism relies on a branched respiratory chain with a cytochrome c oxidase-type aa 3 (C c O) as the main terminal oxidase. Heme A, the cofactor for all eukaryotic C c O, is synthesized via two sequential enzymatic reactions catalyzed by heme O synthase (HOS) and heme A synthase (HAS). Previously, TcCox10 and TcCox15 ( Trypanosoma cruzi Cox10 and Cox15 proteins) were identified in T. cruzi They presented HOS and HAS activity, respectively, when they were expressed in yeast. Here, we present the first characterization of TcCox15 in T. cruzi , confirming its role as HAS. It was differentially detected in the different T. cruzi stages, being more abundant in the replicative forms. This regulation could reflect the necessity of more heme A synthesis, and therefore more C c O activity at the replicative stages. Overexpression of a non-functional mutant caused a reduction in heme A content. Moreover, our results clearly showed that this hindrance in the heme A synthesis provoked a reduction on C c O activity and, in consequence, an impairment on T. cruzi survival, proliferation and infectivity. This evidence supports that T. cruzi depends on the respiratory chain activity along its life cycle, being C c O an essential terminal oxidase. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  10. [Seroprevalence of Trypanosoma cruzi infection in the rural population of Sucre State, Venezuela].

    Science.gov (United States)

    García-Jordán, Noris; Berrizbeitia, Mariolga; Rodríguez, Jessicca; Concepción, Juan Luis; Cáceres, Ana; Quiñones, Wilfredo

    2017-10-26

    The current study aimed to determine the seroprevalence of Trypanosoma cruzi infection in Sucre State, Venezuela, and its association with epidemiological risk factors. The cluster sampling design allowed selecting 96 villages and 576 dwellings in the State's 15 municipalities. A total of 2,212 serum samples were analyzed by ELISA, HAI, and IFI. Seroprevalence in Sucre State was 3.12%. Risk factors associated with T. cruzi infection were: accumulated garbage, flooring and wall materials, type of dwelling, living in a house with wattle and daub walls and/or straw roofing, living in a house with risky walls and roofing, risky buildings and wattle and daub outbuildings, poultry inside the human dwelling, and presence of firewood. Infection was associated with individual age, and three seropositive cases were found in individuals less than 15 years of age. Sucre State has epidemiological factors that favor the risk of acquiring T. cruzi infection.

  11. Trypanosoma cruzi infection in the opossum Didelphis marsupialis: absence of neonatal transmission and protection by maternal antibodies in experimental infections

    Directory of Open Access Journals (Sweden)

    Ana M. Jansen

    1994-03-01

    Full Text Available The high rate of natural Trypanosoma cruzi infection found in opossums does not always correlate with appreciable densities of local triatomid populations. One alternative method which might bypass the invertebrate vector is direct transmission from mother to offspring. This possibility was investigated in five T. cruzi infected females and their litters (24 young. The influence of maternal antibodies transferred via lactation, on the course of experimental infection, was also examined. Our results show that neonatal transmission is probably not responsible for the high rate of natural T. cruzi infection among opossums. In addition antibodies of maternal origin confer a partial protection to the young. This was demonstrated by the finding of a double prepatency period and 4,5 fold lower levels of circulating parasites, in experimentally infected pouch young from infected as compared to control uninfected mothes. On the other hand, the duration of patent parasitemia was twice as long as that observed in the control group.

  12. [Seroprevalence of T. cruzi infection in Canis familiaris, state of Sucre, Venezuela].

    Science.gov (United States)

    Berrizbeitia, Mariolga; Concepción, Juan Luis; Carzola, Valentina; Rodríguez, Jéssicca; Cáceres, Ana; Quiñones, Wilfredo

    2013-01-01

    Trypanosoma cruzi infection in humans has been extensively studied in Venezuela; however, in reservoirs it has been less investigated. The objective of this study was to determine the seroepidemiology of T. cruzi in the state of Sucre, Venezuela. A cross-sectional and prospective study conducted in 95 towns and 577 dwellings in the 15 municipalies of the state of Sucre, Venezuela, from August to November, 2008. The evaluation of serum samples was performed with the CruziELISA kit and the multiple antigens binding assays (MABA). Furthermore, epidemiological surveys were applied to evaluate the risk factors. A total of dogs (average age of 2, 6 + 2.2 years, 226 males and 137 females) was evaluated. The combination of the ELISA / MABA tests detected 78 positive sera, sixty-nine negative and 10 of inconclusive results. The seroprevalence of the T. cruzi infection in dogs in the state of Sucre, was 22.1% (CI 95%: 20.58-22.4%). No significant statistic association was found between the T. cruzi infection in dogs and the evaluated epidemiological variables: hunting dogs that slept oudoors roaming freely in the populated center, sex of the animal and eating habits. The T. cruzi infection was associated to the age of canines, being significantly higher in the group of 0 to 3 years, when compared with older dogs. The high T. cruzi seroprevalence dected in dogs shows that in this región of Venezuela there prevails an important risk factor of transmissibility of this parasite to human populations.

  13. Trypanosoma cruzi infection in Didelphis marsupialis in Santa Catarina and Arvoredo Islands, southern Brazil

    Directory of Open Access Journals (Sweden)

    Grisard Edmundo C

    2000-01-01

    Full Text Available Between 1984 and 1993 the prevalence of the Trypanosoma cruzi infection in opossums (Didelphis marsupialis was studied in Santa Catarina and Arvoredo Islands, State of Santa Catarina, Brazil. The association of the triatomine bug Panstrongylus megistus with opossums nests and the infection rate of these triatomines by T. cruzi was also studied. Thirteen different locations were studied in Santa Catarina Island (SCI, in which 137 D. marsupialis were collected. Sixty two opossums were collected at the Arvoredo Island (AI, located 12 miles north from SCI. All captured animals were submitted to parasitological examinations that revealed the presence of T. cruzi in 21.9% of the opossums captured in SCI and 45.2% among opossums captured in the AI. The presence of P. megistus was detected in most of the D. marsupialis nests collected in the SCI, however, in the non-inhabited AI only eight triatomines were collected during the whole study. The presence of T. cruzi-infected D. marsupialis associated with P. megistus in human dwellings in the SCI, and the high infection rate of D. marsupilais by T. cruzi in the absence of a high vector density are discussed.

  14. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection

    Science.gov (United States)

    Cardoso, Mariana S.; Reis-Cunha, João Luís; Bartholomeu, Daniella C.

    2016-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host’s immune system, using strategies that can be traced to the parasite’s life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as glycosylphosphatidylinositol-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the coexpression of several related, but not identical, epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi

  15. Parasitic loads in tissues of mice infected with Trypanosoma cruzi and treated with AmBisome.

    Directory of Open Access Journals (Sweden)

    Sabrina Cencig

    2011-06-01

    Full Text Available BACKGROUND: Chagas disease is one of the most important public health problems and a leading cause of cardiac failure in Latin America. The currently available drugs to treat T. cruzi infection (benznidazole and nifurtimox are effective in humans when administered during months. AmBisome (liposomal amphotericin B, already shown efficient after administration for some days in human and experimental infection with Leishmania, has been scarcely studied in T. cruzi infection. AIMS: This work investigates the effect of AmBisome treatment, administered in 6 intraperitoneal injections at various times during acute and/or chronic phases of mouse T. cruzi infection, comparing survival rates and parasitic loads in several tissues. METHODOLOGY: Quantitative PCR was used to determine parasitic DNA amounts in tissues. Immunosuppressive treatment with cyclophosphamide was used to investigate residual infection in tissues. FINDINGS: Administration of AmBisome during the acute phase of infection prevented mice from fatal issue. Parasitaemias (microscopic examination were reduced in acute phase and undetectable in chronic infection. Quantitative PCR analyses showed significant parasite load reductions in heart, liver, spleen, skeletal muscle and adipose tissues in acute as well as in chronic infection. An earlier administration of AmBisome (one day after parasite inoculation had a better effect in reducing parasite loads in spleen and liver, whereas repetition of treatment in chronic phase enhanced the parasite load reduction in heart and liver. However, whatever the treatment schedule, cyclophosphamide injections boosted infection to parasite amounts comparable to those observed in acutely infected and untreated mice. CONCLUSIONS: Though AmBisome treatment fails to completely cure mice from T. cruzi infection, it impedes mortality and reduces significantly the parasitic loads in most tissues. Such a beneficial effect, obtained by administrating it over a short

  16. Clinical and epidemiological features of chronic Trypanosoma cruzi infection in patients with HIV/AIDS in Buenos Aires, Argentina.

    Science.gov (United States)

    Benchetrit, Andrés Guillermo; Fernández, Marisa; Bava, Amadeo Javier; Corti, Marcelo; Porteiro, Norma; Martínez Peralta, Liliana

    2018-02-01

    Trypanosoma cruzi reactivation in HIV patients is considered an opportunistic infection, usually with a fatal outcome. The aim of this study was to describe the epidemiological and clinical features of T. cruzi infection in HIV patients and to compare these findings between patients with and without Chagas disease reactivation. The medical records of T. cruzi-HIV co-infected patients treated at the Muñiz Infectious Diseases Hospital from January 2005 to December 2014 were reviewed retrospectively. Epidemiological and clinical features were assessed and compared between patients with and without Chagas disease reactivation. The medical records of 80 T. cruzi-HIV co-infected patients were reviewed. The most likely route of T. cruzi infection was vector-borne (32/80 patients), followed by intravenous drug use (12/80). Nine of 80 patients had reactivation. Patients without reactivation had a significantly higher CD4 T-cell count at diagnosis of T. cruzi infection (144 cells/μl vs. 30 cells/μl, p=0.026). Chagas disease serology was negative in two of nine patients with reactivation. Serological assays for T. cruzi infection may be negative in severely immunocompromised patients. Direct parasitological techniques should be performed in the diagnosis of patients for whom there is a suspicion of T. cruzi reactivation. HIV patients with a lower CD4 count are at higher risk of reactivation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Leukoreduction by centrifugation does not eliminate Trypanosoma cruzi from infected blood units.

    Science.gov (United States)

    Dzib, Doris; Hernández, Virginia Peña; Ake, Baldemar Canche; López, Ruth Alacantara; Monteón, Victor Manuel

    2009-06-01

    Current strategies to prevent transfusion-associated Chagas disease include the identification of Trypanosoma cruzi-infected blood donors through questionnaires and serologic tests. There are other procedures such as leukoreduction that prevent the transmission of infectious agents associated to white cells. The objective of the present work was to estimate the seroprevalence, evaluate the efficacy of leukoreduction by centrifugation to eliminate T. cruzi in infected blood units, and the correlation of immunoglobulin G (IgG) subclasses of seropositive blood donors with chronic chagasic cardiopathy. Over a period of 14 months, 33 out of 6600 blood donors (0.5%) at Centro Estatal de la Transfusión Sanguínea in Campeche State, México were seropositive for T. cruzi. Twenty seropositive blood units were submitted through leukoreduction by centrifugation, and in the fractions generated (red cell fraction, platelets, and the buffy-coat), we searched for the presence of T. cruzi using specific polymerase chain reaction. We detected parasite DNA in 50% to 60% of the fractions tested, suggesting that leukoreduction by centrifugation does not eliminate the microorganisms in the infected blood unit. We also observed that the level of IgG2 and IgG4 subclasses specific for T. cruzi in seropositive blood donors was lower than in chronic cardiopathic chagasic patients. In conclusion, leukoreduction by centrifugation has a limited role in eliminating T. cruzi in infected blood supply, and the low level of specific IgG2 and IgG4 could be a marker in the indeterminate phase of infection.

  18. Moderate physical exercise protects myenteric metabolically more active neurons in mice infected with Trypanosoma cruzi.

    Science.gov (United States)

    Moreira, Neide Martins; de Moraes, Solange Marta Franzói; Dalálio, M M O; Gomes, Mônica Lúcia; Sant'ana, D M G; de Araújo, Silvana Marques

    2014-02-01

    Trypanosoma cruzi causes neuronal myenteric depopulation compromising intestinal function. The purpose of this study was to evaluate the influence of moderate physical exercise on NADH diaphorase (NADH-d)-positive neurons in the myenteric plexus and intestinal wall of the colon in mice infected with T. cruzi. Forty 30-day-old male Swiss mice were divided into the following groups: trained infected (TI), sedentary infected (SI), trained control (TC), and sedentary control. The TC and TI groups were subjected to a moderate physical exercise program on a treadmill for 8 weeks. Three days after finishing physical exercise, the TI and SI groups were intraperitoneally inoculated with 1,300 blood trypomastigotes of the Y strain of Trypanosoma cruzi. Parasitemia was evaluated from days 4 to 61 after inoculation. On day 75 of infection, myenteric neurons in the colon were quantified (NADH-d), and inflammatory foci were counted. Tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) levels were evaluated in plasma. The results were compared using analysis of variance and the Kruskal-Wallis test at a 5 % significance level. Moderate physical exercise reduced the parasite peak on day 8 of infection (p = 0.0132) and total parasitemia (p = 0.0307). It also prevented neuronal depopulation (p  0.05). These results reinforce the therapeutic benefits of moderate physical exercise for T. cruzi infection.

  19. Efficacy of some essential oils in mice infected with Trypanosoma cruzi

    African Journals Online (AJOL)

    Purpose: To evaluate the efficacy of orally administered Cymbopogon citratus, Zingiber officinale and Syzygium aromaticum essential oils (EOs) in mice infected with Trypanosoma cruzi. Methods: Three experiments were conducted with 48 Swiss mice each. The animals were inoculated with 2 x 106 metacyclic ...

  20. First description of Trypanosoma cruzi human infection in Esmeraldas province, Ecuador.

    Science.gov (United States)

    Guevara, Ángel; Moreira, Juan; Criollo, Hipatia; Vivero, Sandra; Racines, Marcia; Cevallos, Varsovia; Prandi, Rosanna; Caicedo, Cynthia; Robinzon, Francisco; Anselmi, Mariella

    2014-08-06

    Chagas disease was described in Ecuador in 1930 in the province of Guayas and thereafter in various provinces. Triatomine were reported in the province of Esmeraldas but no human infection has been described. Here we report the first evidence that the disease does exist in the province of Esmeraldas. In indigenous Awá communities located in the northwest jungle of the Esmeraldas province, 144 individuals were tested using ELISA and PCR for T.cruzi of which 5 (3.47%) were positive. Twenty eight triatomine were collected, 27 were Triatoma dispar and 1 Pastrongylus rufotuberculatus, T.cruzi was detected in 11 (42.3%) of 26 insects.

  1. Macrophage Migration Inhibitory Factor Contributes to Host Defense against Acute Trypanosoma cruzi Infection

    Science.gov (United States)

    Reyes, José L.; Terrazas, Luis I.; Espinoza, Bertha; Cruz-Robles, David; Soto, Virgilia; Rivera-Montoya, Irma; Gómez-García, Lorena; Snider, Heidi; Satoskar, Abhay R.; Rodríguez-Sosa, Miriam

    2006-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is involved in the host defense against several pathogens. Here we used MIF−/− mice to determine the role of endogenous MIF in the regulation of the host immune response against Trypanosoma cruzi infection. MIF−/− mice displayed high levels of blood and tissue parasitemia, developed severe heart and skeletal muscle immunopathology, and succumbed to T. cruzi infection faster than MIF+/+ mice. The enhanced susceptibility of MIF−/− mice to T. cruzi was associated with reduced levels of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-12 (IL-12), IL-18, gamma interferon (IFN-γ), and IL-1β, in their sera and reduced production of IL-12, IFN-γ, and IL-4 by spleen cells during the early phase of infection. At all time points, antigen-stimulated splenocytes from MIF+/+ and MIF−/− mice produced comparable levels of IL-10. MIF−/− mice also produced significantly less Th1-associated antigen-specific immunoglobulin G2a (IgG2a) throughout the infection, but both groups produced comparable levels of Th2-associated IgG1. Lastly, inflamed hearts from T. cruzi-infected MIF−/− mice expressed increased transcripts for IFN-γ, but fewer for IL-12 p35, IL-12 p40, IL-23, and inducible nitric oxide synthase, compared to MIF+/+ mice. Taken together, our findings show that MIF plays a role in controlling acute T. cruzi infection. PMID:16714544

  2. Trypanosoma cruzi-infected Panstrongylus geniculatus and Rhodnius robustus adults invade households in the Tropics of Cochabamba region of Bolivia.

    Science.gov (United States)

    Rojas-Cortez, Mirko; Pinazo, Maria-Jesus; Garcia, Lineth; Arteaga, Mery; Uriona, Liliana; Gamboa, Seyla; Mejía, Carolina; Lozano, Daniel; Gascon, Joaquim; Torrico, Faustino; Monteiro, Fernando A

    2016-03-16

    There are hardly any data available on the relationships between the parasite and the vector or regarding potential reservoirs involved in the natural transmission cycle of Trypanosoma cruzi in the Tropics of Cochabamba, Bolivia. Local families from communities were responsible for the capture of triatomine specimens, following a strategic methodology based on entomological surveillance with community participation developed by the National Chagas Programme of the Ministry of Health of Bolivia. We describe the collection of adult Panstrongylus geniculatus and Rhodnius robustus naturally infected with Trypanosoma cruzi from houses and from the hospital of Villa Tunari municipality. The flagellates found in the digestive tract of P. geniculatus belong to genetic lineages or DTUs TcI and TcIII, whereas only lineage DTU TcI was found in R. robustus. The detection of these vectors infected with T. cruzi reveals the vulnerability of local communities. The results presented here highlight the risk of Chagas disease transmission in a region previously thought not to be endemic, indicating that the Tropics of Cochabamba should be placed under permanent entomological and epidemiological surveillance.

  3. Potential Role of Carvedilol in the Cardiac Immune Response Induced by Experimental Infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Aline Luciano Horta

    2017-01-01

    Full Text Available Trypanosoma cruzi causes a cardiac infection characterized by an inflammatory imbalance that could become the inciting factor of the illness. To this end, we evaluated the role of carvedilol, a beta-blocker with potential immunomodulatory properties, on the immune response in C57BL/6 mice infected with VL-10 strain of T. cruzi in the acute phase. Animals (n=40 were grouped: (i not infected, (ii infected, (iii infected + carvedilol, and (iv not infected + carvedilol. We analyzed parameters related to parasitemia, plasma levels of TNF, IL-10, and CCL2, and cardiac histopathology after the administration of carvedilol for 30 days. We did not observe differences in the maximum peaks of parasitemia in the day of their detection among the groups. The plasma TNF was elevated at 60 days of infection in mice treated or not with carvedilol. However, we observed a decreased CCL2 level and increased IL-10 levels in those infected animals treated with carvedilol, which impacted the reduction of the inflammatory infiltration in cardiac tissue. For this experimental model, carvedilol therapy was not able to alter the levels of circulating parasites but modulates the pattern of CCL2 and IL-10 mediators when the VL10 strain of T. cruzi was used in C57BL6 mice.

  4. Association of Trypanosoma cruzi infection with risk factors and electrocardiographic abnormalities in northeast Mexico

    Science.gov (United States)

    2014-01-01

    Background American trypanosomiasis is a major disease and public health issue, caused by the protozoan parasite Trypanosoma cruzi. The prevalence of T. cruzi has not been fully documented, and there are few reports of this issue in Nuevo Leon. The aim of this study was to update the seroprevalence rate of T. cruzi infection, including an epidemiological analysis of the risk factors associated with this infection and an electrocardiographic (ECG) evaluation of those infected. Methods Sera from 2,688 individuals from 10 municipalities in the state of Nuevo Leon, Mexico, were evaluated using an enzyme-linked immunosorbent assay and an indirect hemagglutination assay. An ECG case–control study was performed in subjects seropositive for T. cruzi and the results were matched by sex and age to seronegative residents of the same localities. A univariate analysis with χ2 and Fisher’s exact tests was used to determine the association between seropositivity and age (years), sex, and ECG changes. A multivariate analysis was then performed to calculate the odd ratios between T. cruzi seropositivity and the risk factors. Results The seropositive rate was 1.93% (52/2,688). In the ECG study, 22.85% (8/35) of the infected individuals exhibited ECG abnormalities. Triatoma gerstaeckeri was the only vector reported. The main risk factors were ceiling construction material (P ≤ 0.0024), domestic animals (P ≤ 0.0001), and living in rural municipalities (P ≤ 0.0025). Conclusions These findings demonstrate a 10-fold higher prevalence of Chagas disease than previously reported (0.2%), which implies a serious public health threat in northeastern Mexico. The epidemiological profile established in this study differs from that found in the rest of Mexico, where human populations live in close proximity to domiciliary triatomines. PMID:24580840

  5. Immunodiagnosis of Trypanosoma cruzi (Chagas' Disease Infection in Naturally Infected Dogs

    Directory of Open Access Journals (Sweden)

    Lauricella MA

    1998-01-01

    Full Text Available This study reports on the standardization of an enzyme-linked immunosorbent assay (ELISA for detecting specific antibodies anti-Trypanosoma cruzi in naturally infected dogs. Sera from 182 mongrel dogs of all ages residing in four rural villages in Santiago del Estero, Argentina, were collected in November 1994 and preserved in buffered neutral glycerin. All sera were tested by indirect hemagglutination test (IHAT, indirect immunofluorescence test (IFAT, and ELISA using the flagellar fraction of T. cruzi as antigen. Dog sera from an area without vectorial transmission were used to calculate ELISA specificity and cut-off value. Eighty-six percent of sera had concordant results for all tests. All sera reactive for IHAT and IFAT were also reactive for ELISA, except in one case. Sera tested by ELISA when diluted 1:200 allowed a clearer division between non-reactive and reactive sera than when 1:100 with greater agreement among serologic techniques. The specificity of ELISA was 96.2%. Among 34 adult dogs with a positive xenodiagnosis, sensitivity was 94% both for ELISA and IFAT. ELISA is the first choice for screening purposes and one of the pair of techniques recommended for diagnostic studies in dog populations

  6. Natural Trypanosoma cruzi infection in dogs of endemic areas of the Argentine Republic

    Directory of Open Access Journals (Sweden)

    Marta A. Lauricella

    1989-04-01

    Full Text Available The population dynamics and the prevalence of chagasic infection of 352 dogs living in 108 rural houses infested by triatomines were studied. The region was divided into three sections according to increasing distances to an urban area. Each animal was identified by means of its particular characteristics and built, and its owners gave information about its habits. By means of xenodiagnosis, serology and ECG studies, prevalences of infection, parasitological-serological correlation, percentage of altered electrocardiographic outlines and percentage of houses with parasitemic dogs, were determined. The rural area showed a characteristic T. cruzi infection pattern and differences in the canine population parameters with respect to the other areas were observed: a higher proportion of puppies than adult dogs, a more sedentary population, higher prevalences of infection, as measured by xenodiagnosis, in dogs, and the highest proportion of bedroom insects infected with T. cruzi. It is assumed that the sedentary characteristics of the human population in that rural area impinge in the blood offer to the triatomine population, and the high percentage of parasitemic dogs of the area, contribute to the rise of "kissing ougs" infected with T. cruzi found in bedrooms.

  7. Evasion of the immune response by Trypanosoma cruzi during acute infection

    Directory of Open Access Journals (Sweden)

    Mariana Santos Cardoso

    2016-01-01

    Full Text Available Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host’s immune system, using strategies that can be traced to the parasite’s life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as GPI-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the co-expression of several related but not identical epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi CD8

  8. Experimental infection and transmission of Leishmania by Lutzomyia cruzi (Diptera: Psychodidae: Aspects of the ecology of parasite-vector interactions.

    Directory of Open Access Journals (Sweden)

    Everton Falcão de Oliveira

    2017-02-01

    Full Text Available Several parameters should be addressed before incriminating a vector for Leishmania transmission. Those may include its ability to become infected by the same Leishmania species found in humans, the degree of attractiveness for reservoirs and humans and capacity to sustain parasite infection under laboratory conditions. This study evaluated the vectorial capacity of Lutzomyia cruzi for Leishmania infantum and gathered information on its ability to harbor L. amazonensis. Laboratory-reared Lu. cruzi were infected experimentally by feeding them on dogs infected naturally with L. infantum and hamsters infected with L. amazonensis. Sand fly attractiveness to dogs and humans was determined using wild caught insects. The expected daily survival of infected Lu. cruzi, the duration of the gonotrophic cycle, and the extrinsic incubation period were also investigated for both parasites. Vector competence was investigated for both Leishmania species. The mean proportion of female sand flies that fed on hosts was 0.40. For L. infantum and L. amazonensis, Lu. cruzi had experimental infection rates of 10.55% and 41.56%, respectively. The extrinsic incubation period was 3 days for both Leishmania species, regardless of the host. Survival expectancy of females infected with L. infantum and L. amazonensis after completing the gonotrophic cycle was 1.32 and 0.43, respectively. There was no association between L. infantum infection and sand fly longevity, but L. amazonensis-infected flies had significantly greater survival probabilities. Furthermore, egg-laying was significantly detrimental to survival. Lu. cruzi was found to be highly attracted to both dogs and humans. After a bloodmeal on experimentally infected hosts, both parasites were able to survive and develop late-stage infections in Lu. cruzi. However, transmission was demonstrated only for L. amazonensis-infected sand flies. In conclusion, Lu. cruzi fulfilled several of the requirements of vectorial

  9. Experimental infection and transmission of Leishmania by Lutzomyia cruzi (Diptera: Psychodidae): Aspects of the ecology of parasite-vector interactions.

    Science.gov (United States)

    Falcão de Oliveira, Everton; Oshiro, Elisa Teruya; Fernandes, Wagner de Souza; Murat, Paula Guerra; Medeiros, Márcio José de; Souza, Alda Izabel; Oliveira, Alessandra Gutierrez de; Galati, Eunice Aparecida Bianchi

    2017-02-01

    Several parameters should be addressed before incriminating a vector for Leishmania transmission. Those may include its ability to become infected by the same Leishmania species found in humans, the degree of attractiveness for reservoirs and humans and capacity to sustain parasite infection under laboratory conditions. This study evaluated the vectorial capacity of Lutzomyia cruzi for Leishmania infantum and gathered information on its ability to harbor L. amazonensis. Laboratory-reared Lu. cruzi were infected experimentally by feeding them on dogs infected naturally with L. infantum and hamsters infected with L. amazonensis. Sand fly attractiveness to dogs and humans was determined using wild caught insects. The expected daily survival of infected Lu. cruzi, the duration of the gonotrophic cycle, and the extrinsic incubation period were also investigated for both parasites. Vector competence was investigated for both Leishmania species. The mean proportion of female sand flies that fed on hosts was 0.40. For L. infantum and L. amazonensis, Lu. cruzi had experimental infection rates of 10.55% and 41.56%, respectively. The extrinsic incubation period was 3 days for both Leishmania species, regardless of the host. Survival expectancy of females infected with L. infantum and L. amazonensis after completing the gonotrophic cycle was 1.32 and 0.43, respectively. There was no association between L. infantum infection and sand fly longevity, but L. amazonensis-infected flies had significantly greater survival probabilities. Furthermore, egg-laying was significantly detrimental to survival. Lu. cruzi was found to be highly attracted to both dogs and humans. After a bloodmeal on experimentally infected hosts, both parasites were able to survive and develop late-stage infections in Lu. cruzi. However, transmission was demonstrated only for L. amazonensis-infected sand flies. In conclusion, Lu. cruzi fulfilled several of the requirements of vectorial capacity for L. infantum

  10. Nutritional Status Driving Infection by Trypanosoma cruzi: Lessons from Experimental Animals

    Directory of Open Access Journals (Sweden)

    Guilherme Malafaia

    2011-01-01

    Full Text Available This paper reviews the scientific knowledge about protein-energy and micronutrient malnutrition in the context of Chagas disease, especially in experimental models. The search of articles was conducted using the electronic databases of SciELO (Scientific Electronic Library Online, PubMed and MEDLINE published between 1960 and March 2010. It was possible to verify that nutritional deficiencies (protein-energy malnutrition and micronutrient malnutrition exert a direct effect on the infection by T. cruzi. However, little is known about the immunological mechanisms involved in the relationship “nutritional deficiencies and infection by T. cruzi”. A hundred years after the discovery of Chagas disease many aspects of this illness still require clarification, including the effects of nutritional deficiencies on immune and pathological mechanisms of T. cruzi infection.

  11. Trypanosoma cruzi in the anal glands of urban opossums: I- isolation and experimental infections

    Directory of Open Access Journals (Sweden)

    S Urdaneta-Morales

    1996-08-01

    Full Text Available Opossums (Didelphis marsupialis captured in intensely urbanized areas of the city of Caracas, Venezuela, were found infected with Trypanosoma cruzi. The developmental cycle of trypomastigote-epimastigote-metacyclic infective trypomastigote, usually occurring in the intestine of the triatomine vector, was taking place in the anal odoriferous glands of the opossums. Material from the glands, inoculated in young, healthy opossums and white mice by different routes, subcutaneously, intraperitoneally, orally, and into the eye, induced T. cruzi infections in all animals. Parasitemia, invasion of cardiac and skeletal muscle, and intracellular multiplication of amastigotes were observed. Inoculation of metacyclics from anal glands, cultured in LIT medium, gave equivalent results. All opossums survived; all mice died. Excreta of opossums may thus transmit Chagas' disease by contamination, even in urban areas where insect vectors are not present.

  12. Aspects of resistance to experimental infection with Trypanosoma cruzi; Aspectos da resistencia a infecao experimental com Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Viviane Liotti

    2010-07-01

    Chagas disease, a zoonosis caused by the protozoan Trypanosoma cruzi, has a wide distribution in Latin America and extends from the southern part of the United States to Argentina. A number of 10 million of infected people is estimated and another 25 million exposed to the risk. Although discovered over a century, Chagas disease is still a serious infection that causes great socioeconomic impact, with no effective treatment at the chronic phase and in which, a lack of scientific knowledge can be observed. The main goal of this work was that obtaining and using consomic strain of mice, the resistance could be investigated. Consomic strains were produced by programmed mating, in which the animals were monitored with DNA polymorphic markers, and one of his chromosomes was replaced by his homologue from another strain. As parental, were used, the inbred strains C57BL/6/J Unib with resistant phenotype (donor) and as receiver, the A/JUnib strain, that has a susceptible phenotype. These models were used to produce five consomic strains: for the chromosomes 7 (CSs7), 11 (CSs11), 14 (CSs14), 17 (CSs17) and 19 (CSs19), described by Passos et al. (2003) as important in controlling infection caused by the Y strain of T. cruzi. In experimental testing, the consomics were inoculated intraperitoneally at doses of 10{sup 1}, 10{sup 2}, 10{sup 3} and 10{sup 4} using as control, animals from both parental lines. In all consomics, resistance was higher than that observed in the susceptible parental. In a second protocol, the consomics were mated with scheduled associations and the progenies were challenged with inocula employing increasing doses of trypomastigotes. The resistance observed in this group was also higher than that observed in the parental with susceptible phenotype. The observed results demonstrate that the use of the consomic strains that were produced order to assess the contribution of each chromosome in the resistance, as well as the effects of association between

  13. Heterogeneities in the Ecoepidemiology of Trypanosoma cruzi Infection in Rural Communities of the Argentinean Chaco

    OpenAIRE

    Cardinal, M. Victoria; Orozco, M. Marcela; Enriquez, Gustavo F.; Ceballos, Leonardo A.; Gaspe, María Sol; Alvarado-Otegui, Julián A.; Gurevitz, Juan M.; Kitron, Uriel; Gürtler, Ricardo E.

    2014-01-01

    We conducted a cross-sectional survey of Trypanosoma cruzi infection of Triatoma infestans as well as dogs and cats in 327 households from a well-defined rural area in northeastern Argentina to test whether the household distribution of infection differed between local ethnic groups (Tobas and Creoles) and identify risk factors for host infection. Overall prevalence of infection of bugs (27.2%; 95% confidence interval = 25.3–29.3%), dogs (26.0%; 95% confidence interval = 23.3–30.1%), and cats...

  14. Trypanosoma cruzi: strain selection by diferent schedules of mouse passage of an initially mixed infection

    Directory of Open Access Journals (Sweden)

    Maria P. Deane

    1984-12-01

    Full Text Available From an initial double infection in mice, established by simultaneous and equivalent inocula of bloodstream forms of strains Y and F of Trypanosoma cruzi, two lines were derived by subinoculations: one (W passaged every week, the other (M every month. Through biological and biochemical methods only the Y strain was identified at the end of the 10th and 16th passages of line W and only the F strain at the 2nd and 4th passages of line M. The results illustrate strain selection through laboratory manipulation of initially mixed populations of T. cruzi.De uma infecção inicialmente dupla em camundongo, estabelecida por inóculo simultaneo e equivalente de formas sanguíneas das cepas Y e F de Trypanosoma cruzi, duas linhagens foram originadas por subinoculações: uma (W passada casa semana, a outra (M cada mês. Por métodos biológicos e bioquímicos apenas a cepa Y foi identificada ao fim a 10a. e 16a. passagens da linhagem W e apenas a cepa F na 2a. e 4a.passagens de linhagem M. Os resultados demonstram a seleção de cepas através de manipulação em laboratorio de populações inicialmente mistas de T. cruzi.

  15. Electrocardiographic alteration among first degree relatives with serologic evidence of Trypanosoma cruzi infection: a sibship study

    Directory of Open Access Journals (Sweden)

    Julio C. Morini

    1994-09-01

    Full Text Available To analyze whether electrocardiographic alterations (ECGA in patients with antibodies to Trypanosoma cruzi showed a patttern of familial aggregation, a sample of 379 young adults (166 men and 213 women distributed in sibships, were assessed for the presence of anti-T.cruzi antibodies, and subjected to a complete clinical examination and a standard resting electrocardiogram (ECG. Positive T. cruzi serology was detected in 165 individuals, 48 of them showing an abnormal ECG (overall prevalence 29 por cento. One hundred and eleven seropositive individuals were distributed in 45 sibships, each of them constituted by more than one seropositive sib, with ECGA being present in 34 out of these patients. Seropositive subjects with ECGA were detected in 27 sibships. Since the index case within each sibship is counted exactly once, affected individuals selected at random as propositi were extracted to calculate the prevalence of ECGA among first degree relatives of probands. Abnormal ECGs were recorded in 7 out of 45 sibs yielding a prevalence that did not differ from estimations registered in the general population or seropositive sibs. Data from the present sample show no familial aggregation for the occurrence of ECGA in patients with T.cruzi infection.

  16. Mammalian cell invasion and intracellular trafficking by Trypanosoma cruzi infective forms

    Directory of Open Access Journals (Sweden)

    Renato A. Mortara

    2005-03-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas’ disease, occurs as different strains or isolates that may be grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle and T. cruzi II, linked to the human disease. In the mammalian host the parasite has to invade cells and many studies implicated the flagellated trypomastigotes in this process. Several parasite surface components and some of host cell receptors with which they interact have been identified. Our work focused on how amastigotes, usually found growing in the cytoplasm, can invade mammalian cells with infectivities comparable to that of trypomastigotes. We found differences in cellular responses induced by amastigotes and trypomastigotes regarding cytoskeletal components and actin-rich projections. Extracellularly generated amastigotes of T. cruzi I strains may display greater infectivity than metacyclic trypomastigotes towards cultured cell lines as well as target cells that have modified expression of different classes of cellular components. Cultured host cells harboring the bacterium Coxiella burnetii allowed us to gain new insights into the trafficking properties of the different infective forms of T. cruzi, disclosing unexpected requirements for the parasite to transit between the parasitophorous vacuole to its final destination in the host cell cytoplasm.O agente etiológico da doença de Chagas, Trypanosoma cruzi, ocorre como cepas ou isolados que podem ser agrupados em duas grandes linhagens filogenéticas: T. cruzi I associada ao ciclo silvestre e T. cruzi II ligada à doençahumana. No hospedeiro mamífero o parasita tem que invadir células, e vários estudos relacionam as formas flageladas tripomastigotas neste processo. Diferentes componentes de superfície dos parasitas e alguns dos respectivos receptores foram identificados. Em nosso trabalho temos procurado compreender como amastigotas, que normalmente são encontrados crescendo

  17. Trypanocide Treatment of Women Infected with Trypanosoma cruzi and Its Effect on Preventing Congenital Chagas

    Science.gov (United States)

    Fabbro, Diana L.; Danesi, Emmaria; Olivera, Veronica; Codebó, Maria Olenka; Denner, Susana; Heredia, Cecilia; Streiger, Mirtha; Sosa-Estani, Sergio

    2014-01-01

    With the control of the vectorial and transfusional routes of infection with Trypanosoma cruzi, congenital transmission has become an important source of new cases. This study evaluated the efficacy of trypanocidal therapy to prevent congenital Chagas disease and compared the clinical and serological evolution between treated and untreated infected mothers. We conducted a multicenter, observational study on a cohort of mothers infected with T. cruzi, with and without trypanocidal treatment before pregnancy. Their children were studied to detect congenital infection. Among 354 “chronically infected mother-biological child” pairs, 132 were treated women and 222 were untreated women. Among the children born to untreated women, we detected 34 infected with T. cruzi (15.3%), whose only antecedent was maternal infection. Among the 132 children of previously treated women, no infection with T. cruzi was found (0.0%) (p<0.05). Among 117 mothers with clinical and serological follow up, 71 had been treated and 46 were untreated. The women were grouped into three groups. Group A: 25 treated before 15 years of age; Group B: 46 treated at 15 or more years of age; Group C: untreated, average age of 29.2±6.2 years at study entry. Follow-up for Groups A, B and C was 16.3±5.8, 17.5±9.2 and 18.6±8.6 years respectively. Negative seroconversion: Group A, 64.0% (16/25); Group B, 32.6% (15/46); Group C, no seronegativity was observed. Clinical electrocardiographic alterations compatible with chagasic cardiomyopathy: Group A 0.0% (0/25); B 2.2% (1/46) and C 15.2% (7/46). The trypanocidal treatment of women with chronic Chagas infection was effective in preventing the congenital transmission of Trypanosoma cruzi to their children; it had also a protective effect on the women's clinical evolution and deparasitation could be demonstrated in many treated women after over 10 years of follow up. PMID:25411847

  18. Trypanocide treatment of women infected with Trypanosoma cruzi and its effect on preventing congenital Chagas.

    Science.gov (United States)

    Fabbro, Diana L; Danesi, Emmaria; Olivera, Veronica; Codebó, Maria Olenka; Denner, Susana; Heredia, Cecilia; Streiger, Mirtha; Sosa-Estani, Sergio

    2014-11-01

    With the control of the vectorial and transfusional routes of infection with Trypanosoma cruzi, congenital transmission has become an important source of new cases. This study evaluated the efficacy of trypanocidal therapy to prevent congenital Chagas disease and compared the clinical and serological evolution between treated and untreated infected mothers. We conducted a multicenter, observational study on a cohort of mothers infected with T. cruzi, with and without trypanocidal treatment before pregnancy. Their children were studied to detect congenital infection. Among 354 "chronically infected mother-biological child" pairs, 132 were treated women and 222 were untreated women. Among the children born to untreated women, we detected 34 infected with T. cruzi (15.3%), whose only antecedent was maternal infection. Among the 132 children of previously treated women, no infection with T. cruzi was found (0.0%) (p<0.05). Among 117 mothers with clinical and serological follow up, 71 had been treated and 46 were untreated. The women were grouped into three groups. Group A: 25 treated before 15 years of age; Group B: 46 treated at 15 or more years of age; Group C: untreated, average age of 29.2 ± 6.2 years at study entry. Follow-up for Groups A, B and C was 16.3 ± 5.8, 17.5 ± 9.2 and 18.6 ± 8.6 years respectively. Negative seroconversion: Group A, 64.0% (16/25); Group B, 32.6% (15/46); Group C, no seronegativity was observed. Clinical electrocardiographic alterations compatible with chagasic cardiomyopathy: Group A 0.0% (0/25); B 2.2% (1/46) and C 15.2% (7/46). The trypanocidal treatment of women with chronic Chagas infection was effective in preventing the congenital transmission of Trypanosoma cruzi to their children; it had also a protective effect on the women's clinical evolution and deparasitation could be demonstrated in many treated women after over 10 years of follow up.

  19. Trypanocidal drugs for chronic asymptomatic Trypanosoma cruzi infection.

    Science.gov (United States)

    Villar, Juan Carlos; Perez, Juan Guillermo; Cortes, Olga Lucia; Riarte, Adelina; Pepper, Micah; Marin-Neto, Jose Antonio; Guyatt, Gordon H

    2014-05-27

    Prevention of chronic chagasic cardiomyopathy (CCC) by treating infected populations with trypanocidal therapy (TT) remains a challenge. Despite a renewed enthusiasm for TT, uncertainty regarding its efficacy, concerns about its safety and limited availability remain barriers for a wider use of conventional drugs. We have updated a previous version of this review. To systematically search, appraise, identify and extract data from eligible studies comparing the outcome of cohorts of seropositive individuals to Trypanosoma cruzi exposed to TT versus placebo or no treatment. We sought eligible studies in electronic databases (Cochrane Central Register of Controlled Trials (CENTRAL), Issue 1, 2014); MEDLINE (Ovid, 1946 to January week 5 2014); EMBASE (Ovid, 1980 to 2014 week 6) and LILACS (up to 6 May 2010)) by combining terms related with the disease and the treatment. The search also included a Google search, handsearch for references in review or selected articles, and search of expert files. We applied no language restrictions. Review authors screened the retrieved references for eligibility (those dealing with human participants treated with TT) and then assessed the pre-selected studies in full for inclusion. We included randomised controlled trials (RCTs) and observational studies that provided data on either mortality or clinical progression of CCC after at least four years of follow-up. Teams of two review authors independently carried out the study selection, data extraction and risk of bias assessment, with a referee resolving disagreement within the pairs. Data collection included study design, characteristics of the population and interventions or exposures and outcome measures. We defined categories of outcome data as parasite-related (positive serology, xenodiagnosis or polymerase chain reaction (PCR) after TT) and participant-related (including efficacy outcomes such as progression towards CCC, all-cause mortality and side effects of TT). We reported

  20. The adipocyte as an important target cell for Trypanosoma cruzi infection.

    Science.gov (United States)

    Combs, Terry P; Nagajyothi; Mukherjee, Shankar; de Almeida, Cecilia J G; Jelicks, Linda A; Schubert, William; Lin, Ying; Jayabalan, David S; Zhao, Dazhi; Braunstein, Vicki L; Landskroner-Eiger, Shira; Cordero, Aisha; Factor, Stephen M; Weiss, Louis M; Lisanti, Michael P; Tanowitz, Herbert B; Scherer, Philipp E

    2005-06-24

    Adipose tissue plays an active role in normal metabolic homeostasis as well as in the development of human disease. Beyond its obvious role as a depot for triglycerides, adipose tissue controls energy expenditure through secretion of several factors. Little attention has been given to the role of adipocytes in the pathogenesis of Chagas disease and the associated metabolic alterations. Our previous studies have indicated that hyperglycemia significantly increases parasitemia and mortality in mice infected with Trypanosoma cruzi. We determined the consequences of adipocyte infection in vitro and in vivo. Cultured 3T3-L1 adipocytes can be infected with high efficiency. Electron micrographs of infected cells revealed a large number of intracellular parasites that cluster around lipid droplets. Furthermore, infected adipocytes exhibited changes in expression levels of a number of different adipocyte-specific or adipocyte-enriched proteins. The adipocyte is therefore an important target cell during acute Chagas disease. Infection of adipocytes by T. cruzi profoundly influences the pattern of adipokines. During chronic infection, adipocytes may represent an important long-term reservoir for parasites from which relapse of infection can occur. We have demonstrated that acute infection has a unique metabolic profile with a high degree of local inflammation in adipose tissue, hypoadiponectinemia, hypoglycemia, and hypoinsulinemia but with relatively normal glucose disposal during an oral glucose tolerance test.

  1. Domestic Pig (Sus scrofa) as an Animal Model for Experimental Trypanosoma cruzi Infection

    Science.gov (United States)

    Yauri, Verónica; Castro-Sesquen, Yagahira E.; Verastegui, Manuela; Angulo, Noelia; Recuenco, Fernando; Cabello, Ines; Malaga, Edith; Bern, Caryn; Gavidia, Cesar M.; Gilman, Robert H.

    2016-01-01

    Pigs were infected with a Bolivian strain of Trypanosoma cruzi (genotype I) and evaluated up to 150 days postinoculation (dpi) to determine the use of pigs as an animal model of Chagas disease. Parasitemia was observed in the infected pigs during the acute phase (15–40 dpi). Anti-T.cruzi immunoglobulin M was detected during 15–75 dpi; high levels of anti-T.cruzi immunoglobulin G were detected in all infected pigs from 75 to 150 dpi. Parasitic DNA was observed by western blot (58%, 28/48) and polymerase chain reaction (27%, 13/48) in urine samples, and in the brain (75%, 3/4), spleen (50%, 2/4), and duodenum (25%, 1/4), but no parasitic DNA was found in the heart, colon, and kidney. Parasites were not observed microscopically in tissues samples, but mild inflammation, vasculitis, and congestion was observed in heart, brain, kidney, and spleen. This pig model was useful for the standardization of the urine test because of the higher volume that can be obtained as compared with other small animal models. However, further experiments are required to observe pathological changes characteristic of Chagas disease in humans. PMID:26928841

  2. Early Diagnosis of Congenital Trypanosoma cruzi Infection, Using Shed Acute Phase Antigen, in Ushuaia, Tierra del Fuego, Argentina

    Science.gov (United States)

    Mallimaci, María Cristina; Sosa-Estani, Sergio; Russomando, Graciela; Sanchez, Zunilda; Sijvarger, Carina; Alvarez, Isabel Marcela; Barrionuevo, Lola; Lopez, Carlos; Segura, Elsa Leonor

    2010-01-01

    Chagas' disease, or American trypanosomiasis, is caused by the protozoan parasite Trypanasoma cruzi. It is estimated that 15,000 new cases of congenital T. cruzi transmission occur in the Americas each year. The aim of this study was to estimate the rate of congenital T. cruzi infection in infants born to infected women living in Ushuaia, Argentina, as well to assess a serologic test using Shed Acute Phase Antigen (SAPA) for a timely diagnosis of congenital infection. The rate of congenital infection among children in the study was 4.4% (3/68). Our results show that for infants younger than 30 days of age, matched blood samples from mother and infant were capable of identifying congenital transmission of infection using an enzyme-linked immunosorbent assay with SAPA. For infants older than 3 months, congenital infection could be ruled out using the same procedure. PMID:20064996

  3. Effects of betamethasone on the course of experimentai. Infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Frederico G.C. Abath

    1986-09-01

    Full Text Available In this experiment, the effect of betamethasone administered in the early post- acute infection of mice by Trypanosoma cruzi was studied. This drug was administered during 30 days after the 42nd day of infection in a dose of 0.15 mg/day. The betamethasone treatment did not cause fresh outbreaks of parasitemia and the histopathological findings in the chronic phase were not different from those in the control group. The higher cumulative mortality after treatment in the experimental group was due to superimposed bacterial infections. Outbred albino mice infected with low numbers ofY strain Trypanosoma cruzi trypomastigotes were not suitable models for Chagas' disease, since after 7 months of observation only mild histological lesions developed in all the animais. Prolonged betamethasone treatment of mice infected with low numbers o/Trypanosoma cruzi of the Y strain, during the post-acute phase did not aggravate the course of infection.Foram estudados os efeitos da betametasona administrada na fase pós-aguda imediata de uma infecção pelo T. cruzi em camundongos. O tratamento consistiu de 30 doses diárias de 0,15 mg de betametasona, a partir de 42° dia de infecção, não havendo aparecimento de novos surtos de parasitemia. No tempo de duração do experimento (7 meses não houve diferença entre as lesões histopatológicas dos animais tratados e dos não tratados. O grupo experimental apresentou uma maior mortalidade acumulada no 75º dia de infecção, o que pode ser atribuído a infecções bacterianas associadas. Por outro lado, camundongos albinos "outbred", infectados com baixo inóculo, não se apresentaram como bom modelo de doença de Chagas, já que não desenvolveram lesões importantes nem na fase aguda nem após 7 meses de infecção. Em conclusão, o tratamento imunosupressivo prolongado, após a fase aguda de uma infecção mínima com a cepa Ydo T. cruzi não tem influência sobre o curso da infecção, pelo menos no que tange

  4. Phlebotomine fauna, natural infection rate and feeding habits of Lutzomyia cruzi in Jaciara, state of Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Veruska Nogueira de Brito

    2014-11-01

    Full Text Available Visceral leishmaniasis (VL in Brazil is transmitted by the phlebotomine Lutzomyia longipalpis and in some midwestern regions by Lutzomyia cruzi. Studies of the phlebotomine fauna, feeding habits and natural infection rate by Leishmania contribute to increased understanding of the epidemiological chain of leishmaniases and their vectorial capacity. Collections were performed in Jaciara, state of Mato Grosso from 2010-2013, during which time 2,011 phlebotomines (23 species were captured (68.70% Lu. cruzi and 20.52% Lutzomyia whitmani. Lu. cruzi females were identified by observing the shapes of the cibarium (a portion of the mouthpart and spermatheca, from which samples were obtained for polymerase chain reaction to determine the rates of natural infection. Engorged phlebotomines were assessed to identify the blood-meal host by ELISA. A moderate correlation was discovered between the number of Lu. cruzi and the temperature and the minimum rate of infection was 6.10%. Twenty-two females were reactive to the antisera of bird (28%, dog (3.30% and skunk (1.60%. We conclude that Lu. cruzi and Lu. whitmani have adapted to the urban environment in this region and that Lu. cruzi is the most likely vector of VL in Jaciara. Moreover, maintenance of Leishmania in the environment is likely aided by the presence of birds and domestic and synanthropic animals.

  5. Coadministration of cruzipain and GM-CSF DNAs, a new immunotherapeutic vaccine against Trypanosoma cruzi infection.

    Science.gov (United States)

    Cerny, Natacha; Sánchez Alberti, Andrés; Bivona, Augusto E; De Marzi, Mauricio C; Frank, Fernanda M; Cazorla, Silvia I; Malchiodi, Emilio L

    2016-01-01

    Therapeutic vaccine research and development are especially important in Chagas disease considering the characteristics of the chronic infection and the number of people in the Americas living with a parasite infection for decades. We have previously reported the efficacy of attenuated Salmonella enterica (S) carrying plasmid encoding cruzipain (SCz) to protect against Trypanosoma cruzi infection. In the present work we investigated whether Cz DNA vaccine immunotherapy could be effective in controlling an ongoing T. cruzi infection in mice. We here report the intramuscular administration of naked Cz DNA or the oral administration of Salmonella as Cz DNA delivery system as therapeutic vaccines in mice during acute or chronic infection. The coadministration of a plasmid encoding GM-CSF improved vaccine performance, indicating that the stimulation of innate immune cells is needed in the event of an ongoing infection. These therapeutic vaccines were able to address the response to a protective and sustained Th1 biased profile not only against Cz but also against a variety of parasite antigens. The combined therapeutic vaccine during the chronic phase of infection prevents tissue pathology as shown by a reduced level of enzyme activity characteristic of tissue damage and a tissue status compatible with normal tissue. The obtained results suggest that immunotherapy with Cz and GM-CSF DNAs, either alone or in combination with other drug treatments, may represent a promising alternative for Chagas disease therapy.

  6. Myenteric plexus is differentially affected by infection with distinct Trypanosoma cruzi strains in Beagle dogs

    Directory of Open Access Journals (Sweden)

    Nívia Carolina Nogueira-Paiva

    2014-02-01

    Full Text Available Chagasic megaoesophagus and megacolon are characterised by motor abnormalities related to enteric nervous system lesions and their development seems to be related to geographic distribution of distinct Trypanosoma cruzi subpopulations. Beagle dogs were infected with Y or Berenice-78 (Be-78 T. cruzi strains and necropsied during the acute or chronic phase of experimental disease for post mortem histopathological evaluation of the oesophagus and colon. Both strains infected the oesophagus and colon and caused an inflammatory response during the acute phase. In the chronic phase, inflammatory process was observed exclusively in the Be-78 infected animals, possibly due to a parasitism persistent only in this group. Myenteric denervation occurred during the acute phase of infection for both strains, but persisted chronically only in Be-78 infected animals. Glial cell involvement occurred earlier in animals infected with the Y strain, while animals infected with the Be-78 strain showed reduced glial fibrillary acidic protein immunoreactive area of enteric glial cells in the chronic phase. These results suggest that although both strains cause lesions in the digestive tract, the Y strain is associated with early control of the lesion, while the Be-78 strain results in progressive gut lesions in this model.

  7. Captopril increases the intensity of monocyte infection by Trypanosoma cruzi and induces human T helper type 17 cells.

    Science.gov (United States)

    Coelho dos Santos, J S; Menezes, C A S; Villani, F N A; Magalhães, L M D; Scharfstein, J; Gollob, K J; Dutra, W O

    2010-12-01

    The anti-hypertensive drug captopril is used commonly to reduce blood pressure of patients with severe forms of Chagas disease, a cardiomyopathy caused by chronic infection with the intracellular protozoan Trypanosoma cruzi. Captopril acts by inhibiting angiotensin-converting enzyme (ACE), the vasopressor metallopeptidase that generates angiotensin II and promotes the degradation of bradykinin (BK). Recent studies in mice models of Chagas disease indicated that captopril can potentiate the T helper type 1 (Th1)-directing natural adjuvant property of BK. Equipped with kinin-releasing cysteine proteases, T. cruzi trypomastigotes were shown previously to invade non-professional phagocytic cells, such as human endothelial cells and murine cardiomyocytes, through the signalling of G protein-coupled bradykinin receptors (B(2) KR). Monocytes are also parasitized by T. cruzi and these cells are known to be important for the host immune response during infection. Here we showed that captopril increases the intensity of T. cruzi infection of human monocytes in vitro. The increased parasitism was accompanied by up-regulated expression of ACE in human monocytes. While T. cruzi infection increased the expression of interleukin (IL)-10 by monocytes significantly, compared to uninfected cells, T. cruzi infection in association with captopril down-modulated IL-10 expression by the monocytes. Surprisingly, studies with peripheral blood mononuclear cells revealed that addition of the ACE inhibitor in association with T. cruzi increased expression of IL-17 by CD4(+) T cells in a B(2) KR-dependent manner. Collectively, our results suggest that captopril might interfere with host-parasite equilibrium by enhancing infection of monocytes, decreasing the expression of the modulatory cytokine IL-10, while guiding development of the proinflammatory Th17 subset. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  8. Follow up of natural infection with Trypanosoma cruzi in two mammals species, Nasua narica and Procyon lotor (Carnivora: Procyonidae): evidence of infection control?

    Science.gov (United States)

    Martínez-Hernández, Fernando; Rendon-Franco, Emilio; Gama-Campillo, Lilia María; Villanueva-García, Claudia; Romero-Valdovinos, Mirza; Maravilla, Pablo; Alejandre-Aguilar, Ricardo; Rivas, Nancy; Córdoba-Aguilar, Alex; Muñoz-García, Claudia Irais; Villalobos, Guiehdani

    2014-08-29

    A large variety of mammals act as natural reservoirs of Trypanosoma cruzi (the causal agent of Chagas disease) across the American continent. Related issues are infection and parasite burden in these reservoirs, and whether they are able to control T. cruzi infections. These parameters can indicate the real role of mammals as T. cruzi reservoirs and transmitters. Here, two species of mammals, white-nosed coati (Nasua narica) and raccoon (Procyon lotor), were examined for to determine: a) T. cruzi presence, and; b) their ability to control T. cruzi infection. Multiple capture-recaptures of both species were carried out in semi-wild conditions in Villahermosa, Tabasco, Mexico, for 5 years. Two samplings per year (summer and winter) took place. Prevalence and pattern of T. cruzi infection were determined by PCR from both mammals' blood samples. Raccoon samples had a higher relative infection values (26.6%) compared to those of white-nosed coati (9.05%), being this difference significant in summer 2012 (P mammals are able to tolerate the infection). However, while infected, they may also be able to approach human dwellings and play a role important in linking sylvatic and domestic cycles.

  9. Histopathological study of experimental and natural infections by Trypanosoma cruzi in Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    João Carlos Araujo Carreira

    1996-10-01

    Full Text Available Didelphis marsupialis, the most important sylvatic reservoir of Trypanosoma cruzi, can also maintain in their anal scent glands the multiplicative forms only described in the intestinal tract of triatomine bugs. A study of 21 experimentally and 10 naturally infected opossums with T. cruzi was undertaken in order to establish the histopathological pattern under different conditions. Our results showed that the inflammation was predominantly lymphomacrophagic and more severe in the naturally infected animals but never as intense as those described in Chagas' disease or in other animal models. The parasitism in both groups was always mild with very scarce amastigote nests in the tissues. In the experimentally infected animals, the inflammation was directly related to the presence of amastigotes nests. Four 24 days-old animals, still in embryonic stage, showed multiple amastigotes nests and moderate inflammatory reactions, but even so they survived longer and presented less severe lesions than experimentally infected adult mice. Parasites were found in smooth, cardiac and/or predominantly striated muscles, as well as in nerve cells. Differing from the experimentally infected opossums parasitism in the naturally infected animals predominated in the heart, esophagus and stomach. Parasitism of the scent glands did not affect the histopathological pattern observed in extraglandular tissues.

  10. Melatonin: Antioxidant and modulatory properties in age-related changes during Trypanosoma cruzi infection.

    Science.gov (United States)

    Brazão, Vânia; Santello, Fabricia H; Colato, Rafaela P; Mazotti, Tamires T; Tazinafo, Lucas F; Toldo, Míriam Paula A; do Vale, Gabriel T; Tirapelli, Carlos R; do Prado, José C

    2017-08-01

    The purpose of this study was to investigate the effects of melatonin on selected biomarkers of innate and humoral immune response as well as the antioxidant/oxidant status (superoxide dismutase-SOD and reduced glutathione levels (GSH) to understand whether age-related changes would influence the development of acute Trypanosoma cruzi (T. cruzi) infection. Young- (5 weeks) and middle-aged (18 months) Wistar rats were orally treated with melatonin (gavage) (05 mg/kg/day), 9 days after infection. A significant increase in both SOD activity and GSH levels was found in plasma from all middle-aged melatonin-treated animals. Melatonin triggered enhanced expression of major histocompatibility class II (MHC-II) antigens on antigen-presenting cell (APC) and peritoneal macrophages in all treated animals. High levels of CD4 + CD28-negative T cells (*PMelatonin induced a significant reduction (***PMelatonin also triggered an upregulation of CD80 and CD86 expression in all young-treated groups. Significant percentages of B and spleen dendritic cells in middle-aged infected and treated animals were observed. Our data reveal new features of melatonin action in inhibiting membrane lipid peroxidation, through the reduction in 8-isoprostane, upregulating the antioxidant defenses and triggering an effective balance in the antioxidant/oxidant status during acute infection. The ability of melatonin to counteract the immune alterations induced by aging added further support to its use as a potential therapeutic target not only for T. cruzi infection but also for other immunocompromised states. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Influence of environmental enrichment on the behavior and physiology of mice infected by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Déborah Maria Moreira da Silva

    Full Text Available Abstract INTRODUCTION: Enriched environments normally increase behavioral repertoires and diminish the expression of abnormal behaviors and stress-related physiological problems in animals. Although it has been shown that experimental animals infected with microorganisms can modify their behaviors and physiology, few studies have evaluated how environmental enrichment affects these parameters. This study aimed to evaluate the effects of environmental enrichment on the behavior and physiology of confined mice infected with Trypanosoma cruzi. METHODS: The behaviors of 20 T. cruzi-infected mice and 20 non-infected mice were recorded during three treatments: baseline, enrichment, and post-enrichment. Behavioral data were collected using scan sampling with instantaneous recording of behavior every 30s, totaling 360h. Plasma TNF, CCL2, and IL-10 levels and parasitemia were also evaluated in infected enriched/non-enriched mice. Behavioral data were evaluated by Friedman’s test and physiological data by one-way ANOVA and area under the curve (AUC analysis. RESULTS: Results showed that environmental enrichment significantly increased exploratory behaviors and diminished inactivity. The use of environmental enrichment did not diminish circulating levels of TNF and IL-10 but diminished circulating levels of CCL2 and parasitemia. CONCLUSIONS: Positive behavioral and physiological effects of environmental enrichment were observed in mice living in enriched cages. Thus, environmental enrichment improved the welfare of these animals.

  12. The Acute Phase of Trypanosoma cruzi Infection Is Attenuated in 5-Lipoxygenase-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Adriana M. C. Canavaci

    2014-01-01

    Full Text Available In the present work we examine the contribution of 5-lipoxygenase- (5-LO- derived lipid mediators to immune responses during the acute phase of Trypanosoma cruzi infection in 5-LO gene knockout (5-LO−/− mice and wild-type (WT mice. Compared with WT mice, the 5-LO−/− mice developed less parasitemia/tissue parasitism, less inflammatory cell infiltrates, and a lower mortality. This resistance of 5-LO−/− mice correlated with several differences in the immune response to infection, including reduced PGE2 synthesis; sustained capacity of splenocytes to produce high levels of interleukin (IL-12 early in the infection; enhanced splenocyte production of IL-1β, IL-6, and IFN-γ; rapid T-cell polarization to secrete high quantities of IFN-γ and low quantities of IL-10; and greater numbers of CD8+CD44highCD62Llow memory effector T cells at the end of the acute phase of infection. The high mortality in WT mice was associated with increased production of LTB4/LTC4, T cell bias to produce IFN-γ, high levels of serum nitrite, and marked protein extravasation into the peritoneal cavity, although survival was improved by treatment with a cys-LT receptor 1 antagonist. These data also provide evidence that 5-LO-derived mediators negatively affect host survival during the acute phase of T. cruzi infection.

  13. Response pattern's of immunoglobulins evaluation in different lineages of mice infected with T. cruzi

    International Nuclear Information System (INIS)

    Silva, Andreia dos Santos

    2006-01-01

    The present work has employed different mice lineages (A/J, C57BL/6, B6AF1, BXA1 and BXA2) that were challenged with different doses of T. cruzi. The objective was to evaluate the pattern of immunoglobulins response presented by resistant and susceptible mice to T. cruzi as well as the lineages developed from the matting between them. So that evaluation was done by using lineages serums' sample, analyzed by ELISA's method. In agreement with the results observed all the lineages presented higher response to IgG2a and IgG2b, if compared with the titles to IgG1. IgG1 immunoglobulins involve a type Th2 pattern response which expressed allergic immunological responses, while IgG2 involves a pattern response Th1 that expresses cellular immunological response. The different lineages used in this research also presented different immunological response pattern by the infection with T. cruzi. Mice of the lineage C57BL/6 are resistant to the infection, while the animals of the lineage A/J are susceptible. The animals of the lineage B6AF1 are more resistant to the infection than their original parental C57BL/6. The immunological response developed by hybrid mice present traces of both susceptible and resistant parental A/J and C57BL/6, respectively. The animals of the lineage BXA1 can be considered resistant to the infection, but they don't present the same control as that presented by those of the lineages B6AF1 and C57BL/6. The animals of the lineage BXA2 can be considered susceptible to the infection, but they can control it for a long period, surviving like this, longer than the animals of the lineage A/J. In addition it was observed that the IgG2b immunoglobulins are very important to the resistance of mice to T. cruzi infection. (author)

  14. [Specificity of the intradermal Montenegro test in patients infected by Trypanosoma cruzi from different regions of Peru].

    Science.gov (United States)

    Minaya-Gómez, Gloria; Vargas-Apaza, Silver; Monteza-Zuloeta, Yolanda; Purisaca-Morante, Enrique; Delgado-Diaz, Freddy

    2014-04-01

    In order to assess the specificity of the leishmanin skin test in Chagas disease patients without clinical history of leishmaniasis, present or former. A sample of 102 persons infected with Trypanosoma cruzi (14 acute cases with parasitological diagnosis and 88 chronic cases) through the demonstration of IgG antibodies by ELISA and indirect immunofluorescence (IIF) were evaluated with leishmanin soluble antigen which contained Leishmania (Viannia) peruviana concentration of 25-30 ug/mL. Only five people showed cutaneous hypersensitivity reaction to the application of the antigen between hours 48 and 72. The Leishmanin skin test evaluated was negative in 97 people infected with T. cruzi, thus specificity of 95.1% was achieved. In conclusion, the intradermal Montenegro test is a simple and effective diagnostic tool that also could be used to discriminate infections by Leishmania or T. cruzi, in Peruvian geographic areas where both parasites are present.

  15. Trypanosoma cruzi: blood parasitism kinetics and their correlation with heart parasitism intensity during long-term infection of Beagle dogs

    Directory of Open Access Journals (Sweden)

    Vanja M Veloso

    2008-09-01

    Full Text Available The goals of the present study were to evaluate the kinetics of blood parasitism by examination of fresh blood, blood culture (BC and PCR assays and their correlation with heart parasitism during two years of infection in Beagle dogs inoculated with the Be-78, Y and ABC Trypanosoma cruzi strains. Our results showed that the parasite or its kDNA is easily detected during the acute phase in all infected animals. On the other hand, a reduced number of positive tests were verified during the chronic phase of the infection. The frequency of positive tests was correlated with T. cruzi strain. The percentage of positive BC and blood PCR performed in samples from animals inoculated with Be-78 and ABC strains were similar and significantly larger in relation to animals infected with the Y strain.Comparison of the positivity of PCR tests performed using blood and heart tissue samples obtained two years after infection showed two different patterns associated with the inoculated T. cruzi strain: (1 high PCR positivity for both blood and tissue was observed in animals infected with Be-78 or ABC strains; (2 lower and higher PCR positivity for the blood and tissue, respectively, was detected in animals infected with Y strains. These data suggest that the sensitivity of BC and blood PCR was T. cruzi strain dependent and, in contrast, the heart tissue PCR revealed higher sensitivity regardless of the parasite stock.

  16. Highly diluted medication reduces parasitemia and improves experimental infection evolution by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Aleixo Denise

    2012-07-01

    Full Text Available Abstract Background There is no published information about the use of different protocols to administer a highly diluted medication. Evaluate the effect of different protocols for treatment with biotherapic T. cruzi 17 dH (BIOTTc17dH on clinical/parasitological evolution of mice infected with T. cruzi-Y strain. Methods A blind, randomized controlled trial was performed twice, using 60 28-day-old male Swiss mice infected with T. cruzi-Y strain, in five treatment groups: CI - treated with a 7% ethanol-water solution, diluted in water (10 μL/mL ad libitum; BIOTPI - treated with BIOTTc17dH in water (10 μL/mL ad libitum during a period that started on the day of infection; BIOT4DI - treated with BIOTTc17dH in water (10 μL/mL ad libitum beginning on the 4th day of infection; BIOT4-5–6 - treated with BIOTTc17dH by gavage (0.2 mL/ animal/day on the 4th, 5th and 6th days after infection; BIOT7-8–9 - treated with BIOTTc17dH by gavage (0.2 mL/ animal/day on the 7th, 8th and 9th days after infection. We evaluated: parasitemia; total parasitemia (Ptotal; maximum peak of parasites; prepatent period (PPP - time from infection to detection of the parasite in blood; patent period (PP - period when the parasitemia can be detected in blood; clinical aspects; and mortality. Results Parasitological parameters in the BIOTPI and mainly in the BIOT4PI group showed better evolution of the infection compared to the control group (CI, with lower Ptotal, lower maximum peak of parasites, higher PPP, lower PP and longer survival times. These animals showed stable body temperature and higher weight gain and water consumption, with more animals having normal-appearing fur for longer periods. In contrast, groups BIOT4-5–6 and BIOT7-8–9 showed worse evolution of the infection compared to the control group, considering both parasitological and clinical parameters. The correlation analysis combined with the other data from this study indicated that the prepatent

  17. NATURAL INFECTION BY Trypanosoma cruzi IN ONE DOG IN CENTRAL WESTERN BRAZIL: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Arleana do Bom Parto Ferreira de Almeida

    2013-07-01

    Full Text Available SUMMARY It is estimated that about 10 million people are infected with Trypanosoma cruzi worldwide, mostly in Latin America and more than 25 million are at risk of acquiring this infection in endemic areas. Dogs are an important reservoir for this pathogen and thus, considered a risk factor for human populations. This report describes one case of Chagas disease in a dog from Cuiabá, Mato Grosso State, Brazil. The diagnosis was obtained by direct examination of trypomastigote forms in blood smears. Amastigotes forms were visualized in microscopy of the bone marrow, lymph nodes, kidneys, liver and brain. The T. cruzi (ZIII infection was confirmed by Polymerase Chain Reaction, and sequencing. The animal presented multisystemic failure and died. Although acute Chagas disease in humans is not reported in Cuiabá, this is the first report of a canine case in this region. This case represents a warning, to health professionals and authorities, to the possibility of transmission of this zoonosis in Cuiabá.

  18. Acute Trypanosoma cruzi Infection in Mouse Induces Infertility or Placental Parasite Invasion and Ischemic Necrosis Associated with Massive Fetal Loss

    OpenAIRE

    Mjihdi, Abdelkarim; Lambot, Marie-Alexandra; Stewart, Ian J.; Detournay, Olivier; Noël, Jean-Christophe; Carlier, Yves; Truyens, Carine

    2002-01-01

    Pathogens may impair reproduction in association or not with congenital infections. We have investigated the effect of acute infection with Trypanosoma cruzi, the protozoan agent of Chagas’ disease in Latin America, on reproduction of mice. Although mating of infected mice occurred at a normal rate, 80% of them did not become gravid. In the few gravid infected mice, implantation numbers were as in uninfected control mice, but 28% of fetuses resorbed. Such infertility and early fetal losses we...

  19. Performance of six diagnostic tests to screen for Chagas disease in blood banks andprevalence of Trypanosoma cruzi infection among donors with inconclusive serologyscreening based on the analysis of epidemiological variables.

    Science.gov (United States)

    Pereira, Gilberto de Araujo; Louzada-Neto, Francisco; Barbosa, Valdirene de Fátima; Ferreira-Silva, Márcia Maria; de Moraes-Souza, Helio

    2012-01-01

    The frequent occurrence of inconclusive serology in blood banks and the absence of a gold standard test for Chagas'disease led us to examine the efficacy of the blood culture test and five commercial tests (ELISA, IIF, HAI, c-ELISA, rec-ELISA) used in screening blood donors for Chagas disease, as well as to investigate the prevalence of Trypanosoma cruzi infection among donors with inconclusive serology screening in respect to some epidemiological variables. To obtain estimates of interest we considered a Bayesian latent class model with inclusion of covariates from the logit link. A better performance was observed with some categories of epidemiological variables. In addition, all pairs of tests (excluding the blood culture test) presented as good alternatives for both screening (sensitivity > 99.96% in parallel testing) and for confirmation (specificity > 99.93% in serial testing) of Chagas disease. The prevalence of 13.30% observed in the stratum of donors with inconclusive serology, means that probably most of these are non-reactive serology. In addition, depending on the level of specific epidemiological variables, the absence of infection can be predicted with a probability of 100% in this group from the pairs of tests using parallel testing. The epidemiological variables can lead to improved test results and thus assist in the clarification of inconclusive serology screening results. Moreover, all combinations of pairs using the five commercial tests are good alternatives to confirm results.

  20. Unconventional Pro-inflammatory CD4+ T Cell Response in B Cell-Deficient Mice Infected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Melisa Gorosito Serrán

    2017-11-01

    Full Text Available Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America but has become a global public health concern by migration of infected people. It has been reported that parasite persistence as well as the intensity of the inflammatory immune response are determinants of the clinical manifestations of the disease. Even though inflammation is indispensable for host defense, when deregulated, it can contribute to tissue injury and organ dysfunction. Here, we report the importance of B cells in conditioning T cell response in T. cruzi infection. Mice deficient in mature B cells (muMT mice infected with T. cruzi exhibited an increase in plasma TNF concentration, TNF-producing CD4+ T cells, and mortality. The increase in TNF-producing CD4+ T cells was accompanied by a reduction in IFNγ+CD4+ T cells and a decrease of the frequency of regulatory Foxp3+, IL-10+, and IL17+CD4+ T cells populations. The CD4+ T cell population activated by T. cruzi infection, in absence of mature B cells, had a high frequency of Ly6C+ cells and showed a lower expression of inhibitory molecules such as CTLA-4, PD-1, and LAG3. CD4+ T cells from infected muMT mice presented a high frequency of CD62LhiCD44− cells, which is commonly associated with a naïve phenotype. Through transfer experiments we demonstrated that CD4+ T cells from infected muMT mice were able to condition the CD4+ T cells response from infected wild-type mice. Interestingly, using Blimp-flox/flox-CD23icre mice we observed that in absence of plasmablast/plasma cell T. cruzi-infected mice exhibited a higher number of TNF-producing CD4+ T cells. Our results showed that the absence of B cells during T. cruzi infection affected the T cell response at different levels and generated a favorable scenario for unconventional activation of CD4+ T cell leading to an uncontrolled effector response and inflammation. The product of B cell differentiation, the plasmablast/plasma cells, could be able

  1. Highly diluted medication reduces tissue parasitism and inflammation in mice infected by Trypanosoma cruzi.

    Science.gov (United States)

    Lopes, Carina Ribeiro; Falkowski, Gislaine Janaina Sanchez; Brustolin, Camila Fernanda; Massini, Paula Fernanda; Ferreira, Érika Cristina; Moreira, Neide Martins; Aleixo, Denise Lessa; Kaneshima, Edilson Nobuyoshi; de Araújo, Silvana Marques

    2016-05-01

    To evaluate the effects of Kalium causticum, Conium maculatum, and Lycopodium clavatum 13cH in mice infected by Trypanosoma cruzi. In a blind, controlled, randomized study, 102 male Swiss mice, 8 weeks old, were inoculated with 1400 trypomastigotes of the Y strain of T. cruzi and distributed into the following groups: CI (treated with 7% hydroalcoholic solution), Ca (treated with Kalium causticum 13cH), Co (treated with Conium maculatum 13cH), and Ly (treated with Lycopodium clavatum 13cH). The treatments were performed 48 h before and 48, 96, and 144 h after infection. The medication was repertorized and prepared in 13cH, according to Brazilian Homeopathic Pharmacopoeia. The following parameters were evaluated: infectivity, prepatent period, parasitemia peak, total parasitemia, tissue tropism, inflammatory infiltrate, and survival. Statistical analysis was conduced considering 5% of significance. The prepatent period was greater in the Ly group than in the CI group (p = 0.02). The number of trypomastigotes on the 8th day after infection was lower in the Ca group than in the CI group (p < 0.05). Total parasitemia was significantly lower in the Ca, Co, and Ly groups than in the CI group. On the 12th day after infection, the Ca, Co, and Ly groups had fewer nests and amastigotes/nest in the heart than the CI group (p < 0.05). Decreases in the number of nests and amastigotes in the intestine were observed in the Ly group compared with the CI group (p < 0.05). In the liver (day 12), Ly significantly prevented the formation of inflammatory foci compared with the other groups. In skeletal muscle, Co and Ly decreased the formation of inflammatory foci compared with CI (p < 0.05). Ly afforded greater animal survival compared with CI, Ca, and Co (p < 0.05). The animals in the Co group died prematurely compared with the CI group (p = 0.03). Ly with 13cH potency had significantly more benefits in the treatment of mice infected with T. cruzi, reducing the number

  2. Biomarkers in Trypanosoma cruzi-infected and uninfected individuals with varying severity of cardiomyopathy in Santa Cruz, Bolivia.

    Science.gov (United States)

    Okamoto, Emi E; Sherbuk, Jacqueline E; Clark, Eva H; Marks, Morgan A; Gandarilla, Omar; Galdos-Cardenas, Gerson; Vasquez-Villar, Angel; Choi, Jeong; Crawford, Thomas C; Do, Rose Q; Q, Rose; Fernandez, Antonio B; Colanzi, Rony; Flores-Franco, Jorge Luis; Gilman, Robert H; Bern, Caryn

    2014-10-01

    Twenty to thirty percent of persons with Trypanosoma cruzi infection eventually develop cardiomyopathy. If an early indicator were to be identified and validated in longitudinal studies, this could enable treatment to be prioritized for those at highest risk. We evaluated cardiac and extracellular matrix remodeling markers across cardiac stages in T. cruzi infected (Tc+) and uninfected (Tc-) individuals. Participants were recruited in a public hospital in Santa Cruz, Bolivia and assigned cardiac severity stages by electrocardiogram and echocardiogram. BNP, NTproBNP, CKMB, troponin I, MMP-2, MMP-9, TIMP-1, TIMP-2, TGFb1, and TGFb2 were measured in specimens from 265 individuals using multiplex bead systems. Biomarker levels were compared between Tc+ and Tc- groups, and across cardiac stages. Receivers operating characteristic (ROC) curves were created; for markers with area under curve>0.60, logistic regression was performed. Analyses stratified by cardiac stage showed no significant differences in biomarker levels by Tc infection status. Among Tc+ individuals, those with cardiac insufficiency had higher levels of BNP, NTproBNP, troponin I, MMP-2, TIMP-1, and TIMP-2 than those with normal ejection fraction and left ventricular diameter. No individual marker distinguished between the two earliest Tc+ stages, but in ROC-based analyses, MMP-2/MMP-9 ratio was significantly higher in those with than those without ECG abnormalities. BNP, NTproBNP, troponin I, MMP-2, TIMP-1, and TIMP-2 levels rose with increasing severity stage but did not distinguish between Chagas cardiomyopathy and other cardiomyopathies. Among Tc+ individuals without cardiac insufficiency, only the MMP-2/MMP-9 ratio differed between those with and without ECG changes.

  3. Human Leucocyte Antigen-G (HLA-G and Its Murine Functional Homolog Qa2 in the Trypanosoma cruzi Infection

    Directory of Open Access Journals (Sweden)

    Fabrício C. Dias

    2015-01-01

    Full Text Available Genetic susceptibility factors, parasite strain, and an adequate modulation of the immune system seem to be crucial for disease progression after Trypanosoma cruzi infection. HLA-G and its murine functional homolog Qa2 have well-recognized immunomodulatory properties. We evaluated the HLA-G 3′ untranslated region (3′UTR polymorphic sites (associated with mRNA stability and target for microRNA binding and HLA-G tissue expression (heart, colon, and esophagus in patients presenting Chagas disease, stratified according to the major clinical variants. Further, we investigated the transcriptional levels of Qa2 and other pro- and anti-inflammatory genes in affected mouse tissues during T. cruzi experimental acute and early chronic infection induced by the CL strain. Chagas disease patients exhibited differential HLA-G 3′UTR susceptibility allele/genotype/haplotype patterns, according to the major clinical variant (digestive/cardiac/mixed/indeterminate. HLA-G constitutive expression on cardiac muscle and colonic cells was decreased in Chagasic tissues; however, no difference was observed for Chagasic and non-Chagasic esophagus tissues. The transcriptional levels of Qa2 and other anti and proinflammatory (CTLA-4, PDCD1, IL-10, INF-γ, and NOS-2 genes were induced only during the acute T. cruzi infection in BALB/c and C57BL/6 mice. We present several lines of evidence indicating the role of immunomodulatory genes and molecules in human and experimental T. cruzi infection.

  4. Epidemiology and Molecular Typing of Trypanosoma cruzi in Naturally-Infected Hound Dogs and Associated Triatomine Vectors in Texas, USA.

    Directory of Open Access Journals (Sweden)

    Rachel Curtis-Robles

    2017-01-01

    Full Text Available Trypanosoma cruzi is the etiologic agent of Chagas disease throughout the Americas. Few population-level studies have examined the epidemiology of canine infection and strain types of T. cruzi that infect canines in the USA. We conducted a cross-sectional study of T. cruzi infection in working hound dogs in south central Texas, including analysis of triatomine vectors collected within kennel environments.Paired IFA and Chagas Stat-Pak serological testing showed an overall seroprevalence of 57.6% (n = 85, with significant variation across kennels. Dog age had a marginally significant effect on seropositivity, with one year of age increase associated with a 19.6% increase in odds of being seropositive (odds ratio 95% CI 0.996-1.435; p = 0.055. PCR analyses of blood revealed 17.4% of dogs harbored parasite DNA in their blood, including both seronegative and seropositive dogs. Molecular screening of organs from opportunistically sampled seropositive dogs revealed parasite DNA in heart, uterus, and mammary tissues. Strain-typing showed parasite discrete typing units (DTU TcI and TcIV present in dog samples, including a co-occurrence of both DTUs in two individual dogs. Bloodmeal analysis of Triatoma gerstaeckeri and Triatoma sanguisuga insects collected from the kennels revealed exclusively dog DNA. Vector infection with T. cruzi was 80.6% (n = 36, in which T. gerstaeckeri disproportionately harbored TcI (p = 0.045 and T. sanguisuga disproportionately harbored TcIV (p = 0.029. Tracing infection status across dog litters showed some seropositive offspring of seronegative dams, suggesting infection of pups from local triatomine vectors rather than congenital transmission.Canine kennels are high-risk environments for T. cruzi transmission, in which dogs likely serve as the predominant parasite reservoir. Disease and death of working dogs from Chagas disease is associated with unmeasured yet undoubtedly significant financial consequences because working

  5. Effects of water deprivation on renal hydroelectrolytic excretion in chronically Trypanosoma cruzi-infected rats

    Directory of Open Access Journals (Sweden)

    T.T. Rosa

    1995-03-01

    Full Text Available The effect of an 8 hour-period of water deprivation on fluid and electrolyte renal excretion was investigated in male Wistar rats infected with the strain São Felipe (12SF of Trypanosoma cruzi, in comparison with age and sex matched non-infected controls. The median percent reductions in the urinary flow (-40% v -63% and excretion ofsodium (-57% v-79% were smaller in chagasic than in control rats, respectively. So, chagasic rats excreted more than controls. On the other hand, the median percent decrement in the clearance of creatinine was higher in chagasic (-51% than in controls (-39%. Thus, chagasic rats showed some disturbed renal hydroelectrolytic responses to water deprivation, expressed by smaller conservation, or higher excretion of water and sodium in association with smaller glomerularfiltration rate. This fact denoted an elevation in the fractional excretion of sodium and water.

  6. Infection rates and genotypes of Trypanosoma rangeli and T. cruzi infecting free-ranging Saguinus bicolor (Callitrichidae), a critically endangered primate of the Amazon Rainforest.

    Science.gov (United States)

    Maia da Silva, F; Naiff, R D; Marcili, A; Gordo, M; D'Affonseca Neto, J A; Naiff, M F; Franco, A M R; Campaner, M; Valente, V; Valente, S A; Camargo, E P; Teixeira, M M G; Miles, M A

    2008-08-01

    Parasites of wild primates are important for conservation biology and human health due to their high potential to infect humans. In the Amazon region, non-human primates are commonly infected by Trypanosoma cruzi and T. rangeli, which are also infective to man and several mammals. This is the first survey of trypanosomiasis in a critically endangered species of tamarin, Saguinus bicolor (Callitrichidae), from the Brazilian Amazon Rainforest. Of the 96 free-ranging specimens of S. bicolor examined 45 (46.8%) yielded blood smears positive for trypanosomes. T. rangeli was detected in blood smears of 38 monkeys (39.6%) whereas T. cruzi was never detected. Seven animals (7.3%) presented trypanosomes of the subgenus Megatrypanum. Hemocultures detected 84 positive tamarins (87.5%). Seventy-two of 84 (85.7%) were morphologically diagnosed as T. rangeli and 3 (3.1%) as T. cruzi. Nine tamarins (9.4%) yielded mixed cultures of these two species, which after successive passages generated six cultures exclusively of T. cruzi and two of T. rangeli, with only one culture remaining mixed. Of the 72 cultures positive for T. rangeli, 62 remained as established cultures and were genotyped: 8 were assigned to phylogenetic lineage A (12.9%) and 54 to lineage B (87.1%). Ten established cultures of T. cruzi were genotyped as TCI lineage (100%). Transmission of both trypanosome species, their potential risk to this endangered species and the role of wild primates as reservoirs for trypanosomes infective to humans are discussed.

  7. Novo processo para triagem de medicamentos na infecção experimental pelo Trypanosoma cruzi Proposal of a new process for screening of drugs in experimental infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Rubens Campos

    1991-08-01

    Full Text Available É proposto processo para a triagem da capacidade terapêutica de medicamentos na infecção experimental pelo Trypanosoma cruzi. O método tem base no emprego de triatomíneos parasitados que se alimentam, decorridos períodos diferentes para haver compatibilização com níveis sangüíneos, em camundongos aos quais foi administrado o fármaco sob apreciação; assim, o tubo digestivo do hemíptero participará como estrutura propícia à avaliação. Em observação inicial, ocorreu utilização do benzonidazol, que se mostrou apenas parcialmente ativo, pelo menos de acordo com a maneira de execução do novo procedimento.We propose a screening process for detection of therapeutic activity of drugs against experimental infection with Trypanosoma cruzi. It is based on the use of infected tryatominae that are fed on mice which have received the study drug. Blood meals are made at different time schedule in order to adapt with serum drug levels. The digestive tube of the hemyptera will, thus, work as a suitable structure for examination. In a initial observation, benzonidazole was used, and was shown to be only partially active at least in the conditions of this new procedure.

  8. CD8+ T Cell-Mediated Immunity during Trypanosoma cruzi Infection: A Path for Vaccine Development?

    Directory of Open Access Journals (Sweden)

    Fernando dos Santos Virgilio

    2014-01-01

    Full Text Available MHC-restricted CD8+ T cells are important during infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Experimental studies performed in the past 25 years have elucidated a number of features related to the immune response mediated by these T cells, which are important for establishing the parasite/host equilibrium leading to chronic infection. CD8+ T cells are specific for highly immunodominant antigens expressed by members of the trans-sialidase family. After infection, their activation is delayed, and the cells display a high proliferative activity associated with high apoptotic rates. Although they participate in parasite control and elimination, they are unable to clear the infection due to their low fitness, allowing the parasite to establish the chronic phase when these cells then play an active role in the induction of heart immunopathology. Vaccination with a number of subunit recombinant vaccines aimed at eliciting specific CD8+ T cells can reverse this path, thereby generating a productive immune response that will lead to the control of infection, reduction of symptoms, and reduction of disease transmission. Due to these attributes, activation of CD8+ T lymphocytes may constitute a path for the development of a veterinarian or human vaccine.

  9. Seroprevalence of human Trypanosoma cruzi infection in diferent geografic zones of Chiapas, Mexico.

    Science.gov (United States)

    Mazariego-Arana, M A; Monteón, V M; Ballinas-Verdugo, M A; Hernández-Becerril, N; Alejandre-Aguilar, R; Reyes, P A

    2001-01-01

    A serologic survey was carried out in four different geographic zones of Chiapas, Mexico. A total of 1,333 samples were collected from residents of thirteen communities located on the Coast, Central Mountain, Lacandon Forest and a zone called Mesochiapas. One hundred and fifty one seropositive individuals (11.3%) were identified. Human Trypanosoma cruzi infection was influenced by geography. In the Lacandon Forest and Central Mountains there was a higher seroprevalence 32.1 and 13.8% respectively, than on the coast (1.2%). In Mesochiapas there were no seropositive individuals among the 137 persons tested. An active transmission is probably continuing because seropositive cases (13.8%) were detected in children under 10 years of age. The vector recognized on the Coast was Triatoma dimidiata while in the Lacandon Forest it was Rhodnius prolixus.

  10. The MASP family of Trypanosoma cruzi: changes in gene expression and antigenic profile during the acute phase of experimental infection.

    Directory of Open Access Journals (Sweden)

    Sara Lopes dos Santos

    Full Text Available Trypanosoma cruzi is the etiological agent of Chagas disease, a debilitating illness that affects millions of people in the Americas. A major finding of the T. cruzi genome project was the discovery of a novel multigene family composed of approximately 1,300 genes that encode mucin-associated surface proteins (MASPs. The high level of polymorphism of the MASP family associated with its localization at the surface of infective forms of the parasite suggests that MASP participates in host-parasite interactions. We speculate that the large repertoire of MASP sequences may contribute to the ability of T. cruzi to infect several host cell types and/or participate in host immune evasion mechanisms.By sequencing seven cDNA libraries, we analyzed the MASP expression profile in trypomastigotes derived from distinct host cells and after sequential passages in acutely infected mice. Additionally, to investigate the MASP antigenic profile, we performed B-cell epitope prediction on MASP proteins and designed a MASP-specific peptide array with 110 putative epitopes, which was screened with sera from acutely infected mice.We observed differential expression of a few MASP genes between trypomastigotes derived from epithelial and myoblast cell lines. The more pronounced MASP expression changes were observed between bloodstream and tissue-culture trypomastigotes and between bloodstream forms from sequential passages in acutely infected mice. Moreover, we demonstrated that different MASP members were expressed during the acute T. cruzi infection and constitute parasite antigens that are recognized by IgG and IgM antibodies. We also found that distinct MASP peptides could trigger different antibody responses and that the antibody level against a given peptide may vary after sequential passages in mice. We speculate that changes in the large repertoire of MASP antigenic peptides during an infection may contribute to the evasion of host immune responses during the

  11. Prevalence of Trypanosoma cruzi infection in dogs and small mammals in Nuevo León, Mexico.

    Science.gov (United States)

    Galaviz-Silva, Lucio; Mercado-Hernández, Roberto; Zárate-Ramos, José J; Molina-Garza, Zinnia J

    Chagas disease, caused by the protozoan Trypanosoma cruzi, is an important public health concern in areas extending from South America northward into the southern United States of America. Although this hemoflagellate has many wild and domestic mammalians reported as reservoir hosts, studies on this subject are scarce in Nuevo León state, a region located in northeastern Mexico. This cross-sectional study showed that the general prevalence of T. cruzi infection in Nuevo León state was 14.5% (35/241), this percentage matching the ones determined by PCR and traditional diagnostics. Localities and infected mammals did not significantly differ (χ 2 =6.098, p=0.192); however the number of infected animals was highly correlated with mammalian species (p=0.009). Striped skunks (Mephitis mephitis) were found to be the most infected overall (11/34, 32.3%), while dogs (Canis familiaris) had the lowest prevalence. In conclusion, although the prevalence of T. cruzi infection in small mammals was lower in Nuevo León than in other states of Mexico, our results provide new locality records, including striped skunks, opossums (Didelphis marsupialis) and dogs, and extend the recorded area to woodrats (Neotoma micropus). Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. PCR reveals significantly higher rates of Trypanosoma cruzi infection than microscopy in the Chagas vector, Triatoma infestans: High rates found in Chuquisaca, Bolivia

    Directory of Open Access Journals (Sweden)

    Lucero David E

    2007-06-01

    Full Text Available Abstract Background The Andean valleys of Bolivia are the only reported location of sylvatic Triatoma infestans, the main vector of Chagas disease in this country, and the high human prevalence of Trypanosoma cruzi infection in this region is hypothesized to result from the ability of vectors to persist in domestic, peri-domestic, and sylvatic environments. Determination of the rate of Trypanosoma infection in its triatomine vectors is an important element in programs directed at reducing human infections. Traditionally, T. cruzi has been detected in insect vectors by direct microscopic examination of extruded feces, or dissection and analysis of the entire bug. Although this technique has proven to be useful, several drawbacks related to its sensitivity especially in the case of small instars and applicability to large numbers of insects and dead specimens have motivated researchers to look for a molecular assay based on the polymerase chain reaction (PCR as an alternative for parasitic detection of T. cruzi infection in vectors. In the work presented here, we have compared a PCR assay and direct microscopic observation for diagnosis of T. cruzi infection in T. infestans collected in the field from five localities and four habitats in Chuquisaca, Bolivia. The efficacy of the methods was compared across nymphal stages, localities and habitats. Methods We examined 152 nymph and adult T. infestans collected from rural areas in the department of Chuquisaca, Bolivia. For microscopic observation, a few drops of rectal content obtained by abdominal extrusion were diluted with saline solution and compressed between a slide and a cover slip. The presence of motile parasites in 50 microscopic fields was registered using 400× magnification. For the molecular analysis, dissection of the posterior part of the abdomen of each insect followed by DNA extraction and PCR amplification was performed using the TCZ1 (5' – CGA GCT CTT GCC CAC ACG GGT GCT – 3

  13. Infection with Trypanosoma cruzi TcII and TcI in free-ranging population of lion tamarins (Leontopithecus spp: an 11-year follow-up

    Directory of Open Access Journals (Sweden)

    Cristiane Varella Lisboa

    2015-05-01

    Full Text Available Here, we present a review of the dataset resulting from the 11-years follow-up of Trypanosoma cruzi infection in free-ranging populations of Leontopithecus rosalia (golden lion tamarin and Leontopithecus chrysomelas (golden-headed lion tamarin from distinct forest fragments in Atlantic Coastal Rainforest. Additionally, we present new data regarding T. cruzi infection of small mammals (rodents and marsupials that live in the same areas as golden lion tamarins and characterisation at discrete typing unit (DTU level of 77 of these isolates. DTU TcII was found to exclusively infect primates, while TcI infected Didelphis aurita and lion tamarins. The majority of T. cruzi isolates derived from L. rosalia were shown to be TcII (33 out 42 Nine T. cruzi isolates displayed a TcI profile. Golden-headed lion tamarins demonstrated to be excellent reservoirs of TcII, as 24 of 26 T. cruzi isolates exhibited the TcII profile. We concluded the following: (i the transmission cycle of T. cruzi in a same host species and forest fragment is modified over time, (ii the infectivity competence of the golden lion tamarin population fluctuates in waves that peak every other year and (iii both golden and golden-headed lion tamarins are able to maintain long-lasting infections by TcII and TcI.

  14. Effect of treatment with cyclophosphamide in low doses upon the onset of delayed type hypersensitivity in mice chronically infected with Trypanosoma cruzi: involvement of heart interstitial dendritic cells

    Directory of Open Access Journals (Sweden)

    Torriceli Souza The

    2013-09-01

    Full Text Available Acute infection with Trypanosoma cruzi results in intense myocarditis, which progresses to a chronic, asymptomatic indeterminate form. The evolution toward this chronic cardiac form occurs in approximately 30% of all cases of T. cruzi infection. Suppression of delayed type hypersensitivity (DTH has been proposed as a potential explanation of the indeterminate form. We investigated the effect of cyclophosphamide (CYCL treatment on the regulatory mechanism of DTH and the participation of heart interstitial dendritic cells (IDCs in this process using BALB/c mice chronically infected with T. cruzi. One group was treated with CYCL (20 mg/kg body weight for one month. A DTH skin test was performed by intradermal injection of T. cruzi antigen (3 mg/mL in the hind-footpad and measured the skin thickness after 24 h, 48 h and 72 h. The skin test revealed increased thickness in antigen-injected footpads, which was more evident in the mice treated with CYCL than in those mice that did not receive treatment. The thickened regions were characterised by perivascular infiltrates and areas of necrosis. Intense lesions of the myocardium were present in three/16 cases and included large areas of necrosis. Morphometric evaluation of lymphocytes showed a predominance of TCD8 cells. Heart IDCs were immunolabelled with specific antibodies (CD11b and CD11c and T. cruzi antigens were detected using a specific anti-T. cruzi antibody. Identification of T. cruzi antigens, sequestered in these cells using specific anti-T. cruzi antibodies was done, showing a significant increase in the number of these cells in treated mice. These results indicate that IDCs participate in the regulatory mechanisms of DTH response to T. cruzi infection.

  15. Widespread Trypanosoma cruzi infection in government working dogs along the Texas-Mexico border: Discordant serology, parasite genotyping and associated vectors.

    Directory of Open Access Journals (Sweden)

    Alyssa C Meyers

    2017-08-01

    Full Text Available Chagas disease, caused by the vector-borne protozoan Trypanosoma cruzi, is increasingly recognized in the southern U.S. Government-owned working dogs along the Texas-Mexico border could be at heightened risk due to prolonged exposure outdoors in habitats with high densities of vectors. We quantified working dog exposure to T. cruzi, characterized parasite strains, and analyzed associated triatomine vectors along the Texas-Mexico border.In 2015-2016, we sampled government working dogs in five management areas plus a training center in Texas and collected triatomine vectors from canine environments. Canine serum was tested for anti-T. cruzi antibodies with up to three serological tests including two immunochromatographic assays (Stat-Pak and Trypanosoma Detect and indirect fluorescent antibody (IFA test. The buffy coat fraction of blood and vector hindguts were tested for T. cruzi DNA and parasite discrete typing unit was determined. Overall seroprevalence was 7.4 and 18.9% (n = 528 in a conservative versus inclusive analysis, respectively, based on classifying weakly reactive samples as negative versus positive. Canines in two western management areas had 2.6-2.8 (95% CI: 1.0-6.8 p = 0.02-0.04 times greater odds of seropositivity compared to the training center. Parasite DNA was detected in three dogs (0.6%, including TcI and TcI/TcIV mix. Nine of 20 (45% T. gerstaeckeri and T. rubida were infected with TcI and TcIV; insects analyzed for bloodmeals (n = 11 fed primarily on canine (54.5%.Government working dogs have widespread exposure to T. cruzi across the Texas-Mexico border. Interpretation of sample serostatus was challenged by discordant results across testing platforms and very faint serological bands. In the absence of gold standard methodologies, epidemiological studies will benefit from presenting a range of results based on different tests/interpretation criteria to encompass uncertainty. Working dogs are highly trained in security

  16. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Bin [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Hiromatsu, Kenji, E-mail: khiromatsu@fukuoka-u.ac.jp [Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180 (Japan); Hisaeda, Hajime; Duan, Xuefeng; Imai, Takashi [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan); Murata, Shigeo; Tanaka, Keiji [Department of Molecular Oncology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613 (Japan); Himeno, Kunisuke [Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2010-02-12

    Cytotoxic CD8{sup +} T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8{sup +} T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8{sup +} T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4{sup +} T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8{sup +} T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.

  17. Immunomodulatory effect of cimetidine on the proliferative responses of splenocytes from T. cruzi-infected rats Efeito imunomodulatório da cimetidina sobre a resposta blastogênica de esplenócitos de ratos infectados por T. cruzi

    Directory of Open Access Journals (Sweden)

    M.N. Sato

    1991-06-01

    Full Text Available The immunomodulatory effect of cimetidine (CIM, a histamine type-2 receptor antagonist, was evaluated in respect to the blastogenic response to Con A of Wistar Furth (WF rats infected by the Y strain of Trypanosoma cruzi (T. cruzi. Enhancement of blastogenesis of normal splenocytes was observed at a concentration of 10-3M. However, the splenocytes from infected animals responded to concentrations of CIM ranging from 10-8 to 10-3M. The mitogenic response to Con A of cells from infected animals was restored in the presence of CIM. The results show that CIM modulates the "in vitro" proliferative response of cells from T. cruzi-infected rats and suggest an immunoregulatory role of histamine and/or of cells that express H2 receptors in this infection.O efeito imunomodulatório da Cimetidine (CIM, um antagonista do receptor de histamina-tipo 2, foi avaliado na resposta blastogênica a Con A em células de ratos Wistar Furth (WF infectados pela cepa Y de Trypanosoma cruzi (T. cruzi. Foi observado que apenas na concentração de 10-3M de Cimetidine houve amplificação da resposta blastogênica de esplenócitos normais a Con A. Entretanto, a capacidade mitogênica de esplenócitos de animais infectados foi restaurada na presença de molaridades da droga que variaram entre 10-8 a 10-3. Os resultados demonstraram que a CIM tem o potencial de modular a resposta mitogênica de células de animais infectados pelo T. cruzi, sugerindo um papel imunoregulatório da histamina e/ou células que expressam receptores H2 nesta infecção.

  18. Detection of Trypanosoma cruzi and Trypanosoma rangeli infection in triatomine vectors by amplification of the histone H2A/SIRE and the sno-RNA-C11 genes Detecção da infecção por Trypanosoma cruzi e Trypanosoma rangeli em vetores triatomíneos através da amplificação dos gens de histona H2A/SIRE e sno-RNA-C11

    Directory of Open Access Journals (Sweden)

    Paula Ximena Pavia

    2007-02-01

    Full Text Available Trypanosoma rangeli is non pathogenic for humans but of important medical and epidemiological interest because it shares vertebrate hosts, insect vectors, reservoirs and geographic areas with T. cruzi, the etiological agent of Chagas disease. Therefore, in this work, we set up two PCR reactions, TcH2AF/R and TrFR2, to distinguish T. cruzi from T. rangeli in mixed infections of vectors based on amplification of the histone H2A/SIRE and the small nucleolar RNA Cl1 genes, respectively. Both PCRs were able to appropriately detect all T. cruzi or T. rangeli experimentally infected-triatomines, as well as the S35/S36 PCR which amplifies the variable region of minicircle kDNA of T. cruzi. In mixed infections, whereas T. cruzi DNA was amplified in 100% of samples with TcH2AF/R and S35/S36 PCRs, T. rangeli was detected in 71% with TrF/R2 and in 6% with S35/S36. In a group of Rhodnius colombiensis collected from Coyaima (Colombia, T. cruzi was identified in 100% with both PCRs and T. rangeli in 14% with TrF/R2 and 10% with S35/S36 PCR. These results show that TcH2AF/R and TrF/R2 PCRs which are capable of recognizing all T. cruzi and T. rangeli strains and lineages could be useful for diagnosis as well as for epidemiological field studies of T. cruzi and T. rangeli vector infections.Embora o Trypanosoma rangeli não seja patogênico para o homem, sua importância médica e epidemiológica reside no fato de compartilhar vetores, reservatórios e áreas geográficas com o Trypanosoma cruzi, agente causal da Doença de Chagas. Neste estudo, para distinguir T. cruzi de T. rangeli em vetores com infecções mistas, se utilizaram duas amplificações de PCR; TcH2AF/R para o gen da histona H2A/SIRE e TrFR2, para um gen repetitivo de ARN nucleolar Cl1 (sno-RNA-Cl1. Assim como a PCR S35/S36, ambas as reações foram capazes de detectar corretamente a presença de T. cruzi ou T. rangeli em triatomíneos infectados experimentalmente. Nas infecções mistas, o ADN de

  19. Performance Assessment of Four Chimeric Trypanosoma cruzi Antigens Based on Antigen-Antibody Detection for Diagnosis of Chronic Chagas Disease.

    Directory of Open Access Journals (Sweden)

    Fred Luciano Neves Santos

    Full Text Available The performance of serologic tests in chronic Chagas disease diagnosis largely depends on the type and quality of the antigen preparations that are used for detection of anti-Trypanosoma cruzi antibodies. Whole-cell T. cruzi extracts or recombinant proteins have shown variation in the performance and cross-reactivity. Synthetic chimeric proteins comprising fragments of repetitive amino acids of several different proteins have been shown to improve assay performances to detect Chagasic infections. Here, we describe the production of four chimeric T. cruzi proteins and the assessment of their performance for diagnostic purposes. Circular Dichroism spectra indicated the absence of well-defined secondary structures, while polydispersity evaluated by Dynamic Light Scattering revealed only minor aggregates in 50 mM carbonate-bicarbonate (pH 9.6, demonstrating that it is an appropriate buffering system for sensitizing microplates. Serum samples from T. cruzi-infected and non-infected individuals were used to assess the performance of these antigens for detecting antibodies against T. cruzi, using both enzyme-linked immunosorbent assay and a liquid bead array platform. Performance parameters (AUC, sensitivity, specificity, accuracy and J index showed high diagnostic accuracy for all chimeric proteins for detection of specific anti-T. cruzi antibodies and differentiated seropositive individuals from those who were seronegative. Our data suggest that these four chimeric proteins are eligible for phase II studies.

  20. Role of T. cruzi exposure in the pattern of T cell cytokines among chronically infected HIV and Chagas disease patients

    Directory of Open Access Journals (Sweden)

    Tania Regina Tozetto-Mendoza

    Full Text Available OBJECTIVES: The impact of Chagas disease (CD in HIV-infected patients is relevant throughout the world. In fact, the characterization of the adaptive immune response in the context of co-infection is important for predicting the need for interventions in areas in which HIV and Chagas disease co-exist. METHODS: We described and compared the frequency of cytokine-producing T cells stimulated with soluble antigen of Trypanosoma cruzi (T. cruzi using a cytometric assay for the following groups: individuals with chronic Chagas disease (CHR, n=10, those with Chagas disease and HIV infection (CO, n=11, those with only HIV (HIV, n=14 and healthy individuals (C, n=15. RESULTS: We found 1 a constitutively lower frequency of IL-2+ and IFN-γ+ T cells in the CHR group compared with the HIV, CO and healthy groups; 2 a suppressive activity of soluble T. cruzi antigen, which down-regulated IL-2+CD4+ and IFN-γ+CD4+ phenotypes, notably in the healthy group; 3 a down-regulation of inflammatory cytokines on CD8+ T cells in the indeterminate form of Chagas disease; and 4 a significant increase in IL-10+CD8+ cells distinguishing the indeterminate form from the cardiac/digestive form of Chagas disease, even in the presence of HIV infection. CONCLUSIONS: Taken together, our data suggest the presence of an immunoregulatory response in chronic Chagas disease, which seems to be driven by T. cruzi antigens. Our findings provide new insights into immunotherapeutic strategies for people living with HIV/AIDS and Chagas disease.

  1. Dogs infection by Trypanosoma cruzi in São Domingos do Capim, State of Pará, Brazil

    Directory of Open Access Journals (Sweden)

    Vívian Tavares Almeida

    2015-12-01

    Full Text Available ABSTRACT. Almeida V.T., Kobayashi Y.T. da S., Roque A.L.R., Barros J.H.S., de Castro L.R.S., Madeira E.A.O., Uzcategui R.A.R. & Fernandes J.I. Dogs infection by Trypanosoma cruzi in São Domingos do Capim, State of Pará, Brazil. [Infecção por Trypanosoma cruzi em cães em São Domingos do Capim, Estado do Pará, Brasil.] Revista Brasileira de Medicina Veterinária, 37(supl. 1:106- 112, 2015. Programa de Pós-Graduação em Saúde Animal na Amazônia, Universidade Federal do Pará, Campus II, BR 316 Km 62, Castanhal, PA 68743-970, Brasil. E-mail: vitalmeida21@hotmail.com The objective of this study was to determine the presence of Trypanosoma cruzi among dogs naturally infected by it inside four rural communities at the Municipality of São Domingos do Capim located in the Northeastern Pará, Brazil. Blood samples were collected from 113 dogs and 85.7% (30/35 of the serologically positive dogs had their blood re-collected after three months. The diagnosis of T. cruzi infection was performed by: fresh blood examination, hemoconcentration, hemoculture, as well as the serological assays Indirect Immunofluorescence Essay (IFAT and Imunoenzimatic essay (ELISA. The presence of positive dogs in both serologic tests (IFAT + ELISA was 31% (35/113, distributed among the four communities as follows: (12/44 Uricuriteua, (19/40 Cezaréia, (1/16 Aliança and (3/13 Catita. None of the samples was positive in the fresh blood examination or hemoconcentration, although it was possible to isolate T. cruzi, DTU TcI in one dog sample during its blood re-collection. These results show how dogs are exposed to the T. cruzi transmission cycle, revealing their importance as sentinels for the presence of this parasite in the studied area.

  2. Epidemiology and Molecular Typing of Trypanosoma cruzi in Naturally-Infected Hound Dogs and Associated Triatomine Vectors in Texas, USA

    Science.gov (United States)

    Curtis-Robles, Rachel; Snowden, Karen F.; Dominguez, Brandon; Dinges, Lewis; Rodgers, Sandy; Mays, Glennon

    2017-01-01

    Background Trypanosoma cruzi is the etiologic agent of Chagas disease throughout the Americas. Few population-level studies have examined the epidemiology of canine infection and strain types of T. cruzi that infect canines in the USA. We conducted a cross-sectional study of T. cruzi infection in working hound dogs in south central Texas, including analysis of triatomine vectors collected within kennel environments. Methodology/Principle Findings Paired IFA and Chagas Stat-Pak serological testing showed an overall seroprevalence of 57.6% (n = 85), with significant variation across kennels. Dog age had a marginally significant effect on seropositivity, with one year of age increase associated with a 19.6% increase in odds of being seropositive (odds ratio 95% CI 0.996–1.435; p = 0.055). PCR analyses of blood revealed 17.4% of dogs harbored parasite DNA in their blood, including both seronegative and seropositive dogs. Molecular screening of organs from opportunistically sampled seropositive dogs revealed parasite DNA in heart, uterus, and mammary tissues. Strain-typing showed parasite discrete typing units (DTU) TcI and TcIV present in dog samples, including a co-occurrence of both DTUs in two individual dogs. Bloodmeal analysis of Triatoma gerstaeckeri and Triatoma sanguisuga insects collected from the kennels revealed exclusively dog DNA. Vector infection with T. cruzi was 80.6% (n = 36), in which T. gerstaeckeri disproportionately harbored TcI (p = 0.045) and T. sanguisuga disproportionately harbored TcIV (p = 0.029). Tracing infection status across dog litters showed some seropositive offspring of seronegative dams, suggesting infection of pups from local triatomine vectors rather than congenital transmission. Conclusions/Significance Canine kennels are high-risk environments for T. cruzi transmission, in which dogs likely serve as the predominant parasite reservoir. Disease and death of working dogs from Chagas disease is associated with unmeasured yet

  3. Trypanosoma cruzi IV causing outbreaks of acute Chagas disease and infections by different haplotypes in the Western Brazilian Amazonia.

    Directory of Open Access Journals (Sweden)

    Wuelton Marcelo Monteiro

    Full Text Available BACKGROUND: Chagas disease is an emergent tropical disease in the Brazilian Amazon Region, with an increasing number of cases in recent decades. In this region, the sylvatic cycle of Trypanosoma cruzi transmission, which constitutes a reservoir of parasites that might be associated with specific molecular, epidemiological and clinical traits, has been little explored. The objective of this work is to genetically characterize stocks of T. cruzi from human cases, triatomines and reservoir mammals in the State of Amazonas, in the Western Brazilian Amazon. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed 96 T. cruzi samples from four municipalities in distant locations of the State of Amazonas. Molecular characterization of isolated parasites from cultures in LIT medium or directly from vectors or whole human blood was performed by PCR of the non-transcribed spacer of the mini-exon and of the 24 S alfa ribosomal RNA gene, RFLP and sequencing of the mitochondrial cytochrome c oxidase subunit II (COII gene, and by sequencing of the glucose-phosphate isomerase gene. The T. cruzi parasites from two outbreaks of acute disease were all typed as TcIV. One of the outbreaks was triggered by several haplotypes of the same DTU. TcIV also occurred in isolated cases and in Rhodnius robustus. Incongruence between mitochondrial and nuclear phylogenies is likely to be indicative of historical genetic exchange events resulting in mitochondrial introgression between TcIII and TcIV DTUs from Western Brazilian Amazon. TcI predominated among triatomines and was the unique DTU infecting marsupials. CONCLUSION/SIGNIFICANCE: DTU TcIV, rarely associated with human Chagas disease in other areas of the Amazon basin, is the major strain responsible for the human infections in the Western Brazilian Amazon, occurring in outbreaks as single or mixed infections by different haplotypes.

  4. Effects of Non-Susceptible Hosts on the Infection with Trypanosoma cruzi of the Vector Triatoma infestans: an Experimental Model

    Directory of Open Access Journals (Sweden)

    Vázquez Diego P

    1999-01-01

    Full Text Available We tested experimentally the effects of the presence of non-susceptible hosts on the infection with Trypanosoma cruzi of the vector Triatoma infestans. The experiment consisted in two treatments: with chickens, including two chickens (non-susceptible hosts and two infected guinea pigs (susceptible hosts, and without chickens, including only two infected guinea pigs. The hosts were held unrestrained in individual metal cages inside a closed tulle chamber. A total of 200 uninfected T. infestans third instar nymphs were liberated in each replica, collected on day 14, and examined for infection and blood meal sources on day 32-36. The additional presence of chickens relative to infected guinea pigs: (a significantly modified the spatial distribution of bugs; (b increased significantly the likelihoods of having a detectable blood meal on any host and molting to the next instar; (c did not affect the bugs' probability of death by predation; and (d decreased significantly the overall percentage of T. infestans infected with T. cruzi. The bugs collected from inside or close to the guinea pigs' cages showed a higher infection rate (71-88% than those collected from the chickens' cages (22-32%. Mixed blood meals on chickens and guinea pigs were detected in 12-21% of bugs. Although the presence of chickens would decrease the overall percentage of infected bugs in short term experiments, the high rate of host change of T. infestans would make this difference fade out if longer exposure times had been provided.

  5. Mitochondrial complex III defects contribute to inefficient respiration and ATP synthesis in the myocardium of Trypanosoma cruzi-infected mice.

    Science.gov (United States)

    Wen, Jian-Jun; Garg, Nisha Jain

    2010-01-01

    In this study, we conducted a thorough analysis of mitochondrial bioenergetic function as well as the biochemical and molecular factors that are deregulated and contribute to compromised adenosine triphosphate (ATP) production in the myocardium during Trypanosoma cruzi infection. We show that ADP-stimulated state 3 respiration and ATP synthesis supported by pyruvate/malate (provides electrons to complex I) and succinate (provides electrons to complex II) substrates were significantly decreased in left ventricular tissue and isolated cardiac mitochondria of infected mice. The decreased mitochondrial ATP synthesis in infected murine hearts was not a result of uncoupling between the electron-transport chain and oxidative phosphorylation and decreased availability of the intermediary metabolites (e.g., NADH). The observed decline in the activities of complex-I, -IV, and -V was not physiologically relevant and did not contribute to compromised respiration and ATP synthesis in infected myocardium. Instead, complex III activity was decreased above the threshold level and contributed to respiratory-chain inefficiency and the resulting decline in mitochondrial ATP synthesis in infected myocardium. The loss in complex III activity occurred as a consequence of cytochrome b depletion. Treatment of infected mice with phenyl-alpha-tert-butyl nitrone (PBN, antioxidant) was beneficial in preserving the mtDNA-encoded cytochrome b expression, and subsequently resulted in improved complex III activity, mitochondrial respiration, and ATP production in infected myocardium. Overall, we provide novel data on the mechanism(s) involved in cardiac bioenergetic inefficiency during T. cruzi infection.

  6. Prevalencia de infeccion humana por Trypanosoma cruzi en bancos de sangre en Venezuela Prevalence of human infections by Trypanosoma cruzi in Venezuelan blood banks

    Directory of Open Access Journals (Sweden)

    Alberto Aché

    1993-10-01

    Full Text Available Las primeras investigaciones realizadas a nivel de bancos de sangre, durante la década 50, indican que la seroprevalencia por infecciones a T. cruzi entre hemodadores fue de 12%. Un estudio posterior, entre 1963-64, efectuado en varios bancos de sangre, así como otros centros, registró una seroprevalencia global de 6.0% (1.1-10.1%. La donación de sangre en Venezuela es gratuita. El control de los bancos de sangre recae en el Departamento de Transfusiones y Bancos de Sangre del Ministerio de Sanidad y Asistencia Social. A partir de 1988, se emplea uniformemente la técnica de ELISA para el diagnóstico de infecciones a T. cruzi en los Bancos de Sangre. La seropositividad promedio interanual, entre 1984-1992, fue de 1.20% (1.09-1.94%. Existen variaciones geográficas entre las localidades de varias entidades federales. Los estados con mayor prevalencia se ubican en las regiones del occidente y centro del país, a saber: Portuguesa, Barinas, Lara, Trujillo, Cojedes y Carabobo. Por las dificultades en obtener tasas de incidencia para el Mal de Chagas, resulta adecuado emplear tasas de prevalencia para uso en salud pública, en función de su mayor estabilidad; y en el caso de Venezuela, dada la severidad menor y una sobrevivencia mayor por esta patologia hoy día. La especificidad, como parámetro de las pruebas serológicas, debería considerarse en función de la baja seroprevalencia detectada a nivel nacional. Convendría emplear varias pruebas diagnósticas en paralelo para buscar un equilibrio entre sensibilidad y especificidad.Primary investigations carried out in blood banks in Venezuela during the 1950s, indicated that overall seroprevalence for Trypanosoma cruzi infection was 12% amongst blood donors. In Venezuela, blood donation is free. All public and private blood banks are controlled by the Ministry of Health. As from 1988 the ELISA technique was uniformly used in blood banks for the detection of T. cruzi infections. Annual median

  7. Trypanosoma cruzi in marsupial didelphids (Philander frenata and Didelhis marsupialis: differences in the humoral immune response in natural and experimental infections

    Directory of Open Access Journals (Sweden)

    Legey Ana Paula

    2003-01-01

    Full Text Available Philander frenata and Didelphis marsupialis harbor parasitism by Trypanosoma cruzi without developing any apparent disease and on the contrary to D. marsupialis, P. frenata maintains parasitism by T. cruzi II subpopulations. Here we compared the humoral immune response of the two didelphids naturally and experimentally infected with T. cruzi II group, employing SDS-PAGE/Western blot techniques and by an Indirect immunofluorescence assay. We also studied the histopathological pattern of naturally and experimentally infected P. frenata with T. cruzi. P. frenata sera recognized more antigens than D. marsupialis, and the recognition pattern did not show any change over the course of the follow up of both didelphid species. Polypeptides of 66 and 90kDa were the most prominent antigens recognized by both species in the soluble and enriched membrane fractions. P. frenata recognized intensely also a 45kDa antigen. Our findings indicate that: 1 there were no quantitative or qualitative differences in the patent or subpatent phases in the recognition pattern of P. frenata; 2 the significant differences in the recognition pattern of parasitic antigens by P. frenata and D. marsupialis sera suggest that they probably "learned" to live in harmony with T. cruzi by different strategies; 3 although P. frenata do not display apparent disease, tissular lesions tended to be more severe than has been described in D. marsupialis; and 4 Both didelphids probably acquired infection by T. cruzi after their evolutionary divergence.

  8. Use of a Chagas Urine Nanoparticle Test (Chunap) to Correlate with Parasitemia Levels in T. cruzi/HIV Co-infected Patients

    Science.gov (United States)

    Castro-Sesquen, Yagahira E.; Gilman, Robert H.; Mejia, Carolina; Clark, Daniel E.; Choi, Jeong; Reimer-McAtee, Melissa J.; Castro, Rosario; Valencia-Ayala, Edward; Flores, Jorge; Bowman, Natalie; Castillo-Neyra, Ricardo; Torrico, Faustino; Liotta, Lance; Bern, Caryn; Luchini, Alessandra

    2016-01-01

    Background Early diagnosis of reactivated Chagas disease in HIV patients could be lifesaving. In Latin America, the diagnosis is made by microscopical detection of the T. cruzi parasite in the blood; a diagnostic test that lacks sensitivity. This study evaluates if levels of T. cruzi antigens in urine, determined by Chunap (Chagas urine nanoparticle test), are correlated with parasitemia levels in T. cruzi/HIV co-infected patients. Methodology/Principal Findings T. cruzi antigens in urine of HIV patients (N = 55: 31 T. cruzi infected and 24 T. cruzi serology negative) were concentrated using hydrogel particles and quantified by Western Blot and a calibration curve. Reactivation of Chagas disease was defined by the observation of parasites in blood by microscopy. Parasitemia levels in patients with serology positive for Chagas disease were classified as follows: High parasitemia or reactivation of Chagas disease (detectable parasitemia by microscopy), moderate parasitemia (undetectable by microscopy but detectable by qPCR), and negative parasitemia (undetectable by microscopy and qPCR). The percentage of positive results detected by Chunap was: 100% (7/7) in cases of reactivation, 91.7% (11/12) in cases of moderate parasitemia, and 41.7% (5/12) in cases of negative parasitemia. Chunap specificity was found to be 91.7%. Linear regression analysis demonstrated a direct relationship between parasitemia levels and urine T. cruzi antigen concentrations (p 105 pg was chosen to determine patients with reactivation of Chagas disease (7/7). Antigenuria levels were 36.08 times (95% CI: 7.28 to 64.88) higher in patients with CD4+ lymphocyte counts below 200/mL (p = 0.016). No significant differences were found in HIV loads and CD8+ lymphocyte counts. Conclusion Chunap shows potential for early detection of Chagas reactivation. With appropriate adaptation, this diagnostic test can be used to monitor Chagas disease status in T. cruzi/HIV co-infected patients. PMID:26919324

  9. Humoral Immune Response Kinetics in Philander opossum and Didelphis marsupialis Infected and Immunized by Trypanosoma cruzi Employing an Immunofluorescence Antibody Test

    Directory of Open Access Journals (Sweden)

    Ana Paula Legey

    1999-05-01

    Full Text Available Philander opossum and Didelphis marsupialis considered the most ancient mammals and an evolutionary success, maintain parasitism by Trypanosoma cruzi without developing any apparent disease or important tissue lesion. In order to elucidate this well-balanced interaction, we decided to compare the humoral immune response kinetics of the two didelphids naturally and experimentally infected with T. cruzi and immunized by different schedules of parasite antigens, employing an indirect fluorescence antibody test (IFAT. Both didelphids responded with high serological titers to different immunization routes, while the earliest response occurred with the intradermic route. Serological titers of naturally infected P. opossum showed a significant individual variation, while those of D. marsupialis remained stable during the entire follow-up period. The serological titers of the experimentally infected animals varied according to the inoculated strain. Our data suggest that (1 IFAT was sensitive for follow-up of P. opossum in natural and experimental T. cruzi infections; (2 both P. opossum and D. marsupialis are able to mount an efficient humoral immune response as compared to placental mammals; (3 experimentally infected P. opossum and D. marsupialis present distinct patterns of infection, depending on the subpopulation of T. cruzi, (4 the differences observed in the humoral immune responses between P. opossum and D. marsupialis, probably, reflect distinct strategies selected by these animals during their coevolution with T. cruzi.

  10. Outcome of E1224-Benznidazole Combination Treatment for Infection with a Multidrug-Resistant Trypanosoma cruzi Strain in Mice.

    Science.gov (United States)

    Diniz, Lívia de Figueiredo; Mazzeti, Ana Lia; Caldas, Ivo Santana; Ribeiro, Isabela; Bahia, Maria Terezinha

    2018-06-01

    Combination therapy has been proposed as an alternative therapeutic approach for the treatment of Chagas disease. In this study, we evaluated the effect of treatment with benznidazole combined with E1224 (ravuconazole prodrug) in an experimental murine model of acute infection. The first set of experiments assessed the range of E1224 doses required to induce parasitological cure using Trypanosoma cruzi strains with different susceptibilities to benznidazole (Y and Colombian). All E1224 doses were effective in suppressing the parasitemia and preventing death; however, parasitological cure was observed only in mice infected with Y strain. Considering these results, we evaluated the effect of combined treatment against Colombian, a multidrug-resistant T. cruzi strain. After exclusion of antagonistic effects using in vitro assays, infected mice were treated with E1224 and benznidazole in monotherapy or in combination at day 4 or 10 postinoculation. All treatments were well tolerated and effective in suppressing parasitemia; however, parasitological and PCR assays indicated no cure among mice treated with monotherapies. Intriguingly, the outcome of combination therapy was dependent on treatment onset. Early treatment using optimal doses of E1224-benznidazole induced a 100% cure rate, but this association could not eliminate a well-established infection. The beneficial effect of combination therapy was evidenced by further reductions of the patent parasitemia period in the group receiving combined therapy compared with monotherapies. Our results demonstrated a positive interaction between E1224 and benznidazole against murine T. cruzi infection using a multidrug-resistant strain and highlighted the importance of a stringent experimental model in the evaluation of new therapies. Copyright © 2018 Diniz et al.

  11. Prevalence of Trypanosoma cruzi infection among Bolivian immigrants in the city of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Expedito JA Luna

    Full Text Available With the urbanisation of the population in developing countries and the process of globalisation, Chagas has become an emerging disease in the urban areas of endemic and non-endemic countries. In 2006, it was estimated that the prevalence of Chagas disease among the general Bolivian population was 6.8%. The aim of the present study was to determine the prevalence of Trypanosoma cruzi infection among Bolivian immigrants living in São Paulo, Brazil. This study had a sample of 633 volunteers who were randomly selected from the clientele of primary care units located in the central districts of São Paulo, Brazil. Infection was detected by two different ELISA assays with epimastigote antigens, followed by an immunoblot with trypomastigote antigens as a confirmatory test. The prevalence of the infection was 4.4%. Risk factors independently associated with the infection were: a history of rural jobs in Bolivia, knowledge of the vector involved in transmission, and having relatives with Chagas disease. Brazil has successfully eliminated household vector transmission of T. cruzi, as well as its transmission by blood transfusion. The arrival of infected immigrants represents an additional challenge to primary care clinics to manage chronic Chagas disease, its vertical transmission, and the blood derivatives and organ transplant programs.

  12. Inhibitory effects of Trypanosoma cruzi sialoglycoproteins on CD4+ T cells are associated with increased susceptibility to infection.

    Directory of Open Access Journals (Sweden)

    Marise Pinheiro Nunes

    Full Text Available BACKGROUND: The Trypanosoma cruzi infection is associated with severe T cell unresponsiveness to antigens and mitogens characterized by decreased IL-2 synthesis. Trypanosoma cruzi mucin (Tc Muc has been implicated in this phenomenom. These molecules contain a unique type of glycosylation consisting of several sialylated O-glycans linked to the protein backbone via N-acetylglucosamine residues. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we evaluated the ability of Tc Muc to modulate the activation of CD4(+ T cells. Our data show that cross-linking of CD3 on naïve CD4(+ T cells in the presence of Tc Muc resulted in the inhibition of both cytokine secretion and proliferation. We further show that the sialylated O-Linked Glycan residues from tc mucin potentiate the suppression of T cell response by inducing G1-phase cell cycle arrest associated with upregulation of mitogen inhibitor p27(kip1. These inhibitory effects cannot be reversed by the addition of exogenous IL-2, rendering CD4(+ T cells anergic when activated by TCR triggering. Additionally, in vivo administration of Tc Muc during T. cruzi infection enhanced parasitemia and aggravated heart damage. Analysis of recall responses during infection showed lower frequencies of IFN-γ producing CD4(+ T cells in the spleen of Tc Muc treated mice, compared to untreated controls. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Tc Muc mediates inhibitory efects on CD4(+ T expansion and cytokine production, by blocking cell cycle progression in the G1 phase. We propose that the sialyl motif of Tc Muc is able to interact with sialic acid-binding Ig-like lectins (Siglecs on CD4(+ T cells, which may allow the parasite to modulate the immune system.

  13. Human mixed infections of Leishmania spp. and Leishmania-Trypanosoma cruzi in a sub Andean Bolivian area: identification by polymerase chain reaction/hybridization and isoenzyme

    Directory of Open Access Journals (Sweden)

    B Bastrenta

    2003-03-01

    Full Text Available Parasites belonging to Leishmania braziliensis, Leishmania donovani, Leishmania mexicana complexes and Trypanosoma cruzi (clones 20 and 39 were searched in blood, lesions and strains collected from 28 patients with active cutaneous leishmaniasis and one patient with visceral leishmaniasis. PCR-hybridization with specific probes of Leishmania complexes (L. braziliensis, L. donovani and L. mexicana and T. cruzi clones was applied to the different DNA samples. Over 29 patients, 8 (27.6% presented a mixed infection Leishmania complex species, 17 (58.6% a mixed infection Leishmania-T. cruzi, and 4 (13.8% a multi Leishmania-T. cruzi infection. Several patients were infected by the two Bolivian major clones 20 and 39 of T. cruzi (44.8%. The L. braziliensis complex was more frequently detected in lesions than in blood and a reverse result was observed for L. mexicana complex. The polymerase chain reaction-hybridization design offers new arguments supporting the idea of an underestimated rate of visceral leishmanisis in Bolivia. Parasites were isolated by culture from the blood of two patients and lesions of 10 patients. The UPGMA (unweighted pair-group method with arithmetic averages dendrogram computed from Jaccard's distances obtained from 11 isoenzyme loci data confirmed the presence of the three Leishmania complexes and undoubtedly identified human infections by L. (V. braziliensis, L. (L. chagasi and L. (L. mexicana species. Additional evidence of parasite mixtures was visualized through mixed isoenzyme profiles, L. (V. braziliensis-L. (L. mexicana and Leishmania spp.-T. cruzi.The epidemiological profile in the studied area appeared more complex than currently known. This is the first report of parasitological evidence of Bolivian patients with trypanosomatidae multi infections and consequences on the diseases' control and patient treatments are discussed.

  14. Characterization of Trypanosoma cruzi Strains Isolated from Chronic Chagasic Patients, Triatomines and Opossums Naturally Infected from the State of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Cloé Duarte Fernandes

    1997-05-01

    Full Text Available Thirty-five Trypanosoma cruzi strains were isolated from chronic chagasic patients, triatomines and opossums from different municipalities of the State of Rio Grande do Sul. Parasites were characterized by means of mice infectivity, enzyme electrophoresis and randomly amplified polymorphic DNA (RAPD analysis. Twenty-nine strains were isolated from chagasic patients, 4 from triatomines (2 from Triatoma infestans and 2 from Panstrongylus megistus and 2 from opossums Didelphis albiventris. Thirty-three T. cruzi strains were of low and 2 strains of high virulence in mice. Both virulent strains were isolated from P. megistus. Isoenzyme analysis of the strains showed 3 different zymodemes. Eleven strains isolated from chagasic patients and 2 from D. albiventris were Z2. Eighteen strains from patients and 2 from T. infestans were ZB and 2 T. cruzi strains isolated from P. megistus were Z1. RAPD profiles obtained with 4 random primers showed a high genetic heterogeneity of the T. cruzi strains. Zymodeme 2 and ZB strains were the more polymorphic. A band sharing analysis of the RAPD profiles of Z2 and ZB strains using 3 primers, showed a very low percentage of shared bands, 20% among 13 ZB strains and 14% among 13 Z2 strains. According to the isoenzyme results, 3 T. cruzi populations were present in State of Rio Grande do Sul. Zymodeme 2 and ZB strains were found infecting man (domiciliar transmission cycle whereas Z1 strains were found infecting the sylvatic vector P. megistus

  15. Trypanosoma cruzi: in vivo evaluation of iron in skin employing X-ray fluorescence (XRF) in mouse strains that differ in their susceptibility to infection.

    Science.gov (United States)

    Estevam, Marcelo; Appoloni, Carlos Roberto; Malvezi, Aparecida Donizette; Tatakihara, Vera Lúcia Hideko; Panis, Carolina; Cecchini, Rubens; Rizzo, Luiz Vicente; Pinge-Filho, Phileno

    2012-04-01

    Trypanosoma cruzi, the causative agent of Chagas' disease (CD), is a substantial public health concern in Latin America. Laboratory mice inoculated with T. cruzi have served as important animal models of acute CD. Host hypoferremic responses occur during T. cruzi infection; therefore, it has been hypothesized that T. cruzi requires iron for optimal growth in host cells and, unlike extracellular pathogens, may benefit from host hypoferremic responses. Recent technological improvements of X-ray fluorescence are useful for diagnostics or monitoring in biomedical applications. The goal of our study was to determine whether the iron availabilities in Swiss and C57BL/6 mice differ during the acute phase of T. cruzi infection and whether the availability correlates with oxidative stress in the susceptible and resistant phenotypes identified in these mice. Our results showed that the decrease in iron levels in the skin of resistant infected mice correlated with the increase in oxidative stress associated with anemia and the reduction in parasite burden. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies.

    Science.gov (United States)

    Bermejo, Daniela A; Amezcua Vesely, María C; Khan, Mahmood; Acosta Rodríguez, Eva V; Montes, Carolina L; Merino, Maria C; Toellner, Kai Michael; Mohr, Elodie; Taylor, Dale; Cunningham, Adam F; Gruppi, Adriana

    2011-01-01

    Acute infection with Trypanosoma cruzi, the aetiological agent of Chagas' disease, results in parasitaemia and polyclonal lymphocyte activation. It has been reported that polyclonal B-cell activation is associated with hypergammaglobulinaemia and delayed parasite-specific antibody response. In the present study we analysed the development of a B-cell response within the different microenvironments of the spleen during acute T. cruzi infection. We observed massive germinal centre (GC) and extrafollicular (EF) responses at the peak of infection. However, the EF foci were evident since day 3 post-infection (p.i.), and, early in the infection, they mainly provided IgM. The EF foci response reached its peak at 11 days p.i. and extended from the red pulp into the periarteriolar lymphatic sheath. The GCs were detected from day 8 p.i. At the peak of parasitaemia, CD138(+) B220(+) plasma cells in EF foci, red pulp and T-cell zone expressed IgM and all the IgG isotypes. Instead of the substantial B-cell response, most of the antibodies produced by splenic cells did not target the parasite, and parasite-specific IgG isotypes could be detected in sera only after 18 days p.i. We also observed that the bone marrow of infected mice presented a strong reduction in CD138(+) B220(+) cells compared with that of normal mice. Hence, in acute infection with T. cruzi, the spleen appears to be the most important lymphoid organ that lodges plasma cells and the main producer of antibodies. The development of a B-cell response during T. cruzi infection shows features that are particular to T. cruzi and other protozoan infection but different to other infections or immunization with model antigens.

  17. Success of benznidazole chemotherapy in chronic Trypanosoma cruzi-infected patients with a sustained negative PCR result.

    Science.gov (United States)

    Murcia, L; Carrilero, B; Ferrer, F; Roig, M; Franco, F; Segovia, M

    2016-11-01

    Cure assessment in chronic Trypanosoma cruzi infection is controversial, mainly because of the lack of reliable tests to ensure parasite elimination. Here, we assess the impact of benznidazole therapy on the conventional serology and parasitaemia in chronic Chagas disease. A total of 455 patients with long-term Trypanosoma cruzi infection underwent specific chemotherapy with benznidazole. Their parasitological status was assessed by polymerase chain reaction (PCR) detection of T. cruzi DNA. Drops in the titres of antibody levels were serially measured by indirect immunofluorescence assay (IFI) and chemiluminescent microparticle immunoassay (CMIA). Patients were monitored during the treatment period and for a further 90, 150 and 240 days. Controls were repeated yearly during the 7-year follow-up. The PCR result was negative in all patients between 60-day (n = 22) and 90-day (n = 294) controls. Treatment failure was detected in 45 patients and was significantly more frequent in those who did not complete the therapy [12 out of 13 (92 %) vs. 33 out of 442 (7 %)] (p = 0.0001). A significant drop in serum titres was detected after the first follow-up year in patients with sustained negative PCR results: 2nd year (p = 0.029 by IFI; p = 0.002 by CMIA), 5th year (p = 0.036 by IFI; p = 0.039 by CMIA) and 6th year (p = 0.028 by IFI; p = 0.019 by CMIA). The results point to a beneficial effect of benznidazole and may be the cure of chronic patients who had a consistently negative PCR result throughout the follow-up period.

  18. Cytokine profiling in Chagas disease: towards understanding the association with infecting Trypanosoma cruzi discrete typing units (a BENEFIT TRIAL sub-study.

    Directory of Open Access Journals (Sweden)

    Cristina Poveda

    Full Text Available Chagas disease caused by the protozoan Trypanosoma cruzi is an important public health problem in Latin America. The immunological mechanisms involved in Chagas disease pathogenesis remain incompletely elucidated. The aim of this study was to explore cytokine profiles and their possible association to the infecting DTU and the pathogenesis of Chagas disease.109 sero-positive T. cruzi patients and 21 negative controls from Bolivia and Colombia, were included. Flow cytometry assays for 13 cytokines were conducted on human sera. Patients were divided into two groups: in one we compared the quantification of cytokines between patients with and without chronic cardiomyopathy; in second group we compared the levels of cytokines and the genetic variability of T. cruzi.Significant difference in anti-inflammatory and pro-inflammatory cytokines profiles was observed between the two groups cardiac and non-cardiac. Moreover, serum levels of IFN-γ, IL-12, IL-22 and IL-10 presented an association with the genetic variability of T.cruzi, with significant differences in TcI and mixed infections TcI/TcII.Expression of anti-inflammatory and pro-inflammatory cytokines may play a relevant role in determining the clinical presentation of chronic patients with Chagas disease and suggests the occurrence of specific immune responses, probably associated to different T. cruzi DTUs.

  19. Cytokine profiling in Chagas disease: towards understanding the association with infecting Trypanosoma cruzi discrete typing units (a BENEFIT TRIAL sub-study).

    Science.gov (United States)

    Poveda, Cristina; Fresno, Manuel; Gironès, Núria; Martins-Filho, Olindo A; Ramírez, Juan David; Santi-Rocca, Julien; Marin-Neto, José A; Morillo, Carlos A; Rosas, Fernando; Guhl, Felipe

    2014-01-01

    Chagas disease caused by the protozoan Trypanosoma cruzi is an important public health problem in Latin America. The immunological mechanisms involved in Chagas disease pathogenesis remain incompletely elucidated. The aim of this study was to explore cytokine profiles and their possible association to the infecting DTU and the pathogenesis of Chagas disease. 109 sero-positive T. cruzi patients and 21 negative controls from Bolivia and Colombia, were included. Flow cytometry assays for 13 cytokines were conducted on human sera. Patients were divided into two groups: in one we compared the quantification of cytokines between patients with and without chronic cardiomyopathy; in second group we compared the levels of cytokines and the genetic variability of T. cruzi. Significant difference in anti-inflammatory and pro-inflammatory cytokines profiles was observed between the two groups cardiac and non-cardiac. Moreover, serum levels of IFN-γ, IL-12, IL-22 and IL-10 presented an association with the genetic variability of T.cruzi, with significant differences in TcI and mixed infections TcI/TcII. Expression of anti-inflammatory and pro-inflammatory cytokines may play a relevant role in determining the clinical presentation of chronic patients with Chagas disease and suggests the occurrence of specific immune responses, probably associated to different T. cruzi DTUs.

  20. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  1. Mast cell-nerve interaction in the colon of Trypanosoma cruzi-infected individuals with chagasic megacolon.

    Science.gov (United States)

    Martins, Patrícia Rocha; Nascimento, Rodolfo Duarte; Dos Santos, Aline Tomaz; de Oliveira, Enio Chaves; Martinelli, Patricia Massara; d'Avila Reis, Débora

    2018-04-01

    Chagas disease is an infection caused by the parasite Trypanosoma cruzi that affects millions of people worldwide and is endemic in Latin America. Megacolon is the most frequent complication of the digestive chronic form and happens due to lesions of the enteric nervous system. The neuronal lesions seem to initiate in the acute phase and persist during the chronic phase, albeit the mechanisms involved in this process are still debated. Among the cells of the immune system possibly involved in this pathological process is the mast cell (MC) due to its well-known role in the bi-directional communication between the immune and nervous systems. Using ultrastructural analysis, we found an increased number of degranulated MCs in close proximity to nerve fibers in infected patients when compared with uninfected controls. We also immunostained MCs for the two pro-inflammatory molecules tryptase and chymase, the first being also important in neuronal death. The number of MCs immunostained for tryptase or chymase was increased in patients with megacolon, whereas increased tryptase staining was additionally observed in patients without megacolon. Moreover, we detected the expression of the tryptase receptor PAR2 in neurons of the enteric nervous system, which correlated to the tryptase staining results. Altogether, the data presented herein point to the participation of MCs on the denervation process that occurs in the development of T. cruzi-induced megacolon.

  2. A comparative study of Trypanosoma cruzi infection in sylvatic mammals from a protected and a disturbed area in the Argentine Chaco.

    Science.gov (United States)

    Orozco, M M; Enriquez, G F; Cardinal, M V; Piccinali, R V; Gürtler, R E

    2016-03-01

    Understanding the complex epidemiology of Trypanosoma cruzi transmission cycles requires comparative studies in widely different environments. We assessed the occurrence of T. cruzi infection in sylvatic mammals, their infectiousness to the vector, and parasite genotypes in a protected area of the Argentine Chaco, and compared them with information obtained similarly in a nearby disturbed area. A total of 278 mammals from >23 species in the protected area were diagnosed for T. cruzi infection using xenodiagnosis, kDNA-PCR and nuclear satellite DNA-PCR (SAT) from blood samples. The relative abundance and species composition differed substantially between areas. Didelphis albiventris opossums were less abundant in the protected area; had a significantly lower body mass index, and a stage structure biased toward earlier stages. The capture of armadillos was lower in the protected area. The composite prevalence of T. cruzi infection across host species was significantly lower in the protected area (11.1%) than in the disturbed area (22.1%), and heterogeneous across species groups. The prevalence of infection in D. albiventris and Thylamys pusilla opossums was significantly lower in the protected area (nil for D. albiventris), whereas infection in sigmodontine rodents was three times higher in the protected area (17.5 versus 5.7%). Parasite isolates from the two xenodiagnosis-positive mammals (1 Dasypus novemcinctus and 1 Conepatus chinga) were typed as TcIII; both specimens were highly infectious to Triatoma infestans. Fat-tailed opossums, bats and rodents were kDNA-PCR-positive and xenodiagnosis-negative. Desmodus rotundus and Myotis bats were found infected with T. cruzi for the first time in the Gran Chaco. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Trypanosoma cruzi Lineages Detected in Congenitally Infected Infants and Triatoma infestans from the Same Disease-Endemic Region under Entomologic Surveillance in Paraguay

    Science.gov (United States)

    del Puerto, Florencia; Sánchez, Zunilda; Nara, Eva; Meza, Graciela; Paredes, Berta; Ferreira, Elizabeth; Russomando, Graciela

    2010-01-01

    Trypanosoma cruzi II is associated with Chagas disease in the southern part of South America. We analyzed T. cruzi variants in field-collected triatomines and congenitally infected infants living in the same disease-endemic region in Paraguay. Results of polymerase chain reactions for T. cruzi kinetoplast DNA and satellite DNA were positive in 83 triatomine feces samples and 58 infant blood samples. However, lineages were detected in 33 and 38 samples, respectively. Trypanosoma cruzi genotypes were determined in 56 (97%) blood samples after hybridization by using specific probes. The Tc I genotype was not detected. The prevalent sublineage was Tc IId in triatomines (27 of 33) and infant blood (36 of 58) as assessed by amplification of the 24Sα ribosomal RNA and the mini-exon region genes. The Tc IIc genotype was detected in 20 infant blood samples and in 1 triatomine. This study shows T. cruzi II is the predominant lineage circulating in triatomines and humans in endemic areas of eastern region of Paraguay. PMID:20207861

  4. Trypanosoma cruzi lineages detected in congenitally infected infants and Triatoma infestans from the same disease-endemic region under entomologic surveillance in Paraguay.

    Science.gov (United States)

    del Puerto, Florencia; Sánchez, Zunilda; Nara, Eva; Meza, Graciela; Paredes, Berta; Ferreira, Elizabeth; Russomando, Graciela

    2010-03-01

    Trypanosoma cruzi II is associated with Chagas disease in the southern part of South America. We analyzed T. cruzi variants in field-collected triatomines and congenitally infected infants living in the same disease-endemic region in Paraguay. Results of polymerase chain reactions for T. cruzi kinetoplast DNA and satellite DNA were positive in 83 triatomine feces samples and 58 infant blood samples. However, lineages were detected in 33 and 38 samples, respectively. Trypanosoma cruzi genotypes were determined in 56 (97%) blood samples after hybridization by using specific probes. The Tc I genotype was not detected. The prevalent sublineage was Tc IId in triatomines (27 of 33) and infant blood (36 of 58) as assessed by amplification of the 24Salpha ribosomal RNA and the mini-exon region genes. The Tc IIc genotype was detected in 20 infant blood samples and in 1 triatomine. This study shows T. cruzi II is the predominant lineage circulating in triatomines and humans in endemic areas of eastern region of Paraguay.

  5. Electrocardiographic findings in Mexican chagasic subjects living in high and low endemic regions of Trypanosoma cruzi infection

    Directory of Open Access Journals (Sweden)

    Francisca Sosa-Jurado

    2003-07-01

    Full Text Available In México the first human chronic chagasic case was recognized in 1940. In spite of an increasing number of cases detected since that time, Chagas disease in México has been poorly documented. In the present work we studied 617 volunteers subjects living in high and low endemic regions of Trypanosoma cruzi infection with seroprevalence of 22% and 4% respectively. Hemoculture performed in those seropositive subjects failed to demonstrate circulating parasites, however polymerase chain reaction identified up to 60% of them as positives. A higher level of anti-T. cruzi antibodies was observed in seropositive residents in high endemic region, in spite of similar parasite persistence (p < 0.05. On standard 12 leads electrocardiogram (ECG 20% to 22% seropositive individuals from either region showed right bundle branch block or ventricular extrasystoles which were more prevalent in seropositive than in seronegative individuals (p < 0.05. In conclusion, the frequency or type of ECG abnormality was influenced by serologic status but not by endemicity or parasite persistence. Furthermore, Mexican indeterminate patients have a similar ECG pattern to those reported in South America.

  6. Action of the medicine Canova® on peritoneal resident macrophages infected with Trypanosoma cruzi = Ação do medicamento Canova® em macrófagos peritoniais residentes infectados por Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Vanessa Tagawa Cardoso de Oliveira

    2008-01-01

    Full Text Available Approximately 20 million of people are chronically infected withTrypanosoma cruzi in Latin America. The present work investigated the action of the homeopathic medicine Canova® on in vitro experimental infections with T. cruzi Y strain, using Swiss mice resident peritoneal macrophages. Our results demonstrated that Canova®induced a decrease in the production of H2O2 and TNF-a at 20 and 40% concentrations when compared to the control RPMI. However, when compared with this medicine excipient, a significant decrease in these mediators was observed with Canova® at 40% concentration only. The production of NO and phagocytic activity were not affected. TNF-a inhibits T. cruzi replication in peritoneal macrophages in vitro, becoming an important agent of infection control by this parasite. Within this context, Canova®, unlike what has been reported with other infections, would function as a stimulator of the infection, since it inhibited the production of TNF-α by peritoneal resident macrophages in vitro. Further studies should be carried out with elicited macrophages, in order to confirm the inhibitoryactivity of Canova® on the production of TNF-α and other mediators in macrophages infected by T. cruzi.Aproximadamente 20 milhões de pessoas são cronicamente infectadas pelo Trypanosoma cruzi na América Latina. O presente trabalhoinvestigou a ação do medicamento homeopático Canova® em infecções experimentais “in vitro” com Trypanosoma cruzi, cepa Y, usando macrófagos residentes peritoniais de camundongos Swiss. Os resultados indicaram que Canova® induz a diminuição significativa da produção de H2O2 e TNF-α em concentrações de 20 e 40%, quando comparado com ocontrole RPMI. Quando comparado com o excipiente do medicamento, observou-se diminuição na concentração destes mediadores apenas na concentração de 40%. A produção de NO e a atividade fagocítica não foram afetadas. TNF-α inibe a replicação do protozoário em

  7. Aspectos nutricionais associados à infecção crônica pelo Trypanosoma cruzi (Chagas 1909 entre idosos: Projeto Bambuí Aspectos nutricionales asociados a la infección crónica por el Trypanosoma cruzi (Chagas 1909 entre ancianos: Proyecto Bambuí Nutritional aspects associated with chronic Trypanosoma cruzi (Chagas 1909 infection among older adults: Bambuí Project

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Lima-Costa

    2013-06-01

    Full Text Available O objetivo do estudo foi verificar os aspectos nutricionais associados à infecção crônica pelo Trypanosoma cruzi entre os participantes da linha de base da coorte de idosos de Bambuí, Minas Gerais, Brasil. A análise incluiu 84,9% (1.479 de todos os residentes com 60 anos ou mais na cidade em 1997. A infecção pelo Tr. cruzi foi avaliada por três testes sorológicos e o perfil nutricional foi caracterizado por variáveis antropométricas e bioquímicas. As associações foram avaliadas pelas razões de prevalência e intervalos de 95% de confiança, utilizando a regressão de Poisson robusta e ajustando por potenciais fatores de confusão. A infecção foi observada em 38,1% dos idosos. Todas as variáveis antropométricas apresentaram associação significativa com a infecção, evidenciando menores valores entre os idosos com sorologia positiva. As variáveis bioquímicas não foram associadas ao evento estudado. Os resultados evidenciaram a concomitância da doença de Chagas crônica e pior estado nutricional nessa população, reforçando a importância da avaliação nutricional entre idosos com infecção crônica pelo Tr. cruzi.El objetivo del estudio fue verificar los aspectos nutricionales asociados a la infección crónica por el Trypanosoma cruzi entre los participantes de la línea de base de una cohorte de ancianos de Bambuí, Minas Gerais, Brasil. El análisis incluyó al 84,9% (1.479 de todos los residentes con 60 años o más en la ciudad en 1997. La infección por el Tr. cruzi fue evaluada por tres testes serológicos y el perfil nutricional se caracterizó por variables antropométricas y bioquímicas. Las asociaciones se evaluaron por las razones de prevalencia e intervalos de un 95% de confianza, utilizando la regresión de Poisson robusta y ajustada por potenciales factores de confusión. La infección se observó en un 38,1% de los ancianos. Todas las variables antropométricas presentaron una asociaci

  8. Response pattern's of immunoglobulins evaluation in different lineages of mice infected with T. cruzi; Avaliacao do padrao de resposta de imunoglobulinas em diferentes linhagens de camundongos frente a infeccao por T.cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Andreia dos Santos

    2006-07-01

    The present work has employed different mice lineages (A/J, C57BL/6, B6AF1, BXA1 and BXA2) that were challenged with different doses of T. cruzi. The objective was to evaluate the pattern of immunoglobulins response presented by resistant and susceptible mice to T. cruzi as well as the lineages developed from the matting between them. So that evaluation was done by using lineages serums' sample, analyzed by ELISA's method. In agreement with the results observed all the lineages presented higher response to IgG2a and IgG2b, if compared with the titles to IgG1. IgG1 immunoglobulins involve a type Th2 pattern response which expressed allergic immunological responses, while IgG2 involves a pattern response Th1 that expresses cellular immunological response. The different lineages used in this research also presented different immunological response pattern by the infection with T. cruzi. Mice of the lineage C57BL/6 are resistant to the infection, while the animals of the lineage A/J are susceptible. The animals of the lineage B6AF1 are more resistant to the infection than their original parental C57BL/6. The immunological response developed by hybrid mice present traces of both susceptible and resistant parental A/J and C57BL/6, respectively. The animals of the lineage BXA1 can be considered resistant to the infection, but they don't present the same control as that presented by those of the lineages B6AF1 and C57BL/6. The animals of the lineage BXA2 can be considered susceptible to the infection, but they can control it for a long period, surviving like this, longer than the animals of the lineage A/J. In addition it was observed that the IgG2b immunoglobulins are very important to the resistance of mice to T. cruzi infection. (author)

  9. Response pattern's of immunoglobulins evaluation in different lineages of mice infected with T. cruzi; Avaliacao do padrao de resposta de imunoglobulinas em diferentes linhagens de camundongos frente a infeccao por T.cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Andreia dos Santos

    2006-07-01

    The present work has employed different mice lineages (A/J, C57BL/6, B6AF1, BXA1 and BXA2) that were challenged with different doses of T. cruzi. The objective was to evaluate the pattern of immunoglobulins response presented by resistant and susceptible mice to T. cruzi as well as the lineages developed from the matting between them. So that evaluation was done by using lineages serums' sample, analyzed by ELISA's method. In agreement with the results observed all the lineages presented higher response to IgG2a and IgG2b, if compared with the titles to IgG1. IgG1 immunoglobulins involve a type Th2 pattern response which expressed allergic immunological responses, while IgG2 involves a pattern response Th1 that expresses cellular immunological response. The different lineages used in this research also presented different immunological response pattern by the infection with T. cruzi. Mice of the lineage C57BL/6 are resistant to the infection, while the animals of the lineage A/J are susceptible. The animals of the lineage B6AF1 are more resistant to the infection than their original parental C57BL/6. The immunological response developed by hybrid mice present traces of both susceptible and resistant parental A/J and C57BL/6, respectively. The animals of the lineage BXA1 can be considered resistant to the infection, but they don't present the same control as that presented by those of the lineages B6AF1 and C57BL/6. The animals of the lineage BXA2 can be considered susceptible to the infection, but they can control it for a long period, surviving like this, longer than the animals of the lineage A/J. In addition it was observed that the IgG2b immunoglobulins are very important to the resistance of mice to T. cruzi infection. (author)

  10. Increased of the hepatocytes and splenocytes apoptosis accompanies clinical improvement and higher survival in mice infected with Trypanosoma cruzi and treated with highly diluted Lycopodium clavatum.

    Science.gov (United States)

    Falkowski-Temporini, Gislaine Janaina; Lopes, Carina Ribeiro; Massini, Paula Fernanda; Brustolin, Camila Fernanda; Ferraz, Fabiana Nabarro; Sandri, Patricia Flora; Hernandes, Luzmarina; Aleixo, Denise Lessa; Barion, Terezinha Fátima; Esper, Luiz Gilson; de Araújo, Silvana Marques

    2017-09-01

    Recent evidence includes apoptosis as a defense against Trypanosoma cruzi infection, which promotes an immune response in the host induced by T cells, type 1, 2 and 17. Currently, there is no medicine completely preventing the progression of this disease. We investigated the immunological and apoptotic effects, morbidity and survival of mice infected with T. cruzi and treated with dynamized homeopathic compounds 13c: Kalium causticum (GCaus), Conium maculatum, (GCon), Lycopodium clavatum (GLy) and 7% alcohol solution (control, vehicle compounds, GCI). There was significant difference in the increase of apoptosis in the treated groups, compared with GCI, which might indicate action of the compounds in these cells. Infected animals treated with Lycopodium clavatum presented better performance compared with other groups. GLy showed a higher amount of hepatocytes and splenocytes undergoing apoptosis, higher number of apoptotic bodies in the liver, predominance of Th1 response, increased TNF-α and decreased IL-6, higher survival, lower morbidity, higher water consumption, body temperature, tendency to higher feed intake and weight gain compared with GCI. Conium maculatum had worse results with increased Th2 response with increased IL-4, worsening of the infection with early mortality of the animals. Together, these data suggest that highly diluted medicines modulate the immune response and apoptosis, affecting the morbidity of animals infected with a highly virulent strain of T. cruzi, being able to minimize the course of infection, providing more alternative approaches in the treatment of Chagas disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Presence of Trypanosoma cruzi in tissues of experimentally infected Wistar rats and their fetuses

    OpenAIRE

    Alarcón, Maritza; Lugo de Yarbuh, Ana; Moreno, Elio A; Payares, Gilberto; Araujo, Sonia; Colmenares, Melisa

    2006-01-01

    Este estudio fue realizado con un grupo de ratas juveniles hembras (Rattus norvegicus) cepa Wistar con 20 días de nacidas y 250 grs. de peso. Cada rata fue inoculada inyectándole por vía intraperitoneal 0.1 mL de la suspensión sanguínea con 1x105 tripomastigotes sanguícolas de Trypanosoma cruzi (cepa I/PAS/VE/00/PLANALTO). Los parásitos fueron aislados de Panstrongylus geniculatus, naturalmente infectado y capturado en un área urbana del valle de Caracas, Venezuela y mantenidos en ratones NMR...

  12. Morphological aspects of the myocarditis and myositis in Calomys callosus experimentally infected with Trypanosoma cruzi: fibrogenesis and spontaneous regression of fibrosis

    Directory of Open Access Journals (Sweden)

    Sonia G. Andrade

    1994-09-01

    Full Text Available Calomys callosus a wild rodent, is a natural host of Trypanosoma cruzi. Twelve C. callosus were infected with 10(5 trypomastigotes of the F strain (a myotropic strain of T. cruzi. Parasitemia decreased on the 21 st day becoming negative around the 40th day of infection. All animals survived but had positive parasitological tests, until the end of the experiment. The infected animals developed severe inflammation in the myocardium and skeletal muscle. This process was pronounced from the 26 th to the 30th day and gradually subsided from the 50 th day becoming absent or residual on the 64 th day after infection. Collagen was identified by the picro Sirius red method. Fibrogenesis developed early, but regression of fibrosis occurred between the 50th and 64th day. Ultrastructural study disclosed a predominance of macrophages and fibroblasts in the inflammatory infiltrates, with small numbers of lymphocytes. Macrophages had active phagocytosis and showed points of contact with altered muscle cells. Different degrees of matrix expansion were present, with granular and fibrilar deposits and collagen bundles. These alterations subsided by the 64th days. Macrophages seem to be the main immune effector cell in the C. callosus model of infection with T. cruzi. The mechanisms involved in the rapid fibrogenesis and its regression deserve further investigation.

  13. Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Carvalho TMU

    1999-01-01

    Full Text Available Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV. In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and sialic acid residues and then allowed the labeled cells to interact with the parasites. The interaction process was interrupted after 1 hr at 37ºC and the distribution of the probes analyzed by confocal laser scanning microscopy. During attachment of the parasites to the macrophage surface an intense labeling of the attachment regions was observed. Subsequently labeling of the membrane lining the parasitophorous vacuole containing epimastigote and trypomastigote forms was seen. Labeling was not uniform, with regions of intense and light or no labeling. The results obtained show that host cell membrane lipids, proteins and sialoglycoconjugates contribute to the formation of the membrane lining the PV containing epimastigote and trypomastigote T. cruzi forms. Lysosomes of the host cell may participate in the process of PV membrane formation.

  14. Macrophage activation and histopathological findings in Calomys callosus and Swiss mice infected with several strains of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Monamaris Marques Borges

    1992-12-01

    Full Text Available Peritoneal macrophage activation as measured by H2O2 release and histopathology was compared between Swiss mice and Calomys callosus, a wild rodent, reservoir of Trypanosoma cruzi, during the course of infection with four strains of this parasite. In mice F and Y strain infections result in high parasitemia and mortality while with silvatic strains Costalimai and M226 parasitemia is sub-patent, with very low mortality. H2O2 release peaked at 33,6 and 59 nM/2 x 10(elevado a sexta potência cells for strains Y and F, respectively, 48 and 50 nM/2 x 10 (elevado a sexta potência for strains Costalimai and M226, at different days after infection. Histopathological findings of myositis, myocarditis, necrotizing artheritis and abscence of macrophage parasitism were foud for strains F and Costalimai. Y strain infection presented moderate myocarditis and myositis, with parasites multiplying within macrophages. In C. callosus all four strains resulted in patent parasitemia wich was eventually overcome, with scarce mortality. H2O2 release for strains Y or F was comparable to that of mice-peaks of 27 and 53 nM/2 x 10 (elevado a sexta potência cells, with lower values for strains Costalimai and M226 - 16.5 and 4.6 nM/2 x 10(elevado a sexta potênciacells, respectively. Histopathological lesions with Y and F strain injected animals were comparable to those of mice at the onset of infections; they subsided completely at the later stages with Y strain and partially with F strain infected C. callosus. In Costalimai infected C. callosus practically no histopathological alterations were observed.

  15. Nitric oxide synthase and oxidative-nitrosative stress play a key role in placental infection by Trypanosoma cruzi.

    Science.gov (United States)

    Triquell, María Fernanda; Díaz-Luján, Cintia; Romanini, María Cristina; Ramirez, Juan Carlos; Paglini-Oliva, Patricia; Schijman, Alejandro Gabriel; Fretes, Ricardo Emilio

    2018-03-25

    The innate immune response of the placenta may participate in the congenital transmission of Chagas disease through releasing reactive oxygen and nitrogen intermediates. Placental explants were cultured with 1 × 10 6 and 1 × 10 5 trypomastigotes of Tulahuen and Lucky strains and controls without parasites, and with the addition of nitric oxide synthase inhibitor Nω-Nitro-l-arginine methyl ester (l-NAME) and N-acetyl cysteine (NAC) as the reactive oxygen species (ROS) scavenger. Detachment of the syncytiotrophoblast (STB) was examined by histological analysis, and the nitric oxide synthase, endothelial (eNOS), and nitrotyrosine expressions were analyzed by immunohistochemistry, as well as the human chorionic gonadotrophin (hCG) levels in the culture supernatant through ELISA assays. Parasite load with qPCR using Taqman primers was quantified. The higher number of T. cruzi (10 6 ) increased placental infection, eNOS expression, nitrosative stress, and STB detachment, with the placental barrier being injured by oxidative stress. The higher number of parasites caused deleterious consequences to the placental barrier, and the inhibitors (l-NAME and NAC) prevented the damage caused by trypomastigotes in placental villi but not that of the infection. Moreover, trophoblast eNOS played a key role in placental infection with the highest inoculum of Lucky, demonstrating the importance of the enzyme and nitrosative-oxidative stress in Chagas congenital transmission. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Neuronal counting and parasympathetic dysfunction in the hearts of chronically Trypanosoma cruzi - infected rats Contagem neuronal e disfunção cardíaca parassimpática em ratos cronicamente infectados pelo Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    E. Chapadeiro

    1991-10-01

    Full Text Available Ten male Wistar rats, chronically infected with Colombian, São Felipe (12SF and Y strains of Trypanosoma cruzi and ten non-infected control animals were submitted to the bradycardia responsiveness test, an assessment of heart parasympathetic function, after phenylephrine injection. Six chagasic animals showed heart parasympathetic dysfuntion characterized by reduction in the index of bradycardia baroreflex responsiveness, as compared with the control group. Microscopic examination of the atrial heart ganglia of chagasic rats showed ganglionitis, but no statiscally significant reduction in the number of neurons.Dez ratos machos Wistar cronicamente infectados pelas cepas Colombiana, São Felipe (12SF, e Y do Trypanosoma cruzi, foram submetidos, após 8 meses de infecção, juntamente com dez animais controles, ao teste da resposta bradicárdica barorreflexa pela injeção endovenosa de fenilefrina. Seis ratos chagásicos exibiram disfunção cardíaca parassimpática, caracterizada pela depressão do índice da resposta bradicárdica barorreflexa. Embora o estudo histológico dos corações chagásicos mostrasse lesões dos gânglios atriais, a contagem dos neurônios em cortes seriados, não apresentou redução numérica significativa dos mesmos.

  17. Extracellular Trap Formation in Response to Trypanosoma cruzi Infection in Granulocytes Isolated From Dogs and Common Opossums, Natural Reservoir Hosts

    Directory of Open Access Journals (Sweden)

    Nicole de Buhr

    2018-05-01

    Full Text Available Granulocytes mediate the first line of defense against infectious diseases in humans as well as animals and they are well known as multitasking cells. They can mediate antimicrobial activity by different strategies depending on the pathogen they encounter. Besides phagocytosis, a key strategy against extracellular pathogens is the formation of extracellular traps (ETs. Those ETs mainly consist of DNA decorated with antimicrobial components and mediate entrapment of various pathogens. In the last years, various studies described ET formation as response to bacteria, viruses and parasites e.g., Trypanosma (T. cruzi. Nevertheless, it is not fully understood, if ET formation helps the immune system to eliminate intracellular parasites. The goal of this study was to analyze ET formation in response to the intracellular parasite Trypanosma (T. cruzi by granulocytes derived from animals that serve as natural reservoir. Thus, we investigated the ET formation in two T. cruzi reservoirs, namely dogs as domestic animal and common opossums (Didelphis marsupialis as wild animal. Granulocytes were harvested from fresh blood by density gradient centrifugation and afterwards incubated with T. cruzi. We conducted the analysis by determination of free DNA and immunofluorescence microscopy. Using both methods, we show that T. cruzi efficiently induces ET formation in granulocytes derived from common opossum as well as dog blood. Most ETs from both animal species as response to T. cruzi are decorated with the protease neutrophil elastase. Since T. cruzi is well known to circulate over years in both analyzed animals as reservoirs, it may be assumed that T. cruzi efficiently evades ET-mediated killing in those animals. Therefore, ETs may not play a major role in efficient elimination of the pathogen from the blood of dogs or common opossums as T. cruzi survives in niches of their body. The characterization of granulocytes in various animals and humans may be helpful

  18. Risk Factors Associated with Triatomines and Its Infection with Trypanosoma cruzi in Rural Communities from the Southern Region of the State of Mexico, Mexico

    Science.gov (United States)

    Medina-Torres, Imelda; Vázquez-Chagoyán, Juan C.; Rodríguez-Vivas, Roger I.; de Oca-Jiménez, Roberto Montes

    2010-01-01

    Trypanosoma cruzi prevalence in triatomines and risk factors associated to the presence of the insect were studied in 990 rural houses in the southern region of the State of Mexico, Mexico. In each house, triatomines were collected, and information related to house construction material was obtained. T. cruzi infection was diagnosed in all triatomines. A primary screening was performed using 2 × 2 contingency tables of exposure variables. All variables with P ≤ 0.20 were analyzed by logistic regression. Triatomines (N = 125) were collected from 822 houses and analyzed for T. cruzi infection. Triatoma pallidipennis (97.4%) and Triatoma dimidiata (2.6%) were identified in 52.1% of the localities and in 6.1% of the houses. Infection was found in 28.0% of triatomines, from which 28.9% were nymphs. Factors associated with triatomine infestation were flooring construction material (dirt floor: odds ratio [OR], 10.05; 95% confidence interval [CI], 5.31–18.04; P = 0.0001), house rooms (at least three rooms: OR, 2.04; 95% CI, 1.07–3.86; P = 0.028), and ceiling construction material (cardboard lamina tile: OR, 6.84; 95% CI, 1.49–31.31; P = 0.013). This study shows T. cruzi circulation in triatomines in the area of study, and because triatomines are adapted for living and reproducing in the domestic environment, there is a potential risk of Chagas disease transmission to humans. Also, we can conclude that the construction materials and house inhabitants are risk factors of triatomines infestation. PMID:20064995

  19. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection.

    Science.gov (United States)

    Abriata, Juliana Palma; Eloy, Josimar O; Riul, Thalita Bachelli; Campos, Patricia Mazureki; Baruffi, Marcelo Dias; Marchetti, Juliana Maldonado

    2017-08-01

    Despite affecting millions of people worldwide, Chagas disease is still neglected by the academia and industry and the therapeutic option available, benznidazole, presents limited efficacy and side effects. Within this context, ursolic acid may serve as an option for treatment, however has low bioavailability, which can be enhanced through the encapsulation in polymeric nanoparticles. Therefore, herein we developed ursolic acid-loaded nanoparticles with poly-ε-caprolactone by the nanoprecipitation method and characterized them for particle size, zeta potential, polydispersity, encapsulation efficiency, morphology by scanning electron microscopy and thermal behavior by differential scanning calorimetry. Results indicated that an appropriate ratio of organic phase/aqueous phase and polymer/drug is necessary to produce smaller particles, with low polydispersity, negative zeta potential and high drug encapsulation efficiency. In vitro studies indicated the safety of the formulation against fibroblast culture and its efficacy in killing T. cruzi. Very importantly, the in vivo study revealed that the ursolic acid-loaded nanoparticle is as potent as the benznidazole group to control parasitemia, which could be attributed to improved bioavailability of the encapsulated drug. Finally, the toxicity evaluation showed that while benznidazole group caused liver toxicity, the nanoparticles were safe, indicating that this formulation is promising for future evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Old Yellow Enzyme from Trypanosoma cruzi Exhibits In Vivo Prostaglandin F2α Synthase Activity and Has a Key Role in Parasite Infection and Drug Susceptibility

    Directory of Open Access Journals (Sweden)

    Florencia Díaz-Viraqué

    2018-03-01

    Full Text Available The discovery that trypanosomatids, unicellular organisms of the order Kinetoplastida, are capable of synthesizing prostaglandins raised questions about the role of these molecules during parasitic infections. Multiple studies indicate that prostaglandins could be related to the infection processes and pathogenesis in trypanosomatids. This work aimed to unveil the role of the prostaglandin F2α synthase TcOYE in the establishment of Trypanosoma cruzi infection, the causative agent of Chagas disease. This chronic disease affects several million people in Latin America causing high morbidity and mortality. Here, we propose a prokaryotic evolutionary origin for TcOYE, and then we used in vitro and in vivo experiments to show that T. cruzi prostaglandin F2α synthase plays an important role in modulating the infection process. TcOYE overexpressing parasites were less able to complete the infective cycle in cell culture infections and increased cardiac tissue parasitic load in infected mice. Additionally, parasites overexpressing the enzyme increased PGF2α synthesis from arachidonic acid. Finally, an increase in benznidazole and nifurtimox susceptibility in TcOYE overexpressing parasites showed its participation in activating the currently anti-chagasic drugs, which added to its observed ability to confer resistance to hydrogen peroxide, highlights the relevance of this enzyme in multiple events including host–parasite interaction.

  1. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Isabela Resende Pereira

    2015-01-01

    Full Text Available Chagas disease (CD, caused by the protozoan Trypanosoma cruzi, is a prototypical neglected tropical disease. Specific immunity promotes acute phase survival. Nevertheless, one-third of CD patients develop chronic chagasic cardiomyopathy (CCC associated with parasite persistence and immunological unbalance. Currently, the therapeutic management of patients only mitigates CCC symptoms. Therefore, a vaccine arises as an alternative to stimulate protective immunity and thereby prevent, delay progression and even reverse CCC. We examined this hypothesis by vaccinating mice with replication-defective human Type 5 recombinant adenoviruses (rAd carrying sequences of amastigote surface protein-2 (rAdASP2 and trans-sialidase (rAdTS T. cruzi antigens. For prophylactic vaccination, naïve C57BL/6 mice were immunized with rAdASP2+rAdTS (rAdVax using a homologous prime/boost protocol before challenge with the Colombian strain. For therapeutic vaccination, rAdVax administration was initiated at 120 days post-infection (dpi, when mice were afflicted by CCC. Mice were analyzed for electrical abnormalities, immune response and cardiac parasitism and tissue damage. Prophylactic immunization with rAdVax induced antibodies and H-2Kb-restricted cytotoxic and interferon (IFNγ-producing CD8+ T-cells, reduced acute heart parasitism and electrical abnormalities in the chronic phase. Therapeutic vaccination increased survival and reduced electrical abnormalities after the prime (analysis at 160 dpi and the boost (analysis at 180 and 230 dpi. Post-therapy mice exhibited less heart injury and electrical abnormalities compared with pre-therapy mice. rAdVax therapeutic vaccination preserved specific IFNγ-mediated immunity but reduced the response to polyclonal stimuli (anti-CD3 plus anti-CD28, CD107a+ CD8+ T-cell frequency and plasma nitric oxide (NO levels. Moreover, therapeutic rAdVax reshaped immunity in the heart tissue as reduced the number of perforin+ cells

  2. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity.

    Science.gov (United States)

    Mello, Debora B; Ramos, Isalira P; Mesquita, Fernanda C P; Brasil, Guilherme V; Rocha, Nazareth N; Takiya, Christina M; Lima, Ana Paula C A; Campos de Carvalho, Antonio C; Goldenberg, Regina S; Carvalho, Adriana B

    2015-01-01

    Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi), is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC) can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy. ASC were injected intraperitoneally at 3 days post-infection (dpi). Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV) dilation was prevented in ASC-treated mice. In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.

  3. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity.

    Directory of Open Access Journals (Sweden)

    Debora B Mello

    Full Text Available Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi, is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy.ASC were injected intraperitoneally at 3 days post-infection (dpi. Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV dilation was prevented in ASC-treated mice.In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.

  4. Early double-negative thymocyte export in Trypanosoma cruzi infection is restricted by sphingosine receptors and associated with human chagas disease.

    Directory of Open Access Journals (Sweden)

    Ailin Lepletier

    2014-10-01

    Full Text Available The protozoan parasite Trypanosoma cruzi is able to target the thymus and induce alterations of the thymic microenvironmental and lymphoid compartments. Acute infection results in severe atrophy of the organ and early release of immature thymocytes into the periphery. To date, the pathophysiological effects of thymic changes promoted by parasite-inducing premature release of thymocytes to the periphery has remained elusive. Herein, we show that sphingosine-1-phosphate (S1P, a potent mediator of T cell chemotaxis, plays a role in the exit of immature double-negative thymocytes in experimental Chagas disease. In thymuses from T. cruzi-infected mice we detected reduced transcription of the S1P kinase 1 and 2 genes related to S1P biosynthesis, together with increased transcription of the SGPL1 sphingosine-1-lyase gene, whose product inactivates S1P. These changes were associated with reduced intrathymic levels of S1P kinase activity. Interestingly, double-negative thymocytes from infected animals expressed high levels of the S1P receptor during infection, and migrated to lower levels of S1P. Moreover, during T. cruzi infection, this thymocyte subset expresses high levels of IL-17 and TNF-α cytokines upon polyclonal stimulation. In vivo treatment with the S1P receptor antagonist FTY720 resulted in recovery the numbers of double-negative thymocytes in infected thymuses to physiological levels. Finally, we showed increased numbers of double-negative T cells in the peripheral blood in severe cardiac forms of human Chagas disease.

  5. Seroprevalence of Trypanosoma cruzi Infection in Students at the Seven-Fourteen Age Range, Londrina, PR, Brazil, in 1995

    Directory of Open Access Journals (Sweden)

    Bonametti Ana Maria

    1998-01-01

    Full Text Available Seropositivity for Chagas disease was evaluated in 834 children aged between 7 and 14 from the Municipal Teaching System in the district of Londrina, State of Paraná. A seroprevalence rate of 0.1% was found through the use of an indirect immunofluorescent test and an enzyme-linked immunosorbent assay. This low rate of seroprevalence provides evidence that the vectorial transmission of Chagas disease has been eliminated in Londrina. The main reason for the elimination of vectorial transmission of Trypanosoma cruzi infection, as evaluated by serological tests, may be a remarkable change in the economic structure of the northern region of Paraná in the 1960's. At that time coffee production was almost completely replaced by soy beans, wheat and grazing in the rural areas. This change deeply affected the rural ecology and caused an exodus of the population from rural to urban areas as well as a decrease in the total number of the population of that region. The measures introduced for controlling the disease through the Program of Chagas Disease Control established by the Fundação Nacional de Saúde of the Brazilian Ministry of Health, certainly, had a positive impact on the reduction of American trypanosomiasis prevalence in the area under study. However, it does not seem that this was the most relevant factor responsible for the elimination of vectorial transmission of Chagas disease in Londrina.

  6. Expression of extracellular matrix components and their receptors in the central nervous system during experimental Toxoplasma gondii and Trypanosoma cruzi infection

    Directory of Open Access Journals (Sweden)

    Silva A.A.

    1999-01-01

    Full Text Available Alterations in extracellular matrix (ECM expression in the central nervous system (CNS usually associated with inflammatory lesions have been described in several pathological situations including neuroblastoma and demyelinating diseases. The participation of fibronectin (FN and its receptor, the VLA-4 molecule, in the migration of inflammatory cells into the CNS has been proposed. In Trypanosoma cruzi infection encephalitis occurs during the acute phase, whereas in Toxoplasma infection encephalitis is a chronic persisting process. In immunocompromised individuals such as AIDS patients, T. cruzi or T. gondii infection can lead to severe CNS damage. At the moment, there are no data available regarding the molecules involved in the entrance of inflammatory cells into the CNS during parasitic encephalitis. Herein, we characterized the expression of the ECM components FN and laminin (LN and their receptors in the CNS of T. gondii- and T. cruzi-infected mice. An increased expression of FN and LN was detected in the meninges, leptomeninges, choroid plexus and basal lamina of blood vessels. A fine FN network was observed involving T. gondii-free and T. gondii-containing inflammatory infiltrates. Moreover, perivascular spaces presenting a FN-containing filamentous network filled with a4+ and a5+ cells were observed. Although an increased expression of LN was detected in the basal lamina of blood vessels, the CNS inflammatory cells were a6-negative. Taken together, our results suggest that FN and its receptors VLA-4 and VLA-5 might be involved in the entrance, migration and retention of inflammatory cells into the CNS during parasitic infections.

  7. TNF-α is involved in the abnormal thymocyte migration during experimental Trypanosoma cruzi infection and favors the export of immature cells.

    Directory of Open Access Journals (Sweden)

    Ana Rosa Pérez

    Full Text Available Previous studies revealed a significant production of inflammatory cytokines together with severe thymic atrophy and thymocyte migratory disturbances during experimental Chagas disease. Migratory activity of thymocytes and mature T cells seem to be finely tuned by cytokines, chemokines and extracellular matrix (ECM components. Systemic TNF-α is enhanced during infection and appears to be crucial in the response against the parasite. However, it also seems to be involved in disease pathology, since it is implicated in the arrival of T cells to effector sites, including the myocardium. Herein, we analyzed the role of TNF-α in the migratory activity of thymocytes in Trypanosoma cruzi (T. cruzi acutely-infected mice. We found increased expression and deposition of TNF-α in the thymus of infected animals compared to controls, accompanied by increased co-localization of fibronectin, a cell migration-related ECM molecule, whose contents in the thymus of infected mice is also augmented. In-vivo studies showed an enhanced export of thymocytes in T. cruzi-infected mice, as ascertained by intrathymic injection of FITC alone or in combination with TNF-α. The increase of immature CD4(+CD8(+ T cells in secondary lymphoid organs was even more clear-cut when TNF-α was co-injected with FITC. Ex-vivo transmigration assays also revealed higher number of migrating cells when TNF-α was added onto fibronectin lattices, with higher input of all thymocyte subsets, including immature CD4(+CD8(+. Infected animals also exhibit enhanced levels of expression of both mRNA TNF-α receptors in the CD4(+CD8(+ subpopulation. Our findings suggest that in T. cruzi acute infection, when TNF-α is complexed with fibronectin, it favours the altered migration of thymocytes, promoting the release of mature and immature T cells to different compartments of the immune system. Conceptually, this work reinforces the notion that thymocyte migration is a multivectorial biological event

  8. Plants used in Guatemala for the treatment of protozoal infections: II. Activity of extracts and fractions of five Guatemalan plants against Trypanosoma cruzi.

    Science.gov (United States)

    Berger, I; Barrientos, A C; Cáceres, A; Hernández, M; Rastrelli, L; Passreiter, C M; Kubelka, W

    1998-09-01

    The activities of crude plant extracts of five plants popularly used in Guatemala against bacterial and protozoal infections and some of their fractions have been evaluated against the trypomastigote and epimastigote forms of Trypanosoma cruzi in vitro. The most active fraction of Neurolaena lobata has also been screened in vivo. Main in vitro activities against trypomastigotes have been observed for the hexane and ethanol extracts of N. lobata (Asteraceae). Both extracts were also active against epimastigotes, whereas all other extracts tested had no effect on epimastigotes. For the hexane extracts of Petiveria alliacea (Phytolaccaceae) and Tridax procumbens (Asteraceae) a marked inhibition of trypomastigotes has been found. Also the ethanol extracts of Byrsonima crassifolia (Malpighiaceae) leafs and Gliricidia sepium (Papilionaceae) bark showed some trypanocidal activity. Fraction 2 of the ethanol extract of N. lobata was highly active against T. cruzi as well in vitro as in vivo. The chloroforme fraction of P. alliacea showed a high inhibition of trypomastigotes in vitro. Also three fractions of the active extract of B. crassifolia inhibited T. cruzi trypomastigotes. No fraction of G. sepium bark extract showed a marked trypanocidal activity.

  9. Predominance of Th1 response, increase of megakaryocytes and Kupffer cells are related to survival in Trypanosoma cruzi infected mice treated with Lycopodium clavatum.

    Science.gov (United States)

    Falkowski-Temporini, Gislaine Janaina; Lopes, Carina Ribeiro; Massini, Paula Fernanda; Brustolin, Camila Fernanda; Sandri, Patricia Flora; Ferreira, Érika Cristina; Aleixo, Denise Lessa; Pala, Nelson Roberto; de Araújo, Silvana Marques

    2016-12-01

    We investigated the number of megakaryocytes, Kupffer cells and ratios of Th1/Th2 and Th1/Th17 cytokines in survival of mice infected with Y strain of Trypanosoma cruzi and treated with Lycopodium clavatum. In a blind, randomized and controlled assay, Swiss male mice, 8weeks-old, infected with 1400 trypomastigotes (Y strain) were divided into groups and treated with: GLy - Lycopodium clavatum dynamization13c and GCI - alcohol solution 7° GL (vehicle medicine). The treatment was offered two days before infection and on the 2nd, 4th and 6th days after infection, overnight (1mL/100mL) and ad libitum. Parameters assessed were: survival rate, number of megakaryocytes and Kupffer cells, cytokines dosage (TNF-α, IFN-γ, IL-2, IL-4, IL-6, IL-10, IL-17), Th1/Th2 and Th1/Th17 ratios. The increase in megakaryocytes, Kupffer cells, predominance of Th1 response, with increased TNF-α, IL-10, TNF-α/IL-4, TNF-α/IL-17 and decreased IL-6 IL-6/IL-4, are related to increased survival in mice infected with T. cruzi and treated with Lycopodium clavatum 13c. This result demonstrates the possibility of an alternative approach for the treatment of Chagas disease with dynamized drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection.

    Directory of Open Access Journals (Sweden)

    Martin S Llewellyn

    2009-05-01

    Full Text Available Trypanosoma cruzi is the most important parasitic infection in Latin America and is also genetically highly diverse, with at least six discrete typing units (DTUs reported: Tc I, IIa, IIb, IIc, IId, and IIe. However, the current six-genotype classification is likely to be a poor reflection of the total genetic diversity present in this undeniably ancient parasite. To determine whether epidemiologically important information is "hidden" at the sub-DTU level, we developed a 48-marker panel of polymorphic microsatellite loci to investigate population structure among 135 samples from across the geographic distribution of TcI. This DTU is the major cause of resurgent human disease in northern South America but also occurs in silvatic triatomine vectors and mammalian reservoir hosts throughout the continent. Based on a total dataset of 12,329 alleles, we demonstrate that silvatic TcI populations are extraordinarily genetically diverse, show spatial structuring on a continental scale, and have undergone recent biogeographic expansion into the southern United States of America. Conversely, the majority of human strains sampled are restricted to two distinct groups characterised by a considerable reduction in genetic diversity with respect to isolates from silvatic sources. In Venezuela, most human isolates showed little identity with known local silvatic strains, despite frequent invasion of the domestic setting by infected adult vectors. Multilocus linkage indices indicate predominantly clonal parasite propagation among all populations. However, excess homozygosity among silvatic strains and raised heterozygosity among domestic populations suggest that some level of genetic recombination cannot be ruled out. The epidemiological significance of these findings is discussed.

  11. Seroprevalence of human Trypanosoma cruzi infection in diferent geografic zones of Chiapas, Mexico Soroprevalência da infecção humana pelo Trypanosoma cruzi em diferentes regiões de Chiapas, México

    Directory of Open Access Journals (Sweden)

    Miguel Angel Mazariego-Arana

    2001-10-01

    Full Text Available A serologic survey was carried out in four different geographic zones of Chiapas, Mexico. A total of 1,333 samples were collected from residents of thirteen communities located on the Coast, Central Mountain, Lacandon Forest and a zone called Mesochiapas. One hundred and fifty one seropositive individuals (11.3% were identified. Human Trypanosoma cruzi infection was influenced by geography. In the Lacandon Forest and Central Mountains there was a higher seroprevalence 32.1 and 13.8% respectively, than on the coast (1.2%. In Mesochiapas there were no seropositive individuals among the 137 persons tested. An active transmission is probably continuing because seropositive cases (13.8% were detected in children under 10 years of age. The vector recognized on the Coast was Triatoma dimidiata while in the Lacandon Forest it was Rhodnius prolixus.Foi feito um estudo sorológico em quatro zonas geográficas do estado de Chiapas México. Foram colhidas 1333 amostras dos habitantes das 13 comunidades situadas na costa, na região central montanhosa, na floresta lacandona e na região chamada mesochiapas. Cento cinqüenta e uma pessoas (11,3% foram identificadas como soropositivas. A infecção pelo Trypanosoma cruzi teve a influência da geografia local. Na floresta lacandona nas montanhas centrais, foi encontrada uma prevalência de 32,1 e 13,8% respectivamente, mais que na costa 1,2%. Na zona de mesochiapas não foi encontrada nenhuma pessoa com sorologia positiva entre 137 estudadas. Como encontramos sorologia positiva em crianças menores de 10 anos, pensamos que exista uma transmissão ativa contínua. Na costa foi reconhecido o vetor Triatoma dimidiata e na floresta Lacandona o Rhodnius prolixus.

  12. The Prevalence of Trypanosoma cruzi, the Causal Agent of Chagas Disease, in Texas Rodent Populations.

    Science.gov (United States)

    Aleman, Adriana; Guerra, Trina; Maikis, Troy J; Milholland, Matthew T; Castro-Arellano, Ivan; Forstner, Michael R J; Hahn, Dittmar

    2017-03-01

    Rodent species were assessed as potential hosts of Trypanosoma cruzi, the etiologic agent of Chagas disease, from five sites throughout Texas in sylvan and disturbed habitats. A total of 592 rodents were captured, resulting in a wide taxonomic representation of 11 genera and 15 species. Heart samples of 543 individuals were successfully analyzed by SybrGreen-based quantitative PCR (qPCR) targeting a 166 bp fragment of satellite DNA of T. cruzi. Eight rodents representing six species from six genera and two families were infected with T. cruzi. This is the first report of T. cruzi in the pygmy mouse (Baiomys taylori) and the white-footed mouse (Peromyscus leucopus) for the USA. All infected rodents were from the southernmost site (Las Palomas Wildlife Management Area). No differences in pathogen prevalence existed between disturbed habitats (5 of 131 tested; 3.8%) and sylvan habitats (3 of 40 tested; 7.5%). Most positives (n = 6, 16% prevalence) were detected in late winter with single positives in both spring (3% prevalence) and fall (1% prevalence). Additionally, 30 Triatoma insects were collected opportunistically from sites in central Texas. Fifty percent of these insects, i.e., 13 T. gerstaeckeri (68%), and two T. lecticularia (100%) were positive for T. cruzi. Comparative sequence analyses of 18S rRNA of samples provided identical results with respect to detection of the presence or absence of T. cruzi and assigned T. cruzi from rodents collected in late winter to lineage TcI. T. cruzi from Triatoma sp. and rodents from subsequent collections in spring and fall were different, however, and could not be assigned to other lineages with certainty.

  13. Detection of Trypanosoma cruzi antibodies in multitransfused patients in Colombia

    Directory of Open Access Journals (Sweden)

    Mauricio Beltrán

    2017-09-01

    Conclusions: The results of this study showed a low frequency of T. cruzi infection in multitransfused patients, suggesting that the risk of transfusion infection in Colombia is low. Known risk factors for transfusion-related infection were not associated with the presence of anti-T. cruzi antibodies.

  14. Peritoneum from Trypanosoma cruzi-infected mice is a homing site of Syndecan-1 neg plasma cells which mainly provide non-parasite-specific antibodies.

    Science.gov (United States)

    Merino, Maria C; Montes, Carolina L; Acosta-Rodriguez, Eva V; Bermejo, Daniela A; Amezcua-Vesely, Maria C; Gruppi, Adriana

    2010-05-01

    Humoral immunity during experimental Chagas disease has been considered a double-edge sword, critical to control Trypanosoma cruzi spreading but also associated to tissue damage. Peritoneal B-1 cells have been linked to the pathogenesis of Chagas disease; however, they may also help to control the infection by providing a fast wave of antibodies. In the present work, we determined that peritoneal B-cell response to T. cruzi is characterized by a marked reduction of CD19(+) B cells due to plasma cell differentiation rather than to cell death. Both peritoneal B-2 and B-1 cells decrease after parasite infection, but with different kinetics. Thus, the reduction in B-2 cell number can be detected from day 4 postinfection while the number of B-1 cells decreases only after 15 days of infection. Differentiation of peritoneal B-1 and B-2 cells into IgM-secreting cells was triggered by parasites but not by cytokines produced by peritoneal cells. Electron microscopy studies showed that peritoneum of infected mice lodges plasma cells with typical morphology as well as atypical plasma cells named 'Mott-like cells' containing high number of cytoplasmatic Ig(+) granules. The plasma cells induced during the infection showed a phenotype that may allow their persistence in peritoneum and they may contribute to the high levels of antibodies exhibited at the chronic phase of infection. We also showed that the peritoneal B-cell response is scarcely specific for the invading pathogen and rather constitute an important source of non-parasite-specific IgM and IgG in the infected host.

  15. [Endemic level of congenital Trypanosoma cruzi infection in the areas of maternal residence and the development of congenital Chagas disease in Bolivia].

    Science.gov (United States)

    Torrico, Faustino; Alonso-Vega, Cristina; Suarez, Eduardo; Rodríguez, Patricia; Torrico, Mary-Cruz; Dramaix, Michele; Truyens, Carine; Carlier, Yves

    2005-01-01

    In Bolivia, the prevalence of infection by T. cruzi in women in fertile age can vary between 20 and 60%. The present study made in the Maternity Germin Urquidi of Cochabamba - Bolivia, it has demonstrated, that 19.9% of the mothers who go to this hospitable center to be taken care of in the childbirth, they are carrying of the infection and that 4,6% of them, they are going to transmit, by transplacentaria route, the infection to its babies. Of the 71 children born with congenital Chagas, only 47,8 % present/display some type of alteration or of development(Apgar to 1 minute low, BPN, prematuridad, pathological dismadurez) or signs (SDR, hepatomegalia, esplenomegalia, neurological signs, cardiomegalia, anasarca, petequias). When investigating the effect of the differences in the vectorial density (low, medium and high) of the zone of maternal residence, on the transmission of the infection of the mother infected to the fetus, we concluded that the rate of transmission of the congenital infection of T. cruzi is not modified by the level of endemicidad of the zone of maternal residence. By another infected new born sides whose mothers reside in zones of high endemicidad present/display, most frequently and of significant way, Apgar to 1 minute prematuridad or an association of these alterations with respiratory syndrome of distress or anasarca, when one compares them with new born of resident mothers in the zones of loss or medium endemicidad, mortality in this group is greater. These results suggest calls to account it of the mothers, in areas of high endemicidad, she is associate with a serious increase in the risk of Disease of newborn severe and mortal congenital Chagas in.

  16. infección por Trypanosoma cruzi en el estado Bolívar, vene ZU ela . I revisión Y act Uali Zación infection BY Trypanosoma cruzi in Bolivar state, vene ZU ela . revie W and U pdate

    Directory of Open Access Journals (Sweden)

    Julman R. Cermeño

    2018-05-01

    Full Text Available Chagas’ disease shows a wide distribution in almost the entire Venezuelan territory. Epidemiological, ecological, clinical and diagnostic aspects have been studied in places where this disease is prevalent. Hwever, in Bolivar state, the largest state in Venezuela, infection prevalence, clinical-epidemiologic aspects are unknown. In this review we analyze and discuss the contributions of the work done in the area of infections with Trypanosoma cruzi and perform an update.

  17. Prospects of an alternative treatment against Trypanosoma cruzi based on abietic acid derivatives show promising results in Balb/c mouse model.

    Science.gov (United States)

    Olmo, F; Guardia, J J; Marin, C; Messouri, I; Rosales, M J; Urbanová, K; Chayboun, I; Chahboun, R; Alvarez-Manzaneda, E J; Sánchez-Moreno, M

    2015-01-07

    Chagas disease, caused by the protozoa parasite Trypanosoma cruzi, is an example of extended parasitaemia with unmet medical needs. Current treatments based on old-featured benznidazole (Bz) and nifurtimox are expensive and do not fulfil the criteria of effectiveness, and a lack of toxicity devoid to modern drugs. In this work, a group of abietic acid derivatives that are chemically stable and well characterised were introduced as candidates for the treatment of Chagas disease. In vitro and in vivo assays were performed in order to test the effectiveness of these compounds. Finally, those which showed the best activity underwent additional studies in order to elucidate the possible mechanism of action. In vitro results indicated that some compounds have low toxicity (i.e. >150 μM, against Vero cell) combined with high efficacy (i.e. <20 μM) against some forms of T. cruzi. Further in vivo studies on mice models confirmed the expectations of improvements in infected mice. In vivo tests on the acute phase gave parasitaemia inhibition values higher those of Bz, and a remarkable decrease in the reactivation of parasitaemia was found in the chronic phase after immunosuppression of the mice treated with one of the compounds. The morphological alterations found in treated parasites with our derivatives confirmed extensive damage; energetic metabolism disturbances were also registered by (1)H NMR. The demonstrated in vivo activity and low toxicity, together with the use of affordable starting products and the lack of synthetic complexity, put these abietic acid derivatives in a remarkable position toward the development of an anti-Chagasic agent. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Efecto de la reinfección sobre la evolución de ratas infectadas con Trypanosoma cruzi Effect of reinfection on the evolution of rats infected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Silvia Revelli

    1990-08-01

    Full Text Available El objetivo de este trabajo fue comprobar si una de las variables medio-ambientales, la reinfección, puede modificar el comportamiento observado en un modelo de rata a nivel de parasitemia, anticuerpos séricos, manifestaciones electrocardiográficas y/o lesión miocárdica. Los grupos experimentales fueron: GI: ratas infectadas al destete con 1 x 10(6 T. cruzi; GR: igual a GI más reinfecciones cada 30 días hasta los 150 días post-infección inicial (p.i.i.; GI1 ratas de 51 días infectadas; GT: testigos. Se detectó parasitemia alta en GI y GR hasta los 20 días p.i.i. tendiendo a negativizarse al día 30. En GR no se observaron parásitos despúes del primer reinóculo, resistencia que no es debida sólo a la mayor edad del huésped pués hubo parasitemia en GI1. Los xenodiagnósticos fueron negativos en los tres grupos. Los anticuerpos séricos no se modificaron significativamente en GR respecto de GI, salvo en los anticuerpos 7S, pues los del GR presentaron títulos superiores en algunos de los días estudiados. Los ECG basales no mostraron cambios distintivos en las ratas infectadas. La prueba de ajmalina mostró una disminución de la FC independiente del tratamiento; el PR, QaT y QRS se prolongaron significativamente en todos los grupos respecto del basal (p The present study was undertaken in order to demonstrate that reinfection could modify parasitemia, serum antibodies, electrocardiographic patterns and/or myocardial lesions already observed in a rat model. Experimental groups IG: rats infected at weaning with 1 x 10(6 T. cruzi; RG: same as IG plus reinoculations each 30 days until completion on day 150; IG1: 51 day old infected rats; C: controls. A high parasitemia was detected in IG and RG until day 20 showing a tendency to become negative on day 30. No parasites were observed in RG after the first reinoculation which could not be attributed to the old age of the host since there was no parasitemia in IG1. Xenodiagnoses were

  19. Peridomiciliary colonies of Triatoma vitticeps (Stal, 1859 (Hemiptera, Reduviidae, Triatominae infected with Trypanosoma cruzi in rural areas of the state of Espírito Santo, Brazil

    Directory of Open Access Journals (Sweden)

    Claudiney Biral dos Santos

    2005-08-01

    Full Text Available In Brazil, the colonization of human dwellings by triatomines occurs in areas with native vegetation of the caatinga or cerrado types. In areas of Atlantic forest such as in the Brazilian state of Espírito Santo, there are no species adapted to live in human habitations. The few autochthonous cases of Chagas disease encountered in Espírito Santo have been attributed to adult specimens of Triatoma vitticeps that invade houses from forest remnants. In recent years, the entomology unit of the Espírito Santo State Health Secretariat has recorded nymphs infected with flagellates similar to Trypanosoma cruzi in rural localities. Entomological surveys were carried out in the residences and outbuildings in which the insects were found, and serological examinations for Chagas disease performed on the inhabitants. Four colonies were found, all associated with nests of opossums (Didelphis aurita, 111 specimens of T. vitticeps, and 159 eggs being collected. All the triatomines presented flagellates in their frass. Mice inoculated with the faeces presented trypomastigotes in the circulating blood and groups of amastigotes in the cardiac muscle fibres. Serological tests performed on the inhabitants were negative for T. cruzi. Even with the intense devastation of the forest in Espírito Santo, there are no indications of change in the sylvatic habits of T. vitticeps. Colonies of this insect associated with opossum nests would indicate an expansion of the sylvatic environment into the peridomicile.

  20. Production of cytokine and chemokines by human mononuclear cells and whole blood cells after infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Karine Rezende-Oliveira

    2012-02-01

    Full Text Available INTRODUCTION: The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system. This study aimed to analyze the levels of cytokines and chemokines synthesized by the whole blood cells (WBC and peripheral blood mononuclear cells (PBMC of individuals seronegative for Chagas disease after interaction with live T. cruzi trypomastigotes. METHODS: IL-12, IL-10, TNF-α, TGF-β, CCL-5, CCL-2, CCL-3, and CXCL-9 were measured by ELISA. Nitrite was determined by the Griess method. RESULTS: IL-10 was produced at high levels by WBC compared with PBMC, even after incubation with live trypomastigotes. Production of TNF-α by both PBMC and WBC was significantly higher after stimulation with trypomastigotes. Only PBMC produced significantly higher levels of IL-12 after parasite stimulation. Stimulation of cultures with trypomastigotes induced an increase of CXCL-9 levels produced by WBC. Nitrite levels produced by PBMC increased after the addition of parasites to the culture. CONCLUSIONS: Surface molecules of T. cruzi may induce the production of cytokines and chemokines by cells of the innate immune system through the activation of specific receptors not evaluated in this experiment. The ability to induce IL-12 and TNF-α contributes to shift the adaptive response towards a Th1 profile.

  1. Absence of CD4+ T lymphocytes, CD8+ T lymphocytes, or B lymphocytes has different effects on the efficacy of posaconazole and benznidazole in treatment of experimental acute Trypanosoma cruzi infection.

    Science.gov (United States)

    Ferraz, Marcela L; Gazzinelli, Ricardo T; Alves, Rosana O; Urbina, Julio A; Romanha, Alvaro J

    2009-01-01

    We investigated the influence of CD4(+) T lymphocytes, CD8(+) T lymphocytes, and B lymphocytes on the efficacy of posaconazole (POS) and the reference drug benznidazole (BZ) during treatment of acute Trypanosoma cruzi infection in a murine model. Wild-type mice infected with T. cruzi and treated with POS or BZ presented no parasitemia, 100% survival, and 86 to 89% cure rates, defined as the percentages of animals with negative hemocultures at the end of the observation period. CD4(+)-T-lymphocyte-knockout (KO) mice infected with T. cruzi and treated with BZ or POS controlled parasitemia during treatment, although circulating parasites reappeared after drug pressure cessation, leading to only a 6% survival rate and no cure. CD8(+)-T-lymphocyte-KO mice infected with T. cruzi and treated with POS or BZ had intermediate results, displaying discrete parasitemia after the treatment was ended, 81 and 86% survival, and cure rates of 31 and 66%, respectively. B-lymphocyte-KO mice infected with T. cruzi and treated with BZ relapsed with parasitemia 1 week after the end of treatment and had a 67% survival rate and only a 22% cure rate. In contrast, the activity of POS was much less affected in these animals, with permanent suppression of parasitemia, 100% survival, and a 71% cure rate. Our results demonstrate that abrogation of different lymphocytes' activities has distinct effects on the efficacy of POS and BZ in this experimental model, probably reflecting different parasite stages preferentially targeted by the two drugs and distinct cooperation patterns with the host immune system.

  2. Evaluation of a rapid immunochromatographic dipstick test for detection of antibodies to Trypanosoma cruzi in dogs experimentally infected with isolates obtained from opossums (Didelphis virginiana), armadillos (Dasypus novemcinctus), and dogs (Canis familiaris) from the United States.

    Science.gov (United States)

    Rosypal, Alexa C; Hill, Roderick; Lewis, Samantha; Barr, Stephen C; Valadas, Samantha; Gennari, Solange Maria; Lindsay, David S

    2011-02-01

    Dogs are reservoir hosts for Trypanosoma cruzi , the causative agent of American trypanosomiasis. A rapid immunochromatographic dipstick test (ICT) is available commercially for canine serological testing. The ICT was developed with the use of sera from South American dogs, but it is not routinely used in the United States. We evaluated the utility of the ICT in detecting anti-T. cruzi antibodies in dogs from the United States. Dogs (N  =  64) were experimentally infected with United States' isolates of T. cruzi from an opossum (Didelphis virginiana), an armadillo (Dasypus novemcinctus), and a domestic dog (Canis familiaris), and were tested after experimental infection. Sera from uninfected United States dogs (n  =  79; hemaculture negative) were used as negative controls. In a blind study, sera were tested by the ICT and compared to the indirect immunofluorescent antibody test with the use of Brazil-strain epimastigotes as antigen. The sensitivity of the ICT was 91% and the specificity was 98% in dogs experimentally infected with United States isolates. Our study indicates that the ICT could be a useful screening tool for serological surveillance of canine T. cruzi exposure in the United States.

  3. Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice.

    Science.gov (United States)

    Penas, Federico; Mirkin, Gerardo A; Vera, Marcela; Cevey, Ágata; González, Cintia D; Gómez, Marisa I; Sales, María Elena; Goren, Nora B

    2015-05-01

    Trypanosoma cruzi, the etiological agent of Chagas' disease, induces a persistent inflammatory response. Macrophages are a first line cell phenotype involved in the clearance of infection. Upon parasite uptake, these cells increase inflammatory mediators like NO, TNF-α, IL-1β and IL-6, leading to parasite killing. Although desired, inflammatory response perpetuation and exacerbation may lead to tissue damage. Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent nuclear transcription factors that, besides regulating lipid and carbohydrate metabolism, have a significant anti-inflammatory effect. This is mediated through the interaction of the receptors with their ligands. PPARγ, one of the PPAR isoforms, has been implicated in macrophage polarization from M1, the classically activated phenotype, to M2, the alternatively activated phenotype, in different models of metabolic disorders and infection. In this study, we show for the first time that, besides PPARγ, PPARα is also involved in the in vitro polarization of macrophages isolated from T. cruzi-infected mice. Polarization was evidenced by a decrease in the expression of NOS2 and proinflammatory cytokines and the increase in M2 markers like Arginase I, Ym1, mannose receptor and TGF-β. Besides, macrophage phagocytic activity was significantly enhanced, leading to increased parasite load. We suggest that modulation of the inflammatory response by both PPARs might be due, at least in part, to a change in the profile of inflammatory macrophages. The potential use of PPAR agonists as modulators of overt inflammatory response during the course of Chagas' disease deserves further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Trypanosoma cruzi infection is a potent risk factor for non-alcoholic steatohepatitis enhancing local and systemic inflammation associated with strong oxidative stress and metabolic disorders.

    Directory of Open Access Journals (Sweden)

    Luisina I Onofrio

    2015-02-01

    Full Text Available The immune mechanisms underlying experimental non-alcoholic steatohepatitis (NASH, and more interestingly, the effect of T. cruzi chronic infection on the pathogenesis of this metabolic disorder are not completely understood.We evaluated immunological parameters in male C57BL/6 wild type and TLR4 deficient mice fed with a standard, low fat diet, LFD (3% fat as control group, or a medium fat diet, MFD (14% fat in order to induce NASH, or mice infected intraperitoneally with 100 blood-derived trypomastigotes of Tulahuen strain and also fed with LFD (I+LFD or MFD (I+MFD for 24 weeks. We demonstrated that MFD by itself was able to induce NASH in WT mice and that parasitic infection induced marked metabolic changes with reduction of body weight and steatosis revealed by histological studies. The I+MFD group also improved insulin resistance, demonstrated by homeostasis model assessment of insulin resistance (HOMA-IR analysis; although parasitic infection increased the triglycerides and cholesterol plasma levels. In addition, hepatic M1 inflammatory macrophages and cytotoxic T cells showed intracellular inflammatory cytokines which were associated with high levels of IL6, IFNγ and IL17 plasmatic cytokines and CCL2 chemokine. These findings correlated with an increase in hepatic parasite load in I+MFD group demonstrated by qPCR assays. The recruitment of hepatic B lymphocytes, NK and dendritic cells was enhanced by MFD, and it was intensified by parasitic infection. These results were TLR4 signaling dependent. Flow cytometry and confocal microscopy analysis demonstrated that the reactive oxygen species and peroxinitrites produced by liver inflammatory leukocytes of MFD group were also exacerbated by parasitic infection in our NASH model.We highlight that a medium fat diet by itself is able to induce steatohepatitis. Our results also suggest a synergic effect between damage associated with molecular patterns generated during NASH and parasitic infection

  5. Enteric Neuronal Damage, Intramuscular Denervation and Smooth Muscle Phenotype Changes as Mechanisms of Chagasic Megacolon: Evidence from a Long-Term Murine Model of Trypanosoma cruzi Infection.

    Directory of Open Access Journals (Sweden)

    Camila França Campos

    Full Text Available We developed a novel murine model of long-term infection with Trypanosoma cruzi with the aim to elucidate the pathogenesis of megacolon and the associated adaptive and neuromuscular intestinal disorders. Our intent was to produce a chronic stage of the disease since the early treatment should avoid 100% mortality of untreated animals at acute phase. Treatment allowed animals to be kept infected and alive in order to develop the chronic phase of infection with low parasitism as in human disease. A group of Swiss mice was infected with the Y strain of T. cruzi. At the 11th day after infection, a sub-group was euthanized (acute-phase group and another sub-group was treated with benznidazole and euthanized 15 months after infection (chronic-phase group. Whole colon samples were harvested and used for studying the histopathology of the intestinal smooth muscle and the plasticity of the enteric nerves. In the acute phase, all animals presented inflammatory lesions associated with intense and diffuse parasitism of the muscular and submucosa layers, which were enlarged when compared with the controls. The occurrence of intense degenerative inflammatory changes and increased reticular fibers suggests inflammatory-induced necrosis of muscle cells. In the chronic phase, parasitism was insignificant; however, the architecture of Aüerbach plexuses was focally affected in the inflamed areas, and a significant decrease in the number of neurons and in the density of intramuscular nerve bundles was detected. Other changes observed included increased thickness of the colon wall, diffuse muscle cell hypertrophy, and increased collagen deposition, indicating early fibrosis in the damaged areas. Mast cell count significantly increased in the muscular layers. We propose a model for studying the long-term (15 months pathogenesis of Chagasic megacolon in mice that mimics the human disease, which persists for several years and has not been fully elucidated. We

  6. Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line.

    Directory of Open Access Journals (Sweden)

    Julio Alonso-Padilla

    2015-01-01

    Full Text Available Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, represents a very important public health problem in Latin America where it is endemic. Although mostly asymptomatic at its initial stage, after the disease becomes chronic, about a third of the infected patients progress to a potentially fatal outcome due to severe damage of heart and gut tissues. There is an urgent need for new drugs against Chagas disease since there are only two drugs available, benznidazole and nifurtimox, and both show toxic side effects and variable efficacy against the chronic stage of the disease.Genetically engineered parasitic strains are used for high throughput screening (HTS of large chemical collections in the search for new anti-parasitic compounds. These assays, although successful, are limited to reporter transgenic parasites and do not cover the wide T. cruzi genetic background. With the aim to contribute to the early drug discovery process against Chagas disease we have developed an automated image-based 384-well plate HTS assay for T. cruzi amastigote replication in a rat myoblast host cell line. An image analysis script was designed to inform on three outputs: total number of host cells, ratio of T. cruzi amastigotes per cell and percentage of infected cells, which respectively provides one host cell toxicity and two T. cruzi toxicity readouts. The assay was statistically robust (Z´ values >0.6 and was validated against a series of known anti-trypanosomatid drugs.We have established a highly reproducible, high content HTS assay for screening of chemical compounds against T. cruzi infection of myoblasts that is amenable for use with any T. cruzi strain capable of in vitro infection. Our visual assay informs on both anti-parasitic and host cell toxicity readouts in a single experiment, allowing the direct identification of compounds selectively targeted to the parasite.

  7. Usefulness of microsatellite typing in population genetic studies of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Macedo Andrea M

    2001-01-01

    Full Text Available Through microsatellite analysis of 53 monoclonal populations of Trypanosoma cruzi, we found a remarkable degree of genetic polymorphism with no single multilocus genotype being observed more than once. The microsatellite profile proved to be stable during 70 generations of the CL Brener clone in culture. The microsatellite profiling presented also high diagnostic sensitivity since DNA amplifications could be achieved with less than 100 fg DNA, corresponding to half parasite total DNA content. Based on these technical attributes the microsatellite assay turns out to be an important tool for direct typing T. cruzi in biological samples. By using this approach we were able to type T. cruzi in feces of artificially infected bugs and in single cells sorted by FACS. The microsatellites have shown to be excellent markers for T. cruzi phylogenetic reconstruction. We used maximum parsimony based on the minimum number of mutational steps to build an unrooted Wagner network, which confirms previous conclusions based on the analysis of the D7 domain of the LSU rDNA gene that T. cruzi is composed by two major groups. We also obtained evidence that strains belonging to rRNA group 2 are subdivided into two genetically distant clusters, and that one of these clusters is more related to rRNA group 1/2. These results suggest different origins for these strains.

  8. The identification of two Trypanosoma cruzi I genotypes from domestic and sylvatic transmission cycles in Colombia based on a single polymerase chain reaction amplification of the spliced-leader intergenic region

    Directory of Open Access Journals (Sweden)

    Lina Marcela Villa

    2013-11-01

    Full Text Available A single polymerase chain reaction (PCR reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruzi I to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.

  9. Performance of TcI/TcVI/TcII Chagas-Flow ATE-IgG2a for universal and genotype-specific serodiagnosis of Trypanosoma cruzi infection.

    Directory of Open Access Journals (Sweden)

    Glaucia Diniz Alessio

    2017-03-01

    Full Text Available Distinct Trypanosoma cruzi genotypes have been considered relevant for patient management and therapeutic response of Chagas disease. However, typing strategies for genotype-specific serodiagnosis of Chagas disease are still unavailable and requires standardization for practical application. In this study, an innovative TcI/TcVI/TcII Chagas Flow ATE-IgG2a technique was developed with applicability for universal and genotype-specific diagnosis of T. cruzi infection. For this purpose, the reactivity of serum samples (percentage of positive fluorescent parasites-PPFP obtained from mice chronically infected with TcI/Colombiana, TcVI/CL or TcII/Y strain as well as non-infected controls were determined using amastigote-AMA, trypomastigote-TRYPO and epimastigote-EPI in parallel batches of TcI, TcVI and TcII target antigens. Data demonstrated that "α-TcII-TRYPO/1:500, cut-off/PPFP = 20%" presented an excellent performance for universal diagnosis of T. cruzi infection (AUC = 1.0, Se and Sp = 100%. The combined set of attributes "α-TcI-TRYPO/1:4,000, cut-off/PPFP = 50%", "α-TcII-AMA/1:1,000, cut-off/PPFP = 40%" and "α-TcVI-EPI/1:1,000, cut-off/PPFP = 45%" showed good performance to segregate infections with TcI/Colombiana, TcVI/CL or TcII/Y strain. Overall, hosts infected with TcI/Colombiana and TcII/Y strains displayed opposite patterns of reactivity with "α-TcI TRYPO" and "α-TcII AMA". Hosts infected with TcVI/CL strain showed a typical interweaved distribution pattern. The method presented a good performance for genotype-specific diagnosis, with global accuracy of 69% when the population/prototype scenario include TcI, TcVI and TcII infections and 94% when comprise only TcI and TcII infections. This study also proposes a receiver operating reactivity panel, providing a feasible tool to classify serum samples from hosts infected with distinct T. cruzi genotypes, supporting the potential of this method for universal and genotype-specific diagnosis

  10. Treatment with a New Peroxisome Proliferator-Activated Receptor Gamma Agonist, Pyridinecarboxylic Acid Derivative, Increases Angiogenesis and Reduces Inflammatory Mediators in the Heart of Trypanosoma cruzi-Infected Mice

    Directory of Open Access Journals (Sweden)

    Federico Nicolás Penas

    2017-12-01

    Full Text Available Trypanosoma cruzi infection induces an intense inflammatory response in diverse host tissues. The immune response and the microvascular abnormalities associated with infection are crucial aspects in the generation of heart damage in Chagas disease. Upon parasite uptake, macrophages, which are involved in the clearance of infection, increase inflammatory mediators, leading to parasite killing. The exacerbation of the inflammatory response may lead to tissue damage. Peroxisome proliferator-activated receptor gamma (PPARγ is a ligand-dependent nuclear transcription factor that exerts important anti-inflammatory effects and is involved in improving endothelial functions and proangiogenic capacities. In this study, we evaluated the intermolecular interaction between PPARγ and a new synthetic PPARγ ligand, HP24, using virtual docking. Also, we showed that early treatment with HP24, decreases the expression of NOS2, a pro-inflammatory mediator, and stimulates proangiogenic mediators (vascular endothelial growth factor A, CD31, and Arginase I both in macrophages and in the heart of T. cruzi-infected mice. Moreover, HP24 reduces the inflammatory response, cardiac fibrosis and the levels of inflammatory cytokines (TNF-α, interleukin 6 released by macrophages of T. cruzi-infected mice. We consider that PPARγ agonists might be useful as coadjuvants of the antiparasitic treatment of Chagas disease, to delay, reverse, or preclude the onset of heart damage.

  11. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate

    Energy Technology Data Exchange (ETDEWEB)

    Senkovich, Olga; Schormann, Norbert; Chattopadhyay, Debasish; (UAB)

    2010-11-22

    antifolate-based therapeutic agents for the treatment of T. cruzi infection.

  12. Triatominae-Trypanosoma cruzi/T. rangeli: Vector-parasite interactions.

    Science.gov (United States)

    Vallejo, G A; Guhl, F; Schaub, G A

    2009-01-01

    Of the currently known 140 species in the family Reduviidae, subfamily Triatominae, those which are most important as vectors of the aetiologic agent of Chagas disease, Trypanosoma cruzi, belong to the tribes Triatomini and Rhodniini. The latter not only transmit T. cruzi but also Trypanosoma rangeli, which is considered apathogenic for the mammalian host but can be pathogenic for the vectors. Using different molecular methods, two main lineages of T. cruzi have been classified, T. cruzi I and T. cruzi II. Within T. cruzi II, five subdivisions are recognized, T. cruzi IIa-IIe, according to the variability of the ribosomal subunits 24Salpha rRNA and 18S rRNA. In T. rangeli, differences in the organization of the kinetoplast DNA separate two forms denoted T. rangeli KP1+ and KP1-, although differences in the intergenic mini-exon gene and of the small subunit rRNA (SSU rRNA) suggest four subpopulations denoted T. rangeli A, B, C and D. The interactions of these subpopulations of the trypanosomes with different species and populations of Triatominae determine the epidemiology of the human-infecting trypanosomes in Latin America. Often, specific subpopulations of the trypanosomes are transmitted by specific vectors in a particular geographic area. Studies centered on trypanosome-triatomine interaction may allow identification of co-evolutionary processes, which, in turn, could consolidate hypotheses of the evolution and the distribution of T. cruzi/T. rangeli-vectors in America, and they may help to identify the mechanisms that either facilitate or impede the transmission of the parasites in different vector species. Such mechanisms seem to involve intestinal bacteria, especially the symbionts which are needed by the triatomines to complete nymphal development and to produce eggs. Development of the symbionts is regulated by the vector. T. cruzi and T. rangeli interfere with this system and induce the production of antibacterial substances. Whereas T. cruzi is only

  13. The effectiveness of riboflavin and ultraviolet light pathogen reduction technology in eliminating Trypanosoma cruzi from leukoreduced whole blood.

    Science.gov (United States)

    Jimenez-Marco, Teresa; Cancino-Faure, Beatriz; Girona-Llobera, Enrique; Alcover, M Magdalena; Riera, Cristina; Fisa, Roser

    2017-06-01

    The parasitic Chagas disease is caused by the protozoan Trypanosoma cruzi, which is mainly transmitted by insect vectors. Other infection routes, both in endemic and in nonendemic areas, include organ and marrow transplantation, congenital transmission, and blood transfusion. Asymptomatic chronic chagasic individuals may have a low and transient parasitemia in peripheral blood and, consequently, they can unknowingly transmit the disease via blood transfusion. Riboflavin and ultraviolet (UV) light pathogen reduction is a method to reduce pathogen transfusion transmission risk based on damage to the pathogen nucleic acids. In this study, we tested the effectiveness of this technology for the elimination of T. cruzi parasites in artificially contaminated whole blood units (WBUs) and thus for decreasing the risk of T. cruzi transfusion transmission. The contaminated WBUs were leukoreduced by filtration and treated with riboflavin and UV light. The level of pathogen reduction was quantified by a real-time polymerase chain reaction (qPCR) and a real-time reverse transcription-polymerase chain reaction (RT-qPCR) as a viability assay. The RNA (cDNA) quantification of the parasites showed a more than 99% reduction of viable T. cruzi parasites after leukoreduction and a complete reduction (100%) after the riboflavin and UV light treatment. Riboflavin and UV light treatment and leukoreduction used in conjunction appears to eliminate significant amounts of viable T. cruzi in whole blood. Both strategies could complement other blood bank measures already implemented to prevent the transmission of T. cruzi via blood transfusion. © 2017 AABB.

  14. Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection.

    Science.gov (United States)

    Barbosa, Rafael Polidoro Alves; Filho, Bruno Galvão; Dos Santos, Luara Isabela; Junior, Policarpo Ademar Sales; Marques, Pedro Elias; Pereira, Rafaela Vaz Sousa; Cara, Denise Carmona; Bruña-Romero, Oscar; Rodrigues, Maurício Martins; Gazzinelli, Ricardo Tostes; Machado, Alexandre Vieira

    2013-01-01

    In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease.

  15. Infection by Trypanosoma cruzi in mammals in Yucatan, Mexico: a serological and parasitological study Infecção pelo Trypanosoma cruzi em mamíferos em Yucatan, México: estudo sorológico e parasitológico

    Directory of Open Access Journals (Sweden)

    J Zavala-Velázquez

    1996-08-01

    Full Text Available In order to determine Trypanosoma cruzi infection among mammals in Yucatan, Mexico, 372 animals, both wild and synanthropic including carnivores, marsupials and rodents were studied. Serological studies by indirect haemagglutination (IHA were carried out to detect antibodies to T. cruzi and a parasitological study was also performed (blood smear and histopathology. Of all the animals tested 18.54% were serologically positive, with a significantly higher frequency among the wild ones (33.33% compared to the synanthropic ones (17.79%. To determine T. cruzi in positive animals, blood was inoculated into a white mouse (webster type to prove myocardium colonization. The serological and parasitological positivity of these animals, as well as their behavior in the environment, taken together with the socioeconomic and cultural characteristics of the population, suggest that in Yucatan, Mexico, Canis familiaris, Didelphis marsupialis and Rattus rattus act as a link with the wild cycle.Para determinar a infecção pelo Trypanosoma cruzi em mamíferos em Yucatan, México, foram estudados 372 animais selvagens e sinantrópicos incluindo carnívoros, marsupiais e roedores. Estudos sorológicos pela hemaglutinação indireta (IHA foram realizados para detectar anticorpos contra o T. cruzi e estudos parasitológicos (esfregaços de sangue e histopatologia. De todos os animais testados 18,54% foram sorologicamente positivos com freqüência significativamente maior entre os silvestres (33,3% em comparação com os sinantrópicos (11,79%. Para determinação do T. cruzi nos animais positivos, o sangue foi inoculado em camundongos brancos (tipo Webster para provar a colonização miocárdica. Através da sua positividade sorológica e parasitológica, bem como seu comportamento no meio ambiente acompanhado pelas características sociais, econômicas e culturais da população, deduz-se que em Yucatan, México, Canis familiaris, Didelphis marsupialis e Rattus

  16. Structural Basis of the Interaction of a Trypanosoma cruzi Surface Molecule Implicated in Oral Infection with Host Cells and Gastric Mucin

    Science.gov (United States)

    Cortez, Cristian; Yoshida, Nobuko; Bahia, Diana; Sobreira, Tiago J.P.

    2012-01-01

    Host cell invasion and dissemination within the host are hallmarks of virulence for many pathogenic microorganisms. As concerns Trypanosoma cruzi, which causes Chagas disease, the insect vector-derived metacyclic trypomastigotes (MT) initiate infection by invading host cells, and later blood trypomastigotes disseminate to diverse organs and tissues. Studies with MT generated in vitro and tissue culture-derived trypomastigotes (TCT), as counterparts of insect-borne and bloodstream parasites, have implicated members of the gp85/trans-sialidase superfamily, MT gp82 and TCT Tc85-11, in cell invasion and interaction with host factors. Here we analyzed the gp82 structure/function characteristics and compared them with those previously reported for Tc85-11. One of the gp82 sequences identified as a cell binding site consisted of an α-helix, which connects the N-terminal β-propeller domain to the C-terminal β-sandwich domain where the second binding site is nested. In the gp82 structure model, both sites were exposed at the surface. Unlike gp82, the Tc85-11 cell adhesion sites are located in the N-terminal β-propeller region. The gp82 sequence corresponding to the epitope for a monoclonal antibody that inhibits MT entry into target cells was exposed on the surface, upstream and contiguous to the α-helix. Located downstream and close to the α-helix was the gp82 gastric mucin binding site, which plays a central role in oral T. cruzi infection. The sequences equivalent to Tc85-11 laminin-binding sites, which have been associated with the parasite ability to overcome extracellular matrices and basal laminae, was poorly conserved in gp82, compatible with its reduced capacity to bind laminin. Our study indicates that gp82 is structurally suited for MT to initiate infection by the oral route, whereas Tc85-11, with its affinity for laminin, would facilitate the parasite dissemination through diverse organs and tissues. PMID:22860068

  17. Dynamics of Lymphocyte Populations during Trypanosoma cruzi Infection: From Thymocyte Depletion to Differential Cell Expansion/Contraction in Peripheral Lymphoid Organs

    Directory of Open Access Journals (Sweden)

    Alexandre Morrot

    2012-01-01

    Full Text Available The comprehension of the immune responses in infectious diseases is crucial for developing novel therapeutic strategies. Here, we review current findings on the dynamics of lymphocyte subpopulations following experimental acute infection by Trypanosoma cruzi, the causative agent of Chagas disease. In the thymus, although the negative selection process of the T-cell repertoire remains operational, there is a massive thymocyte depletion and abnormal release of immature CD4+CD8+ cells to peripheral lymphoid organs, where they acquire an activated phenotype similar to activated effector or memory T cells. These cells apparently bypassed the negative selection process, and some of them are potentially autoimmune. In infected animals, an atrophy of mesenteric lymph nodes is also observed, in contrast with the lymphocyte expansion in spleen and subcutaneous lymph nodes, illustrating a complex and organ specific dynamics of lymphocyte subpopulations. Accordingly, T- and B-cell activation is seen in subcutaneous lymph nodes and spleen, but not in mesenteric lymph nodes. Lastly, although the function of peripheral CD4+CD8+ T-cell population remains to be defined in vivo, their presence may contribute to the immunopathological events found in both murine and human Chagas disease.

  18. Extraction of Trypanosoma cruzi DNA from food: a contribution to the elucidation of acute Chagas disease outbreaks.

    Science.gov (United States)

    Ferreira, Renata Trotta Barroso; Melandre, Aline Martins; Cabral, Maria Luiza; Branquinho, Maria Regina; Cardarelli-Leite, Paola

    2016-04-01

    Before 2004, the occurrence of acute Chagas disease (ACD) by oral transmission associated with food was scarcely known or investigated. Originally sporadic and circumstantial, ACD occurrences have now become frequent in the Amazon region, with recently related outbreaks spreading to several Brazilian states. These cases are associated with the consumption of açai juice by waste reservoir animals or insect vectors infected with Trypanosoma cruzi in endemic areas. Although guidelines for processing the fruit to minimize contamination through microorganisms and parasites exist, açai-based products must be assessed for quality, for which the demand for appropriate methodologies must be met. Dilutions ranging from 5 to 1,000 T. cruzi CL Brener cells were mixed with 2mL of acai juice. Four Extraction of T. cruzi DNA methods were used on the fruit, and the cetyltrimethyl ammonium bromide (CTAB) method was selected according to JRC, 2005. DNA extraction by the CTAB method yielded satisfactory results with regard to purity and concentration for use in PCR. Overall, the methods employed proved that not only extraction efficiency but also high sensitivity in amplification was important. The method for T. cruzi detection in food is a powerful tool in the epidemiological investigation of outbreaks as it turns epidemiological evidence into supporting data that serve to confirm T. cruzi infection in the foods. It also facilitates food quality control and assessment of good manufacturing practices involving acai-based products.

  19. Extraction of Trypanosoma cruzi DNA from food: a contribution to the elucidation of acute Chagas disease outbreaks

    Directory of Open Access Journals (Sweden)

    Renata Trotta Barroso Ferreira

    2016-04-01

    Full Text Available Abstract: INTRODUCTION: Before 2004, the occurrence of acute Chagas disease (ACD by oral transmission associated with food was scarcely known or investigated. Originally sporadic and circumstantial, ACD occurrences have now become frequent in the Amazon region, with recently related outbreaks spreading to several Brazilian states. These cases are associated with the consumption of açai juice by waste reservoir animals or insect vectors infected with Trypanosoma cruzi in endemic areas. Although guidelines for processing the fruit to minimize contamination through microorganisms and parasites exist, açai-based products must be assessed for quality, for which the demand for appropriate methodologies must be met. METHODS: Dilutions ranging from 5 to 1,000 T. cruzi CL Brener cells were mixed with 2mL of acai juice. Four Extraction of T. cruzi DNA methods were used on the fruit, and the cetyltrimethyl ammonium bromide (CTAB method was selected according to JRC, 2005. RESULTS: DNA extraction by the CTAB method yielded satisfactory results with regard to purity and concentration for use in PCR. Overall, the methods employed proved that not only extraction efficiency but also high sensitivity in amplification was important. CONCLUSIONS: The method for T. cruzi detection in food is a powerful tool in the epidemiological investigation of outbreaks as it turns epidemiological evidence into supporting data that serve to confirm T. cruzi infection in the foods. It also facilitates food quality control and assessment of good manufacturing practices involving acai-based products.

  20. Development of a Trypanosoma cruzi strain typing assay using MS2 peptide spectral libraries (Tc-STAMS2).

    Science.gov (United States)

    de Oliveira, Gilberto Santos; Kawahara, Rebeca; Rosa-Fernandes, Livia; Mule, Simon Ngao; Avila, Carla Cristi; Teixeira, Marta M G; Larsen, Martin R; Palmisano, Giuseppe

    2018-04-01

    Chagas disease also known as American trypanosomiasis is caused by the protozoan Trypanosoma cruzi. Over the last 30 years, Chagas disease has expanded from a neglected parasitic infection of the rural population to an urbanized chronic disease, becoming a potentially emergent global health problem. T. cruzi strains were assigned to seven genetic groups (TcI-TcVI and TcBat), named discrete typing units (DTUs), which represent a set of isolates that differ in virulence, pathogenicity and immunological features. Indeed, diverse clinical manifestations (from asymptomatic to highly severe disease) have been attempted to be related to T.cruzi genetic variability. Due to that, several DTU typing methods have been introduced. Each method has its own advantages and drawbacks such as high complexity and analysis time and all of them are based on genetic signatures. Recently, a novel method discriminated bacterial strains using a peptide identification-free, genome sequence-independent shotgun proteomics workflow. Here, we aimed to develop a Trypanosoma cruzi Strain Typing Assay using MS/MS peptide spectral libraries, named Tc-STAMS2. The Tc-STAMS2 method uses shotgun proteomics combined with spectral library search to assign and discriminate T. cruzi strains independently on the genome knowledge. The method is based on the construction of a library of MS/MS peptide spectra built using genotyped T. cruzi reference strains. For identification, the MS/MS peptide spectra of unknown T. cruzi cells are identified using the spectral matching algorithm SpectraST. The Tc-STAMS2 method allowed correct identification of all DTUs with high confidence. The method was robust towards different sample preparations, length of chromatographic gradients and fragmentation techniques. Moreover, a pilot inter-laboratory study showed the applicability to different MS platforms. This is the first study that develops a MS-based platform for T. cruzi strain typing. Indeed, the Tc-STAMS2 method

  1. Functional characterization of 8-oxoguanine DNA glycosylase of Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Carolina Furtado

    Full Text Available The oxidative lesion 8-oxoguanine (8-oxoG is removed during base excision repair by the 8-oxoguanine DNA glycosylase 1 (Ogg1. This lesion can erroneously pair with adenine, and the excision of this damaged base by Ogg1 enables the insertion of a guanine and prevents DNA mutation. In this report, we identified and characterized Ogg1 from the protozoan parasite Trypanosoma cruzi (TcOgg1, the causative agent of Chagas disease. Like most living organisms, T. cruzi is susceptible to oxidative stress, hence DNA repair is essential for its survival and improvement of infection. We verified that the TcOGG1 gene encodes an 8-oxoG DNA glycosylase by complementing an Ogg1-defective Saccharomyces cerevisiae strain. Heterologous expression of TcOGG1 reestablished the mutation frequency of the yeast mutant ogg1(-/- (CD138 to wild type levels. We also demonstrate that the overexpression of TcOGG1 increases T. cruzi sensitivity to hydrogen peroxide (H(2O(2. Analysis of DNA lesions using quantitative PCR suggests that the increased susceptibility to H(2O(2 of TcOGG1-overexpressor could be a consequence of uncoupled BER in abasic sites and/or strand breaks generated after TcOgg1 removes 8-oxoG, which are not rapidly repaired by the subsequent BER enzymes. This hypothesis is supported by the observation that TcOGG1-overexpressors have reduced levels of 8-oxoG both in the nucleus and in the parasite mitochondrion. The localization of TcOgg1 was examined in parasite transfected with a TcOgg1-GFP fusion, which confirmed that this enzyme is in both organelles. Taken together, our data indicate that T. cruzi has a functional Ogg1 ortholog that participates in nuclear and mitochondrial BER.

  2. Effect of the Plasmid-DNA Vaccination on Macroscopic and Microscopic Damage Caused by the Experimental Chronic Trypanosoma cruzi Infection in the Canine Model

    Directory of Open Access Journals (Sweden)

    Olivia Rodríguez-Morales

    2013-01-01

    Full Text Available The dog is considered the main domestic reservoir for Trypanosoma cruzi infection and a suitable experimental animal model to study the pathological changes during the course of Chagas disease (CD. Vaccine development is one of CD prevention methods to protect people at risk. Two plasmids containing genes encoding a trans-sialidase protein (TcSP and an amastigote-specific glycoprotein (TcSSP4 were used as DNA vaccines in a canine model. Splenomegaly was not found in either of the recombinant plasmid-immunized groups; however, cardiomegaly was absent in animals immunized only with the plasmid containing the TcSSP4 gene. The inflammation of subendocardial and myocardial tissues was prevented only with the immunization with TcSSP4 gene. In conclusion, the vaccination with these genes has a partial protective effect on the enlargement of splenic and cardiac tissues during the chronic CD and on microscopic hearth damage, since both plasmids prevented splenomegaly but only one avoided cardiomegaly, and the lesions in heart tissue of dog immunized with plasmid containing the TcSSP4 gene covered only subepicardial tissue.

  3. Quantitative Proteomic and Phosphoproteomic Analysis of Trypanosoma cruzi Amastigogenesis

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sebastien; Mandacaru, Samuel C

    2014-01-01

    Chagas disease is a tropical neglected disease endemic in Latin America and it is caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote and amastigote. The differentiation from infective trypomastigo......Chagas disease is a tropical neglected disease endemic in Latin America and it is caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote and amastigote. The differentiation from infective...

  4. Anti-Trypanosoma cruzi antibody detection in blood donors in the Southern Brazil

    Directory of Open Access Journals (Sweden)

    A.B. Araújo

    Full Text Available Trypanosoma cruzi, the causal agent of Chagas' Disease, is a widely spread protozoa in America. Blood transfusion is the secondly most important way of acquiring the infection. In blood banks, tests are performed to eliminate potentially infected blood. This study aimed to evaluate the positivity for T. cruzi in blood samples of donor's candidates in Southern Brazil. The study was based on a sampling containing all blood donors of Hemopel - a Pelotas City Blood Center, Rio Grande do Sul State, Brazil, from 2004 to 2005. Serological study was performed using ELISA Chagatest. Sampling containing values ± 20% cut off were evaluated using ELISA Chagatek, ELISA Alka/Adaltis, IHA Chagatest and IIF Imunocruzi. TESA-Blot was used as a confirmatory procedure in situations where blood samples showed conflicting results. From 4,482 samples collected in 2004 and 2005, the reactivity for anti-T. cruzi was 0.96% (43. Among those, 21 cases (0.47% were confirmed as positive - most of them were female, with low school level and averaging 47.2% years old. Interestingly, the blood donors are not aware of being contaminated and this fact makes it difficult for controlling the disease. Chagas' Disease was one of the main reasons for discarding blood bags through serological control in Southern Brazil. Sampling reactivity showed variation among the different techniques used for anti-T. cruzi research. In order to obtaining more secure and conclusive results, more than one diagnostic technique must be used.

  5. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    Directory of Open Access Journals (Sweden)

    Esther Bettiol

    Full Text Available The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50: 54, 190 and 23 nM, respectively. Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50 values of 2 nM (PCH6 and CX2. These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  6. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    Science.gov (United States)

    Bettiol, Esther; Samanovic, Marie; Murkin, Andrew S; Raper, Jayne; Buckner, Frederick; Rodriguez, Ana

    2009-01-01

    The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50): 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50) values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  7. Estudio de la prevalencia de la infección por Trypanosoma cruzi en zarigüeyas (Didelphis albiventris en Santiago del Estero, Argentina Study of the prevalence of infection by Trypanosoma cruzi in opossums (Didelphis albiventris in Santiago del Estero, Argentina

    Directory of Open Access Journals (Sweden)

    Nicolás J. Schweigmann

    1999-12-01

    summer. The two litters are weaned, and they leave the mother's marsupial pouch to join the population, the first (G1 at the beginning of the summer and the second (G2 at the beginning of the fall. Between 1988 and 1991 409 D. albiventris opossums were studied, and xenodiagnoses showed that 35% of them were infected with T. cruzi. Annual cycles of renewed infection were observed, with prevalences that ranged between 22% and 43%. The acquisition of the parasite occurred over the entire year, from the summer through the spring. The prevalence of infection increased with age. The G1 individuals tended to present higher prevalences than the G2 individuals, probably from being exposed to transmission for a longer period of time. In the first two (younger age categories for the opossums, G2 individuals showed higher prevalences than did the G1 individuals. This indicates a significant increase in transmission intensity during the fall. Opossums should be regarded as a potential source of T. cruzi entry to the domestic transmission cycle.

  8. TcI, TcII and TcVI Trypanosoma cruzi samples from Chagas disease patients with distinct clinical forms and critical analysis of in vitro and in vivo behavior, response to treatment and infection evolution in murine model.

    Science.gov (United States)

    Oliveira, Maykon Tavares de; Branquinho, Renata Tupinambá; Alessio, Gláucia Diniz; Mello, Carlos Geraldo Campos; Nogueira-de-Paiva, Nívia Carolina; Carneiro, Cláudia Martins; Toledo, Max Jean de Ornelas; Reis, Alexandre Barbosa; Martins-Filho, Olindo Assis Martins; Lana, Marta de

    2017-03-01

    The clonal evolution of Trypanosoma cruzi sustains scientifically the hypothesis of association between parasite's genetic, biological behavior and possibly the clinical aspects of Chagas disease in patients from whom they were isolated. This study intended to characterize a range of biological properties of TcI, TcII and TcVI T. cruzi samples in order to verify the existence of these associations. Several biological features were evaluated, including in vitro epimastigote-growth, "Vero"cells infectivity and growth, along with in vivo studies of parasitemia, polymorphism of trypomastigotes, cardiac inflammation, fibrosis and response to treatment by nifurtimox during the acute and chronic murine infection. The global results showed that the in vitro essays (acellular and cellular cultures) TcII parasites showed higher values for all parameters (growth and infectivity) than TcVI, followed by TcI. In vivo TcII parasites were more virulent and originated from patients with severe disease. Two TcII isolates from patients with severe pathology were virulent in mice, while the isolate from a patient with the indeterminate form of the disease caused mild infection. The only TcVI sample, which displayed low values in all parameters evaluated, was also originated of an indeterminate case of Chagas disease. Response to nifurtimox was not associated to parasite genetic and biology, as well as to clinical aspects of human disease. Although few number of T. cruzi samples have been analyzed, a discreet correlation between parasite genetics, biological behavior in vitro and in vivo (murine model) and the clinical form of human disease from whom the samples were isolated was verified. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51.

    Directory of Open Access Journals (Sweden)

    Shamila S Gunatilleke

    Full Text Available Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority.The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51 for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar K(D values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC(50 <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC(50 of 17 nM and was trypanocidal at 40 nM.The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5, fatty acid ω-hydroxylases (CYP4, 17α-hydroxylase/17,20-lyase (CYP17 and aromatase (CYP19. Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical

  10. Household prevalence of seropositivity for Trypanosoma cruzi in three rural villages in northwest Argentina: environmental, demographic, and entomologic associations.

    Science.gov (United States)

    Gürtler, R E; Chuit, R; Cécere, M C; Castañera, M B; Cohen, J E; Segura, E L

    1998-11-01

    Environmental, demographic, and entomologic variables were analyzed by logistic multiple regression analysis for their association with the likelihood of being seropositive for Trypanosoma cruzi in three highly infested rural villages of northwest Argentina. The prevalence of seropositivity for T. cruzi, as determined by the composite results of three serologic tests, was 34% among 338 persons in 1992. The strongest positive predictors of the adjusted odds of being infected were the household number of dogs, the density of T. cruzi-infected Triatoma infestans in bedroom areas, and each person's age. Dwellers from houses with roofs made completely or partly with a grass called simbol, or which used insecticides rudimentarily and nonsystematically, had a significantly lower odds of being seropositive for T. cruzi than residents from other types of dwellings. The adjusted odds of infection also increased with the number of T. cruzi-infected dogs or cats and the presence of chickens in bedroom areas. No significant effects on the adjusted odds of infection of a community-wide deltamethrin spraying carried out in one of the villages seven years before were detected. Socioeconomic indicators, such as domiciliary area, and numbers of corrals and livestock, were inversely related to being infected. Our study identified several manageable variables suitable for control actions, most of them not examined before in univariate or multivariate analyses. Environmental management based on low-cost housing with appropriate local materials and removal of domestic animals from domiciliary areas have a crucial role to play in the control of Chagas' disease in rural areas.

  11. Cost-Effectiveness of Blood Donation Screening for Trypanosoma cruzi in Mexico

    Science.gov (United States)

    Sánchez-González, Gilberto; Figueroa-Lara, Alejandro; Elizondo-Cano, Miguel; Wilson, Leslie; Novelo-Garza, Barbara; Valiente-Banuet, Leopoldo; Ramsey, Janine M.

    2016-01-01

    An estimated 2 million inhabitants are infected with Chagas disease in Mexico, with highest prevalence coinciding with highest demographic density in the southern half of the country. After vector-borne transmission, Trypanosoma cruzi is principally transmitted to humans via blood transfusion. Despite initiation of serological screening of blood donations or donors for T. cruzi since 1990 in most Latin American countries, Mexico only finally included mandatory serological screening nationwide in official Norms in 2012. Most recent regulatory changes and segmented blood services in Mexico may affect compliance of mandatory screening guidelines. The objective of this study was to calculate the incremental cost-effectiveness ratio for total compliance of current guidelines from both Mexican primary healthcare and regular salaried worker health service institutions: the Secretary of Health and the Mexican Institute for Social Security. We developed a bi-modular model to analyze compliance using a decision tree for the most common screening algorithms for each health institution, and a Markov transition model for the natural history of illness and care. The incremental cost effectiveness ratio based on life-years gained is US$ 383 for the Secretary of Health, while the cost for an additional life-year gained is US$ 463 for the Social Security Institute. The results of the present study suggest that due to incomplete compliance of Mexico’s national legislation during 2013 and 2014, the MoH has failed to confirm 15,162 T. cruzi infections, has not prevented 2,347 avoidable infections, and has lost 333,483 life-years. Although there is a vast difference in T. cruzi prevalence between Bolivia and Mexico, Bolivia established mandatory blood screening for T.cruzi in 1996 and until 2002 detected and discarded 11,489 T. cruzi -infected blood units and prevented 2,879 potential infections with their transfusion blood screening program. In the first two years of Mexico

  12. Cost-Effectiveness of Blood Donation Screening for Trypanosoma cruzi in Mexico.

    Science.gov (United States)

    Sánchez-González, Gilberto; Figueroa-Lara, Alejandro; Elizondo-Cano, Miguel; Wilson, Leslie; Novelo-Garza, Barbara; Valiente-Banuet, Leopoldo; Ramsey, Janine M

    2016-03-01

    An estimated 2 million inhabitants are infected with Chagas disease in Mexico, with highest prevalence coinciding with highest demographic density in the southern half of the country. After vector-borne transmission, Trypanosoma cruzi is principally transmitted to humans via blood transfusion. Despite initiation of serological screening of blood donations or donors for T. cruzi since 1990 in most Latin American countries, Mexico only finally included mandatory serological screening nationwide in official Norms in 2012. Most recent regulatory changes and segmented blood services in Mexico may affect compliance of mandatory screening guidelines. The objective of this study was to calculate the incremental cost-effectiveness ratio for total compliance of current guidelines from both Mexican primary healthcare and regular salaried worker health service institutions: the Secretary of Health and the Mexican Institute for Social Security. We developed a bi-modular model to analyze compliance using a decision tree for the most common screening algorithms for each health institution, and a Markov transition model for the natural history of illness and care. The incremental cost effectiveness ratio based on life-years gained is US$ 383 for the Secretary of Health, while the cost for an additional life-year gained is US$ 463 for the Social Security Institute. The results of the present study suggest that due to incomplete compliance of Mexico's national legislation during 2013 and 2014, the MoH has failed to confirm 15,162 T. cruzi infections, has not prevented 2,347 avoidable infections, and has lost 333,483 life-years. Although there is a vast difference in T. cruzi prevalence between Bolivia and Mexico, Bolivia established mandatory blood screening for T.cruzi in 1996 and until 2002 detected and discarded 11,489 T. cruzi -infected blood units and prevented 2,879 potential infections with their transfusion blood screening program. In the first two years of Mexico's mandated

  13. Cost-Effectiveness of Blood Donation Screening for Trypanosoma cruzi in Mexico.

    Directory of Open Access Journals (Sweden)

    Gilberto Sánchez-González

    2016-03-01

    Full Text Available An estimated 2 million inhabitants are infected with Chagas disease in Mexico, with highest prevalence coinciding with highest demographic density in the southern half of the country. After vector-borne transmission, Trypanosoma cruzi is principally transmitted to humans via blood transfusion. Despite initiation of serological screening of blood donations or donors for T. cruzi since 1990 in most Latin American countries, Mexico only finally included mandatory serological screening nationwide in official Norms in 2012. Most recent regulatory changes and segmented blood services in Mexico may affect compliance of mandatory screening guidelines. The objective of this study was to calculate the incremental cost-effectiveness ratio for total compliance of current guidelines from both Mexican primary healthcare and regular salaried worker health service institutions: the Secretary of Health and the Mexican Institute for Social Security. We developed a bi-modular model to analyze compliance using a decision tree for the most common screening algorithms for each health institution, and a Markov transition model for the natural history of illness and care. The incremental cost effectiveness ratio based on life-years gained is US$ 383 for the Secretary of Health, while the cost for an additional life-year gained is US$ 463 for the Social Security Institute. The results of the present study suggest that due to incomplete compliance of Mexico's national legislation during 2013 and 2014, the MoH has failed to confirm 15,162 T. cruzi infections, has not prevented 2,347 avoidable infections, and has lost 333,483 life-years. Although there is a vast difference in T. cruzi prevalence between Bolivia and Mexico, Bolivia established mandatory blood screening for T.cruzi in 1996 and until 2002 detected and discarded 11,489 T. cruzi -infected blood units and prevented 2,879 potential infections with their transfusion blood screening program. In the first two years

  14. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Javier M. Urquiza

    2017-08-01

    Full Text Available The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV, the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis.

  15. Trypanosoma cruzi I genotypes in different geographic regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced leader genes✯

    Science.gov (United States)

    Cura, Carolina I.; Mejía-Jaramillo, Ana M.; Duffy, Tomás; Burgos, Juan M.; Rodriguero, Marcela; Cardinal, Marta V.; Kjos, Sonia; Gurgel-Gonçalves, Rodrigo; Blanchet, Denis; De Pablos, Luis M.; Tomasini, Nicolás; Silva, Alex Da; Russomando, Graciela; Cuba Cuba, Cesar A.; Aznar, Christine; Abate, Teresa; Levin, Mariano J.; Osuna, Antonio; Gürtler, Ricardo E.; Diosque, Patricio; Solari, Aldo; Triana-Chávez, Omar; Schijman, Alejandro G.

    2011-01-01

    The intergenic region of spliced-leader (SL-IR) genes from 105 Trypanosoma cruzi I (Tc I) infected biological samples, culture isolates and stocks from 11 endemic countries, from Argentina to the USA were characterised, allowing identification of 76 genotypes with 54 polymorphic sites from 123 aligned sequences. On the basis of the microsatellite motif proposed by Herrera et al. (2007) to define four haplotypes in Colombia, we could classify these genotypes into four distinct Tc I SL-IR groups, three corresponding to the former haplotypes Ia (11 genotypes), Ib (11 genotypes) and Id (35 genotypes); and one novel group, Ie (19 genotypes). Genotypes harboring the Tc Ic motif were not detected in our study. Tc Ia was associated with domestic cycles in southern and northern South America and sylvatic cycles in Central and North America. Tc Ib was found in all transmission cycles from Colombia. Tc Id was identified in all transmission cycles from Argentina and Colombia, including Chagas cardiomyopathy patients, sylvatic Brazilian samples and human cases from French Guiana, Panama and Venezuela. Tc Ie gathered five samples from domestic Triatoma infestans from northern Argentina, nine samples from wild Mepraia spinolai and Mepraia gajardoi and two chagasic patients from Chile and one from a Bolivian patient with chagasic reactivation. Mixed infections by Tc Ia + Tc Id, Tc Ia + Tc Ie and Tc Id + Tc Ie were detected in vector faeces and isolates from human and vector samples. In addition, Tc Ia and Tc Id were identified in different tissues from a heart transplanted Chagas cardiomyopathy patient with reactivation, denoting histotropism. Trypanosoma cruzi I SL-IR genotypes from parasites infecting Triatoma gerstaeckeri and Didelphis virginiana from USA, T. infestans from Paraguay, Rhodnius nasutus and Rhodnius neglectus from Brazil and M. spinolai and M. gajardoi from Chile are to our knowledge described for the first time. PMID:20670628

  16. Broad patterns in domestic vector-borne Trypanosoma cruzi transmission dynamics: synanthropic animals and vector control.

    Science.gov (United States)

    Peterson, Jennifer K; Bartsch, Sarah M; Lee, Bruce Y; Dobson, Andrew P

    2015-10-22

    Chagas disease (caused by Trypanosoma cruzi) is the most important neglected tropical disease (NTD) in Latin America, infecting an estimated 5.7 million people in the 21 countries where it is endemic. It is one of the NTDs targeted for control and elimination by the 2020 London Declaration goals, with the first goal being to interrupt intra-domiciliary vector-borne T. cruzi transmission. A key question in domestic T. cruzi transmission is the role that synanthropic animals play in T. cruzi transmission to humans. Here, we ask, (1) do synanthropic animals need to be targeted in Chagas disease prevention policies?, and (2) how does the presence of animals affect the efficacy of vector control? We developed a simple mathematical model to simulate domestic vector-borne T. cruzi transmission and to specifically examine the interaction between the presence of synanthropic animals and effects of vector control. We used the model to explore how the interactions between triatomine bugs, humans and animals impact the number and proportion of T. cruzi-infected bugs and humans. We then examined how T. cruzi dynamics change when control measures targeting vector abundance are introduced into the system. We found that the presence of synanthropic animals slows the speed of T. cruzi transmission to humans, and increases the sensitivity of T. cruzi transmission dynamics to vector control measures at comparable triatomine carrying capacities. However, T. cruzi transmission is amplified when triatomine carrying capacity increases with the abundance of syntathoropic hosts. Our results suggest that in domestic T. cruzi transmission scenarios where no vector control measures are in place, a reduction in synanthropic animals may slow T. cruzi transmission to humans, but it would not completely eliminate transmission. To reach the 2020 goal of interrupting intra-domiciliary T. cruzi transmission, it is critical to target vector populations. Additionally, where vector control measures

  17. Papel do óxido nítrico no desenvolvimento de lesões cardíacas na fase aguda da infecção experimental pelo Trypanosoma cruzi Role of nitric oxide in the development of cardiac lesions during the acute phase of experimental infection by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Cláudia Renata Bibiano Borges

    2009-04-01

    Full Text Available A doença de Chagas é causada pelo Trypanosoma cruzi e o coração é o órgão mais acometido. O óxido nítrico apresenta importante ação anti-Trypanosoma, porém, com pouca evidência de seu papel no mecanismo de lesão tecidual. O objetivo deste estudo foi analisar a contribuição do óxido nítrico no desenvolvimento da inflamação e da fibrose cardíaca na fase aguda da infecção experimental por cepas Y e Colombiana do Trypanosoma cruzi. A inflamação foi significativamente maior nos animais infectados pela cepa Colombiana, comparada com os infectados com a cepa Y, tanto nos animais C57BL/6 (3,98x1,87%; p=0,004 quanto nos animais C57BL/6 deficientes na sintase do óxido nítrico induzível (3,99x2,4%; p=0,013. O parasitismo cardíaco dos animais C57BL/6 deficientes na sintase do óxido nítrico induzível infectados pela cepa Colombiana foi significativamente maior que o destes mesmos animais infectados com a cepa Y (2,78x0,17 ninhos/mm²; p=0,004 assim como, os animais C57BL/6 infectados com a cepa Colombiana (2,78x1,33 ninhos/mm²; p=0,006 ou cepa Y (2,78x0,53 ninhos/mm²; p=0,005. Os dados reforçam o papel do óxido nítrico no controle do parasitismo e sugerem seu papel na proteção tecidual, controlando a inflamação e potencialmente diminuindo lesões cardíacas durante a fase aguda na doença de Chagas experimental.Chagas disease is caused by Trypanosoma cruzi and the heart is the organ most affected. Nitric oxide has notable anti-Trypanosoma action, but with little evidence regarding its role in the mechanism for tissue injury. The objective of this study was to analyze the contribution of nitric oxide towards the development of inflammation and cardiac fibrosis during the acute phase of experimental infection by Y and Colombian strains of Trypanosoma cruzi. The inflammation was significantly more intense in animals infected with the Colombian strain, compared with those infected with the Y strain, both in C57BL/6

  18. Humoral and cellular immune responses in BALB/c and C57BL/6 mice immunized with cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive antigens, in acute experimental Trypanosoma cruzi infection.

    Science.gov (United States)

    Pereira, Valéria R A; Lorena, Virginia M B; Nakazawa, Mineo; Luna, Carlos F; Silva, Edimilson D; Ferreira, Antonio G P; Krieger, Marco Aurélio; Goldenberg, Samuel; Soares, Milena B P; Coutinho, Eridan M; Correa-Oliveira, Rodrigo; Gomes, Yara M

    2005-06-01

    In previous studies, cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins induced specific humoral and cellular immune responses in susceptible and resistant mice in the absence of Trypanosoma cruzi infection with a significant induction of the Interferon-gamma (IFN-gamma) production in those animals. In this follow-up paper, the immunostimulatory and protective effects of these proteins were evaluated by immunizing with CRA or FRA antigens, BALB/c and C57BL/6 mice and challenging with a T. cruzi (Y strain). Both proteins induced humoral response with high levels of IgG isotypes as well as cellular immunity with high levels of IFN-gamma when compared to controls. However, the lymphocyte proliferative response was minimal. The survival rate at 30 days post-infection was significant in CRA (60%) or FRA (50%)--immunized BALB/c mice and CRA (83.3%)--immunized C57BL/6 mice. Taken as a whole these findings indicate that CRA and FRA are immunogenic and potentially important for protective immunity.

  19. Miocardite no macaco Cebus após inoculações repetidas com Schizotrypanum cruzi

    Directory of Open Access Journals (Sweden)

    C. Magarinos Torres

    1958-07-01

    inoculated, four times through the intact ocular conjunctiva (one time with infected blood, and three times with dejections from infected bugs, and five times injected in the skin (four times with contaminated blood, and one time with dejections from infected bugs, and necropsied after 233 days. The microscopic picture was uniform presenting, however, considerable individual variations, and was represented by diffuse interstitial myocarditis, frequently more (marked in the right ventricle base of the heart, accompanied by lymphatic stasis. The infiltration consists of macrophages, plasma cells and lymphocytes, the cellular reaction having sometimes a perivascular distribution, involving the auriculo-ventricular system of conduction, endocardium, epicardium and cardiac sympathetic gangliae. The loss of cardiac muscle fibers was always minimal. Leishmanial forms of S. cruzi in myocardial fibers are scanty and, in two cases, absent. Fatty necrosis in the epicardium was noted in two cases. Obliterative changes of medium-sized branches of coronary arteries (hypersensitivity reaction? and multiple infarcts of the myocardium was found in one instance. The diffuse myocarditis induced by S. cruzi in several species of monkeys of the genus Cebus observed after 233 days (several inoculations and 252 days (single inoculation is not associated with disseminated fibrosis such as is reported in chronic cases of Chagas' disease. Definite capacity of reversion is another characteristic of the interstitial myocarditis observed in the series of Cebus monkeys here studied. The impression was gained that repeated inoculation with S. cruzi may influence the myocardial changes differently according to the period between the reinoculations. A short period after the first inoculation is followed by more marked changes, while long periods are accompanied by slight changes, which suggests an active immunisation produced by the first inoculation. More data are required, however before a definite

  20. Histopathologic identification of Trypanosoma cruzi (Chagas' encephalitis in an AIDS patient

    Directory of Open Access Journals (Sweden)

    Dimath Alyemni

    2017-03-01

    Full Text Available Trypanosoma cruzi (Chagas' encephalitis is an uncommon manifestation of T. cruzi infection, typically seen in immunocompromised patients. Encephalitis results from the reactivation of chronic infection predominately in individuals from endemic areas. Increased awareness of this complication is essential especially with increased migration of patients from endemic areas with concomitant HIV infection. Here we report a case of Chagas' encephalitis in an AIDS patient from Mexico in which there was no evidence of acute serologic, CSF, or blood infection by T. cruzi trypomastigotes.

  1. Vector Competence of Lutzomyia cruzi Naturally Demonstrated for Leishmania infantum and Suspected for Leishmania amazonensis.

    Science.gov (United States)

    de Oliveira, Everton Falcão; Oshiro, Elisa Teruya; Fernandes, Wagner Souza; Ferreira, Alda Maria Teixeira; de Oliveira, Alessandra Gutierrez; Galati, Eunice Aparecida Bianchi

    2017-01-11

    Corumbá city is one of the oldest visceral leishmaniasis-endemic foci in the state of Mato Grosso do Sul, Brazil, where the transmission of Leishmania infantum has been attributed to Lutzomyia cruzi Aiming at investigating the parameters of the vectorial capacity of Lu. cruzi for L. infantum, a project was undertaken in this city. Among these parameters, vector competence was investigated and the results obtained are reported herein. Of the 12 hamsters exposed to feed wild-caught female sandflies, two developed infection with L. infantum and surprisingly, one with Leishmania amazonensis In addition, hamsters with L. infantum infection were bitten only by females of Lu. cruzi, whereas the hamster infected with L. amazonensis was bitten by 124 Lu. cruzi females and one of Evandromyia corumbaensis Although there is a strong suspicion regarding the competence of Lu. cruzi in transmitting L. amazonensis naturally, it was not demonstrated. © The American Society of Tropical Medicine and Hygiene.

  2. Seroprevalence of Trypanosoma cruzi in blood donors at the National Blood Transfusion Services--Guyana.

    Science.gov (United States)

    Bwititi, P T; Browne, J

    2012-09-01

    Blood transfusion is an important transmission route of Trypanosoma cruzi (T cruzi), a major parasitic infection in Central and South America. The limited treatment options are most effective in acute Chagas' infection. At present, there is no current data on the prevalence of T cruzi in the blood donor population of Guyana. This information is necessary to protect the supply of the blood donation programme. This study sought to determine the prevalence of T cruzi in the blood supply at the National Blood Transfusion Services of Guyana with the hope of providing knowledge to the on-going surveillance for Chagas' disease worldwide and therefore address the risk of its spread by blood transfusion. Two commercialized ELISAs utilizing crude or recombinant T cruzi antigens were used to study 2000 blood samples voluntarily donated for the purpose of altruistic or family replacement donation retrospectively. The results showed that approximately 1 in 286 donations tested positive for antibodies to T cruzi. These results indicate that T cruzi continues to be a risk in Guyana and there is a need to continue screening donated blood. Trypanosoma cruzi is a life-long infection and infected persons may be asymptomatic chronic carriers of the disease. Education, housing improvement, and controlled use of insecticides should be introduced to contain Chagas' disease.

  3. Sarcocystis cruzi (Apicomplexa: Sarcocystidae no cachorro-do-mato (Cerdocyon thous Sarcocystis cruzi (Apicomplexa: Sarcocystidae in the crab-eating fox (Cerdocyon thous

    Directory of Open Access Journals (Sweden)

    Janaina S. Rodrigues

    2008-11-01

    Full Text Available Esporocistos de Sarcocystis foram identificados nas amostras fecais de um cachorro-do-mato. Eles foram dados por via oral para um bezerro em aleitamento, sendo observados cistos com morfologia compatível com os de Sarcocystis cruzi na musculatura cardíaca e esquelética, três meses após a infecção. Musculatura cardíaca deste bezerro foi dada para um segundo cão doméstico livre de coccídios, que eliminou esporocistos compatíveis com os de Sarcocystis em suas fezes, tendo com períodos pré-patente e patente 11 e 12 dias após a infecção respectivamente. Para comparar a morfologia dos esporocistos e cistos, um segundo cão, também livre de coccídios, foi alimentado com musculatura cardíaca de um bovino infectando naturalmente e positivo para cistos de S. cruzi. Esporocistos compatíveis com os eliminados pelo primeiro cão foram encontrados nas fezes. Apesar dos esporocistos eliminados pelo cachorro-do-mato serem significativamente diferentes dos eliminados pelos cães infectados experimentalmente, pode se considerar com base na morfologia dos esporocistos, cistos e na transmissão biológica que a espécie encontrada nas fezes do cachorro-do-mato é Sarcocystis cruzi.Sporocysts of Sarcocystis were identified in feces samples of a crab-eating fox, and were orally given to a suckling calf; after 3 months of infection, sarcocysts morphologically similar to Sarcocystis cruzi were observed in cardiac and skeletal striated muscles. The cardiac muscles of this calf were orally given to a puppy free of coccidia, that shed sporocysts in its feces.with a prepatent and patent period of 11 and 12 days after infection, respectively. To compare the morphology of the sporocysts and cysts, a second puppy was fed on bovine cardiac muscles infected naturally, and sporocysts identical to those shed by the first dog were recovered from its feces. In spite of the significant difference between sporocysts found in the mucosa of the crab-eating fox and

  4. A refratariedade das aves ao "Trypanosoma (Schizotrypanum cruzi" II - refratariedade das galinhas desde o nascimento; persistência da refratariedade após Bursectomia; infecções em ovos embrionados The refractory state of birds toward the Trypanosoma (Schizotrypanum cruzi: II - the refractory state begins at hatching and persists after bursectomy, Infections of embryonnated eggs

    Directory of Open Access Journals (Sweden)

    F. Nery-Guimarães

    1972-01-01

    Full Text Available "A refratariedade das galinhas ao T. (S. cruzi, ocorre desde o nascimento e não é eliminada pela bursectomia hormonal. Noventa e oito pintos de 1 a 15 dias de vida (normais ou tratados com testosterona inoculados com o T. (S. cruzi foram negativos. Deste modo, dificilmente a refratariedade poderia ser interpretada como decorrência de um "anticorpo natural", uma vez que a bursectomia provoca uma queda na produção de anticorpos e das gamaglobulinas. Em cerca de 50% de ovos embrionados (normais ou tratados com o hormônio foram vistos flagelados do 4º ao 12º dia de inoculação, observando-se ninhos de amastigotos em alguns embriões. Os pintos nascidos dos mesmos grupos dos ovos examinados e positivos, foram sistematicamente negativos pelo exame do sangue. Um deles sacrificado horas depois de nascido, mostrou amastigotos no coração, mas esses parasitos pareciam degenerados. Provavelmente, se alguns chegam a evoluir para tripomastigotos, estes são destruídos á medida que as células hospedeiras se rompem, e assim jamais são encontrados no sangue circulante.It has already been shown that the refractory state of chickens toward "T. (S. cruzi" appears early at time of hatch. Fifty-four normal newly hatched and inoculated chicks were negative. it has also been verified that this refractory state persists even after hormonal bursectomy (eggs being injected with 2.5 mg of testosterone. Forty-four bursectomized and inoculated newly hatched chicks were negative. If we consider the fact that bursectomy causes a deficiency in the production of antibodies and gammaglobulins, the refractory state seems not to occur on account of a "natural antibody". Inoculations of "T. (S. cruzi" made in 153 eggs (normal or treated with testosterone produced infections of variable intensity in about 50% of them. Although chicks newly hatched from the same groups were always negative. As we have some embryos to be positive until the 21st day of incubation it seems

  5. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo.

    Science.gov (United States)

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Knox, Monique Britto; Reis, Filipe; Hagström, Luciana; Cuba, César A Cuba; Hecht, Mariana Machado; Gurgel-Gonçalves, Rodrigo

    2016-01-26

    Neotropical primates are important sylvatic hosts of Trypanosoma cruzi, the etiological agent of Chagas disease. Infection is often subclinical, but severe disease has been described in both free-ranging and captive primates. Panstrongylus megistus, a major T. cruzi vector, was found infesting a small-primate unit at Brasília zoo (ZooB), Brazil. ZooB lies close to a gallery-forest patch where T. cruzi circulates naturally. Here, we combine parasitological and molecular methods to investigate a focus of T. cruzi infection involving triatomine bugs and Neotropical primates at a zoo located in the Brazilian Savannah. We assessed T. cruzi infection in vectors using optical microscopy (n = 34) and nested PCR (n = 50). We used quantitative PCR (qPCR) to examine blood samples from 26 primates and necropsy samples from two primates that died during the study. We determined parasite lineages in five vectors and two primates by comparing glucose-6-phosphate isomerase (G6pi) gene sequences. Trypanosoma cruzi was found in 44 vectors and 17 primates (six genera and eight species); one Mico chrysoleucus and one Saguinus niger had high parasitaemias. Trypanosoma cruzi DNA was detected in three primates born to qPCR-negative mothers at ZooB and in the two dead specimens. One Callithrix geoffroyi became qPCR-positive over a two-year follow-up. All G6pi sequences matched T. cruzi lineage TcI. Our findings strongly suggest vector-borne T. cruzi transmission within a small-primate unit at ZooB - with vectors, and perhaps also parasites, presumably coming from nearby gallery forest. Periodic checks for vectors and parasites would help eliminate T. cruzi transmission foci in captive-animal facilities. This should be of special importance for captive-breeding programs involving endangered mammals, and would reduce the risk of accidental T. cruzi transmission to keepers and veterinarians.

  6. New insights into Trypanosoma cruzi evolution, genotyping and molecular diagnostics from satellite DNA sequence analysis.

    Directory of Open Access Journals (Sweden)

    Juan C Ramírez

    2017-12-01

    Full Text Available Trypanosoma cruzi has been subdivided into seven Discrete Typing Units (DTUs, TcI-TcVI and Tcbat. Two major evolutionary models have been proposed to explain the origin of hybrid lineages, but while it is widely accepted that TcV and TcVI are the result of genetic exchange between TcII and TcIII strains, the origin of TcIII and TcIV is still a matter of debate. T. cruzi satellite DNA (SatDNA, comprised of 195 bp units organized in tandem repeats, from both TcV and TcVI stocks were found to have SatDNA copies type TcI and TcII; whereas contradictory results were observed for TcIII stocks and no TcIV sequence has been analyzed yet. Herein, we have gone deeper into this matter analyzing 335 distinct SatDNA sequences from 19 T. cruzi stocks representative of DTUs TcI-TcVI for phylogenetic inference. Bayesian phylogenetic tree showed that all sequences were grouped in three major clusters, which corresponded to sequences from DTUs TcI/III, TcII and TcIV; whereas TcV and TcVI stocks had two sets of sequences distributed into TcI/III and TcII clusters. As expected, the lowest genetic distances were found between TcI and TcIII, and between TcV and TcVI sequences; whereas the highest ones were observed between TcII and TcI/III, and among TcIV sequences and those from the remaining DTUs. In addition, signature patterns associated to specific T. cruzi lineages were identified and new primers that improved SatDNA-based qPCR sensitivity were designed. Our findings support the theory that TcIII is not the result of a hybridization event between TcI and TcII, and that TcIV had an independent origin from the other DTUs, contributing to clarifying the evolutionary history of T. cruzi lineages. Moreover, this work opens the possibility of typing samples from Chagas disease patients with low parasitic loads and improving molecular diagnostic methods of T. cruzi infection based on SatDNA sequence amplification.

  7. New insights into Trypanosoma cruzi evolution, genotyping and molecular diagnostics from satellite DNA sequence analysis.

    Science.gov (United States)

    Ramírez, Juan C; Torres, Carolina; Curto, María de Los A; Schijman, Alejandro G

    2017-12-01

    Trypanosoma cruzi has been subdivided into seven Discrete Typing Units (DTUs), TcI-TcVI and Tcbat. Two major evolutionary models have been proposed to explain the origin of hybrid lineages, but while it is widely accepted that TcV and TcVI are the result of genetic exchange between TcII and TcIII strains, the origin of TcIII and TcIV is still a matter of debate. T. cruzi satellite DNA (SatDNA), comprised of 195 bp units organized in tandem repeats, from both TcV and TcVI stocks were found to have SatDNA copies type TcI and TcII; whereas contradictory results were observed for TcIII stocks and no TcIV sequence has been analyzed yet. Herein, we have gone deeper into this matter analyzing 335 distinct SatDNA sequences from 19 T. cruzi stocks representative of DTUs TcI-TcVI for phylogenetic inference. Bayesian phylogenetic tree showed that all sequences were grouped in three major clusters, which corresponded to sequences from DTUs TcI/III, TcII and TcIV; whereas TcV and TcVI stocks had two sets of sequences distributed into TcI/III and TcII clusters. As expected, the lowest genetic distances were found between TcI and TcIII, and between TcV and TcVI sequences; whereas the highest ones were observed between TcII and TcI/III, and among TcIV sequences and those from the remaining DTUs. In addition, signature patterns associated to specific T. cruzi lineages were identified and new primers that improved SatDNA-based qPCR sensitivity were designed. Our findings support the theory that TcIII is not the result of a hybridization event between TcI and TcII, and that TcIV had an independent origin from the other DTUs, contributing to clarifying the evolutionary history of T. cruzi lineages. Moreover, this work opens the possibility of typing samples from Chagas disease patients with low parasitic loads and improving molecular diagnostic methods of T. cruzi infection based on SatDNA sequence amplification.

  8. Psammolestes arthuri NATURALMENTE INFECTADO CON Trypanosoma cruzi ENCONTRADO EN SIMPATRÍA CON Rhodnius prolixus Y Triatoma maculata EN NIDOS DE AVES EN EL ESTADO ANZOÁTEGUI, VENEZUELA I Psammolestes arthuri NATURALLY INFECTED WITH Trypanosoma cruzi FOUND IN SYMPATRY WITH Rhodnius prolixus AND Triatoma maculata ON BIRD NESTS IN ANZOÁTEGUI STATE, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Pedro José Cruz-Guzmán

    2018-04-01

    Full Text Available In Venezuela, Chagas' disease is a public health problem with around 2 million people infected and more than 6 million under risk of infection. In this study the presence of the triatomid Psammolestes arthuri is reported in nests of different species of birds from rural communities of Anzoátegui State, some of them found naturally infected with Trypanosoma cruzi , in sympatry with other species of triatomines ( Rhodnius prolixus y Triatoma maculata . A total of 3,277 triatomine specimens were collected in 478 nests from 6 species of birds ( Phacellodomus rufifrons , Troglodytes aedon , Icterus icterus , I. nigrogularis , Cacicus cela y Psarocolius decumanus . It was found that 99.05% (3246/3277 of specimens were P. arthuri and 0.95% (31/3277 other triatomine species, from which 0.57% (19/3277 were R. prolixus and 0.37% (12/3277 T. mac ulata . Only 0.12% (4/3246 of P. arthuri were infected with T. cr u z i . The parasitological characterization of one T. cr u z i isolate in white male NMRI mice showed high affinity for cardiac, skeletal and smooth muscle cells, with a peak parasitemia of 2.4 x 10 4 parasites/ mL blood stream forms of T. cr u z i and 100% mortality of inoculated mice. This isolate was molecularly typed as belonging to TcIII genotype. The results show that in Anzoátegui State, P. arthuri predominantly feed on blood of birds, representing a low risk for vector transmission of Chagas' disease to humans

  9. Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi.

    Science.gov (United States)

    Keenan, Martine; Alexander, Paul W; Chaplin, Jason H; Abbott, Michael J; Diao, Hugo; Wang, Zhisen; Best, Wayne M; Perez, Catherine J; Cornwall, Scott M J; Keatley, Sarah K; Thompson, R C Andrew; Charman, Susan A; White, Karen L; Ryan, Eileen; Chen, Gong; Ioset, Jean-Robert; von Geldern, Thomas W; Chatelain, Eric

    2013-10-01

    Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.

  10. Trypanosoma cruzi benznidazole susceptibility in vitro does not predict the therapeutic outcome of human Chagas disease

    Directory of Open Access Journals (Sweden)

    Margoth Moreno

    2010-11-01

    Full Text Available Therapeutic failure of benznidazole (BZ is widely documented in Chagas disease and has been primarily associated with variations in the drug susceptibility of Trypanosoma cruzi strains. In humans, therapeutic success has been assessed by the negativation of anti-T. cruzi antibodies, a process that may take up to 10 years. A protocol for early screening of the drug resistance of infective strains would be valuable for orienting physicians towards alternative therapies, with a combination of existing drugs or new anti-T. cruzi agents. We developed a procedure that couples the isolation of parasites by haemoculture with quantification of BZ susceptibility in the resultant epimastigote forms. BZ activity was standardized with reference strains, which showed IC50 to BZ between 7.6-32 µM. The assay was then applied to isolates from seven chronic patients prior to administration of BZ therapy. The IC50 of the strains varied from 15.6 ± 3-51.4 ± 1 µM. Comparison of BZ susceptibility of the pre-treatment isolates of patients considered cured by several criteria and of non-cured patients indicates that the assay does not predict therapeutic outcome. A two-fold increase in BZ resistance in the post-treatment isolates of two patients was verified. Based on the profile of nine microsatellite loci, sub-population selection in non-cured patients was ruled out.

  11. Leishmania amazonensis DNA in wild females of Lutzomyia cruzi (Diptera: Psychodidae) in the state of Mato Grosso do Sul, Brazil.

    Science.gov (United States)

    Oliveira, Everton Falcão de; Casaril, Aline Etelvina; Mateus, Nathália Lopes Fontoura; Murat, Paula Guerra; Fernandes, Wagner Souza; Oshiro, Elisa Teruya; Oliveira, Alessandra Gutierrez de; Galati, Eunice Aparecida Bianchi

    2015-12-01

    Studies on natural infection by Leishmania spp of sandflies collected in endemic and nonendemic areas can provide important information on the distribution and intensity of the transmission of these parasites. This study sought to investigate the natural infection by Leishmaniain wild female sandflies. The specimens were caught in the city of Corumbá, state of Mato Grosso do Sul (Brazil) between October 2012-March 2014, and dissected to investigate flagellates and/or submitted to molecular analysis to detect Leishmania DNA. A total of 1,164 females (77.56% of which were Lutzomyia cruzi) representing 11 species were investigated using molecular analysis; 126 specimens of Lu. cruziwere dissected and also submitted to molecular analysis. The infection rate based on the presence of Leishmania DNA considering all the sandfly species analysed was 0.69%; only Leishmania (Leishmania) amazonensis was identified in Lu. cruzi by the molecular analysis. The dissections were negative for flagellates. This is the first record of the presence of L. (L.) amazonensis DNA in Lu. cruzi, and the first record of this parasite in this area. These findings point to the need for further investigation into the possible role of this sandfly as vector of this parasite.

  12. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  13. Dasypus novemcinctus infestado con schizotrypanum cruzi en condiciones naturales

    Directory of Open Access Journals (Sweden)

    Augusto Corredor Arjona

    1963-04-01

    Full Text Available The present publication is the first of a series on Chagas disease in the region of Pizarreal, Municipality of Patios, department of North Santander, Colombia. The authors describe the second case in Colombia of Dasypus nouemcinctus infected in natural form by Schizotrypanum cruzi.

  14. Prevalence of Trypanosoma cruzi and Other Trypanosomatids in Frequently-Hunted Wild Mammals from the Peruvian Amazon.

    Science.gov (United States)

    Morales, E Angelo; Mayor, Pedro; Bowler, Mark; Aysanoa, Esar; Pérez-Velez, Erika S; Pérez, Jocelyn; Ventocilla, Julio A; Baldeviano, G Christian; Lescano, Andrés G

    2017-11-01

    To better understand the ecology of Trypanosoma cruzi in the northeastern Peruvian Amazon, we evaluated the prevalence of T. cruzi and other trypanosomatids in four orders of wild mammals hunted and consumed by inhabitants of three remote indigenous communities in the Peruvian Amazon. Of 300 wild mammals sampled, 115 (38.3%) were infected with trypanosomatids and 15 (5.0%) with T. cruzi. The prevalence of T. cruzi within each species was as follows: large rodents ( Cuniculus paca , 5.5%; Dasyprocta spp., 2.6%), edentates ( Dasypus novemcinctus , 4.2%), and carnivores with higher prevalence ( Nasua nasua , 18.8%). The high prevalence of T. cruzi and other trypanosomatids in frequently hunted wild mammals suggests a sizeable T. cruzi sylvatic reservoir in remote Amazonian locations.

  15. The Complement System: A Prey of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Kárita C. F. Lidani

    2017-04-01

    Full Text Available Trypanosoma cruzi is a protozoan parasite known to cause Chagas disease (CD, a neglected sickness that affects around 6–8 million people worldwide. Originally, CD was mainly found in Latin America but more recently, it has been spread to countries in North America, Asia, and Europe due the international migration from endemic areas. Thus, at present CD represents an important concern of global public health. Most of individuals that are infected by T. cruzi may remain in asymptomatic form all lifelong, but up to 40% of them will develop cardiomyopathy, digestive mega syndromes, or both. The interaction between the T. cruzi infective forms and host-related immune factors represents a key point for a better understanding of the physiopathology of CD. In this context, the complement, as one of the first line of host defense against infection was shown to play an important role in recognizing T. cruzi metacyclic trypomastigotes and in controlling parasite invasion. The complement consists of at least 35 or more plasma proteins and cell surface receptors/regulators, which can be activated by three pathways: classical (CP, lectin (LP, and alternative (AP. The CP and LP are mainly initiated by immune complexes or pathogen-associated molecular patterns (PAMPs, respectively, whereas AP is spontaneously activated by hydrolysis of C3. Once activated, several relevant complement functions are generated which include opsonization and phagocytosis of particles or microorganisms and cell lysis. An important step during T. cruzi infection is when intracellular trypomastigotes are release to bloodstream where they may be target by complement. Nevertheless, the parasite uses a sequence of events in order to escape from complement-mediated lysis. In fact, several T. cruzi molecules are known to interfere in the initiation of all three pathways and in the assembly of C3 convertase, a key step in the activation of complement. Moreover, T. cruzi promotes secretion

  16. Trypanosoma cruzi: Serum levels of nitric oxide and expression of inducible nitric oxide synthase in myocardium and spleen of dogs in the acute stage of infection with metacyclic or blood trypomastigotes.

    Science.gov (United States)

    Vieira, Paula Melo de Abreu; Francisco, Amanda Fortes; de Souza, Sheler Martins; Malaquias, Luiz Cosme Cotta; Reis, Alexandre Barbosa; Giunchetti, Rodolfo Cordeiro; Veloso, Vanja Maria; de Lana, Marta; Tafuri, Washington Luiz; Carneiro, Cláudia Martins

    2009-01-01

    The participation of nitric oxide (NO) in the control of blood parasitemia and parasitism during the acute phase of infection in dogs inoculated with blood trypomastigotes (BT) or metacyclic trypomastigotes (MT group) of Berenice-78 Trypanosoma cruzi strain has been evaluated. Animals of the MT group (n=4) presented increased levels of serum NO throughout the infection when compared with the BT (n=4) or control (n=4) groups, and a delay in parasitemia peak compared with the BT group. In spleen fragments, tissue parasitism was not observed but the MT group presented larger areas associated with inducible NO synthase (iNOS) in relation to BT and control groups. Heart fragments of MT-infected animals exhibited comparatively low tissue parasitism and high iNOS expression, while animals of the BT group presented high inflammatory infiltrate, high tissue parasitism and low iNOS expression. These results indicate that the source of inoculum can interfere with the development of the acute phase of Chagas disease, and may also trigger a distinct parasite-host interaction during this phase.

  17. Seropositivity for Trypanosoma cruzi in domestic dogs from Sonora, Mexico.

    Science.gov (United States)

    Arce-Fonseca, Minerva; Carrillo-Sánchez, Silvia C; Molina-Barrios, Ramón M; Martínez-Cruz, Mariana; Cedillo-Cobián, Jesús R; Henao-Díaz, Yuly A; Rodríguez-Morales, Olivia

    2017-09-05

    Chagas disease is an important health problem in Latin America due to its incapacitating effects and associated mortality. Studies on seropositivity for Trypanosoma cruzi in Mexican dogs have demonstrated a direct correlation between seropositivity in humans and dogs, which can act as sentinels for the disease in this region. The objective of this study was to determine the seropositivity for T.cruzi infection in dogs from Sonora, a northern borderstate of Mexico. Responsible pet owners were selected at random from an urban area of Empalme municipality, Sonora, Mexico, and from there, 180 dog samples were collected. Anti-T. cruzi antibodies were determined using the enzyme-linked immunosorbent assay (ELISA) method. Reactive ELISA sera were processed by indirect immunofluorescence to confirm the presence of anti-T. cruzi antibodies. For the statistical analysis, chi-square tests were conducted. Dogs' sera showed a seropositivity rate of 4.44%. The rate of seropositivity was not associated with the dogs' age, sex, or socioeconomics pertaining to the geographical area. One sample (1/180, 0.55%) showed the acute state of the disease. The study found a presence of anti-T. cruzi antibodies in dogs in this area, which suggests vector transmission. There is a need for active surveillance programs throughout the state of Sonora and vector control strategies should also be implemented in endemic regions.

  18. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development.

    Science.gov (United States)

    Cueto, Juan Agustín; Vanrell, María Cristina; Salassa, Betiana Nebaí; Nola, Sébastien; Galli, Thierry; Colombo, María Isabel; Romano, Patricia Silvia

    2017-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular parasite that exploits different host vesicular pathways to invade the target cells. Vesicular and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are key proteins of the intracellular membrane fusion machinery. During the early times of T. cruzi infection, several vesicles are attracted to the parasite contact sites in the plasma membrane. Fusion of these vesicles promotes the formation of the parasitic vacuole and parasite entry. In this work, we study the requirement and the nature of SNAREs involved in the fusion events that take place during T. cruzi infection. Our results show that inhibition of N-ethylmaleimide-sensitive factor protein, a protein required for SNARE complex disassembly, impairs T. cruzi infection. Both TI-VAMP/VAMP7 and cellubrevin/VAMP3, two v-SNAREs of the endocytic and exocytic pathways, are specifically recruited to the parasitophorous vacuole membrane in a synchronized manner but, although VAMP3 is acquired earlier than VAMP7, impairment of VAMP3 by tetanus neurotoxin fails to reduce T. cruzi infection. In contrast, reduction of VAMP7 activity by expression of VAMP7's longin domain, depletion by small interfering RNA or knockout, significantly decreases T. cruzi infection susceptibility as a result of a minor acquisition of lysosomal components to the parasitic vacuole. In addition, overexpression of the VAMP7 partner Vti1b increases the infection, whereas expression of a KIF5 kinesin mutant reduces VAMP7 recruitment to vacuole and, concomitantly, T. cruzi infection. Altogether, these data support a key role of TI-VAMP/VAMP7 in the fusion events that culminate in the T. cruzi parasitophorous vacuole development. © 2016 John Wiley & Sons Ltd.

  19. Insight into the exoproteome of the tissue-derived trypomastigote form of trypanosoma cruzi

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Ricart, Carlos A O; Machado, Mara O

    2016-01-01

    The protozoan parasite Trypanosoma cruzi causes Chagas disease, one of the major neglected infectious diseases. It has the potential to infect any nucleated mammalian cell. The secreted/excreted protein repertoire released by T. cruzi trypomastigotes is crucial in host-pathogen interactions...

  20. Prevalence and Transmission of Trypanosoma cruzi in People of Rural Communities of the High Jungle of Northern Peru.

    Science.gov (United States)

    Alroy, Karen A; Huang, Christine; Gilman, Robert H; Quispe-Machaca, Victor R; Marks, Morgan A; Ancca-Juarez, Jenny; Hillyard, Miranda; Verastegui, Manuela; Sanchez, Gerardo; Cabrera, Lilia; Vidal, Elisa; Billig, Erica M W; Cama, Vitaliano A; Náquira, César; Bern, Caryn; Levy, Michael Z

    2015-05-01

    Vector-borne transmission of Trypanosoma cruzi is seen exclusively in the Americas where an estimated 8 million people are infected with the parasite. Significant research in southern Peru has been conducted to understand T. cruzi infection and vector control, however, much less is known about the burden of infection and epidemiology in northern Peru. A cross-sectional study was conducted to estimate the seroprevalence of T. cruzi infection in humans (n=611) and domestic animals [dogs (n=106) and guinea pigs (n=206)] in communities of Cutervo Province, Peru. Sampling and diagnostic strategies differed according to species. An entomological household study (n=208) was conducted to identify the triatomine burden and species composition, as well as the prevalence of T. cruzi in vectors. Electrocardiograms (EKG) were performed on a subset of participants (n=90 T. cruzi infected participants and 170 age and sex-matched controls). The seroprevalence of T. cruzi among humans, dogs, and guinea pigs was 14.9% (95% CI: 12.2-18.0%), 19.8% (95% CI: 12.7-28.7%) and 3.3% (95% CI: 1.4-6.9%) respectively. In one community, the prevalence of T. cruzi infection was 17.2% (95% CI: 9.6-24.7%) among participants Peru.

  1. Prevalence and Transmission of Trypanosoma cruzi in People of Rural Communities of the High Jungle of Northern Peru

    Science.gov (United States)

    Alroy, Karen A.; Huang, Christine; Gilman, Robert H.; Quispe-Machaca, Victor R.; Marks, Morgan A.; Ancca-Juarez, Jenny; Hillyard, Miranda; Verastegui, Manuela; Sanchez, Gerardo; Cabrera, Lilia; Vidal, Elisa; Billig, Erica M. W.; Cama, Vitaliano A.; Náquira, César; Bern, Caryn; Levy, Michael Z.

    2015-01-01

    Background Vector-borne transmission of Trypanosoma cruzi is seen exclusively in the Americas where an estimated 8 million people are infected with the parasite. Significant research in southern Peru has been conducted to understand T. cruzi infection and vector control, however, much less is known about the burden of infection and epidemiology in northern Peru. Methodology A cross-sectional study was conducted to estimate the seroprevalence of T. cruzi infection in humans (n=611) and domestic animals [dogs (n=106) and guinea pigs (n=206)] in communities of Cutervo Province, Peru. Sampling and diagnostic strategies differed according to species. An entomological household study (n=208) was conducted to identify the triatomine burden and species composition, as well as the prevalence of T. cruzi in vectors. Electrocardiograms (EKG) were performed on a subset of participants (n=90 T. cruzi infected participants and 170 age and sex-matched controls). The seroprevalence of T. cruzi among humans, dogs, and guinea pigs was 14.9% (95% CI: 12.2 – 18.0%), 19.8% (95% CI: 12.7- 28.7%) and 3.3% (95% CI: 1.4 – 6.9%) respectively. In one community, the prevalence of T. cruzi infection was 17.2% (95% CI: 9.6 - 24.7%) among participants Peru. PMID:26000770

  2. Utilização, em politransfundidos, da pesquisa de anticorpos igm anti-trypanosoma cruzi e anti-toxoplasma gondii para detectar infecções pós-transfusionais recentes IgM Trypanosoma cruzi and Toxoplasma gondii antibodies in the detection of recent transfusion-transmitted infections

    Directory of Open Access Journals (Sweden)

    Vicente Amato Neto

    1984-04-01

    Full Text Available Consideram os Autores que a pesquisa de anticorpos IgM no soro é tática capaz de revelar recentes infecções pós-transfusionais. Por isso, decidiram usar esse tipo de mensuração relativamente a grupo constituído por 101 politrans-fundidos, tendo abordado especificamente as aquisições de doença de Chagas e toxoplasmose. Através da investigação que realizaram, só em duas oportunidades encontraram anticorpos IgM anti-Trypanosoma cruzi ou anti-Toxoplasma gondii e, portanto, não evidenciaram expressivo panorama tradutor de processos há pouco tempo contraídos, como ainda, por meio de anticorpos IgG não identificaram números expressivos de pessoas com essas protozooses. No entanto, detectaram a expressiva taxa de 4,9% de casos de doença de Chagas muito provavelmente decorrentes da hemoterapia. A despeito da relevância não acentuada dos resultados que obtiveram, julgaram os Autores ser válido estimular a efetivação de outros estudos congêneres e correlatos, aptos a contribuir para aqui-latamento de riscos pertinentes à prática hemoterápica.The Authors have regarded serum IgM antibodies titration as useful in the detection of recent transfusion-transmitted infections. For this reason a group consisting of 101 patients, who had received many blood transfusions, underwent such mensuration in order to reveal recent Chagas'disease and toxoplasmosis acquired infections. Throughout the investigation just two cases have yielded IgM trypanosomal or toxoplasmal antibodies, showing therefore that this sort of titration did not correlate with the real existence of recent acquired infections. On the other hand IgM antibodies in the same patients did not show a considerable incidence of these two protozoan infections. However an expressive rate of 4.9% of Chagas'disease probably due to hemotherapy was found. Although the results this study were not very relevant, the Authors still have in mind that further similar investigations should be

  3. Modulation of Trypanosoma cruzi-specific T-cell responses after chemotherapy for chronic Chagas disease

    Directory of Open Access Journals (Sweden)

    María Cecilia Albareda

    2015-05-01

    Full Text Available The aim of this review is to describe the contributions of the knowledge of T-cell responses to the understanding of the physiopathology and the responsiveness to etiological treatment during the chronic phase of Chagas disease. T-helper (Th1 and interleukin (IL-10 Trypanosoma cruzi-specific T-cells have been linked to the asymptomatic phase or to severe clinical forms of the disease, respectively or vice versa, depending on the T. cruzi antigen source, the patient’s location and the performed immunological assays. Parasite-specific T-cell responses are modulated after benznidazole (BZ treatment in chronically T. cruzi-infected subjects in association with a significant decrease in T. cruzi-specific antibodies. Accumulating evidence has indicated that treatment efficacy during experimental infection with T. cruzi results from the combined action of BZ and the activation of appropriate immune responses in the host. However, strong support of this interaction in T. cruzi-infected humans remains lacking. Overall, the quality of T-cell responses might be a key factor in not only disease evolution, but also chemotherapy responsiveness. Immunological parameters are potential indicators of treatment response regardless of achievement of cure. Providing tools to monitor and provide early predictions of treatment success will allow the development of new therapeutic options.

  4. Use of Full-Length Recombinant Calflagin and Its C Fragment for Improvement of Diagnosis of Trypanosoma cruzi Infection†

    Science.gov (United States)

    Marcipar, Iván S.; Roodveldt, Cintia; Corradi, Gerardo; Cabeza, María L.; Brito, Maria Edileuza F.; Winter, Lucile M. Floeter; Marcipar, Alberto J.; Silber, Ariel M.

    2005-01-01

    Serological diagnosis of Trypanosoma cruzi infection is hampered by issues related to test specificity due to the cross-reactivity of most antigens with proteins of related parasites such as Leishmania spp. The recombinant calflagins are considered relevant antigens for the diagnosis of infection by Trypanosoma cruzi. In the present work, we describe two genes coding for putative calflagins in Leishmania major with the N-terminal moieties presenting high similarity with T. cruzi genes. This fact raised questions about their role in some cross-recognition of this antigen by sera from Leishmania spp.-infected individuals. The complete T. cruzi calflagin and two fragments of the protein, consisting of 146 amino acids of the N-terminal and 65 amino acids of the C-terminal regions, were expressed and evaluated against a panel of sera, which included well-characterized samples from T. cruzi, and Leishmania-infected patients. We were able to show that sera from Leishmania (Viannia) braziliensis-infected individuals recognized the recombinant full-length calflagin. Both the N-terminal and the complete protein presented the same high sensitivity (98.5% of sera from T. cruzi-infected patients was detected) but different specificities (94% and 98%, respectively, when evaluated against sera from people not infected by T. cruzi, including 15 sera from people infected with L. braziliensis). The C-terminal fragment presented low sensitivity (70%) but 100% specificity. We propose the use of these antigens in two sequential assays to optimize the serological diagnosis of T. cruzi infection in humans in geographic areas where Leishmania spp. infection is coendemic. PMID:16272476

  5. Ravuconazole self-emulsifying delivery system: in vitro activity against Trypanosoma cruzi amastigotes and in vivo toxicity

    Directory of Open Access Journals (Sweden)

    Spósito PA

    2017-05-01

    Full Text Available Pollyanna Álvaro Spósito,1 Ana Lia Mazzeti,1,2 Caroline de Oliveira Faria,1 Julio A Urbina,3 Gwenaelle Pound-Lana,1 Maria Terezinha Bahia,2 Vanessa Furtado Mosqueira1 1Laboratory of Pharmaceutics and Nanotechnology Research, Pharmacy Department, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil; 2Parasite Diseases Research Laboratory, NUPEB, Medical School, Universidade Federal de Ouro Preto, MG, Brazil; 3Venezuelan Institute for Scientific Research, Apartado, Caracas, Venezuela Abstract: Self-emulsifying drug delivery systems (SEDDSs are lipid-based anhydrous formulations composed of an isotropic mixture of oil, surfactant, and cosurfactants usually presented in gelatin capsules. Ravuconazole (Biopharmaceutics Classification System [BCS] Class II is a poorly water-soluble drug, and a SEDDS type IIIA was designed to deliver it in a predissolved state, improving dissolution in gastrointestinal fluids. After emulsification, the droplets had mean hydrodynamic diameters <250 nm, zeta potential values in the range of −45 mV to −57 mV, and showed no signs of ravuconazole precipitation. Asymmetric flow field-flow fractionation with dynamic and multiangle laser light scattering was used to characterize these formulations in terms of size distribution and homogeneity. The fractograms obtained at 37°C showed a polydisperse profile for all blank and ravuconazole–SEDDS formulations but no large aggregates. SEDDS increased ravuconazole in vitro dissolution extent and rate (20% compared to free drug (3% in 6 h. The in vivo toxicity of blank SEDDS comprising Labrasol® surfactant in different concentrations and preliminary safety tests in repeated-dose oral administration (20 days showed a dose-dependent Labrasol toxicity in healthy mice. Ravuconazole–SEDDS at low surfactant content (10%, v/v in Trypanosoma cruzi-infected mice was safe during the 20-day treatment. The anti-T. cruzi activity of free ravuconazole

  6. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin

    Directory of Open Access Journals (Sweden)

    Galia Ramírez-Toloza

    2017-09-01

    Full Text Available American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68, T. cruzi complement regulatory protein (TcCRP, trypomastigote decay-accelerating factor (T-DAF, C2 receptor inhibitor trispanning (CRIT and T. cruzi calreticulin (TcCRT. Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH and plasma membrane-derived vesicles (PMVs. All these proteins inhibit different steps of the classical (CP, alternative (AP or lectin pathways (LP. Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host

  7. The importance of the opossum (Didelphis albiventris as a reservoir for Trypanosoma cruzi in Bambuí, Minas Gerais state

    Directory of Open Access Journals (Sweden)

    Alexandre José Fernandes

    1991-03-01

    Full Text Available In a survey realized on the sylvatic and peridomestic environment at Bambuí county, Minas Gerais State, 44 (37.9% out of 116 opossums (Didelphis albiventris captured were found to be naturally infected with Trypanosoma cruzi. One handred and forty three parasite samples were obtanied from 43 infected opossums using simultaneously hemoculture, xenodiagnosis (Triatoma infestans, Panstrongylus megistus and Rhodnius neglectus and examination of anal glands contents. The parasite samples were characterized according to six isoenzyme patterns. All samples, independently of the method of isolation, presented an isoenzyme pattern similar to the standard T. cruzi Z1, showing that either xenodiagnosis or hemoculture can used without selecting parasite subpopulation from naturally infected opossums. Preveous isoenzyme patterns reported for human T.cruzi isolates from same region were completely different. This isoenzyme dissimilarity between sylvatic and domiciliar environments suggests the existence of two independent T. cruzi transmission cycles in Bambuí. The epidemiological implicatinos of these results are discussed.

  8. Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80 as a novel immunogen for Chagas disease vaccine.

    Directory of Open Access Journals (Sweden)

    Augusto E Bivona

    2018-03-01

    Full Text Available Chagas disease, also known as American Trypanosomiasis, is a chronic parasitic disease caused by the flagellated protozoan Trypanosoma cruzi that affects about 8 million people around the world where more than 25 million are at risk of contracting the infection. Despite of being endemic on 21 Latin-American countries, Chagas disease has become a global concern due to migratory movements. Unfortunately, available drugs for the treatment have several limitations and they are generally administered during the chronic phase of the infection, when its efficacy is considered controversial. Thus, prophylactic and/or therapeutic vaccines are emerging as interesting control alternatives. In this work, we proposed Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80 as a new antigen for vaccine development against Chagas disease.In a murine model, we analyzed the immune response triggered by different immunization protocols based on Tc80 and evaluated their ability to confer protection against a challenge with the parasite. Immunized mice developed Tc80-specific antibodies which were able to carry out different functions such as: enzymatic inhibition, neutralization of parasite infection and complement-mediated lysis of trypomastigotes. Furthermore, vaccinated mice elicited strong cell-mediated immunity. Spleen cells from immunized mice proliferated and secreted Th1 cytokines (IL-2, IFN-γ and TNF-α upon re-stimulation with rTc80. Moreover, we found Tc80-specific polyfunctional CD4 T cells, and cytotoxic T lymphocyte activity against one Tc80 MHC-I peptide. Immunization protocols conferred protection against a T. cruzi lethal challenge. Immunized groups showed a decreased parasitemia and higher survival rate compared with non-immunized control mice. Moreover, during the chronic phase of the infection, immunized mice presented: lower levels of myopathy-linked enzymes, parasite burden, electrocardiographic disorders and inflammatory cells.Considering that

  9. Prevalence and Transmission of Trypanosoma cruzi in People of Rural Communities of the High Jungle of Northern Peru.

    Directory of Open Access Journals (Sweden)

    Karen A Alroy

    2015-05-01

    Full Text Available Vector-borne transmission of Trypanosoma cruzi is seen exclusively in the Americas where an estimated 8 million people are infected with the parasite. Significant research in southern Peru has been conducted to understand T. cruzi infection and vector control, however, much less is known about the burden of infection and epidemiology in northern Peru.A cross-sectional study was conducted to estimate the seroprevalence of T. cruzi infection in humans (n=611 and domestic animals [dogs (n=106 and guinea pigs (n=206] in communities of Cutervo Province, Peru. Sampling and diagnostic strategies differed according to species. An entomological household study (n=208 was conducted to identify the triatomine burden and species composition, as well as the prevalence of T. cruzi in vectors. Electrocardiograms (EKG were performed on a subset of participants (n=90 T. cruzi infected participants and 170 age and sex-matched controls. The seroprevalence of T. cruzi among humans, dogs, and guinea pigs was 14.9% (95% CI: 12.2-18.0%, 19.8% (95% CI: 12.7-28.7% and 3.3% (95% CI: 1.4-6.9% respectively. In one community, the prevalence of T. cruzi infection was 17.2% (95% CI: 9.6-24.7% among participants < 15 years, suggesting recent transmission. Increasing age, positive triatomines in a participant's house, and ownership of a T. cruzi positive guinea pig were independent correlates of T. cruzi infection. Only one species of triatomine was found, Panstrongylus lignarius, formerly P. herreri. Approximately forty percent (39.9%, 95% CI: 33.2-46.9% of surveyed households were infested with this vector and 14.9% (95% CI: 10.4-20.5% had at least one triatomine positive for T. cruzi. The cardiac abnormality of right bundle branch block was rare, but only identified in seropositive individuals.Our research documents a substantial prevalence of T. cruzi infection in Cutervo and highlights a need for greater attention and vector control efforts in northern Peru.

  10. Congenital Chagas disease as an ecological model of interactions between Trypanosoma cruzi parasites, pregnant women, placenta and fetuses.

    Science.gov (United States)

    Carlier, Yves; Truyens, Carine

    2015-11-01

    The aim of this paper is to discuss the main ecological interactions between the parasite Trypanosoma cruzi and its hosts, the mother and the fetus, leading to the transmission and development of congenital Chagas disease. One or several infecting strains of T. cruzi (with specific features) interact with: (i) the immune system of a pregnant woman whom responses depend on genetic and environmental factors, (ii) the placenta harboring its own defenses, and, finally, (iii) the fetal immune system displaying responses also susceptible to be modulated by maternal and environmental factors, as well as his own genetic background which is different from her mother. The severity of congenital Chagas disease depends on the magnitude of such final responses. The paper is mainly based on human data, but integrates also complementary observations obtained in experimental infections. It also focuses on important gaps in our knowledge of this congenital infection, such as the role of parasite diversity vs host genetic factors, as well as that of the maternal and placental microbiomes and the microbiome acquisition by infant in the control of infection. Investigations on these topics are needed in order to improve the programs aiming to diagnose, manage and control congenital Chagas disease. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. The isolation and identification of Trypanosoma cruzi from raccoons in Maryland

    Science.gov (United States)

    Walton, B.C.; Bauman, P.M.; Diamond, L.S.; Herman, C.M.

    1958-01-01

    Five raccoons trapped at Patuxent Research Refuge, Laurel, Maryland, were found to have trypanosomes in the blood which were morphologically indistinguishable from Trypanosoma cruzi on stained smears. The organism grew well in culture. It developed and reproduced in Triatoma protracta, T. infestans, T. phyllosoma, and Rhodnius prolixus. Experimental infections were produced in raccoons, opossums, mice, rats, and monkeys by inoculation of blood, culture, and triatome forms. Typical leishmaniform bodies were found in tissue sections of cardiac muscle fibers from naturally and experimentally infected animals. Cross agglutinations carried out with Iiving cultural forms and rabbit antisera demonstrated a close antigenic relationship between the raccoon trypanosome and T. cruzi (Brazil strain). On the basis of (1) morphology, (2) presence of leishmaniform tissue stages, (3) development in triatomes, (4) infectivity to a variety of mammals, (5) culture characteristics, and (6) cross reactions in serological tests, this parasite is considered conspecific with Trypanosoma cruzi (Chagas, 1909), the causative agent of American human trypanosomiasis.

  12. Flagellar Motility of Trypanosoma cruzi Epimastigotes

    Directory of Open Access Journals (Sweden)

    G. Ballesteros-Rodea

    2012-01-01

    Full Text Available The hemoflagellate Trypanosoma cruzi is the causative agent of American trypanosomiasis. Despite the importance of motility in the parasite life cycle, little is known about T. cruzi motility, and there is no quantitative description of its flagellar beating. Using video microscopy and quantitative vectorial analysis of epimastigote trajectories, we find a forward parasite motility defined by tip-to-base symmetrical flagellar beats. This motion is occasionally interrupted by base-to-tip highly asymmetric beats, which represent the ciliary beat of trypanosomatid flagella. The switch between flagellar and ciliary beating facilitates the parasite's reorientation, which produces a large variability of movement and trajectories that results in different distance ranges traveled by the cells. An analysis of the distance, speed, and rotational angle indicates that epimastigote movement is not completely random, and the phenomenon is highly dependent on the parasite behavior and is characterized by directed and tumbling parasite motion as well as their combination, resulting in the alternation of rectilinear and intricate motility paths.

  13. Meningoencefalites toxoplásmica e chagásica em pacientes com infecção pelo vírus da imunodeficiência humana: diagnóstico diferencial anatomopatológico e tomográfico Meningoencephalitis due to Toxoplasma gondii and Trypanosoma cruzi in patients with HIV infection. Diferencial diagnosis of pathologic and tomographic findings

    Directory of Open Access Journals (Sweden)

    Javier E. Lazo

    1998-04-01

    Full Text Available Em 22 pacientes com sorologia positiva para o vírus da imunodeficiência humana, com ou sem síndrome da imunodeficiência adquirida, dos quais 7 com meningoencefalite toxoplásmica e 15 com meningoencefalite chagásica associadas, procuraram-se dados diferenciais, entre as duas encefalopatias, tanto à anatomia patológica quanto à tomografia computadorizada do crânio. Os resultados observados e os dados da literatura nos permitiram concluir que enquanto na meningoencefalite necrosante focal por Toxoplasma gondii o acometimento dos núcleos da base é freqüente, na meningoencefalite necrosante focal causada pelo Trypanosoma cruzi, lesões dessas estruturas parecem não ocorrer ou ser excepcionais. De outro lado, o acometimento da substância branca parece nitidamente maior na meningoencefalite chagásica que na meningoencefalite toxoplásmica, ao passo que o parasitismo e a hemorragia do tecido nervoso, bem como as lesões das bainhas de mielina são mais freqüentes e intensos na meningoencefalite causada pelo Trypanosoma cruzi que naquela por Toxoplasma.Twenty-two HIV+ patients with encephalitis were studied. Of these, 7 had meningoencephalitis due to Toxoplasma gondii (MT and 15 due to Trypanosoma cruzi (MC. Pathologic and computerized axial tomography (CAT changes were compared. We found that focal necrotizing encephalitis due to Toxoplasma involved the cerebral cortex and the basal ganglia, whereas lesions due to Trypanosoma cruzi were centered in the white matter, sometimes extending into the cortex. Hemorrhages, myelin lesions and organisms were more pronounced in chagasic than in toxoplasmic encephalitis. These findings are consistent with the literature reviewed.

  14. Risk factors associated with Trypanosoma cruzi exposure in domestic dogs from a rural community in Panama.

    Science.gov (United States)

    Saldaña, Azael; Calzada, José E; Pineda, Vanessa; Perea, Milixa; Rigg, Chystrie; González, Kadir; Santamaria, Ana Maria; Gottdenker, Nicole L; Chaves, Luis F

    2015-11-01

    Chagas disease, caused by Trypanosoma cruzi infection, is a zoonosis of humans, wild and domestic mammals, including dogs. In Panama, the main T. cruzi vector is Rhodnius pallescens, a triatomine bug whose main natural habitat is the royal palm, Attalea butyracea. In this paper, we present results from three T. cruzi serological tests (immunochromatographic dipstick, indirect immunofluorescence and ELISA) performed in 51 dogs from 24 houses in Trinidad de Las Minas, western Panama. We found that nine dogs were seropositive (17.6% prevalence). Dogs were 1.6 times more likely to become T. cruzi seropositive with each year of age and 11.6 times if royal palms where present in the peridomiciliary area of the dog's household or its two nearest neighbours. Mouse-baited-adhesive traps were employed to evaluate 12 peridomestic royal palms. All palms were found infested with R. pallescens with an average of 25.50 triatomines captured per palm. Of 35 adult bugs analysed, 88.6% showed protozoa flagellates in their intestinal contents. In addition, dogs were five times more likely to be infected by the presence of an additional domestic animal species in the dog's peridomiciliary environment. Our results suggest that interventions focused on royal palms might reduce the exposure to T. cruzi infection.

  15. Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

    Science.gov (United States)

    Silva-Neto, Mário A. C.; Carneiro, Alan B.; Silva-Cardoso, Livia; Atella, Georgia C.

    2012-01-01

    Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease. PMID:22132309

  16. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  17. Trypanosoma cruzi in dogs: electrocardiographic and echocardiographic evaluation, in Malinalco, State of Mexico

    Directory of Open Access Journals (Sweden)

    González-Vieyra SD

    2011-12-01

    Full Text Available Sandra Díaz González-Vieyra1, Ninfa Ramírez-Durán2, Ángel H Sandoval-Trujillo3, Juan C Vázquez-Chagoyán1, Humberto G Monroy-Salazar1, Alberto Barbabosa-Pliego11Research Center of Advanced Studies in Animal Health, Veterinary Husbandry School, 2Medical and Ambiental Microbiology, Research Center of Advanced Studies in Health Science, School of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico; 3Department of Biological Systems, Metropolitan Autonomous University, Xochimilco, Mexico City, MexicoAbstract: Chagas disease caused by Trypanosoma cruzi is an important public health problem in Latin America. Dogs are considered a risk factor for human Chagas disease, a sentinel for T. cruzi infection in endemic regions and an animal model to study pathological aspects of the disease. The potential use of dogs as indicators of human cardiac pathogenicity of local T. cruzi strains has been studied insufficiently. We studied electrocardiographic (EKG and echocardiographic (ECG alteration frequencies observed in an open population of dogs in Malinalco, Mexico, and determined if such frequencies were statistically associated with T. cruzi infection in dogs. Animals (n = 139 were clinically examined and owners were asked to answer a questionnaire about dogs’ living conditions. Two commercial serological tests (IHA, ELISA were conducted to detect anti-T. cruzi serum antibodies. Significant differences between seropositive and seronegative animals in cardiomyopathic frequencies were detected through EKG and ECG (P < 0.05. Thirty dogs (21.58% were serologically positive to anti-T. cruzi antibodies (to ELISA and IHA assays, of which nine (30% had EKG and/or ECG alterations. From the remaining 104 (78.42% seronegative animals, five (4.5% had EKG and/or ECG abnormalities. Our data support the hypothesis that most EKG and ECG alterations found in dogs from Malinalco could be associated with T. cruzi infection. Considering the dog as a

  18. The early implementation of Trypanosoma cruzi antibody screening of donors and donations within England: preempting a problem.

    Science.gov (United States)

    Kitchen, Alan D; Hewitt, Patricia E; Chiodini, Peter L

    2012-09-01

    Trypanosoma cruzi is a parasitic infection endemic in Central and Southern America, but is spreading into nonendemic countries with migration of infected individuals from endemic countries. The parasite is transmitted by transfusion or transplantation and donation screening is performed routinely in endemic countries to prevent transmission. In situations where migrants from endemic countries have settled in nonendemic countries and present as donors (blood or other cellular products), intervention is required to prevent transfusion or transplantation transmission. A screening program for T. cruzi was developed and has been used successfully for over 10 years that includes donor selection and donation screening. Donor selection criteria to identify specific risk of T. cruzi infection were developed together with laboratory screening of donations for T. cruzi antibodies and the subsequent confirmation of screen reactivity. Since the introduction of T. cruzi screening in England in 1998, a total of 38,585 donors and donations have been screened for T. cruzi antibodies, of which 223 were repeat reactive on screening and referred for confirmation: 206 confirmed negative, 14 inconclusive, and three positive. Since the move in 2005 from donor qualification to donation release testing, 15,536 donations were collected and screened, of which 15,499 (99.8%) were T. cruzi antibody negative and released to inventory. An effective program to minimize risk of the transmission of T. cruzi infection via donations has been developed and implemented. Not only does the program minimize risk of transmission, it also minimizes the cumulative, and needless, loss of donors and donations that would ensue if permanent donor deferral alone was adopted. © 2012 American Association of Blood Banks.

  19. Molecular characterization and interactome analysis of Trypanosoma cruzi tryparedoxin II.

    Science.gov (United States)

    Arias, Diego G; Piñeyro, María Dolores; Iglesias, Alberto A; Guerrero, Sergio A; Robello, Carlos

    2015-04-29

    Trypanosoma cruzi, the causative agent of Chagas disease, possesses two tryparedoxins (TcTXNI and TcTXNII), belonging to the thioredoxin superfamily. TXNs are oxidoreductases which mediate electron transfer between trypanothione and peroxiredoxins. This constitutes a difference with the host cells, in which these activities are mediated by thioredoxins. These differences make TXNs an attractive target for drug development. In a previous work we characterized TcTXNI, including the redox interactome. In this work we extend the study to TcTXNII. We demonstrate that TcTXNII is a transmembrane protein anchored to the surface of the mitochondria and endoplasmic reticulum, with a cytoplasmatic orientation of the redox domain. It would be expressed during the metacyclogenesis process. In order to continue with the characterization of the redox interactome of T. cruzi, we designed an active site mutant TcTXNII lacking the resolving cysteine, and through the expression of this mutant protein and incubation with T. cruzi proteins, heterodisulfide complexes were isolated by affinity chromatography and identified by mass spectrometry. This allowed us to identify sixteen TcTXNII interacting proteins, which are involved in a wide range of cellular processes, indicating the relevance of TcTXNII, and contributing to our understanding of the redox interactome of T. cruzi. T. cruzi, the causative agent of Chagas disease, constitutes a major sanitary problem in Latin America. The number of estimated infected persons is ca. 8 million, 28 million people are at risk of infection and ~20,000 deaths occur per year in endemic regions. No vaccines are available at present, and most drugs currently in use were developed decades ago and show variable efficacy with undesirable side effects. The parasite is able to live and prolipherate inside macrophage phagosomes, where it is exposed to cytotoxic reactive oxygen and nitrogen species, derived from macrophage activation. Therefore, T. cruzi

  20. Vaccination with Trypanosoma rangeli induces resistance of guinea pigs to virulent Trypanosoma cruzi.

    Science.gov (United States)

    Basso, B; Moretti, E; Fretes, R

    2014-01-15

    Chagas' disease, endemic in Latin America, is spread in natural environments through animal reservoirs, including marsupials, mice and guinea pigs. Farms breeding guinea pigs for food are located in some Latin-American countries with consequent risk of digestive infection. The aim of this work was to study the effect of vaccination with Trypanosoma rangeli in guinea pigs challenged with Trypanosoma cruzi. Animals were vaccinated with fixated epimastigotes of T. rangeli, emulsified with saponin. Controls received only PBS. Before being challenged with T. cruzi, parasitemia, survival rates and histological studies were performed. The vaccinated guinea pigs revealed significantly lower parasitemia than controls (pguinea pigs and dogs. The development of vaccines for use in animals, like domestic dogs and guinea pigs in captivity, opens up new opportunities for preventive tools, and could reduce the risk of infection with T. cruzi in the community. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Congenital Trypanosoma cruzi Transmission in Santa Cruz, Bolivia

    Science.gov (United States)

    Bern, Caryn; Verastegui, Manuela; Gilman, Robert H.; LaFuente, Carlos; Galdos-Cardenas, Gerson; Calderon, Maritza; Pacori, Juan; Abastoflor, Maria del Carmen; Aparicio, Hugo; Brady, Mark F.; Ferrufino, Lisbeth; Angulo, Noelia; Marcus, Sarah; Sterling, Charles; Maguire, James H.

    2017-01-01

    Background We conducted a study of congenital Trypanosoma cruzi infection in Santa Cruz, Bolivia. Our objective was to apply new tools to identify weak points in current screening algorithms, and find ways to improve them. Methods Women presenting for delivery were screened by rapid and conventional serological tests. For infants of infected mothers, blood specimens obtained on days 0, 7, 21, 30, 90, 180, and 270 were concentrated and examined microscopically; serological tests were performed for the day 90, 180, and 270 specimens. Maternal and infant specimens, including umbilical tissue, were tested by polymerase chain reaction (PCR) targeting the kinetoplast minicircle and by quantitative PCR. Results Of 530 women, 154 (29%) were seropositive. Ten infants had congenital T. cruzi infection. Only 4 infants had positive results of microscopy evaluation in the first month, and none had positive cord blood microscopy results. PCR results were positive for 6 (67%) of 9 cord blood and 7 (87.5%) of 8 umbilical tissue specimens. PCR-positive women were more likely to transmit T. cruzi than were seropositive women with negative PCR results (P < .05). Parasite loads determined by quantitative PCR were higher for mothers of infected infants than for seropositive mothers of uninfected infants (P < .01). Despite intensive efforts, only 58% of at-risk infants had a month 9 specimen collected. Conclusions On the basis of the low sensitivity of microscopy in cord blood and high rate of loss to follow-up, we estimate that current screening programs miss one-half of all infected infants. Molecular techniques may improve early detection. PMID:19877966

  2. Prevalence of Trypanosoma cruzi/HIV coinfection in southern Brazil

    Directory of Open Access Journals (Sweden)

    Dulce Stauffert

    2017-03-01

    Full Text Available Chagas disease reactivation has been a defining condition for acquired immune deficiency syndrome in Brazil for individuals coinfected with Trypanosoma cruzi and HIV since 2004. Although the first coinfection case was reported in the 1980s, its prevalence has not been firmly established. In order to know coinfection prevalence, a cross-sectional study of 200 HIV patients was performed between January and July 2013 in the city of Pelotas, in southern Rio Grande do Sul, an endemic area for Chagas disease. Ten subjects were found positive for T. cruzi infection by chemiluminescence microparticle immunoassay and indirect immunofluorescence. The survey showed 5% coinfection prevalence among HIV patients (95% CI: 2.0–8.0, which was 3.8 times as high as that estimated by the Ministry of Health of Brazil. Six individuals had a viral load higher than 100,000 copies per μL, a statistically significant difference for T. cruzi presence. These findings highlight the importance of screening HIV patients from Chagas disease endemic areas.

  3. Mast cells in the colon of Trypanosoma cruzi-infected patients: are they involved in the recruitment, survival and/or activation of eosinophils?

    Science.gov (United States)

    Martins, Patrícia Rocha; Nascimento, Rodolfo Duarte; Lopes, Júlia Guimarães; Santos, Mônica Morais; de Oliveira, Cleida Aparecida; de Oliveira, Enio Chaves; Martinelli, Patrícia Massara; d'Ávila Reis, Débora

    2015-05-01

    Megacolon is frequently observed in patients who develop the digestive form of Chagas disease. It is characterized by dilation of the rectum-sigmoid portion and thickening of the colon wall. Microscopically, the affected organ presents denervation, which has been considered as consequence of an inflammatory process that begins at the acute phase and persists in the chronic phase of infection. Inflammatory infiltrates are composed of lymphocytes, macrophages, natural killer cells, mast cells, and eosinophils. In this study, we hypothesized that mast cells producing tryptase could influence the migration and the activation of eosinophils at the site, thereby contributing to the immunopathology of the chronic phase. We seek evidence of interactions between mast cells and eosinophils through (1) evaluation of eosinophils, regarding the expression of PAR2, a tryptase receptor; (2) correlation analysis between densities of mast cells and eosinophils; and (3) ultrastructural studies. The electron microscopy studies revealed signs of activation of mast cells and eosinophils, as well as physical interaction between these cells. Immunohistochemistry and correlation analyses point to the participation of tryptase immunoreactive mast cells in the migration and/or survival of eosinophils at the affected organ.

  4. The Prevalence of Chagas Heart Disease in a Central Bolivian Community Endemic for Trypanosoma Cruzi

    Science.gov (United States)

    Yager, Jessica E.; Lozano Beltran, Daniel F.; Torrico, Faustino; Gilman, Robert H.; Bern, Caryn

    2015-01-01

    Background Though the incidence of new Trypanosoma cruzi infections has decreased significantly in endemic regions in the Americas, medical professionals continue to encounter a high burden of resulting Chagas disease among infected adults. The current prevalence of Chagas heart disease in a community setting is not known; nor is it known how recent insecticide vector control measures may have impacted the progression of cardiac disease in an infected population. Objectives and Methods Nested within a community serosurvey in rural and periurban communities in central Bolivia, we performed a cross-sectional cardiac substudy to evaluate adults for historical, clinical, and electrocardiographic evidence of cardiac disease. All adults between the ages of 20 and 60 years old with T. cruzi infection and those with a clinical history, physical exam, or ECG consistent with cardiac abnormalities were also scheduled for echocardiography. Results and conclusions Of the 604 cardiac substudy participants with definitive serology results, 183 were seropositive for infection with T. cruzi (30.3%). Participants who were seropositive for T. cruzi infection were more likely to have conduction system defects (1.6% versus 0 for complete right bundle branch block and 10.4% versus 1.9% for any bundle branch block; p=0.008 and p<0.001, respectively). However, there was no statistically significant difference in the prevalence of bradycardia among seropositive versus seronegative participants. Echocardiogram findings were not consistent with a high burden of Chagas cardiomyopathy: valvulopathies were the most common abnormality, and few participants were found to have low ejection fraction or left ventricular dilatation. No participants had significant heart failure. Though almost one third of adults in the community were seropositive for T. cruzi infection, few had evidence of Chagas heart disease. PMID:26407509

  5. Structural modelling and comparative analysis of homologous, analogous and specific proteins from Trypanosoma cruzi versus Homo sapiens: putative drug targets for chagas' disease treatment.

    Science.gov (United States)

    Capriles, Priscila V S Z; Guimarães, Ana C R; Otto, Thomas D; Miranda, Antonio B; Dardenne, Laurent E; Degrave, Wim M

    2010-10-29

    Trypanosoma cruzi is the etiological agent of Chagas' disease, an endemic infection that causes thousands of deaths every year in Latin America. Therapeutic options remain inefficient, demanding the search for new drugs and/or new molecular targets. Such efforts can focus on proteins that are specific to the parasite, but analogous enzymes and enzymes with a three-dimensional (3D) structure sufficiently different from the corresponding host proteins may represent equally interesting targets. In order to find these targets we used the workflows MHOLline and AnEnΠ obtaining 3D models from homologous, analogous and specific proteins of Trypanosoma cruzi versus Homo sapiens. We applied genome wide comparative modelling techniques to obtain 3D models for 3,286 predicted proteins of T. cruzi. In combination with comparative genome analysis to Homo sapiens, we were able to identify a subset of 397 enzyme sequences, of which 356 are homologous, 3 analogous and 38 specific to the parasite. In this work, we present a set of 397 enzyme models of T. cruzi that can constitute potential structure-based drug targets to be investigated for the development of new strategies to fight Chagas' disease. The strategies presented here support the concept of structural analysis in conjunction with protein functional analysis as an interesting computational methodology to detect potential targets for structure-based rational drug design. For example, 2,4-dienoyl-CoA reductase (EC 1.3.1.34) and triacylglycerol lipase (EC 3.1.1.3), classified as analogous proteins in relation to H. sapiens enzymes, were identified as new potential molecular targets.

  6. MDL28170, a calpain inhibitor, affects Trypanosoma cruzi metacyclogenesis, ultrastructure and attachment to Rhodnius prolixus midgut.

    Directory of Open Access Journals (Sweden)

    Vítor Ennes-Vidal

    Full Text Available BACKGROUND: Trypanosoma cruzi is the etiological agent of Chagas' disease. During the parasite life cycle, many molecules are involved in the differentiation process and infectivity. Peptidases are relevant for crucial steps of T. cruzi life cycle; as such, it is conceivable that they may participate in the metacyclogenesis and interaction with the invertebrate host. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we have investigated the effect of the calpain inhibitor MDL28170 on the attachment of T. cruzi epimastigotes to the luminal midgut surface of Rhodnius prolixus, as well as on the metacyclogenesis process and ultrastructure. MDL28170 treatment was capable of significantly reducing the number of bound epimastigotes to the luminal surface midgut of the insect. Once the cross-reactivity of the anti-Dm-calpain was assessed, it was possible to block calpain molecules by the antibody, leading to a significant reduction in the capacity of adhesion to the insect guts by T. cruzi. However, the antibodies were unable to interfere in metacyclogenesis, which was impaired by the calpain inhibitor presenting a significant reduction in the number of metacyclic trypomastigotes. The calpain inhibitor also promoted a direct effect against bloodstream trypomastigotes. Ultrastructural analysis of epimastigotes treated with the calpain inhibitor revealed disorganization in the reservosomes, Golgi and plasma membrane disruption. CONCLUSIONS/SIGNIFICANCE: The presence of calpain and calpain-like molecules in a wide range of organisms suggests that these proteins could be necessary for basic cellular functions. Herein, we demonstrated the effects of MDL28170 in crucial steps of the T. cruzi life cycle, such as attachment to the insect midgut and metacyclogenesis, as well as in parasite viability and morphology. Together with our previous findings, these results help to shed some light on the functions of T. cruzi calpains. Considering the potential roles of

  7. Cytokine production but lack of proliferation in peripheral blood mononuclear cells from chronic Chagas' disease cardiomyopathy patients in response to T. cruzi ribosomal P proteins.

    Directory of Open Access Journals (Sweden)

    Silvia A Longhi

    2014-06-01

    Full Text Available BACKGROUND: Trypanosoma cruzi ribosomal P proteins, P2β and P0, induce high levels of antibodies in patients with chronic Chagas' disease Cardiomyopathy (CCC. It is well known that these antibodies alter the beating rate of cardiomyocytes and provoke apoptosis by their interaction with β1-adrenergic and M2-muscarinic cardiac receptors. Based on these findings, we decided to study the cellular immune response to these proteins in CCC patients compared to non-infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated proliferation, presence of surface activation markers and cytokine production in peripheral blood mononuclear cells (PBMC stimulated with P2β, the C-terminal portion of P0 (CP0 proteins and T. cruzi lysate from CCC patients predominantly infected with TcVI lineage. PBMC from CCC patients cultured with P2β or CP0 proteins, failed to proliferate and express CD25 and HLA-DR on T cell populations. However, multiplex cytokine assays showed that these antigens triggered higher secretion of IL-10, TNF-α and GM-CSF by PBMC as well as both CD4+ and CD8+ T cells subsets of CCC subjects. Upon T. cruzi lysate stimulation, PBMC from CCC patients not only proliferated but also became activated within the context of Th1 response. Interestingly, T. cruzi lysate was also able to induce the secretion of GM-CSF by CD4+ or CD8+ T cells. CONCLUSIONS/SIGNIFICANCE: Our results showed that although the lack of PBMC proliferation in CCC patients in response to ribosomal P proteins, the detection of IL-10, TNF-α and GM-CSF suggests that specific T cells could have both immunoregulatory and pro-inflammatory potential, which might modulate the immune response in Chagas' disease. Furthermore, it was possible to demonstrate for the first time that GM-CSF was produced by PBMC of CCC patients in response not only to recombinant ribosomal P proteins but also to parasite lysate, suggesting the value of this cytokine to evaluate T cells responses in T

  8. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231.

    Science.gov (United States)

    Baptista, Rodrigo P; Reis-Cunha, Joao Luis; DeBarry, Jeremy D; Chiari, Egler; Kissinger, Jessica C; Bartholomeu, Daniella C; Macedo, Andrea M

    2018-02-14

    Next-generation sequencing (NGS) methods are low-cost high-throughput technologies that produce thousands to millions of sequence reads. Despite the high number of raw sequence reads, their short length, relative to Sanger, PacBio or Nanopore reads, complicates the assembly of genomic repeats. Many genome tools are available, but the assembly of highly repetitive genome sequences using only NGS short reads remains challenging. Genome assembly of organisms responsible for important neglected diseases such as Trypanosoma cruzi, the aetiological agent of Chagas disease, is known to be challenging because of their repetitive nature. Only three of six recognized discrete typing units (DTUs) of the parasite have their draft genomes published and therefore genome evolution analyses in the taxon are limited. In this study, we developed a computational workflow to assemble highly repetitive genomes via a combination of de novo and reference-based assembly strategies to better overcome the intrinsic limitations of each, based on Illumina reads. The highly repetitive genome of the human-infecting parasite T. cruzi 231 strain was used as a test subject. The combined-assembly approach shown in this study benefits from the reference-based assembly ability to resolve highly repetitive sequences and from the de novo capacity to assemble genome-specific regions, improving the quality of the assembly. The acceptable confidence obtained by analyzing our results showed that our combined approach is an attractive option to assemble highly repetitive genomes with NGS short reads. Phylogenomic analysis including the 231 strain, the first representative of DTU III whose genome was sequenced, was also performed and provides new insights into T. cruzi genome evolution.

  9. Molecular basis of mammalian cell invasion by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Nobuko Yoshida

    2006-03-01

    Full Text Available Establishment of infection by Trypanosoma cruzi, the agent of Chagas' disease, depends on a series of events involving interactions of diverse parasite molecules with host components. Here we focus on the mechanisms of target cell invasion by metacyclic trypomastigotes (MT and mammalian tissue culture trypomastigotes (TCT. During MT or TCT internalization, signal transduction pathways are activated both in the parasite and the target cell, leading to Ca2+ mobilization. For cell adhesion, MT engage surface glycoproteins, such as gp82 and gp35/50, which are Ca2+ signal-inducing molecules. In T. cruzi isolates that enter host cells in gp82-mediated manner, parasite protein tyrosine kinase as well as phospholipase C are activated, and Ca2+ is released from I P3-sensitive stores, whereas in T. cruzi isolates that attach to target cells mainly through gp35/50, the signaling pathway involving adenylate cyclase appears to be stimulated, with Ca2+ release from acidocalciosomes. In addition, T. cruzi isolate-dependent inhibitory signals, mediated by MT-specific gp90, may be triggered both in the host cell and the parasite. The repertoire of TCT molecules implicated in cell invasion includes surface glycoproteins of gp85 family, with members containing binding sites for laminin and cytokeratin 18, enzymes such as cruzipain, trans-sialidase, and an oligopeptidase B that generates a Ca2+-agonist from a precursor molecule.O estabelecimento da infecção por Trypanosoma cruzi, o agente da doença de Chagas, depende de uma série de eventos envolvendo interações de diversas moléculas do parasita com componentes do hospedeiro. Focalizamos aqui os mecanismos de invasão celular por tripomastigotas metacíclicos (TM e por tripomastigotas de cultura de tecido (TCT. Durante a internalização de TM ou TCT, vias de transdução de sinal são ativadas tanto no parasita como na célula alvo, acarretando a mobilização de Ca2+. Para adesão, TM utiliza as glicoprote

  10. Genotype diversity of Trypanosoma cruzi in small rodents and Triatoma sanguisuga from a rural area in New Orleans, Louisiana.

    Science.gov (United States)

    Herrera, Claudia P; Licon, Meredith H; Nation, Catherine S; Jameson, Samuel B; Wesson, Dawn M

    2015-02-24

    Chagas disease is an anthropozoonosis caused by the protozoan parasite Trypanosoma cruzi that represents a major public health problem in Latin America. Although the United States is defined as non-endemic for Chagas disease due to the rarity of human cases, the presence of T. cruzi has now been amply demonstrated as enzootic in different regions of the south of the country from Georgia to California. In southeastern Louisiana, a high T. cruzi infection rate has been demonstrated in Triatoma sanguisuga, the local vector in this area. However, little is known about the role of small mammals in the wild and peridomestic transmission cycles. This study focused on the molecular identification and genotyping of T. cruzi in both small rodents and T. sanguisuga from a rural area of New Orleans, Louisiana. DNA extractions were prepared from rodent heart, liver, spleen and skeletal muscle tissues and from cultures established from vector feces. T. cruzi infection was determined by standard PCR using primers specific for the minicircle variable region of the kinetoplastid DNA (kDNA) and the highly repetitive genomic satellite DNA (satDNA). Genotyping of discrete typing units (DTUs) was performed by amplification of mini-exon and 18S and 24Sα rRNA genes and subsequent sequence analysis. The DTUs TcI, TcIV and, for the first time, TcII, were identified in tissues of mice and rats naturally infected with T. cruzi captured in an area of New Orleans, close to the house where the first human case of Chagas disease was reported in Louisiana. The T. cruzi infection rate in 59 captured rodents was 76%. The frequencies of the detected DTUs in such mammals were TcI 82%, TcII 22% and TcIV 9%; 13% of all infections contained more than one DTU. Our results indicate a probable presence of a considerably greater diversity in T. cruzi DTUs circulating in the southeastern United States than previously reported. Understanding T. cruzi transmission dynamics in sylvatic and peridomestic cycles

  11. Ebi3 Prevents Trypanosoma cruzi-Induced Myocarditis by Dampening IFN-γ-Driven Inflammation

    Directory of Open Access Journals (Sweden)

    Tiago Silva Medina

    2017-09-01

    Full Text Available The identification of anti-inflammatory mediators can reveal important targetable molecules capable of counterbalancing Trypanosoma cruzi-induced myocarditis. Composed of Ebi3 and IL-27p28 subunits, IL-27 is produced by myeloid cells and is able to suppress inflammation by inducing IL-10-producing Tr1 cells, thus emerging as a potential candidate to ameliorate cardiac inflammation induced by T. cruzi. Although IL-27 has been extensively characterized as a suppressive cytokine that prevents liver immunopathogenesis after T. cruzi infection, the mechanisms underlying its effects on T. cruzi-induced myocarditis remain largely unknown. Here, wild-type (WT and Ebi3-deficient animals were intraperitoneally infected with trypomastigotes of T. cruzi Y strain and used to evaluate the potential anti-inflammatory properties of Ebi3 during T. cruzi infection. The survival rates of mice were daily recorded, the frequency of inflammatory cells was analyzed by flow cytometry and inflammatory mediators were measured by ELISA, real-time PCR and PCR array. We reported that T. cruzi-induced myocarditis was prevented by Ebi3. Stressors mainly recognized by TLR2 and TLR4 receptors on myeloid cells were essential to trigger IL-27p28 production. In addition, Ebi3 regulated IFN-γ-mediated myocarditis by promoting an anti-inflammatory environment through IL-10, which was most likely produced by Tr1 cells rather than classical regulatory T cells (Tregs, in the heart tissue of T. cruzi-infected animals. Furthermore, in vivo IFN-γ blockade ameliorated the host survival without compromising the parasite control in the bloodstream. In humans, IL-27p28 was correlated with cardiac protection during Chagas disease. Patients with mild clinical forms of the disease produced high levels of IL-27p28, whereas lower levels were found in those with severe forms. In addition, polymorphic sites at Ebi3 gene were associated with severe cardiomyopathy in patients with Chagas disease

  12. Ebi3 Prevents Trypanosoma cruzi-Induced Myocarditis by Dampening IFN-γ-Driven Inflammation

    Science.gov (United States)

    Medina, Tiago Silva; Oliveira, Gabriela Gonçalves; Silva, Maria Cláudia; David, Bruna Araújo; Silva, Grace Kelly; Fonseca, Denise Morais; Sesti-Costa, Renata; Frade, Amanda Farage; Baron, Monique Andrade; Ianni, Barbara; Pereira, Alexandre Costa; Chevillard, Christophe; Cunha-Neto, Edécio; Marin-Neto, José Antonio; Silva, João Santana

    2017-01-01

    The identification of anti-inflammatory mediators can reveal important targetable molecules capable of counterbalancing Trypanosoma cruzi-induced myocarditis. Composed of Ebi3 and IL-27p28 subunits, IL-27 is produced by myeloid cells and is able to suppress inflammation by inducing IL-10-producing Tr1 cells, thus emerging as a potential candidate to ameliorate cardiac inflammation induced by T. cruzi. Although IL-27 has been extensively characterized as a suppressive cytokine that prevents liver immunopathogenesis after T. cruzi infection, the mechanisms underlying its effects on T. cruzi-induced myocarditis remain largely unknown. Here, wild-type (WT) and Ebi3-deficient animals were intraperitoneally infected with trypomastigotes of T. cruzi Y strain and used to evaluate the potential anti-inflammatory properties of Ebi3 during T. cruzi infection. The survival rates of mice were daily recorded, the frequency of inflammatory cells was analyzed by flow cytometry and inflammatory mediators were measured by ELISA, real-time PCR and PCR array. We reported that T. cruzi-induced myocarditis was prevented by Ebi3. Stressors mainly recognized by TLR2 and TLR4 receptors on myeloid cells were essential to trigger IL-27p28 production. In addition, Ebi3 regulated IFN-γ-mediated myocarditis by promoting an anti-inflammatory environment through IL-10, which was most likely produced by Tr1 cells rather than classical regulatory T cells (Tregs), in the heart tissue of T. cruzi-infected animals. Furthermore, in vivo IFN-γ blockade ameliorated the host survival without compromising the parasite control in the bloodstream. In humans, IL-27p28 was correlated with cardiac protection during Chagas disease. Patients with mild clinical forms of the disease produced high levels of IL-27p28, whereas lower levels were found in those with severe forms. In addition, polymorphic sites at Ebi3 gene were associated with severe cardiomyopathy in patients with Chagas disease. Collectively, we

  13. Trypanosoma cruzi: vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Maria P. Deane

    1984-12-01

    Full Text Available Epimastigotes multiplying extracellularly and metacyclic trypomastigotes, stages that correspond to the cycle of Trypanosoma cruzi in the intestinal lumen of its insect vector, were consistently found in the lumen of the anal glands of opossums Didelphis marsupialis inoculated subcutaneously with infective feces of triatomid bugs.No gambá (Didelphis marsupialis foi observado um ciclo extracelular do Trypanosoma cruzi: o parasita crescia abundantemente no material de secreção acumulado no lumen das glandulas anais de animais criados em cativeiro e infectados por via subcutanea com fezes de triatomineos.

  14. F(ab'2 antibody fragments against Trypanosoma cruzi calreticulin inhibit its interaction with the first component of human complement

    Directory of Open Access Journals (Sweden)

    LORENA AGUILAR

    2005-01-01

    Full Text Available Trypanosoma cruzi calreticulin (TcCRT, described in our laboratory, retains several important functional features from its vertebrate homologues. We have shown that recombinant TcCRT inhibits the human complement system when it binds to the collagenous portion of C1q. The generation of classical pathway convertases and membrane attack complexes is thus strongly inhibited. In most T. cruzi-infected individuals, TcCRT is immunogenic and mediates the generation of specific antibodies. By reverting the C1q / TcCRT interaction, a parasite immune evasion strategy, these antibodies contribute to the host / parasite equilibrium. In an in vitro correlate of this situation, we show that the C1q / TcCRT interaction is inhibited by F(ab'2 polyclonal anti-TcCRT IgG fragments. It is therefore feasible that in infected humans anti-TcCRT antibodies participate in reverting an important parasite strategy aimed at inhibiting the classical complement pathway. Thus, membrane-bound TcCRT interacts with the collagenous portion C1q, and this C1q is recognized by the CD91-bound host cell CRT, thus facilitating parasite internalization. Based on our in vitro results, it could be proposed that the in vivo interaction between TcCRT and vertebrate C1q could be inhibited by F(ab'2 fragments anti-rTcCRT or against its S functional domain, thus interfering with the internalization process

  15. Trypanosoma cruzi strains from triatomine collected in Bahia and Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Aline Rimoldi Ribeiro

    2014-04-01

    Full Text Available OBJECTIVE Collection of triatomines in domestic, peridomestic and sylvatic environments in states of Bahia and Rio Grande do Sul, Northeastern and Southern Brazil respectively, and isolation of Trypanosoma cruzi strains. METHODS First, the captured triatomines were identified using insect identification keys, then their intestinal content was examined by abdominal compression, and the samples containing trypanosomatid forms were inoculated in LIT medium and Swiss mice. RESULTS Six triatomine species were collected in cities in Bahia, namely Panstrongylus geniculatus (01, Triatoma melanocephala (11, T. lenti (94, T. pseudomaculata (02, T. sherlocki (26 and T. sordida (460, and two in cities in Rio Grande do Sul, namely T. circummaculata (11 and T. rubrovaria (115. Out of the specimens examined, T. cruzi was isolated from 28 triatomine divided into four different species: T. melanocephala (one, T. lenti (one, T. rubrovaria (16 and T. sordida (10. Their index of natural infection by T. cruzi was 6.4%. CONCLUSIONS The isolation of T. cruzi strains from triatomines found in domestic and peridomestic areas shows the potential risk of transmission of Chagas disease in the studied cities. The maintenance of those T. cruzi strains in laboratory is intended to promote studies that facilitate the understanding of the parasite-vector-host relationship.

  16. Investigation of hyperfine interactions in DNA and antibody of different lineages of mice infected by T. cruzi by perturbed gamma-gamma angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Silva, Andreia dos Santos

    2012-01-01

    In the present work perturbed angular correlation (PAC) spectroscopy was used to measured electric quadrupole interactions in DNA biomolecules of different mice lineages (A/J, C57BL/6, B6AF1, BXA1 e BXA2), samples of different isotypes of immunoglobulin G (IgG1, IgG2a e IgG2b) and active portions of complete and fragmented immunoglobulin responsible by the immune response. Electric quadrupole interactions were also measured in DNA nitrogenous bases (adenine, cytosine, guanine, thymine). PAC measurements were performed using 111 In → 111C d; 111mC d → 111 Cd; 111 Ag → 111 Cd; e 181 Hf → 181 Ta as probe nuclei, and carried out at room temperature and liquid nitrogen temperature, in order to investigate dynamic and static hyperfine interactions, respectively. The biomolecule samples were directly marked with the radioactive parent nuclei, whose atom link to a certain site in the biomolecules. The biological materials as well as the probe nuclei were chosen to investigate the possibility to use PAC spectroscopy to measure hyperfine parameters at nuclei from metallic elements bound to biomolecules (including the use of different probe nuclei produced in the decay of parent nuclei of four different metals) and also to study the behavior of different biomolecules by means of the measured hyperfine parameters. Results show differences in the hyperfine interactions of probe nuclei bound to the studied biomolecules. Such differences were observed by variations in the hyperfine parameters, which depend on the type of biomolecule and the results also show that the probe nuclei atom bound to the molecule in some cases and in others do not. (author)

  17. Assessing anti-T. cruzi candidates in vitro for sterile cidality

    Directory of Open Access Journals (Sweden)

    Monica Cal

    2016-12-01

    Full Text Available Total clearance of the T. cruzi infection – referred to herein as “sterile cure” – seems to be a critical prerequisite for new drug candidates for Chagas disease, ensuring long-term beneficial effects for patients in the chronic indeterminate stage. This requirement is notably supported by the recent findings of clinical studies involving posaconazole and fosravuconazole, where the majority of patients treated eventually relapsed after an apparent clearance of parasitaemia at the end of treatment. We have adapted an in vitro system to predict the ability of a compound to deliver sterile cure. It relies on mouse peritoneal macrophages as host cells for Trypanosoma cruzi amastigotes. The macrophages do not proliferate, allowing for long-term testing and wash-out experiments. Giemsa staining followed by microscopy provides a highly sensitive and specific tool to quantify the numbers of infected host cells. Combining macrophages as host cells and Giemsa staining as the read-out, we demonstrate that posaconazole and other CYP51 inhibitors are unable to achieve complete clearance of an established T. cruzi infection in vitro in spite of the fact that these compounds are active at significantly lower concentrations than the reference drugs benznidazole and nifurtimox. Indeed, a few macrophages remained infected after 96 h of drug incubation in the presence of CYP51 inhibitors–albeit at a very low parasite load. These residual T. cruzi amastigotes were shown to be viable and infective, as demonstrated by wash-out experiments. We advocate characterizing any new anti-T. cruzi early stage candidates for sterile cidality early in the discovery cascade, as a surrogate for delivery of sterile cure in vivo.

  18. Molecular Diversity of Trypanosoma cruzi Detected in the Vector Triatoma protracta from California, USA.

    Directory of Open Access Journals (Sweden)

    Lisa A Shender

    2016-01-01

    Full Text Available Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections.We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles and northern (Vallecito California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs, revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans.Triatoma protracta populations in California are frequently infected with T. cruzi

  19. Experimental transmission of Trypanosoma cruzi through the genitalia of albino mice

    Directory of Open Access Journals (Sweden)

    Leidi Herrera

    2001-07-01

    Full Text Available Trypanosoma cruzi is usually transmitted by contact with the excreta of infected Triatominae; among non-vectorial infections, direct transmission through coitus has been proposed. We investigated this possibility by instilling, through the external meatus of the vagina and the penis of previously anesthetized NMRI albino mice, blood of mice infected with strains isolated from Didelphis marsupialis (opossum, strain CO57, Rattus rattus (rat, strain CO22 and human (strain EP. Some animals were allowed to copulate the same day of the instillation. In other experiments, the strains were inoculated in the scrotum. To determine the effect of immunosuppression, some mice were treated with cyclophosphamide 30 days post-instillation. Controls were instilled orally and ocularly. Vaginal instillation with strain CO22 produced systemic infection with tropism to the heart, skeletal muscle, skin, duodenum, pancreas, ovary and sternum. Scrotal inoculation with strain EP likewise invaded liver, spleen, lung, lymph nodes and urogenital organs; while strain CO57 invaded skeletal and cardiac muscle, pancreas, testis, and vas deferens. Penile infection with strain CO22 was detected by xenodiagnosis. Immunosuppression did not increase parasitemia of vaginally infected mice or controls. Mating did not produce infection. Our results show that contact of blood trypomastigotes of T. cruzi with genital mucosa can produce blood and tissue infections. These results are discussed in relation to reports of frequent experimental tropism of T. cruzi toward urogenital organs.

  20. Molecular epidemiology of Trypanosoma cruzi and Triatoma dimidiata in costal Ecuador.

    Science.gov (United States)

    Wong, Yim Yan; Sornosa Macias, Karen Jeniffer; Guale Martínez, Doris; Solorzano, Luis F; Ramirez-Sierra, Maria Jesus; Herrera, Claudia; Dumonteil, Eric

    2016-07-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In Ecuador, Triatoma dimidiata and Rhodnius ecuadoriensis are the main vector species, responsible for over half of the cases of T. cruzi infection in the country. T. dimidiata is believed to have been introduced in Ecuador during colonial times, and its elimination from the country is thus believed to be feasible. We investigated here the molecular ecology of T. dimidiata and T. cruzi in costal Ecuador to further guide control efforts. Analysis of the Internal Transcribed Spacer 2 (ITS-2) of 23 specimens from Progreso, Guayas, unambiguously supported the likely importation of T. dimidiata from Central America to Ecuador. The observation of a very high parasite infection rate (54%) and frequent feeding on humans (3/5) confirmed a continued risk of transmission to humans. All genotyped parasites corresponded to TcI DTU and Trypanosoma rangeli was not detected in T. dimidiata. TcI subgroups corresponded to TcIa (25%), and mixed infections with TcIa and TcId (75%). Further studies should help clarify T. cruzi genetic structure in the country, and the possible impact of the introduction of T. dimidiata on the circulating parasite strains. The elevated risk posed by this species warrants continuing efforts for its control, but its apparent mobility between peridomestic and domestic habitats may favor reinfestation following insecticide spraying. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Utilización de Lepidium Peruvianum Maca, como medio de cultivo para el crecimiento de Trypanosoma Cruzi

    OpenAIRE

    Saldaña C, Charles; Córdova P, Ofelia; Vargas V¹, Franklin

    2006-01-01

    Por sus características nutritivas de alto valor, se ensayó la posible utilidad del Lepidium peruvianum maca, como un medio para cultivar Trypanosoma cruzi. Bajo condiciones experimentales se procedió a incubar epimastigotes de T. cruzi en cuatro medios de cultivo bifásicos diferentes, a base de Lepidium peruvianum maca, los cuales fueron comparados con el medio de cultivo BHI como control. La incorporación de maca como medio de cultivo permitió el crecimiento de Trypanosoma cruzi; se determi...

  2. Induction of IL-12 Production in Human Peripheral Monocytes by Trypanosoma cruzi Is Mediated by Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins and Potentiated by IFN-γ and CD40-CD40L Interactions

    Directory of Open Access Journals (Sweden)

    Lúcia Cristina Jamli Abel

    2014-01-01

    Full Text Available Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, is characterized by immunopathology driven by IFN-γ secreting Th1-like T cells. T. cruzi has a thick coat of mucin-like glycoproteins covering its surface, which plays an important role in parasite invasion and host immunomodulation. It has been extensively described that T. cruzi or its products—like GPI anchors isolated from GPI-anchored mucins from the trypomastigote life cycle stage (tGPI-mucins—are potent inducers of proinflammatory responses (i.e., cytokines and NO production by IFN-γ primed murine macrophages. However, little is known about whether T. cruzi or GPI-mucins exert a similar action in human cells. We therefore decided to further investigate the in vitro cytokine production profile from human mononuclear cells from uninfected donors exposed to T. cruzi as well as tGPI-mucins. We observed that both living T. cruzi trypomastigotes and tGPI-mucins are potent inducers of IL-12 by human peripheral blood monocytes and this effect depends on CD40-CD40L interaction and IFN-γ. Our findings suggest that the polarized T1-type cytokine profile seen in T. cruzi infected patients might be a long-term effect of IL-12 production induced by lifelong exposure to T. cruzi tGPI-mucins.

  3. Trypanosoma cruzi Detection in Colombian Patients with a Diagnosis of Esophageal Achalasia.

    Science.gov (United States)

    Panesso-Gómez, Santiago; Pavia, Paula; Rodríguez-Mantilla, Iván Enrique; Lasso, Paola; Orozco, Luis A; Cuellar, Adriana; Puerta, Concepción J; Mendoza de Molano, Belén; González, John M

    2018-03-01

    Achalasia is a motility disorder of the esophagus that might be secondary to a chronic Trypanosoma cruzi infection. Several studies have investigated esophageal achalasia in patients with Chagas disease (CD) in Latin America, but no related studies have been performed in Colombia. The goals of the present study were to determine the presence of anti- T. cruzi antibodies in patients with esophageal achalasia who visited a referral hospital in Bogotá, Colombia, and to detect the presence of the parasite and its discrete typing units (DTUs). This cross-sectional study was conducted in adult patients (18-65 years old) who were previously diagnosed with esophageal achalasia and from whom blood was drawn to assess antibodies against T. cruzi using four different serological tests. Trypanosoma cruzi DNA was detected by conventional polymerase chain reaction (cPCR) and quantitative polymerase chain reaction (qPCR). In total, 38 patients, with an average age of 46.6 years (standard deviation of ±16.2) and comprising 16 men and 22 women, were enrolled. Five (13.15%) patients were found to be positive for anti- T. cruzi antibodies by indirect immunofluorescence assay (IFA), and two patients who were negative according to IFA were reactive by both enzyme-linked immunosorbent assay and immunoblot (5.3%). Parasite DNA was detected in two of these seven patients by cPCR and in one of these by qPCR. The parasite DTU obtained was TcI. In summary, this study identified T. cruzi in Colombian patients with esophageal achalasia, indicating that digestive compromise could also be present in patients with chronic CD.

  4. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: study protocol

    Science.gov (United States)

    2013-01-01

    Background Trypanosoma cruzi has been divided into Discrete Typing Units I and non-I (II-VI). T. cruzi I is predominant in Mexico and Central America, while non-I is predominant in most of South America, including Argentina. Little is known about congenital transmission of T. cruzi I. The specific aim of this study is to determine the rate of congenital transmission of T. cruzi I compared to non-I. Methods/design We are conducting a prospective study to enroll at delivery, 10,000 women in Argentina, 7,500 women in Honduras, and 13,000 women in Mexico. We are measuring transmitted maternal T. cruzi antibodies by performing two rapid tests in cord blood (Stat-Pak, Chembio, Medford, New York, and Trypanosoma Detect, InBios, Seattle, Washington). If at least one of the results is positive, we are identifying infants who are congenitally infected by performing parasitological examinations on cord blood and at 4–8 weeks, and serological follow-up at 10 months. Serological confirmation by ELISA (Wiener, Rosario, Argentina) is performed in cord and maternal blood, and at 10 months. We also are performing T. cruzi standard PCR, real-time quantitative PCR and genotyping on maternal venous blood and on cord blood, and serological examinations on siblings. Data are managed by a Data Center in Montevideo, Uruguay. Data are entered online at the sites in an OpenClinica data management system, and digital pictures of data forms are sent to the Data Center for quality control. Weekly reports allow for rapid feedback to the sites. Trial registration Observational study with ClinicalTrials.gov Identifier NCT01787968 PMID:24119247

  5. Biochemical behavior of Trypanosoma cruzi strains isolated from mice submitted to specific chemotherapy

    Directory of Open Access Journals (Sweden)

    Jesila Pinto M. Marretto

    1994-12-01

    Full Text Available To investigate the influence of chemotherapy on the biochemical beha vior of Trypanosoma cruzi strains, three groups of mice were infected with one of three strains of T. cruzi of different biological and isoenzymic patterns (Peruvian, 21 SF and Colombian strains. Each group was subdivided into subgroups: 1 - treated with nifurtimox; 2 - treated with benznidazole and 3 - untreated infected controls. At the end of treatment, that lasted for 90 days, xenodiagnosis, sub inoculation of blood into new born mice and haemoculture were performed as tests of cure. From the positive tests, 22 samples of T. cruzi were isolated from all subgroups. Electrophoretic analysis of the isoenzymes PGM, GP1, ALAT and AS AT failed to show any difference between parasite strains isolated from treated and untreated mice, which indicates that no detectable clonal selection or parasite genetic markers alterations concerning the isoenzymes analysed have been determined by treatment with drugs of recognized antiparasitic effect, suggesting stability of the phenotypic characteristics of the three biological types of T. cruzi strains.

  6. Polyclonal antibodies for the detection of Trypanosoma cruzi circulating antigens.

    Directory of Open Access Journals (Sweden)

    Edith S Málaga-Machaca

    2017-11-01

    Full Text Available Detection of Trypanosoma cruzi antigens in clinical samples is considered an important diagnostic tool for Chagas disease. The production and use of polyclonal antibodies may contribute to an increase in the sensitivity of immunodiagnosis of Chagas disease.Polyclonal antibodies were raised in alpacas, rabbits, and hens immunized with trypomastigote excreted-secreted antigen, membrane proteins, trypomastigote lysate antigen and recombinant 1F8 to produce polyclonal antibodies. Western blot analysis was performed to determine specificity of the developed antibodies. An antigen capture ELISA of circulating antigens in serum, plasma and urine samples was developed using IgY polyclonal antibodies against T. cruzi membrane antigens (capture antibody and IgG from alpaca raised against TESA. A total of 33 serum, 23 plasma and 9 urine samples were analyzed using the developed test. Among serum samples, compared to serology, the antigen capture ELISA tested positive in 55% of samples. All plasma samples from serology positive subjects were positive in the antigen capture ELISA. All urine positive samples had corresponding plasma samples that were also positive when tested by the antigen capture ELISA.Polyclonal antibodies are useful for detection of circulating antigens in both the plasma and urine of infected individuals. Detection of antigens is direct evidence of the presence of the parasite, and could be a better surrogate of current infection status.

  7. Criopreservação de formas de cultura do Trypanosoma cruzi Cryopreservation of Trypanosoma cruzi culture form

    Directory of Open Access Journals (Sweden)

    Lúcia Maria C. Galvão

    1981-09-01

    Full Text Available Formas de cultura de diferentes cepas do T.cruzi foram submetidas a vários processos de criopreservação. As percentagens de recuperação, avaliadas pela motilidade dos parasitas, foram consideradas como adequadas com algumas das técnicas empregadas, variando entre 60 a 80%. A estabilidade das características biológicas do material criopreservado foi investigada através do estudo das curvas de crescimento e diferenciação em meio acelular, infectividade para celulas de cultura de tecido ("Vero", diferenciação intracelular em cultura de tecido assim como infectividade e curso da infecção em animais de laboratório. De um modo geral essas características nao foram significativamente alteradas no material congelado e estocado por diferentes períodos de tempo.A systematic study of the cryopreservation of T. cruzi culture forms was per formed using different parasite strains and freezing methods. The recovery rates with some of the methods as evaluated by motility of the thawed parasites were fairly high (60-80%. The following aspects have been used to investigate the stability of the parasites' biological characteristics atter cryopreservation: growth and differentiation in acelular medium, infectivity to tissue culture "Vero" cells, intracellular differentiation and infectivity to animals. Those characteristics had not been significantly changed by the cryopreservation procedures.

  8. An ImmunoSignature test distinguishes Trypanosoma cruzi, hepatitis B, hepatitis C and West Nile virus seropositivity among asymptomatic blood donors.

    Directory of Open Access Journals (Sweden)

    Michael Rowe

    2017-09-01

    Full Text Available The complexity of the eukaryotic parasite Trypanosoma (T. cruzi manifests in its highly dynamic genome, multi-host life cycle, progressive morphologies and immune-evasion mechanisms. Accurate determination of infection or Chagas' disease activity and prognosis continues to challenge researchers. We hypothesized that a diagnostic platform with higher ligand complexity than previously employed may hold value.We applied the ImmunoSignature Technology (IST for the detection of T. cruzi-specific antibodies among healthy blood donors. IST is based on capturing the information in an individual's antibody repertoire by exposing their peripheral blood to a library of >100,000 position-addressable, chemically-diverse peptides.Initially, samples from two Chagas cohorts declared positive or negative by bank testing were studied. With the first cohort, library-peptides displaying differential binding signals between T. cruzi sero-states were used to train an algorithm. A classifier was fixed and tested against the training-independent second cohort to determine assay performance. Next, samples from a mixed cohort of donors declared positive for Chagas, hepatitis B, hepatitis C or West Nile virus were assayed on the same library. Signals were used to train a single algorithm that distinguished all four disease states. As a binary test, the accuracy of predicting T. cruzi seropositivity by IST was similar, perhaps modestly reduced, relative to conventional ELISAs. However, the results indicate that information beyond determination of seropositivity may have been captured. These include the identification of cohort subclasses, the simultaneous detection and discerning of other diseases, and the discovery of putative new antigens.The central outcome of this study established IST as a reliable approach for specific determination of T. cruzi seropositivity versus disease-free individuals or those with other diseases. Its potential contribution for monitoring and

  9. The Evolution of Trypanosomes Infecting Humans and Primates

    Directory of Open Access Journals (Sweden)

    Stevens Jamie

    1998-01-01

    Full Text Available Based on phylogenetic analysis of 18S rRNA sequences and clade taxon composition, this paper adopts a biogeographical approach to understanding the evolutionary relationships of the human and primate infective trypanosomes, Trypanosoma cruzi, T. brucei, T. rangeli and T. cyclops. Results indicate that these parasites have divergent origins and fundamentally different patterns of evolution. T. cruzi is placed in a clade with T. rangeli and trypanosomes specific to bats and a kangaroo. The predominantly South American and Australian origins of parasites within this clade suggest an ancient southern super-continent origin for ancestral T. cruzi, possibly in marsupials. T. brucei clusters exclusively with mammalian, salivarian trypanosomes of African origin, suggesting an evolutionary history confined to Africa, while T. cyclops, from an Asian primate appears to have evolved separately and is placed in a clade with T. (Megatrypanum species. Relating clade taxon composition to palaeogeographic evidence, the divergence of T. brucei and T. cruzi can be dated to the mid-Cretaceous, around 100 million years before present, following the separation of Africa, South America and Euramerica. Such an estimate of divergence time is considerably more recent than those of most previous studies based on molecular clock methods. Perhaps significantly, Salivarian trypanosomes appear, from these data, to be evolving several times faster than Schizotrypanum species, a factor which may have contributed to previous anomalous estimates of divergence times.

  10. Knowledge based assessment of intestinal parasitic Infections ...

    African Journals Online (AJOL)

    There is an apparent lack of information on the risk and clinical symptoms of Intestinal Parasitic Infections (IPIs) among students attending boarding secondary schools in Ebonyi State, Nigeria. This questionnaire-based survey attempts to assess some behavioural habits, possible risk factor(s) as well as clinical symptoms ...

  11. Seroprevalence of Trypanosoma cruzi Among Eleven Potential Reservoir Species from Six States Across the Southern United States

    Science.gov (United States)

    Brown, Emily L.; Roellig, Dawn M.; Gompper, Matthew E.; Monello, Ryan J.; Wenning, Krista M.; Gabriel, Mourad W.

    2010-01-01

    Abstract Trypanosoma cruzi, the causative agent of Chagas' disease, is a substantial public health concern in Latin America. Although rare in humans and domestic animals in the United States, T. cruzi is commonly detected in some wildlife species, most commonly raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana). To increase our understanding of the reservoir host species range and geographic distribution, 11 species of mammals from six states spanning the known range of T. cruzi (Arizona, California, Florida, Georgia, Missouri, and Virginia) were tested for antibodies to T. cruzi using indirect immunofluorescent antibody testing. In addition, culture isolation attempts were conducted on a limited number of animals from Georgia and Florida. Evidence of T. cruzi was found in every state except California; however, low numbers of known reservoirs were tested in California. In general, the highest seroprevalence rates were found in raccoons (0–68%) and opossums (17–52%), but antibodies to T. cruzi were also detected in small numbers of striped skunks (Mephitis mephitis) from Arizona and Georgia, bobcats (Lynx rufus) from Georgia, two coyotes (Canis latrans) from Georgia and Virginia, and a ringtail (Bassariscus astutus) from Arizona. Culture-based prevalence rates for raccoons were significantly greater than those for opossums; however, seroprevalences of raccoons and opossums from several geographic locations in Georgia and Florida were not different, indicating that exposure rates of these two species are similar within these areas. For both raccoons and opossums, seroprevalence was significantly higher in females than in males. No difference was detected in seroprevalence between adults and juveniles and between animals caught in urban and rural locations. Our results indicate that T. cruzi prevalence varies by host species, host characteristics, and geographic region and provides data to guide future studies on the natural history of T. cruzi

  12. Chronic myocardial damage in experimental T. cruzi infection of a new world primate, Cebus sp. monkey Lesões miocárdicas crônicas na infecção experimental pelo T. cruzi no macaco (Cebus apella

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Falasca

    1990-06-01

    Full Text Available Eighteen Cebus apella monkeys, (juvenile and adult of both sexes were inoculated five years ago, with three Trypanosoma cruzi strains (CA1, n = 10; Colombian, n=4 and Tulahuen, n=4, either by conjunctival or intraperitoneal route, once or repeatedly. Parasitological, hematological, serological, enzymatic, radiographic, electro and echocardiographic findings have been peviously published15 and they are similar to those observed in human pathology. The most frequent electrocardiographic alteration was right branch bundle block. Six animals, chosen at random, were sacrificed. Those sacrificed 20 to 25 months post-first inoculation showed focal accumuli of leukocytes with myocytolysis. Foci of diffuse interstitial fibrosis with mild infiltrate of leukocytes among fibers were observed in the animals sacrificed 36 to 47 months post-inoculation. No parasites were seen. The lesions were more prominent in the ventricular walls and the septum. The fact that the infiltrates were predominant in the animals sacrificed at a shorter time after first inoculation and that fibrosis was more severe in those sacrificed at a longer time suggests that there is a progression of the infiltrative lesions to fibrosis, with a leukocytic activity indicative of a chronic phase. These lesions are similar to those described in human chronic Chagas' disease. This would demonstrate that this model is useful in evaluating a progress in the knowledge of the pathogenesis which is still a controversial issue, immunology, immunogenesis and chemotherapeutic agents of the chronic and indeterminate phases of this disease.Dezoito macacos Cebus apella (jovens e adultos de ambos os sexos foram inoculados há 5 anos atrás, com 3 cepas de T. cruzi (CA1, n = 10; Colombiana, n =4 e Tulahuen, n =4 seja por via conjuntival ou intraperitonial, uma única vez ou repetidamente. Os achados parasitológicos, hematológicos, sorológicos, enzimáticos, radiográficos, eletro e ecocardiogr

  13. Biochemical behavior of Trypanosoma cruzi strains isolated from mice submitted to specific chemotherapy

    Directory of Open Access Journals (Sweden)

    Jesila Pinto M. Marretto

    1994-12-01

    Full Text Available To investigate the influence of chemotherapy on the biochemical beha vior of Trypanosoma cruzi strains, three groups of mice were infected with one of three strains of T. cruzi of different biological and isoenzymic patterns (Peruvian, 21 SF and Colombian strains. Each group was subdivided into subgroups: 1 - treated with nifurtimox; 2 - treated with benznidazole and 3 - untreated infected controls. At the end of treatment, that lasted for 90 days, xenodiagnosis, sub inoculation of blood into new born mice and haemoculture were performed as tests of cure. From the positive tests, 22 samples of T. cruzi were isolated from all subgroups. Electrophoretic analysis of the isoenzymes PGM, GP1, ALAT and AS AT failed to show any difference between parasite strains isolated from treated and untreated mice, which indicates that no detectable clonal selection or parasite genetic markers alterations concerning the isoenzymes analysed have been determined by treatment with drugs of recognized antiparasitic effect, suggesting stability of the phenotypic characteristics of the three biological types of T. cruzi strains.Com o objetivo de investigar a influência da quimioterapia no padrão bioquímico de diferentes cepas do Trypanosoma cruzi, três grupos de camundongos foram infectados respectivamente com as cepas Peruana, 21 SF e Colombiana, que correspondem a diferentes padrões biológicos e isoenzimáticos. Cada grupo foi subdividido em subgrupos: 1 - tratados com nifurtimox; 2 - tratados com benzonidazol; 3- controles infectados não tratados. Ao final do tratamento que durou 90 dias, os animais foram submetidos a testes parasitológicos de cura: xenodiagnóstico, subinoculação do sangue em camundongos recém-nascidos e hemocultura em meio Warren. A partir da positivação destes testes, foram isoladas 22 amostras do T. cruzi dos três subgrupos. A análise eletroforética dos extratos enzimáticos obtidos após cultura para as enzimas PGM, GPI, ALAT e

  14. Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

    Directory of Open Access Journals (Sweden)

    Mário A. C. Silva-Neto

    2012-01-01

    Full Text Available Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease.

  15. The opossum Didelphis virginiana as a synanthropic reservoir of Trypanosoma cruzi in Dzidzilché, Yucatán, México.

    Science.gov (United States)

    Ruiz-Pina, Hugo A; Cruz-Reyes, Alejandro

    2002-07-01

    In México, the role of mammals in the transmission cycle of Trypanosoma cruzi is poorly known. In the State of Yucatán, an endemic area of Chagas disease, both Didelphis virginiana and D. marsupialis occur sympatrically. However, until now, only the former species had been found infected with T. cruzi. To evaluate the role of D. virginiana in a peridomestic transmission, nine periods of capture-recapture were performed around the village of Dzidzilché, Yucatán. The sex, age, reproductive status, location, and presence of infection with T. cruzi were recorded for each opossum. The chromosome morphology was used to identify the opossum species. T. cruzi was identified by the presence of pseudocysts of amastigotes in cardiac muscle fibers of Balb/c mice inoculated with strains isolated from opossums. However, xenodiagnosis was the best diagnostic method. Triatoma dimidiata, the vector, were collected in and around the opossums' nests, and human dwellings; and were checked for T. cruzi. From 102 blood samples of D. virginiana examined 55 (53.9%) were positive to T. cruzi, the only two D. marsupialis captured were negative. Significant differences were found between infection, and both sex and reproductive condition. Eight out of 14 triatomines collected in peridomestic nests (57.1%), and 32 of 197 captured inside houses (16.3%) were found infected, suggesting a peridomestic transmission. The statistically high abundance of infected opossums and triatomines during the dry season (March to May) suggested the existence of a seasonality in the peridomestic transmission of T. cruzi in Dzidzilché.

  16. The opossum Didelphis virginiana as a synanthropic reservoir of Trypanosoma cruzi in Dzidzilché, Yucatán, México

    Directory of Open Access Journals (Sweden)

    Hugo A Ruiz-Piña

    2002-07-01

    Full Text Available In México, the role of mammals in the transmission cycle of Trypanosoma cruzi is poorly known. In the State of Yucatán, an endemic area of Chagas disease, both Didelphis virginiana and D. marsupialis occur sympatrically. However, until now, only the former species had been found infected with T. cruzi. To evaluate the role of D. virginiana in a peridomestic transmission, nine periods of capture-recapture were performed around the village of Dzidzilché, Yucatán. The sex, age, reproductive status, location, and presence of infection with T. cruzi were recorded for each opossum. The chromosome morphology was used to identify the opossum species. T. cruzi was identified by the presence of pseudocysts of amastigotes in cardiac muscle fibers of Balb/c mice inoculated with strains isolated from opossums. However, xenodiagnosis was the best diagnostic method. Triatoma dimidiata, the vector, were collected in and around the opossums' nests, and human dwellings; and were checked for T. cruzi. From 102 blood samples of D. virginiana examined 55 (53.9% were positive to T. cruzi, the only two D. marsupialis captured were negative. Significant differences were found between infection, and both sex and reproductive condition. Eight out of 14 triatomines collected in peridomestic nests (57.1%, and 32 of 197 captured inside houses (16.3% were found infected, suggesting a peridomestic transmission. The statistically high abundance of infected opossums and triatomines during the dry season (March to May suggested the existence of a seasonality in the peridomestic transmission of T. cruzi in Dzidzilché.

  17. Evolution of anti-Trypanosoma cruzi antibody production in patients with chronic Chagas disease: Correlation between antibody titers and development of cardiac disease severity.

    Directory of Open Access Journals (Sweden)

    Ingebourg Georg

    2017-07-01

    Full Text Available Chagas disease is one of the most important endemic infections in Latin America affecting around 6-7 million people. About 30-50% of patients develop the cardiac form of the disease, which can lead to severe cardiac dysfunction and death. In this scenario, the identification of immunological markers of disease progression would be a valuable tool for early treatment and reduction of death rates. In this observational study, the production of anti-Trypanosoma cruzi antibodies through a retrospective longitudinal follow-up in chronic Chagas disease patients´ cohort and its correlation with disease progression and heart commitment was evaluated. Strong inverse correlation (ρ = -0.6375, p = 0.0005 between anti-T. cruzi IgG1 titers and left ventricular ejection fraction (LVEF in chronic Chagas cardiomyopathy (CCC patients were observed after disease progression. Elevated levels of anti-T. cruzi IgG3 titers were detected in all T. cruzi-infected patients, indicating a lack of correlation of this IgG isotype with disease progression. Furthermore, low levels of anti-T. cruzi IgG2, IgG4, and IgA were detected in all patients through the follow-up. Although without statistical significance anti-T. cruzi IgE tends to be more reactive in patients with the indeterminate form (IND of the disease (p = 0.0637. As this study was conducted in patients with many years of chronic disease no anti-T. cruzi IgM was detected. Taken together, these results indicate that the levels of anti-T. cruzi IgG1 could be considered to seek for promising biomarkers to predict the severity of chronic Chagas disease cardiomyopathy.

  18. Vertical transmission of Trypanosoma cruzi in the Province of Choapa, IV Region, Chile: Preliminary Report (2005-2008

    Directory of Open Access Journals (Sweden)

    Werner Apt

    2010-01-01

    Full Text Available Congenital Chagas disease acquired special importance in Chile after the certification of the control of Triatoma infestans and transmission by blood donors affected with Trypanosoma cruzi. In order to establish adequate protocols for intervention and control in infected mother-neonate pairs in endemic zones of Chagas disease, we present partial results (2005-2008 of a pilot project which is being carried out in the Province of Choapa, IV Region, Chile, whose objectives are: determine the current prevalence of the disease in pregnant women, estimate the incidence of vertical transmission of T. cruzi to newborns, determine the lineages of the parasite present in mothers who do and do not transmit the disease, determine the prevalence of Chagas disease in maternal grandmothers of neonates and study placental histopathology. Preliminary results indicated that in this study period, 3.7% of the women who gave birth in the Province have Chagas disease and 2.5% of their newborns were infected. The most frequent T. cruzi genotypes found in mothers studied during pregnancy were TCI and TCIId, either alone or in mixed infections. A high percentage (74.3% of the grandmothers studied was infected with the parasite. In 29 placentas from mothers with Chagas disease we observed edema, necrosis, fibrinoid deposits and slight lymphoplasmocyte infiltration. In three placentas we found erythroblastosis and in one of them amastigote forms of T. cruzi; this was one of the cases of congenital infection. The evaluation of the diagnostic and control protocols generated will allow us to determine if it has been possible to modify the natural history of vertical transmission of T. cruzi in Chile.

  19. New Class of Antitrypanosomal Agents Based on Imidazopyridines.

    Science.gov (United States)

    Silva, Daniel G; Gillespie, J Robert; Ranade, Ranae M; Herbst, Zackary M; Nguyen, Uyen T T; Buckner, Frederick S; Montanari, Carlos A; Gelb, Michael H

    2017-07-13

    The present work describes the synthesis of 22 new imidazopyridine analogues arising from medicinal chemistry optimization at different sites on the molecule. Seven and 12 compounds exhibited an in vitro EC 50 ≤ 1 μM against Trypanosoma cruzi ( T. cruzi ) and Trypanosoma brucei ( T. brucei ) parasites, respectively. Based on promising results of in vitro activity (EC 50 < 100 nM), cytotoxicity, metabolic stability, protein binding, and pharmacokinetics (PK) properties, compound 20 was selected as a candidate for in vivo efficacy studies. This compound was screened in an acute mouse model against T.cruzi ( Tulahuen strain). After established infection, mice were dosed twice a day for 5 days, and then monitored for 6 weeks using an in vivo imaging system (IVIS). Compound 20 demonstrated parasite inhibition comparable to the benznidazole treatment group. Compound 20 represents a potential lead for the development of drugs to treat trypanosomiasis.

  20. Interaction between Didelphis albiventris and Triatoma infestans in relation to Trypanosoma cruzi transmission

    Directory of Open Access Journals (Sweden)

    Nicolás J. Schweigmann

    1995-12-01

    Full Text Available This paper attempts to prove if a high Trypanosoma cruzi prevalence of opossums might be reached with few potential infective contacts. One non-infected Didelphis albiventris to T. cruzi and 10 infected nymphs of Triatoma infestans were left together during 23 hr in a device that simulated a natural opossum burrow. Twenty-six replicates were perfomed using marsupials and triatomines only once. Potentially infective contacts occurred in all the trials. From the 26 opossums used in trials, 54% did not eat any bug. Of the 260 bugs used, 21% were predated. In the 25 trials involving 205 surving bugs, 36 % of them did not feed. In 15/25 cases, maior ou igual a 60% of the triatomines were able to feed. The parasitological follow-up of 24 opossums showed that among 10 that had eaten bugs, 4 turned out infected and among the 14 that had not predate, 3 (21% became positive. In sum, 7/24 (29% of the marsupials acquired the infection after the experiment. This infection rate was similar to the prevalences found for the opossum population of Santiago del Estero, Argentina, suggesting that the prevalences observed in the field might be reached if each marsupial would encounter infected bugs just once in its lifetime.

  1. Maternal-fetal transmission of Trypanosoma cruzi, a health problem slightly studied in Mexico: case Chiapas

    Directory of Open Access Journals (Sweden)

    Guillermina Campos-Valdez

    2016-05-01

    Full Text Available Objective. To determine the Trypanosoma cruzi infection prevalence in 1125 pregnant women and the transmission frequency to their children from Tapachula and Palenque, Chiapas. Materials and methods. We determined the prevalence by serology tests and the transmission frequency by polymerase chain reaction (PCR and T. cruzi reactivity capacity after 12 months. Results. Total maternal infection prevalence were 23/1 125 (2.04%, 9/600 (1.5% were from Tapachula and 14/525 (2.6% from Palenque. The seropositive women were between 20 and 35 years old, 31.8% have Premature Rapture of Membrane and 9.1% have history of perinatal death. The total percentage of positive newborns by PCR was 9/23 (39.13%, out of those 2/9 (22.2% are from Tapachula and 7/14 (50% from Palenque. The Maternal Fetal transmission frequency was. 2/9 (22.2% in Tapachula and 1/14 (7.14% in Palenque, all positive infants were asynthomatic. Conclusion. The maternal-fetal transmission rate in Chiapas State is variable; the reason could be the maternal immunological status and T. cruzi strain.

  2. The Trypanosoma cruzi nucleolus: a morphometrical analysis of cultured epimastigotes in the exponential and stationary phases.

    Science.gov (United States)

    Nepomuceno-Mejía, Tomás; Lara-Martínez, Reyna; Cevallos, Ana María; López-Villaseñor, Imelda; Jiménez-García, Luis Felipe; Hernández, Roberto

    2010-12-01

    Our group is interested in rRNA and ribosome biogenesis in the parasitic protozoan Trypanosoma cruzi. Epimastigotes represent an extracellular replicative stage of T. cruzi and can be cultured in axenic media. The growth curve of epimastigotes allows assessment of potential differences in the nucleoli of cells undergoing growth-rate transitions. To establish cellular parameters for studying ribosome biogenesis in T. cruzi, a morphometric analysis of the nucleoli of cultured cells in the exponential and stationary phases was conducted. Electron micrograph-based measurements of nuclear sections from independent cells demonstrated that the nucleolar area is over twofold higher in exponentially growing cells, as compared with epimastigotes in the stationary phase. The granular component of the nucleoli of actively growing cells was the main structural element. Cycloheximide moderately reduced the apparent size of the nucleoli without an apparent disruption of their architecture. Our results provide a firm basis for the establishment of an experimental model to study the organization of the nucleolus during the growth and development of T. cruzi. © 2010 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved.

  3. The role of adaptations in two-strain competition for sylvatic Trypanosoma cruzi transmission.

    Science.gov (United States)

    Kribs-Zaleta, Christopher M; Mubayi, Anuj

    2012-01-01

    This study presents a continuous-time model for the sylvatic transmission dynamics of two strains of Trypanosoma cruzi enzootic in North America, in order to study the role that adaptations of each strain to distinct modes of transmission (classical stercorarian transmission on the one hand, and vertical and oral transmission on the other) may play in the competition between the two strains. A deterministic model incorporating contact process saturation predicts competitive exclusion, and reproductive numbers for the infection provide a framework for evaluating the competition in terms of adaptive trade-off between distinct transmission modes. Results highlight the importance of oral transmission in mediating the competition between horizontal (stercorarian) and vertical transmission; its presence as a competing contact process advantages vertical transmission even without adaptation to oral transmission, but such adaptation appears necessary to explain the persistence of (vertically-adapted) T. cruzi IV in raccoons and woodrats in the southeastern United States.

  4. Influence of Trypanosoma cruzi strain on the pathogenesis of chronic myocardiopathy in mice

    Directory of Open Access Journals (Sweden)

    Sonia G. Andrade

    1990-03-01

    Full Text Available The murine model of chronic Chaga's myocardiopathy was developed in 201 inbred and outbred mice. The experimental groups consisted of 1st: 73 inbred AKR and A/J mice inoculated with one of the following. Trypanosoma cruzi strains: Peruvian (Type I, 12 SF (Type II or Colombian (Type III; 2nd: 128 outbred Swiss mice, chronically infected either with Type II or Type III strains isolated from human patients from different geographical areas. All T. cruzi strains were previoulsly characterized by their morphobiological behaviour in mice and by isoenzymatic patterns. For the 1st group the inoculum was 5 x 10**4 for the Peruvian strain and 1 x 10**5 for the 12 SF and Colombian strains. In the 2nd group-Swiss mice the inoculum size varied from 2 x 10**4 to 2 x 10**5. The inbred animals were killed at a 3 time-point scale (90, 180 and 240 days post-infection. The Swiss mice were killed from 180 to 660 days after infection. The evaluation of parasitemia and serology (xeodiagnosis and indirect immunofluorescent test was performed. The incidence of macroscopic alterations of the heart and cardiac index were evaluated. Histopathological lesions of the myocardium were graded. The influence of T. cruzi strain on the intensity of cardiac lesions was evaluated by the Chi-square test; the incidence of inflammatory lesions and its relationship to the parasite strain was evaluated by the Fisher test. The influence of the duration of infection was evaluated by using the Gamma Coefficient of Kruskal and Goodman and its measure of significance. Slight to severe microscopic alterations occurred in 85% of the chronically infected nice. There were a clear predominance on the incidence and intensity of inflammatory and fibrotic alterations for the mice infected with Type III strains. Statistical analysis has shown significant differences among the infected groups, in the inflammatory and fibrotic lesions. Macroscopic alterations (right cavities dilatation and apex

  5. The role of natural selection in shaping genetic variation in a promising Chagas disease drug target: Trypanosoma cruzi trans-sialidase.

    Science.gov (United States)

    Gallant, Joseph P; Lima-Cordón, Raquel Asunción; Justi, Silvia A; Monroy, Maria Carlota; Viola, Toni; Stevens, Lori

    2018-04-21

    Rational drug design creates innovative therapeutics based on knowledge of the biological target to provide more effective and responsible therapeutics. Chagas disease, endemic throughout Latin America, is caused by Trypanosoma cruzi, a protozoan parasite. Current therapeutics are problematic with widespread calls for new approaches. Researchers are using rational drug design for Chagas disease and one target receiving considerable attention is the T. cruzi trans-sialidase protein (TcTS). In T. cruzi, trans-sialidase catalyzes the transfer of sialic acid from a mammalian host to coat the parasite surface membrane and avoid immuno-detection. However, the role of TcTS in pathology variance among and within genetic variants of the parasite is not well understood despite numerous studies. Previous studies reported the crystalline structure of TcTS and the TS protein structure in other trypanosomes where the enzyme is often inactive. However, no study has examined the role of natural selection in genetic variation in TcTS. To understand the role of natural selection in TcTS DNA sequence and protein variation, we examined a 471 bp portion of the TcTS gene from 48 T. cruzi samples isolated from insect vectors. Because there may be multiple parasite genotypes infecting one insect and there are multiple copies of TcTS per parasite genome, all 48 sequences had multiple polymorphic bases. To resolve these polymorphisms, we examined cloned sequences from two insect vectors. The data are analyzed to understand the role of natural selection in shaping genetic variation in TcTS and interpreted in light of the possible role of TcTS as a drug target. The analysis highlights negative or purifying selection on three amino acids previously shown to be important in TcTS transfer activity. One amino acid in particular, Tyr342, is a strong candidate for a drug target because it is under negative selection and amino acid substitutions inactivate TcTS transfer activity. Chagas disease

  6. Biological and immunological characterization of recombinant Yellow Fever 17D Viruses expressing a Trypanosoma cruzi Amastigote Surface Protein-2 CD8+ T cell epitope at two distinct regions of the genome

    Directory of Open Access Journals (Sweden)

    Bonaldo Myrna C

    2011-03-01

    Full Text Available Abstract Background The attenuated Yellow fever (YF 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2 to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope. Results Recombinant viruses replicated similarly to vaccine virus YF 17D in cell culture and remained genetically stable after several serial passages in Vero cells. Immunogenicity studies revealed that both recombinant viruses elicited neutralizing antibodies to the YF virus as well as generated an antigen-specific gamma interferon mediated T-cell response in immunized mice. The recombinant viruses displayed a more attenuated phenotype than the YF 17DD vaccine counterpart in mice. Vaccination of a mouse lineage highly susceptible to infection by T. cruzi with a homologous prime-boost regimen of recombinant YF viruses elicited TEWETGQI specific CD8+ T cells which might be correlated with a delay in mouse mortality after a challenge with a lethal dose of T. cruzi. Conclusions We conclude that the YF 17D platform is useful to express T. cruzi (Protozoan antigens at different functional regions of its genome with minimal reduction of vector fitness. In addition, the model T. cruzi epitope expressed at different regions of the YF 17D genome elicited a similar T cell-based immune response, suggesting that both expression sites are useful. However, the epitope as such is not protective and it remains to be seen whether expression

  7. Trypanosoma cruzi strains isolated from human, vector, and animal reservoir in the same endemic region in Mexico and typed as T. cruzi I, discrete typing unit 1 exhibit considerable biological diversity

    Directory of Open Access Journals (Sweden)

    María del Carmen Sánchez-Guillén

    2006-09-01

    Full Text Available In this study, three strains of Trypanosoma cruzi were isolated at the same time and in the same endemic region in Mexico from a human patient with chronic chagasic cardiomyopathy (RyC-H; vector (Triatoma barberi (RyC-V; and rodent reservoir (Peromyscus peromyscus (RyC-R. The three strains were characterized by multilocus enzyme electrophoresis, random amplified polymorphic DNA, and by pathological profiles in experimental animals (biodemes. Based on the analysis of genetic markers the three parasite strains were typed as belonging to T. cruzi I major group, discrete typing unit 1. The pathological profile of RyC-H and RyC-V strains indicated medium virulence and low mortality and, accordingly, the strains should be considered as belonging to biodeme Type III. On the other hand, the parasites from RyC-R strain induced more severe inflammatory processes and high mortality (> 40% and were considered as belonging to biodeme Type II. The relationship between genotypes and biological characteristics in T. cruzi strains is still debated and not clearly understood. An expert committee recommended in 1999 that Biodeme Type III would correspond to T. cruzi I group, whereas Biodeme Type II, to T. cruzi II group. Our findings suggest that, at least for Mexican isolates, this correlation does not stand and that biological characteristics such as pathogenicity and virulence could be determined by factors different from those identified in the genotypic characterization

  8. Characterization and Stability of Trypanosoma cruzi 24-C4 (Tc24-C4), a Candidate Antigen for a Therapeutic Vaccine Against Chagas Disease.

    Science.gov (United States)

    Biter, Amadeo B; Weltje, Sarah; Hudspeth, Elissa M; Seid, Christopher A; McAtee, C Patrick; Chen, Wen-Hsiang; Pollet, Jeroen B; Strych, Ulrich; Hotez, Peter J; Bottazzi, Maria Elena

    2018-05-01

    Chagas disease due to chronic infection with Trypanosoma cruzi is a neglected cause of heart disease, affecting approximately 6-10 million individuals in Latin America and elsewhere. T. cruzi Tc24, a calcium-binding protein in the flagellar pocket of the parasite, is a candidate antigen for an injectable therapeutic vaccine as an alternative or a complement to chemotherapy. Previously, we reported that a genetically engineered construct from which all cysteine residues had been eliminated (Tc24-C4) yields a recombinant protein with reduced aggregation and improved analytical purity in comparison to the wild-type form, without compromising antigenicity and immunogenicity. We now report that the established process for producing Escherichia coli-expressed Tc24-C4 protein is robust and reproducibly yields protein lots with consistent analytical characteristics, freeze-thaw, accelerated, and long-term stability profiles. The data indicate that, like most proteins, Tc24-C4 should be stable at -80°C, but also at 4°C and room temperature for at least 30 days, and up to 7-15 days at 37°C. Thus, the production process for recombinant Tc24-C4 is suitable for Current Good Manufacturing Practice production and clinical testing, based on process robustness, analytical characteristics, and stability profile. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Reactividad del antígeno GST-SAPA de Trypanosoma cruzi frente a sueros de pacientes con enfermedad de Chagas y leishmaniasis Reactivity of GST-SAPA antigen of Trypanosoma cruzi against sera from patients with Chagas disease and leishmaniasis

    Directory of Open Access Journals (Sweden)

    José Gil

    2011-04-01

    Full Text Available El diagnóstico serológico de la infección producida por Trypanosoma cruzi es de especial relevancia dado que los métodos parasitológicos tienen, en las fases indeterminada y crónica, una sensibilidad limitada. El antígeno SAPA fue usado en diversos estudios y demostró ser un buen candidato para el diagnóstico de la infección por T. cruzi. La enfermedad de Chagas y la leishmaniasis son endémicas en el norte de Salta, con posibles zonas de solapamiento. Este hecho suele dar lugar a infecciones mixtas T. cruzi-Leishmania spp., con la consecuente probabilidad de diagnóstico cruzado cuando se usan antígenos no específicos. Se evaluó la reactividad del antígeno GST-SAPA en la prueba de ELISA (ELISA-SAPA frente a sueros de personas infectadas por T. cruzi (n = 154, con leishmaniasis (n = 66, infecciones mixtas (n = 29 y controles negativos (n = 28, usando como pruebas de referencia para el diagnóstico de la infección por T. cruzi kits comerciales de ELISA y HAI. Se calculó la sensibilidad, especificidad e índice de concordancia kappa de la prueba de ELISA-SAPA, para la detección de infección por T. cruzi. Entre los sueros de pacientes con leishmaniasis estudiados se detectó un 30.5% de infecciones mixtas. Para la detección de infección por T. cruzi, ELISA-SAPA mostró una sensibilidad del 97.1% (intervalo de confianza del 95%: 94.5-99.9, una especificidad del 100% (intervalo de confianza del 95%: 99.5-100 y un índice de concordancia kappa de 96 (intervalo de confianza del 95%:93-99%, comparado con las pruebas serológicas comerciales. Los valores de sensibilidad, especificidad y concordancia calculados muestran una alta eficiencia de ELISA-SAPA.Serologic diagnosis of Trypanosoma cruzi infection is important due to the limited sensitivity of direct parasitologic methods for diagnosis in the indeterminate and chronic phases of disease. SAPA antigen has been used in several studies and has been shown to be a good marker for use

  10. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4°C.

    Science.gov (United States)

    Villamizar, Luz Helena; Cardoso, Maria das Graças; Andrade, Juliana de; Teixeira, Maria Luisa; Soares, Maurilio José

    2017-02-01

    Recent studies showed that essential oils from different pepper species (Piper spp.) have promising leishmanicidal and trypanocidal activities. In search for natural compounds against Trypanosoma cruzi, different forms of the parasite were incubated for 24 h at 28ºC or 4ºC with Piper aduncum essential oil (PaEO) or its main constituents linalool and nerolidol. PaEO chemical composition was obtained by GC-MS. Drug activity assays were based on cell counting, MTT data or infection index values. The effect of PaEO on the T. cruzi cell cycle and mitochondrial membrane potential was evaluated by flow cytometry. PaEO was effective against cell-derived (IC50/24 h: 2.8 μg/mL) and metacyclic (IC50/24 h: 12.1 μg/mL) trypomastigotes, as well as intracellular amastigotes (IC50/24 h: 9 μg/mL). At 4ºC - the temperature of red blood cells (RBCs) storage in blood banks - cell-derived trypomastigotes were more sensitive to PaEO (IC50/24 h = 3.8 μg/mL) than to gentian violet (IC50/24 h = 24.7 mg/mL). Cytotoxicity assays using Vero cells (37ºC) and RBCs (4ºC) showed that PaEO has increased selectivity for cell-derived trypomastigotes. Flow cytometry analysis showed that PaEO does not affect the cell cycle of T. cruzi epimastigotes, but decreases their mitochondrial membrane potential. GC-MS data identified nerolidol and linalool as major components of PaEO, and linalool had trypanocidal effect (IC50/24 h: 306 ng/mL) at 4ºC. The trypanocidal effect of PaEO is likely due to the presence of linalool, which may represent an interesting candidate for use in the treatment of potentially contaminated RBCs bags at low temperature.

  11. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4°C

    Directory of Open Access Journals (Sweden)

    Luz Helena Villamizar

    Full Text Available BACKGROUND Recent studies showed that essential oils from different pepper species (Piper spp. have promising leishmanicidal and trypanocidal activities. OBJECTIVES In search for natural compounds against Trypanosoma cruzi, different forms of the parasite were incubated for 24 h at 28ºC or 4ºC with Piper aduncum essential oil (PaEO or its main constituents linalool and nerolidol. METHODS PaEO chemical composition was obtained by GC-MS. Drug activity assays were based on cell counting, MTT data or infection index values. The effect of PaEO on the T. cruzi cell cycle and mitochondrial membrane potential was evaluated by flow cytometry. FINDINGS PaEO was effective against cell-derived (IC50/24 h: 2.8 μg/mL and metacyclic (IC50/24 h: 12.1 μg/mL trypomastigotes, as well as intracellular amastigotes (IC50/24 h: 9 μg/mL. At 4ºC - the temperature of red blood cells (RBCs storage in blood banks - cell-derived trypomastigotes were more sensitive to PaEO (IC50/24 h = 3.8 μg/mL than to gentian violet (IC50/24 h = 24.7 mg/mL. Cytotoxicity assays using Vero cells (37ºC and RBCs (4ºC showed that PaEO has increased selectivity for cell-derived trypomastigotes. Flow cytometry analysis showed that PaEO does not affect the cell cycle of T. cruzi epimastigotes, but decreases their mitochondrial membrane potential. GC-MS data identified nerolidol and linalool as major components of PaEO, and linalool had trypanocidal effect (IC50/24 h: 306 ng/mL at 4ºC. MAIN CONCLUSION The trypanocidal effect of PaEO is likely due to the presence of linalool, which may represent an interesting candidate for use in the treatment of potentially contaminated RBCs bags at low temperature.

  12. Studies on the virulence and attenuation of Trypanosoma cruzi using immunodeficient animals

    Directory of Open Access Journals (Sweden)

    Basombrío Miguel Ángel

    2000-01-01

    Full Text Available Tissue invasion and pathology by Trypanosoma cruzi result from an interaction between parasite virulence and host immunity. Successive in vivo generations of the parasite select populations with increasing ability to invade the host. Conversely, prolonged in vitro selection of the parasite produces attenuated sublines with low infectivity for mammals. One such subline (TCC clone has been extensively used in our laboratory as experimental vaccine and tested in comparative experiments with its virulent ancestor (TUL. The experiments here reviewed aimed at the use of immunodeficient mice for testing the infectivity of TCC parasites. It has not been possible to obtain virulent, revertant sublines by prolonged passaged in such mice.

  13. Bats, Trypanosomes, and Triatomines in Ecuador: New Insights into the Diversity, Transmission, and Origins of Trypanosoma cruzi and Chagas Disease.

    Directory of Open Access Journals (Sweden)

    C Miguel Pinto

    Full Text Available The generalist parasite Trypanosoma cruzi has two phylogenetic lineages associated almost exclusively with bats-Trypanosoma cruzi Tcbat and the subspecies T. c. marinkellei. We present new information on the genetic variation, geographic distribution, host associations, and potential vectors of these lineages. We conducted field surveys of bats and triatomines in southern Ecuador, a country endemic for Chagas disease, and screened for trypanosomes by microscopy and PCR. We identified parasites at species and genotype levels through phylogenetic approaches based on 18S ribosomal RNA (18S rRNA and cytochrome b (cytb genes and conducted a comparison of nucleotide diversity of the cytb gene. We document for the first time T. cruzi Tcbat and T. c. marinkellei in Ecuador, expanding their distribution in South America to the western side of the Andes. In addition, we found the triatomines Cavernicola pilosa and Triatoma dispar sharing shelters with bats. The comparisons of nucleotide diversity revealed a higher diversity for T. c. marinkellei than any of the T. c. cruzi genotypes associated with Chagas disease. Findings from this study increased both the number of host species and known geographical ranges of both parasites and suggest potential vectors for these two trypanosomes associated with bats in rural areas of southern Ecuador. The higher nucleotide diversity of T. c. marinkellei supports a long evolutionary relationship between T. cruzi and bats, implying that bats are the original hosts of this important parasite.

  14. Bats, Trypanosomes, and Triatomines in Ecuador: New Insights into the Diversity, Transmission, and Origins of Trypanosoma cruzi and Chagas Disease.

    Science.gov (United States)

    Pinto, C Miguel; Ocaña-Mayorga, Sofía; Tapia, Elicio E; Lobos, Simón E; Zurita, Alejandra P; Aguirre-Villacís, Fernanda; MacDonald, Amber; Villacís, Anita G; Lima, Luciana; Teixeira, Marta M G; Grijalva, Mario J; Perkins, Susan L

    2015-01-01

    The generalist parasite Trypanosoma cruzi has two phylogenetic lineages associated almost exclusively with bats-Trypanosoma cruzi Tcbat and the subspecies T. c. marinkellei. We present new information on the genetic variation, geographic distribution, host associations, and potential vectors of these lineages. We conducted field surveys of bats and triatomines in southern Ecuador, a country endemic for Chagas disease, and screened for trypanosomes by microscopy and PCR. We identified parasites at species and genotype levels through phylogenetic approaches based on 18S ribosomal RNA (18S rRNA) and cytochrome b (cytb) genes and conducted a comparison of nucleotide diversity of the cytb gene. We document for the first time T. cruzi Tcbat and T. c. marinkellei in Ecuador, expanding their distribution in South America to the western side of the Andes. In addition, we found the triatomines Cavernicola pilosa and Triatoma dispar sharing shelters with bats. The comparisons of nucleotide diversity revealed a higher diversity for T. c. marinkellei than any of the T. c. cruzi genotypes associated with Chagas disease. Findings from this study increased both the number of host species and known geographical ranges of both parasites and suggest potential vectors for these two trypanosomes associated with bats in rural areas of southern Ecuador. The higher nucleotide diversity of T. c. marinkellei supports a long evolutionary relationship between T. cruzi and bats, implying that bats are the original hosts of this important parasite.

  15. Cell signaling during Trypanosoma cruzi invasion

    Directory of Open Access Journals (Sweden)

    Fernando Yukio Maeda

    2012-11-01

    Full Text Available Cell signaling is an essential requirement for mammalian cell invasion by Trypanosoma cruzi. Depending on the parasite strain and the parasite developmental form, distinct signaling pathways may be induced. In this short review, we focus on the data coming from studies with metacyclic trypomastigotes (MT generated in vitro and tissue culture-derived trypomastigotes (TCT, used as counterparts of insect-borne and bloodstream parasites respectively. During invasion of host cells by MT or TCT, intracellular Ca2+ mobilization and host cell lysosomal exocytosis are triggered. Invasion mediated by MT surface molecule gp82 requires the activation of mammalian target of rapamycin (mTOR, phosphatidylinositol 3-kinase (PI3K and protein kinase C (PKC in the host cell, associated with Ca2+-dependent disruption of the actin cytoskeleton. In MT, protein tyrosine kinase (PTK, PI3K, phospholipase C (PLC and PKC appear to be activated. TCT invasion, on the other hand, does not rely on mTOR activation, rather on target cell PI3K, and may involve the host cell autophagy for parasite internalization. Enzymes, such oligopeptidase B and the major T. cruzi cysteine proteinase cruzipain, have been shown to generate molecules that induce target cell Ca2+ signal. In addition, TCT may trigger host cell responses mediated by TGF-β receptor or integrin family member. Further investigations are needed for a more complete and detailed picture of T. cruzi invasion.

  16. Experimental evidence of biological interactions among different isolates of Trypanosoma cruzi from the Chaco Region.

    Directory of Open Access Journals (Sweden)

    Paula G Ragone

    Full Text Available Many infectious diseases arise from co-infections or re-infections with more than one genotype of the same pathogen. These mixed infections could alter host fitness, the severity of symptoms, success in pathogen transmission and the epidemiology of the disease. Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits a high biological variability often correlated with its genetic diversity. Here, we developed an experimental approach in order to evaluate biological interaction between three T. cruzi isolates belonging to different Discrete Typing Units (DTUs TcIII, TcV and TcVI. These isolates were obtained from a restricted geographical area in the Chaco Region. Different mixed infections involving combinations of two isolates (TcIII + TcV, TcIII + TcVI and TcV + TcVI were studied in a mouse model. The parameters evaluated were number of parasites circulating in peripheral blood, histopathology and genetic characterization of each DTU in different tissues by DNA hybridization probes. We found a predominance of TcVI isolate in blood and tissues respect to TcIII and TcV; and a decrease of the inflammatory response in heart when the damage of mice infected with TcVI and TcIII + TcVI mixture were compared. In addition, simultaneous presence of two isolates in the same tissue was not detected. Our results show that biological interactions between isolates with different biological behaviors lead to changes in their biological properties. The occurrence of interactions among different genotypes of T. cruzi observed in our mouse model suggests that these phenomena could also occur in natural cycles in the Chaco Region.

  17. Real-Time PCR in HIV/Trypanosoma cruzi Coinfection with and without Chagas Disease Reactivation: Association with HIV Viral Load and CD4+ Level

    Science.gov (United States)

    de Freitas, Vera Lúcia Teixeira; da Silva, Sheila Cristina Vicente; Sartori, Ana Marli; Bezerra, Rita Cristina; Westphalen, Elizabeth Visone Nunes; Molina, Tatiane Decaris; Teixeira, Antonio R. L.; Ibrahim, Karim Yaqub; Shikanai-Yasuda, Maria Aparecida

    2011-01-01

    Background Reactivation of chronic Chagas disease, which occurs in approximately 20% of patients coinfected with HIV/Trypanosoma cruzi (T. cruzi), is commonly characterized by severe meningoencephalitis and myocarditis. The use of quantitative molecular tests to monitor Chagas disease reactivation was analyzed. Methodology Polymerase chain reaction (PCR) of kDNA sequences, competitive (C-) PCR and real-time quantitative (q) PCR were compared with blood cultures and xenodiagnosis in samples from 91 patients (57 patients with chronic Chagas disease and 34 with HIV/T. cruzi coinfection), of whom 5 had reactivation of Chagas disease and 29 did not. Principal Findings qRT-PCR showed significant differences between groups; the highest parasitemia was observed in patients infected with HIV/T. cruzi with Chagas disease reactivation (median 1428.90 T. cruzi/mL), followed by patients with HIV/T. cruzi infection without reactivation (median 1.57 T. cruzi/mL) and patients with Chagas disease without HIV (median 0.00 T. cruzi/mL). Spearman's correlation coefficient showed that xenodiagnosis was correlated with blood culture, C-PCR and qRT-PCR. A stronger Spearman correlation index was found between C-PCR and qRT-PCR, the number of parasites and the HIV viral load, expressed as the number of CD4+ cells or the CD4+/CD8+ ratio. Conclusions qRT-PCR distinguished the groups of HIV/T. cruzi coinfected patients with and without reactivation. Therefore, this new method of qRT-PCR is proposed as a tool for prospective studies to analyze the importance of parasitemia (persistent and/or increased) as a criterion for recommending pre-emptive therapy in patients with chronic Chagas disease with HIV infection or immunosuppression. As seen in this study, an increase in HIV viral load and decreases in the number of CD4+ cells/mm3 and the CD4+/CD8+ ratio were identified as cofactors for increased parasitemia that can be used to target the introduction of early, pre-emptive therapy. PMID

  18. Ecologia de triatomíneos e transmissão do Trypanosoma cruzi, com especial referência ao Brasil

    Directory of Open Access Journals (Sweden)

    Mauro Pereira Barreto

    1976-12-01

    Full Text Available Com base em seu comportamento ecológico e seu grau de relacionamento com o homem e os mamíferos domésticos, comensais e sinantrópicos, os triatomíneos são distribuídos em seis grupos: 1 Triatomíneos tipicamente silvestres, isto é, espécies só encontradas em ecótopos naturais e que nunca freqüentam as habitações humanas e suas dependências. Conseqüentemente, nunca entram em contacto com o homem e os mamíferos domésticos, a não ser acidentalmente quando estes penetram nos focos naturais. Entretanto, podem ter papel maior ou menor na manutenção da enzootia tripanossômica silvestre. Exemplos: Psammolestes coreodes, Psammolestes tertius, Cavernicola pilosa, Triatoma dispar, Triatoma delpontei e muitas outras espécies cujos hábitos são pouco conhecidos. 2 Triatomíneos essencialmente silvestres cujos adultos invadem, com maior ou menor freqüência, as habitações humanas e suas dependências, sem, todavia, aqui se colonizar. Além do papel que têm no ciclo silvestre de transmissão do T. cruzi, podem, ao entrar em contacto com o homem e os mamíferos domésticos e domiciliados suscetíveis, transmitir-lhes a infecção, tanto em áreas silvestres quanto em ecótopos artificiais. Exemplos: Panstrongylus geniculatus, Triatoma rubrovaria,Triatoma arthumeivai, Triatoma patagonica, Triatoma eratyrusiforme, Rhodnius domesticus e muitas outras espécies cujos hábitos são poucos conhecidos. 3 Triatomíneos silvestres em fase inicial de adaptação aos ecótopos artificiais, formando pequenas colônias principalmente no peridomicílio e, mais raramente, na própria habitação humana. Além da importância que têm no ciclo silvestre do T. cruzi, podem trazer a infecção para os ecótopos artificiais e, em determinadas instâncias, participar do ciclo domiciliário do parasita. Exemplos: Rhodnius neglectus, Triatoma vitticeps. Triatoma platensis e outras espécies pouco estudadas. 4 Triatomíneos que se criam indiferentemente em

  19. Trypanosoma cruzi: Correlations of Biological Aspects of the Life Cycle in Mice and Triatomines

    Directory of Open Access Journals (Sweden)

    Lima Valdirene S

    1999-01-01

    Full Text Available The infection pattern in Swiss mice and Triatomine bugs (Rhodnius neglectus of eleven clones and the original stock of a Trypanosoma cruzi isolate, derived from a naturally infected Didelphis marsupialis, were biochemically and biologically characterized. The clones and the original isolate were in the same zymodeme (Z1 except that two clones were found to be in zymodeme 2 when tested with G6PDH. Although infective, neither the original isolate nor the clones were highly virulent for the mice and lesions were only observed in mice infected with the original stock and one of the clones (F8. All clones and the original isolate infected bugs well while only the original isolate and clones E2 and F3 yielded high metacyclogenesis rates. An observed correlation between absence of lesions in the mammal host and high metacyclogenesis rates in the invertebrate host suggest a evolutionary trade off i.e. a fitness increase in one trait which is accompanied by a fitness reduction in a different one. Our results suggest that in a species as heterogeneous as T. cruzi, a cooperation effect among the subpopulations should be considered.

  20. Acerca del ciclo evolutivo del Trypanosoma (Schizotrypanum cruzi Chagas 1909, en sus fases tisular y hematica

    Directory of Open Access Journals (Sweden)

    Cecilio Romaña

    1956-06-01

    Full Text Available El autor pasa en revista los trabajos publicados sobre el ciclo evolutivo del Trypanosoma (S. cruzi en el huésped vertebrado, desde el descubrimiento de la enfermedad hasta nuestros días. Luego analiza las ideas de los autores modernos, fundadas en gran parte en las observaciones que ya en 1914 realizaron MAYER y ROCHA LIMA de las cuales participan actualmente ROMAÑA y MEYER, ELKELES y WOOD. Finalmente expressa que a partir de los tripanosomas infectantes los parásitos que penetram en el protoplasma celular pueden seguir dos mecanismos en su evolución hacia cuerpos leishmanioides: 1.º Por "regresión fusiforme" y 2.º por "regresión orbicular"; llegados a la forma leishmanioide los parásitos se multiplican por división binaria, una vez lleno el protoplasma celular, siguen un processo inverso de transformación hacia tripanosoma que puede seguir igualmente dos mecanismos diversos: 1. "progresión fusiforme" y 2.º "progresión orbicular". Estos diversos mecanismos de transformación están esquematizados en la fig. N.º 1 del trabajo.The author reviews published works about the evolutive cycle of the Trypanosoma cruzi in the vertebrate host, from the discovery of the disease to our days. Then, he analyzes the ideas of the modern authors who based themselves on the observations made formerly, in 1914, by MAYER & ROCHA LIMA, ideas that ROMAÑA and MEYER, ELKELES and WOOD agree at the present time. Last, he states that, from the infective trypanosomas, the parasites which enter the cellular protoplasma may follow two systems to perform their evolution up to leishmanioid bodies: 1.] by fusiform regression, 2.º by an orbicular regression. Once the parasites reach the leishmanioid forms, they multiply by binary division. When the celular protoplasm is filled up with the parasites, these follow an inverted transformation up to trypanosoma state, following also two systems; similar to the repression 1.º a fusiform progression, 2.º an

  1. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils.

    Directory of Open Access Journals (Sweden)

    Luísa M D Magalhães

    Full Text Available Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs associated with Chagas' disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively. Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host's immune response and favor parasite survival.

  2. The Effectiveness of Natural Diarylheptanoids against Trypanosoma cruzi: Cytotoxicity, Ultrastructural Alterations and Molecular Modeling Studies.

    Directory of Open Access Journals (Sweden)

    Vitor Sueth-Santiago

    Full Text Available Curcumin (CUR is the major constituent of the rhizomes of Curcuma longa and has been widely investigated for its chemotherapeutic properties. The well-known activity of CUR against Leishmania sp., Trypanosoma brucei and Plasmodium falciparum led us to investigate its activity against Trypanosoma cruzi. In this work, we tested the cytotoxic effects of CUR and other natural curcuminoids on different forms of T. cruzi, as well as the ultrastructural changes induced in epimastigote form of the parasite. CUR was verified as the curcuminoid with more significant trypanocidal properties (IC50 10.13 μM on epimastigotes. Demethoxycurcumin (DMC was equipotent to CUR (IC50 11.07 μM, but bisdemethoxycurcumin (BDMC was less active (IC50 45.33 μM and cyclocurcumin (CC was inactive. In the experiment with infected murine peritoneal macrophages all diarylheptanoids were more active than the control in the inhibition of the trypomastigotes release. The electron microscopy images showed ultrastructural changes associated with the cytoskeleton of the parasite, indicating tubulin as possible target of CUR in T. cruzi. The results obtained by flow cytometry analysis of DNA content of the parasites treated with natural curcuminoids suggested a mechanism of action on microtubules related to the paclitaxel`s mode of action. To better understand the mechanism of action highlighted by electron microscopy and flow cytometry experiments we performed the molecular docking of natural curcuminoids on tubulin of T. cruzi in a homology model and the results obtained showed that the observed interactions are in accordance with the IC50 values found, since there CUR and DMC perform similar interactions at the binding site on tubulin while BDMC do not realize a hydrogen bond with Lys163 residue due to the absence of methoxyl groups. These results indicate that trypanocidal properties of CUR may be related to the cytoskeletal alterations.

  3. [A confirmatory diagnosis of antibodies anti-Trypanosoma cruzi in donors referred by blood banks in Venezuela].

    Science.gov (United States)

    Díaz-Bello, Zoraida; Zavala-Jaspe, Reinaldo; Díaz-Villalobos, María; Mauriello, Luciano; Maekelt, Alberto; de Noya, Belkisyolé Alarcón

    2008-06-01

    To establish the confirmatory diagnosis of Trypanosoma cruzi infection, at least two immunoserological tests (ELISA, Indirect hamaglutination, IH, Complement Fixation Test, CFT) were carried out in 254 donors, from public and private blood banks of Venezuela, during 48 months between 1997-1998 and 2003-2004, referred to the Immunology Section of the Tropical Medicine Institute in Caracas. Antibodies anti-T. cruzi were detected in 129/254 (50,79%) by ELISA-IgG or IH and CFT. The "artificial xenodiagnosis" was positive in 10/118 persons with positive confirmed serology. Of 129 donors found positive by the serological tests, 68 were living in the capital region and 61 in the interior of the country. Likewise 113 were born in the interior of the country, 8 in Caracas and 8 in Colombia. Of them, 12 individuals serologically confirmed declared to have donated blood in a minimum of 4 occasions before diagnosis. The present study emphasizes the importance of detection of antibodies against T. cruzi in the integral evaluation of blood donors, since many of them with antibodies anti-T. cruzi, have donated blood several times previous to diagnosis.

  4. Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Alvim Junior, Joel; Dias, Ricardo L.A.; Correa, Arlene G. [Universidade Federal de Sao Carlos, SP (Brazil). Dept. de Quimica]. E-mail: agcorrea@power.ufscar.br; Castilho, Marcelo S.; Oliva, Glaucius [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica

    2005-07-15

    Chagas' disease, caused by Trypanosoma cruzi, is endemic in 15 countries in Latin America. In this work a library of 38 coumarins was prepared in solution phase and evaluated against T. cruzi glycolytic enzyme glyceraldehyde-3-phosphate-dehydrogenase (gGAPDH). The synthetic route was based on the Knoevenagel condensation of different 2-hydroxybenzaldehydes with Meldrum's acid or diethyl malonate, followed by O-alkylation and/or transesterification reactions. Among the prepared coumarins, the best values obtained to inhibit 50% of the enzymatic activity range from 80 to 130 {mu}M. (author)

  5. Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Alvim Junior, Joel; Dias, Ricardo L.A.; Correa, Arlene G.; Castilho, Marcelo S.; Oliva, Glaucius

    2005-01-01

    Chagas' disease, caused by Trypanosoma cruzi, is endemic in 15 countries in Latin America. In this work a library of 38 coumarins was prepared in solution phase and evaluated against T. cruzi glycolytic enzyme glyceraldehyde-3-phosphate-dehydrogenase (gGAPDH). The synthetic route was based on the Knoevenagel condensation of different 2-hydroxybenzaldehydes with Meldrum's acid or diethyl malonate, followed by O-alkylation and/or transesterification reactions. Among the prepared coumarins, the best values obtained to inhibit 50% of the enzymatic activity range from 80 to 130 μM. (author)

  6. Genetic Characterization of Trypanosoma cruzi DTUs in Wild Triatoma infestans from Bolivia: Predominance of TcI

    Science.gov (United States)

    Brenière, Simone Frédérique; Aliaga, Claudia; Waleckx, Etienne; Buitrago, Rosio; Salas, Renata; Barnabé, Christian; Tibayrenc, Michel; Noireau, François

    2012-01-01

    Background The current persistence of Triatoma infestans (one of the main vectors of Chagas disease) in some domestic areas could be related to re-colonization by wild populations which are increasingly reported. However, the infection rate and the genetic characterization of the Trypanosoma cruzi strains infecting these populations are very limited. Methodology/Principal Findings Of 333 wild Triatoma infestans specimens collected from north to south of a Chagas disease endemic area in Bolivia, we characterized 234 stocks of Trypanosoma cruzi using mini-exon multiplex PCR (MMPCR) and sequencing the glucose phosphate isomerase (Gpi) gene. Of the six genetic lineages (“discrete typing units”; DTU) (TcI-VI) presently recognized in T. cruzi, TcI (99.1%) was overdominant on TcIII (0.9%) in wild Andean T. infestans, which presented a 71.7% infection rate as evaluated by microscopy. In the lowlands (Bolivian Chaco), 17 “dark morph” T. infestans were analyzed. None of them were positive for parasites after microscopic examination, although one TcI stock and one TcII stock were identified using MMPCR and sequencing. Conclusions/Significance By exploring large-scale DTUs that infect the wild populations of T. infestans, this study opens the discussion on the origin of TcI and TcV DTUs that are predominant in domestic Bolivian cycles. PMID:22685616

  7. Distantiae transmission of Trypanosoma cruzi: a new epidemiological feature of acute Chagas disease in Brazil.

    Directory of Open Access Journals (Sweden)

    Samanta Cristina das Chagas Xavier

    2014-05-01

    Full Text Available BACKGROUND: The new epidemiological scenario of orally transmitted Chagas disease that has emerged in Brazil, and mainly in the Amazon region, needs to be addressed with a new and systematic focus. Belém, the capital of Pará state, reports the highest number of acute Chagas disease (ACD cases associated with the consumption of açaí juice. METHODOLOGY/PRINCIPAL FINDINGS: The wild and domestic enzootic transmission cycles of Trypanosoma cruzi were evaluated in the two locations (Jurunas and Val-de Cães that report the majority of the autochthonous cases of ACD in Belém city. Moreover, we evaluated the enzootic cycle on the three islands that provide most of the açaí fruit that is consumed in these localities. We employed parasitological and serological tests throughout to evaluate infectivity competence and exposure to T. cruzi. In Val-de-Cães, no wild mammal presented positive parasitological tests, and 56% seroprevalence was observed, with low serological titers. Three of 14 triatomines were found to be infected (TcI. This unexpected epidemiological picture does not explain the high number of autochthonous ACD cases. In Jurunas, the cases of ACD could not be autochthonous because of the absence of any enzootic cycle of T. cruzi. In contrast, in the 3 island areas from which the açaí fruit originates, 66.7% of wild mammals and two dogs displayed positive hemocultures, and 15.6% of triatomines were found to be infected by T. cruzi. Genotyping by mini-exon gene and PCR-RFLP (1f8/Akw21I targeting revealed that the mammals and triatomines from the islands harbored TcI and Trypanosoma rangeli in single and mixed infections. CONCLUSION/SIGNIFICANCE: These findings show that cases of Chagas disease in the urban area of Belém may be derived from infected triatomines coming together with the açaí fruits from distant islands. We term this new epidemiological feature of Chagas disease as "Distantiae transmission".

  8. Biological Parameters and Molecular Markers of Clone CL Brener - The Reference Organism of the Trypanosoma cruzi Genome Project

    Directory of Open Access Journals (Sweden)

    Bianca Zingales

    1997-11-01

    Full Text Available Clone CL Brener is the reference organism used in the Trypanosoma cruzi Genome Project. Some biological parameters of CL Brener were determined: (a the doubling time of epimastigote forms cultured in liver infusion-tryptose (LIT medium at 28oC is 58±13 hr; (b differentiation of epimastigotes to metacyclic trypomastigotes is obtained by incubation in LIT-20% Grace´s medium; (c trypomastigotes infect mammalian cultured cells and perform the complete intracellular cycle at 33 and 37oC; (d blood forms are highly infective to mice; (e blood forms are susceptible to nifurtimox and benznidazole. The molecular typing of CL Brener has been determined: (a isoenzymatic profiles are characteristic of zymodeme ZB; (b PCR amplification of a 24Sa ribosomal RNA sequence indicates it belongs to T. cruzi lineage 1; (c schizodeme, randomly amplified polymorphic DNA (RAPD and DNA fingerprinting analyses were performed

  9. The opossum Didelphis virginiana as a synanthropic reservoir of Trypanosoma cruzi in Dzidzilché, Yucatán, México

    OpenAIRE

    Ruiz-Piña, Hugo A; Cruz-Reyes, Alejandro

    2002-01-01

    In México, the role of mammals in the transmission cycle of Trypanosoma cruzi is poorly known. In the State of Yucatán, an endemic area of Chagas disease, both Didelphis virginiana and D. marsupialis occur sympatrically. However, until now, only the former species had been found infected with T. cruzi. To evaluate the role of D. virginiana in a peridomestic transmission, nine periods of capture-recapture were performed around the village of Dzidzilché, Yucatán. The sex, age, reproductive stat...

  10. Glycerin-Based Hydrogel for Infection Control.

    Science.gov (United States)

    Stout, Edward I; McKessor, Angie

    2012-02-01

    Infection is a major problem in the health and wellbeing of patients in hospitals, nursing homes, and other medical facilities as well as the homecare patients and the general public. According to Scientia Advisors, wound care costs the healthcare system over $7 billion in 2009. After adding the cost associated with potential complications such as infections, extended physician care, and lengthy hospital stays, the annual wound care expenditures well exceeded over $20 billion. 1 There are 20 million reported cases of diabetes per year and more every day. Because of the fact that leg ulcers are the number one health problem of men coupled with the rise in drug resistance of infections, the importance of providing the professional and the public with relatively simple and affordable wound care is of extreme importance. Often the wounds can become chronic wounds, which then result in long-term nursing expense in time and supplies or, worse yet, can result in expensive amputations ranging from $5000 to $40,000 per patient. There are many dressing options now available for treating wounds with components such as glycerin, honey, salt, and many other natural products, with some dressings being more appropriate than others. In 1988, a patented glycerin-based dressing was introduced to the market, called Elasto-Gel™. 2. Elasto-Gel™ is a glycerin-based gel sheet (65%) combined with a hydrophilic polymer that causes the sheet to absorb the exudate from the wound and simultaneously release the glycerin from the gel, which adds many benefits to the wound for excellent healing outcomes. The gel sheet is 1/8th of an inch thick with a four-way stretch backing. It has the ability to absorb 3-4 times its own weight of fluids. The dressing will not dry out or allow the exudate to dry out, thus keeping the dressing from becoming bonded to the wound or the surrounding tissue. It does not have adhesive properties and, therefore, will not cause damage to the wound bed or periwound

  11. Enzyme-linked immunosorbent assay and polymerase chain reaction performance using Mexican and Guatemalan discrete typing unit I strains of Trypanosoma cruzi.

    Science.gov (United States)

    Ballinas-Verdugo, Martha; Reyes, Pedro Antonio; Mejia-Dominguez, Ana; López, Ruth; Matta, Vivian; Monteón, Victor M

    2011-12-01

    Thirteen Trypanosoma cruzi isolates from different geographic regions of Mexico and Guatemala belonging to discrete typing unit (DTU) I and a reference CL-Brener (DTU VI) strain were used to perform enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). A panel of 57 Mexican serum samples of patients with chronic chagasic cardiopathy and asymptomatic infected subjects (blood bank donors) were used in this study. DNA from the above 14 T. cruzi strains were extracted and analyzed by PCR using different sets of primers designed from minicircle and satellite T. cruzi DNA. The chronic chagasic cardiopathy serum samples were easily recognized with ELISA regardless of the source of antigenic extract used, even with the CL-Brener TcVI, but positive serum samples from blood bank donors in some cases were not recognized by some Mexican antigenic extracts. On the other hand, PCR showed an excellent performance despite the set of primers used, since all Mexican and Guatemalan T. cruzi strains were correctly amplified. In general terms, Mexican, Guatemalan, and CL-Brener T. cruzi strains are equally good sources of antigen when using the ELISA test to detect Mexican serum samples. However, there are some strains with poor performance. The DTU I strains are easily detected using either kinetoplast or satellite DNA target designed from DTU VI strains.

  12. The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence.

    Directory of Open Access Journals (Sweden)

    Martin C Taylor

    2015-04-01

    Full Text Available The neglected parasitic infection Chagas disease is rapidly becoming a globalised public health issue due to migration. There are only two anti-parasitic drugs available to treat this disease, benznidazole and nifurtimox. Thus it is important to identify and validate new drug targets in Trypanosoma cruzi, the causative agent. T. cruzi expresses an ER-localised ascorbate-dependent peroxidase (TcAPx. This parasite-specific enzyme has attracted interest from the perspective of targeted chemotherapy.To assess the importance of TcAPx in protecting T. cruzi from oxidative stress and to determine if it is essential for virulence, we generated null mutants by targeted gene disruption. Loss of activity was associated with increased sensitivity to exogenous hydrogen peroxide, but had no effect on susceptibility to the front-line Chagas disease drug benznidazole. This suggests that increased oxidative stress in the ER does not play a significant role in its mechanism of action. Homozygous knockouts could proceed through the entire life-cycle in vitro, although they exhibited a significant decrease in their ability to infect mammalian cells. To investigate virulence, we exploited a highly sensitive bioluminescence imaging system which allows parasites to be monitored in real-time in the chronic stage of murine infections. This showed that depletion of enzyme activity had no effect on T. cruzi replication, dissemination or tissue tropism in vivo.TcAPx is not essential for parasite viability within the mammalian host, does not have a significant role in establishment or maintenance of chronic infections, and should therefore not be considered a priority for drug design.

  13. Adhesion of Trypanosoma cruzi trypomastigotes to fibronectin or laminin modifies tubulin and paraflagellar rod protein phosphorylation.

    Directory of Open Access Journals (Sweden)

    Eliciane C Mattos

    Full Text Available BACKGROUND: The unicellular parasite Trypanosoma cruzi is the causative agent of Chagaś disease in humans. Adherence of the infective stage to elements of the extracellular matrix (ECM, as laminin and fibronectin, is an essential step in host cell invasion. Although members of the gp85/TS, as Tc85, were identified as laminin and fibronectin ligands, the signaling events triggered on the parasite upon binding to these molecules are largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS: Viable infective parasites were incubated with laminin, fibronectin or bovine serum albumin for different periods of time and the proteins were separated by bidimensional gels. The phosphoproteins were envisaged by specific staining and the spots showing phosphorylation levels significantly different from the control were excised and identified by MS/MS. The results of interest were confirmed by immunoblotting or immunoprecipitation and the localization of proteins in the parasite was determined by immunofluorescence. Using a host cell-free system, our data indicate that the phosphorylation contents of T. cruzi proteins encompassing different cellular functions are modified upon incubation of the parasite with fibronectin or laminin. CONCLUSIONS/SIGNIFICANCE: Herein it is shown, for the first time, that paraflagellar rod proteins and α-tubulin, major structural elements of the parasite cytoskeleton, are predominantly dephosphorylated during the process, probably involving the ERK1/2 pathway. It is well established that T. cruzi binds to ECM elements during the cell infection process. The fact that laminin and fibronectin induce predominantly dephosphorylation of the main cytoskeletal proteins of the parasite suggests a possible correlation between cytoskeletal modifications and the ability of the parasite to internalize into host cells.

  14. Enzootic transmission of Trypanosoma cruzi and T. rangeli in the Federal District of Brazil Transmissão enzoótica de Trypanosoma cruzi e T. rangeli no Distrito Federal, Brasil

    Directory of Open Access Journals (Sweden)

    Rodrigo Gurgel-Gonçalves

    2004-04-01

    Full Text Available The Federal District of Brazil (DF lies within the Cerrado biome, where open shrubland (savannas is interspersed with riverside gallery forests and permanent swamps (veredas. Trypanosoma cruzi-infected native triatomines occur in the area, but the enzootic transmission of trypanosomatids remains poorly characterized. A parasitological survey involving sylvatic triatomines (166 Rhodnius neglectus collected from Mauritia flexuosa palms and small mammals (98 marsupials and 70 rodents, totaling 18 species was conducted in 18 sites (mainly gallery forests and veredas of the DF. Parasites were isolated, morphologically identified, and characterized by PCR of nuclear (mini-exon gene and kinetoplast DNA (kDNA. Six R. neglectus, seven Didelphis albiventris and one Akodon cursor were infected by trypanosomes; wild reservoir infection is documented for the first time in the DF. kDNA PCR detected T. cruzi in five R. neglectus and mini-exon gene PCR revealed T. cruzi I in isolates from D. albiventris. Parasites infecting one bug yielded T. rangeli KP1+ kDNA amplicons. In spite of the occurrence of T. cruzi-infected D. albiventris (an important wild and peridomestic reservoir and R. neglectus (a secondary vector displaying synanthropic behavior, a low-risk of human Chagas disease transmission could be expected in the DF, considering the low prevalence infection recorded in this work. The detection of T. rangeli KP1+ associated with R. neglectus in the DF widens the known range of this parasite in Brazil and reinforces the hypothesis of adaptation of T. rangeli populations (KP1+ and KP1- to distinct evolutionary Rhodnius lineages.O Distrito Federal (DF do Brasil está localizado no bioma Cerrado, um complexo de fisionomias savânicas incluindo matas de galeria e campos úmidos permanentes (veredas. Triatomíneos silvestres infectados por Trypanosoma cruzi ocorrem na área, mas a transmissão enzoótica de tripanossomatídeos permanece insuficientemente

  15. Infestation of arboreal nests of coatis by triatomine species, vectors of Trypanosoma cruzi, in a large Neotropical wetland.

    Science.gov (United States)

    de Lima, Juliane Saab; Rocha, Fabiana Lopes; Alves, Fernanda Moreira; Lorosa, Elias Seixas; Jansen, Ana Maria; de Miranda Mourão, Guilherme

    2015-12-01

    The coati (Nasua nasua, Carnivora) is a medium-sized mammal common in the Pantanal of Brazil. Unlike most mammals, coatis construct arboreal nests used for resting and reproduction. In this region, the coati is an important host of Trypanosoma cruzi, the causative agent of Chagas disease. There are two possible routes through coatis can be infected by T. cruzi: the oral route or the vectorial route. However, the relative importance of each of these routes in the infection of coatis and its role in the sylvatic cycle of the parasite are unknown. Our objectives were to investigate: (i) whether coati nests were infested by triatomine bugs, (ii) what species were frequent in the nests, (iii) whether the triatomines in nests were infected by T. cruzi, and (iv) what were the food resources of these triatomines. Eight of the 24 nests sampled were infested with triatomines, a total of 37 specimens of at least two species (Rhodnius stali and Triatoma sordida). In one nest, R. stali and T. sordida co-occurred and both fed on multiple resources, including coatis. This is the first report of triatomines occurring in arboreal nests of coatis. The co-occurrence of two different genera of triatomine vectors and coatis within the limited space of the coati nests provide multiple opportunities for the exchange of the protozoan parasite through both the vectorial and oral transmission routes. © 2015 The Society for Vector Ecology.

  16. Metabolic labeling with (14C)-glucose of bloodstream and cell culture trypanosoma cruzi trypomastigotes:

    International Nuclear Information System (INIS)

    Lederkremer, R.M. de; Groisman, J.F.; Lima, C.; Katzin, A.

    1990-01-01

    Trypomastigote forms of Trypanosoma cruzi from infected mouse blood and from cell culture were metabolically labeled by incubation with D-( 14 C)-glucose. Analysis by polyacrylamide gel electrophoresis of lysates from parasites of two strains (RA and CA 1 ) showed a significantly different pattern. The difference was mainly quantitative when the blood and cell culture trypomastigotes of the RA strain were compared. Analysis of the culture medium by paper electrophoresis showed an anionic exometabolite only in the blood forms of both strains. (Author) [es

  17. Expanding the knowledge of the geographic distribution of Trypanosoma cruzi TcII and TcV/TcVI genotypes in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Valdirene Dos Santos Lima

    Full Text Available Trypanosoma cruzi infection is a complex sylvatic enzooty involving a wide range of animal species. Six discrete typing units (DTUs of T. cruzi, named TcI to TcVI, are currently recognized. One unanswered question concerning the epidemiology of T. cruzi is the distribution pattern of TcII and hybrid DTUs in nature, including their virtual absence in the Brazilian Amazon, the current endemic area of Chagas disease in Brazil. Herein, we characterized biological samples that were collected in previous epizootiological studies carried out in the Amazon Basin in Brazil. We performed T. cruzi genotyping using four polymorphic genes to identify T. cruzi DTUs: mini-exon, 1f8, histone 3 and gp72. This analysis was conducted in the following biological samples: (i two T. cruzi isolates obtained by culturing of stools from the triatomine species Rhodnius picttipes and (ii five serum samples from dogs in which trypomastigotes were observed during fresh blood examination. We report for the first time the presence of TcII and hybrid DTUs (TcV/TcVI in the Amazon region in mixed infections with TcI. Furthermore, sequencing of the constitutive gene, gp72, demonstrated diversity in TcII even within the same forest fragment. These data show that TcII is distributed in the five main Brazilian biomes and is likely more prevalent than currently described. It is very probable that there is no biological or ecological barrier to the transmission and establishment of any DTU in any biome in Brazil.

  18. Decoding the anti-Trypanosoma cruzi action of HIV peptidase inhibitors using epimastigotes as a model.

    Directory of Open Access Journals (Sweden)

    Leandro S Sangenito

    Full Text Available BACKGROUND: Aspartic peptidase inhibitors have shown antimicrobial action against distinct microorganisms. Due to an increase in the occurrence of Chagas' disease/AIDS co-infection, we decided to explore the effects of HIV aspartic peptidase inhibitors (HIV-PIs on Trypanosoma cruzi, the etiologic agent of Chagas' disease. METHODOLOGY AND PRINCIPAL FINDINGS: HIV-PIs presented an anti-proliferative action on epimastigotes of T. cruzi clone Dm28c, with IC50 values ranging from 0.6 to 14 µM. The most effective inhibitors, ritonavir, lopinavir and nelfinavir, also had an anti-proliferative effect against different phylogenetic T. cruzi strains. The HIV-PIs induced some morphological alterations in clone Dm28c epimastigotes, as reduced cell size and swollen of the cellular body. Transmission electron microscopy revealed that the flagellar membrane, mitochondrion and reservosomes are the main targets of HIV-PIs in T. cruzi epimastigotes. Curiously, an increase in the epimastigote-into-trypomastigote differentiation process of clone Dm28c was observed, with many of these parasites presenting morphological alterations including the detachment of flagellum from the cell body. The pre-treatment with the most effective HIV-PIs drastically reduced the interaction process between epimastigotes and the invertebrate vector Rhodnius prolixus. It was also noted that HIV-PIs induced an increase in the expression of gp63-like and calpain-related molecules, and decreased the cruzipain expression in epimastigotes as judged by flow cytometry and immunoblotting assays. The hydrolysis of a cathepsin D fluorogenic substrate was inhibited by all HIV-PIs in a dose-dependent manner, showing that the aspartic peptidase could be a possible target to these drugs. Additionally, we verified that ritonavir, lopinavir and nelfinavir reduced drastically the viability of clone Dm28c trypomastigotes, causing many morphological damages. CONCLUSIONS AND SIGNIFICANCE: The results

  19. Defects of mtDNA Replication Impaired Mitochondrial Biogenesis During Trypanosoma cruzi Infection in Human Cardiomyocytes and Chagasic Patients: The Role of Nrf1/2 and Antioxidant Response

    Science.gov (United States)

    Wan, Xianxiu; Gupta, Shivali; Zago, Maria P.; Davidson, Mercy M.; Dousset, Pierre; Amoroso, Alejandro; Garg, Nisha Jain

    2012-01-01

    Background Mitochondrial dysfunction is a key determinant in chagasic cardiomyopathy development in mice; however, its relevance in human Chagas disease is not known. We determined if defects in mitochondrial biogenesis and dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1)–regulated transcriptional pathways constitute a mechanism or mechanisms underlying mitochondrial oxidative-phosphorylation (OXPHOS) deficiency in human Chagas disease. Methods and Results We utilized human cardiomyocytes and left-ventricular tissue from chagasic and other cardiomyopathy patients and healthy donors (n>6/group). We noted no change in citrate synthase activity, yet mRNA and/or protein levels of subunits of the respiratory complexes were significantly decreased in Trypanosoma cruzi–infected cardiomyocytes (0 to 24 hours) and chagasic hearts. We observed increased mRNA and decreased nuclear localization of PGC-1-coactivated transcription factors, yet the expression of genes for PPARγ-regulated fatty acid oxidation and nuclear respiratory factor (NRF1/2)–regulated mtDNA replication and transcription machinery was enhanced in infected cardiomyocytes and chagasic hearts. The D-loop formation was normal or higher, but mtDNA replication and mtDNA content were decreased by 83% and 40% to 65%, respectively. Subsequently, we noted that reactive oxygen species (ROS), oxidative stress, and mtDNA oxidation were significantly increased, yet NRF1/2-regulated antioxidant gene expression remained compromised in infected cardiomyocytes and chagasic hearts. Conclusions The replication of mtDNA was severely compromised, resulting in a significant loss of mtDNA and expression of OXPHOS genes in T cruzi–infected cardiomyocytes and chagasic hearts. Our data suggest increased ROS generation and selective functional incapacity of NRF2-mediated antioxidant gene expression played a role in the defects in mtDNA replication and unfitness of mtDNA for

  20. Performance Assessment of a Trypanosoma cruzi Chimeric Antigen in Multiplex Liquid Microarray Assays.

    Science.gov (United States)

    Santos, Fred Luciano Neves; Celedon, Paola Alejandra Fiorani; Zanchin, Nilson Ivo Tonin; Leitolis, Amanda; Crestani, Sandra; Foti, Leonardo; de Souza, Wayner Vieira; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2017-10-01

    Diagnosing chronic Chagas disease (CD) requires antibody-antigen detection methods, which are traditionally based on enzymatic assay techniques whose performance depend on the type and quality of antigen used. Previously, 4 recombinant chimeric proteins from the Instituto de Biologia Molecular do Paraná (IBMP-8.1 to 8.4) comprising immuno-dominant regions of diverse Trypanosoma cruzi antigens showed excellent diagnostic performance in enzyme-linked immunosorbent assays. Considering that next-generation platforms offer improved CD diagnostic accuracy with different T. cruzi -specific recombinant antigens, we assessed the performance of these chimeras in liquid microarrays (LMAs). The chimeric proteins were expressed in Escherichia coli and purified by chromatography. Sera from 653 chagasic and 680 healthy individuals were used to assess the performance of these chimeras in detecting specific anti- T. cruzi antibodies. Accuracies ranged from 98.1 to 99.3%, and diagnostic odds ratio values were 3,548 for IBMP-8.3, 4,826 for IBMP-8.1, 7,882 for IBMP-8.2, and 25,000 for IBMP-8.4. A separate sera bank (851 samples) was employed to assess cross-reactivity with other tropical diseases. Leishmania , a pathogen with high similarity to T. cruzi , showed cross-reactivity rates ranging from 0 to 2.17%. Inconclusive results were negligible (0 to 0.71%). Bland-Altman and Deming regression analysis based on 200 randomly selected CD-positive and negative samples demonstrated interchangeability with respect to CD diagnostic performance in both singleplex and multiplex assays. Our results suggested that these chimeras can potentially replace antigens currently used in commercially available assay kits. Moreover, the use of multiplex platforms, such as LMA assays employing 2 or more IBMP antigens, would abrogate the need for 2 different testing techniques when diagnosing CD. Copyright © 2017 American Society for Microbiology.

  1. [Entomological study of Trypanosoma cruzi vectors in the rural communities of Sucre state, Venezuela].

    Science.gov (United States)

    García-Jordán, Noris; Berrizbeitia, Mariolga; Concepción, Juan Luis; Aldana, Elis; Cáceres, Ana; Quiñones, Wilfredo

    2015-01-01

    The ecological niche of Reduvidae vectors has been modified due to environmental changes and human encroachment into the rural areas. This study evaluates the current entomological indices of triatomines responsible for Trypanosoma cruzi infection in Sucre State, Venezuela. A cross-sectional and prospective study was conducted in 95 towns and 577 dwellings in the 15 municipalities of the state of Sucre, Venezuela, from August to November, 2008. Triatomine bugs were identified on the basis of morphological characteristics, and their feces examined for T. cruzi infection through direct microscopy. Positive slides were stained with Giemsa and parasites were identified by morphologic characterization. The entomological indices expressing the highest values were dispersion (16.67%) and household colonization (33.33%). The triatomine species captured were: Rhodnius prolixus , Rhodnius main intradomiciliary vector. Despite the low index of vector infection (1.72%), the existence of species with domiciliary and peridomiciliary reproductive success ensures the persistence of the epidemiological chain both for the disease and the parasite.

  2. Standardization of serological tests for detecting anti-Trypanosoma cruzi antibodies in dogs

    Directory of Open Access Journals (Sweden)

    M. A. Lauricella

    1993-09-01

    Full Text Available This paper reports on the standardization of four serological reactions currently used in human serodiagnosis for the detection of anti-Trypanosoma cruzi antibodies in naturally and experimentally infected dogs. Indirect immunofluorescence test (IFAT and hemagglutination test (IHAT were standardized, and complement fixation test (CFT and direct agglutination test (DAT were used for diagnostic confirmation. Four hundred and eighty one mongrel dogs that were studied by xenodiagnosis were used: (1 parasitemic dogs of two localities of endemic area (EA of Santiago del Estero province in Argentina (n = 134; (2 non-parasitemic dogs of the same area (n = 285; (3 dogs experimentally infected with T. cruzi in the patent period (n = 6; (4 non-infected dogs (n = 56 which were born in the city of Buenos Aires (BA, one non-EA for Chagas' disease. For IFAT, parasitemic dogs EA showed 95% of reactive sera. Non parasitemic dogs EA showed 77% of non reactive sera. None sera from BA were reactive for dilutions higher than four. For IHAT, 84% of sera of parasitemic dogs EA showed serological reactivity and among non parasitemic dogs BA, 61% were non reactive, while the remainder showed at most titres of 1/16. The cut-off titres for IFAT and IHAT were 1/16 and 1/32 respectively, and for CFT and DAT 1/1 and 1/128 respectively. Sensitivity for IFAT, IHAT, CF and DAT were 95%, 84%, 97% and 95% respectively.

  3. Investigation of hyperfine interactions in DNA and antibody of different lineages of mice infected by T. cruzi by perturbed gamma-gamma angular correlation spectroscopy; Investigacao de interacoes hiperfinas em DNA e anticorpos de diferentes linhagens de camundongos frente a infeccao por T. cruzi pela epectroscopia de correlacao angular gama-gama perturbada

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Andreia dos Santos

    2012-07-01

    In the present work perturbed angular correlation (PAC) spectroscopy was used to measured electric quadrupole interactions in DNA biomolecules of different mice lineages (A/J, C57BL/6, B6AF1, BXA1 e BXA2), samples of different isotypes of immunoglobulin G (IgG1, IgG2a e IgG2b) and active portions of complete and fragmented immunoglobulin responsible by the immune response. Electric quadrupole interactions were also measured in DNA nitrogenous bases (adenine, cytosine, guanine, thymine). PAC measurements were performed using {sup 111}In {yields} {sup 111C}d; {sup 111mC}d {yields} {sup 111}Cd; {sup 111}Ag {yields} {sup 111}Cd; e {sup 181}Hf {yields} {sup 181}Ta as probe nuclei, and carried out at room temperature and liquid nitrogen temperature, in order to investigate dynamic and static hyperfine interactions, respectively. The biomolecule samples were directly marked with the radioactive parent nuclei, whose atom link to a certain site in the biomolecules. The biological materials as well as the probe nuclei were chosen to investigate the possibility to use PAC spectroscopy to measure hyperfine parameters at nuclei from metallic elements bound to biomolecules (including the use of different probe nuclei produced in the decay of parent nuclei of four different metals) and also to study the behavior of different biomolecules by means of the measured hyperfine parameters. Results show differences in the hyperfine interactions of probe nuclei bound to the studied biomolecules. Such differences were observed by variations in the hyperfine parameters, which depend on the type of biomolecule and the results also show that the probe nuclei atom bound to the molecule in some cases and in others do not. (author)

  4. [Trypanosoma cruzi in triatomines from Nuevo Leon, Mexico].

    Science.gov (United States)

    Molina-Garza, Zinnia Judith; Rosales-Encina, José Luis; Galaviz-Silva, Lucio; Molina-Garza, Daniel

    2007-01-01

    To determine the prevalence of Trypanosoma cruzi in triatomines from Nuevo León using the standardization of an improved enzyme-linked immunosorbent assay test. From July to September 2005, 52 triatomines were captured in General Terán, a municipality located in Nuevo León. They were analyzed using optical microscopy (OM) and a polymerase chain reaction (PCR), as standards of reference, to develop a technique for detecting the parasite using enzyme-linked immunosorbent assay (ELISA). Using OM and PCR, 31 triatomines were found to be positive and 21 negative. Using ELISA, 27 samples were identified as positive and 25 negative (specificity 100%, sensitivity 87%, negative predictive value 84%, and positive predictive value 100%). The prevalence of infected triatomines was 59.61% with OM and PCR, and 51.92% with ELISA. Our data confirm that the ELISA assay in triatomines is a fast, reliable and useful tool. Since it was possible to simultaneously analyze a large number of samples with high sensibility and specificity values, the ELISA test proves to be useful for new epidemiologic studies having a high number of vectors. It is also less expensive than PCR. It is therefore recommended for epidemiological and preventive surveillance programs as a first screening test before conducting a confirmatory test using PCR.

  5. Trypanosoma cruzi. Surface antigens of blood and culture forms

    International Nuclear Information System (INIS)

    Nogueira, N.; Chaplan, S.; Tydings, J.D.; Unkeless, J.; Cohn, Z.

    1981-01-01

    The surface polypeptides of both cultured and blood forms of Trypanosoma cruzi were iodinated by the glucose oxidase-lactoperoxidase technique. Blood-form trypomastigotes (BFT) isolated form infected mice displayed a major 90,000-Mr component. In contrast, both epimastigotes and trypomastigotes obtained form acellular cultures expressed a smaller 75,000-Mr peptide. Both major surface components were presumably glycoproteins in terms of their binding to concanavalin A-Sepharose 4B. Within a 3-h period, both blood and culture forms synthesized their respective surface glycoproteins (90,000 Mr and 75,000 Mr, respectively in vitro. [/sub 35/S]methionine-labeled surface peptides were immunoprecipitated with immune sera of both human and murine origin. A panel of sera form patients with chronic Chagas' disease and hyperimmunized mice recognized similar surface peptides. These immunogens were the same components as the major iodinated species. The major BFT surface peptide was readily removed by trypsin treatment of the parasites, although the procedure did not affect the 75,000-Mr peptide from the culture forms. Two-dimensional polyacrylamide gel electrophoresis revealed that the 90,000-Mr peptide found on BFT was an acidic protein of isoelectric point (pI) 5.0, whereas, the 75,000-Mr peptide form culture-form trypomastigotes has a pI of 7.2. The 90,000-Mr component is thought to be responsible for the anti-phagocytic properties of the BFT

  6. Inhomogeneity of epidemic spreading with entropy-based infected clusters.

    Science.gov (United States)

    Wen-Jie, Zhou; Xing-Yuan, Wang

    2013-12-01

    Considering the difference in the sizes of the infected clusters in the dynamic complex networks, the normalized entropy based on infected clusters (δ*) is proposed to characterize the inhomogeneity of epidemic spreading. δ* gives information on the variability of the infected clusters in the system. We investigate the variation in the inhomogeneity of the distribution of the epidemic with the absolute velocity v of moving agent, the infection density ρ, and the interaction radius r. By comparing δ* in the dynamic networks with δH* in homogeneous mode, the simulation experiments show that the inhomogeneity of epidemic spreading becomes smaller with the increase of v, ρ, r.

  7. Temporizin and Temporizin-1 Peptides as Novel Candidates for Eliminating Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    André L A Souza

    Full Text Available Tropical diseases caused by parasitic infections continue to cause socioeconomic distress worldwide. Among these, Chagas disease has become a great concern because of globalization. Caused by Trypanosoma cruzi, there is an increasing need to discover new, more effective methods to manage infections that minimize disease onset. Antimicrobial peptides represent a possible solution to this challenge. As effector molecules of the innate immune response against pathogens, they are the first line of defense found in all multi-cellular organisms. In amphibians, temporins are a large family of antimicrobial peptides found in skin secretions. Their functional roles and modes of action present unique properties that indicate possible candidates for therapeutic applications. Here, we investigated the trypanocide activity of temporizin and temporizin-1. Temporizin is an artificial, hybrid peptide containing the N-terminal region of temporin A, the pore-forming region of gramicidin and a C-terminus consisting of alternating leucine and lysine. Temporizin-1 is a modification of temporizin with a reduction in the region responsible for insertion into membranes. Their activities were evaluated in a cell permeabilization assay by flow cytometry, an LDH release assay, electron microscopy, an MTT assay and patch clamp experiments. Both temporizin and temporizin-1 demonstrated toxicity against T. cruzi with temporizin displaying slightly more potency. At concentrations up to 100 μg/ ml, both peptides exhibited low toxicity in J774 cells, a macrophage lineage cell line, and no toxicity was observed in mouse primary peritoneal macrophages. In contrast, the peptides showed some toxicity in rat adenoma GH3 cells and Jurkat human lymphoma cells with temporizin-1 displaying lower toxicity. In summary, a shortened form of the hybrid temporizin peptide, temporizin-1, was efficient at killing T. cruzi and it has low toxicity in wild-type mammalian cells. These data suggest

  8. Alternative Method for the Mass Rearing of Lutzomyia (Lutzomyia) cruzi (Diptera: Psychodidae) in a Laboratory Setting.

    Science.gov (United States)

    Oliveira, E F; Fernandes, W S; Oshiro, E T; Oliveira, A G; Galati, E A B

    2015-09-01

    The understanding of the transmission dynamics of Leishmania spp. Ross as well as the epidemiology and spread of leishmaniasis is related to parasite-vector-host interactions. These interactions can be studied using specimens of a sand fly population reared in the laboratory, exposing individuals to experimental infection for the investigation of vector competence and parameters of the vectorial capacity of the species. The present study sought to describe an alternative method for the implantation of a Lutzomyia (Lutzomyia) cruzi colony with wild specimens captured in the municipality of Corumbá, Brazil. With Method 1, engorged females were individualized for oviposition. The eggs were transferred to an acrylic petri dish with a layer of plaster on the bottom, on which food was placed after hatching of the first larvae. With Method 2, females were kept in groups for oviposition in containers, in which soil and food were placed on their bottom for the larvae. In addition, the exposure time of the larvae to light was reduced in comparison with Method 1. With Method 2, a significantly greater number of specimens of Lu. cruzi was obtained. The ratio between the number of emerged adults and the females followed for oviposition was 0.42 with Method 1 and 2.75 with Method 2. The optimization of the rearing conditions for Lu. cruzi will enable the establishment of a colony providing a sufficient number of specimens to develop experimental infection by Leishmania as well as vectorial competence and some parameters of the vectorial capacity of this sand fly. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Effect of ionizing radiation exposure on Trypanosoma cruzi ubiquitin-proteasome system.

    Science.gov (United States)

    Cerqueira, Paula G; Passos-Silva, Danielle G; Vieira-da-Rocha, João P; Mendes, Isabela Cecilia; de Oliveira, Karla A; Oliveira, Camila F B; Vilela, Liza F F; Nagem, Ronaldo A P; Cardoso, Joseane; Nardelli, Sheila C; Krieger, Marco A; Franco, Glória R; Macedo, Andrea M; Pena, Sérgio D J; Schenkman, Sérgio; Gomes, Dawidson A; Guerra-Sá, Renata; Machado, Carlos R

    2017-03-01

    In recent years, proteasome involvement in the damage response induced by ionizing radiation (IR) became evident. However, whether proteasome plays a direct or indirect role in IR-induced damage response still unclear. Trypanosoma cruzi is a human parasite capable of remarkable high tolerance to IR, suggesting a highly efficient damage response system. Here, we investigate the role of T. cruzi proteasome in the damage response induced by IR. We exposed epimastigotes to high doses of gamma ray and we analyzed the expression and subcellular localization of several components of the ubiquitin-proteasome system. We show that proteasome inhibition increases IR-induced cell growth arrest and proteasome-mediated proteolysis is altered after parasite exposure. We observed nuclear accumulation of 19S and 20S proteasome subunits in response to IR treatments. Intriguingly, the dynamic of 19S particle nuclear accumulation was more similar to the dynamic observed for Rad51 nuclear translocation than the observed for 20S. In the other hand, 20S increase and nuclear translocation could be related with an increase of its regulator PA26 and high levels of proteasome-mediated proteolysis in vitro. The intersection between the opposed peaks of 19S and 20S protein levels was marked by nuclear accumulation of both 20S and 19S together with Ubiquitin, suggesting a role of ubiquitin-proteasome system in the nuclear protein turnover at the time. Our results revealed the importance of proteasome-mediated proteolysis in T. cruzi IR-induced damage response suggesting that proteasome is also involved in T. cruzi IR tolerance. Moreover, our data support the possible direct/signaling role of 19S in DNA damage repair. Based on these results, we speculate that spatial and temporal differences between the 19S particle and 20S proteasome controls proteasome multiple roles in IR damage response. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics.

    Directory of Open Access Journals (Sweden)

    Andrea Trochine

    2014-05-01

    Full Text Available The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn. Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi.

  11. Large-scale conformational changes of Trypanosoma cruzi proline racemase predicted by accelerated molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    César Augusto F de Oliveira

    2011-10-01

    Full Text Available Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, is a life-threatening illness affecting 11-18 million people. Currently available treatments are limited, with unacceptable efficacy and safety profiles. Recent studies have revealed an essential T. cruzi proline racemase enzyme (TcPR as an attractive candidate for improved chemotherapeutic intervention. Conformational changes associated with substrate binding to TcPR are believed to expose critical residues that elicit a host mitogenic B-cell response, a process contributing to parasite persistence and immune system evasion. Characterization of the conformational states of TcPR requires access to long-time-scale motions that are currently inaccessible by standard molecular dynamics simulations. Here we describe advanced accelerated molecular dynamics that extend the effective simulation time and capture large-scale motions of functional relevance. Conservation and fragment mapping analyses identified potential conformational epitopes located in the vicinity of newly identified transient binding pockets. The newly identified open TcPR conformations revealed by this study along with knowledge of the closed to open interconversion mechanism advances our understanding of TcPR function. The results and the strategy adopted in this work constitute an important step toward the rationalization of the molecular basis behind the mitogenic B-cell response of TcPR and provide new insights for future structure-based drug discovery.

  12. Serosurvey for Leishmania spp., Toxoplasma gondii, Trypanosoma cruzi and Neospora caninum in neighborhood dogs in Curitiba-Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Caroline Constantino

    Full Text Available Abstract Neighborhood dogs may act as reservoirs for several zoonotic protozoan infections, particularly in urban areas, thus constituting a potential public health threat. Accordingly, the aim of the present study was to evaluate the exposure of neighborhood dogs to four protozoan pathogens in public areas with high levels of human movement in Curitiba, southern Brazil. Blood samples from 26 neighborhood dogs were screened by means of the indirect immunofluorescent antibody test (IFAT for Leishmania spp., Toxoplasma gondii, Trypanosoma cruzi and Neospora caninum, and a questionnaire was answered by the respective keeper. A total of 8/26 dogs (30.7% seroreactive to T. gondii, 3/26 (11.5% to N. caninum and 2/26 (7.7% to both were identified. All the samples were seronegative for T. cruzi and Leishmania spp. Pathogen seroreactivity was not associated with the daily human movements or other epidemiological variables investigated (p > 0.05. In conclusion, the low seroprevalence for T. gondii and N. caninum indicated low environmental and food risk for animal infection and the seronegativity for Leishmania spp. and T. cruzi may reflect the absence of these pathogens in urban areas of Curitiba. Moreover, neighborhood dogs may be used as environmental sentinels for the presence of protozoan pathogens and their vectors.

  13. Reinfecções com cepas do Trypanosoma cruzi de diferentes biodemas como fator agravante da miocardite e miosite em camundongos

    OpenAIRE

    Andrade, Sonia Gumes; Campos, Rozália Figueira; Sobral, Karina Souza Castro; Magalhães, Juracy Barbosa; Guedes, Ricardo S. Pereira; Guerreiro, Marcos Lázaro

    2006-01-01

    Reinfections with Trypanosoma cruzi in patients from endemic areas have been claimed to be an aggravation factor of cardiac manifestations in Chagas' disease. In the present study, the influence of triple infections with strains of different biodemes, on cardiac and skeletal muscle lesions was experimentally tested. Fifty eight mice chronically infected with the Colombian strain (Biodeme Type III) were successively reinfected as follows: 1st group - reinfected with 21 SF strain (Type II) foll...

  14. Evaluation of the immune response to CRA and FRA recombinant antigens of Trypanosoma cruzi in C57BL/6 mice.

    Science.gov (United States)

    Pereira, Valéria Rêgo Alves; de Lorena, Virginia Maria Barros; Nakazawa, Mineo; da Silva, Ana Paula Galvão; Montarroyos, Ulisses; Correa-Oliveira, Rodrigo; Gomes, Yara de Miranda

    2003-01-01

    Humoral and cellular immune responses were evaluated in 44 C57BL/6 mice immunized with the Trypanosoma cruzi recombinant antigens CRA and FRA. Both antigens induced cutaneous immediate-type hypersensitivity response. The levels of IgG1, IgG2a, IgG2b and IgG3 were high in CRA immunized mice. IgG3 was the predominant isotype. Although no difference in antibody levels was observed in FRA-immunized mice when compared to control mice, both antigens were able to induce lymphoproliferation in immunized mice. Significant differences were observed between incorporation of [ H]- thymidine by spleen cell stimulated in vitro with CRA or FRA and the control group. These results suggest that CRA and FRA could be involved in mechanisms of resistance to Trypanosoma cruzi infection.

  15. Biochemical evaluation of a series of synthetic chalcone and hydrazide derivatives as novel inhibitors of cruzain from Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Borchhardt, Deise M.; Oliva, Glaucius; Andricopulo, Adriano D. [Universidade de Sao Paulo, Sao Carlos (USP), SP (Brazil). Centro de Biotecnologia Molecular Estrutural. Lab. de Quimica Medicinal e Computacional; Mascarello, Alessandra; Chiaradia, Louise Domeneghini; Nunes, Ricardo J.; Yunes, Rosendo A. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Centro de Ciencias Fisicas e Matematicas. Lab. Estrutura e Atividade

    2010-07-01

    Chagas' disease, a parasitic infection widely distributed throughout Latin America, is a major public health problem with devastating consequences in terms of human morbidity and mortality. The enzyme cruzain is the major cysteine protease from Trypanosoma cruzi, the etiologic agent of American trypanosomiasis or Chagas' disease, and has been selected as an attractive target for the development of novel trypanocidal drugs. In the present work, we describe the synthesis and inhibitory effects of a series of thirty-three chalcone and seven hydrazide derivatives against the enzyme cruzain from T. cruzi. Most of the compounds showed promising in vitro inhibition (IC{sub 50} values in the range of 20-60 {mu}M), which suggest the potential of these compounds as lead candidates for further development. Twelve compounds have not been reported before, and four of them (7, 13, 16 e 18) are among the most potent inhibitors of the series. (author)

  16. EPIDEMIOLOGÍA MOLECULAR DE TRYPANOSOMA CRUZI

    Directory of Open Access Journals (Sweden)

    Felipe Guhl

    2013-01-01

    Full Text Available La enfermedad de Chagas causada por el parásito Trypanosoma cruzi es una zoonosis compleja, ampliamente distribuida en el continente americano. La infección puede ser adquirida a través de las heces de insectos triatominos, transfusión de sangre, trasplante de órganos, vía oral, por transmisión congénita y por accidentes de laboratorio. El completo entendimiento de la etiología y epidemiología de la enfermedad de Chagas a través de su distribución geográfica es complejo y permanece bajo intensa investigación hasta la actualidad. Los recientes estudios sobre la variabilidad genética del parásito han dado nuevas luces de los diferentes escenarios de los ciclos de transmisión de la enfermedad y su patogénesis en humanos. El propósito principal para la caracterización molecular de T.cruzi y sus múltiples genotipos está dirigido hacia su asociación con la clínica y la patogenesis de la enfermedad, así como al esclarecimiento de los diferentes escenarios de transmisión y los aspectos coevolutivos relacionados con reservorios e insectos vectores. La caracterización molecular de los diferentes aislamientos a partir de humanos, insectos y reservorios, ha permitido identificar la amplia variabilidad genética del parásito, abriendo nuevos caminos hacia la búsqueda de nuevos blancos terapéuticos y pruebas diagnósticas más específicas que contribuyan a mitigar la enfermedad de Chagas.

  17. [Transmission risk of Trypanosoma cruzi in Metztitlán municipality from Hidalgo state, México, by characterization of domiciliary units and their entomologic indexes].

    Science.gov (United States)

    Becerril, Marco A; Angeles-Pérez, Vidal; Noguez-García, Julio Cr; Imbert-Palafox, José L

    2010-01-01

    In order to determine the risk of transmission of Trypanosoma cruzi by triatomines in Metztitlan municipality, Hidalgo State, Mexico, entomological indexes were calculated and the characteristics of dwellings were described. A transversal, retrospective, descriptive, and observational study was performed by means of an intentional not probabilistic and expertise sampling from January to December of 2005 in 10 localities in which presence of triatomines were investigated either intra or peridomestic environmental in 699 houses. Building material and presence of infected triatomines with T. cruzi were registered to determine entomologic indexes. The triatomine species collected were: Triatoma barberi (Usinger) and T. mexicana (Herrich-Schaeffer) (Hemiptera: Reduviidae). The results indicated that natural infection index varied from 7.7% to 50%; colonization index reached 80%; infestation index varied from 7.7% to 25%; dispersion index was 70%. Stone-walled houses were more infested. We can conclude that it is necessary to establish T. cruzi transmission control measures against triatomines in localities from Metztitlan, primarily in stone-walled houses where T. barberi occurs, as it was the most important vector species in the transmission of T. cruzi in this municipality.

  18. Trypanosoma cruzi IIc: phylogenetic and phylogeographic insights from sequence and microsatellite analysis and potential impact on emergent Chagas disease.

    Directory of Open Access Journals (Sweden)

    Martin S Llewellyn

    2009-09-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas disease, is highly genetically diverse. Numerous lines of evidence point to the existence of six stable genetic lineages or DTUs: TcI, TcIIa, TcIIb, TcIIc, TcIId, and TcIIe. Molecular dating suggests that T. cruzi is likely to have been an endemic infection of neotropical mammalian fauna for many millions of years. Here we have applied a panel of 49 polymorphic microsatellite markers developed from the online T. cruzi genome to document genetic diversity among 53 isolates belonging to TcIIc, a lineage so far recorded almost exclusively in silvatic transmission cycles but increasingly a potential source of human infection. These data are complemented by parallel analysis of sequence variation in a fragment of the glucose-6-phosphate isomerase gene. New isolates confirm that TcIIc is associated with terrestrial transmission cycles and armadillo reservoir hosts, and demonstrate that TcIIc is far more widespread than previously thought, with a distribution at least from Western Venezuela to the Argentine Chaco. We show that TcIIc is truly a discrete T. cruzi lineage, that it could have an ancient origin and that diversity occurs within the terrestrial niche independently of the host species. We also show that spatial structure among TcIIc isolates from its principal host, the armadillo Dasypus novemcinctus, is greater than that among TcI from Didelphis spp. opossums and link this observation to differences in ecology of their respective niches. Homozygosity in TcIIc populations and some linkage indices indicate the possibility of recombination but cannot yet be effectively discriminated from a high genome-wide frequency of gene conversion. Finally, we suggest that the derived TcIIc population genetic data have a vital role in determining the origin of the epidemiologically important hybrid lineages TcIId and TcIIe.

  19. The improbable transmission of Trypanosoma cruzi to human: the missing link in the dynamics and control of Chagas disease.

    Directory of Open Access Journals (Sweden)

    Pierre Nouvellet

    2013-11-01

    Full Text Available Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8 × 10(-4 (95%CI: [2.6 ; 11.0] × 10(-4. This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900-4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known

  20. Domestic, peridomestic and wild hosts in the transmission of Trypanosoma cruzi in the Caatinga area colonised by Triatoma brasiliensis

    Directory of Open Access Journals (Sweden)

    Claudia Mendonça Bezerra

    2014-11-01

    Full Text Available The role played by different mammal species in the maintenance of Trypanosoma cruzi is not constant and varies in time and place. This study aimed to characterise the importance of domestic, wild and peridomestic hosts in the transmission of T. cruzi in Tauá, state of Ceará, Caatinga area, Brazil, with an emphasis on those environments colonised by Triatoma brasiliensis. Direct parasitological examinations were performed on insects and mammals, serologic tests were performed on household and outdoor mammals and multiplex polymerase chain reaction was used on wild mammals. Cytochrome b was used as a food source for wild insects. The serum prevalence in dogs was 38% (20/53, while in pigs it was 6% (2/34. The percentages of the most abundantly infected wild animals were as follows: Thrichomys laurentius 74% (83/112 and Kerodon rupestris 10% (11/112. Of the 749 triatomines collected in the household research, 49.3% (369/749 were positive for T. brasiliensis, while 6.8% were infected with T. cruzi (25/369. In captured animals, T. brasiliensis shares a natural environment with T. laurentius, K. rupestris, Didelphis albiventris, Monodelphis domestica, Galea spixii, Wiedomys pyrrhorhinos, Conepatus semistriatus and Mus musculus. In animals identified via their food source, T. brasiliensis shares a natural environment with G. spixii, K. rupestris, Capra hircus, Gallus gallus, Tropidurus oreadicus and Tupinambis merianae. The high prevalence of T. cruzi in household and peridomiciliar animals reinforces the narrow relationship between the enzootic cycle and humans in environments with T. brasiliensis and characterises it as ubiquitous.

  1. [Vectorial and congenital transmission of Trypanosoma cruzi in Las Lomitas, Formosa].

    Science.gov (United States)

    Sosa-Estani, Sergio; Dri, Lucía; Touris, Cecilia; Abalde, Sergio; Dell'arciprete, Ana; Braunstein, Jose

    2009-01-01

    Chagas disease, caused by Trypanosoma cruzi, is a major cause of morbidity and mortality in Latin America. The objective of this study was to describe the rate of infestation in four aboriginal communities in Las Lomitas (Great Chaco Region), Formosa, Argentina; the rate of infection in children residing in these communities, in blood donors and in pregnant women who received care at the Hospital Las Lomitas, as well as the rate of congenital infection in children born to women infected during the study period. The rate of infestation of 172 households evaluated in 2006 reached 32%. Prevalence of infection among 445 people was 17.5% and in children under 5 years old it was 8.6%. The rate of infection reached 18.6% in blood donors and 29.1% in pregnant women. The rate of infection among 47 children born to infected women, and living in residences under vectorial surveillance was 17.0%. These infections were considered as congenital. This study showed indexes compatible with active vectorial transmission at the beginning. After vectorial control with insecticides the infestation rate has been reduced to 3.3%. The local health system has introduced high impact procedures of primary and secondary prevention in order to prevent new cases and to treat infected people.

  2. Prevalence of Chagas disease in pregnant women and congenital transmission of Trypanosoma cruzi in Brazil: a systematic review and meta-analysis.

    Science.gov (United States)

    Martins-Melo, Francisco Rogerlândio; Lima, Mauricélia da Silveira; Ramos, Alberto Novaes; Alencar, Carlos Henrique; Heukelbach, Jörg

    2014-08-01

    To estimate the prevalence of Chagas disease in pregnant women and the risk of congenital transmission of Trypanosoma cruzi infection in Brazil, through a systematic review and meta-analysis. We searched electronic databases, grey literature and reference lists of included publications to identify epidemiological studies on the prevalence of Chagas disease in pregnant women and on the congenital transmission rate of T. cruzi infection in Brazil published between January 1980 and June 2013. Pooled estimates and 95% confidence intervals (95% CIs) were calculated using fixed- and random-effects models. Sixteen articles were included - 12 studies on the prevalence of Chagas disease in pregnant women (549,359 pregnant women) and nine on congenital transmission rates (1687 children born to infected mothers). Prevalence of Chagas disease in pregnant women ranged from 0.1% to 8.5%, and congenital transmission rates from 0% to 5.2%. The pooled prevalence of Chagas disease among pregnant women across studies was 1.1% (95% CI: 0.6-2.0); the pooled congenital transmission rate was 1.7% (95% CI: 0.9-3.1). In 2010, 34,629 pregnant women were estimated to be infected with T. cruzi, and 312-1073 children born (mean: 589 cases) with congenital infection. Congenital Chagas disease is a neglected public health problem in Brazil. Systematic congenital Chagas disease control programs through routine prenatal screening for T. cruzi should be widely implemented in Brazil's endemic areas, to identify infected pregnant women and newborns at risk of congenital infection. © 2014 John Wiley & Sons Ltd.

  3. Trypanosoma cruzi reservoir—triatomine vector co-occurrence networks reveal meta-community effects by synanthropic mammals on geographic dispersal

    Directory of Open Access Journals (Sweden)

    Carlos N. Ibarra-Cerdeña

    2017-04-01

    Full Text Available Contemporary patterns of land use and global climate change are modifying regional pools of parasite host species. The impact of host community changes on human disease risk, however, is difficult to assess due to a lack of information about zoonotic parasite host assemblages. We have used a recently developed method to infer parasite-host interactions for Chagas Disease (CD from vector-host co-occurrence networks. Vector-host networks were constructed to analyze topological characteristics of the network and ecological traits of species’ nodes, which could provide information regarding parasite regional dispersal in Mexico. Twenty-eight triatomine species (vectors and 396 mammal species (potential hosts were included using a data-mining approach to develop models to infer most-likely interactions. The final network contained 1,576 links which were analyzed to calculate centrality, connectivity, and modularity. The model predicted links of independently registered Trypanosoma cruzi hosts, which correlated with the degree of parasite-vector co-occurrence. Wiring patterns differed according to node location, while edge density was greater in Neotropical as compared to Nearctic regions. Vectors with greatest public health importance (i.e., Triatoma dimidiata, T. barberi, T. pallidipennis, T. longipennis, etc, did not have stronger links with particular host species, although they had a greater frequency of significant links. In contrast, hosts classified as important based on network properties were synanthropic mammals. The latter were the most common parasite hosts and are likely bridge species between these communities, thereby integrating meta-community scenarios beneficial for long-range parasite dispersal. This was particularly true for rodents, >50% of species are synanthropic and more than 20% have been identified as T. cruzi hosts. In addition to predicting potential host species using the co-occurrence networks, they reveal regions with

  4. Evaluation of the Chagas Stat-Paktm Assay for Detection of Trypanosoma cruzi Antibodies in Wildlife Reservoirs

    Science.gov (United States)

    Yabsley, Michael J.; Brown, Emily L.; Roellig, Dawn M.

    2010-01-01

    An immunochromatographic assay (Chagas Stat-Pak™) was evaluated for the detection of Trypanosoma cruzi antibodies in 4 species of wildlife reservoirs. Antibodies to T. cruzi were detected in raccoons (Procyon lotor) (naturally and experimentally infected) and degus (Octodon degu) (experimentally-infected) using the Chagas Stat-Pak. In naturally exposed wild raccoons, the Chagas Stat-Pak had a sensitivity and specificity of 66.7–80.0% and 96.3%, respectively. Compared with indirect immunofluorescent antibody assay results, serocon-version as determined by Chagas Stat-Pak was delayed for experimentally infected raccoons, but occurred sooner in experimentally infected degus. The Chagas Stat-Pak did not detect antibodies in naturally or experimentally infected Virginia opossums (Didelphis virginiana) or in experimentally infected short-tailed opossums (Monodelphis domestica). These data suggest that the Chagas Stat-Pak might be useful in field studies of raccoons and degus when samples would not be available for more-conventional serologic assays. Because this assay did not work on either species of marsupial, the applicability of the assay should be examined before it is used in other wild species. PMID:19016578

  5. Prevalencia de infeccion a Trypanosoma cruzi en donadores de sangre en el Estado de Jalisco, Mexico

    Directory of Open Access Journals (Sweden)

    Francisco Trujillo Contreras

    1993-06-01

    Full Text Available Durante el periodo de Octubre de 1991 a Marzo de 1992, se tomaron 3419 muestras de donadores de sangre de 12 localidades rurales y de 8 hospitales urbanos a los que se les realizo un estúdio serológico mediante la reacción de hemaglutinación indirecta encontrándose anticuerpos contra Trypanosoma cruzi en 44 indivíduos 39 masculinosy 5 femininos. El 90,9% de donantes fueron masculinos. De acuerdo a su procedencia, el 73,5% fué del área urbana y el 26,5% del área rural. De acuerdo a los resultados el riesgo de transmisión de T. cruzi por transfusión sanguinea está latente por la creciente urbanización de la enfermedad de Chagas.A Chagas Disease serological study was done frorn October 1991 to March 1992 and 3419 samples were takenfrom people who donated blood at 12 county areas of Jalisco, México and 8 urban hospitais, by means of indirect hemagglutination reaction. The results indicate that: 73.5% of the donors were from urban area, 26.5% were from rural areas; 1.28% of the donors (N=44 were considered infected. Thirty nine of them (1.14 were males and 5 females. According to the above mentioned data, we can confirm that the risk of transmission of Trypanosoma cruzi can occur by blood transfusion and this is potentially latent because of the growing urbanization of Chagas disease.

  6. Sofosbuvir based treatment of chronic hepatitis C genotype 3 infections

    DEFF Research Database (Denmark)

    Dalgard, Olav; Weiland, Ola; Noraberg, Geir

    2017-01-01

    BACKGROUND AND AIMS: Chronic hepatitis C virus (HCV) genotype 3 infection with advanced liver disease has emerged as the most challenging to treat. We retrospectively assessed the treatment outcome of sofosbuvir (SOF) based regimes for treatment of HCV genotype 3 infections in a real life setting...... in Scandinavia. METHODS: Consecutive patients with chronic HCV genotype 3 infection were enrolled at 16 treatment centers in Denmark, Sweden, Norway and Finland. Patients who had received a SOF containing regimen were included. The fibrosis stage was evaluated by liver biopsy or transient liver elastography...... was similar for all treatment regimens, but lower in men (p = 0.042), and in patients with decompensated liver disease (p = 0.004). CONCLUSION: We found that sofosbuvir based treatment in a real-life setting could offer SVR rates exceeding 90% in patients with HCV genotype 3 infection and advanced liver...

  7. Trypanosoma cruzi I and IV stocks from Brazilian Amazon are divergent in terms of biological and medical properties in mice.

    Directory of Open Access Journals (Sweden)

    Wuelton Marcelo Monteiro

    Full Text Available In the Brazilian Amazon, clinical and epidemiological frameworks of Chagas disease are very dissimilar in relation to the endemic classical areas of transmission, possibly due to genetic and biological characteristics of the circulating Trypanosoma cruzi stocks. Twenty six T. cruzi stocks from Western Amazon Region attributed to the TcI and TcIV DTUs were comparatively studied in Swiss mice to test the hypothesis that T. cruzi clonal structure has a major impact on its biological and medical properties.Seventeen parameters were assayed in mice infected with 14 T. cruzi strains belonging to DTU TcI and 11 strains typed as TcIV. In comparison with TcI, TcIV stocks promoted a significantly shorter pre-patent period (p<0.001, a longer patent period (p<0.001, higher values of mean daily parasitemia (p = 0.009 and maximum of parasitemia (p = 0.015, earlier days of maximum parasitemia (p<0.001 and mortality (p = 0.018, higher mortality rates in the acute phase (p = 0.047, higher infectivity rates (p = 0.002, higher positivity in the fresh blood examination (p<0.001, higher positivity in the ELISA at the early chronic phase (p = 0.022, and a higher positivity in the ELISA at the late chronic phase (p = 0.003. On the other hand TcI showed higher values of mortality rates in the early chronic phase (p = 0.014, higher frequency of mice with inflammatory process in any organ (p = 0.005, higher frequency of mice with tissue parasitism in any organ (p = 0.027 and a higher susceptibility to benznidazole (p = 0.002 than TcIV. Survival analysis showing the time elapsed from the day of inoculation to the beginning of the patent period was significantly shorter for TcIV strains and the death episodes triggered following the infection with TcI occurred significantly later in relation to TcIV. The notable exceptions come from positivity in the hemocultures and PCR, for which the results were similar.T. cruzi stocks

  8. Repositioning FDA Drugs as Potential Cruzain Inhibitors from Trypanosoma cruzi: Virtual Screening, In Vitro and In Vivo Studies

    Directory of Open Access Journals (Sweden)

    Isidro Palos

    2017-06-01

    Full Text Available Chagas disease (CD is a neglected disease caused by the parasite Trypanosoma cruzi, which affects underdeveloped countries. The current drugs of choice are nifurtimox and benznidazole, but both have severe adverse effects and less effectivity in chronic infections; therefore, the need to discover new drugs is essential. A computer-guided drug repositioning method was applied to identify potential FDA drugs (approved and withdrawn as cruzain (Cz inhibitors and trypanocidal effects were confirmed by in vitro and in vivo studies. 3180 FDA drugs were virtually screened using a structure-based approach. From a first molecular docking analysis, a set of 33 compounds with the best binding energies were selected. Subsequent consensus affinity binding, ligand amino acid contact clustering analysis, and ranked position were used to choose four known pharmacological compounds to be tested in vitro. Mouse blood samples infected with trypomastigotes from INC-5 and NINOA strains were used to test the trypanocidal effect of four selected compounds. Among these drugs, one fibrate antilipemic (etofyllin clofibrate and three β-lactam antibiotics (piperacillin, cefoperazone, and flucloxacillin showed better trypanocidal effects (LC50 range 15.8–26.1 μg/mL in comparison with benznidazole and nifurtimox (LC50 range 33.1–46.7 μg/mL. A short-term in vivo evaluation of these compounds showed a reduction of parasitemia in infected mice (range 90–60% at 6 h, but this was low compared to benznidazole (50%. This work suggests that four known FDA drugs could be used to design and obtain new trypanocidal agents.

  9. Stability of RNA silencing-based traits after virus infection

    DEFF Research Database (Denmark)

    Jørgensen, Bodil; Albrechtsen, Merete

    2007-01-01

    with constructs based on virus coat protein (CP) genes or other viral genes has been successfully used to engineer PTGS-mediated virus resistance into a large number of crop plants and some transgenic lines have been commercially exploited. However the discovery that plant viruses encode suppressors of gene...... silencing has raised concerns that virus infection of crop plants might reverse the new silencing-based traits. Most studies of virus suppression of silencing have used model systems based on silencing of reporter genes. A few studies have analysed the effects of virus infections on plants with genetically...... engineered virus resistance based on either a simple sense or an inverted repeat construct. We decided to use genetically engineered virus resistance in potato as a model system for further studies of the effect of virus infection on genetically engineered traits. We present for the first time a comparison...

  10. Trypanosoma cruzi prevalence and clinical forms in blood donor candidates in Brazil Prevalência e formas clínicas de Trypanosoma cruzi em candidatos a doadores de sangue no Brasil

    Directory of Open Access Journals (Sweden)

    H J Silveira

    2003-12-01

    Full Text Available The prevalence and clinical forms of Trypanosoma cruzi were evaluated among blood donor candidates attended at a general hospital in Rio de Janeiro, Brazil, from January 1997 to April 1999. The investigation was done by means of the indirect hemagglutination test and was confirmed via ELISA. Data were collected from clinical examinations, conventional electrocardiogram, chest radiography and echocar-diography. The results showed that despite Trypanosoma cruzi prevalence of 1.17% (128 patients, mainly in males aged 40 years or over, 70.8% of these patients, mainly males aged 19 to 39 years, demonstrated abnormalities that allowed the diagnosis of cardiopathy and/or esophagopathy. This once again corroborates the importance of Trypanosoma cruzi infection in urban centers.A prevalência e a manifestação das formas clinicas de Trypanosoma cruzi foram avaliadas em candidatos a doadores de sangue atendidos em um hospital geral de Nova Iguaçu, Rio de Janeiro, Brasil, no período de janeiro de 1997 a abril de 1999. A pesquisa sorológica foi realizada por meio do teste de hemaglutinação indireta e confirmada pelo ELISA. Os dados foram coletados considerando os exames clínicos, eletrocardiograma convencional, radiografia de tórax e ecocardiografia. Os resultados demonstraram que, apesar da prevalência ser de 1,17% (128 pacientes, principalmente entre homens com idade igual ou superior a 40 anos, 70,8%, principalmente de homens entre 19 e 39 anos, demonstraram alterações que permitiram o diagnóstico de cardiopatias e/ou esofagopatias, ratificando mais uma vez sua importância nos centros urbanos.

  11. The effect of Bulgarian propolis against Trypanosoma cruzi and during its interaction with host cells

    Directory of Open Access Journals (Sweden)

    Andréia Pires Dantas

    2006-03-01

    Full Text Available Propolis has shown activity against pathogenic microorganisms that cause diseases in humans and animals. The ethanol (Et-Blg and acetone (Ket-Blg extracts from a Bulgarian propolis, with known chemical compositions, presented similar activity against tissue culture-derived amastigotes. The treatment of Trypanosoma cruzi-infected skeletal muscle cells with Et-Blg led to a decrease of infection and of the intracellular proliferation of amastigotes, while damage to the host cell was observed only at concentration 12.5 times higher than those affecting the parasite. Ultrastructural analysis of the effect of both extracts in epimastigotes revealed that the main targets were the mitochondrion and reservosomes. Et-Blg also affected the mitochondrion-kinetoplast complex in trypomastigotes, offering a potential target for chemotherapeutic agents.

  12. Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Ludmila R.P. Ferreira

    2008-03-01

    Full Text Available The differentiation of proliferating epimastigote forms of Trypanosoma cruzi , the protozoan parasite that causes Chagas’ disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast - an organelle that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the morphological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process. Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis. RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that transcription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast and flagellum reach the posterior position of the parasites in the infective form.A diferenciação de formas epimastigotas (proliferativas do Trypanosoma cruzi, parasita protozoário causador da doença de Chagas, em formas metacíclicas tripomastigotas (infectivas e não proliferativas, pode ser reproduzida em laborat

  13. A monoallelic deletion of the TcCRT gene increases the attenuation of a cultured Trypanosoma cruzi strain, protecting against an in vivo virulent challenge.

    Directory of Open Access Journals (Sweden)

    Fernando J Sánchez-Valdéz

    2014-02-01

    Full Text Available Trypanosoma cruzi calreticulin (TcCRT is a virulence factor that binds complement C1, thus inhibiting the activation of the classical complement pathway and generating pro-phagocytic signals that increase parasite infectivity. In a previous work, we characterized a clonal cell line lacking one TcCRT allele (TcCRT+/- and another overexpressing it (TcCRT+, both derived from the attenuated TCC T. cruzi strain. The TcCRT+/- mutant was highly susceptible to killing by the complement machinery and presented a remarkable reduced propagation and differentiation rate both in vitro and in vivo. In this report, we have extended these studies to assess, in a mouse model of disease, the virulence, immunogenicity and safety of the mutant as an experimental vaccine. Balb/c mice were inoculated with TcCRT+/- parasites and followed-up during a 6-month period. Mutant parasites were not detected by sensitive techniques, even after mice immune suppression. Total anti-T. cruzi IgG levels were undetectable in TcCRT+/- inoculated mice and the genetic alteration was stable after long-term infection and it did not revert back to wild type form. Most importantly, immunization with TcCRT+/- parasites induces a highly protective response after challenge with a virulent T. cruzi strain, as evidenced by lower parasite density, mortality, spleen index and tissue inflammatory response. TcCRT+/- clones are restricted in two important properties conferred by TcCRT and indirectly by C1q: their ability to evade the host immune response and their virulence. Therefore, deletion of one copy of the TcCRT gene in the attenuated TCC strain generated a safe and irreversibly gene-deleted live attenuated parasite with high immunoprotective properties. Our results also contribute to endorse the important role of TcCRT as a T. cruzi virulence factor.

  14. Aspectos do ciclo silvestre do Trypanosoma cruzi em regiões de cerrado (Município de Formosa, Estado de Goiás Aspects of the sylvatic cycle of Trypanosoma cruzi in the region of cerrado (Formosa municipality, State of Goias

    Directory of Open Access Journals (Sweden)

    D. A. Mello

    1981-09-01

    Full Text Available Neste trabalho estão apresentados resultados de estudos sobre roedores, marsupiais e triatomíneos do norte do municipio de Formosa,Estado de Goiás, e sua importância no ciclo silvestre do T.cruzi. A região estudada esta localizada do ponto de vista geográfico, na "Provincia do Cerrado". Foram coletados 963 roedores, 11 marsupiais e 766 triatomíneos silvestres. O índice de infecção pelo T. cruzi entre os roedores foi de 0,1% e entre os marsupiais 36,3%, enquanto todos os triatomíneos estavam negativos. Face aos aspectos ecológicos estudados, discute-se o papel desempenhado por roedores e marsupiais na manutenção e circulação do T. cruzi em ambiente silvestre. Alguns aspectos epidemiológicos no ambiente doméstico foram também abordados.Studies were carried out on the role of rodents, marsupials and triatoma bugs in the wild cycle of Trypanosoma cruzi. The area studied, located in the county of formosa, State of Goiás, Brasil, belongs to the "Província do Cerrado". The following animals were collected and examined: 963 rodents, 11 marsupials and 766 wild triatomid bugs. The infection rates for T. cruzi were as follow: 36.3% for the marsupials, 0.1% for the rodents, while all the triatomids were negative. The role of the collected mammals in the maintenance and circulation of T. cruzi in the wild environment is discussed. In addition, some epidemiological aspects of the domestic environment were also studied.

  15. Contribución al conocimiento de los reservorios del Trypanosoma cruzi (Chagas,1909 en la Provincia de Corrientes, Argentina Contribution to knowledge of reservoirs of Trypanosoma cruzi (Chagas, 1909 in Corrientes Province, Argentina

    Directory of Open Access Journals (Sweden)

    María Esther Bar

    1999-06-01

    Full Text Available Con el propósito de identificar a reservorios del Trypanosoma cruzi se investigaron 60 mamíferos en los Departamentos Capital y San Luis del Palmar. Se examinaron: primates, roedores, marsupiales, carnívoros y edentados; 40 vivían en cautiverio y 20 fueron capturados mediante trampas en una comunidad rural forestal. Los mamíferos fueron analizados por xenodiagnóstico, empleándose ninfas de 3o o 4o estadío de Triatoma infestans ayunadas durante 2 semanas. Las heces de los triatominos fueron observadas al microscopio (400x a los 30, 60 y 90 días post-alimentación. En 2 Saimiri sciureus y en 1 Cebus apella se constató infección por tripanosomas cruziformes. Se concluye que la parasitemia detectada fue baja. La presencia de Didelphis albiventris, reservorio potencial del Trypanosoma cruzi , en una zona de transmisión activa del parásito representa un factor de riesgo, por lo que son necesarias futuras investigaciones epidemiológicas para determinar la real diagnosis de esta parasitosis en la provincia de Corrientes, Argentina.In order to identify Trypanosoma cruzi reservoirs in transmission areas, 60 mammals in Capital and San Luis del Palmar Departments, Corrientes, Argentina were studied. Primates, rodents, carnivores, marsupials and edentates were investigated, 40 of them living in captivity and 20 caught with traps in a rural area. The mammals were examined by xenodiagnosis and third or fourth instars nymphs of Triatoma infestans starved for 2 weeks were used. The feces were microscopically observed (400x for Trypanosoma cruzi infection at 30, 60 and 90 days after feeding. Trypanosoma cruzi-like parasites were identified in 2 Saimiri sciureus and 1 Cebus apella analyzed by xenodiagnosis. It was concluded that parasitemia was low. Howewer, the presence in a forest area of Didelphis albiventris, potential reservoir of the parasite, indicates a risk factor and deserves further epidemiological study for a true diagnosis of this

  16. Identification of novel mammalian hosts and Brazilian biome geographic distribution of Trypanosoma cruzi TcIII and TcIV.

    Science.gov (United States)

    Barros, Juliana Helena S; Xavier, Samanta Cristina C; Bilac, Daniele; Lima, Valdirene Santos; Dario, Maria Augusta; Jansen, Ana Maria

    2017-08-01

    Trypanosoma cruzi is a parasitic protozoan responsible for Chagas disease. Seven different Discrete Typing Units (DTUs) of T. cruzi are currently identified in nature: TcI-TcVI, and TcBat whose distribution patterns in nature, hosts/reservoirs and eco-epidemiological importance are still little known. Here, we present novel data on the geographic distribution and diversity of mammalian hosts and vectors of T. cruzi DTUs TcIII and TcIV. In this study, we analyzed 61 T. cruzi isolates obtained from 18 species of mammals (five orders) and two Hemiptera genera. Samples were collected from five Brazilian biomes (Pantanal, Caatinga, Cerrado, Atlantic Rainforest, and Amazon) previously characterized as Z3 or mixed infection (TcI-Z3) by mini-exon gene PCR. To identify TcIII and TcIV genotypes, we applied restriction fragment length polymorphism analysis to the PCR-amplified histone 3 gene. DTUs TcIII and TcIV were identified in single and mixed infections from wide dispersion throughout five Brazilian biomes studied, with TcIV being the most common. Pantanal was the biome that displayed the largest number of samples characterized as TcIII and TcIV in single and mixed infections, followed by Atlantic Rainforest and Amazon. Species from the Didelphimorphia order displayed the highest frequency of infection and were found in all five biomes. We report, for the first time, the infection of a species of the Artiodactyla order by DTU TcIII. In addition, we describe new host species: five mammals (marsupials and rodents) and two genera of Hemiptera. Our data indicate that DTUs TcIII and TcIV are more widespread and infect a larger number of mammalian species than previously thought. In addition, they are transmitted in restricted foci and cycles, but in different microhabitats and areas with distinct ecological profiles. Finally, we show that DTUs TcIII and TcIV do not present any specific association with biomes or host species. Copyright © 2017. Published by Elsevier B.V.

  17. The Combination of Vitamin K3 and Vitamin C Has Synergic Activity against Forms of Trypanosoma cruzi through a Redox Imbalance Process.

    Science.gov (United States)

    Cristina Desoti, Vânia; Lazarin-Bidóia, Danielle; Martins Ribeiro, Fabianne; Cardoso Martins, Solange; da Silva Rodrigues, Jean Henrique; Ueda-Nakamura, Tania; Vataru Nakamura, Celso; Farias Ximenes, Valdecir; de Oliveira Silva, Sueli

    2015-01-01

    Chagas' disease is an infection that is caused by the protozoan Trypanosoma cruzi, affecting millions of people worldwide. Because of severe side effects and variable efficacy, the current treatments for Chagas' disease are unsatisfactory, making the search for new chemotherapeutic agents essential. Previous studies have reported various biological activities of naphthoquinones, such as the trypanocidal and antitumor activity of vitamin K3. The combination of this vitamin with vitamin C exerted better effects against various cancer cells than when used alone. These effects have been attributed to an increase in reactive oxygen species generation. In the present study, we evaluated the activity of vitamin K3 and vitamin C, alone and in combination, against T. cruzi. The vitamin K3 + vitamin C combination exerted synergistic effects against three forms of T. cruzi, leading to morphological, ultrastructural, and functional changes by producing reactive species, decreasing reduced thiol groups, altering the cell cycle, causing lipid peroxidation, and forming autophagic vacuoles. Our hypothesis is that the vitamin K3 + vitamin C combination induces oxidative imbalance in T. cruzi, probably started by a redox cycling process that leads to parasite cell death.

  18. The Combination of Vitamin K3 and Vitamin C Has Synergic Activity against Forms of Trypanosoma cruzi through a Redox Imbalance Process.

    Directory of Open Access Journals (Sweden)

    Vânia Cristina Desoti

    Full Text Available Chagas' disease is an infection that is caused by the protozoan Trypanosoma cruzi, affecting millions of people worldwide. Because of severe side effects and variable efficacy, the current treatments for Chagas' disease are unsatisfactory, making the search for new chemotherapeutic agents essential. Previous studies have reported various biological activities of naphthoquinones, such as the trypanocidal and antitumor activity of vitamin K3. The combination of this vitamin with vitamin C exerted better effects against various cancer cells than when used alone. These effects have been attributed to an increase in reactive oxygen species generation. In the present study, we evaluated the activity of vitamin K3 and vitamin C, alone and in combination, against T. cruzi. The vitamin K3 + vitamin C combination exerted synergistic effects against three forms of T. cruzi, leading to morphological, ultrastructural, and functional changes by producing reactive species, decreasing reduced thiol groups, altering the cell cycle, causing lipid peroxidation, and forming autophagic vacuoles. Our hypothesis is that the vitamin K3 + vitamin C combination induces oxidative imbalance in T. cruzi, probably started by a redox cycling process that leads to parasite cell death.

  19. Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida).

    Science.gov (United States)

    Santoro, G F; Cardoso, M G; Guimarães, L G L; Freire, J M; Soares, M J

    2007-10-01

    This study analyses the anti-proliferative effect of lemongrass essential oil and its main constituent (citral) on all 3 evolutive forms of Trypanosoma cruzi. Steam distillation was used to obtain lemongrass essential oil, with chemical composition determined by gas chromatography (GC) and GC coupled to mass spectrometry (GC-MS). The IC50/24 h (concentration that reduced the parasite population by 50%) of the oil and of citral upon T. cruzi was determined by cell counting in a Neubauer chamber, while morphological alterations were visualized by scanning and transmission electron microscopy. Treatment with the essential oil resulted in epimastigote growth inhibition with IC50=126.5 microg/ml, while the IC50 for trypomastigote lysis was 15.5 microg/ml. The IC50/48 h for the Association Index (% macrophage infection x number of amastigotes per cell) was 5.1 microg/ml, with a strong inhibition of intracellular amastigote proliferation. Ultrastructural analysis demonstrated cytoplasmic and nuclear extraction, while the plasma membrane remained morphologically preserved. Our data show that lemongrass essential oil is effective against T. cruzi trypomastigotes and amastigotes, and that its main component, citral, is responsible for the trypanocidal activity. These results indicate that essential oils can be promising anti-parasitic agents, opening perspectives to the discovery of more effective drugs of vegetal origin for treatment of parasitic diseases. However, additional cytotoxicity experiments on different cell lines and tests in a T. cruzi-mouse model are needed to support these data.

  20. Efecto del aceite esencial de Aloysia triphylla britton (cedrón sobre el Trypanosoma cruzi en ratones The effect of the essential oil from Aloysia triphylla britton (lemon verbena on Trypanosoma cruzi in mice

    Directory of Open Access Journals (Sweden)

    Juan Rojas

    2012-03-01

    Full Text Available Objetivos. Determinar la actividad anti-Trypanosoma cruzi in vivo del aceite esencial de Aloysia triphylla en ratones. Materiales y Métodos. Los animales fueron asignados aleatoriamente a los siguientes grupos (n = 15 por grupo: infectados y no tratados (G1, infectados y tratados con benznidazol 100 mg/kg (G2, infectados y tratados con aceite esencial de Aloysia triphylla 100 mg/kg (G3, infectados y tratados con aceite esencial de Aloysia triphylla 250 mg/kg (G4; no infectados y no tratados (G5, y no infectados y tratados con 250 mg/kg de Aloysia triphyla (G6. La infección con T. cruzi se realizó con 104 tripomastigotes sanguíneos y el tratamiento empezó en el octavo día postinfección (dpi hasta el 28 dpi. La parasitemia se determinó con microscopía óptica cada dos días en 5 μL de sangre extraída de la cola. En el 14, 21 y 28 dpi se obtuvo sangre de la cola para el ensayo de creatina kinasa-MB (CK-MB, alanina aminotransferasa y creatinina; después, los animales fueron sacrificados y se extrajo el corazón para el estudio histopatológico. Resultados. El aceite esencial de cedrón produjo una reducción significativa de 85,4% del pico de parasitemia con la dosis de 250 mg/kg; también produjo reducción del número de amastigotes e infiltrados inflamatorios en el corazón. El nivel plasmático de CK-MB también disminuyó en el 28 dpi por efecto de dicho tratamiento. Conclusiones. En condiciones experimentales, el aceite esencial de Aloysia triphylla tiene efecto anti-Trypanosoma cruzi in vivo en ratones.Objectives. To determine the in-vivo anti-Trypanosoma cruzi activity of the essential oil from Aloysia triphylla in mice. Materials and methods. The mice (n = 15 in the study were randomly assigned to the following groups: infected and untreated (G1, infected and treated with benznidazole 100 mg/kg (G2, infected and treated with of Aloysia triphylla essential oil 100 mg/kg (G3, infected and treated with of Aloysia triphylla

  1. Screening of Fungi for Biological Control of a Triatomine Vector of Chagas Disease: Temperature and Trypanosome Infection as Factors.

    Directory of Open Access Journals (Sweden)

    Aline R M Garcia

    2016-11-01

    Full Text Available Entomopathogenic fungi have been investigated as an alternative tool for controlling various insects, including triatomine vectors of the protozoan Trypanosoma cruzi, the etiological agent of Chagas disease. Here we tested the pathogenicity and virulence of ten isolates of the fungi Metarhizium spp. and Beauveria bassiana against Rhodnius prolixus and found all of the isolates to be virulent. We used two isolates (URPE-11 Metarhizium anisopliae and ENT-1 Beauveria bassiana for further screening based on their prolific sporulation in vitro (an important property of fungal biopesticides. We characterized their virulences in a dose-response experiment and then examined virulence across a range of temperatures (21, 23, 27 and 30°C. We found isolate ENT-1 to maintain higher levels of virulence over these temperatures than URPE-11. We therefore used B. bassiana ENT-1 in the final experiment in which we examined the survival of insects parasitized with T. cruzi and then infected with this fungus (once again over a range of temperatures. Contrary to our expectations, the survival of insects challenged with the pathogenic fungus was greater when they had previously been infected with the parasite T. cruzi than when they had not (independent of temperature. We discuss these results in terms of aspects of the biologies of the three organisms. In practical terms, we concluded that, while we have fungal isolates of potential interest for development as biopesticides against R. prolixus, we have identified what could be a critical problem for this biological tool: the parasite T. cruzi appears to confer a measure of resistance to the insect against the potential biopesticide agent so use of this fungus as a biopesticide could lead to selection for vector competence.

  2. The Combination of Vitamin K3 and Vitamin C Has Synergic Activity against Forms of Trypanosoma cruzi through a Redox Imbalance Process

    OpenAIRE

    Cristina Desoti, V?nia; Lazarin-Bid?ia, Danielle; Martins Ribeiro, Fabianne; Cardoso Martins, Solange; da Silva Rodrigues, Jean Henrique; Ueda-Nakamura, Tania; Vataru Nakamura, Celso; Farias Ximenes, Valdecir; de Oliveira Silva, Sueli

    2015-01-01

    Chagas' disease is an infection that is caused by the protozoan Trypanosoma cruzi, affecting millions of people worldwide. Because of severe side effects and variable efficacy, the current treatments for Chagas' disease are unsatisfactory, making the search for new chemotherapeutic agents essential. Previous studies have reported various biological activities of naphthoquinones, such as the trypanocidal and antitumor activity of vitamin K3. The combination of this vitamin with vitamin C exert...

  3. Survival of Trypanosoma cruzi in sugar cane used to prepare juice Avaliação da sobrevida de Trypanosoma cruzi em cana de açúcar utilizada no preparo do caldo

    Directory of Open Access Journals (Sweden)

    Adriana V.N. Cardoso

    2006-10-01

    Full Text Available Chagas disease can be transmitted to man by many different means, including contact with infected triatomine feces, blood transfusion, laboratory accidents, organ transplants, and congenital or oral routes. The latter mode has received considerable attention recently. In this assay, we evaluate the survival of Trypanosoma cruzi contaminating sugar cane used to prepare juice, as well as the viability and capacity for infection by the parasite after recovery. Thirty triatomines were contaminated with T. cruzi Y strain and 45 days later pieces of sugar cane were contaminated with the intestinal contents of the insects. The pieces were ground at different intervals after contamination (time = 0, 1, 4, 6, 12 and 24 hours and the juice extracted and analyzed. Different methods were used to show T. cruzi in the juice: direct analysis, hematocrit tube centrifugation and QBC, and experimental inoculation in 47 female BALB/c mice (five control mice and seven mice for each interval examined (five inoculated orally and two intraperitoneally. Positive results were found using the direct analysis and QBC methods for juice prepared up to 12 hours after initial contamination. However, by the centrifugation technique, positivity was found only up to four hours after contamination of the sugar cane. Inoculated animals showed parasitemia during a 14 day observation period, demonstrating the high survival rate of T. cruzi in sugar cane.A doença de Chagas pode ser transmitida ao homem através de vários mecanismos: fezes de triatomíneo infectado; transfusão sangüínea; acidente em laboratório; transplante de órgão; vias congênita ou oral convindo salientar que esta última tem motivado ocorrências recentemente. Neste estudo procuramos avaliar a sobrevida de Trypanosoma cruzi presente em cana de açúcar contaminada com o parasita, utilizada no preparo do caldo e, também, a viabilidade e a capacidade de infecção do parasita depois de ser recuperado

  4. Trypanosoma cruzi: avirulence of the PF strain to Callithrix marmosets

    Directory of Open Access Journals (Sweden)

    Humberto Menezes

    1981-06-01

    Full Text Available Callithrix jacchus geoffroy marmosets (HumBol. 1812 were injected once subcutaneously with 10.000 parasites/g body weight and followed for a period of six months. The PF strain of Trypanosoma cruzi was used. Follow-up was done through blood cultures, xenodiagnosis, serological tests, and ECG. A small number of normaI animais served as control.

  5. Production of amastigotes from metacyclic trypomastigotes of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Víctor T Contreras

    2002-12-01

    Full Text Available Attempts to recreate all the developmental stages of Trypanosoma cruzi in vitro have thus far been met with partial success. It is possible, for instance, to produce trypomastigotes in tissue culture and to obtain metacyclic trypomastigotes in axenic conditions. Even though T. cruzi amastigotes are known to differentiate from trypomastigotes and metacyclic trypomastigotes, it has only been possible to generate amastigotes in vitro from the tissue-culture-derived trypomastigotes. The factors and culture conditions required to trigger the transformation of metacyclic trypomastigotes into amastigotes are as yet undetermined. We show here that pre-incubation of metacyclic trypomastigotes in culture (MEMTAU medium at 37°C for 48 h is sufficient to commit the parasites to the transformation process. After 72 h of incubation in fresh MEMTAU medium, 90% of the metacyclic parasites differentiate into forms that are morphologically indistinguishable from normal amastigotes. SDS-PAGE, Western blot and PAABS analyses indicate that the transformation of axenic metacyclic trypomastigotes to amastigotes is associated with protein, glycoprotein and antigenic modifications. These data suggest that (a T. cruzi amastigotes can be obtained axenically in large amounts from metacyclic trypomastigotes, and (b the amastigotes thus obtained are morphological, biological and antigenically similar to intracellular amastigotes. Consequently, this experimental system may facilitate a direct, in vitro assessment of the mechanisms that enable T. cruzi metacyclic trypomastigotes to transform into amastigotes in the cells of mammalian hosts.

  6. Anti-Trypanosoma cruzi antibody detection in eastern Andalusia (Spain).

    Science.gov (United States)

    Marín, Clotilde; Concha-Valdez, Fanny; Cañas, Rocío; Gutiérrez-Sánchez, Ramón; Sánchez-Moreno, Manuel

    2014-03-01

    Chagas disease caused by the protozoan haemoflagellate Trypanosoma cruzi is no longer found exclusively in Latin America; the disease is occurring in Europe, and Spain is the country with the highest prevalence. Our aim was to detect anti-T. cruzi antibodies in blood donors from southeast Spain, and we performed eight serological diagnostic assays on each of 550 blood samples collected in March-June 2010. Two in-house ELISA methods were used to test against a parasite lysate (ELISA-H) and the semi-purified superoxide dismutase excreted by T. cruzi (ELISA-SODe); we also used the Western blot technique against the same antigen (WB-SODe), indirect immunofluorescence (IFA) and four commercial tests. The serological test results showed a range of seroprevalence values, the lowest being 1.1%, determined by IFA and two commercial tests (Ab rapid and Chagascreen); other values were: 1.3% (commercial ELISA [Chagas ELISA IgG+IgM]); 2.1% (immunochromatographic test [Stick Chagas]); 2.7% (ELISA-H); 4.0% (WB-SODe); and 4.2%, the highest value (ELISA-SODe). The excellent specificity of SODe antigen for the detection of antibodies to T. cruzi in donors lead us to affirm that the serological test performed with this biomarker could provide a useful screening and confirmatory test method for cases of Chagas disease.

  7. Diterpenoids from Azorella compacta (Umbelliferae active on Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Araya Jorge E

    2003-01-01

    Full Text Available The anti-Trypanosoma cruzi activity of natural products isolated from Azorella compacta was evaluated, with particular emphasis on their effect against intracellular amastigotes. Five diterpenoids from A. compacta derived from mulinane and azorellane were isolated and identified. Only two products, named azorellanol (Y-2 and mulin-11,3-dien-20-oic acid (Y-5, showed trypanocidal activity against all stages of T. cruzi including intracellular amastigotes. At 10 µM, these compounds displayed a strong lytic activity. It ranged from 88.4 ± 0.6 to 99.0 ± 1 % for all strains and stages evaluate, with an IC50 /18 h values of 20-84 µM and 41-87 µM, respectively. The development of intracellular amastigotes was also inhibited by nearly 60% at 25 µM. The trypanocidal molecules Y-2 and Y-5 did show different degrees of cytotoxicity depending on the cell line tested, with an IC50 /24 h ranging from 33.2 to 161.2 µM. We evaluated the effect of diterpenoids against intracellular T. cruzi forms by immunofluorescent identification of a specific membrane molecular marker (Ssp-4 antigen of the T. cruzi amastigote forms. The accuracy and reproducibility of the measurements were found to be outstanding when examined by confocal microscopy.

  8. A rapid method for testing in vivo the susceptibility of different strains of Trypanosoma cruzi to active chemotherapeutic agents

    Directory of Open Access Journals (Sweden)

    Leny S. Filardi

    1984-06-01

    Full Text Available A method is described which permits to determine in vivo an in a short period of time (4-6 hours the sensitivity of T. cruzo strains to known active chemotherapeutic agents. By using resistant- and sensitive T. cruzi stains a fairly good correlation was observed between the results obtained with this rapid method (which detects activity against the circulating blood forms and those obtained with long-term schedules which involve drug adminstration for at least 20 consecutive days and a prolonged period of assessment. This method may be used to characterize susceptibility to active drugs used clinically, provide infomation on the specific action against circulating trypomastigotes and screen active compounds. Differences in the natural susceptibility of Trypanosoma cruzi strains to active drugs have been already reported using different criteria, mostly demanding long-term study of the animal (Hauschka, 1949; Bock, Gonnert & Haberkorn, 1969; Brener, Costa & Chiari, 1976; Andrade & Figueira, 1977; Schlemper, 1982. In this paper we report a method which detects in 4-6 hours the effect of drugs on bloodstream forms in mice with established T. cruzi infections. The results obtained with this method show a fairly good correlation with those obtained by prolonged treatment schedules used to assess the action of drugs in experimental Chagas' disease and may be used to study the sensitivity of T. cruzi strains to active drugs.No presente trabalho descreve-se um metodo que permite determinar in vivo e em curto espaço de tempo (4-6 horas a sensibilidade de cepas de T. cruzi a agentes terapeuticos ativos na doença de Chagas. Usando-se cepas sensíveis e resistentes aos medicamentos foi possível observar uma boa correlação entre os resultados obtidos com o método rápido (que detecta atividade contra as formas circulantes do parasita e aqueles obtidos com esquema de acao prolongada que envolve a administração da droga por 20 dias e posterior avalia

  9. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Directory of Open Access Journals (Sweden)

    María Cristina Vanrell

    2017-11-01

    Full Text Available Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  10. Trypanosoma cruzi: Transporte de metabolitos esenciales obtenidos del hospedador Trypanosoma cruzi: Transport of essential metabolites acquired from the host

    Directory of Open Access Journals (Sweden)

    Claudio A. Pereira

    2008-10-01

    Full Text Available El Trypanosoma cruzi es el agente causal de la enfermedad de Chagas, endémica en Argentina y en toda América Latina. Presenta numerosas características metabólicas diferenciales respecto a sus hospedadores insectos y mamíferos. Algunas de estas diferencias fueron consecuencia de millones de años de adaptación al parasitismo en los cuales estos organismos protozoarios reemplazaron, a lo largo de su evolución, muchas rutas metabólicas de biosíntesis por sistemas de transporte de metabolitos desde el hospedador. En esta revisión se describen los avances en el conocimiento de los sistemas de transporte tanto bioquímicos como también de las moléculas involucradas en dichos procesos. Se aborda con especial énfasis los transportadores de aminoácidos y poliaminas de T. cruzi de la familia AAAP (Amino Acid/Auxin Permeases ya que parece ser exclusiva de los tripanosomátidos. Teniendo en cuenta que estas moléculas se encuentran completamente ausentes en mamíferos podrían ser consideradas como potenciales blancos contra el Trypanosoma cruzi.Trypanosoma cruzi is the etiological agent of Chagas disease, a disease endemic not only in Argentina but also in all of Latinamerica. T. cruzi presents several metabolic characteristics which are completely absent in its insect vectors and in mammalian hosts. Some of these differences were acquired after millions of years of adaptation to parasitism, during which this protozoan replaced many biosynthetic routes for transport systems. In the present review, we describe the advances in the knowledge of T. cruzi transport processes and the molecules involved. In particular, we focus on aminoacid and polyamine transporters from the AAAP family (Amino Acid/Auxin Permeases, because they seem to be exclusive transporters from trypanosomatids. Taking into account that these permeases are completely absent in mammals, they could be considered as a potential target against Trypanosoma cruzi.

  11. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  12. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  13. Eco-epidemiological aspects of Trypanosoma cruzi, Trypanosoma rangeli and their vector (Rhodnius pallescens in Panama Generalidades do Trypanosoma cruzi, do Trypanosoma rangeli e do seu vetor (Rhodnius pallescens no Panamá

    Directory of Open Access Journals (Sweden)

    Ana Maria de Vasquez

    2004-08-01

    Full Text Available The eco-epidemiology of T. cruzi infection was investigated in the Eastern border of the Panama Canal in Central Panama. Between 1999 and 2000, 1110 triatomines were collected: 1050 triatomines (94.6% from palm trees, 27 (2.4% from periurban habitats and 33 (3.0% inside houses. All specimens were identified as R. pallescens. There was no evidence of vector domiciliation. Salivary glands from 380 R. pallescens revealed a trypanosome natural infection rate of 7.6%, while rectal ampoule content from 373 triatomines was 45%. Isoenzyme profiles on isolated trypanosomes demonstrated that 85.4% (n = 88 were T. cruzi and 14.6% (n = 15 were T. rangeli. Blood meal analysis from 829 R. pallescens demonstrated a zoophilic vector behavior, with opossums as the preferential blood source. Seroprevalence in human samples from both study sites was less than 2%. Our results demonstrate that T. cruzi survives in the area in balanced association with R. pallescens, and with several different species of mammals in their natural niches. However, the area is an imminent risk of infection for its population, consequently it is important to implement a community educational program regarding disease knowledge and control measures.A epidemiologia da infecção do T. cruzi foi investigada na margem oriental do canal do Panamá, na região central da Republica do Panamá. A informação obtida durante o estudo avaliou fatores de risco da doença de Chagas nesta área. Entre 1999 e 2000, 1110 triatomíneos foram coletados: 1050 triatomíneos (94,6% em palmeiras, 27 (2,4% em habitats periurbanos e 33 (3,0% no interior de casas. Todos os espécimens foram identificados como R. pallescens. Não havia nenhuma evidência de domiciliação do vetor. O exame de glândulas salivares de 380 R. pallescens revelaram taxa de infecção natural por Trypanosoma de 7,6%, mas o conteúdo da ampola rectal de 373 triatomíneos mostrou 45% de positividade. Os perfis de isoenzimas em

  14. Irradiated T. cruzi and resistant consomic animals can be useful in Chagas disease studies

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Viviane Liotti; Passos, Luiz Augusto Correa; Salgado, Andreia Ruis [Universidade Estadual de Campinas, SP (Brazil). Centro Multidisciplinar para a Investigacao Biologica (CEMIB/UNICAMP)], e-mail: viviliotti@cemib.unicamp.br; Spencer, Patrick Jack; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Human Chagas disease is considered the most significant parasitic disease in Latin America. It is estimated that 16-18 million people are infected by T. cruzi. As a consequence, approximately 50,000 deaths occur every year. The acute infection usually goes unrecognized and enters into a chronic stage that persists throughout the host's life span. However, roughly 30% of infected individuals eventually will develop disease with an array of possible manifestations affecting the heart, the digestive tract, and/or the peripheral nervous system. This disease is commonly modeled in inbred mice even though mouse strains used to simulate experimental infection vary considerably. In this way, Wrightsman and Trischmann showed that chromosome 17 was directly involved in a T. cruzi resistance, showing the influence of host's genetic constitution on disease severity. Additionally, in 2003, Passos and Graefe, working separately, quantified parasite burdens in resistant and susceptible strains and applied a backcross strategy to map the genomic loci linked to susceptibility and resistance in inbred mice. The genomes of the animals were scanned with microsatellite markers and the results found by these authors showed that the resistance mechanism is polygenic and is under the control of a complex network. In the particular case of Y strain, in vivo assays indicated that survival was related to the chromosomes 7,11,14,17 and 19. In order to evaluate the influence of each isolated chromosome as well as their interactions, we employed susceptible isogenic mice to construct consomic lineages for each one of those chromosomes. The consomic strains were injected with irradiated and native forms of Y strain T. cruzi, and the infectivity parameters were evaluated by quantitative methods. Radiation caused inability of trypanosomes to infect and kill mice, when these parasites were irradiated with 1 kGy of gamma rays from a {sup 60}Co source. In this experiment we used 10{sup 1

  15. Irradiated T. cruzi and resistant consomic animals can be useful in Chagas disease studies

    International Nuclear Information System (INIS)

    Dias, Viviane Liotti; Passos, Luiz Augusto Correa; Salgado, Andreia Ruis; Spencer, Patrick Jack; Nascimento, Nanci do

    2009-01-01

    Human Chagas disease is considered the most significant parasitic disease in Latin America. It is estimated that 16-18 million people are infected by T. cruzi. As a consequence, approximately 50,000 deaths occur every year. The acute infection usually goes unrecognized and enters into a chronic stage that persists throughout the host's life span. However, roughly 30% of infected individuals eventually will develop disease with an array of possible manifestations affecting the heart, the digestive tract, and/or the peripheral nervous system. This disease is commonly modeled in inbred mice even though mouse strains used to simulate experimental infection vary considerably. In this way, Wrightsman and Trischmann showed that chromosome 17 was directly involved in a T. cruzi resistance, showing the influence of host's genetic constitution on disease severity. Additionally, in 2003, Passos and Graefe, working separately, quantified parasite burdens in resistant and susceptible strains and applied a backcross strategy to map the genomic loci linked to susceptibility and resistance in inbred mice. The genomes of the animals were scanned with microsatellite markers and the results found by these authors showed that the resistance mechanism is polygenic and is under the control of a complex network. In the particular case of Y strain, in vivo assays indicated that survival was related to the chromosomes 7,11,14,17 and 19. In order to evaluate the influence of each isolated chromosome as well as their interactions, we employed susceptible isogenic mice to construct consomic lineages for each one of those chromosomes. The consomic strains were injected with irradiated and native forms of Y strain T. cruzi, and the infectivity parameters were evaluated by quantitative methods. Radiation caused inability of trypanosomes to infect and kill mice, when these parasites were irradiated with 1 kGy of gamma rays from a 60 Co source. In this experiment we used 10 1 , 10 2 , 10 3 , 10 4

  16. Utilización de Lepidium Peruvianum Maca, como medio de cultivo para el crecimiento de Trypanosoma Cruzi

    Directory of Open Access Journals (Sweden)

    Charles Saldaña C

    2006-04-01

    Full Text Available Por sus características nutritivas de alto valor, se ensayó la posible utilidad del Lepidium peruvianum maca, como un medio para cultivar Trypanosoma cruzi. Bajo condiciones experimentales se procedió a incubar epimastigotes de T. cruzi en cuatro medios de cultivo bifásicos diferentes, a base de Lepidium peruvianum maca, los cuales fueron comparados con el medio de cultivo BHI como control. La incorporación de maca como medio de cultivo permitió el crecimiento de Trypanosoma cruzi; se determinó que el medio que contenía maca enriquecida con sangre entre los componentes sólidos y la infusión de maca en la fase líquida, presentó un mayor crecimiento (3,41 x 105 parásitos/mL con respecto a los otros medios de cultivo al quinto día (p<0,05.

  17. Quantitative and histological assessment of maternal-fetal transmission of Trypanosoma cruzi in guinea pigs: An experimental model of congenital Chagas disease.

    Directory of Open Access Journals (Sweden)

    Jatziri Torres-Vargas

    2018-01-01

    Full Text Available We evaluated the effect of Trypanosoma cruzi infection on fertility, gestation outcome, and maternal-fetal transmission in guinea pigs (Cavia porcellus.Animals were infected with T. cruzi H4 strain (TcI lineage before gestation (IBG or during gestation (IDG. Tissue and sera samples of dams and fetuses were obtained near parturition.All IBG and IDG dams were seropositive by two tests, and exhibited blood parasite load of 1.62±2.2 and 50.1±62 parasites/μl, respectively, by quantitative PCR. Histological evaluation showed muscle fiber degeneration and cellular necrosis in all infected dams. Parasite nests were not detected in infected dams by histology. However, qPCR analysis detected parasites-eq/g heart tissue of 153±104.7 and 169.3±129.4 in IBG and IDG dams, respectively. All fetuses of infected dams were positive for anti-parasite IgG antibodies and tissue parasites by qPCR, but presented a low level of tissue inflammatory infiltrate. Fetuses of IDG (vs. IBG dams exhibited higher degree of muscle fiber degeneration and cellular necrosis in the heart and skeletal tissues. The placental tissue exhibited no inflammatory lesions and amastigote nests, yet parasites-eq/g of 381.2±34.3 and 79.2±84.9 were detected in IDG and IBG placentas, respectively. Fetal development was compromised, and evidenced by a decline in weight, crow-rump length, and abdominal width in both groups.T. cruzi TcI has a high capacity of congenital transmission even when it was inoculated at a very low dose before or during gestation. Tissue lesions, parasite load, and fetal under development provide evidence for high virulence of the parasite during pregnancy. Despite finding of high parasite burden by qPCR, placentas were protected from cellular damage. Our studies offer an experimental model to study the efficacy of vaccines and drugs against congenital transmission of T. cruzi. These results also call for T. cruzi screening in pregnant women and adequate follow up of

  18. Particle-based vaccines for HIV-1 infection.

    Science.gov (United States)

    Young, Kelly R; Ross, Ted M

    2003-06-01

    The use of live-attenuated viruses as vaccines has been successful for the control of viral infections. However, the development of an effective vaccine against the human immunodeficiency virus (HIV) has proven to be a challenge. HIV infects cells of the immune system and results in a severe immunodeficiency. In addition, the ability of the virus to adapt to immune pressure and the ability to reside in an integrated form in host cells present hurdles for vaccinologists to overcome. A particle-based vaccine strategy has promise for eliciting high titer, long-lived, immune responses to a diverse number of viral epitopes from different HIV antigens. Live-attenuated viruses are effective at generating both cellular and humoral immunity, however, a live-attenuated vaccine for HIV is problematic. The possibility of a live-attenuated vaccine to revert to a pathogenic form or recombine with a wild-type or defective virus in an infected individual is a drawback to this approach. Therefore, these vaccines are currently only being tested in non-human primate models. Live-attenuated vaccines are effective in stimulating immunity, however challenged animals rarely clear viral infection and the degree of attenuation directly correlates with the protection of animals from disease. Another particle-based vaccine approach for HIV involves the use of virus-like particles (VLPs). VLPs mimic the viral particle without causing an immunodeficiency disease. HIV-like particles (HIV-LP) are defined as self-assembling, non-replicating, nonpathogenic, genomeless particles that are similar in size and conformation to intact virions. A variety of VLPs for both HIV and SIV are currently in pre-clinical and clinical trials. This review focuses on the current knowledge regarding the immunogenicity and safety of particle-based vaccine strategies for HIV-1.

  19. Induction of chagasic-like arrhythmias in the isolated beating hearts of healthy rats perfused with Trypanosoma cruzi-conditioned medium

    Directory of Open Access Journals (Sweden)

    H. Rodriguez-Angulo

    2013-01-01

    Full Text Available Chagas' myocardiopathy, caused by the intracellular protozoan Trypanosoma cruzi, is characterized by microvascular alterations, heart failure and arrhythmias. Ischemia and arrythmogenesis have been attributed to proteins shed by the parasite, although this has not been fully demonstrated. The aim of the present investigation was to study the effect of substances shed by T. cruzi on ischemia/reperfusion-induced arrhythmias. We performed a triple ischemia-reperfusion (I/R protocol whereby the isolated beating rat hearts were perfused with either Vero-control or Vero T. cruzi-infected conditioned medium during the different stages of ischemia and subsequently reperfused with Tyrode's solution. ECG and heart rate were recorded during the entire experiment. We observed that triple I/R-induced bradycardia was associated with the generation of auricular-ventricular blockade during ischemia and non-sustained nodal and ventricular tachycardia during reperfusion. Interestingly, perfusion with Vero-infected medium produced a delay in the reperfusion-induced recovery of heart rate, increased the frequency of tachycardic events and induced ventricular fibrillation. These results suggest that the presence of parasite-shed substances in conditioned media enhances the arrhythmogenic effects that occur during the I/R protocol.

  20. Morphometry of submucous and myenteric esophagic plexus of dogs experimentally reinfected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Machado Evandro MM

    2001-01-01

    Full Text Available We carried out a morphometric study of the esophagus of cross-bred dogs experimentally infected or consecutively reinfected with Trypanosoma cruzi 147 and SC-1 strains, in order to verify denervation and/or neuronal hypertrophy in the intramural plexus. The animals were sacrificed in the chronic stage, 38 months after the initial infection. Neither nests of amastigotes, nor myositis or ganglionitis, were observed in all third inferior portions of esophageal rings analyzed. No nerve cell was identified in the submucous of this organ. There was no significant difference (p>0.05 between the number, maximum diameter, perimeter, or area and volume of the nerve cells of the myenteric plexus of infected and/or reinfected dogs and of the non-infected ones. In view of these results we may conclude that the 147 and SC-1 strains have little neurotropism and do not determine denervation and/or hypertrophy in the intramural esophageal plexuses in the animals studied, independent of the reinfections.

  1. The vertical dispersión of Anopheles (Kerteszia cruzi in a forest in southern Brazil suggests that human cases of malaria of simian origin might be expected

    Directory of Open Access Journals (Sweden)

    Leonidas M. Deane

    1984-12-01

    Full Text Available By staining females of Anopheles cruzi with fluorescent coloured powders in a forest in the State of Santa Catarina, we showed that they move from canopy to ground and vice-versa to feed. This suggests that in areas where this mosquito is a vector of human and simian malarias sporadic infections of man with monkey plasmodia might be expected.Pintando fêmeas de Anopheles cruzi com pós fluorescentes coloridos, numa floresta de Santa Catarina, mostramos que elas movimentam-se da copa ao solo e vice-versa para se alimentar de sangue. Isso sugere que em áreas onde esse mosquito for tansmissor das malárias humana e simiana pode-se esperar que ocorram infecções humanas esporádicas por plasmódios de macacos.

  2. [Seroprevalence of antibodies against Trypanosoma cruzi in 13 departments of Uruguay].

    Science.gov (United States)

    Salvatella, R; Calegari, L; Casserone, S; Civila, E; Carbajal, S; Pérez, G; Somma, R; Sampaio, I; Llanes, M E; Conti, M

    1989-08-01

    In 1985 a study was undertaken of the prevalence of Trypanosoma cruzi antibodies in 13 departments of Uruguay where transmission of the parasite by the vector Triatoma infestans persists. A total of 5,924 serum samples were selected using a probabilistic method--3,840 from individuals over the age of 12 (sample I) and 2,084 from subjects who were 12 years old (sample II). The population was classified according to place of residence (capital city, non-capital city, suburban area, and rural area). The percentage of positive sera detected by indirect immunofluorescence in the different departments ranged from 1 to 11%, and overall seroprevalence for the area was 3.4%. Based on the results obtained, it was possible to distinguish three areas: A, with seroprevalence from 6 to 11%; B, 2 to 3.2%, and C, 1 to 1.4%. In sample II from the Departments of Paysandú, Soriano, Flores, Florida, and Durazno, no cases of Chagas' disease were detected, which suggests that there is no active transmission of T. cruzi in this age group in the area studied. The number of persons estimated to have the disease was 36,952, or 1.3% of the total population of Uruguay and 4% of the population in the area surveyed. These seroprevalence figures are similar to those recorded in the province of Entre Ríos, Argentina, and in the neighboring municipalities of Rio Grande do Sul, Brazil.

  3. Community-Based Entomological Surveillance Reveals Urban Foci of Chagas Disease Vectors in Sobral, State of Ceará, Northeastern Brazil.

    Directory of Open Access Journals (Sweden)

    Cynara Carvalho Parente

    Full Text Available The aim of this work was to explore the potential risk of vector-borne Chagas disease in urban districts in northeastern Brazil, by analyzing the spatiotemporal distributions and natural infection rates with Trypanosoma cruzi of triatomine species captured in recent years. The main motivation of this work was an acute human case of Chagas disease reported in 2008 in the municipality of Sobral.We analyzed data from community-based entomological surveillance carried out from 2010 to 2014. Triatomine natural T. cruzi infection was assessed by examination of insect feces by optical microscopy. Sites of triatomine capture were georeferenced through Google Earth and analyzed with ArcGIS. A total of 191 triatomines were collected, consisting of 82.2% Triatoma pseudomaculata, 7.9% Rhodnius nasutus, 5.8% T. brasiliensis, 3.7% Panstrongylus lutzi, and 0.5% P. megistus, with an overall natural infection index of 17.8%. Most infestations were reported in the districts of Dom José (36.2%, Padre Palhano (24.7%, and Alto do Cristo (10.6%. The overwhelming majority of insects (185/96.9% were captured inside houses, and most insects tended to be collected in intermittent peaks. Moreover, captured triatomines tended to constitute colonies. The acute case reported in 2008 was found to be situated within a T. pseudomaculata hotspot.The triatomine collection events carried out by dwellers were aggregated in time and space into distinct foci, suggesting that insects are intermittently and artificially introduced into the city, possibly via accidental migration from their natural reservoirs. The relatively high T. cruzi infection rate indicates considerable circulation of the parasite in these areas, increasing the risk of vector-borne Chagas disease infection. These data suggest a need to strengthen epidemiological surveillance and integrate appropriate control actions targeting triatomines, T. cruzi reservoirs, and human populations. Our data also identify Chagas

  4. Inter-relações entre os ciclos de transmissão do Trypanosoma cruzi no município de Bambuí, Minas Gerais, Brasil Relationships between Trypanosoma cruzi transmission cycles in the county of Bambuí, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre José Fernandes

    1994-12-01

    ciclos de transmissão do T. cruzi Z2 no peridomicílio e domicílio, propiciando de forma gradual a reinfestação do município caso a Vigilância Epidemiológica seja interrompida.This study examines recent relationships between domestic and sylvatic transmission cycles of T.cruzi in the county of Bambuí, MG, Brazil. In the late l930s, Panstrongylus megistus was found in 75% of houses. Subsequently, Triatoma infestans became the predominant species, found in 20% of urban households and in more than 60% of periurban homes. With intense insecticide control campaigns between l956 and l969, T. infestans was eradicated from the county, transmission of Chagas' disease to man was interrupted, and P. mesgistus appeared in rural residences. Samples of T. cruzi isolated by xenodiagnosis and hemoculture from 43 opossums (Didelphis albiventris captured in both peridomiciliary and sylvatic areas were characterized by isoenzyme analysis and - regardless of isolation method - were found to present the Z1 zymodeme profile. Through the "Chagas' Disease Epidemiological Surveillance Program", from August l986 to December l988, 154 specimens of P. megistus were captured by the local population in both peridomiciliary and intradomiciliary environments, of which 9.8% were infected with T. cruzi. In isoenzyme analyses of l3 T. cruzi strains isolated from these triatomines, six were found to be of the Z1 zymodeme (sylvatic transmission cycles and seven were found to be of the Z2 zymodeme (domestic transmission cycle. The capture of P. megistus specimens in intradomiciliary environments that were naturally infected with parasites of both cycle types indicates an overlap of transmission cycles of Chagas' disease in the county of Bambuí. Further evidence for the interrelationship of the two cycles was provided by the isolation of T. cruzi of the Z2 zymodeme from a cat and the participation of the dog as a reservoir of Z1 T. cruzi. The presence of P. megistus in the peridomiciliary environment

  5. Impairment of Infectivity and Immunoprotective Effect of a LYT1 Null Mutant of Trypanosoma cruzi▿

    Science.gov (United States)

    Zago, M. Paola; Barrio, Alejandra B.; Cardozo, Rubén M.; Duffy, Tomás; Schijman, Alejandro G.; Basombrío, Miguel A.

    2008-01-01

    Trypanosoma cruzi infection of host cells is a complex process in which many proteins participate but only a few of these proteins have been identified experimentally. One parasite factor likely to be involved is the protein product of LYT1, a single-copy gene cloned, sequenced, and characterized by Manning-Cela et al. (Infect. Immun. 69:3916-3923, 2001). This gene was potentially associated with infectivity, since the deletion of both LYT1 alleles in the CL Brenner strain (the wild type [WT]) resulted in a null mutant T. cruzi clone (L16) that shows an attenuated phenotype in cell culture models. The aim of this work was to characterize the infective behavior of L16 in the insect vector and murine models. The infection of adult Swiss mice with 103 trypomastigotes of both clones revealed a significant reduction in infective behavior of L16, as shown by direct parasitemia, spleen index, and quantitation of tissue parasite burden, suggesting the loss of virulence in the null mutant clone. Although L16 blood counts were almost undetectable, blood-based PCRs indicated the presence of latent and persistent infection during all of the study period and epimastigotes were reisolated from hemocultures until 12 months postinfection. Nevertheless, virulence was not restored in L16 by serial passages in mice, and reisolated parasites lacking the LYT1 gene and bearing the antibiotic resistance genes revealed the stability of the genetic manipulation. Histopathological studies showed a strong diminution in the muscle inflammatory response triggered by L16 compared to that triggered by the WT group, consistent with a lower tissue parasite load. A strong protection against a virulent challenge in both L16- and WT-infected mice was observed; however, the immunizing infection by the genetically modified parasite was highly attenuated. PMID:17938222

  6. Controlling nosocomial infection based on structure of hospital social networks.

    Science.gov (United States)

    Ueno, Taro; Masuda, Naoki

    2008-10-07

    Nosocomial infection (i.e. infection in healthcare facilities) raises a serious public health problem, as implied by the existence of pathogens characteristic to healthcare facilities such as methicillin-resistant Staphylococcus aureus and hospital-mediated outbreaks of influenza and severe acute respiratory syndrome. For general communities, epidemic modeling based on social networks is being recognized as a useful tool. However, disease propagation may occur in a healthcare facility in a manner different from that in a urban community setting due to different network architecture. We simulate stochastic susceptible-infected-recovered dynamics on social networks, which are based on observations in a hospital in Tokyo, to explore effective containment strategies against nosocomial infection. The observed social networks in the hospital have hierarchical and modular structure in which dense substructure such as departments, wards, and rooms, are globally but only loosely connected, and do not reveal extremely right-skewed distributions of the number of contacts per individual. We show that healthcare workers, particularly medical doctors, are main vectors (i.e. transmitters) of diseases on these networks. Intervention methods that restrict interaction between medical doctors and their visits to different wards shrink the final epidemic size more than intervention methods that directly protect patients, such as isolating patients in single rooms. By the same token, vaccinating doctors with priority rather than patients or nurses is more effective. Finally, vaccinating individuals with large betweenness centrality (frequency of mediating connection between pairs of individuals along the shortest paths) is superior to vaccinating ones with large connectedness to others or randomly chosen individuals, which was suggested by previous model studies.

  7. An Investigation on the Ecology of Triatoma vitticeps (Stal, 1859 and its Possible Role in the Transmission of Trypanosoma cruzi, in the Locality of Triunfo, Santa Maria Madalena Municipal District, State of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Gonçalves Teresa Cristina M

    1998-01-01

    Full Text Available From January 1989 to April 1995, 465 specimens of Triatoma vitticeps were collected in the locality of Triunfo, 2nd District of Santa Maria Madalena municipal district, State of Rio de Janeiro. The bugs were found indoors by local residents with predominance of adults. The flight activity was high in hot months when the incidence in the domicile also increased. Two hundred and two bugs (111 alive and 91 dead were examined for Trypanosoma cruzi infection. This was detected in 31 of the dead bugs (34% and 88 (79% of the live bugs examined. With a view to investigate the possible vertebrate hosts of the T. cruzi isolates, the blood of 122 mammals was examined through Giemsa-stained smears, hemocultures and xenodiagnosis. T. cruzi was detected in three specimens of Didelphis marsupialis and T. (M. theileri was detected in one specimen of Bos taurus. The parasites were isolated from triatomine feces, xenoculture and hemoculture. No evidence of human infection was detected in 58 inhabitants examined, as evaluated by indirect imunofluorescence technique using T. cruzi epimastigotes as antigens. These results show that T. vitticeps is still a sylvatic species although nymphs have been found inside the domicile. Thus, an epidemiological vigilance is necessary to know the behaviour of this species following the continuous modifications promoted by the presence of man.

  8. Species-specific markers for the differential diagnosis of Trypanosoma cruzi and Trypanosoma rangeli and polymorphisms detection in Trypanosoma rangeli.

    Science.gov (United States)

    Ferreira, Keila Adriana Magalhães; Fajardo, Emanuella Francisco; Baptista, Rodrigo P; Macedo, Andrea Mara; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2014-06-01

    Trypanosoma cruzi and Trypanosoma rangeli are kinetoplastid parasites which are able to infect humans in Central and South America. Misdiagnosis between these trypanosomes can be avoided by targeting barcoding sequences or genes of each organism. This work aims to analyze the feasibility of using species-specific markers for identification of intraspecific polymorphisms and as target for diagnostic methods by PCR. Accordingly, primers which are able to specifically detect T. cruzi or T. rangeli genomic DNA were characterized. The use of intergenic regions, generally divergent in the trypanosomatids, and the serine carboxypeptidase gene were successful. Using T. rangeli genomic sequences for the identification of group-specific polymorphisms and a polymorphic AT(n) dinucleotide repeat permitted the classification of the strains into two groups, which are entirely coincident with T. rangeli main lineages, KP1 (+) and KP1 (-), previously determined by kinetoplast DNA (kDNA) characterization. The sequences analyzed totalize 622 bp (382 bp represent a hypothetical protein sequence, and 240 bp represent an anonymous sequence), and of these, 581 (93.3%) are conserved sites and 41 bp (6.7%) are polymorphic, with 9 transitions (21.9%), 2 transversions (4.9%), and 30 (73.2%) insertion/deletion events. Taken together, the species-specific markers analyzed may be useful for the development of new strategies for the accurate diagnosis of infections. Furthermore, the identification of T. rangeli polymorphisms has a direct impact in the understanding of the population structure of this parasite.

  9. Fungal Infection of the Sinus and Anterior Skull Base

    Directory of Open Access Journals (Sweden)

    Morteza Javadi

    2008-11-01

    Full Text Available   Abstract   Background: Invasive fungal infection is an opportunistic infection caused commonly   by mucoraccae and aspergillus. It mostly occurs in patients with underlying disease.   Since it has a high mortality and morbidity rate, considering a treatment strategy seems   necessary.   Objective: Since there has not been a clear protocol for treating these patients, we decided   to establish a protocol for fungal infection of sinus and anterior skull base management.   Methods: This retrospective and descriptive case study series included 30 patients.   After confirming the pathogen, the authors came to a proper protocol for treatment which   is mentioned later.   Results: The site involvement included nose and orbital cavity (53.3%, anterior skull   base and brain in conjunction with sinonasal (36.6% and simple nasal cavity involvement   (10%. 86.6% of the patients had underlying diseases. 56.6% of patients had diabetes   as a single underlying disease, while 13.3% had both diabetes and renal failure in   combination. Acute lymphocytic leukemia was present in 6.6%, renal failure in 3.3%, lupus   in 3.3% and chronic lymphocytic leukemia in 3.3% of patients. Mortality rate was   40%. We categorized the patients into 3 groups: only sinonasal, sinonasal and orbit, and   associated anterior skull base and brain involvement.   Conclusion: Early diagnosis is an important factor in improving survival. Anterior   skull base and brain involvement has a very poor prognosis.  

  10. Electron Microscopy Analysis of the Nucleolus of Trypanosoma cruzi

    Science.gov (United States)

    López-Velázquez, Gabriel; Hernández, Roberto; López-Villaseñor, Imelda; Reyes-Vivas, Horacio; Segura-Valdez, María De L.; Jiménez-García, Luis F.

    2005-08-01

    The nucleolus is the main site for synthesis and processing of ribosomal RNA in eukaryotes. In mammals, plants, and yeast the nucleolus has been extensively characterized by electron microscopy, but in the majority of the unicellular eukaryotes no such studies have been performed. Here we used ultrastructural cytochemical and immunocytochemical techniques as well as three-dimensional reconstruction to analyze the nucleolus of Trypanosoma cruzi, which is an early divergent eukaryote of medical importance. In T. cruzi epimastigotes the nucleolus is a spherical intranuclear ribonucleoprotein organelle localized in a relatively central position within the nucleus. Dense fibrillar and granular components but not fibrillar centers were observed. In addition, nuclear bodies resembling Cajal bodies were observed associated to the nucleolus in the surrounding nucleoplasm. Our results provide additional morphological data to better understand the synthesis and processing of the ribosomal RNA in kinetoplastids.

  11. The Chagas disease domestic transmission cycle in Guatemala: Parasite-vector switches and lack of mitochondrial co-diversification between Triatoma dimidiata and Trypanosoma cruzi subpopulations suggest non-vectorial parasite dispersal across the Motagua valley.

    Science.gov (United States)

    Pennington, Pamela M; Messenger, Louisa Alexandra; Reina, Jeffrey; Juárez, José G; Lawrence, Gena G; Dotson, Ellen M; Llewellyn, Martin S; Cordón-Rosales, Celia

    2015-11-01

    Parasites transmitted by insects must adapt to their vectors and reservoirs. Chagas disease, an American zoonosis caused by Trypanosoma cruzi, is transmitted by several species of triatomines. In Central America, Triatoma dimidiata is a widely dispersed vector found in sylvatic and domestic habitats, with distinct populations across the endemic region of Guatemala. Our aim was to test the strength of association between vector and parasite genetic divergence in domestic environments. Microsatellite (MS) loci were used to characterize parasites isolated from T. dimidiata (n=112) collected in domestic environments. Moderate genetic differentiation was observed between parasites north and south of the Motagua Valley, an ancient biogeographic barrier (FST 0.138, p=0.009). Slightly reduced genotypic diversity and increased heterozygosity in the north (Allelic richness (Ar)=1.00-6.05, FIS -0.03) compared to the south (Ar=1.47-6.30, FIS 0.022) suggest either a selective or demographic process during parasite dispersal. Based on parasite genotypes and geographic distribution, 15 vector specimens and their parasite isolates were selected for mitochondrial co-diversification analysis. Genetic variability and phylogenetic congruence were determined with mitochondrial DNA sequences (10 parasite maxicircle gene fragments and triatomine ND4+CYT b). A Mantel test as well as phylogenetic, network and principal coordinates analyses supported at least three T. dimidiata haplogroups separated by geographic distance across the Motagua Valley. Maxicircle sequences showed low T. cruzi genetic variability (π nucleotide diversity 0.00098) with no evidence of co-diversification with the vector, having multiple host switches across the valley. Sylvatic Didelphis marsupialis captured across the Motagua Valley were found to be infected with T. cruzi strains sharing MS genotypes with parasites isolated from domiciliated triatomines. The current parasite distribution in domestic environments

  12. Trypanocidal Effect of Isotretinoin through the Inhibition of Polyamine and Amino Acid Transporters in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Chantal Reigada

    2017-03-01

    Full Text Available Polyamines are essential compounds to all living organisms and in the specific case of Trypanosoma cruzi, the causative agent of Chagas disease, they are exclusively obtained through transport processes since this parasite is auxotrophic for polyamines. Previous works reported that retinol acetate inhibits Leishmania growth and decreases its intracellular polyamine concentration. The present work describes a combined strategy of drug repositioning by virtual screening followed by in vitro assays to find drugs able to inhibit TcPAT12, the only polyamine transporter described in T. cruzi. After a screening of 3000 FDA-approved drugs, 7 retinoids with medical use were retrieved and used for molecular docking assays with TcPAT12. From the docked molecules, isotretinoin, a well-known drug used for acne treatment, showed the best interaction score with TcPAT12 and was selected for further in vitro studies. Isotretinoin inhibited the polyamine transport, as well as other amino acid transporters from the same protein family (TcAAAP, with calculated IC50 values in the range of 4.6-10.3 μM. It also showed a strong inhibition of trypomastigote burst from infected cells, with calculated IC50 of 130 nM (SI = 920 being significantly less effective on the epimastigote stage (IC50 = 30.6 μM. The effect of isotretinoin on the parasites plasma membrane permeability and on mammalian cell viability was tested, and no change was observed. Autophagosomes and apoptotic bodies were detected as part of the mechanisms of isotretinoin-induced death indicating that the inhibition of transporters by isotretinoin causes nutrient starvation that triggers autophagic and apoptotic processes. In conclusion, isotretinoin is a promising trypanocidal drug since it is a multi-target inhibitor of essential metabolites transporters, in addition to being an FDA-approved drug largely used in humans, which could reduce significantly the requirements for its possible application in the

  13. Supervivencia de Trypanosoma cruzi en bebidas experimentalmente contaminadas

    Directory of Open Access Journals (Sweden)

    Diana Carolina Suárez

    2012-03-01

    Conclusiones. La cepa DS de T. cruzi sobrevivió en todas las bebidas por más de 24 horas después de la contaminación y se observó un tiempo de supervivencia de 384 horas a temperatura de refrigeración en el jugo de guanábana.   DOI: http://dx.doi.org/10.7705/biomedica.v32i1.371

  14. Geographical Distribution of Trypanosoma cruzi Genotypes in Venezuela

    Science.gov (United States)

    Carrasco, Hernán J.; Segovia, Maikell; Llewellyn, Martin S.; Morocoima, Antonio; Urdaneta-Morales, Servio; Martínez, Cinda; Martínez, Clara E.; Garcia, Carlos; Rodríguez, Marlenes; Espinosa, Raul; de Noya, Belkisyolé A.; Díaz-Bello, Zoraida; Herrera, Leidi; Fitzpatrick, Sinead; Yeo, Matthew; Miles, Michael A.; Feliciangeli, M. Dora

    2012-01-01

    Chagas disease is an endemic zoonosis native to the Americas and is caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The parasite is also highly genetically diverse, with six discrete typing units (DTUs) reported TcI – TcVI. These DTUs broadly correlate with several epidemiogical, ecological and pathological features of Chagas disease. In this manuscript we report the most comprehensive evaluation to date of the genetic diversity of T. cruzi in Venezuela. The dataset includes 778 samples collected and genotyped over the last twelve years from multiple hosts and vectors, including nine wild and domestic mammalian host species, and seven species of triatomine bug, as well as from human sources. Most isolates (732) can be assigned to the TcI clade (94.1%); 24 to the TcIV group (3.1%) and 22 to TcIII (2.8%). Importantly, among the 95 isolates genotyped from human disease cases, 79% belonged to TcI - a DTU common in the Americas, however, 21% belonged to TcIV- a little known genotype previously thought to be rare in humans. Furthermore, were able to assign multiple oral Chagas diseases cases to TcI in the area around the capital, Caracas. We discuss our findings in the context of T. cruzi DTU distributions elsewhere in the Americas, and evaluate the impact they have on the future of Chagas disease control in Venezuela. PMID:22745843

  15. Expression and subcellular localization of kinetoplast-associated proteins in the different developmental stages of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Cavalcanti Danielle

    2009-06-01

    Full Text Available Abstract Background The kinetoplast DNA (kDNA of trypanosomatids consists of an unusual arrangement of circular molecules catenated into a single network. The diameter of the isolated kDNA network is similar to that of the entire cell. However, within the kinetoplast matrix, the kDNA is highly condensed. Studies in Crithidia fasciculata showed that kinetoplast-associated proteins (KAPs are capable of condensing the kDNA network. However, little is known about the KAPs of Trypanosoma cruzi, a parasitic protozoon that shows distinct patterns of kDNA condensation during their complex morphogenetic development. In epimastigotes and amastigotes (replicating forms the kDNA fibers are tightly packed into a disk-shaped kinetoplast, whereas trypomastigotes (non-replicating present a more relaxed kDNA organization contained within a rounded structure. It is still unclear how the compact kinetoplast disk of epimastigotes is converted into a globular structure in the infective trypomastigotes. Results In this work, we have analyzed KAP coding genes in trypanosomatid genomes and cloned and expressed two kinetoplast-associated proteins in T. cruzi: TcKAP4 and TcKAP6. Such small basic proteins are expressed in all developmental stages of the parasite, although present a differential distribution within the kinetoplasts of epimastigote, amastigote and trypomastigote forms. Conclusion Several features of TcKAPs, such as their small size, basic nature and similarity with KAPs of C. fasciculata, are consistent with a role in DNA charge neutralization and condensation. Additionally, the differential distribution of KAPs in the kinetoplasts of distinct developmental stages of the parasite, indicate that the kDNA rearrangement that takes place during the T. cruzi differentiation process is accompanied by TcKAPs redistribution.

  16. Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta. Anti-Trypanosoma cruzi activity without cytotoxicity to mammalian cells.

    Science.gov (United States)

    Brand, Guilherme D; Leite, José Roberto S A; Silva, Luciano P; Albuquerque, Sérgio; Prates, Maura V; Azevedo, Ricardo B; Carregaro, Vanessa; Silva, João S; Sá, Vanuza C L; Brandão, Reuber A; Bloch, Carlos

    2002-12-20

    Amphibian skin secretions are known as a rich source of biologically active molecules, most of which are alkaloids, biogenic amines, and peptides. Dermaseptins are a class of antimicrobial peptides present in tree frogs of the Phyllomedusa genus. They are cationic molecules of 28-34 residues that permeabilize the membrane of Gram-positive and Gram-negative bacteria, yeasts, and filamentous fungi, showing little or no hemolytic activity. This work reports the isolation, molecular mass analysis, primary structure determination, biological activities, and potential therapeutic applications of an antimicrobial peptide found in the skin secretion of Phyllomedusa oreades, which is a newly described amphibian species endemic of the Brazilian savanna. DS 01 is a 29-residue-long peptide with a molecular mass of 2793.39 Da showing antibacterial properties against Gram-positive and Gram-negative bacteria in the range of 3-25 microm. Anti-protozoan activity was investigated using T. cruzi in its trypomatigote and epimastigote forms cultivated in both cell culture and blood media. Within 2 h after incubation with DS 01 at a final concentration of approximately 6 microm, no protozoan cells were detected. Two synthetic dermaseptins, described previously by our group and named dermadistinctins K and L (DD K and DD L), also had their anti-Trypanosoma cruzi activity investigated and demonstrated similar properties. Toxicity of DS 01 to mouse erythrocytes and white blood cells was evaluated by means of atomic force microscopy and flow cytometry. No morphological alterations were observed at a lytic concentration of DS 01, suggesting its therapeutic value especially as an anti-T. cruzi agent to prevent infections during blood transfusion.

  17. Molecular Characterization of a Novel Family of Trypanosoma cruzi Surface Membrane Proteins (TcSMP) Involved in Mammalian Host Cell Invasion.

    Science.gov (United States)

    Martins, Nadini Oliveira; Souza, Renata Torres de; Cordero, Esteban Mauricio; Maldonado, Danielle Cortez; Cortez, Cristian; Marini, Marjorie Mendes; Ferreira, Eden Ramalho; Bayer-Santos, Ethel; Almeida, Igor Correia de; Yoshida, Nobuko; Silveira, José Franco da

    2015-11-01

    The surface coat of Trypanosoma cruzi is predominantly composed of glycosylphosphatidylinositol-anchored proteins, which have been extensively characterized. However, very little is known about less abundant surface proteins and their role in host-parasite interactions. Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), which are conserved among different T. cruzi lineages and have orthologs in other Trypanosoma species. TcSMP genes are densely clustered within the genome, suggesting that they could have originated by tandem gene duplication. Several lines of evidence indicate that TcSMP is a membrane-spanning protein located at the cellular surface and is released into the extracellular milieu. TcSMP exhibited the key elements typical of surface proteins (N-terminal signal peptide or signal anchor) and a C-terminal hydrophobic sequence predicted to be a trans-membrane domain. Immunofluorescence of live parasites showed that anti-TcSMP antibodies clearly labeled the surface of all T. cruzi developmental forms. TcSMP peptides previously found in a membrane-enriched fraction were identified by proteomic analysis in membrane vesicles as well as in soluble forms in the T. cruzi secretome. TcSMP proteins were also located intracellularly likely associated with membrane-bound structures. We demonstrated that TcSMP proteins were capable of inhibiting metacyclic trypomastigote entry into host cells. TcSMP bound to mammalian cells and triggered Ca2+ signaling and lysosome exocytosis, events that are required for parasitophorous vacuole biogenesis. The effects of TcSMP were of lower magnitude compared to gp82, the major adhesion protein of metacyclic trypomastigotes, suggesting that TcSMP may play an auxiliary role in host cell invasion. We hypothesized that the productive interaction of T. cruzi with host cells that effectively results in internalization may depend on diverse adhesion molecules. In the metacyclic forms, the signaling induced by

  18. Comprehensive proteomic analysis of Trypanosoma cruzi epimastigote cell surface proteins by two complementary methods

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sébastien; Motta, Flávia N

    2013-01-01

    Trypanosoma cruzi is a protozoan that causes Chagas' disease, a neglected infectious illness that affects millions of people, mostly in Latin America. Here, the cell surface subproteome of the T. cruzi epimastigote life form was characterized. In order to prepare samples enriched in epimastigote...

  19. Partial Protection of Mice against Trypanosoma cruzi after Immunizing with the TcY 72 Antigenic Preparation

    Directory of Open Access Journals (Sweden)

    Yara M Gomes

    1999-03-01

    Full Text Available A 72 kDa Trypanosoma cruzi glycoprotein recognized by the 164C11 monoclonal antibody (IgM isotype was purified by preparative electrophoresis. The antigenic preparation obtained, named TcY 72, was used to immunize C57Bl/10 mice. The following results were observed after immunization: (1 induction of higher titres of IgG than IgM antibodies, as evaluated by indirect immunofluorescence; (2 significant DTH after injection of epimastigotes in mice footpads; (3 peak parasitemia in immunized mice was significantly reduced and animals were negative by 13 days post-infection, although the mice still succumb to infection; (4 the phenotypic analysis of spleen cell populations showed a decrease in the CD4/CD8 ratio in immunized mice. Taken as a whole, these findings indicate that TcY 72 is immunogenic and potentially important for protective immunity.

  20. Discovery and Optimization of 5-Amino-1,2,3-triazole-4-carboxamide Series against Trypanosoma cruzi.

    Science.gov (United States)

    Brand, Stephen; Ko, Eun Jung; Viayna, Elisabet; Thompson, Stephen; Spinks, Daniel; Thomas, Michael; Sandberg, Lars; Francisco, Amanda F; Jayawardhana, Shiromani; Smith, Victoria C; Jansen, Chimed; De Rycker, Manu; Thomas, John; MacLean, Lorna; Osuna-Cabello, Maria; Riley, Jennifer; Scullion, Paul; Stojanovski, Laste; Simeons, Frederick R C; Epemolu, Ola; Shishikura, Yoko; Crouch, Sabrinia D; Bakshi, Tania S; Nixon, Christopher J; Reid, Iain H; Hill, Alan P; Underwood, Tim Z; Hindley, Sean J; Robinson, Sharon A; Kelly, John M; Fiandor, Jose M; Wyatt, Paul G; Marco, Maria; Miles, Timothy J; Read, Kevin D; Gilbert, Ian H

    2017-09-14

    Chagas' disease, caused by the protozoan parasite Trypanosoma cruzi, is the most common cause of cardiac-related deaths in endemic regions of Latin America. There is an urgent need for new safer treatments because current standard therapeutic options, benznidazole and nifurtimox, have significant side effects and are only effective in the acute phase of the infection with limited efficacy in the chronic phase. Phenotypic high content screening against the intracellular parasite in infected VERO cells was used to identify a novel hit series of 5-amino-1,2,3-triazole-4-carboxamides (ATC). Optimization of the ATC series gave improvements in potency, aqueous solubility, and metabolic stability, which combined to give significant improvements in oral exposure. Mitigation of a potential Ames and hERG liability ultimately led to two promising compounds, one of which demonstrated significant suppression of parasite burden in a mouse model of Chagas' disease.

  1. Increased levels of IgA antibodies against CRA and FRA recombinant antigens of Trypanosoma cruzi differentiate digestive forms of Chagas disease.

    Science.gov (United States)

    Vasconcelos, Romero H T; Amaral, Fábio N; Cavalcanti, Maria G A M; Silva, Edimilson D; Ferreira, Antonio G P; Morais, Clarice N L; Gomes, Yara M

    2010-10-01

    In the chronic phase of Chagas disease, individuals infected by Trypanosoma cruzi may be asymptomatic or may present cardiac and/or digestive complications. Our aim here was to analyze the relationship between the presence of specific immunoglobulin A antibodies and the different chronic clinical forms of Chagas disease using two recombinant antigens of Trypanosoma cruzi, cytoplasmatic repetitive antigen and flagellar repetitive antigen. The association of this immunoglobulin isotype with the digestive and cardio-digestive forms of the disease determined by indirect enzyme-linked immunosorbent assay, strongly suggests that IgA antibodies against these recombinant antigens of T. cruzi can be used as an immunological marker of the digestive alterations caused by Chagas disease. The tests performed in this study show that it is possible to differentiate digestive forms of Chagas disease. The knowledge provided by these results may help physicians to manage early alterations in the digestive tract of patients with the indeterminate or cardiac forms of Chagas disease. Prospective studies, however, with follow-up of the patients that presenting with high levels of immunoglobulin A against cytoplasmatic repetitive antigen and flagellar repetitive antigen recombinant antigens, need to be conducted to confirm this hypothesis. 2010 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  2. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Alves, Maria Julia Manso; Kawahara, Rebeca; Viner, Rosa

    2017-01-01

    Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving insect and mammalian hosts and distinct developmental stages. During T. cruzi developmental stages, glycoproteins play important role in the host-parasite interaction, such as cellular recognition, host...... the significant T. cruzi stage-specific expression of glycoproteins that can help to better understand the T. cruzi phenotype and response caused by the interaction with different hosts during its complex life cycle. BIOLOGICAL SIGNIFICANCE: Chagas disease caused by the protozoan Trypanosoma cruzi is a neglected...... disease which affects millions of people especially in Latin America. The absence of efficient drugs and vaccines against Chagas disease stimulates the search for novel targets. Glycoproteins are very attractive therapeutic candidate targets since they mediate key processes in the host...

  3. Infection,

    Science.gov (United States)

    1980-10-16

    characteristic in severe gram-negative sepsis. Hypertriglyceridemia results from an increase in hepatic synthesis in combination with diminished activity of...induced stress, and tissue repair (1). The magnitude and type of nutritional losses caused by an infection reflect both the severity and duration of an... several functional forms of nutrient loss must be anticipated. Functional losses are defined as the within-body losses of nutrients due to infection

  4. Clostridium difficile infection in Europe: a hospital-based survey

    DEFF Research Database (Denmark)

    Bauer, Martijn P; Notermans, Daan W; van Benthem, Birgit H B

    2011-01-01

    Little is known about the extent of Clostridium difficile infection in Europe. Our aim was to obtain a more complete overview of C difficile infection in Europe and build capacity for diagnosis and surveillance.......Little is known about the extent of Clostridium difficile infection in Europe. Our aim was to obtain a more complete overview of C difficile infection in Europe and build capacity for diagnosis and surveillance....

  5. [Anti-Trypanosoma cruzi antibodies in Latin American migrants in transit through the México- USA border].

    Science.gov (United States)

    Montes-Rincón, Laura Mayela; Galaviz-Silva, Lucio; Molina-Garza, Zinnia Judith

    2018-03-15

    In recent years, American trypanosomiasis has become an emergent public health problem in countries receiving migrant populations such as México, USA, Canada or those in Europe. To analyze the prevalence of anti-Trypanosoma cruzi antibodies in Latin American migrants on their way to USA and Canada by means of serological techniques. ELISA and IHA were performed to detect anti-T. cruzi antibodies. Also, each participant filled out a socioeconomic questionnaire to determine the associated factors with seropositive cases, which could facilitate the transmission in the migrants' country of origin. Total seroprevalence among the studied population was 20% (24/120). The highest prevalence was found in migrants from Guatemala with 37.5% (6/16), followed by Honduras (22.6%; 12/53), El Salvador (16%; 4/25), and México (8.7%, 3/23). From the total 120 surveyed migrants, 105 (87.5%) recognized the vector of Chagas' disease, and 62 (59%) assured having been bitten by it. Highly significant statistical associations were found between infection and the construction materials for walls and the presence of pets (dogs) inside houses (p≤0.01), as well as with the building materials for backyards, inadequate basic services, and animal breeding inside corrals built around dwellings (p≤0.05). Non-endemic countries receiving migrants from endemic areas should enhance or develop better health policies to prevent transfusion-transmitted Chagas or congenital parasite transmission.

  6. Abietane-Type Diterpenoid Amides with Highly Potent and Selective Activity against Leishmania donovani and Trypanosoma cruzi.

    Science.gov (United States)

    Pirttimaa, Minni; Nasereddin, Abedelmajeed; Kopelyanskiy, Dmitry; Kaiser, Marcel; Yli-Kauhaluoma, Jari; Oksman-Caldentey, Kirsi-Marja; Brun, Reto; Jaffe, Charles L; Moreira, Vânia M; Alakurtti, Sami

    2016-02-26

    Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.

  7. Developmentally regulated expression by Trypanosoma cruzi of molecules that accelerate the decay of complement C3 convertases

    International Nuclear Information System (INIS)

    Rimoldi, M.T.; Sher, A.; Heiny, A.; Lituchy, A.; Hammer, C.H.; Joiner, K.

    1988-01-01

    The authors recently showed that culture-derived metacyclic trypomastigotes (CMT), but not epimastigotes (Epi), of the Miranda 99 strain of Trypanosoma cruzi evade lysis by the human alternative complement pathway because of inefficient binding of factor B to complement component C3b on the parasite surface. These results suggested that CMT and tissue-culture-derived trypomastigotes (TCT), which also activate the alternative pathway poorly, might produce a molecule capable of interfering with factor B binding to C3b. They now demonstrate that CMT and TCT lysates, as well as molecules spontaneously shed from CMT and TCT but not Epi, accelerate decay of 125 I-labeled factor Bb from the alternative-pathway C3 convertase (C3bBb) assembled on zymosan or Epi and also accelerate decay of the classical-pathway C3 convertase (C4b2a) on sheep erythrocytes. Parasites metabolically labeled with [ 35 S]methionine spontaneously shed a limited number of radioactive components, ranging in molecular mass from 86 to 155 kDa for trypomastigotes and 25 to 80 kDa for Epi. Decay-accelerating activity within supernatants is inactivated by papain and is coeluted with 35 S-containing polypeptides on FPLC anion-exchange chromatography, suggesting that the active constituents are protein molecules. Molecules with decay-accelerating activity may explain the developmentally regulated resistance to complement-mediated lysis in infective and vertebrate stages for T. cruzi life cycle

  8. Population-based biomedical sexually transmitted infection control interventions for reducing HIV infection.

    Science.gov (United States)

    Ng, Brian E; Butler, Lisa M; Horvath, Tara; Rutherford, George W

    2011-03-16

    The transmission of sexually transmitted infections (STIs) is closely related to the sexual transmission of human immunodeficiency virus (HIV). Similar risk behaviours, such as frequent unprotected intercourse with different partners, place people at high risk of HIV and STIs, and there is clear evidence that many STIs increase the likelihood of HIV transmission. STI control, especially at the population or community level, may have the potential to contribute substantially to HIV prevention.This is an update of an existing Cochrane review. The review's search methods were updated and its inclusion and exclusion criteria modified so that the focus would be on one well-defined outcome. This review now focuses explicitly on population-based biomedical interventions for STI control, with change in HIV incidence being an outcome necessary for a study's inclusion. To determine the impact of population-based biomedical STI interventions on the incidence of HIV infection. We searched PubMed, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science/Social Science, PsycINFO, and Literatura Latino Americana e do Caribe em Ciências da Saúde (LILACS), for the period of 1 January1980 - 16 August 2010. We initially identified 6003 articles and abstracts. After removing 776 duplicates, one author (TH) removed an additional 3268 citations that were clearly irrelevant. Rigorously applying the inclusion criteria, three authors then independently screened the remaining 1959 citations and abstracts. Forty-six articles were chosen for full-text scrutiny by two authors. Ultimately, four studies were included in the review.We also searched the Aegis database of conference abstracts, which includes the Conference on Retroviruses and Opportunistic Infections (CROI), the International AIDS Conference (IAC), and International AIDS Society Conference on HIV Pathogenesis, Treatment and Prevention (IAS) meetings from their inception dates (1993, 1985 and

  9. Standardization of micro-enzyme-linked immunosorbent assay (ELISA) and Western blot for detection of Trypanosoma cruzi antibodies using extracts from Mexican strains as antigens.